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Abstract

We consider the problem of non-blind deconvolution of images corrupted by a blur
that is not accurately known. We propose a method that exploits dictionary-based image
priors and non Gaussian noise models to improve deblurring accuracy in the presence of
an inexact blur. The proposed image priors express each image patch as a linear combi-
nation of atoms from a dictionary learned from patches extracted from the same image
or from an image database. When applied to blurred images, this model imposes that
patches that are similar in the blurred image retain the same similarity when deblurred.
We perform image deblurring by imposing this prior model in an energy minimization
scheme that also deals with outliers. Experimental results on publicly available databases
show that our approach is able to remove artifacts such as oscillations, which are often
introduced during the deblurring process when the correct blur is not known.

1 Introduction

Image deblurring is the problem of recovering a sharp image from a blurred one. This prob-
lem recurs often in photography due to camera shake or long exposures with moving objects.
When only the blurry image is given, one needs to solve a blind-deconvolution problem and
recover not only a sharp image, but also a characterisation of the blur. A common scheme
for most blind-deconvolution algorithms [2, 7, 18, 24] is to alternate between estimating the
blur given the sharp image and estimating the sharp image given the blur. In particular, the
latter step is called non-blind deconvolution. A common choice for non-blind deconvolution
algorithms is to use methods that rely on an error-free blur estimate. However, small errors in
the blur estimate result in visible artifacts in the restored image, which may not be removed
by future iterations (see Fig. 1).

A few methods have considered uncertainty in the blur estimate. These methods typi-
cally rely on the use of robust norms in the data term [23, 24], or detect outliers by using
an iterative approach [3]. However, their main limitation is that they use an image prior that
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©
Figure 1: a) 2x2 selected areas from a real blurred image; b) Deblurring results with the algorithm of
Cho et al. [3]; c¢) deblurring results with our algorithm.

does not discourage the presence of artifacts in the restored images (see Fig. 1). For exam-
ple, priors learned from dictionary-based methods [5] by alternating between the dictionary
learning step and the deblurring step, may build dictionaries that incorporate artifacts with
high gradients (e.g., piecewise constant oscillations).

In this work we propose a novel image prior to remove artifacts introduced by blur errors.
To achieve this goal we also use a dictionary-based prior learned only from the input blurred
image and a database of images. However, we propose a method to prune ambiguities in the
prior due to blur (see Section 4.1). We will show experimentally how our method effectively
improves the accuracy of the restored image and visibly reduces artifacts due to blur errors.

2 Prior Work

Blind and non-blind deconvolution are highly ill-conditioned problems: Small errors in the
blur estimate often produce noticeable artifacts in the reconstructed image. To overcome this
issue, the typical approach is to restrict the class of possible solutions by using regularization
[20]. The most prominent regularization methods capture and exploit prior knowledge about
the reconstructed image. Total Variation (TV) has been among the most successful image
priors and it has been used with good results in many deblurring and denoising algorithms
[7, 10, 17, 18, 24]. TV is based on the idea that natural images are usually piecewise constant,
an assumption that follows from recent work on image statistics [19]. However, since TV is
a global prior, it does not account for the fact that sub-regions in an image can have different
statistics [4], e.g., the texture of a tree is different from that of a house.

To overcome the limitations of TV, some methods relax the global prior assumption and
impose that texture statistics should change smoothly across an image [18, 21]. Some meth-
ods use wavelet bases that are specifically chosen to represent a natural image [13, 16].
However, such methods strongly rely on the chosen wavelet basis for successfully restoring
the images. Other methods instead use dictionaries to represent local statistics. Dictionary-
based methods have become popular for denoising [5, 14, 15], and deblurring [5, 12]. These
methods avoid choosing a predefined basis set, but instead learn a dictionary (usually over-
complete) from a dataset of images. Then, each image patch is denoised or deblurred by
expressing it as a linear combination of patches from the dictionary. Methods differ in the
choices for learning the dictionary and determining the linear combination coefficients. In
general, local priors considerably enhance the accuracy of the reconstructed images. How-
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ever, the prior imposed by such methods is limited to the statistics found in a small neigh-
borhood of a pixel. To deal with the limitations of local priors, non-local approaches can
be used [1, 5, 15]. These methods determine correspondences between pixels with a simi-
lar local appearance in large areas, and not just in a neighborhood of a pixel. While these
methods can greatly improve the quality of the restored images, when they are applied to
noisy and blurry patches they produce artifacts or are less effective due to ambiguities in the
correspondences.

