
Handbook of Bishop Constructive Mathematics

Edited by

Douglas Bridges

Hajime Ishihara

Michael Rathjen

Helmut Schwichtenberg

Contents

Identity, equality, and extensionality in explicit mathematics

Gerhard Jäger page 1

1 Introduction 1

2 The basic axiomatic operational framework 3

3 Adding elementary classes 7

4 About some ontological aspects of EC and EC+ 10

5 Abstract data structures 13

6 The number systems N, Z, and Q as abstract data

structures 15

7 Representing the real numbers 18

iv

Identity, equality, and extensionality in explicit
mathematics

Gerhard Jäger

University of Bern

Abstract: A system EC+ of explicit mathematics is introduced that is

conservative over Peano arithmetic PA. This system deals with individuals

(called operations) and collections of individuals (called classes). In addition,

there is a binary relation < acting on individuals and classes, and <(u, U)

says that the individual u is a name of (or represents) the class U .

We have equality on the level of individuals and equality on the level of

classes and an interesting interplay between both. We study some ontological

consequences of this interplay, discuss the way how abstract data structures

can be represented in EC+ and consider – as examples – the number systems

N,Z,Q. This article ends with some first remarks about the representation

of the real numbers R.

Keywords: Explicit mathematics, identity, equality, extensionality.

1 Introduction

In the mid seventies Solomon Feferman introduced a new formalism – he

called it explicit mathematics – motivated by the aim to set up a proper for-

mal framework for Bishop-style constructive mathematics, see Bishop (1967).

In the three milestone articles Feferman (1975, 1978, 1979) he sketched the

main ideas of explicit mathematics, compared his approach with other ax-

iomatic frameworks for constructive mathematics and started to look at

explicit mathematics from the broader perspective of proof theory and gen-

eralized recursion theory.

This is one of the striking features of explicit mathematics: Although orig-

inally designed as a framework for constructive mathematics (and based on

intuitionistic logic) it soon became evident that systems of explicit mathe-

1

2 Gerhard Jäger

matics (now based on intuitionstic or classical logic) play an important role

in many other parts of logic (such as, for example, subsystems of second or-

der arithmetic and set theory, reductive proof theory, generalized/abstract

recursion theory).

For me personally, explicit mathematics offers a convincing basis for large

parts of mathematics. And for me it is not primarily a question of whether

one uses intuitionistic or classical logic. Instead, I think that the distinction

between concrete and abstract entities is of central importance.

Starting point for us (in this article) is an open ended universe of objects.

The exact nature of these objects is intentionally left open; you may think

of them as (constructive) operations of any kind, bit strings, computer pro-

grams, or whatever. To give these objects a name, we call them operations.

We only claim that they form a partial combinatory algebra PCA.

Mathematical examples of such universes are Kleene’s first and second

model, the graph model as well as variants of term models. But one can also

imagine situations where application is understood as a more general kind

of interaction between objects.

Our universe is open-ended in the sense that new constants can be added

whenever needed or useful. The (partial) terms that can be built upon this

partial combinatory algebra are our “first-class citizens”. Because of the

properties of combinatory algebras we have quite some expressive power

and a basic computation theory over this base universe.

Classes, on the other hand, are abstractly given collections of operations.

But we make sure – by means of a naming relation – that there is a deep

connection between the concretely given elements of the PCA at the bot-

tom and the class structure on top of it: every class has to have a name

that belongs to the PCA. This naming relation is crucial in our operational

approach below.

One of its features is that a sort of higher-type operations become possible.

In a nutshell: Level 0 comprises the elements of the PCA; level n+1 consists

of names of classes whose elements are objects of levels n; and it is obvious

how to proceed into the transfinite.

However, from a conceptual point of view it is more important that this

sort of naming allows us to look at classes – which are per se extensional

objects – also from an intensional perspective and as such reconcile set/class-

theoretic Platonism with a sort of conceptualism. The “price” we have to

pay is that we have to work with several equality relations. But the “gain”

we make is a rich and ontologically interesting structure.

In this article we confine ourselves to a simple system of explicit mathe-

matics with the class of natural numbers and elementary comprehension as

Identity, equality, and extensionality in explicit mathematics 3

its central class existence principle. Induction on the natural numbers will

be restricted to classes so that we stay conservative over Peano arithmetic.

In the next section we introduce the basic axiomatic operational frame-

work. Then we discuss some first ontological consequences. This is followed

by some considerations that are related to the identities and equality rela-

tions of our formalism. In the following section we treat so-called abstract

data structures on an abstract level before we turn to specific examples:

the number systems N, Z, and Q. The last section is dedicated to some re-

marks about the representation of the structure of the real numbers R in

our formalism.

2 The basic axiomatic operational framework

Before turning to the classes in explicit mathematics we have to look more

closely at the general operational framework. We confine ourselves to a rel-

atively weak core operational theory. The basic idea is simple: The universe

of discourse is a partial combinatory algebra; its elements are operations and

share the following properties:

• Operations may be partial, they may freely be applied to each other, and

self-application of operations is permitted.

• As a consequence, the general theory of operations is type-free. Later

classes of operations will be added with the purpose to partly structure

the universe.

• Operations are intensional objects; extensionality of operations is only

assumed or claimed axiomatically in very special situations.

The need to work with possibly undefined objects has also some impact on

the logic that we will use; see below.

