
Common knowledge does not have the Beth

property

Thomas Studer

Abstract

Common knowledge is an essential notion for coordination among
agents. We show that the logic of common knowledge does not have the
Beth property and thus it also lacks interpolation. The proof we present
is a variant of Maksimova’s proof that temporal logics with ‘the next’ do
not have the Beth property. Our result also provides an explanation why
it is so difficult to find ‘nice’ deductive systems for common knowledge.
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1 Introduction

Common knowledge and common belief are essential notions for studying coor-
dination among a set of agents. This concerns in particular areas like computer
science, logic, game theory, and artificial intelligence. Formalizations of rea-
soning with and about common knowledge have been widely discussed in the
literature, for example in Barwise [3] and in the textbooks Fagin, Halpern,
Moses and Vardi [10] as well as Meyer and van der Hoek [22], to give only a few
examples.

Halpern and Moses [14] investigate a notion of common knowledge which
is based on epistemic logic. They introduce the logic of common knowledge
which is based on classical multi-modal logic. In this setting, an agent knowing
some proposition A in a state s is usually understood as A holding in all states
reachable from s in one step and thus each agent’s knowledge may be modeled
using a box operator. Furthermore, through arbitrary nesting of boxes epistemic
situations of considerable complexity become expressible. However, it is well
known that any formula of modal logic can only talk about a finite portion of
a model and that this is not sufficient to express certain epistemic situations of
particular interest. One such example is common knowledge of a proposition
A, which can roughly be viewed as the infinitary conjunction all agents know A
and all agents know that all agents know A and so on.

Craig interpolation and Beth definability have become traditional questions
to ask of a logic system. Let us write A(P1, . . . , Pn) to indicate that the formula
A contains at most the displayed propositional variables P1, . . . , Pn where we
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abbreviate such a sequence of propositional variables by ~P . Then the global
Beth property (B2) states that for any two propositional variables X, Y and any
formula A(~P ,X) if

A(~P ,X), A(~P , Y ) |= X ↔ Y,

then there exists a formula B(~P ) such that

A(~P ,X) |= X ↔ B(~P ).

The Craig interpolation property (CIP) states that if

A(~P , ~Q) → B(~P , ~R)

is valid, then there exists a formula C(~P ) such that

A(~P , ~Q) → C(~P ) and C(~P ) → B(~P , ~R)

are valid where C(~P ) contains only common propositional variables of A(~P , ~Q)
and B(~P , ~R), that is ~P is disjoint from ~Q and ~R. Gabbay and Maksimova
[12] provide an extensive study of these and related concepts for modal and
intuitionistic logics.

Interpolation is important in many areas of computer science, both at the
theoretical and at the practical level. Tinelli1 for example mentions the following
areas of applications:

• Hardware/software specification [4]

• Reasoning with large knowledge bases [2]

• Type inference [17]

• Theorem proving [23]

• Model checking [15, 9]

The starting point for our work was our cut-elimination result for common
knowledge [5]. One of the reviewers for that paper noticed that a nice benefit
of a cut elimination theorem like the presence of an interpolation theorem, does
not seem to follow, even though this is a major open question.

In this article, we show that the logic of common knowledge does not have
the Beth property. Hence, it also lacks interpolation. Our result holds for
common knowledge over arbitrary frames as well as over transitive frames. The
proof we present is a variant of Maksimova’s proof that temporal logics with
‘the next’ do not have the Beth property [20, 19]. A generalization of that proof
to fragments of PDL can be found in [18].

1The Impact of Craig’s Interpolation Theorem in Computer Science, talk delivered at
Interpolations: A conference in honor of William Craig. Slides available at ftp://ftp.cs.

uiowa.edu/pub/tinelli/talks/Craigfest.pdf
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The failure of interpolation for common knowledge might be an explanation
why it is so difficult to find a ‘nice’ deductive system for common knowledge.
Often the existence of a cut-free system for a logic implies an interpolation
property for that logic, see any introduction to proof theory, e.g. [7, 13, 24].
However, if interpolation is a consequence of cut-elimination, then by contra-
position we get that the failure of interpolation ‘implies’ the non-existence of a
‘nice’ cut-free system. There are indeed several finitary cut-free systems avail-
able for common knowledge [1, 16, 25], but none of them is really satisfactory
from a proof-theoretic perspective.

2 Language and Semantics

We consider a language with h agents for some finite h > 0. Propositions P and
their negations P are atoms. Formulae are denoted by A,B, C. They are given
by the following grammar

A ::= P | P | A ∧A | A ∨A | 2iA | 3iA | CA | C̃A

where 1 ≤ i ≤ h. The formula 2iA is read as agent i knows A and the for-
mula CA is read as A is common knowledge. The connectives 2i and C have
3i and C̃ as their respective duals. The negation ¬A of a formula A is de-
fined as usual by reflecting De Morgan’s laws, the law of double negation, and
the duality laws for modal operators. We also define A → B := ¬A ∨B and
A ↔ B := (A → B) ∧ (B → A). The formula EA is an abbreviation for every-
body knows A:

EA := 21A ∧ · · · ∧2hA and ẼA := 31A ∨ · · · ∨3hA.

