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Abstract. In this paper we present a recursion-theoretic denotational
semantics for Featherweight Java. Our interpretation is based on a for-
malization of the object model of Castagna, Ghelli and Longo in a
predicative theory of types and names. Although this theory is proof-
theoretically weak, it allows to prove many properties of programs writ-
ten in Featherweight Java. This underpins Feferman’s thesis that im-
predicative assumptions are not needed for computational practice.
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1 Introduction

The question of the mathematical meaning of a program is usually asked to
gain more insight into the language the program is written in. This may be to
bring out subtle issues in language design, to derive new reasoning principles
or to develop an intuitive abstract model of the programming language under
consideration so as to aid program development. Moreover, a precise semantics
is also needed for establishing certain properties of programs (often related to
some aspects concerning security) with mathematical rigor.

As far as the Java language is concerned, most of the research on its semantics
is focused on the operational approach (cf. e.g. Börger, Schmid, Schulte and Stärk
[7], Cenciarelli, Knapp, Reus and Wirsing [12], Drossopoulou, Eisenbach and
Khurshid [13], Nipkow and Oheimb [31], and Syme [40]). Notable exceptions are
Oheimb [32] who introduces a Hoare-style calculus for Java as well as Alves-Foss
and Lam [2] who present a denotational semantics which is, as usual, based on
domain-theoretic notions, cf. e.g. Fiore, Jung, Moggi, O’Hearn, Riecke, Rosolini
and Stark [20] for a recent survey on domains and denotational semantics. Also,
the projects aiming at a verification of Java programs using modern CASE tools
and theorem provers have to make use of a formalization of the Java language (cf.
e.g. the KeY approach by Ahrendt, Baar, Beckert, Giese, Habermalz, Hähnle,
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Menzel and Schmitt [1] as well as the LOOP project by Jacobs, van den Berg,
Huisman, van Berkum, Hensel and Tews [26]).

The main purpose of the present paper is the study of a recursion-theoretic
denotational semantics for Featherweight Java, called FJ. Igarashi, Pierce and
Wadler [25, 24] have proposed this system as a minimal core calculus for Java,
making it easier to understand the consequences of extensions and variations. For
example, they employ it to prove type safety of an extension with generic classes
as well as to obtain a precise understanding of inner classes. Ancona and Zucca
[4] present a module calculus where the module components are class declara-
tions written in Featherweight Java; and the introductory text by Felleisen and
Friedman [19] shows that many useful object-oriented programs can be written
in a purely functional style à la Featherweight Java.

In order to give a denotational semantics for FJ, we need to formalize an
object model. Often, models for statically typed object-oriented programming
languages are based on a highly impredicative type theory. Bruce, Cardelli and
Pierce [8] for example use Fω<: as common basis to compare different object
encodings. A new approach to the foundations of object-oriented programming
has been proposed by Castagna, Ghelli and Longo [9, 11, 22] who take overloading
and subtyping as basic rather than encapsulation and subtyping. Although in its
full generality this approach leads to a new form of impredicativity, see Castagna
[9] and Studer [39], only a predicative variant of their system is needed in order
to model object-oriented programming. This predicative object model will be
our starting point for constructing a denotational semantics for Featherweight
Java in a theory of types and names.

Theories of types and names, or explicit mathematics, have originally been
introduced by Feferman [14, 15] to formalize Bishop style constructive math-
ematics. In the sequel, these systems have gained considerable importance in
proof theory, particularly for the proof-theoretic analysis of subsystems of sec-
ond order arithmetic and set theory. More recently, theories of types and names
have been employed for the study of functional and object-oriented programming
languages. In particular, they have been shown to provide a unitary axiomatic
framework for representing programs, stating properties of programs and proving
properties of programs. Important references for the use of explicit mathematics
in this context are Feferman [16–18], Kahle and Studer [30], Stärk [35, 36], Studer
[37, 39] as well as Turner [43, 44]. Beeson [6] and Tatsuta [41] make use of real-
izability interpretations for systems of explicit mathematics to prove theorems
about program extraction.

Feferman [16] claims that impredicative comprehension principles are not
needed for applications in computational practice. Further evidence for this is
also given by Turner [44] who presents computationally weak but highly ex-
pressive theories, which suffice for constructive functional programming. In our
paper we provide constructive foundations for Featherweight Java in the sense
that our denotational semantics for FJ will be formalized in a constructive the-
ory of types and names using the predicative object model of Castagna, Ghelli
and Longo [11]. This supports Feferman’s thesis that impredicative assumptions



are not needed. Although our theory is proof-theoretically weak we can prove
soundness of our semantics with respect to subtyping, typing and reductions.
Moreover, the theory of types and names we use has a recursion-theoretic inter-
pretation. Hence, computations in FJ will be modeled by ordinary computations.
For example, a non-terminating computation is not interpreted by a function,
which yields ⊥ as result, but by a partial function which does not terminate,
either.

The plan of the present paper is as follows. In the next section we introduce
the general framework of theories of types and names and we show how to con-
struct fixed point types in it. Further we recall a theorem about a least fixed
point operator in explicit mathematics, which will be the crucial ingredient of our
construction. The presentation of Featherweight Java in Section 3 is included in
order to make this paper self-contained. The overloading based object model we
employ for our interpretation is introduced in Section 4. Section 5 is concerned
with the study of some examples written in FJ which will motivate our deno-
tational semantics as presented in Section 6. Section 7 contains the soundness
proofs of our semantics with respect to subtyping, typing and reductions. A con-
clusion sums up what we have achieved and suggest further work, in particular
the extension to the dynamic definition of new classes.

2 Theories of Types and Names

Explicit Mathematics has been introduced by Feferman [14] for the study of
constructive mathematics. In the present paper, we will not work with Feferman’s
original formalization of these systems; instead we treat them as theories of types
and names as developed in Jäger [27]. First we will present the base theory EETJ.
Then we will extend it with the principle of dependent choice and show that this
implies the existence of certain fixed points. Last but not least we are going to
add axioms about computability and the statement that everything is a natural
number. These two additional principles make the definition of a least fixed point
operator possible.

2.1 Basic notions

The theory of types and names which we will consider in the sequel is formulated
in the two sorted language L about individuals and types. It comprises individual
variables a, b, c, f, g, h, x, y, z, . . . as well as type variables A,B,C,X, Y, Z, . . .
(both possibly with subscripts).

The language L includes the individual constants k, s (combinators), p, p0, p1

(pairing and projections), 0 (zero), sN (successor), pN (predecessor), dN (defini-
tion by numerical cases) and the constant c (computation). There are additional
individual constants, called generators, which will be used for the uniform repre-
sentation of types. Namely, we have a constant ce (elementary comprehension)
for every natural number e, as well as the constants j (join) and dc (dependent
choice).



The individual terms (r, s, t, r1, s1, t1, . . . ) of L are built up from the variables
and constants by means of the function symbol · for (partial) application. We
use (st) or st as an abbreviation for (s·t) and adopt the convention of association
to the left, this means s1s2 . . . sn stands for (. . . (s1 ·s2) . . . sn). Finally, we define
general n tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2 and (s1, s2, . . . , sn+1) := (s1, (s2, . . . , sn+1)).

The atomic formulas of L are s↓, N(s), s = t, s ∈ U and <(s, U). Since we work
with a logic of partial terms, it is not guaranteed that all terms have values,
and s↓ is read as s is defined or s has a value. Moreover, N(s) says that s is a
natural number, and the formula <(s, U) is used to express that the individual
s represents the type U or is a name of U .

The formulas of L are generated from the atomic formulas by closing against
the usual propositional connectives as well as quantification in both sorts. A
formula is called elementary if it contains neither the relation symbol < nor
bound type variables. The following table contains a list of useful abbreviations,
where F is an arbitrary formula of L:

s ' t := s↓ ∨ t↓ → s = t,

s 6= t := s↓ ∧ t↓ ∧ ¬(s = t),
s ∈ N := N(s),

(∃x ∈ A)F (x) := ∃x(x ∈ A ∧ F (x)),
(∀x ∈ A)F (x) := ∀x(x ∈ A→ F (x)),
f ∈ (A→ B) := (∀x ∈ A)fx ∈ B,

A ⊂ B := ∀x(x ∈ A→ x ∈ B),
A = B := A ⊂ B ∧A ⊂ B,

f ∈ (AyB) := ∀x(x ∈ A ∧ fx↓ → fx ∈ B),
x ∈ A ∩B := x ∈ A ∧ x ∈ B,

s ∈̇ t := ∃X(<(t,X) ∧ s ∈ X),
s ⊂̇ t := (∀x ∈̇ s)x ∈̇ t,
s =̇ t := s ⊂̇ t ∧ t ⊂̇ s,

(∃x ∈̇ s)F (x) := ∃x(x ∈̇ s ∧ F (x)),
(∀x ∈̇ s)F (x) := ∀x(x ∈̇ s→ F (x)),

<(s) := ∃X<(s,X),
f ∈ (< → <) := ∀x(<(x)→ <(fx)).

The vector notation ~Z is sometimes used to denote finite sequences Z1, . . .Zn of
expressions. The length of such a sequence ~Z is then either given by the context
or irrelevant. For example, for ~U = U1, . . . , Un and ~s = s1, . . . , sn we write

<(~s, ~U) := <(s1, U1) ∧ . . . ∧ <(sn, Un),
<(~s) := <(s1) ∧ . . . ∧ <(sn).



