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1 Introduction

Kripke-Platek set theory KP (with infinity) is a remarkable subsystems of
Zermelo-Fraenkel set theory and had an enormous impact on the interaction
between various fields of mathematical logic; see, for example, Barwise [1].
Its proof-theoretic analysis has been carried through in Jäger [11], and it
is known that the proof-theoretic ordinal of KP is the Bachmann-Howard
ordinal ψ(εΩ+1) and that KP proves the same arithmetical sentences as the
theory ID1 of positive inductive definitions (cf. Feferman [8] and Buchholz,
Feferman, Pohlers, and Sieg [5]). Functional interpretations of KP have been
studied by Burr [7] and Ferreira [9].

The purpose of this article is to present a new and simplified cut elimi-
nation procedure for KP. We start off from the basic language of set theory
and add constants for all elements of the constructible hierarchy up to the
Bachmann-Howard ordinal ψ(εΩ+1). This enriched language is then used to
set up an infinitary proof system IP whose ordinal-theoretic part is based
on a specific notation system C(εΩ+1, 0) due to Buchholz (see, for example,
Buchholz [3]) and his idea of operator controlled derivations. KP is embedded
into IP and complete cut elimination for IP is proved.

In the older proof-theoretic treatments of theories for admissible sets
infinitary systems of ramified set theory play a central role. The build up of
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the set terms in these systems has always been complicated – requiring a lot
of technical intermediate steps to deal with, for example, extensionality and
equality – and is now for free.

This article is organized as follows: We begin with a very compact pre-
sentation of Kripke-Platek set theory KP (with infinity) and its Tait-style
variant KPT . Then we discuss the ordinal notation system and the deriva-
tion operators needed for our analysis. Here we can confine ourselves to a
“slimmed down” version of Buchholz [3]. It follows the presentation of the
new infinitary system IP with its very simple term structure. After some
partial soundness and completeness results for IP we show how to embed
KPT into IP. The last two sections are dedicated to cut elimination: pred-
icative cut elimination and collapsing. The Hauptsatz then tells us that the
Bachmann-Howard ordinal is an upper bound for the cut-free embedding of
the Σ fragment of KP into IP; also, the constructible hierarchy up to the
Bachmann-Howard ordinal is a model of the Π2 fragment of KP.

2 Kripke-Platek set theory

Let L be the standard first order language of set theory with ∈ as the only
relation symbol, countably many set variables, and the usual connectives
and quantifiers of first order logic. With regard to the later proof-theoretic
analysis we want all formulas of L to be in negation normal form. Thus, the
atomic formulas of L are all expressions (u ∈ v) and (u /∈ v). The formulas
of L are built up from these atomic formulas by means of ∨,∧, ∃, ∀ as usual.
We use as metavariables (possibly with subscripts):

• u, v, w, x, y, z for set-theoretic variables,

• A,B,C,D for formulas.

As you can see, we have no connective for negation. However, the nega-
tion ¬A of A is defined via de Morgan’s laws and the law of double negation.
In addition, we work with the following abbreviations:

(A→ B) :≡ (¬A ∨B),

(A↔ B) :≡ ((A→ B) ∧ (B → A)),

(∃x ∈ u)A[x] :≡ ∃x(x ∈ u ∧ A[x]),

(∀x ∈ u)A[x] :≡ ∀x(x ∈ u → A[x]),

(u = v) :≡ (∀x ∈ u)(x ∈ v) ∧ (∀x ∈ v)(x ∈ u),

To simplify the notation we often omit parentheses if there is no danger of
confusion. Moreover, we shall employ the common set-theoretic terminology
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and the standard notational conventions. For example, Au results from A
by restricting all unbounded quantifiers to u. The ∆0, Σ, Π, Σn, and Πn

formulas of L are defined as usual.
The logic of Kripke-Platek set theory is classical first order logic. The

set-theoretic axioms of KP consist of

(Equality) u ∈ w ∧ u = v → v ∈ w,

(Pair) ∃z(u ∈ z ∧ v ∈ z),

(Union) ∃z(∀y ∈ u)(∀x ∈ y)(x ∈ z),

(Infinity) ∃z(z 6= ∅ ∧ (∀x ∈ z)(x ∪ {x} ∈ z)),

(∆0-Sep) ∃z(z = {x ∈ u : D[x]}),

(∆0-Col) (∀x ∈ u)∃yD[x, y] → ∃z(∀x ∈ u)(∃y ∈ z)D[x, y],

(∈-Ind) ∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].

The formulas D in the schemas (∆0-Sep) and (∆0-Col) are ∆0 whereas the
formula A in the schema (∈-Ind) ranges over arbitrary formulas of L.

3 A Tait-style reformulation of KP

For the later embedding into the infinitary system IP it is technically con-
venient to work with a Tait-style variant KPT of KP. In KPT we derive
finite sets of L formulas rather than individual formulas. In the following
the Greek letters Γ,Θ,Λ (possibly with subscripts) act as metavariables for
finite sets of L formulas. Also, we write (for example) Γ, A1, . . . , An for
Γ ∪ {A1, . . . , An}; similarly for expressions such as Γ,Θ, A. Finite sets of
formulas are to be interpreted disjunctively.

Axioms of KPT .

(Tnd) Γ, A, ¬A for all L formulas A.

(Equality) Γ, u ∈ w ∧ u = v → v ∈ w.

(Pair) Γ, ∃z(u ∈ z ∧ v ∈ z).

(Union) Γ, ∃z(∀y ∈ u)(∀x ∈ y)(x ∈ z).

(Infinity) Γ, ∃z(∅ 6= z ∧ (∀x ∈ z)(x ∪ {x} ∈ z).

(∆0-Sep) Γ, ∃z(z = {x ∈ u : D[x]}).

(∆0-Col) Γ, (∀x ∈ u)∃yD[x, y] → ∃z(∀x ∈ u)(∃y ∈ z)D[x, y].

(∈-Ind) Γ, ∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].
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The formulas A in the Tertium-non-datur axioms (Tnd) and ∈-induction
axioms (∈-Ind) range over arbitrary L formulas whereas the formulas D in
(∆0-Sep) and (∆0-Col) are supposed to be ∆0.

Rules of inference of KPT .

(or)
Γ, Ai for i ∈ {0, 1}

Γ, A0 ∨A1
(and)

Γ, A0 Γ, A1

Γ, A0 ∧A1

(b−ex)
Γ, u ∈ v ∧ A[u]

Γ, (∃x ∈ v)A[x]
(b−all) Γ, u ∈ v → A[u]

Γ, (∀x ∈ v)A[x]

(ex)
Γ, A[u]

Γ, ∃xA[x]
(all)

Γ, A[u]

Γ, ∀xA[x]

(cut)
Γ, A Γ, ¬A

Γ

In the rules (b−all) and (all) the eigenvariable u of these rules must not
occur in their conclusion.