The system of explicit mathematics with which we will work in the fol-

lowing is formulated in the second order language L for individuals and

classes. It comprises individual variables a, b, c, f, g, h, u, v, w, x, y, z, . . . as

well as class variables U, V,W,X, Y, Z, . . . (both possibly with subscripts).

L also includes the individual constants k, s (combinators), p, p0, p1 (pairing

and projections), 0 (zero), sN (successor), pN (predecessor), dN (definition

by numerical cases) and additional individual constants, called generators,

which will be used for the uniform naming of classes, namely nat (natural

numbers), id (identity), co (complement), un (union), dom (domain), and

inv (inverse image).

4 Gerhard Jäger

There is one binary function symbol · for (partial) application of individ-

uals to individuals. Further, L has unary relation symbols ↓ (defined), N

(natural numbers) as well as three binary relation symbols ∈ (membership),

= (equality), and < (naming, representation).

The individual terms (r, s, t, r0, s0, t0, . . .) of L are built up from individual

variables and individual constants by means of our function symbol · for

application. In the following ·(r, s) is usually written as (r · s), (rs) or – if

no confusion arises – simply as rs. The convention of association to the left

is also adopted so that r1r2 . . . rn stands for (. . . (r1r2) . . . rn), and we often

also write s(r1, . . . , rn) for sr1 . . . rn. 〈r, s〉 stands for the pair p(r, s), and

general n-tupling is defined by induction on n ≥ 1 as follows:

〈r1〉 := r1 and 〈r1, . . . , rn+1〉 := 〈〈r1, . . . , rn〉, rn+1〉.

If n is a natural number, we write n for the corresponding numeral, i.e., for

the closed term given recursively by 0 :≡ 0 and n+ 1 :≡ sNn.

The atomic formulas of L are the formulas (r↓), N(r), (r = s), (r ∈ U),

and <(r, U). Since we work with a logic of partial terms, it is not guaranteed

that all terms have values, and thus (r↓) is used to express that r is defined

or r has a value. Moreover, N(r) and (r ∈ U) say that r is a natural number

and an element of class U , respectively. Finally, the formula <(r, U) is used

to express that the individual r represents the class U or is a name of U .

The formulas (A,B,C,A0, B0, C0, . . .) of L are generated from these atomic

formulas by closing them under the usual propositional connectives and

quantification over individuals and classes. We will often omit parentheses

if there is no danger of confusion.

An L formula A is called stratified iff the relation symbol < does not occur

in A; it is called elementary iff it is stratified and does not contain bound

class variables.

The partial equality relation ' is introduced by, following Kleene,

(r ' s) := ((r↓ ∨ s↓) → r = s),

and (r 6= s) is written for (r↓ ∧ s↓ ∧ ¬(r = s)). Hence (r 6= s) is not the

logical negation of (r = s).

Since we will be dealing with possibly undefined objects, it is convenient

to work with Beeson’s logic of partial terms LPT , see Beeson (1985), which

can be based on classical or intuitionistic logic. It corresponds to the E+-

logic with equality and strictness of Troelsta and van Dalen (1988a), where

E(r) is written instead of r↓.
Space does not permit to describe LPT in detail, but let us mention that

Identity, equality, and extensionality in explicit mathematics 5

the axioms for quantification over individulas have in LPT the form

A[r] ∧ r↓ → ∃xA[x] and ∀xA[x] ∧ r↓ → A[r].

The definedness axioms imply that all individual variables and constants

are defined and that

A[r1, . . . , rn] → r1↓ ∧ . . . ∧ rn↓

for any atomic A. The equality axioms for individuals are as usual, formu-

lated, however, only for variables.1 Equality for classes is defined (see page 7)

and not an axiom.

In the following we work with the classical version of LPT . However, the

central arguments go through in intuitionistic LPT as well; if necessary,

small adjustments must be made.

Before turning to our systems BON+ and EC+ we introduce a few useful

shorthand notations:

r ∈ N := N(r),

(∃x ∈ N)A[x] := ∃x(x ∈ N ∧ A[x]),

(∀x ∈ N)A[x] := ∀x(x ∈ N → A[x]),

r ∈ (Nn → N) := (∀x1, . . . , xn ∈ N)(r(x1, . . . , xn) ∈ N).

Hence r ∈ (Nn → N) says that the individual r represents an n-ary function

from N to N.

All the “usual” systems of explicit mathematics comprise the axioms of

a partial combinatory algebra as well as the standard axioms about pairing

and projections. In addition, we have some canonical axioms for the natural

numbers with successor and predecessor. The following theory BON+ is the

extension of the basic theory of operations and numbers BON introduced

in Feferman and Jäger (1993) by the schema of induction on the natural

numbers for all elementary formulas.

Partial combinatory algebra.

• k(x, y) = x,
• s(x, y)↓ ∧ s(x, y, z) ' x(z, yz).

Pairing and projections.

• p0〈x, y〉 = x ∧ p1〈x, y〉 = y.

1 E.g., u = u is an axiom whereas r = r is false if r is not defined.

6 Gerhard Jäger

Natural numbers.

• 0 ∈ N ∧ sN ∈ (N→ N),
• sNx 6= 0 ∧ pN0 = 0 ∧ (∀x ∈ N)(pN(sNx) = x),
• A[0] ∧ (∀x ∈ N)(A[x]→ A[sNx]) → (∀x ∈ N)A[x]

for all elementary formulas A. Of course, we could also allow induction for

arbitrary L formulas. However, elementary induction is sufficient for our

purposes in this article.