Now we introduce the theory EETJ which provides a framework for explicit
elementary types with join. Its logic is Beeson’s [5] classical logic of partial terms
for individuals and classical logic for types. The logic of partial terms takes
into account the possibility of undefined terms, i.e. terms which represent non-
terminating computations. Scott [34] has given a logic similar to the logic of
partial terms, but he treats existence like an ordinary predicate. Troelstra and
van Dalen [42] give a discussion about the different approaches to partial terms.

Among the main features of the logic of partial terms are its strictness axioms
stating that if a term has a value, then all its subterms must be defined, too.
This corresponds to a call-by-value evaluation strategy, where all arguments of
a function must first be fully evaluated before the final result will be computed.
Stärk [35, 36] examines variants of the logic of partial terms which also allow of
call-by-name evaluation.

The nonlogical axioms of EETJ can be divided into the following three groups.

I. Applicative axioms. These axioms formalize that the individuals form a partial
combinatory algebra, that we have paring and projections and the usual closure
conditions on the natural numbers as well as definition by numerical cases.

(1) kab = a,
(2) sab↓ ∧ sabc ' ac(bc),
(3) p0a↓ ∧ p1a↓,
(4) p0(a, b) = a ∧ p1(a, b) = b,
(5) 0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N),
(6) (∀x ∈ N)(sNx 6= 0 ∧ pN(sNx) = x),
(7) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ sN(pNx) = x),
(8) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,
(9) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

II. Explicit representation and extensionality. The following are the usual ontological
axioms for systems of explicit mathematics. They state that each type has a
name, that there are no homonyms and that < respects the extensional equality
of types. Note that the representation of types by their names is intensional,
while the types themselves are extensional in the usual set-theoretic sense.

(10) ∃x<(x,A),
(11) <(s,A) ∧ <(s,B)→ A = B,
(12) A = B ∧ <(s,A)→ <(s,B).

III. Basic type existence axioms.

Elementary Comprehension. Let F (x, ~y, ~Z) be an elementary formula of L with
at most the indicated free variables and with Gödelnumber e for any fixed Gö-
delnumbering, then we have the following axioms:

(13) <(~b)→ <(ce(~a,~b)),
(14) <(~b, ~T )→ ∀x(x ∈̇ ce(~a,~b)↔ F (x,~a, ~T )).



With elementary comprehension we get a universal type V containing every
individual. Simply let F be the elementary formula x = x and apply the above
axioms.

Join

(15) <(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧Σ(a, f, j(a, f)).

In this axiom the formula Σ(a, f, b) means that b names the disjoint union of f
over a, i.e.

Σ(a, f, b) := ∀x(x ∈̇ b↔ ∃y∃z(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

It is a well-known result that we can introduce λ abstraction and recursion using
the combinator axioms for k and s, cf. Beeson [5] or Feferman [14].

Theorem 1.
1. For every variable x and every term t of L, there exists a term λx.t of L

whose free variables are those of t, excluding x, such that

EETJ ` λx.t↓ ∧ (λx.t)x ' t and EETJ ` s↓ → (λx.t) s ' t[s/x].

2. There exists a term rec of L such that

EETJ ` rec f↓ ∧ ∀x(rec f x ' f (rec f)x).

Now we introduce non-strict definition by cases (cf. e.g. Beeson [5]). Observe
that if dNabcd↓, then a↓ and b↓ hold by strictness. However, we often want to
define a function by cases so that it is defined if one case holds, even if the value
that would have been computed in the other case is undefined. Hence we let
dsabcd stand for the term dN(λz.a)(λz.b)cd0 where the variable z does not occur
in the terms a and b. We will use the following notation for non-strict definition
by cases

dsabcd '

{
a if c = d,

b else.

This notation already anticipates the axiom ∀xN(x), otherwise we should add
N(c) ∧ N(d) as a premise; and of course, strictness still holds with respect to
u and v. We have dsrsuv↓ → u↓ ∧ v↓. If u or v is undefined, then dsrsuv is
also undefined. However, if r is a defined term and u and v are defined natural
numbers that are equal, then dsrsuv = r holds even if s is not defined. In the
sequel we employ type induction on the natural numbers which is given by the
following axiom (T-IN):

∀X(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → sNx ∈ X) → (∀x ∈ N)x ∈ X).



2.2 Fixed Point Types

The classes of Java will be modeled by types in explicit mathematics. Since the
Java classes may be defined by mutual recursion, i.e. class A may contain an
attribute of class B and vice versa, their interpretations have to be given as fixed
point types in our theory of types and names. They can be constructed by the
principle of dependent choice (dc). These axioms have been proposed by Jäger
and their proof-theoretic analysis has been carried out by Probst [33].

Dependent choice.

(dc.1) <(a) ∧ f ∈ (< → <)→ dc(a, f) ∈ (N→ <),
(dc.2) <(a) ∧ f ∈ (< → <)→

dc(a, f)0 ' a ∧ (∀n ∈ N)dc(a, f)(n+ 1) ' f(dc(a, f)n).

First, let us introduce some notation. By primitive recursion we can define in
EETJ + (T-IN) the usual relations < and ≤ on the natural numbers. The ith

section of U is defined by (U)i := {y | (i, y) ∈ U}. If s is a name for U , then
(s)i represents the type (U)i. By abuse of notation, we let the formula (s)i ∈ U
stand for p0s = i ∧ p1s ∈ U . The context will ensure that it is clear how to
read (s)i. Product types are defined according to the definition of n tupling by
S1 × S2 := {(x, y) | x ∈ S1 ∧ y ∈ S2} and

S1 × S2 × · · · × Sn+1 := S1 × (S2 × · · · × Sn+1).

We define projection functions πki for k ≥ 2 and 1 ≤ i ≤ k so that

πki (s1, . . . , sk) ' si.

A fixed point specification is a system of formulas of the form

(X)1 = Y11 × · · · × Y1m1

...
(X)n = Yn1 × · · · × Ynmn

where each Yij may be any type variable other than X or of the form

{x ∈ X | p0x = k1} ∪ · · · ∪ {x ∈ X | p0x = kl}

for ki ≤ n. Those Yij which are just a type variable other than X are called
parameters of the specification.

Our aim is to show that for every fixed point specification there exists a fixed
point satisfying it and this fixed point can be named uniformly in the parameters
of its specification.

Assume we are given a fixed point specification as above with parameters ~Y .
Then we find by elementary comprehension that there exists a closed individual
term t of L so that EETJ proves for all ~a whose length is equal to the number
of parameters of the specification:



1. <(~a) ∧ <(b) → <(t(~a, b)),
2. <(~a, ~Y ) ∧ <(b,X) →

∀x(x ∈̇ t(~a, b)↔ (x)1 ∈ Y11 × · · · × Y1m1 ∨ . . .∨
(x)n ∈ Yn1 × · · · × Ynmn).

In the following we assume <(~a) and let aij denote that element of ~a which
represents Yij . The term λx.t(~a, x) is an operator form mapping names to names.
Note that it is monotonic, i.e.

b ⊂̇ c→ t(~a, b) ⊂̇ t(~a, c). (1)

Starting from the empty type, represented by ∅, this operation can be iterated
in order to define the stages of the inductive definition of our fixed point. To do
so, we define a function f by:

f(~a, n) ' dc(∅, λx.t(~a, x))n.

As a direct consequence of (dc.1) we find (∀n ∈ N)<(f(~a, n)). Hence, we let J
be the type represented by j(nat, λx.f(~a, x)). Making use of (T-IN) we can prove

(∀n ∈ N)∀x((n, x) ∈ J → (n+ 1, x) ∈ J)

and therefore

(∀m ∈ N)(∀n ∈ N)(m ≤ n → f(~a,m) ⊂̇ f(~a, n)). (2)

We define the fixed point FP := {x | (∃n ∈ N)(n, x) ∈ J}. By the uniformity of
elementary comprehension and join there exists a closed individual term fp so
that fp(~a) is a name for FP, i.e. the fixed point can be represented uniformly in
its parameters. A trivial corollary of this definition is

(∃n ∈ N)(x ∈̇ f(~a, n))↔ x ∈̇ fp(~a). (3)

The following theorem states that FP is indeed a fixed point of t. We employ
(s)ij ∈ U as abbreviation for p0s = i ∧ πmij (p1s) ∈ U .

Theorem 2. It is provable in EETJ + (dc) + (T-IN) that FP is a fixed point
satisfying the fixed point specification, i.e.

<(~a)→ ∀x(x ∈̇ fp(~a)↔ x ∈̇ t(~a, fp(~a)).

Proof. Assume x ∈̇ fp(~a). By (3) there exists a natural number n so that x ∈̇
f(~a, n). By (2) we find x ∈ f(~a, n+ 1) and by the definition of f we get f(~a, n+
1) = t(~a, f(~a, n)). By (3) we obtain f(~a, n) ⊂̇ fp(~a) and with (1) we conclude x ∈
t(~a, fp(~a)). Next, we show ∀x(x ∈̇ t(~a, fp(~a)) → x ∈̇ fp(~a)). Let x ∈̇ t(~a, fp(~a)),
i.e. we have for all i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ mi either (x)ij ∈̇ aij or by
(3)

(x)ij ∈ {y | (∃n ∈ N)y ∈̇ f(~a, n) ∧ p0y = k1} ∪ · · · ∪
{y | (∃n ∈ N)y ∈̇ f(~a, n) ∧ p0y = kl}



depending on the specification. Since f is monotonic there exists a natural num-
ber n so that for all i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ mi we have either (x)ij ∈̇ aij
or (x)ij is an element of

{y | y ∈̇ f(~a, n) ∧ p0y = k1} ∪ · · · ∪ {y | y ∈̇ f(~a, n) ∧ p0y = kl}

depending on the specification and this implies x ∈̇ f(~a, n+1). Hence we conclude
by (3) that x ∈̇ fp(~a) holds. ut

2.3 Least Fixed Point Operator

As shown in Theorem 1 the combinatory axioms of EETJ provide a term rec
which solves recursive equations. However, it is not provable that the solution
obtained by rec is minimal. Here we are going to extend EETJ + (T-IN) with
axioms about computability (Comp) and the statement that everything is a
natural number. The resulting system allows to define a least fixed point operator
and therefore it will be possible to show that recursively defined methods belong
to a certain function space, cf. Kahle and Studer [30].