Our method combines dictionary-based and non-local approaches. We address image
deblurring with an uncertain blur by building a dictionary of patches and by finding the non-
local correspondences directly on the blurry image. To deal with the errors in the non-local
correspondences, we exploit the partial knowledge of the blur. We propose a consensus strat-
egy to separate correspondences due to genuine correspondences in the sharp image from
correspondences due to replicas of the same patch generated by blur (see Sections 3 and 4).

3 Image Deblurring
Let g be an observed degraded image
g=kxf+n, (1

where * is the convolution operator, k is a blur kernel, or point spread function (PSF), f is the
noiseless and sharp image, and » is additive noise generated during the acquisition process.
The aim of image deblurring is to estimate the noiseless image f given the noisy image g
and the kernel k. What makes this problem challenging is the fact that even with no noise,
eq. (1) is typically not invertible and is satisfied by infinitely many solutions. Furthermore,
in most practical cases the blur k is known only up to some error.

To address these challenges, we introduce priors on the image f. We begin by writing
the imaging model (1) as a matrix-vector operation. To do so, we rearrange the pixels in the
sharp image f as a column vector f. Similarly, we rearrange the pixels of the blurred image
g and the noise image n as vectors g and 7, respectively. Then, we can write eq. (1) as

§=Kf+i, )

where K is a matrix operator performing the same discrete convolution as the blur kernel k.
Eq. (2) is a linear system where we need to recover f given g and K. Because of the noise n
the system cannot be solved by a simple matrix inversion. One approach is to ignore noise
in correspondence of large singular values of K, and to discard equations otherwise. This
is equivalent to a rank deficient linear system in K with no noise, which is known to have
infinitely many solutions.

One way to obtain a unique solution is to introduce additional linear equations, which
we call image priors, via a matrix A and a vector b

-

Af=b 3)

such that the stacked matrix [K7 A”]T has rank equal to the length of f . The matrix A
encodes our prior knowledge of what sharp textures look like. For instance, images typically
enjoy some spatial regularity due to the finite extension of smooth objects, which can be
imposed by approximating the gradient operator with A as the finite difference operator.
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To enforce this regularity, we consider applying the same linear constraints to all pixels
in patches of L x L pixels. For this purpose, we extract patches of L x L pixels centered at
each pixel of the image f, rearrange the pixel intensities of each patch as a column vector
and collect all such vectors into a matrix F € RLZXN , where N is the number of pixels in f.
We can then write our prior as

F =DC, “
where the columns of D € RE>M represent patches (dictionary) and the columns of C €
RM*N " which we call the correspondence matrix, specify the weights used to express a
patch in F as a linear combination of the patches in D. In our formulation the design of the
image prior is done by choosing D first and then learning C.

Denoising methods such as [14] use a dictionary learnt from sharp patches of natural im-
ages (D = Dy). One then represents each patch in the given image using this dictionary with
the constraint that the coefficients of the linear combination must be sparse. One drawback
of this approach is that the dictionary is typically optimized to perform well on average and
not on the specific input image, therefore we do not use this case in our approach. Other
methods such as non-local means [1] use the model with D = F, and define the entries of C
via a kernel between the patches of the image itself. The method we use to learn the matrix
C is inspired by this approach. However, we extend it to the case where the dictionary is a
mix of both an external dictionary Dy and the image itself, i.e., D = [Dy F].