The notions of principal formula and minor formula(s) of an inference
and that of cut formula(s) of a cut are as usual. We say that Γ is provable
in KPT iff there exists a finite sequence of finite sets of L formulas

Θ0, . . . ,Θn

such that Θn is the set Γ and for any i = 0, . . . , n one of the following two
conditions is satisfied:

• Θi is an axiom of KPT ;

• Θi is the conclusion of an inference of KPT whose premise(s) are among
Θ0, . . . ,Θi−1.

In this case we write KPT ` Γ. It is an easy exercise to show that a formula A
is provable in one of the usual Hilbert-style formalizations of KP iff KPT ` A.
We leave all details to the reader.

4 An ordinal system for the Bachmann-Howard or-
dinal

Buchholz has developed several ordinal notation systems based on so called
collapsing functions; see, for example Buchholz [2, 3, 4]. In the following we
work with a reduced version, which is sufficient for our purposes. For that
we need the following ingredients:
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(1) Let On be the collection of all ordinals and let Ω be a sufficiently large
ordinal. To simplify matters we set Ω := ℵ1, but also ωck1 or even
somewhat smaller ordinals could do the job.

(2) The basic ordinal operations λη, ξ.(η + ξ) and λξ.ωξ.

(3) The binary Veblen function ϕ, where ϕα is defined by transfinite recur-
sion on α as the ordering function of the class

{ωβ : β ∈ On & (∀ξ < α)(ϕξ(ω
β) = ωβ}.

In the following we write ϕαβ for ϕα(β).

(4) An ordinal α is called strongly critical iff α = ϕα0.

(5) Every ordinal α has a normal form

α =NF ϕα1β1 + . . .+ ϕαnβn

with βi < ϕαiβi for i = 1, . . . , n and ϕα1β1 ≥ . . . ≥ ϕαnβn.

(6) The collection SC (α) of strongly critical components of an ordinal α is
defined by

SC (α) :=


∅ if α = 0,

{α} if α is strongly critical,

SC (β) ∪ SC (γ) if α = ϕβγ and β, γ < α,⋃n
i=1 SC (αi) if α =NF α1 + . . .+ αn and n > 1.

Based on that we can now introduce, for all α and β, the ordinals ψ(α)
and the sets of ordinals C(α, β).

Definition 1. By recursion of α we simultaneously define:

(1) ψ(α) := min(β : C(α, β) ∩ Ω = β).

(2) C(α, β) is the closure of β ∪ {0,Ω} under +, ϕ, and (ξ 7→ ψ(ξ))(ξ<α).

Since C(α, β) is countable, it is clear that ψ(α) is always defined and less
than Ω in case that Ω is interpreted as ℵ1. If Ω is interpreted as ωck (or a
smaller ordinal), then additional considerations are required.

Now we list a series of properties of the sets C(α, β). Their proofs are ei-
ther standard or follow from the results in the articles of Buchholz mentioned
above.

Lemma 2. We have for all ordinals α and β:

(1) C(α, 0) = C(α,ψ(α)).
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(2) C(α,ψ(α)) ∩ Ω = ψ(α).

(3) C(α, β) ∩ Ω is an ordinal.

Every set C(α, 0) is well-ordered by the usual less relation < on the
ordinals but is not an ordinal itself. For example,

Ω ∈ C(α, 0) and (∀ξ < Ω)(ψ(α) ≤ ξ → ξ /∈ C(α, 0)).

If we write ot(α, ξ) for the order-type of an element ξ of C(α, 0) with respect
to C(α, 0), then

• ot(α, ξ) = ξ for all ξ ≤ ψ(α),

• ot(α, ξ) < ξ for all elements of C(α, 0) greater than ψ(α).

In particular, we have ot(α,Ω) = ψ(α) and the order types ot(α, ξ) of all
elements ξ of C(α, 0) are countable.

We write εΩ+1 for the least ordinal α > Ω such that ωα = α. Its collapse
η := ψ(εΩ+1) is called the Bachmann-Howard ordinal. This number gained
importance in proof theory since it is the proof-theoretic ordinal of the theory
ID1 of one positive inductive definition and of Kripke-Platek set theory KP;
see, for example, Buchholz and Pohlers [6], Jäger [11], and Pohlers [13].

5 Derivation operators

The general theory of derivation operators and operator controlled deriva-
tions has been introduced in Buchholz [3]. His main motivation was to
provide a conceptually clear and flexible approach to infinitary proof theory
that allows to put the finger on that part of the ordinal analysis of a suffi-
ciently strong formal theory where the uniformity of proofs and a collapsing
technique play the central role.

In this article we confine ourselves to that part of the general theory that
goes along with the notation system C(εΩ+1, 0) described in the previous
section.

Definition 3. Let Pow(On) denote the collection of all sets of ordinals. A
class function

H : Pow(On)→ Pow(On)

is called a derivation operator (d-operator for short) iff it satisfies the follow-
ing conditions for all X,Y ∈ Pow(On):

(i) X ⊆ H(X).

(ii) Y ⊆ H(X) =⇒ H(Y ) ⊆ H(X).

(iii) {0,Ω} ⊆ H(X).

6



(iv) For all α,
α ∈ H(X) ⇐⇒ SC (α) ⊆ H(X).

Hence every d-operator H is monotone, inclusive, and idempotent. Ev-
ery H(X) is closed under + and the binary Veblen function ϕ, and the
decomposition of its members into their strongly critical components.

Let H be a d-operator. Then we define for all finite sets of ordinals m
the operators

H[m] : Pow(On)→ Pow(On)

by setting for all X ⊆ On:

H[m](X) := H(m ∪X).

If H and K are d-operators, then we set

H ⊆ K := (∀X ⊆ On)(H(X) ⊆ K(X)).

In this case K is called an extension of H. The following observation is
immediate from this definition.

Lemma 4. If H is a d-operator, then we have for all finite sets of ordinals
m, n:

(1) H[m] is a d-operator and an extensions of H.

(2) If m ⊆ H(∅), then H[m] = H.

(3) n ⊆ H[m](∅) =⇒ H[n] ⊆ H[m].

Now we turn to specific operators Hσ. They will play a crucial role in
connection with the embedding of KP into the infinitary proof system IP –
to be introduced in the next section – and the collapsing procedure for IP.

Definition 5. We define, for all ordinals σ, the operators

Hσ : Pow(On)→ Pow(On)

by setting for all X ⊆ On:

Hσ(X) :=
⋂
{C(α, β) : X ⊆ C(α, β) and σ < α}.