Definition by cases on N.

• x ∈ N ∧ y ∈ N ∧ x = y → dN(a, b, x, y) = a,
• x ∈ N ∧ y ∈ N ∧ x 6= y → dN(a, b, x, y) = b,

Since BON+ comprises the axioms of a partial combinatory algebra, we

clearly have λ-abstraction and the usual fixed point theorem. This is men-

tioned already in Feferman (1975) and proved in detail in, e.g., Beeson (1985)

and Troelsta and van Dalen (1988b). Induction on the natural numbers is

not needed for these two lemmas.

Lemma 1.1 (λ-abstraction) For each variable x and term t we can con-

struct a term λx.t whose free variables are those of t, excluding x, such that

BON+ proves

λx.t↓ ∧ (λx.t)x ' t.

Lemma 1.2 (Fixed point) There exists a closed term fix such that BON+

proves

fix(f)↓ ∧ (g = fix(f) → ∀x(gx ' f(g, x))).

Following Jäger et al. (2018) we can easily show that BON+ provides a

good framework for dealing with the primitive recursive functions. We write

N for the set of natural numbers. Given a (possibly partial) function F from

Nk to N we say that a closed term t numeralwise represents F in BON+ iff

F(m1, . . . ,mk) ' n ⇐⇒ BON+ ` t(m1, . . . ,mk) ' n

for all m1, . . . ,mk, n ∈ N. However, this does not guarantee the expected

behavior of t on nonstandard natural numbers. To impose such a condition

we have to assume that it is described by formulas, e.g., by equations. For

example, let us consider an unary function G that is defined by primitive

recursion from a natural number n0 and a binary function F as

G(0) = n0 and G(m+ 1) = F(m,G(m))

Identity, equality, and extensionality in explicit mathematics 7

for all natural numbers m. Then, if the terms r and s represent the functions

F and G, respectively, we want the conditional equations

s0 ' n0 and (∀x ∈ N)(s(sNx) ' r(x, sx)).

If the defining formula of a function F is provable for a term t in BON+, we

say that t definitionally represents F in BON+. The following is immediate

from Troelsta and van Dalen (1988b).

Theorem 1.3 For any (definition of a) k-ary primitive recursive function

F , there exists a closed term primF that numeralwise and definitionally

represents F in BON+ and for which BON+ proves primF ∈ (Nk → N).

BON+ is also a reasonable basis for general recursion theory. However, in

Jäger et al. (2018) a point is made for introducing a new operation τN, called

truncation, to obtain a natural formalization of partial recursive functions

and semi-decidability notions in our applicative framework. Adding the non-

constructive minimum operator and the Suslin operator allows the move to

higher recursion theory; see Feferman and Jäger (1993), Jäger and Strahm

(2002), and Jäger and Probst (2011).

3 Adding elementary classes

In this section we turn to classes. As mentioned in the introduction, classes

are collections of individuals and will be treated extensionally. Consequently,

two classes are considered equal if the have the same elements. Therefore,

we define

U ⊆ V := (∀x ∈ U)(x ∈ V) and U = V := U ⊆ V ∧ V ⊆ U,

where (∀x ∈ U)A[x] is short for ∀x(x ∈ U → A[x]).

In our explicit world every class must have a name or – if you prefer

this point of view - every class can be addressed via an individual. This is

achieved with the help of the relation <. We claim, in addition, that there

are no homonyms and that < respects the extensional equality of classes.

This gives the next group of axioms.

Explicit representation and equality.

• ∃x<(x, U),

• (<(r, U) ∧ <(r, V)) → U = V ,

• (U = V ∧ <(r, U)) → <(r, V).

8 Gerhard Jäger

We say that an individual r is a name iff there exists a class X which

is named by r; individual r “belongs” to individual s iff s is the name of a

class that contains r. Also, r is equal in this new sense to s iff r and s name

the same class. From now on we use the following notations:

<(r) := ∃X<(r,X),

r ∈̇ s := ∃X(<(s,X) ∧ r ∈ X),

r =̇ s := ∃X(<(r,X) ∧ <(s,X)),

(∃x ∈̇ r)A[x] := ∃x(x ∈̇ r ∧ A[x]),

(∀x ∈̇ r)A[x] := ∀x(x ∈̇ r → A[x])

r ⊆̇ s := (∀x ∈̇ r)(x ∈̇ s).

So, if <(r) and <(s), we clearly have

r =̇ s ↔ (r ⊆̇ s ∧ s ⊆̇ r).

If the vector ~r consists of the individual terms r1, . . . , rn and the vector ~U

of the class variables U1, . . . , Un, then

<(~r, ~U) := <(r1, U1) ∧ . . . ∧ <(rn, Un).

Instead of <(r) we often write r ∈ <. However, this somewhat sloppy nota-

tion must not give the impression that < is a class. Classes (more precisely:

elementary definable classes) are generated by the following axioms.

Basic class existence axioms. In the following we provide a finite ax-

iomatization of uniform elementary comprehension.

Natural numbers

• nat ∈ <,
• ∀x(x ∈̇ nat ↔ N(x)).

Identity

• id ∈ <,
• ∀x(x ∈̇ id ↔ ∃y(x = 〈y, y〉)).

Complements

• a ∈ < ↔ co(a) ∈ <,
• a ∈ < → ∀x(x ∈̇ co(a) ↔ ¬(x ∈̇ a)).