Further, we set C∗A := CA ∧A.
A Kripke structure M is a tuple (S, R1, . . . , Rh, π) where S is a non–empty

set of so-called possible worlds, each Ri is a binary relation on S, and π is a
valuation function assigning to each atomic proposition a set of worlds such that
π(P ) = S \ π(P ). We write v ∈M for v ∈ S where M = (S, R1, . . . , Rh, π).

Given a Kripke structure M = (S, R1 . . . , Rh, π) and worlds v, w ∈ S we
say that w is reachable from v in n steps (reach(v, w, n)) if there exist worlds
s0, . . . , sn such that s0 = v, sn = w, and for all 0 ≤ j ≤ n − 1 there exists
1 ≤ i ≤ h with Ri(sj , sj+1). We say w is reachable from v if there exists
an n with reach(v, w, n). Moreover, we say w is directly reachable from v if
reach(v, w, 1).

Let M = (S, R1 . . . , Rh, π) be a Kripke structure and v ∈ S be a possible
world. We define the satisfaction relationM, v |= A inductively on the structure
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of the formula A:

M, v |= P if v ∈ π(P ) and M, v |= P if v ∈ π(P ),
M, v |= A ∧B if M, v |= A and M, v |= B,
M, v |= A ∨B if M, v |= A or M, v |= B,
M, v |= 2iA if M, w |= A for all w such that Ri(v, w),
M, v |= 3iA if M, w |= A for some w with Ri(v, w),
M, v |= CA if M, w |= A for all w such that (∃n ≥ 1)reach(v, w, n),
M, v |= C̃A if M, w |= A for some w with (∃n ≥ 1)reach(v, w, n).

We write M |= A if M, v |= A for all v ∈ S. A formula A is called valid if
M |= A for all Kripke structures M. Let Γ be a set of formulae. We write
Γ |= A if for all Kripke structures M such that M |= B for each B ∈ Γ, we also
have M |= A.

3 Beth property

In this section we prove that common knowledge over arbitrary frames does not
have the Beth property. If our language includes at least two agents, then the
results also holds over transitive frames.

We define the following formulae:

A1(P,X) := C∗(ẼX ↔ X ∧ C̃P ), A2(P,X) := C∗(X → C̃P ),
A3(P ) := C∗C̃CP, A4(X) := C∗(EX ↔ ẼX).

Using these definitions, we set

A(P,X) := A1(P,X) ∧A2(P,X) ∧A3(P ) ∧A4(X).

Lemma 1. Assume that we are given a Kripke structure M and a world v ∈M
such that M, v |= A(P,X) ∧A(P, Y ). Then the following hold:

1. If M, v |= X∧Y or M, v |= X∧Y , then for all worlds w directly reachable
from v we have M, w |= X ∧ Y or M, w |= X ∧ Y .

2. Let n be any natural number and let w be a world with reach(v, w, n). If
M, v |= X ∧ Y or M, v |= X ∧ Y , then M, w |= C̃P .

Proof. 1. Assume M, v |= X ∧ Y . From M, v |= X and A2(P,X) we obtain

M, v |= C̃P . (1)

Thus by A1(P, Y ) we get M, v |= ẼY and then by A4(Y ) we conclude

M, v |= EY. (2)

M, v |= X, (1) and A1(P,X) together yield M, v |= ¬ẼX which is

M, v |= EX. (3)

The claim now follows immediately from (2) and (3). If M, v |= X ∧ Y ,
then the dual argument shows the claim.
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2. We show the claim by induction on n. Case n = 0. We have to show
M, v |= C̃P which follows immediately from M, v |= X and A2(P,X) or
from M, v |= Y and A2(P, Y ).
Case n = k + 1. Let u be a world directly reachable from v such that
reach(u, w, k). By the previous statement we find that M, u |= X ∧ Y or
M, u |= X∧Y . By the induction hypothesis we conclude M, w |= C̃P .

Lemma 2. The following formula is valid: A(P,X) ∧A(P, Y ) → (X ↔ Y ).

Proof. Proof by contradiction. Assume that we are given a Kripke structure M
and a world v ∈ M such that M, v |= A(P,X) ∧ A(P, Y ). Thus by A3(P ) we
have

M, v |= C̃CP (4)

Now we suppose M, v |= X ∧ Y or M, v |= X ∧ Y and aim at a contradiction.
With the previous lemma we obtain that for all w reachable from v we have
M, w |= C̃P . Therefore we have M, v |= CC̃P . This means M, v |= ¬C̃CP
which contradicts (4).

Lemma 2 implies that A(P,X) defines X implicitly. In the proof of the
following theorem we show that there cannot be an explicit definition of X.
Hence, Beth definability does not hold for the logic of common knowledge.