4 Learning the Correspondence Matrix C

One of the most important components of the proposed model is the correspondence matrix
C, which needs to be learned from data according to the model chosen in Section 3. In all
the cases, learning C can be achieved by solving the equation F = DC with respect to C for
some given F and D. To learn C, we face two important challenges: The first challenge is
that F' is typically not available and the second is that we do not have enough equations to
obtain a unique matrix C.

To deal with the first challenge, we extract noisy and blurred patches G; from the image
g =kx f+n. Let B be the matrix of patches extracted from the blurred noiseless image
b=kx f. Since B= KF = KDC, we can express the blurred patches in B in terms of the
blurred dictionary E £ KD using the same correspondence matrix C. When we use the
image itself as a dictionary, the blurred dictionary is given by the blurred image patches,
i.e., E = KF = B. Since B is unknown (unless the image is noiseless), we approximate the
blurred patches in B by the blurred and noisy patches in G, i.e., we choose E = G. When
we use a dictionary composed of both blurry image patches and a blurred dictionary, we will
have E = [G Ey|, where Ej £ KD,. The basic idea here is that the linear combination of
an over-complete basis that yields a sharp image is the same as the one that yields a blurred
version of the image with respect to the blurred basis. Lou et al. [12] have introduced this
model, but only with E = Ej.

The second challenge, i.e., the non uniqueness of the matrix C is due to the overcom-
pleteness of the dictionary D. We introduce additional constraints on C by exploiting image
self-similarities. As in [1], we consider a patch at pixel i, B;, found as a weighted average
of similar patches D; extracted from either the same image or from a dictionary of patches.
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Table 1: Correspondences accuracy from blurred images.

false positives false negatives
Non-Local means on blurred images 38.1% 8.8%
Correlation-based correction 20.6% 18.5%

Specifically, if we consider all the patches as vectors in RLZ, then we have

M

D;,D;

Bi=Y Jﬁj’(’if) i=1,...,N, (5)
j=1 6:1¢(Di7D4)

where ¢ is a positive semi-definite kernel that measures the similarity between two patches.

In our work we use the following kernel,

I ||Di—Dj5 < &
0 otherwise

where € is proportional to the standard deviation of noise. It is easy to see that (5) can be
written in matrix form as

B=DC"™, @)
¢(DI*D])

= T oy 1S the

where D is a matrix of patches (D = [G Ey] in our case) and {C"'"};;

correspondence matrix obtained from the procedure in eq. (5).

Given a noisy patch G, where the noise is i.i.d. Gaussian, we know that the denoised
patch will lie at the center of a hypersphere and that the noisy patch will lie on its hypersur-
face. Hence, we can take the previous estimate B"" = DC"™ and project it on the center of
the hypersphere as

Bnlm -G

Bzmlm —Lo
B —a] "

G ®)

where B¥™ ig the final adjusted estimate, and o is the standard deviation of noise. This
operation can also be written directly in terms of the images as

bnlm _
banlm — Lo 8 +g, (9)
)] 2
(brim — )2 % w

where ™" is the filtered image, g is the input noisy and blurry image, and w is a unit-
normalized kernel that defines a window of the size of an L x L patch. As it is easy to see,
the adjustment method adds very little to the computational load of non-local means.

4.1 Self-Similarity in Blurred Images

The non-local means procedure allows us to build a matrix C by finding patches that are
self-similar via eq. (6). However, when we apply this procedure to a blurred image, incorrect
correspondences may be generated. We distinguish two types: false negatives, i.e., corre-
spondences found in the sharp image, but not in the blurred one, and false positives, i.e.,
correspondences present in the burred image, but not in the sharp one. In the first row of Ta-
ble 1 we show the percentages of false positives and false negatives found while learning the
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Figure 2: Example of ambiguous correspondence correction. In this toy example we show the
correction performed by the correlation-based method. The PSF consists of only two peaks, which
result in an overlap of two copies of the sharp image with two relative shifts. (a) Sharp image of text,
and two correct correspondences (red squares) of the character ‘w’. (b) Blurred version of the previous
image which leads to additional incorrect correspondences. (c) Selected patch (red square) and the area
corresponding to the second peak of the PSF (blue circle). (d) The correlated patches shown in (a) are
obtained by overlapping the correspondence sets of the two patches (blue circles and red squares).