Identity, equality, and extensionality in explicit mathematics 9

Unions

• a, b ∈ < ↔ un(a, b) ∈ <,
• a, b ∈ < → ∀x(x ∈̇ un(a, b) ↔ x ∈̇ a ∨ x ∈̇ b).

Domains

• a ∈ < ↔ dom(a) ∈ <,
• a ∈ < → ∀x(x ∈̇ dom(a) ↔ ∃y(〈x, y〉 ∈̇ a)).

Inverse images

• a ∈ < ↔ inv(a, f) ∈ <,
• a ∈ < → ∀x(x ∈̇ inv(a, f) ↔ fx ∈̇ a).

These are the generators and axioms if we work in classical logic. In the

intuitionistic case more such generators and axioms are needed, for example,

a generator and axioms for intersections.

Our theory EC+ for elementary classes is the theory BON+ extended by

the axioms for explicit representation and equality plus the basic class exis-

tence axioms. The plus signifies that induction on N for elementary formulas

is available. Accordingly, EC is EC+ without the schema of induction on N

for elementary formulas.

That the naming “elementary classes” is justified becomes evident in view

of the following theorem. It is taken from Feferman and Jäger (1996) and

states that (informally written) the class {x : A[x,~v, ~W]} can be uniformly

named by a term tA(~v, ~w), provided that ~w names the classes ~W .

Theorem 1.4 (Elementary comprehension) For every elementary formula

A[u,~v, ~W] with at most the indicated free variables there exists a closed term

tA such that one can prove in EC:

(1) <(~w, ~W) → tA(~v, ~w) ∈ <,

(2) <(~w, ~W) → ∀x(x ∈̇ tA(~v, ~w) ↔ A[x,~v, ~W]).

In view of this theorem EC+ is equivalent to EC plus the axiom of induction

on N,

∀X(0 ∈ X ∧ (∀y ∈ N)(y ∈ X → sNy ∈ X) → (∀y ∈ N)(y ∈ X)). (C-IN)

It also follows from Feferman and Jäger (1996) that EC+ is a conservative ex-

tension of Peano arithmetic. Until the end of this article we will concentrate

on EC and EC+, discuss some basic ontological properties of this framework

and show that (and how) abstract data structures present themselves there.

10 Gerhard Jäger

4 About some ontological aspects of EC and EC+

There are two sorts of ontological properties of EC: (i) those referring to the

first order part of EC+, and (ii) those that have to do with classes. We begin

with the first group and consider three additional principles.

• Operational extensionality (Op-Ext): ∀x(fx ' gx) → f = g.

• Totality (T): ∀x, y(xy↓).
• All operations are numbers (N): ∀x(x ∈ N).

Each of these principles makes strong ontological claims which will not be

considered natural in most cases. Nevertheless, it is interesting to see how

they relate to each other. The following assertions are spread over the liter-

ature and can be found, for example, in Jäger (2017).

Theorem 1.5 None of the principles (Op-Ext), (T), or (N) is provable

in EC+. In addition, we have:

(1) EC+ + (Op-Ext) + (T) is consistent.

(2) EC + (Op-Ext) + (N) is inconsistent.

(3) EC + (T) + (N) is inconsistent.

There are further first order principles that would deserve attention2 but

we cannot discuss them here and refer to the literature; see, e.g., Jäger (2017)

and Jäger et al. (2018). Instead, we turn to ontological properties that have

to do with the class structure of EC.

Let us begin these consideration with the observation that EC plus full

comprehension is inconsistent. It is proved by mimicking the usual Russell

argument.

Theorem 1.6 EC plus full comprehension is inconsistent.

Proof Given full comprehension, there exists a class U such that

∀x(x ∈ U ↔ ∃X(<(x,X) ∧ x /∈ X)).

According to our axioms about explicit representation and equality, U has

a name, say u. These axioms also tell us that all classes named u are exten-

sionally equal, therefore

∃X(<(u,X) ∧ u /∈ X) ↔ u /∈ U.

Together with the previous equivalence, this yields that u ∈ U iff u /∈ U . A

contradiction.

2 Full definition by cases and truncation are such principles.

Identity, equality, and extensionality in explicit mathematics 11

Of course, this result is not surprising. It can be shown, however, that EC

plus comprehension for stratified formulas is consistent.

Now we turn to one of the most central properties of the naming relation.

It says that the names of a class never form a class. The following is a

generalization of Theorem 3 of Jäger (1979).

Theorem 1.7 EC ` ∀X¬∃Y ∀z(z ∈ Y ↔ <(z,X)).

Proof Working informally in EC, let U be an arbitrary class and u one of

its names. We consider the elementary formula

A[x, y, V,W] := (x /∈ V ∧ y /∈W) ∨ (x ∈ V ∧ y ∈W).

In view of Theorem 1.4 there exists a closed term tA such that

<(v, V) ∧ <(w,W) → tA(y, v, w) ∈ <, (1)

<(v, V) ∧ <(w,W) → ∀x(x ∈̇ tA(y, v, w) ↔ A[x, y, V,W]). (2)

We set

s := λw.tA(w, u,w)

and conclude from (1) and (2) that, for any w and W ,

<(w,W) → sw =̇

{
u if w ∈W,

co(u) if w /∈W.
(3)

Now assume that the names of U form a class Z0, i.e.

