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Abstract. This paper examines the accuracy of software-based on-line
energy estimation techniques. It evaluates today’s most widespread en-
ergy estimation model in order to investigate whether the current me-
thodology of pure software-based energy estimation running on a sensor
node itself can indeed reliably and accurately determine its energy con-
sumption - independent of the particular node instance, the traffic load
the node is exposed to, or the MAC protocol the node is running. The pa-
per enhances today’s widely used energy estimation model by integrating
radio transceiver switches into the model, and proposes a methodology
to find the optimal estimation model parameters. It proves by statistical
validation with experimental data that the proposed model enhance-
ment and parameter calibration methodology significantly increases the
estimation accuracy.

1 Introduction

With energy efficiency being a major concern in the design of Wireless Sensor
Networks (WSNs), researchers have thoroughly investigated how to save energy
by intelligent design of the communication protocols. On the MAC level, Energy-
Efficient Medium Access Control (E2-MAC) protocols have been proposed to
minimize the energy wastage of the radio transceiver, which is typically the major
energy consumer of the node onboard components. Most simulation-based E2-
MAC protocol studies rely upon simple energy models of the wireless transceiver
chips, with the node’s energy consumption being computed as the sum of the
energy it spends in the different transceiver states. Most of todays’ simulation
models implemented in mainstream network simulator frameworks (e.g. ns-2,
OMNeT++) distinguish three or even four states (receive/idle, transmit, sleep),
as well as switching states with corresponding transition delays.

With research on WSNs becoming more mature, many E2-MAC protocols
have also been prototyped and evaluated on real sensor hardware testbeds.
Not surprisingly, experimental validation of E2-MAC protocols have proven to
be much more resource intensive than using mainstream network simulators.
While commonly used networking metrics such as packet delivery rate, source-
to-sink latencies or maximum throughput can easily be determined in real-world



testbeds, measuring the power consumption of sensor nodes is much harder:
costly high-resolution digital multimeters or cathode-ray oscilloscopes need to
be hooked to the nodes in order to sample the varying low currents and voltages.

Researchers have henceforth ported the same simple state-based energy es-
timation models of WSN simulators into their real-world sensor MAC protocols
or radio chip drivers. Software-based energy estimation has been proposed in
[1] as a viable alternative to using costly hardware-based energy measurement
equipment, and has been integrated into the Contiki OS [2] - one of todays’ most
widespread sensor node operating systems. The Contiki mechanism consists in
bookkeeping the time the radio resides in the different transceiver modes on the
node itself, and multiplying these times with previously determined power levels
to obtain rough estimates for the consumed energy. Many prominent E2-MAC
protocol studies (e.g. [3] [4]) have entirely relied their experimental research
results upon the same software-based approach for estimating the energy con-
sumption of their protocol prototypes. More and more recent research papers
have utilized exactly this approach (e.g. [5], [6]), although, as already pointed
out in [1], no existing study has yet validated the accuracy of this approach with
physical hardware-based energy measurements. This paper bridges this missing
gap and thoroughly examines the accuracy and the limits of software-based en-
ergy estimation on the MSB430 sensor nodes platform [7]. It evaluates several
energy estimation models with prototype implementations of 802.11-like CSMA
and three E2-MAC protocols (S-MAC [3], T-MAC [8], WiseMAC [9]). We ran a
plethora of experiments under different traffic load levels and with different node
instances, in order to statistically describe the achieved estimation accuracies.

The paper is organized as follows: we elaborate on related work on software-
based energy estimation and measurement in Section 2. In Section 3 we intro-
duce the experiment setup for evaluating the different energy estimation models,
model enhancements and calibration techniques. Section 4 discusses the observed
deviations between different sensor nodes’ current draws and their effect on the
resulting estimation accuracy. Section 5 evaluates the maximum achievable ac-
curacy of the most widely used energy estimation model (henceforth referred-to
as the Three States Model) with various wireless channel MAC protocols and
traffic rates. We then refine and enhance the estimation model and calibration
methodology and experimentally validate the gain in accuracy. Section 6 dis-
cusses the maximum accuracy gain that can be achieved with sophisticated and
fine-grained parameter calibration. Section 7 concludes the paper.