matrix C from blurred images via non-local means. As one can see there is a relatively low
number of correspondences that have been missed (false negatives), but a very high number
of additional incorrect correspondences (false positives). While false negatives have the ef-
fect of reducing the amount of regularization that could be imposed during the reconstruction
to counterbalance the artifacts due to the blur uncertainty, false positives directly introduce
artifacts in the reconstruction. Hence, in this section we describe a consensus technique
to drastically reduce the number of false positives while keeping the false negatives small.
Notice that this aspect has not been addressed by prior patch-based approaches.

In Fig. 2 we provide a synthetic example to illustrate why blur generates false positives.
On the top-left (a) we show a sharp image of text and on the top-right (b) we show the same
image after some motion blur with two dominant peaks. If we run non-local means in the
sharp image at the patch containing the ‘w’ letter, we find only 2 correspondences (a). How-
ever, when the same algorithm is run on the blurry image, 4 correspondences (red boxes)
are found (b). We can interpret blurring as a process that generates “copies” of a patch with
relative displacements due to the nonzero components of blur and contrast proportional to
their intensity. Such copies could mislead non-local means into finding additional correspon-
dences. Notice that these copies are overlaid and averaged onto other texture in the image
and thus it could happen that some of the true correspondences are instead lost.

To reduce the false positives we suggest using our (partial) knowledge of the blur. Based
on our interpretation of blur as a copy operator, the majority of these errors depends on
the largest nonzero components of the blur, so that a small uncertainty will not hinder our
strategy. Formally, let C,, = {j € Z: ||B, — B,+;||* < €*} be the set of correspondences for
the pixel p learned from the blurred image, and K = {i € Z : |max (k) — k;| < 7} be the set
of non-zero entries of the PSF k, where 7 is a threshold based on blur noise. For the sake of
simplicity, consider the example in Fig. 2, where a PSF consisting of only two strong peaks
is used. Such PSF generates a blurred image (b) that is made of two shifted and overlapping
versions of the same sharp image. For each patch centered at p, we enforce that its improved
set of correspondences C'p be the intersection of all the correspondence sets of patches at
pixels with relative displacement given by the main PSF peaks, i.e., where the consensus is
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unanimous: C » = Niexc Ci- InFig. 2 (c) the PSF peaks determine only two candidate patches
for copies: one denoted by a red square and one denoted by a blur circle. When we overlap
the correspondences due to both patches by centering them on the same patch (d), we obtain
the correct set (a). We can see in Table 1 how this method reduces false positives when run
on a database of images. In Section 6 we will also show experimentally how the prior learned
with this consensus strategy is effective in reducing artifacts due to blur uncertainties.

S Image Deconvolution and Outlier Rejection

Once C has been learned, it provides a constraint for one of the image models in Section 3.
We then pose the problem of recovering the sharp image f via the following convex opti-
mization problem

. I = - A
min EHAf*bH%JrﬁllVfllerglln\@ﬂ’lldll

H)

(10)
subjectto g=hxf+n+e

Here the constants 3, A, ¥ > 0 determine the smoothness of the solution, the Gaussian and
uniform noise levels. We consider four regularization terms: the image prior (learned from
the blurry input and a dictionary), total variation, small Gaussian noise energy and sparsity
of errors in the model. The image prior is enforced via the matrix A and the vector b, which
are obtained from the model F' = DC. When the dictionary D is built from the image itself
(D=F), we have A =1, —CT and b = 0. In the case D = [Dy F| we define A =1, —C
where the matrix CT = [CT CI], C; applies to the dictionary Dy and C; to the matrix F.