The following lemmas summarize those properties of these operators that
will be needed later. For their proof we refer to [3], in particular Lemma 4.6
and Lemma 4.7. Assertion (5) is a consequence of Lemma 2(3).

Lemma 6. We have for all ordinals σ, τ and all X ⊆ On:

(1) Hσ is a derivation operator.
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(2) Hσ(∅) = C(σ + 1, 0)).

(3) τ ≤ σ and τ ∈ Hσ(X) =⇒ ψ(τ) ∈ Hσ(X).

(4) σ < τ =⇒ Hσ ⊆ Hτ .

(5) Hσ(X) ∩ Ω is an ordinal.

Lemma 7. Let m a finite set of ordinals and σ an ordinal such that the
following conditions are satisfied:

m ⊆ C(σ + 1, ψ(σ + 1)) ∩ Ω and σ ∈ Hσ[m](∅).

Then we have for α̂ := σ + ωΩ+α and β̂ := σ + ωΩ+β:

(1) α ∈ Hσ[m](∅) =⇒ α̂ ∈ Hσ[m](∅) and ψ(α̂) ∈ Hα̂[m](∅).

(2) α ∈ Hσ[m](∅) and α < β =⇒ ψ(α̂) < ψ(β̂).

(3) Hσ[m](∅) ∩ Ω ⊆ ψ(σ + 1).

From now on the letter H will be used as a metavariable that ranges over
d-operators.

6 The infinitary proof system IP

Henceforth, all ordinals used on the metalevel range over the set C(εΩ+1, 0),
if not stated otherwise. In this section we introduce an infinitary proof
system whose terms are constants for the elements of the initial segment of
the constructible hierarchy Lη and whose proofs are controlled by derivation
operators. Later we show that KP can be embedded into IP and that IP
permits cut elimination and collapsing.

Definition 8. The language of IP is the following extension L[η] of L:

(1) For each element a of Lη we fix a fresh constant ā. These constants
are the terms of IP. The letters r, s, t (possibly with subscripts) act as
metavariables for the terms of IP.

(2) The level |ā| of ā is the least ξ such that a ∈ Lξ+1.

(3) The formulas of IP are now easily obtained from the formulas of L by
simply replacing all their free variables by terms of IP; i.e. the formulas
of IP are the sentences of L[η].

Accordingly, the ∆0, Σ, Π Σn, and Πn formulas of IP are the ∆0, Σ, Π
Σn, and Πn sentences of L[η], respectively.
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Definition 9. Every IP formula is an expression of the form F [ā1, . . . , ān]
where F [u1, . . . , un] is a formula of L with the free variables indicated and
a1, . . . , an are elements of Lη. The set

par(F [ā1, . . . , ān]) := {|ā1|, . . . , |ān|}

is called the parameter set of this formula.

Observe that each ∆0 sentence of L[η] has a non-empty parameter set.
Below it will be necessary to measure the complexities of the cut formulas
appearing in a derivation. To this end we assign a rank to each L[η] sentence.

Definition 10. The rank rk(F ) of an L[η] sentence F is defined by induction
on the number of symbols occurring in F as follows.

(1) rk(ā ∈ b̄) := rk(ā /∈ b̄) := ω·max(|ā|, |b̄|).

(2) rk(F ∨G) := rk(F ∧G) := max(rk(F ), rk(G)) + 1.

(3) rk((∃x ∈ ā)F [x]) := rk((∀x ∈ ā)F [x]) := max(ω·|ā|, rk(F [∅̄]) + 1).

(4) rk(∃xF [x]) := rk(∀xF [x]) := max(Ω, rk(F [∅̄]) + 1).

Finally, we define the level lev(F ) of an IP formula F by

lev(F ) :=

{
max(par(F )) if rk(F ) < Ω,

Ω if Ω ≤ rk(F )).

Some important properties of the ranks of L[η] sentences are summarized
in the following lemma. Its proof is straightforward and left to the reader.

Lemma 11. We have for all IP formulas F,G and all a, b ∈ Lη;

(1) rk(F ) = rk(¬F ).

(2) rk(F ) < ω·lev(F ) + ω.

(3) rk(F ), rk(G) < rk(F ∨G).

(4) |b̄| < lev(F [∅̄]) =⇒ rk(F [b̄]) = rk(F [∅̄]).

(5) b ∈ a =⇒ rk(F [b̄]) < rk((∃x ∈ ā)F [x]).

(6) rk(F [b̄]) < rk(∃xF [x]).

(7) rk(F ) ∈ H[par(F )](∅).

(8) α ∈ par(F ) =⇒ α ≤ rk(F ).
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The proof system for IP will be Tait-style. From now on we let the Greek
letters Γ,Θ,Λ (possibly with subscripts) also range over finite sets of L[η]
sentences.

For a finite set S = {F, . . . , Fm, r1, . . . , rn} of formulas and terms of IP
we set

par(S) := par(F1) ∪ . . . ∪ par(Fm) ∪ {|r1|, . . . , |rn|}.

Accordingly,

H[Γ, F1, . . . , Fm, r1, . . . , rn] := H[par(Γ) ∪ par({F1, . . . , Fm, r1, . . . , rn})].

Variants of this notation may also be used. However, it will always be clear
from the context what is meant.

Axioms of IP. The axioms of IP are all finite sets

Γ, (ā1 ∈ b̄1) and Γ, (ā2 /∈ b̄2)

with a1, a2, b1, b2 ∈ Lη, a1 ∈ b1, and a2 /∈ b2.

So the axioms of IP are the finite sets that contain true atomic sentences
of L[η]. The next definition introduces the derivability relation, controlled
by derivation operators.

Definition 12. H α

ρ Γ iff par(Γ) ∪ {α} ⊆ H(∅) and one of the following
cases holds:

(Ax) Γ is an axiom

(∨) F0 ∨ F1 ∈ Γ & H α0

ρ Γ, Fi & α0 < α, i ∈ {0, 1}

(∧) F0 ∧ F1 ∈ Γ & H αi

ρ Γ, Fi & αi < α for i = 0, 1

(b∃) (∃x ∈ ā)F [x] ∈ Γ & H α0

ρ Γ, F [b̄] & α0, |b̄| < α, b ∈ a

(b∀) (∀x ∈ ā)F [x] ∈ Γ & H[b̄]
αb

ρ Γ, F [b̄] & αb < α for all b ∈ a

(∃) ∃xF [x] ∈ Γ & H α0

ρ Γ, F [b̄] & α0, |b̄| < α,

(∀) ∀xF [x] ∈ Γ & H[b̄]
αb

ρ Γ, F [b̄] & αb < α for all b ∈ Lη

(Ref) ∃xF x ∈ Γ & H α0

ρ Γ, F & α0,Ω < α, F ∈ Σ

(Cut) H α0

ρ Γ, F & H α0

ρ Γ,¬F & rk(F ) < ρ, α0 < α

We now list a series of properties of operator controlled derivations before
we turn to embedding, cut elimination and collapsing in the following sec-
tions. The first is the Weakening Lemma, and its proof is by straightforward
induction on α.
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Lemma 13 (Weakening). Assume that H ⊆ H′, α ≤ β, ρ ≤ σ, and that
par(Λ) ∪ {β} ⊆ H′(∅). Then

H α

ρ Γ =⇒ H′ βσ Γ,Λ.