Computability. These axioms are intended to capture the idea that convergent
computations should converge in finitely many steps. In the formal statement
of the axioms the expression c(f, x, n) = 0 can be read as “the computation
fx converges in n steps.” The idea of these axioms is due to Friedman (unpub-
lished) and discussed in Beeson [5]. Note that these axioms can be satisfied in
the usual recursion-theoretic model. The constant c can be interpreted by the
characteristic function of Kleene’s T predicate.

(Comp.1) ∀f∀x(∀n ∈ N)(c(f, x, n) = 0 ∨ c(f, x, n) = 1),
(Comp.2) ∀f∀x(fx↓ ↔ (∃n ∈ N)c(f, x, n) = 0).

In addition we will restrict the universe to natural numbers. This axiom is needed
to construct the least fixed point operator. Of course, it is absolutely in the spirit
of a recursion-theoretic interpretation.

Everything is a number. Formally, this is given by ∀xN(x).

For the rest of this section LFP will be the theory

EETJ + (Comp) + ∀xN(x) + (T-IN).

We are going to define ordering relations vT for certain types T . The meaning
of f vT g is that f is smaller than g with respect to the usual pointwise ordering
of functions, e.g. we have

f vAyB g → (∀x ∈ A)(fx↓ → fx = gx).

Definition 1. Let A1, . . . , An, B1, . . . , Bn be types Further, let T be the type
(A1 yB1) ∩ · · · ∩ (AnyBn). We define:

f v g := f↓ → f = g,

f vT g :=
∧

1≤i≤n

(∀x ∈ Ai)fxv gx),

f ∼=T g := f vT g ∧ g vT f.



Definition 2. Let T be as given in Definition 1. A function f ∈ (T → T ) is
called T monotonic, if

(∀g ∈ T )(∀h ∈ T )(g vT h→ fg vT fh).

Using the rec term we will find a fixed point for every operation g. But as we
have mentioned above we cannot prove in EETJ that this is a least fixed point,
and of course, there are terms g that do not have a least fixed point. However,
there exists a closed individual term l of L so that LFP proves that lg is the least
fixed point of a monotonic functional g ∈ (T → T ). A proof of the following
theorem can be found in Kahle and Studer [30].

Theorem 3. There exists a closed individual term l of L such that we can prove
in LFP that if g ∈ (T → T ) is T monotonic for T given as in Definition 1, then

1. lg ∈ T ,
2. lg ∼=T g(lg),
3. f ∈ T ∧ gf ∼=T f → lg vT f .

Now we define the theory PTN about programming with types and names as
the union of all these axioms:

PTN := EETJ + (dc) + (Comp) + ∀xN(x) + (T-IN).

The axioms about computability can be interpreted in the usual recursion-
theoretic model, see Beeson [5] or Kahle [29]. This means that applications a · b
in L are translated into {a}(b), where {n} for n = 0, 1, 2, 3, . . . is a standard
enumeration of the partial recursive functions. In fact, the computability axioms
are motivated by Kleene’s T predicate which is a ternary primitive recursive
relation on the natural numbers so that {a}(~m) ' n holds if and only if there
exists a computation sequence u with T(a, 〈~m〉, u) and (u)0 = n. Hence, it can be
used to verify the axioms in a recursion-theoretic interpretation; and of course,
∀xN(x) will also be satisfied in such a model.

Probst [33] presents a recursion-theoretic model for the system EETJ+(dc)+
(T-IN) and shows that the proof-theoretic ordinal of this theory is ϕω0, i.e. it is
slightly stronger than Peano arithmetic but weaker than Martin-Löf type theory
with one universe ML1 or the system EETJ+(L-IN) of explicit mathematics with
elementary comprehension, join and full induction on the natural numbers.

These two constructions can be combined in order to get a recursion-theoretic
model for PTN so that computations in PTN are modeled by ordinary recursion-
theoretic functions. We obtain that PTN is proof-theoretically still equivalent
to EETJ + (dc) + (T-IN). Hence, PTN is a predicative theory which is proof-
theoretically much weaker than the systems that are usually used to talk about
object-oriented programming, for most of these calculi are extensions of system
F that already contains full analysis, cf. e.g. Bruce, Cardelli and Pierce [8].
Nevertheless, PTN is sufficiently strong to model Featherweight Java and to
prove many properties of the represented programs. In PTN we can also prove
soundness of our interpretation with respect to subtyping, typing and reductions.



3 Featherweight Java

Featherweight Java is a minimal core calculus for Java proposed by Igarashi,
Pierce and Wadler [25] for the formal study of an extension of Java with pa-
rameterized classes. Igarashi and Pierce [24] employed Featherweight Java also
to obtain a precise understanding of inner classes. FJ is a minimal core calculus
in the sense that as many features of Java as possible are omitted, while main-
taining the essential flavor of the language and its type system. Nonetheless,
this fragment is large enough to include many useful programs. In particular,
most of the examples in Felleisen and Friedman’s text [19] are written in the
purely functional style of Featherweight Java. In this section we will present the
formulation of Featherweight Java given in [24].

Syntax. The abstract syntax of FJ class declarations, constructor declarations,
method declarations and expressions is given by:

CL ::= class C extends C {C f; K M}
K ::= C (C f) {super(f); this.f = f; }
M ::= C m(C x) {return e; }
e ::= x

| e.f

| e.m(e)
| new C(e)
| (C)e

The meta-variables A,B,C,D,E range over class names, f and g range over field
names, m ranges over method names, x ranges over variable names and d,e range
over expressions (all possibly with subscripts). CL ranges over class declarations,
K ranges over constructor declarations and M ranges over method declarations.
We assume that the set of variables includes the special variable this, but that
this is never used as the name of an argument to a method.

We write f as shorthand for f1, . . . , fn (and similarly for C, x, e, etc.) and we
use M for M1 . . . Mn (without commas). The empty sequence is written as • and
](x) denotes the length of the sequence x. Operations on pairs of sequences are
abbreviated in the obvious way, e.g. “C f” stands for “C1 f1, . . . , Cn fn” and
“C f;” is a shorthand for “C1 f1; . . . ; Cn fn;” and similarly “this.f = f;” abbre-
viates “this.f1 = f1; . . . ; this.fn = fn;”. We assume that sequences of field
declarations, parameter names and method declarations contain no duplicate
names.

A class table CT is a mapping from class names C to class declarations CL. A
program is a pair (CT, e) of a class table and an expression. In the following we
always assume that we have a fixed class table CT which satisfies the following
sanity conditions:

1. CT (C) = class C . . . for every C in the domain of CT , i.e. the class name C
is mapped to the declaration of the class C,



2. Object is not an element of the domain of CT ,
3. every class C (except Object) appearing anywhere in CT belongs to the

domain of CT ,
4. there are no cycles in the subtype relation induced by CT , i.e. the <: relation

is antisymmetric.

Subtyping. The following rules define the subtyping relation <: which is induced
by the class table. Note that every class defined in the class table has a super
class, declared with extends.

C <: C
C <: D D <: E

C <: E
CT (C) = class C extends D {. . . }

C <: D

Computation. These rules define the reduction relation −→ which models field
accesses, method calls and casts. In order to look up fields and method decla-
rations in the class table we use some auxiliary functions that will be defined
later on. We write e0[d/x, e/this] for the result of simultaneously replacing x1

by d1, . . . , xn by dn and this by e in the expression e0.

fields(C) = C f

new C(e).fi −→ ei

mbody(m, C) = (x, e0)
new C(e).m(d) −→ eo[d/x, new C(e)/this]

C <: D
(D)new C(e) −→ new C(e)

We say that an expression e is in normal form if there is no expression d so that
e −→ d.

Now we present the typing rules for expressions, method declarations and
class declarations. An environment Γ is a finite mapping from variables to class
names, written x : C. Again, we employ some auxiliary functions which will be
given later. Stupid casts (the last of the expression typing rules) are included
only for technical reasons, cf. Igarashi, Pierce and Wadler [25]. The Java compiler
will reject expressions containing stupid casts as ill typed. This is expressed by
the hypothesis stupid warning in the typing rule for stupid casts.

Expression typing.
Γ ` x ∈ Γ (x)

Γ ` e0 ∈ C0 fields(C0) = C f

Γ ` e0.fi ∈ Ci

Γ ` eo ∈ C0
mtype(m, C0) = D→ C
Γ ` e ∈ C C <: D

Γ ` e0.m(e) ∈ C



fields(C) = D f
Γ ` e ∈ C C <: D

Γ ` new C(e) ∈ C

Γ ` e0 ∈ D D <: C
Γ ` (C)e0 ∈ C

Γ ` e0 ∈ D C <: D C 6= D

Γ ` (C)e0 ∈ C

Γ ` e0 ∈ D C 6<: D D 6<: C
stupid warning

Γ ` (C)e0 ∈ C

Method typing.

x : C, this : C ` e0 ∈ E0 E0 <: C0
CT (C) = class C extends D {. . . }

if mtype(m,D) = D→ D0, then C = D and C0 = D0

C0 m (C x) {return e0; } OK in C

Class typing.