∀x(x ∈ Z0 ↔ <(x, U)),

and that Z1 is introduced by elementary comprehension such that

∀x(x ∈ Z1 ↔ sx /∈ Z0).

Therefore,

∀x(x ∈ Z1 ↔ ¬<(sx, U)). (4)

In addition, let z1 be a name of Z1. Then (3) yields

sz1 =̇

{
u if z1 ∈ Z1,

co(u) if z1 /∈ Z1.
(5)

From (4) and (5) we obtain that z1 ∈ Z1 iff z1 /∈ Z1. This is a contradiction,

implying that the names of U cannot form a class.

12 Gerhard Jäger

Let U and V be classes with the names u and v, respectively. Then it is

clear that u = v implies U = V and thus u =̇ v. However, in general it is

possible that a class U has two different names, i.e. we may have u 6= v but

u =̇ v. By adding class extensionality, we would rule this possibility out,

but, as it turns out, class extensionality is not compatible with EC.

Theorem 1.8 EC plus class extensionality

(∀x, y ∈ <)(x =̇ y → x = y) (Cl-Ext)

is inconsistent.

Proof Pick, e.g., the class of natural numbers. From (Cl-Ext) we could

derive that all names of this class are identical to nat and thus form a class

(by elementary comprehension), contradicting our previous theorem.

Although the names of a class never form a class, it is consistent with

EC+ to claim that there exists the class of all names. This can be seen

by extending the model construction for EC that is presented in detail in

Feferman (1979).

Theorem 1.9 The assertion ∃X∀x(x ∈ X ↔ x ∈ <) is consistent with

EC+, but not provable in EC+.

With some additional effort even a strengthening of this result is possible:

We can consistently assume in EC that all objects are names.

Power classes provide some problems in explicit mathematics. The naive

approach is to claim that that for every class X there exists a class Y such

that Y contains exactly the names of all subclasses of X. We call it the

strong power class axiom:

∀X∃Y ∀z(z ∈ Y ↔ ∃Z(<(z, Z) ∧ Z ⊆ X)). (SP)

The weak power class axiom asks for less: It only claims that for each class

X there exists a class Y such that each element of Y names a subclass of X

and for any subclass of X at least one of its names belongs to Y ,

∀X∃Y ((∀z ∈ Y)(∃Z ⊆ X)(<(z, Z)) ∧ (∀Z ⊆ X)(∃z ∈ Y)<(z, Z)). (WP)

Both, the strong and the weak power class axiom, are problematic. By

Theorem 1.7 we know that in EC the names of the empty class cannot form

a class, and thus the strong power class of the empty class cannot exist.

Corollary 1.10 (SP) is inconsistent with EC.

Identity, equality, and extensionality in explicit mathematics 13

The weak power class axiom is less problematic in the sense that it is

consistent with EC. However, one may rightly argue whether it is in the

spirit of explicit mathematics.

Unlike in ordinary mathematics, explicit mathematics does not permit

the identification of power classes with the collection of its characteristic

operations. Given a class U neither the strong nor the weak power class of

U make much sense. On the other hand,

{0, 1}U := {f : (∀x ∈ U)(fx = 0 ∨ fx = 1)}

is a class by elementary comprehension. In most cases it is the adequate

“substitute” for the power class of U . This is also the approach taken in

Section 7 below.

5 Abstract data structures

As we have seen, there are already two equality relations on our basic uni-

verse of individuals:

• a = b means that a and b are identical in the sense of the underlying

partial combinatory algebra. It is the strongest form of equality in explicit

mathematics. Whenever a = b then a will be equal to b also in the sense

of any equality relation to be introduced later.

• a =̇ b means that a and b name the same class. So =̇ is inherited from the

extensional equality of classes: If a is a name of class U and b is a name

of class V then a =̇ b iff U and V are extensionally equal as classes.

These two equality relations are “global” equality relations on the universe.

However, in many situations “local” equalities are required. This is exactly

what Bishop and Bridges do when they introduce their notion of set; see

Bishop and Bridges (1985), pp. 15–16:

The totality of all mathematical objects constructed in accordance with

certain requirements is called a set. The requirements of the construction,

which vary with the set under consideration, determine the set. Thus the

integers form a set, the rational numbers form a set, and . . . the collection

of all sequences of integers is a set.

Each set will be endowed with a binary relation of equality. This relation

is a matter of convention, except that it must be an equivalence relation.

This approach can be implemented in EC in a very natural way. Given

a ∈ <, we write a× a for a name of the class of all pairs 〈x, y〉 with x, y ∈̇ a.

Such a name is provided by elementary comprehension.

14 Gerhard Jäger

Definition 1.11 A set is defined to be a pair a = 〈a1, a2〉 such that

a1, a2 ∈ < and a2 ⊆̇ a1 × a1 is an equivalence relation on a1. In this case we

call a1 the universe and a2 the equality of a.

In the following we let small boldface Latin letters range over sets. Then

|a| stands for the universe of a and =a for its equality; i.e.

a = 〈|a|,=a〉.

Clearly, we write x =a y instead of 〈x, y〉 ∈̇ =a for all x, y ∈̇ |a|. Also, if ~u

and ~v are the lists u0, . . . , un and v1, . . . , vn of elements of |a|, then ~u =a ~v

is short for

u1 =a v1 ∧ . . . ∧ un =a vn.