In the following, we will frequently make use of Weakening without mak-
ing specific reference to it. An important such use is described in the next
remark.

Remark 14. The inference rules formulated above are somewhat special in
the sense that it is assumed that the principal formula of each rule (R) is an
element of the premise(s) of (R). In general, however, this is not a severe
limitation. Assume that we have a rule (R) with the principal formula F
and the minor formulas (Fi)(i:I). Suppose further that F does not belong to
Γ and that we have

(*) Hi
αi

ρ Γ, Fi and αi < α (for all i ∈ I)

– where Hi is either of the form H or H[b̄i] – and possibly further side
conditions. If par(F ) ∪ {α} ⊆ H(∅) – and this requirement will be satisfied
below in all relevant cases – then we can apply Weakening and obtain

Hi
αi

ρ Γ, F, Fi and αi < α (for all i ∈ I).

Now the premises have the right form to conclude

(**) H α

ρ Γ, F.

In the following, this intermediate step will often be omitted, and we go
directly over from (*) to (**).

Also the next lemma presents some basic properties of IP; its proof is
again by induction on α.

Lemma 15 (Inversion).

(1) H α

ρ Γ, F0 ∨ F1 =⇒ H α

ρ Γ, F0, F1.

(2) H α

ρ Γ, F0 ∧ F1 and i ∈ {0, 1} =⇒ H α

ρ Γ, Fi.

(3) H α

ρ Γ, (∀x ∈ ā)F [x] and b ∈ a =⇒ H[b̄]
α

ρ Γ, F [b̄].

(4) H α

ρ Γ,∀xF [x] and |b̄| ∈ H(∅) =⇒ H α

ρ Γ, F [b̄].

(5) H α

ρ Γ,∀xF [x] and x does not occur in F [x] =⇒ H α

ρ Γ, F .

(6) H α

ρ Γ,∀xF [x] and |ā| ∈ H(∅) =⇒ H α

ρ Γ, (∀x ∈ ā)F [x].
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We end this section with a third structural lemma. It will be essential in
connection with the Collapsing Theorem of Section 10.

Lemma 16 (Boundedness). Let F be a Σ sentence of L[η] and assume that
α ≤ β ∈ H(∅) ∩ Ω and that r is the constant L̄β. Then we have

H α

ρ Γ, F =⇒ H α

ρ Γ, F r.

Proof. We show this assertion by induction on α and assume H α

ρ Γ, F .
First observe that this derivation contains no instances of (Ref) since α <
Ω. If Γ, F is an axiom, then Γ, F r is an axiom as well, and we are done.
Otherwise we distinguish cases according to the last inference of H α

ρ Γ, F .

(i) The last inference was (∃) with principal formula F . Then F is of the
form ∃xG[x] and there exist an α0 < α and a set b ∈ Lα such that

H α0

ρ Λ, F,G[b̄],

where Λ := Γ \ {F}. By two applications of the induction hypothesis we
obtain

H α0

ρ Λ, F r, Gr[b̄]

Since b ∈ Lα ⊆ Lβ and (∃x ∈ r)Gr[x] is the formula F r, an inference (b∃)
yields

H α

ρ Λ, F r.

(ii) In all other cases we apply the induction hypothesis to the premise(s)
of this inference (once or twice depending on whether F was the principal
formula of this inference), and then apply it again.

7 Partial soundness and completeness of IP

The design of the infinitary proof system IP is so that all its axioms and
rules of inference – with the exception of (Ref) – are correct with respect to
Lη. This gives us the following result.

Theorem 17 (Partial soundness of IP). For any Γ, any d-operator H and
all α, ρ we have that

H α

ρ Γ and α < Ω =⇒ Lη |= Γ.

Proof. By straightforward induction on α. Observe that because of α < Ω,
the inference rule (Ref) has not been used in this derivation.
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It is clear that (Ref) is not correct in Lη. For proofs of depths greater
than Ω, which use the rule (Ref), more subtle considerations are needed. We
will see what to do with such derivations in Section 10.

Let us now turn to (partial) completeness. We will show that all Π
sentences that are true in Lη can be derived in IP. To prove that we need the
following auxiliary consideration. Recall the introduction of the derivation
operator H0 in Definition 5.

Lemma 18. If a and b are elements of Lη with b ∈ a, then we have for all
L[η] sentences G[∅̄] that

H0[G[b̄]] ⊆ H0[(∃x ∈ ā)G[x]].

Proof. Let K be the d-operator H0[(∀x ∈ ā)G[x]]. Then we clearly have

par(G[∅̄]) ∪ {|ā|} ⊆ K(∅).

By Lemma 6, the set K(∅)∩Ω is an ordinal. Therefore, |b̄| ∈ K(∅). Conse-
quently,

par(G[b̄]) ⊆ K[∅].

Thus Lemma 4 yields our assertion.

Theorem 19 (Partial completeness of IP). If F is a Π sentence of L[η],
then

Lη |= F =⇒ H0[F ]
rk(F )

0 F.

Proof. First observe that par(F )∪ {rk(F )} ⊆ H0[F ](∅); see Lemma 11(7).
The proof is by induction on rk(F ).

(i) F is atomic. Then F is an axiom and, therefore, H0[F ]
rk(F )

0 F .

(ii) F is of the form (∃x ∈ ā)G[x]. Then there exists a b ∈ a such that
Lη |= G[b̄]. By the induction hypothesis we thus have

H0[G[b̄]]
αb

0 G[b̄]

for αb := rk(G[b̄]). From the previous lemma (and Weakening) we see that

H0[(∃x ∈ ā)G[x]]
αb

0 (∃x ∈ ā)G[x], G[b̄].

An application of (b∃) implies the assertion; that |b̄| < rk((∃x ∈ ā)G[x])
follows from Lemma 11(8).

(iii) (ii) F is of the form ∀xG[x]. Then

Lη |= G[b̄]

for all b ∈ Lη and the induction hypothesis implies

H0[G[b̄]]
αb

0 G[b̄]
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for αb := rk(G[b̄]). Since par(G[b̄]) ⊆ par(F, |b̄|) we obtain (Weakening)

H0[F, b̄]
αb

0 F,G[b̄]

for all b ∈ Lη. It only remains to apply an (∀) inference.