Notice that the constraint provided by C (or, equivalently, by A) may not be sufficient
to regularize the optimization problem. For example, if there are no similar patches in the
model F = FC, then C = I, and since A = I; —CT =0 and b= 0, the first term in eq. (10)
will be always 0. To avoid this issue, we use the total variation term ||V f]|, where the symbol
V denotes the gradient operator. Finally, we impose sparsity in e by penalizing its ¢; norm.

To solve the problem in eq. (10), we write n in terms of the image model and substitute
its expression in the energy. Then, we minimize the energy by using the following gradient
iteration

I A
ft+1:argmmEHAf_bH%+ﬁ||VfH2+§||g—h*f—ef\\%

; (11)
e’“:T%(g—h*ft), e’ =0

where f* and €' are the ¢-th iteration estimates of f and e respectively, and Ty (x); = (Jx| —
o) sign(x;) is the shrinkage operator. The first minimization problem can be solved by
computing the Euler-Lagrange equations and then by linearizing them around the current
solution. We obtain the following linear system in f

vf
IVFll2
which can be solved efficiently via conjugate gradient descent. Finally, to deal with saturated

pixels, we simply set n to zero and e = g — h x f at the pixels in the image model where the
blurred image g is equal to either the minimum or the maximum value in the range.

AT(Af—B)—BV- — AR x(g—h*f—e') =0, (12)
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6 Experiments

In this section we compare our approach with the state-of-the-art deblurring algorithms. We
will show that our approach is effective when the blur kernel is not known with high accuracy.
In all experiments we use patches of size 5 X 5 and build the dictionary using patches from
the Caltech 101 dataset [6].

We first present quantitative results using the blur database introduced in [11]. This
database consists of 32 images (4 images with 8 different blurs) of size 255 x 255 pixels.
We add different levels of Gaussian noise to the ground-truth PSF (from 0% to 5%) and
then evaluate the reconstructions obtained by the different algorithms. Although in general
real PSFs are affected by non Gaussian noise, the artifacts produced by PSFs corrupted by
Gaussian or non Gaussian noise are similar.

We report the performance using two metrics, namely, structured similarity index (SSIM)
and peak signal-to-noise ratio (PSNR). The PSNR is a classic metric used to measure image
quality, but it does not match well human-perceived image quality [8]. To overcome this
limitation we use also the SSIM metric recently proposed by Wang et al. [22].

As all the methods depend on tuning parameters, we thoroughly examined two ways
of setting the parameters. In the first setting we tested the performance of each individual
algorithm for a given PSF noise level on several tunings and picked the best parameter based
on the average of all the metrics (normalized between O and 1). This test shows how well
an algorithm can work when the PSF noise is known. In general, however, one does not
know the noise level on the PSF. Hence, in the second setting we repeat the same tuning
optimization, but look for the best tuning across all the PSF noise levels. We tuned the
parameters on a separate blur database of 12 images with 7 different blurs (84 samples).

Table 2 shows the quantitative performance of our method using the imaging models D =
[Dp F]and D = F compared with other deconvolution algorithms using different metrics.
In this table the best performing method is highlighted in bold. While for low noise levels
our algorithm is close to the best performing method, as the noise level increases we see that
our method outperforms the other methods across all metrics. Also, shown in this table is
the case when we set the parameters using the second tuning method. For this case we see
that our method outperforms or matches the best method. We repeated the same experiment
after adding 2.5% noise to our images. The results in this case are shown in Table 3 with the
same arrangement as in the previous table. Notice that, as in Table 2, our algorithm yields
the best performance when the PSF is noisy.