Keep in mind that sets are represented via their names. In general, we can

have that |a| =̇ |b| and, for any x, y ∈̇ |a|,

x =a y ↔ x =b y

although a and b are different as names.

Therefore, a higher equality on the level of sets can be introduced: For

sets a and b we set

a =set b :=

{
|a| =̇ |b| ∧

(∀x, y ∈̇ |a|)(x =a y ↔ x =b y).

However, for the following we do not need this equality.

There are two operations on sets that are particularly important: Carte-

sian products and Cartesian powers. In view of Theorem 1.4 it is easy to see

that there is a closed term carprod such that carprod(a,b) is, for all sets a

and b, the pair 〈|a| × |b|,=a×b〉 where =a×b stands for the binary relation

on |a| × |b| given by, for all x1, x2 ∈̇ |a| and y1, y2 ∈̇ |b|,

〈x1, y1〉 =a×b 〈x2, y2〉 ↔ x1 =a x2 ∧ y1 =b y2.

In the following we simply write a × b for carprod(a,b). a2 is then defined

to be the set a× a, and an+1 = an × a.

The introduction of the Cartesian power requires a bit more care. First

we make use of Theorem 1.4 to find a closed term efun3 such that efun(a,b)

names the class

{f : (∀x ∈̇ |a|)(f(x) ∈ |b|) ∧ (∀x, y ∈̇ |a|)(x =a y → f(x) =b f(y))}
3 It stands for “extenional functions”.

Identity, equality, and extensionality in explicit mathematics 15

of all functions from |a| to |b| that respect the equalities of a and b. The

standard equivalence relation on efun(a,b) is then given by

f =a→b g ↔ (∀x ∈̇ |a|)(f(x) =b g(x))

and thus elementary. We write ba for the pair 〈efun(a,b),=a→b〉 and observe

that ba is a set.

In a next step we look at functions and relations acting on a given set. f

is called an n-extensional function on set a if f ∈ (|a|n → |a|) and for all

strings ~x and ~y of length n the following condition is satisfied:

~x ∈̇ |a| ∧ ~x =a ~y → f(~x) =a f(~y).

Accordingly, r is called an n-extensional relation on set a if r ⊆̇ |a|n and for

all strings ~x and ~y of length n the following condition is satisfied:

~x =a ~y ∧ 〈~x〉 ∈̇ r → 〈~y〉 ∈̇ r.

Thus the n-extensional functions on a set a are exactly those n-ary total

functions on a which respect its equality; analogously for the n-extensional

relations on a. Such functions and relations together with the underlying set

form what we call an abstract data structure.

Definition 1.12 An abstract data structure consists of a set a and finitely

many functions and relations of various arities that are extensional on a and

thus is a tuple of the form 〈a, f1, . . . , fm, r1, . . . , rn〉.

Rather than studying abstract data structures on a general level we now

turn to a series of specific such structure.

6 The number systems N, Z, and Q as abstract data
structures

In the case of the natural numbers the situation is simple: The natural

numbers themselves are directly given in explicit mathematics, and the cor-

responding equality relation is the identity relation of our language L. Con-

sequently, the set of natural numbers in our sense is given as the pair

nat := 〈nat, id〉.

As far as functions and relations on nat are concerned, we can work with

the usual primitive recursive machinery, which is available in EC+ according

16 Gerhard Jäger

to Theorem 1.3. Thus the algebraic properties of the natural numbers are

summarized in the abstract data structure

N := 〈nat, 0, 1,+N, ·N, <N〉

that describes an ordered commutative semi-ring without zero divisors in

which 0 is the least element and 1 its successor. It should be evident that

(C-IN) is sufficient for proving the basic arithmetic properties of N.

Any integer is coded as a pair 〈x, y〉 of natural numbers, intended to rep-

resent the difference x− y. Again we proceed by elementary comprehension

and fix a constant term int such that

int =̇ {〈x, y〉 : N(x) ∧ N(y)}.

and a constant term =Z for integer equality, satisfying

〈x1, y1〉 =Z 〈x2, y2〉 ↔ x1 +N y2 = x2 +N y1

for all x1, x2, y1, y2 ∈ N. It is obvious that

int := 〈int,=Z〉

is a set. The zero element 0Z and unit element 1Z for int are defined by 〈0, 0〉
and 〈1, 0〉, respectively. The addition +Z, subtraction −Z, and multiplication

·Z are 2-extensional functions on int defined such that, for x1, x2, y1, y2 ∈̇ nat,

〈x1, y1〉+Z 〈x2, y2〉 = 〈x1 +N x2, y1 +N y2〉,

〈x1, y1〉 −Z 〈x2, y2〉 = 〈x1 +N y2, y1 +N x2〉,

〈x1, y1〉 ·Z 〈x2, y2〉 = 〈(x1 ·N x2) +N (y1 ·N y2), (y1 ·N x2) +N (x1 ·N y2)〉.