(iv) All other cases are similar or even simpler.

It is worth pointing out that the above approach does not work for Σ
sentences true in Lη: Assume that Lη |= ∃xG[x] for a, say, ∆0 sentence
G[∅̄]. Then there exists a b ∈ Lη for which Lη |= G[b̄]. With the induction
hypothesis we would get

H0[G[b̄]]
rk(G[b̄])

0 G[b̄],

leading then, by an application of (∃), to

H0[G[b̄]]
rk(∃xG[x])

0 ∃xG[x].

But H0[G[b̄|] may depend on b̄, and can this dependency be avoided?

8 Embedding of KPT into IP

In order to show that KPT can be embedded into IP we first deal with the
axioms of KPT . We show – step by step – how they can be proved in IP.

Lemma 20 (Tertium non datur). For all Γ, all F , and all d-operators H,

H[Γ, F ]
α

0 Γ, F, ¬F,

where α := ωrk(F ) # ωrk(F ).

Proof. In view of Lemma 11(7) the ordinal condition

par(Γ, F ) ∪ {α} ⊆ H[Γ, F ](∅)

is clearly satisfied. We prove our assertion by induction on rk(F ).

(i) If F is atomic, the Γ, F,¬F is an axiom since either Lη |= F or Lη |= ¬F .

(ii) F is of the form ∃xG[x]. Pick an arbitrary b ∈ Lη. Then we define:

αb := ωrk(G[b̄]) # ωrk(G[b̄]),

βb := |b̄|+ αb,

γb := ωrk(∃xG[x]) # ωrk(G[b̄]).

14



Obviously, par(Γ, F,G[b̄]) ⊆ par(Γ, F, b̄), and by some simple ordinal com-
putatons we obtain

|b̄| < βb + 1 < γb < α.

The induction hypothesis implies

H[Γ, F, b̄]
αb

0 Γ, F, ¬F, G[b̄], ¬G[b̄],

and using an inference (∃) we arrive at

H[Γ, F, b̄]
γb
0 Γ, F, ¬F, ¬G[b̄].

Therefore, an application of (∀) gives the desired result.

(iii) All other cases are similar.

Lemma 21 (Equality). For all Γ and all a, b, c ∈ Lη,

H[Γ, ā, b̄, c̄]
α

0 Γ, ā = b̄ ∧ ā ∈ c̄ → b̄ ∈ c̄,

where α := max(ω·|ā|+ 4, ω·|b̄|+ 4, ω·|c̄|+ 2).

Proof. This is an immediate consequence of Theorem 19 since α is the rank
of the formula (ā = b̄ ∧ ā ∈ c̄ → b̄ ∈ c̄).

Lemma 22 (Pair). For all Γ, all a, b ∈ Lη, and all d-operators H,

H[Γ, ā, b̄]
α+2

0 Γ, ∃x(ā ∈ x ∧ b̄ ∈ x),

where α := max(|ā|, |b̄|).

Proof. We know that a, b ∈ Lα+1 ∈ Lη and, if r is the constant for Lα+1,

par(ā ∈ r ∧ b̄ ∈ r) ⊆ H[ā, b̄](∅).

Since ā ∈ r and b̄ ∈ r are axioms of IP we have

H[Γ, ā, b̄]
1

0 Γ, ā ∈ r ∧ b̄ ∈ r

and an application of (∃) yields our assertion.

Lemma 23 (Union). For all Γ, all a ∈ Lη, and α := |ā|

H0[Γ, ā]
ω·α+ω

0 Γ, ∃z(∀y ∈ ā)(∀x ∈ y)(x ∈ z).

Proof. Let r be the constant for Lα. Then

Lη |= (∀y ∈ ā)(∀x ∈ y)(x ∈ r).
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Now we set

F :≡ (∀y ∈ ā)(∀x ∈ y)(x ∈ r),

G :≡ ∃z(∀y ∈ ā)(∀x ∈ y)(x ∈ z).

Then it is clear that

H0[Γ, F,G](∅) ∪ {ω·α+ ω} ⊆ H0[Γ, ā](∅).

Therefore, Theorem 19 and Lemma 11(2) (plus Weakening) imply that

H0[Γ, ā]
ω·α+n

0 Γ, G, F

for a suitable n < ω. An application of (∃) yields our assertion.

Lemma 24 (Infinity). For all Γ,

H0[Γ]
ω2+ω

0 Γ, ∃z(x 6= ∅ ∧ (∀x ∈ z)(x ∪ {x} ∈ z)).

Proof. Clearly, ω ∈ H0(∅) and

Lη |= ω 6= ∅ ∧ (∀y ∈ ω)(y ∪ {y} ∈ ω).

Hence we already know, cf. Theorem 19 and Lemma 11(2), that

H0[Γ]
ω2+n

0 Γ, ω̄ 6= ∅ ∧ (∀y ∈ ω̄)(y ∪ {y} ∈ ω̄)

for some n < ω. Thus an application of (∃) finishes our proof.

Lemma 25 (∆0 Separation). Let A[x, y1, . . . , yn] be a ∆0 formula of L with
all free variables indicated and assume a, b1, . . . , bn ∈ Lη. If we set

m := {|ā|, |b̄1|, . . . , |b̄n|} and α := max(m),

then we have that, for all Γ,

H0[Γ,m]
ω·(α+2)

0 Γ, ∃z(z = {x ∈ ā : A[x, b̄1, . . . , b̄n]}).

Proof. Under the above assumptions it is clear that there exists a set c ∈
Lα+2 such that

Lη |= c = {x ∈ a : A[x, b1, . . . , bn]}.

Moreover, we have for

F :≡ c̄ = {x ∈ ā : A[x, b̄1, . . . , b̄n]},

G ≡ ∃y(y = {x ∈ ā : A[x, b̄1, . . . , b̄n]}) :
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• rk(F ) = ω·(α+1) + n for some n < ω,

• H0[F,G](∅) ∪ {ω·(α+2)} ⊆ H0[m](∅).

Therefore, Theorem 19 (plus Weakening) gives us

H0[Γ,m]
ω·(α+1)+n

0 Γ, G, F

and after an application of (∃) we are done.

Lemma 26 (∈-Induction). Given the IP formula F [∅̄], we let G be the
formula ∃x((∀y ∈ x)F [y] ∧ ¬F [x]) and set

γ := rk(∃xF [x]), β := ωγ # ωγ , αa := β + ω·|ā|+ 2,

where a ∈ Lη. For all Γ and all d-operators H we then have:

(1) H[Γ, G, ā]
αa

0 Γ, G, F [ā].

(2) H[Γ, F [∅̄]]
β+Ω+2

0 Γ, ∀x((∀y ∈ x)F [y]→ F [x]) → ∀xF [x].