Theorem 3. The logic of common knowledge does not posses the global Beth
property (B2).

Proof. Let Z be the Kripke model given by:

1. the domain of Z is the set of integers,

2. the accessibility relations Ri for 1 ≤ i ≤ h are given by Ri(u, v) if and
only if v = u + 1,

3. Z, u |= X if and only if u is odd and u < 0,

4. Z, u |= P if and only if u ≥ 0.

We have Z |= A(P,X).
Let us call a formula B L-stable in Z if

∃u∀v ≤ u(Z, v |= B ⇔ Z, u |= B).

By induction on the structure of formulae we show that every formula B which
contains only P as a variable is L-stable in Z.

1. P and P are L-stable in Z.

2. B = C ∧D or B = C ∨D. By the induction hypothesis we know that C
and D are L-stable in Z, that is there exist u1, u2 with

∀v ≤ u1(Z, v |= C ⇔ Z, u1 |= C) and ∀v ≤ u2(Z, v |= C ⇔ Z, u2 |= D).

Let u be the minimum of u1 and u2. Then we have

∃u∀v ≤ u(Z, v |= B ⇔ Z, u |= B).
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3. B = 2iC, B = 3iC, B = CC, or B = C̃C. By the induction hypothesis
we know that C is L-stable in Z, that is there exists u1 with

∀v ≤ u1(Z, v |= C ⇔ Z, u1 |= C).

Let u = u1 − 1. Then we have

∃u∀v ≤ u(Z, v |= B ⇔ Z, u |= B).

Therefore, for each formula B which contains only P as a variable, there exists
a u < 0 such that Z, u |= B ⇔ Z, u − 1 |= B. However, by definition we have
Z, u |= X ⇔ Z, u − 1 6|= X. Hence B and X must have different truth values
either at u or at u− 1. That means Z 6|= B ↔ X. Because of Z |= A(P,X) this
implies A(P,X) 6|= X ↔ B(~P ).

Theorem 4. The logic of common knowledge lacks interpolation (CIP).

Proof. Let us introduce another version (B1) of the Beth property: for any
formula A(~P ,X) if

|= A(~P ,X) ∧A(~P , Y ) → (X ↔ Y ),

then there exists a formula B(~P ) such that

|= A(~P ,X) → (X ↔ B(~P )).

Lemma 2 and the model in the proof of Theorem 3 show that (B1) does not
hold for the logic of common knowledge. We conclude that the logic of common
knowledge does not enjoy Craig interpolation (CIP) because (B1) can be derived
from (CIP), see [8, 12].

A simple adaption of the above arguments yields the following result about
common knowledge over transitive frames.

Theorem 5. Assume that our language includes at least two agents. Then the
logic of common knowledge over transitive frames does neither have the global
Beth property (B2) nor interpolation (CIP).

Proof. Let Z be the same Kripke model as in the previous proof but replace Ri

by the following relations:

1. The accessibility relation R1 is given by R1(u, v) if and only if v = u + 1
and u is odd.

2. The accessibility relations Ri for 2 ≤ i ≤ h are given by Ri(u, v) if and
only if v = u + 1 and u is even.

Again we have Z |= A(P,X). As before we find that any formula B which
contains only P as variable is L-stable in Z and hence Z 6|= B ↔ X.
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Note that for this theorem the condition of at least two agents is necessary.
K4 is the basic modal logic (with one agent) over transitive frames. The addition
of the common knowledge operator to K4 does not increase the expressive power
of K4 since C can be simply defined as 2. Gabbay [11] showed that K4 satisfies
(CIP). Later Maksimova [21] even proved that every normal extension of K4
has the Beth property (B2).

It is a longstanding open question whether propositional dynamic logic PDL
enjoys interpolation, see for instance [18]. At first sight, one could think that
our proof can be employed to settle this question in the negative. Of course
one easily can encode the common knowledge operator in PDL by making use
of union and iteration of programs. Therefore Lemma 2 also holds for PDL.
However, Theorem 3 cannot be established for PDL since it is not the case that
any PDL formula which contains only P as a variable is L-stable in Z. Consider
for instance a formula of the form 〈(a; a)∗〉C. This formula states that a state
where C holds can be reached in an even number of steps. This is something
we cannot express in the language of common knowledge and the fact that we
cannot express it is essential for our proof. Therefore, our proof cannot be
transfered to PDL.

4 Conclusion

Using a variant of Maksimova’s proof [20, 19] that certain temporal logics do
not have the Beth property we have shown that the logics of common knowledge
over arbitrary and over transitive frames do not have the Beth property. Hence,
they also lack interpolation. However, the problem for other frame conditions
remains open. Of particular interest is of course common knowledge over S5,
since S5 is usually considered as the logic for modeling knowledge.

As mentioned in the introduction, another major open question is the ex-
istence of ‘nice’ cut-free deductive systems for modal fixed point logics. We
believe that the failure of interpolation for common knowledge indicates that
there cannot be such a system.
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