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK

We define the auxiliary function which are used in the rules for computation and
typing.

Field lookup.
fields(Object) = •

CT (C) = class C extends D {C f; K M} fields(D) = D g

fields(C) = D g, C f

Method type lookup.

CT (C) = class C extends D {C f; K M}
B m (B x) {return e;} belongs to M

mtype(m, C) = B→ B

CT (C) = class C extends D {C f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

Method body lookup.

CT (C) = class C extends D {C f; K M}
B m (B x) {return e; } belongs to M

mbody(m, C) = (x, e)



CT (C) = class C extends D {C f; K M} m is not defined in M

mbody(m, C) = mbody(m, D)

We call a Featherweight Java expression e well-typed if Γ ` g ∈ C can be derived
for some environment Γ and some class C.

Igarashi, Pierce and Wadler [25] prove that if an FJ program is well-typed,
then the only way it can get stuck is if it reaches a point where it cannot perform
a downcast. This is stated in the following theorem about progress.

Theorem 4. Suppose e is a well-typed expression.

1. If the expression e is of the form new C0(e).f or contains such a subexpres-
sion, then fields(C0) = D f and f ∈ f.

2. If e is of the form new C0(e).m(d) or contains such a subexpression, then
mbody(m, C0) = (x, e0) and ](x) = ](d).

4 The Object Model

In this section we present the object model of Castagna, Ghelli and Longo [9, 11]
which will be employed to interpret Featherweight Java in explicit mathematics.
In his book [9], Castagna introduces a kernel object-oriented language KOOL
and defines its semantics via an interpretation in a meta-language λ object for
which an operational semantics is given. Our construction will be very similar
in spirit to Castagna’s interpretation, although we will have to solve many new
problems since we start with an already existing language and will end up with
a recursion-theoretic model for it.

In the object model we use, the state of an object is separated from its
methods. Only the fields of an object are bundled together as one unit, whereas
the methods of an object are not encapsulated inside it. Indeed, methods are
implemented as branches of global overloaded functions. If a message is sent to an
object, then this message determines a function and this function will be applied
to the receiving object. However, messages are not ordinary functions. For if the
same message is sent to objects of different classes, then different methods may
be retrieved, i.e. different code may be executed. Hence, messages represent
overloaded functions: depending on the type of their argument (the object the
message is passed to), a different method is chosen. Since this selection of the
method is based on the dynamic type of the object, i.e. its type at run-time, we
also have to deal with late-binding.

In our semantics of FJ, objects are modeled as pairs (type, value). This en-
coding of objects was proposed by Castagna [9] in order to interpret late-binding.
The value component will be a record consisting of all the fields of the object
and the type component codes the run-time type of the object. All the methods
with the same name, although maybe defined in different classes, are combined
to one overloaded function which takes the receiving object as an additional
argument. Hence, the type information contained in the interpretation of the
receiving object can be used to resolve this overloaded application, i.e. to select



the code to be executed. Since methods may be defined recursively, the inter-
preting function has to be given by recursion, too. As we will see later, in order
to obtain a sound model with respect to typing, we even need a least fixed point
operator for the definition of the semantics of methods. Since several methods
may call each other by mutual recursion, we have to give their interpretation
using one recursive definition treating all methods in one go.

As Castagna [9] notices, even λ calculi with overloading and late-binding do
not posses enough structure to reason about object-oriented programs. Hence
he introduces the meta-language λ object which is still based on overloading
and late-binding but which also is enriched with new features (e.g. commands
to define new types or to handle the subtyping hierarchy) that are necessary to
reproduce the constructs of a programming language. Therefore λ object is an
appropriate tool for representing object-oriented programs. However, in λ object
it is not possible to state (or even prove) properties of these programs.

Our theories of types and names have much more expressive power. They
provide not only an axiomatic framework for representing programs, but also for
stating and proving properties of programs. Nevertheless, from a proof-theoretic
point of view they are quite weak (only a bit stronger than Peano Arithmetic)
as demanded by Feferman [16–18] or Turner [44]. In its general form overload-
ing and late-binding seem to be proof-theoretically very strong, cf. Studer [37].
However, our work shows that in order to model real object-oriented program-
ming languages we do not need the full power of these principles; as already
mentioned by Castagna, Ghelli and Longo [9, 11] a predicative variant suffices
for our practical purposes.

Last but not least, the theory of types and names we use in this paper has a
standard recursion-theoretic model. Hence, our interpretation of FJ in explicit
mathematics shows how computations in Featherweight Java can be seen as
ordinary mathematical functions and the interpretation of the classes will be
given by sets in the usual mathematical sense.

5 Evaluation Strategy and Typing

Now we study some examples written in Featherweight Java which will motivate
our semantics for FJ as presented in the next section. We will focus on Java’s
evaluation strategy and on typing issues. In the last example the interplay of
free variables, static types and late-binding is investigated.

Java features a call-by-value evaluation strategy, cf. the Java language specifi-
cation by Gosling, Joy and Steele [23]. This corresponds to the strictness axioms
of the logic of partial terms upon which explicit mathematics is built. They im-
ply that an application only has a value, i.e. is terminating, if all its arguments
have a value.

In Java we not only have non-terminating programs we also have run-time
exceptions, for example when an illegal down cast should be performed. With
respect to these features, Featherweight Java is much more coarse grained. There
is no possibility to state that a program terminates and exceptions are completely



ignored. For good reasons, as we should say, since it is intended as a minimal core
calculus for modeling Java’s type system. However, this lack of expressiveness
has some important consequences which will be studied in the sequel. Let us
first look at the following example.

Example 1.
class A extends Object {
A () { super(); }
C m() {
return this.m();

}
}

class C extends Object {
int x;
A y;
C (int a,A b) {

super();
this.x = a;
this.y = b;

}
}

Of course, new A().m() is a non-terminating loop. Although, if it is evalu-
ated on an actual Java implementation, then we get after a short while a
java.lang.StackOverflowError because of too many recursive method calls.
In Featherweight Java new A().m() has no normal form which reflects the fact
that it loops forever.

Now let e be the expression new C(5,new A().m()).x. Due to Java’s call-by-
value evaluation strategy, the computation of this expression will not terminate
either, for new A().m() is a subexpression of e and has therefore to be evaluated
first.

The operational semantics of Featherweight Java uses a non-deterministic
small-step reduction relation which does not enforce a call-by-value strategy.
Hence we have two different possibilities for reduction paths starting from e. If
we adopt a call-by-value strategy, then we have to evaluate new A().m() first and
we obtain an infinite reduction path starting from e. Since FJ’s reduction relation
is non-deterministic we also have the possibility to apply the computation rule
for field access. If we decide to do so, then e reduces to 5 which is in normal
form.

In theories of types and names we have the possibility to state that a com-
putation terminates. The formula t↓ expresses that t has a value, meaning the
computation represented by t is terminating. Let [[e]] be the interpretation of the
expression e. In our mathematical model Java’s call-by-value strategy is imple-
mented by the strictness axioms, hence ¬[[e]]↓ will be provable. Since 5 surely has
a value we obtain [[e]] 6' 5 although 5 is the normal form of e. This means that



in our interpretation we cannot model the non-deterministic reduction relation
of Featherweight Java but we will implement a call-by-value strategy.

Non-terminating programs are not the only problem in modeling computa-
tions of Java. A second problem is the lack of a notion of run-time exception in
Featherweight Java. For example, if a term is in normal form, then we cannot
tell, whether this is the case because the computation finished properly, or be-
cause an illegal down-cast should be performed. It may even be the case that
the final expression does not contain any down-casts at all, but earlier during
the computation an exception should have been thrown. Let us illustrate this
fact with the following example, where the class C is as in Example 1.

Example 2.
class main extends Object{
public static void main (String arg[]) {

System.out.println(new C(5,(A)(new Object())).x);
}

}

If we run this main method, then Java throws the following exception:

java.lang.ClassCastException: java.lang.Object
at main.main(main.java:4)

Whereas in Featherweight Java the expression

new C(5,(A)(new Object())).x

reduces to 5. This is due to the fact that the term (C)(new Object()), which
causes the exception in Java, is treated as final value in Featherweight Java and
therefore it can be used as argument in further method calls.

In our model we will introduce a special value ex to denote the result of a
computation which throws an exception. An illegal down cast produces (ex, 0)
as result and we can check every time an expression is used as argument in a
method invocation or in a constructor call whether its value is (ex, 0) or not. If it
is not, then the computation can continue; but if an argument value represents an
exception, then the result of the computation is this exception value. Therefore
in our model we can distinguish whether an exception occurred or not. For
example, the above expression evaluates to (ex, 0). We will have

[[(A)(new Object())]] = cast A∗ [[new Object()]]
= cast A∗ (Object∗, 0)
= (ex, 0)

since sub(Object∗, A∗) 6= 1, i.e. Object is not a subclass of A. Later, we will
define the operation ∗ so that if A is a name for a class, then A∗ is a numeral in
L. Then we define a term sub which decides the subclass relation. That is for
two class names A and B, we have sub(A∗, B∗) = 1 if and only if A is a subclass
of B. The term cast will be used to model casts. If o is the interpretation of an



object and A is a class to which this object should be casted, then cast A∗ o is the
result of this cast. The term cast uses sub to decide whether it is a legal cast. If
it is not, as in the above example, the cast will return (ex, 0).