Proof. We prove (1) by ∈-induction. From Lemma 11(6) we immediately
obtain that rk(F [ā]) < γ for all a ∈ Lη. Pick any a ∈ Lη. Then the
induction hypothesis (plus Weakening) implies

H[Γ, G, ā, b̄]
αb

0 Γ, G, (∀y ∈ ā)F [y], F [b̄]

for all b ∈ a. Therefore, an application of (b∀) yields

H[Γ, G, ā]
β+ω·|ā|

0 Γ, G, (∀y ∈ ā)F [y].

On the other hand, Lemma 20 (together with Lemma 11(6,7) and Weaken-
ing) tells us that

H[Γ, G, ā]
β

0 Γ, G, ¬F [ā], F [ā].

Hence by (∧),

H[Γ, G, ā]
β+ω·|ā|+1

0 Γ, G, (∀y ∈ ā)F [y] ∧ ¬F [ā], F [ā].

From the latter we obtain our assertion (1) by an application of (∃). Asser-
tion (2) is an immediate consequence of (1).

Lemma 27 (∆0 Collection). Let A[x, y, z1, . . . , zn] be a ∆0 formula of L
with the indicated free variables and assume a, b1, . . . , bn ∈ Lη. If we set

m := {|ā|, |b̄1|, . . . , |b̄n|}, b := b̄1, . . . , b̄n,

α := rk((∀x ∈ ā)∃yA[x, y,b]), β := ωα # ωα,

then we have

H[Γ,m]
β+3

0 Γ, (∀x ∈ ā)∃yA[x, y,b] → ∃z(∀x ∈ ā)(∃y ∈ z)A[x, y,b]

for all Γ and all d-operators H.
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Proof. From Lemma 20 we know that

H[Γ,m]
β

0 Γ, ¬(∀x ∈ ā)∃yA[x, y,b], (∀x ∈ ā)∃yA[x, y,b].

Now we apply (Ref) and obtain

H[Γ,m]
β+1

0 Γ, ¬(∀x ∈ ā)∃yA[x, y,b], ∃z(∀x ∈ ā)(∃y ∈ z)A[x, y,b].

Then two applications of (∨) finish our proof.

Now we know that all axioms of KPT can be embedded into IP. Be-
fore turning to the embedding theorem we need some further notation. If
Γ[x1, . . . , xk] is the finite set of L formulas

{A1[x1, . . . , xk], . . . , An[x1, . . . , xk]}

whose free variables are among x1, . . . , xk and if r1, . . . , rk are terms of IP
(i.e. constants for elements of Lη), then Γ[r1, . . . , rk] stands for the set of IP
formulas

{A1[r1, . . . , rk], . . . , An[r1, . . . , rk]}.

Theorem 28 (Embedding). If KPT proves Γ[u1, . . . , uk], then there exist
m,n < ω such that

H0[r1, . . . , rk]
ωΩ+m

Ω+n Γ[r1, . . . , rk]

for all IP terms r1, . . . , rk.

Proof. Note that

• par(Γ[r1, . . . , rk]) ∪ {ωΩ+m} ⊆ H0[r1, . . . , rk](∅).

• If A[u1, . . . , uk] is a formula of L with at most the indicated free vari-
ables, then there exists an nA < ω such that

rk(A[r1, . . . , rk]) < Ω + nA

for all terms r1, . . . , rk of IP; see Lemma 11. Since every derivation in
KPT contains only finitely many formulas A, we simply choose n to be
the maximum of all such nA.

Now we proceed by induction on the length of the derivation of Γ[x1, . . . , xk]
in KPT .

(i) Γ[u1, . . . , uk] is an axiom of KPT . By Lemma 20 – Lemma 27 we then
have

H0[r1, . . . , rk]
ωΩ+2

0 Γ[r1, . . . , rk]

for all IP terms r1, . . . , rk.
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(ii) The last inference was (ex). Then Γ[u1, . . . , uk] contains a formula
∃xF [x, u1, . . . , uk] and the premise of this inference is

Γ[u1, . . . , uk], F [v, u1, . . . , uk]

for some variable v. By the induction hypothesis there exists an m0 < ω
such that

H0[r1, . . . , rk]
ωΩ+m0

Ω+n Γ[r1, . . . , rk], F [s, r1, . . . , rk]

for all IP terms r1, . . . , rk. Here s is the term ri if v is the variable ui for
some i ∈ {1, . . . , k} and the term ∅̄ if v is different from all u1, . . . , uk. An
application of (∃) yields our assertion for m := m0 + 1.

(ii) The last inference was (cut). Then the two premises of (cut) are

(1) Γ[u1, . . . , uk], A[u1, . . . , uk, v1, . . . v`],

(2) Γ[u1, . . . , uk], ¬A[u1, . . . , uk, v1, . . . v`],

with cut formula A[u1, . . . , uk, v1, . . . v`], where v1, . . . , v` lists its free vari-
ables not belonging to u1, . . . , uk. By the induction hypothesis we have
m0,m1 < ω such that

(3) H0[r1, . . . , rk]
ωΩ+m0

Ω+n Γ[r1, . . . , rk], A[r1, . . . , rk, ∅̄, . . . ∅̄],

(4) H0[r1, . . . , rk]
ωΩ+m1

Ω+n Γ[r1, . . . , rk], ¬A[r1, . . . , rk, ∅̄, . . . ∅̄].

(Cut) applied to (3) and (4) yields our assertion for m := max(m0,m1) + 1.

(iii) All other cases can be treated accordingly.

9 Predicative cut elimination

The rules of inference of IP can be divided into two classes: (i) In all rules
with the exception of (Ref) the principal formula is more complex (or com-
plicated if you want) than the respective minor formula(s). We, therefore,
consider rules of this sort as predicative rules. (ii) On the other hand, in
(Ref) we transform a Σ sentence into a (generally) less complex Σ1 sentence.
This is a sort of impredicativity and, consequently, we consider (Ref) as an
impredicative inference. This distinction is also reflected in the elimination
of cuts from proofs in IP; it proceeds in two steps.

In this section we show that all cut formulas, that come from a pred-
icative inference rule, can be eliminated by standard methods as described,
for example in Schütte [16]. The principal formula of an (Ref) inference has
rank Ω and so we do not touch, in this section, cut formulas of rank Ω.
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Lemma 29 (Reduction). Let F be an L[η] sentence of the form (G0 ∨G1)
(∃x ∈ ā)G[x], or ∃xG[x] and assume that ρ := rk(F ) is different from Ω.
Then we have, for all Γ,Λ, α, β and all d-operators H,

(a) H α

ρ Γ,¬F and (b) H β

ρ Λ, F =⇒ H α+β

ρ Γ,Λ.