Finally, there is an elementary definable and 2-extensional less-relation on

int with

〈x1, y1〉 <Z 〈x2, y2〉 ↔ x1 +N y2 <N x2 +N y1

again for all x1, x2, y1, y2 ∈ N. Then it can be seen easily that the abstract

data structure

Z := 〈int, 0Z, 1Z,+Z, ·Z, <Z〉

is an ordered integral domain. We have an injection of N into Z by mapping

any x ∈̇ nat onto 〈x, 0〉.
The rational numbers are introduced by following a similar path. Any

rational number is coded as a pair 〈x, y〉 with x, y ∈̇ int and y different from

0Z. As before, we work in EC, fix a constant rat such that

rat =̇ {〈x, y〉 : x, y ∈̇ int ∧ y 6=Z 0Z}

Identity, equality, and extensionality in explicit mathematics 17

and introduce a further constant =Q for the equality relation on int, satis-

fying

〈x1, y1〉 =Q 〈x2, y2〉 ↔ x1 ·Z y2 =Z y1 ·Z x2

for all x1, x2, y1, y2 ∈̇ int where y1 and y2 are different from 0Z. Observe that

rat := 〈rat,=Q〉

is a set with the corresponding zero element 0Q := 〈0Z, 1Z〉 and unit element

1Q := 〈1Z, 1Z〉.
As before it is now straightforward to introduce 2-extensional functions

for addition, subtraction and multiplication and a 2-extensional less relation

on rat that satisfy that

〈x1, y1〉+Q 〈x2, y2〉 = 〈(x1 ·Z y2) +Z (x2 ·Z y1), y1 ·Z y2〉,

〈x1, y1〉 −Q 〈x2, y2〉 = 〈(x1 ·Z y2)−Z (x2 ·Z y1), y1 ·Z y2〉,

〈x1, y1〉 ·Q 〈x2, y2〉 = 〈x1 ·Z x2, y1 ·Z y2〉,

〈x1, y1〉 <Q 〈x2, y2〉 ↔

{
(x1 ·Z y2 <Z x2 ·Z y1 ∧ 0Z <Z y1 ·Z y2) ∨

(x2 ·Z y1 <Z x1 ·Z y2 ∧ y1 ·Z y2 <Z 0Z),

where 〈x1, y1〉 and 〈x2, y2〉 range over the elements of rat. Now it can be

verified in EC+ that

Q := 〈rat, 0Q, 1Q,+Q, ·Q, <Q〉

is an ordered field. Z is embedded into Q by sending x to 〈x, 1Z〉. In par-

ticular, for every natural number x greater than 0 its quotient 1/x is easily

represented in Q by setting

x−1 := 〈1Z, 〈x, 0〉〉.

If x is 0, then x−1 does of course not belong to rat.

Before turning to the representation of the real numbers in the next sec-

tion, we have to address the treatment of absolute values of integers and

rationals. For the integers this is achieved by the 1-extensional function |.|Z
on int with

|〈x, y〉|Z =

{
〈x, y〉 if y <N x,

〈y, x〉 if y ≮N x

for all x, y ∈̇ nat. This function is easily defined by means of definition by

18 Gerhard Jäger

integer cases and the closed term cutoff for the binary primitive-recursive

cut-off subtraction; simply set

|u|Z := dN(〈p1u, p0u〉, u, cutoff(p0u, p1u), 0).

The absolute value of a rational number 〈x, y〉 is given by

|〈x, y〉|Q := 〈|x|Z, |y|Z〉.

It should be clear the the functions |.|Z and |.|Q are extensional on int and

rat, respectively.

In the following, when we work with functions extensional on int or rat

and when there is no ambiguity as determined by the context, we drop the

subscripts ‘Z’ and ‘Q’.

7 Representing the real numbers

So far the build up of the number systems N, Z, and Q has been completely

canonical – perhaps with the small peculiarity that we make use of specific

equality relations rather than moving to equivalence classes. - and there has

not been much choice how to proceed. When it comes to the real numbers

the situation is different and one can take different paths, for example:

• Dedekind cuts,

• Cauchy sequences,

• nestings of intervals with rational bounds,

• completion of the topological group of rational numbers.

As it turns out the approach to the reals in Bishop and Bridges (1985) can

be reproduced very well in explicit mathematics. This has been worked out

up to a to certain extent in Feferman (2012).4 In order to illustrate the con-

ceptual power of the explicit framework, we recall a few central definitions.

Let nat+ be a name of the class of all positive natural numbers,

nat+ =̇ {x : N(x) ∧ x 6= 0}.

A sequence of elements of a class named a is an operation x ∈ (nat+ → a).

In this case we often write xn for x(n) and (xn : n ∈̇ nat+) for x.

4 Unfortunately, this research note is not available via Feferman’s homepage. If you are interested
in it, please contact me.

Identity, equality, and extensionality in explicit mathematics 19

Definition 1.13

(1) A sequence of rational numbers is called regular iff for all m,n ∈̇ nat+,

|xm − xn| ≤ m−1 + n−1.

(2) By a real number is meant a regular sequence of rational numbers;

real =̇ {x : x ∈̇ (nat+ → rat) ∧ x is regular}

(3) For the equality relation on real we introduce a further constant =R such

that

x =R y ↔ (∀n ∈ nat+)(|xn − yn| ≤ 2 · n−1)

for all x, y ∈̇ real.

(4) Finally, we introduce the pair real and observe that it is a set;

real := 〈real,=R〉.

We end this section with introducing a series of functions that are exten-

sional on the set real. These definitions are taken from Feferman (2012) and

are based on Bishop and Bridges (1985).