From these considerations it follows that we cannot prove soundness of our
model construction with respect to reductions as formalized in Featherweight
Java. However, we are going to equip FJ with a restricted reduction relation
−→′ which enforces a call-by-value evaluation strategy as it is used in the Java
language and which also respects illegal down casts. With respect to this new
notion of reduction we will be able to prove that our semantics adequately models
FJ computations.

In Featherweight Java we cannot talk about the termination of programs. As
usual in type systems for programming languages the statement “expression e
has type T” has to be read as “if the computation of e terminates, then its result
is of type T”. Let A be the class of Example 1. Then in FJ new A().m() ∈ C
is derivable, although the expression new A().m() denotes a non-terminating
loop. Hence in our model we will have to interpret e ∈ C as [[e]]↓ → [[e]] ∈ [[C]].

As we have seen before, the computation of e may result in an exception. In
this case we have [[e]] = (ex, 0) which is a defined value. Hence, by our interpre-
tation of the typing relation, we have to include (ex, 0) to the interpretation of
every type.

In the following we consider a class B which is the same as A except that the
result type of the method m is changed to D.

class A extends Object {
A () { super(); }
C m() {
return this.m();

}
}

class B extends Object {
B () { super(); }
D m() {
return this.m();

}
}

Since the method bodies for m are the same in both classes A and B we can
assume that the interpretations of (new A()).m() and (new B()).m() will be
the same, that is

[[new A().m()]] ' [[new B().m()]].

In this example the classes C and D may be chosen arbitrarily. In particular,
they may be disjoint, meaning that maybe, there is no object belonging to both
of them. Hence, if our modeling of the typing relation is sound, it follows that
we are in the position to prove that the computation of new B().m() is non-
terminating, that is ¬[[(new B()).m()]]↓.



Usually, in lambda calculi such recursive functions are modeled using a fixed
point combinator. In continuous λ-models, such as Pω or D∞, these fixed point
combinators are interpreted by least fixed point operators and hence one can
show that certain functions do not terminate. In applicative theories on the
other hand, recursive equations are solved with the rec term provided by the
recursion theorem. Unfortunately, one cannot prove that this operator yields a
least fixed point; and hence, it is not provable that certain recursive functions
do not terminate. Therefore we have to employ the special term l to define the
semantics of FJ expressions. Since this term provides a least solution to certain
fixed point equations, it will be possible to show ¬[[(new B()).m()]]↓ which is
necessary for proving soundness of our interpretation with respect to typing.

Now we are going to examine the role of free variables in the context of static
types and late-binding. In the following example let C be an arbitrary class with
no fields.

Example 3.
class A extends Object{
A () { super(); }
C m() {
return this.m();

}
}

class B extends A{
B () { super(); }
C m() {
return new C();

}
}

As in Example 1 class A defines the method m which does not terminate. Class B
extends A, hence it is a subclass of A, and it overrides method m. Here m creates
a new object of type C and returns it to the calling object.

Let x be a free variable with (static) type A. The rules for method typing
guarantee that the return type of m cannot be changed by the overriding method;
and by the typing rules of FJ we can derive x:A ` x.m() ∈ C. As we have seen
before this means “if x.m() yields a result, then it belongs to C.” Indeed, as a
consequence of Java’s late-binding evaluation strategy, knowing only the static
type A of x we cannot tell whether in x.m() the method m defined in class A or the
one of class B will be executed. Hence we do not know whether this computation
terminates or not. Only if we know the object which is referenced by x we can
look at its dynamic type and then say, by the rules of method body lookup,
which method actually gets called.

This behavior has the consequence that there are FJ expression in normal
form whose interpretation will not have a value. For example, x.m() is in nor-
mal form, but maybe x references an object of type A and in this case the



interpretation of x.m() will not have a value. Therefore we conclude that only
the interpretation of a closed term in normal form will always be defined.

6 Interpreting Featherweight Java

Assume we are given a program written in Featherweight Java. This consist of
a fixed class table CT and an expression e. In this section we will show how to
translate such a program into the language of types and names. This allows us
to state and prove properties of FJ programs. In the sequel we will work with
the theory PTN of explicit mathematics.

We generally assume that all classes and methods occurring in our fixed
class table CT are well-typed. This means for every class C of CT we can derive
class C . . . OK by the rules for class typing and for every method m defined in
this class we can derive . . . m . . . OK IN C by the rules for method typing.

The basic types of Java such as boolean, int, . . . are not included in FJ.
However, EETJ provides a rich type structure which is well-suited to model
these basic data types, cf. e.g. Feferman [16] or Jäger [28]. Hence we will include
them in our modeling of Featherweight Java.

Let ∗ be an injective mapping from all the names for classes, basic types,
fields and methods occurring in the class table CT into the numerals of L. This
mapping will be employed to handle the run-time type information of FJ terms
as well as to model field access and method selection.

First we show how objects will be encoded as sequences in our theory of
types and names. Let C be a class of our class table CT with fields(C) =
D1 g1, . . . , Dn gn and let mC be the least natural number such that for all field
names gj occurring in fields(C) we have gj∗ < mC. An object of type C will be
interpreted by a sequence (C∗, (s1, . . . , smC

)), where si is the interpretation of
the field gj if i = gj∗ and si = 0 if there is no corresponding field. In particular,
we always have smC

= 0. Note that in this model the type of an object is encoded
in the interpretation of the object.

We have to find a way for dealing with invalid down casts. What should
be the value of (A) new Object() in our model, when A is a class different from
Object? In FJ the computation simply gets stuck, no more reductions will be
performed. In our model we choose a natural number ex which is not in the
range of ∗ and set the interpretation of illegal down casts to (ex, 0). This allows
us to distinguish them from other expressions using definition by cases on the
natural numbers. Hence, every time when an expression gets evaluated we can
check whether one of its arguments is the result of an illegal cast.

This is the reason why we will have to add run-time type information to
elements of basic types, too. Let us look for example at the constant 17 of Java
which surely is of type int. If it is simply modeled by the L term 17, then it
might happen that 17 = (ex, 0) and we could not decide whether this L term
indicates that an illegal down cast occurred or whether it denotes the constant
17 of Java. On the other hand, if the Java constant 17 is modeled by (int∗, 17),



i.e. with run-time type information, then it is provably different from (ex, 0).
The next example illustrates the coding of objects.

Example 4. Assume we have the following class modeling points.

class Point extends Object{
int x;
int y;

Point (int a, int b) {
super();
this.x = a;
this.y = b;

}
}

Assume ∗ is such that x∗ = 1 and y∗ = 3. Hence, we have mPoint = 4 An
object of the class Point where x=5 and y=6 is now modeled by by the sequence
(Point∗, ((int∗, 5), 0, (int∗, 6), 0)).

In order to deal with the subtype hierarchy of FJ, we define a term sub modeling
the subtype relation.

Definition 3 (of the term sub). Let the term sub be so that for all a, b ∈ N
we have:

1. If a or b codes a basic type, e.g. a = A∗ for a basic type A, and a = b, then
sub(a, b) = 1.

2. If C <: D can be derived for two classes C and D and C∗ = a as well as D∗ = b
hold, then sub(a, b) = 1.

3. Otherwise we set sub(a, b) = 0.

Since CT is finite, sub can be defined using definition by cases on the natural
numbers; recursion is not needed.

In the following, we will define a semantics for expression of Featherweight
Java. In a first step, this semantics will be given only relative to a term invk
which is used to model method calls. As we have shown in our discussion of the
object model, we can define invk in a second step as the least fixed point of a
recursive equation involving all methods occurring in our fixed class table.

Of course, if at some stage of a computation an invalid down cast occurs
and we obtain (ex, 0) as intermediate result, then we have to propagate it to
the end of the computation. Therefore all of the following terms are defined
by distinguishing two cases: if none of the arguments equals (ex, 0), then the
application will be evaluated; if one of the arguments is (ex, 0), then the result
is also (ex, 0).

We we define a term proj in order to model field access.

Definition 4 (of the term proj). Let the term proj be so that

proj i x '

{
x p0x = ex,

p0(tail i (p1x)) otherwise,



where tail is defined by primitive recursion such that

tail 1 s ' s tail (n+ 1) s ' p1(tailn s)

for all natural numbers n ≥ 1.

Hence for i ≤ n and t 6= ex we have

proj i (t, (s1, . . . , sn, sn+1)) ' si.

Next, we show how to define the interpretation of the keyword new.

Definition 5 (of the term new). For every class C of our class table CT with

fields(C) = D1 g1, . . . , Dn gn

we find a closed L term tC such that:

1. If ai↓ holds for all ai (i ≤ n) and if there is a natural number j such that
p0aj = ex, then we get tC(a1, . . . , an) = aj where j is the least number
satisfying p0aj = ex.

2. Else we find tC(a1, . . . , an) ' (C∗, (b1, . . . , bmC
)), where bi ' aj if there exists

j ≤ n with i = gj∗ and bi = 0 otherwise.

Using definition by cases on the natural numbers we can build a term new so
that new C∗ (~s) ' tC(~s) for every class C in CT .

The next example shows how the terms tC work.

Example 5. Consider the class Point of Example 4. We get

tPoint((int∗, 5), (int∗, 6)) ' (Point∗, ((int∗, 5), 0, (int∗, 6), 0))

and

tPoint((int∗, 5), (ex, 0)) ' (ex, 0).