Proof. One easily checks that

par(Γ,Λ) ∪ {α+ β}) ⊆ H(∅)

follows from (a) and (b). The proof is by induction on β, and we distinguish
the following cases.

(i) Λ, F is an axiom of IP. Then Λ, F contains an atomic formula true in Lη,
and this formula must be different from F . Hence Γ,Λ contains this formula
as well and so is an axiom of IP.

(ii) The last inference was (∃) with principal formula F . Then F has the
form ∃xG[x] and there exist a b ∈ Lβ and a β0 < β such that

H β0

ρ Λ, F, G[b̄].(1)

By the induction hypothesis we have

H α+β0

ρ Γ, Λ, G[b̄].(2)

From (1) we also obtain

|b̄| ∈ H(∅) provided that b̄ occurs in G[b̄],(3)

par(Λ) ∪ {β0} ⊆ H(∅).(4)

(a) and (3) yield by Inversion that

H α

ρ Γ,¬G[b̄]

and therefore, by (4) and Weakening,

H α+β0

ρ Γ, Λ, ¬G[b̄].(5)

Since rk(G[b̄]) < ρ it only remains to apply (Cut) to (2) and (5).

(iii) All other last inferences with principal formula F are treated analo-
gously. F cannot be the principal formula of (Ref) because of rk(F ) 6= Ω.

(iv) Finally, if F was not the principal formula of the last inference, we apply
the induction hypothesis the premise(s) of this inference and then carry it
out again.
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As mentioned above, we restrict ourselves in this section to eliminate all
cuts whose cut formulas do not have rank Ω. With the help of the previous
lemma the proof of the following theorem is standard.

Theorem 30 (Predicative elimination). We have for all Γ and all derivation
operators H:

(1) H α

Ω+n+1 Γ =⇒ H ωn(α)

Ω+1 Γ.

(2) H α

ρ Γ and ρ ∈ H(∅) ∩ Ω =⇒ H ϕρα

0 Γ.

For details see Buchholz [3] and/or Schütte [16]. Recall that ω0(α) := α
and ωn+1(α) := ωωn(α).

10 Collapsing theorem

We begin this section with showing how to eliminate cut formulas of rank Ω.
More precisely, we will show that any operator controlled proof of a set Γ of
Σ sentences in which all cut formulas have ranks ≤ Ω can be collapsed into a
proof of depth and cut rank less than Ω. This technique – called collapsing
technique – is the corner stone of impredicative proof theory.

Together with the results of the previous sections this collapsing theorem
will then lead to the Hauptsatz of this article.

Theorem 31 (Collapsing). Let Γ be a finite set of Σ sentences of L[η] and
γ an ordinal such that

par(Γ) ⊆ C(γ + 1, ψ(γ + 1)) and γ ∈ Hγ [Γ](∅).

Then we have, for all α,

Hγ [Γ]
α

Ω+1 Γ =⇒ Hα̂[Γ]
ψ(α̂)

ψ(α̂) Γ,

where α̂ := γ + ωΩ+α.

Proof. We show this assertion by induction on α and assume Hγ [Γ]
α

Ω+1 Γ.
Then we have (see Lemma 6 and Lemma 7):

par(Γ) ∪ {α} ⊆ Hγ [Γ](∅) ⊆ Hα̂[Γ](∅),(1)

α̂ ∈ Hγ [Γ](∅) and ψ(α̂) ∈ Hα̂[Γ](∅).(2)

Now we proceed with a distinction by cases according to the last inference of
Hγ [Γ]

α

Ω+1 Γ and note that this cannot be (∀). In the following we confine
our attention to the interesting cases; all others can be dealt with in a similar
manner.
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(i) Γ is an axiom. Then Hα̂[Γ]
ψ(α̂)

ψ(α̂) Γ follows from (1) and (2).

(ii) The last inference was (b∀). Then Γ contains a formula (∀x ∈ ā)F [x]
and we have

Hγ [Γ, b̄]
αb

Ω+1 Γ, F [b̄](3)

with αb < α for all b ∈ a. We also know that |ā| ∈ Hγ [Γ](∅). Since |b̄| < |ā|
for all b ∈ a, Lemma 4, Lemma 6(5), and (1) yield

|b̄| ∈ Hγ [Γ](∅) ⊆ Hα̂[Γ](∅), Hγ [Γ, b̄] = Hγ [Γ], Hα̂[Γ, b̄] = Hα̂[Γ].(4)

Hence (3) gives us
Hγ [Γ]

αb

Ω+1 Γ, F [b̄],

and by the induction hypothesis we obtain that

Hα̂b
[Γ]

ψ(α̂b)

ψ(α̂b) Γ, F [b̄],

and, therefore,

Hα̂[Γ]
ψ(α̂b)

ψ(α̂b) Γ, F [b̄],(5)

always for all b ∈ a. Furthermore, from (3) and (4) we can also deduce
that αb ∈ Hγ [Γ](∅) for all b ∈ a. In view of Lemma 7(2) we thus have
ψ(α̂b) < ψ(α̂) for all b ∈ a. An application of (b∀) yields Hα̂[Γ]

ψ(α̂)

ψ(α̂) Γ.

(iii) The last inference was (∃). Then Γ contains a formula ∃xF [x] such that

Hγ [Γ]
α0

Ω+1 Γ, F [b̄](6)

for some α0 < α and some set b ∈ Lα. Now set

r :=

{
b̄ if b̄ occurs in F [b̄],

∅̄ if b̄ does not occur in F [b̄].

In view of (6) we have α0, |r| ∈ Hγ [Γ](∅). The induction hypothesis yields

Hα̂0
[Γ]

ψ(α̂0)

ψ(α̂0) Γ, F [r],

thus also

Hα̂[Γ]
ψ(α̂0)

ψ(α̂0) Γ, F [r].

Now recall that from Lemma 7(3) that

Hγ [Γ](∅) ∩ Ω ⊆ ψ(γ + 1) ≤ ψ(α̂)
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and conclude that |r| < ψ(α̂). In addition, ψ(α̂0) < ψ(α̂) follows from
Lemma 7(2). Therefore, (∃) applied to (5) yields Hα̂[Γ]

ψ(α̂)

ψ(α̂) Γ.

(iv) The last inference was (Ref). Then Γ contains a formula ∃xF x, where
F is a Σ sentence, and there exists an α0 < α such that

Hγ [Γ]
α0

Ω+1 Γ, F

and α0 ∈ Hγ [Γ](∅). Now the induction hypothesis yields

Hα̂0
[Γ]

ψ(α̂0)

ψ(α̂0) Γ, F,

hence

Hα̂[Γ]
ψ(α̂0)

ψ(α̂0) Γ, F.