Associated with each real number x = (xn : n ∈̇ nat+) is a canoniocal

bound kx such that

|xn| < kx

for all n ∈̇ nat+; kx may simply be taken to be the least integer greater

than |x1| + 2. Working informally, one may now proceed with defining, for

all x, y ∈̇ real:

x+ y := (x2n + y2n : n ∈̇ nat+),

x · y := (x2kn · y2kn : n ∈̇ nat+) for k = max(kx,ky),

max(x, y) := (max(xn, yn) : n ∈̇ nat+),

−x := (−xn : n ∈̇ nat+),

|x| := max(x,−x).

It has to be checked that the sequences x+y, x ·y, max(x, y), and −x belong

to real and that these functions are extensional on real. It is a routine matter

to verify that this can be done in EC+.

It should be clear how to embed the rational numbers into the reals: Send

a q ∈̇ rat simply to the regular sequence q∗ = (q, q, . . .). Then operations

20 Gerhard Jäger

like addition and multiplication are easily seen to be preserved under this

embedding.

One aspect that is distinctive to constructivity and goes beyond explicit

representations is the definition of positivity of real numbers. The real num-

ber x is defined to be positive iff for some positive integer k, k−1 < xk. On

the other hand, a real number x is called non-negative iff −n−1 < xn for all

n ∈̇ nat+.

Based on that the ordering on the reals is given by

y < x := (x− y) is positive,

y ≤ x := (x− y) is non-negative.

Calling, in addition, a real number x non-zero iff its absolute value is posi-

tive, completes the picture.

We are now in the realm of “ordinary” constructive analysis and set

R := 〈real, 0∗, 1∗,+, ·,max,≤, <, . . .〉

for the reals and the usual operations on them. For more details about the

ordering of real numbers, the question of non-zeroness, the least upper bound

principle, and continuous functions we refer to Feferman (2012).

One should consider the conceptual considerations above and the techni-

cal work Feferman (2012) as a proof of principal that a reasonable part of

elementary analysis can be developed in a weak fragment of explicit math-

ematics such as EC+ – a conservative extension of Peano arithmetic. There

are also many interesting extensions of EC+ by, for example, the join axiom,

inductive generation, higher functionals and/or strong induction principles

that provide suitable frameworks for stronger parts of mathematics such as

complex analysis or measure theory.

References

Beeson, M. J. 1985. Foundations of Constructive Mathematics. Ergebnisse
der Mathematik und ihrer Grenzgebiete, vol. 3/6, Springer.

Bishop, E. 1967. Foundations of Constructive Analysis. McGraw-Hill Series
in Higher Mathematics, McGraw-Hill.

Bishop, E. and Bridges, D. S. 1985. Constructive Analysis. Grundlehren der
mathematischen Wissenschaften, vol. 279, Springer.

Feferman, S. 1975. A language and axioms for explicit mathematics. Pages
87–139 of: Algebra and Logic. (Crossley, J. N.,ed.), Lecture Notes in
Mathematics, vol. 450, Springer.

Identity, equality, and extensionality in explicit mathematics 21

Feferman, S. 1978. Recursion theory and set theory: a marriage of conve-
nience. Pages 55–98 of: Generalized Recursion Theory II, Oslo 1977
(Fenstad, J. E., R. O. Gandy R. O., and Sacks, G. E., eds.), Studies in
Logic and the Foundations of Mathematics, vol. 94, Elsevier.

Feferman, S. 1979. Constructive theories of functions and classes. Pages 159–
224 of: Logic Colloquium ’78 (Boffa, M.,van Dalen, D., and McAloon,
K., eds.), Studies in Logic and the Foundations of Mathematics, vol.
97, Elsevier.

Feferman, S. 2012. Constructive analysis in a BON system. Technical note,
Stanford University.

Feferman, S. and Jäger, G. 1993. Systems of explicit mathematics with non-
constructive µ-operator. Part I. Annals of Pure and Applied Logic, 65,
no. 3, 243–263.

Feferman, S. and Jäger, G. 1996. Systems of explicit mathematics with non-
constructive µ-operator and join. Part II Annals of Pure and Applied
Logic, 79, no. 1, 37–52.

Jäger, G. 1997. Power types in explicit mathematics?. The Journal of Sym-
bolic Logic, 62, no. 4,1142–1146.

Jäger, G. 2017. The operational penumbra: some ontological aspects. Pages
253–283 of: Feferman on Foundations: Logic, Mathematics, Philosophy
(Jäger G. and and Sieg, W., eds.), Outstanding Contributions to Logic,
vol. 13, Springer.

Jäger, G. and Probst, D. 2011. The Suslin operator in applicative theories:
Its proof-theoretic analysis via ordinal theories Annals of Pure and Ap-
plied Logic, 162, no. 8, 647–660.

Jäger, G, Rosebrock, T., and Sato, K. 2018. Truncation and semi-
decidability notions in applicative theories. The Journal of Symbolic
Logic, 83, no. 3, 967–990.

Jäger, G. and Strahm, T. 2002. The proof-theoretic strength of the Suslin
operator in applicative theories. Pages 270–292 of: Reflections on the
Foundations of Mathematics: Essays in Honor of Solomon Feferman
(Sieg W., Sommer R, and Talcott, C., eds.), Lecture Notes in Logic,
vol. 15, Association for Symbolic Logic.

Troelstra A. S., and van Dalen, D. 1988a Constructivism in mathematics, I,
Studies in Logic and the Foundations of Mathematics, vol. 121, Elsevier.

Troelstra A. S., and van Dalen, D. 1988b Constructivism in mathematics, II,
Studies in Logic and the Foundations of Mathematics, vol. 123, Elsevier.