If b is a term so that ¬b↓ holds, then we get ¬tPoint(a, b)↓ by strictness even
if a = (ex, 0). The strictness principle of explicit mathematics implies Java’s
call-by-value strategy.

Again, using definition by cases we build a term cast.

Definition 6 (of the term cast). Let the term cast be so that

cast a b '

{
(ex, 0) sub(p0b, a) = 0,
b otherwise.

Now, we give the translation [[e]]invk of a Featherweight Java expression e into
an L term relative to a term invk.



Definition 7 (of the interpretation [[e]]invk relative to invk). For a sequence
e = e1, . . . , en we write [[e]]invk for [[e1]]invk, . . . , [[en]]invk. We assume that for every
variable x of Featherweight Java there exists a corresponding variable x of L
such that two different variables of FJ are mapped to different variables of L.
In particular, we suppose that our language L of types and names includes a
variable this so that [[this]]invk = this.

[[x]]invk := x

[[e.f]]invk := proj f∗ [[e]]invk

[[e.m(f)]]invk := invk(m∗, [[e]]invk, [[f]]invk)
[[new C(e)]]invk := new C∗([[e]]invk)

[[(C)e]]invk := cast C∗ [[e]]invk

In the following we are going to define the term invk which models method
calls. To this aim, we have to deal with overloading and late-binding in explicit
mathematics, cf. Studer [37, 39].

Definition 8 (of overloaded functions). Assume we are given n natural
numbers s1, . . . , sn. Using sub we build for each j ≤ n a term minjs1,... ,sn such
that for all natural numbers s we have minjs1,... ,sn(s) = 0 ∨ minjs1,... ,sn(s) = 1
and minjs1,... ,sn(s) = 1 if and only if

sub(s, sj) = 1 ∧
∧

1≤l≤n
l 6=j

(sub(s, sl) = 1→ sub(sl, sj) = 0).

Hence, minjs1,... ,sn(s) = 1 holds if sj is a minimal element (with respect to sub) of
the set {si | sub(s, si) = 1∧1 ≤ i ≤ n}; and otherwise we have minjs1,... ,sn(s) = 0.

We can define a term overs1,... ,sn which combines several functions f1, . . . , fn
to one overloaded function overs1,... ,sn(f1, . . . , fn) such that

overs1,... ,sn(f1, . . . , fn) (x, ~y) '



f1(x, ~y) min1
s1,... ,sn(p0x) = 1,

...
fn(x, ~y) minns1,... ,sn(p0x) = 1∧

i<n

minis1,... ,sn(p0x) 6= 1,

(ex, 0) p0x = ex.

Next, we define the term r which gives the recursive equation which will be solved
by invk.

Definition 9 (of the term r). Assume the method m is defined exactly in the
classes C1, . . . , Cn and mbody(m, Ci) = (xi, ei) for all i ≤ n. Assume further
that xi is x1, . . . , xz, then we can define an L term ginvk

ei
so that we have for

~b = b1, . . . , bz :



1. If a↓ and ~b↓ hold and if there is a natural number j such that p0bj = ex,
then we get ginvk

ei
(a,~b) = bj where j is the least number satisfying p0bj = ex.

2. Else we find ginvk
ei

(a,~b) ' (λthis.λ[[xi]]invk.[[ei]]invk)a~b.

We see that the terms ginvk
ei

depend on invk. Now we let the L term r be such that
for every method m in our class table CT we have

r invk(m∗, x, ~y) ' overC∗1 ,... ,C∗n (ginvk
e1

, . . . , ginvk
en

)(x, ~y). (4)

We define the term invk to be the least fixed point of r.

Definition 10 (of the term invk). We set invk := l r.

In the following we will write only [[e]] for the translation of an expression e
relative to the term r invk defined as above.

It remains to define the interpretation of Featherweight Java classes. Let us
begin with the basic types. The example of the type boolean will show how we
can use the type structure of explicit mathematics to model the basic types of
Java. If we let 0 and 1 denote “false” and “true”, respectively, then the inter-
pretation [[boolean]] of the basic type boolean is given by

{(boolean∗, b) | b = 0 ∨ b = 1}.

Here we see that an element x ∈ [[boolean]] is pair whose first component carries
the run-time type information of x, namely boolean∗, and whose second com-
ponent is the actual truth value. For the Java expressions false and true we
can set

[[false]] = (boolean∗, 0) [[true]] = (boolean∗, 1).

We will interpret the classes of FJ as fixed point types in explicit mathematics
satisfying the following fixed point specification.

Definition 11 (of the fixed point FP). If the class table CT contains a class
named C with C∗ = i, then the following formula is included in our specification:

(X)i = Yi1 × · · · × YimC
,

where mC is again the least natural number such that for all field names f oc-
curring in fields(C) we have f∗ < mC. Yij is defined according to the following
three clauses:

1. If there is a basic type D and a field name f such that D f belongs to fields(C),
then Yif∗ is equal to the interpretation of D.

2. If there is a class D and a field name f such that D f belongs to fields(C) and
if E1, . . . , En is the list of all classes Ej in CT for which Ej <: D is derivable,
then

Yif∗ = {(E∗1, x) | x ∈ (X)E∗1} ∪ · · · ∪ {(E
∗
n, x) | x ∈ (X)E∗n} ∪ {(ex, 0)}.



3. If there is no field name f occurring in fields(C) so that f∗ = j, then Yij is
the universal type V, in particular we find YimC

= V.

As we have shown before, in PTN there provably exists a fixed point FP satisfying
the above specification.

Since our fixed class table CT contains only finitely many classes we can set up
the following definition for the interpretation [[C]] of a class C.

Definition 12 (of the interpretation [[C]] of a class C). If E1, . . . , En is the
list of all classes Ei in FJ for which Ei <: C is derivable, then

[[C]] = {(E∗1, x) | x ∈ (FP)E∗1} ∪ · · · ∪ {(E
∗
n, x) | x ∈ (FP)E∗n} ∪ {(ex, 0)}.

We include the value (ex, 0) to the interpretation of all classes because this
simplifies the presentation of the proofs about soundness with respect to typing.
Of course we could exclude (ex, 0) from the above types, which would be more
natural, but then we had to treat it as special case in all the proofs.

Now we will present to examples for the definition of classes.

Example 6. We take the class Point given in Example 4 and extend it to a class
ColorPoint.

class ColorPoint extends Point{
String color;

ColorPoint (int a, int b, String c) {
super(a,b);
this.color = c;

}
}

Assume ∗ is such that color∗ = 4. Hence, we have mColorPoint = 5 Consider
an object of the class ColorPoint with x=5, y=6 and color="black" where the
string "black" is modeled by say 256. This object is now interpreted by the
sequence

(Point∗, ((int∗, 5), 0, (int∗, 6), (String, 256), 0)).

Since the Point belongs to our class table, the fixed point specification contains
a line

(X)Point∗ = [[int]]× (V × ([[int]]× V)).

We obtain that the value of our colored point object

((int∗, 5), (0, ((int∗, 6), ((String, 256), 0))))

belongs to the interpretation of Point since ((String, 256), 0) ∈ V. This example
illustrates why we take the product with V in the interpretation of objects. It
guarantees that the model is sound with respect to subtyping, see Theorem 6
below. This encoding of objects in records is due to Cardelli.



The next example shows why we have to employ fixed points to model the classes.

Example 7. Consider a class Node pointing to a next Node.

class Node extends Object{
Node next;

Node(Node x){
super();
this.next=x;

}
}

This class will be interpreted as fixed point of

X = ({(Node∗, x) | x ∈ X} ∪ {(ex, 0)})× V.

Iterating this operator form will yield a fixed point only after ω many steps.
Therefore, one has to employ dependent choice in the construction of the fixed
points modeling classes.

7 Soundness results

In this section we will prove that our model for Featherweight Java is sound
with respect to subtyping, typing and reductions. We start with a theorem about
soundness with respect to subtyping which is a trivial consequence of the inter-
pretation of classes.

Theorem 5. For all classes C and D of the class table with C <: D it is provable
in PTN that [[C]] ⊂ [[D]].

The soundness of the semantics of the subtype relation does not depend on the
fact that a type is interpreted as the union of all its subtypes. As the next theorem
states, our model is sound with respect to subtyping if we allow to coerce the
run-time type of an object into a super type. Coercions are operations which
change the type of an object. In models of object-oriented programming these
constructs can be used to give a semantics for features which are based on early-
binding, cf. Castagna, Ghelli and Longo [9, 10]. This is achieved by coercing the
type of an object into its static type before selecting the best matching branch.
In Java for example, the resolution of overloaded methods is based on static
types, i.e. the choice of the function to be applied is based on early-binding.

Theorem 6. For all classes C and D with C <: D the following is provable in
PTN:

x ∈ [[C]] ∧ p0x 6= ex → (D∗, p1x) ∈ [[D]].



Proof. By induction on the length of the derivation of C <: D we show that
(FP)C∗ ⊂ (FP)D∗ . The only non-trivial case is, when the following rule has been
applied

CT (C) = class C extends D {. . . }
C <: D .

So we assume CT (C) = class C extends D {. . . }. By our definition of FP we
obtain

(FP)C∗ = YC∗1 × · · · × YC∗mC

and (FP)D∗ is of the form YD∗1×· · ·×YD∗mD
. By the rules for field lookup we know

that if fields(D) contains E g, then E g also belongs to fields(C). Therefore we have
mD ≤ mC and for all i < mD we get YC∗i ⊂ YD∗i by the fixed point specification for
FP and our general assumption that class typing is ok. Moreover, we obviously
have

YC∗mD
× · · · × YC∗mC

⊂ YD∗mD
= V.