We know ψ(α̂0) ∈ Hα̂[Γ](∅) and therefore, since F is a Σ sentence, the
Boundedness Lemma gives us

Hα̂[Γ]
ψ(α̂0)

ψ(α̂0) Γ, F r,(7)

where r is the constant for the set Lψ(α̂0). In view of α0 ∈ Hγ [Γ](∅) and
Lemma 7(2) we also have ψ(α̂0) < ψ(α̂). Hence we can apply (∃) to (7) and
obtain Hα̂[Γ]

ψ(α̂)

ψ(α̂) Γ.

(v) The last inference was (Cut). Then there exist an ordinal α0 < α and a
sentence F with rk(F ) ≤ Ω such that

Hγ [Γ]
α0

Ω+1 Γ, F and Hγ [Γ]
α0

Ω+1 Γ,¬F(8)

and par(F ) ∪ {α0} ⊆ Hγ [Γ](∅). We distinguish two cases:

(v.1) rk(F ) < Ω. Then from Lemma 11(7) and Lemma 7(3) we conclude
that rk(F ) < ψ(γ + 1) ≤ ψ(α̂). Also, F and ¬F are Σ sentences. Therefore
the induction hypothesis applied to (8) yields

Hα̂0
[Γ]

ψ(α̂0)

ψ(α̂0) Γ, F and Hα̂0
[Γ]

ψ(α̂0)

ψ(α̂0) Γ,¬F

As before, ψ(α̂0) < ψ(α̂). Hence (Cut) gives us Hα̂[Γ]
ψ(α̂)

ψ(α̂) Γ.

(v.2) rk(F ) = Ω. Then F or ¬F is of the form ∃xG[x] with G[∅̄] being a ∆0

sentence. We assume that F is ∃xG[x]. The induction hypothesis applied to
the left hand side of (8) yields

Hα̂0
[Γ]

ψ(α̂0)

ψ(α̂0) Γ, F
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Since ψ(α̂0) ∈ Hα̂0
[Γ](∅) we can apply the Boundedness Lemma and obtain

Hα̂0
[Γ]

ψ(α̂0)

ψ(α̂0) Γ, F r,(9)

where r is the constant for the set Lψ(α̂0). By applying Lemma 15 to the
right hand side of (8), we get

Hα̂0
[Γ]

α0

Ω+1 Γ,¬F r.

We also have α̂0 ∈ Hγ [Γ](∅) ⊆ Hα̂0
[Γ](∅) and

par(Γ) ⊆ C(γ + 1, ψ(γ + 1)) ⊆ C(α̂0 + 1, ψ(α̂0 + 1))

Hence, since ¬F r is a Σ sentence, we are in the position to apply the induc-
tion hypothesis, yielding

Hα1 [Γ]
ψ(α1)

ψ(α1) Γ,¬F r,(10)

where α1 := α̂0 + ωΩ+α0 = γ + ωΩ+α0 + ωΩ+α0 < γ + ωΩ+α = α̂ and – see
Lemma 7(1) – α1 ∈ Hγ [Γ](∅).

Clearly, rk(F r) < Ω and, according to (9), we have par(F r) ⊆ Hα̂0
[Γ](∅).

Hence rk(F r) < ψ(α̂0 + 1) by Lemma 11(7) and Lemma 7(3). Furthermore,
ψ(α̂0) < ψ(α1) < ψ(α̂). Therefore, we can apply (Cut) to (9) and (10) and
obtain Hα̂[Γ]

ψ(α̂)

ψ(α̂) Γ.

Theorem 32 (Hauptsatz). Let A[u1, . . . , uk] be a Σ formula of L with at
most the indicated free variables and suppose that it is provable in KPT . For
all a1, . . . , ak ∈ Lη there exist a d-operator H and an ordinal α < η such
that

(1) H[ā1, . . . , āk]
α

α A[ā1, . . . , ān].

(2) H[ā1, . . . , āk]
ϕαα

0 A[ā1, . . . , ān].

Proof. By Theorem 28 there are m,n < ω with

H0[r1, . . . , rk]
ωΩ+m

Ω+n+1 A[r1, . . . , rk]

for all IP terms r1, . . . , rk. By a first application of predicative cut elimina-
tion, cf. Theorem 30(1), we obtain

H0[r1, . . . , rk]
β

Ω+1 A[r1, . . . , rk](1)

for β := ωn+1(Ω +m) and all IP terms r1, . . . , rk.
Now we pick specific a1, . . . , an ∈ Lη. Then there exits an ` < ω such

that
a1, . . . , an ∈ Lψ(γ) for γ := ω`(Ω + 1).
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It follows that

{|ā1|, . . . , |āk|} ⊆ C(γ + 1, ψ(γ + 1)) and γ ∈ Hγ [ā1, . . . , āk](∅)(2)

and from (1) we obtain

Hγ [ā1, . . . , āk]
β

Ω+1 A[ā1, . . . , āk].(3)

Because of (2) and (3) we can apply Theorem 31, yielding

H
β̂
[ā1, . . . , āk]

ψ(β̂)

ψ(β̂)
A[ā1, . . . , āk](4)

for β̂ := γ + ωΩ+β . A simple calculation shows that α := ψ(β̂) is smaller
than η and thus the required ordinal for (1).

By making use of Theorem 30, the second assertion is an immediate
consequence of (1). It only has to be verified with the help of Lemma 7 that
ψ(β̂) ∈ H

β̂
[ā1, . . . , āk](∅).

The notion of Π2 ordinal of a theory T has been introduced in Jäger
[12]. It is defined there as the least ordinal α such that Lα |= A for all
Π2 consequences of T . One of the most prominent results along these lines
and a direct consequence of Jäger [11] states that η is the Π2 ordinal of KP.
Besides that [12] contains a series of results about Π2 ordinals of theories for
iterated admissible sets.

Π2 ordinals have also been considered in Rathjen [15] and Pohlers [14].
Some remarks have been made in these articles and in [12] about the rela-
tionship between proof-theoretic ordinals and Π2 ordinals. It is planned to
come back to this topic from a more general perspective in Jäger [10].

It is not surprising that our Hauptsatz directly implies that η is the Π2

ordinal of KP.

Corollary 33 (Π2 ordinal of KP). If A is a Π2 sentence of L, the we have

KP ` A =⇒ Lη |= A.

Proof. A has the form ∀x∃yB[x, y] such that B[x, y] is a ∆0 formula of L with
at most x, y free. Since KP proves A, it is clear that KPT proves ∃yB[u, y]
for any u. Now pick an arbitrary a ∈ Lη. Then the Hauptsatz tells us that

H[ā]
α

α ∃yB[ā, y]

for some d-operator H and some α < η. Therefore,

Lη |= ∃yB[ā, y]

according to Theorem 17. Since this is so for any element a of Lη, we have
Lη |= A.
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