We also performed experiments on real images. In this case we used the following pa-
rameters; § = 0.5, A = 1000, y = 0.001 and € = [0.0118,0.0196]. Fig. 4 and Fig. 3 compare
qualitatively results obtained on blurry images taken at night. In night images blurring is
a common problem due to the longer exposures necessary for low-light conditions. Since
this image was not synthetically blurred or calibrated, we do not have access to the original
sharp image or the PSF. Hence, quantitative results are not shown on these images. Further-
more, the original implementation of Welk ez al. [23] is not available and the results shown
in Fig. 4 were kindly provided to us by the authors. Consequently, we do not include this
method in our previous quantitative comparisons. In Fig. 1, Fig. 4 and Fig. 3 we show details
of reconstructed images from real images and blur. In such images, our method effectively
removes artifacts and performs better than algorithms that use classical sparse image priors
or non Gaussian noise models.
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Table 2: Deblurring performance comparison with image noise of 0 %.
PSNR SSIM
[Do F] F [11] [9] [3] DoF F (11 9] [3]
Fixed parameters

PSF Noise 0% | 37.29 | 37.28 | 37.65 | 33.75 | 36.19 | 0.980 | 0.980 | 0.983 | 0.953 | 0.980
PSF Noise 3% | 26.70 | 26.64 | 26.43 | 26.31 | 26.01 | 0.827 | 0.824 | 0.820 | 0.816 | 0.819
PSF Noise 5% | 22.60 | 22.53 | 22.27 | 22.49 | 22.03 | 0.697 | 0.692 | 0.683 | 0.695 | 0.684
Noise-adaptive parameters
PSF Noise 0% | 38.90 | 38.90 | 38.90 | 33.88 | 36.19 | 0.989 | 0.989 | 0.989 | 0.952 | 0.980
PSF Noise 3% | 27.20 | 27.07 | 26.68 | 26.66 | 26.61 | 0.840 | 0.834 | 0.831 | 0.827 | 0.836
PSF Noise 5% | 24.40 | 24.24 | 23.64 | 24.02 | 23.31 | 0.764 | 0.756 | 0.747 | 0.753 | 0.743

Table 3: Deblurring performance comparison with image noise of 2.5 %.
PSNR SSIM
[Do F| F [11] [9] [3] DyF F [11] [9] [3]
Fixed parameters

PSF Noise 0% | 28.80 | 28.94 | 28.93 | 28.17 | 28.65 | 0.851 | 0.854 | 0.819 | 0.826 | 0.843
PSF Noise 3% | 26.44 | 2632 | 2556 | 26.12 | 25.05 | 0.801 | 0.797 | 0.753 | 0.781 | 0.768
PSF Noise 5% | 24.28 | 24.01 | 22.89 | 24.03 | 22.47 | 0.748 | 0.737 | 0.679 | 0.724 | 0.692
Noise-adaptive parameters
PSF Noise 0% | 28.95 | 28.95 | 2891 | 27.62 | 28.63 | 0.830 | 0.829 | 0.819 | 0.781 | 0.843
PSF Noise 3% | 26.22 | 26.21 | 26.22 | 26.19 | 25.55 | 0.785 | 0.784 | 0.784 | 0.784 | 0.764
PSF Noise 5% | 24.74 | 24.62 | 24.59 | 23.88 | 24.06 | 0.745 | 0.742 | 0.740 | 0.721 | 0.721

(a) (b) ©
Figure 3: a) 2x2 selected areas from a real blurred image; b) Deblurring results with the algorithm of
Cho et al. [3]; ¢) deblurring results with our algorithm.

Figure 4: Example of image deblurring with uncertain non-uniform blur and saturated pixels. a)
Input blurred image. b) Krishnan et al. [9], c) Welk et al. [23], as reported in their paper, d) Levin et
al. [11], e) Cho et al. [3], f) Our method.
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7 Conclusions

In this paper we have proposed a novel method using dictionary-based and self-expressing
priors that is used for image deblurring when the blur is uncertain. We have introduced a
prior that is learned from the blurred image and a dictionary of patches in order to avoid
ringing artifacts. Our experimental results show that our performance is overall better than
the state-of-the-art methods when the blur kernel is noisy. As future work we will investigate
different ways to learn image priors from the blurred image.
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