Therefore, we conclude that the claim holds. ut

Before proving soundness with respect to typing we have to show some prepara-
tory lemmas.

Definition 13. If D is the list D1, . . . , Dn, then [[D]] stands for [[D1]]× · · · × [[Dn]];
and if e = e1, . . . en, then [[e]]invk ∈ [[D]] means

([[e1]]invk, . . . , [[en]]invk) ∈ [[D1]]× · · · × [[Dn]].

For Γ = x1 : D1, . . . , xn : Dn we set

[[Γ ]]invk := [[x1]]invk ∈ [[D1]] ∧ · · · ∧ [[xn]]invk ∈ [[Dn]].

Definition 14. We define the type T to be the intersection of all the types

({m∗} × [[C]]× [[D]])y [[B]]

for all methods m and all classes C occurring in CT with mtype(m, C) = D→ B.

The next lemma states that if we have an interpretation relative to a function h
belonging to T , then this interpretation is sound with respect to typing.

Lemma 1. If Γ ` e ∈ C is derivable in FJ, then we can prove in PTN that
h ∈ T implies

[[Γ ]]h ∧ [[e]]h↓ → [[e]]h ∈ [[C]].

Proof. Proof by induction on the derivation length of Γ ` e ∈ C. We assume
[[Γ ]]h∧ [[e]]h↓ and distinguish the different cases for the last rule in the derivation
of Γ ` e ∈ C:

1. Γ ` x ∈ Γ (x): trivial.



2. Γ ` e.fi ∈ Ci: [[e.fi]]h↓ implies [[e]]h↓ by strictness. Hence, we get by the
induction hypothesis [[e]]h ∈ [[C0]] and fields(C0) = C f. By the definition
of [[C0]] this yields proj f∗i [[e]]h ∈ [[Ci]]. Finally we conclude by proj f∗i [[e]]h '
[[e.fi]]h that the claim holds.

3. Γ ` e0.m(e) ∈ C: by the induction hypothesis and Theorem 5 we obtain
[[e]]h ∈ [[C]] ⊂ [[D]] and [[e0]]h ∈ [[C0]]. Moreover, we have

mtype(m, C0) = D→ C.

Hence we conclude by h ∈ T and [[e0.m(e)]]h ' h(m∗, [[e0]]h, [[e]]h) that the
claim holds.

4. Γ ` new C(e) ∈ C: by the induction hypothesis and Theorem 5 we have
[[e]]h ∈ [[C]] ⊂ [[D]]. Further we know fields(C) = D f. Therefore the claim holds
by the definition of new.

5. If the last rule was an upcast, then the claim follows immediately from the
induction hypothesis, the definition of the term cast and Theorem 5.

6. Assume the last rule was a downcast or a stupid cast. By the induction
hypothesis we get [[e]]h ∈ [[D]]. Then D 6<: C implies sub(p0[[e]]h, C∗) = 0. We
get [[(C)e]]h ' (ex, 0) by the definition of cast. Hence the claim holds. ut

The following lemma says that our interpretation of FJ expressions is in accor-
dance with the definedness ordering vT .

Lemma 2. If Γ ` e ∈ C is derivable in FJ, then we can prove in PTN that
g, h ∈ T and g vT h imply [[Γ ]]g ∧ [[e]]g↓ → [[e]]g = [[e]]h.

Proof. Proof by induction on the derivation length of Γ ` e ∈ C. Assume [[Γ ]]g
and [[e]]g↓ hold. We distinguish the following cases:

1. Γ ` x ∈ Γ (x): trivial.
2. Γ ` e0.fi ∈ Ci: we know Γ ` e0 ∈ C0. Hence we get by the induction

hypothesis [[e0]]g = [[e0]]h and therefore the claim holds.
3. Γ ` e0.m(e) ∈ C: we get Γ ` e0 ∈ C0, Γ ` e ∈ C and

mtype(m, C0) = D→ C as well as C <: D. (5)

Because of [[e]]g↓ we obtain [[e0]]g↓ and [[e]]g↓. Hence the induction hypothesis
yields [[e0]]g = [[e0]]h as well as [[e]]g = [[e]]h. Using Lemma 1, we get [[Γ ]]g `
[[e0]]g ∈ [[C0]], [[Γ ]]g ` [[e]]g ∈ [[C]] as well as [[Γ ]]g ` [[e]]g ∈ [[C]]. With (5), g ∈ T ,
h ∈ T and g vT h we conclude

[[e0.m(e)]]g = g(m∗, [[e0]]g, [[e]]g)
= h(m∗, [[e0]]h, [[e]]h)
= [[e0.m(e)]]h

4. Γ ` new C(e) ∈ C: as in the second case, the claim follows immediately from
the induction hypothesis.



5. If the last rule was a cast, then again the claim is a direct consequence of
the induction hypothesis. ut

Remark 1. In the logic of partial terms it is provable that

∀xF ∧ t↓ → F [t/x]

for all formulas F of L, cf. e.g. Beeson [5].

Now, we want to show that invk ∈ T . First we prove r ∈ (T → T ).

Lemma 3. In PTN it is provable that r ∈ (T → T ).

Proof. Assume h ∈ T and let (m∗, c, ~d) ∈ ({m∗}× [[C0]]× [[D]]) for a method m and
classes C0, D, C with mtype(m, C0) = D→ C. We have to show

rh(m∗, c, ~d)↓ → rh(m∗, c, ~d) ∈ [[C]].

So assume rh(m∗, c, ~d)↓. By (4) we find

rh(m∗, c, ~d) = overC∗1 ,... ,C∗n (ghe1
, . . . , ghen)(c, ~d).

Hence, if c = (ex, 0) then we obtain rh(m∗, c, ~d) = (ex, 0) and the claim holds.
If c 6= (ex, 0) then we get sub(p0c, C0) = 1. By our interpretation of classes,
there exists a class B such that B <: C0, p0c = B∗ as well as c ∈ [[B]]. Let
mbody(m, B) = (xi, ei). Hence we have

r h (m∗, c, ~d) = ghei(c,
~d) = [[ei]]h[c/this, ~d/~xi]. (6)

By the rules for method body lookup there exists a class A such that B <: A <: C0

and the method m is defined in A by the expression ei. By our general assumption
that method typing is ok we obtain

x : D, this : A ` ei ∈ E0 E0 <: C. (7)

By Theorem 5 we get c ∈ [[A]] and therefore we conclude by h ∈ T , (6), Lemma
1 and Remark 1 that rh(m∗, c, ~d) ∈ [[C]] holds. ut

Now, we prove that r is T monotonic which implies invk ∈ T .

Lemma 4. In PTN it is provable that invk ∈ T .

Proof. We have defined invk as l r. Lemma 3 states r ∈ (T → T ). Therefore it
remains to show that r is T monotonic. Let g, h ∈ T such that gvT h. We have
to show r g vT r h. So assume rg ∈ T . Now we have to show

rh ∈ T . (8)

Moreover, we have to show for all methods m and classes C0, D and C with
mtype(m, C0) = D→ C that

(∀x ∈ {m∗} × [[C0]]× [[D]])r g xvC r hx. (9)



(8) is a direct consequence of Lemma 3. In order to show (9) we let (m∗, c, ~d) ∈
{m∗} × [[C0]]× [[D]] and r g (m∗, c, ~d) ∈ [[C]]. It remains to show

r g(m∗, c, ~d) = r h (m∗, c, ~d). (10)

As in Lemma 3 we find r g (m∗, c, ~d) = [[ei]]g[c/this, ~d/~xi] for some i and we have
to show that this is equal to [[ei]]h[c/this, ~d/~xi]. By (7), which was a consequence
of our general assumption that method typing is OK, and Lemma 2 we find

x ∈ [[D]] ∧ this ∈ [[C0]]→ [[ei]]g = [[ei]]h.

Hence by Remark 1 we obtain

[[ei]]g[c/this, ~d/~xi] = [[ei]]h[c/this, ~d/~xi]

and we finally conclude that (10) holds. ut

The next theorem states that our model is sound with respect to typing.

Theorem 7. If Γ ` e ∈ C is derivable in FJ, then in PTN it is provable that

[[Γ ]] ∧ [[e]]↓ → [[e]] ∈ [[C]].

Proof. By the previous lemma we obtain invk ∈ T and therefore r invk ∈ T by
Lemma 3. Then we apply Lemma 1 in order to verify our claim. ut

As we have seen in Example 1 we cannot prove soundness with respect to re-
ductions of our model construction for the original formulation of reductions
in Featherweight Java. The reason is that FJ does not enforce a call-by-value
evaluation strategy whereas theories of types and names adopt call-by-value eval-
uation via their strictness axioms. Moreover, Examples 2 and 3 show that we
also have to take care of exceptions and the role of late-binding. Let −→′ be
the variant of the reduction relation −→ with a call-by-value evaluation strategy
which respects exceptions.

Definition 15. Let a and b be two FJ expressions. We define the reduction
relation −→ by induction on the structure of a: a −→′ b if and only if a −→ b,
where all subexpressions of a are in closed normal form with respect to −→′ and
a does not contain subexpressions like (D)new C(e) with C 6<: D.

As shown in Example 3 the following lemma can only be established for closed
expressions in normal form.

Lemma 5. Let e be a well-typed Featherweight Java expression in closed normal
form with respect to −→′. Then in PTN it is provable that [[e]]↓. Moreover, if e
is not of the form (D)new C(e) with C 6<: D and does not contain subexpressions
of this form, then it is provable in PTN that p0[[e]] 6= ex.



Proof. Let e be a well-typed closed FJ expression in normal form. First, we
prove by induction on the structure of e that one of the following holds: e itself
is of the form (D)new C(e) with C 6<: D or it contains a subexpression of this form
or e does not contain such subexpressions and e is new C(e) for a class C and
expressions e. We distinguish the five cases for the built up of e as given by the
syntax for expressions.

1. x: is not possible since e is a closed term.
2. e0.f: the induction hypothesis applies to e0. In the first two cases we obtain

that e contains a subexpression of the form (D)new C(e) with C 6<: D. In the
last case we get by Theorem 4 about progress that e cannot be in normal
form.

3. e0.m(e): similar to the previous case.
4. new C(e): the induction hypothesis applies to e. Again, we obtain in the

first two cases that e contains a subexpression of the form (D)new C(e) with
C 6<: D. In the last case we see that e also fulfills the conditions of the last
case.

5. (C)e0: we apply the induction hypothesis to infer that e must satisfy condi-
tion one or two since it is in normal form.

Now, we know that e satisfies one of the three conditions above. In the first two
cases we obtain by induction on the structure of e that [[e]] = (ex, 0). If the first
two cases do not apply, then e is built up of new expressions only and we can
prove by induction on the structure of e that [[e]]↓ and p0[[e]] 6= ex. ut

Our interpretation of FJ expressions respects substitutions.

Lemma 6. For all FJ expressions e, d and variables x it is provable in PTN
that [[e]][[[d]]/[[x]]] ' [[e[d/x]]].

Proof. We proceed by induction on the term structure of e. The following cases
have to be distinguished.

1. e is a variable, then the claim obviously holds.
2. e is of the form e0.g. We have

[[e0.g]][[[d]]/[[x]]] ' (proj g∗ [[e0]])[[[d]]/[[x]]].

Since none of the variables of [[x]] occurs freely in proj or g∗, this is equal
to proj g∗ ([[e0]][[[d]]/[[x]]]), which equals proj g∗ ([[e0[d/x]]]) by the induction
hypothesis. Finally, we obtain [[e0.g[d/x]]].

3. e is of the form e0.m(e). We have

[[e0.m(e)]][[[d]]/[[x]]] ' (r invk (m∗, [[e0]], [[e]]))[[[d]]/[[x]]].

Again, since none of the variables of [[x]] occurs freely in r invk or in m∗ this
is equal to r invk (m∗, [[e0]][[[d]]/[[x]]], [[e]][[[d]]/[[x]]]). By the induction hypothesis
we obtain r invk (m∗, [[e0[d/x]]], [[e[d/x]]]), and finally we get [[e0.m(e)[d/x]]].



4. e is of the form new C(e). We have

[[new C(e)]][[[d]]/[[x]]] ' (new C∗([[e]]))[[[d]]/[[x]]].

Again this is equal to new C∗([[e]][[[d]]/[[x]]]) which is by the induction hypoth-
esis new C∗([[e[d/x]]]). This is [[new C(e)[d/x]]] by the interpretation of new.

5. e is of the form (C)e0. We obtain

[[(C)e0]][[[d]]/[[x]]] ' cast C∗([[e0]][[[d]]/[[x]]]).

By the induction hypothesis this is equal to

cast C∗ [[e0[d/x]]] ' [[(C)e0[d/x]]].
ut

Now we prove soundness with respect to call-by-value reductions.

Theorem 8. Let g, h be two FJ expressions so that g is well-typed and g −→′ h
is derivable in FJ, then in PTN it is provable that [[g]] ' [[h]].

Proof. We distinguish the three different rules for computations.

1. g is of the form (new C(e)).fi and fields(C) = C f. We obtain

[[(new C(e)).fi]] ' proj f∗i [[new C(e)]].

By the definition of new this is equal to proj f∗i (tC[[e]]). For g −→′ h, we know
that all subexpressions of g are closed, fully evaluated and not of the form
(D)new C(e) with C 6<: D. Hence we obtain by the Lemma 5 that p0[[e]] 6= ex
holds and therefore proj f∗i (tC[[e]]) ' [[ei]].

2. g is of the form (new C(e)).m(d) and mbody(m, C) = (x, e0). Assume m is
defined exactly in the classes C1, . . . , Cn. Now we show by induction on the
length of the derivation of mbody(m, C) = (x, e0) that there exists k so that
1 ≤ k ≤ n,

minkC∗1 ,... ,C∗n(C∗) = 1
∧
l<k

minlC∗1 ,... ,C∗n(C∗) 6= 1 (11)

and

mbody(m, C) = mbody(m, Ck). (12)

If m is defined in C, then there exists a k in 1, . . . , n so that C = Ck. Hence
(11) and (12) trivially hold. If m is not defined in C, then C extends a class B
with mbody(m, B) = (x, e0). In this case we have mbody(m, C) = mbody(m, B).
Therefore (11) and (12) follow by the induction hypothesis.
We have assumed that (new C(e)).m(d) is well-typed. Therefore we get that
new C(e) and d are well-typed. Let B be the type satisfying mbody(m, C) =
mbody(m, B) so that m is defined in B. We find C <: B. Furthermore, let D be



the types with d ∈ D. The expressions e, d are in closed normal form and
hence we obtain by Lemma 5, Theorem 7 and Theorem 5

[[new C(e)]]r invk ∈ [[B]] [[d]]r invk ∈ [[D]]. (13)

By our general assumption that method typing is ok we obtain

x : D, this : B ` e0 ∈ E0.

Hence applying Lemma 2 with r invk∼=T invk yields

[[x]]invk ∈ [[D]] ∧ [[this]]invk ∈ [[B]]→ [[e0]]invk ' [[e0]]r invk. (14)

Summing up, we get by (13), (14) and Remark 1

[[(new C(e)).m(d)]]r invk ' r invk (m∗, [[new C(e)]]r invk, [[d]]r invk)
' [[e0]]invk([[new C(e)]]r invk/this, [[d]]r invk/[[x]])
' [[e0]]r invk([[new C(e)]]r invk/this, [[d]]r invk/[[x]]).

In view of Lemma 6 this is partially equal to

[[e0[new C(e)/this, d/x]]]r invk.

3. g is of the form (D)(new C(e)) and C <: D. We have sub(C∗, D∗) = 1 and
therefore

[[(D)(new C(e))]] ' [[new C(e)]].
ut

8 Conclusion

Usually, the research on Java’s semantics takes an operational approach. And
if a denotational semantics for object-oriented principles is presented, then it is
often given in domain-theoretic notions. In contrast to this work, we investigate
a denotational semantics for Featherweight Java which is based on recursion-
theoretic concepts.

Our interpretation of Featherweight Java is based upon a formalization of
the object model of Castagna, Ghelli and Longo [11]. Its underlying type theory
can be given using predicative notions only, whereas most other object encod-
ings are impredicative, cf. e.g. Bruce, Cardelli and Pierce [8]. We have formalized
the object model in a predicative theory of types and names which shows that
this model is really simple from a proof-theoretic perspective. Hence, our for-
malization provides constructive foundations for object-oriented programming.
Moreover, this gives further evidence for Feferman’s claim that impredicative
assumptions are not needed for computational practice. A claim which has, up
to now, only been verified for polymorphic functional programs. Our work yields



first positive results about its status in the context of object-oriented program-
ming.

We have a proof-theoretically weak but highly expressive theory for repre-
senting object-oriented programs and for stating and proving many properties
of them similar to the systems provided by Feferman [16–18] and Turner [43,
44] for functional programming. Due to the fact that a least fixed point opera-
tor is definable in our theory, we also can prove that certain programs will not
terminate. This is not possible in the systems of Feferman and Turner.

Since Featherweight Java is the functional core of the Java language and since
the object model we employ provides a unified foundation for both Simula’s and
CLOS’s style of programming, our work also contributes to the study of the
relationship between object-oriented and functional programming. It shows that
these two paradigms of programming fit well together and that their combination
has a sound mathematical model.

Usually, denotational semantics are given in domain-theoretic notions. In
such a semantics one has to include to each type an element ⊥ which denotes
the result of a non-terminating computation of this type, cf. e.g. Alves-Foss and
Lam [2]; whereas our recursion-theoretic model has the advantage that com-
putations are interpreted as ordinary computations. This means we work with
partial functions which possibly do not yield a result for certain arguments, i.e.
computations may really not terminate. In our opinion this model is very natural
and captures well our intuition about non-termination.

As already pointed out by Castagna, Ghelli and Longo [11] the dynamic
definition of new classes is one of the main problems when overloaded functions
are used to define methods. Indeed, in our semantics we assumed a fixed class
table, i.e. the classes are given from the beginning and they will not change.
This fact makes our semantics non-compositional. If we add new classes to our
class table, then we get a new interpretation for our objects. An important
goal would be to investigate an overloading based semantics for object-oriented
programs with dynamic class definitions. Our work has also shown that theories
of types and names are a powerful tool for analyzing concepts of object-oriented
programming languages. Therefore, we think it would be worthwhile to employ
such theories for exploring further principles, i.e. the combination of overloading
and parametric polymorphism, cf. Castagna [9], or the addition of mixins to
class-based object-oriented languages, cf. e.g. Ancona, Lagorio and Zucca [3]
or Flatt, Krishnamurthi and Felleisen [21]. Last but not least it would be very
interesting to have a semantics for concurrent and distributed computations in
explicit mathematics.
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