2 Related Work: Hardware-based Energy Measurement
vs. Software-based Energy Estimation

In numerous E2-MAC protocol studies [4] [10], cathode-ray oscilloscopes have
been used to quantify the energy consumed by a sensor node in a real-world
experiment. The basic idea of the methodology is to connect the sensor node in
series with a low-impedance shunt resistor and to measure the resistive voltage
drop across the shunt, in order to infer the current flowing through the circuit.



This methodology has been applied by a number of studies and can be seen
as the cleanest approach of energy measurement, as it does not incur any side-
effects to the sensor node hardware or software. Its main drawback, however, is
the costly measurement equipment required and the time-consuming operation
of it. Furthermore, if current traces need to be stored in a reasonable resolution
during an experiment of several minutes or even hours, the collected raw current
traces become huge and quickly cause storage- and memory problems. Only few
testbeds have integrated support for distributed real-time energy-measurements,
as e.g. MoteLab [11] with some of its nodes, or PowerBench [12]. Hence, in most
studies on energy-efficiency issues on the MAC and/or routing layer, researchers
have only measured a node’s current over a short period of time in order to
calibrate a simulation and/or estimation model, and have omitted the energy
aspect for the rest of the empirical evaluation.

Sensor Node Management Devices (SNMD) [13] have been developed as a
cost-effective alternative to using high-frequency multimeters or oscilloscopes
for side-effect free high-resolution energy measurement of sensor nodes. SNMDs
continuously measure the sensor node current and voltage with resolutions of up
to 2 kHz, and therefore need to be connected via USB to a backbone network.
This is usually possible in wired stationary testbeds and lab environments, but
less in outdoor deployments. With costs of the circuitry components still in the
range of 300$, it is a convenient measurement tool for lab environments, but still
too costly for large deployments of WSNs or WSN testbeds.

[1] motivates the need for software-based on-line energy estimation, because
only on-line estimation mechanisms running on the node itself enable the node
to take energy-aware decisions about routing, clustering or transmission power
scheduling. The authors experimentally correlate the estimated energy with the
sensor nodes lifetime, however underline that “further study is needed to accu-
rately quantify the error rate of the mechanism”.

PowerBench [12] partly tackles the issue of the accuracy of software-based en-
ergy estimation. The authors elaborate on the difference between their software-
based energy estimations (calculated with the commonly used Three States
Model) and the physically measured energy consumption of the nodes. When
running B-MAC [4] and Crankshaft [14], this difference reaches up to 21% of the
measurement values. Per-node-calibration is shown to vastly reduce this estima-
tion error. With the deviations between software-based estimation and physical
measurements still ranging from 2% to almost 14% for some of the examined
E2-MAC protocols, the software-based estimation approach still leaves room for
further improvements. The authors further note that frequency of state transi-
tions have a significant impact on the estimation accuracy.

Software-based energy estimation techniques clearly have their advantages
and drawbacks. A purely software-based approach can only deliver estimates. It
further introduces inherent side-effects, as the estimation mechanism itself causes
computational costs, which are hard to account for. The advantages, however,
are manifold: with an energy estimation being present on the node at run-time,
many power-aware WSN algorithms can be applied in real-world deployments.



With the WSN field moving from simulation-based towards real-world testbed-
based research, finding a simple and painless, but yet accurate methodology for
quick and reliable energy estimation can be a significant milestone.

3 Experiment Equipment and Setup

3.1 Sensor Network Management Devices (SNMD)

We used Sensor Node Management Devices (SNMD) [15] to measure and retrieve
the node’s current and voltage in high resolution, in order to be able to calculate
the physically measured energy consumption and compare it to software-based
estimations later on. SNMDs have been specifically designed to accurately mea-
sure current and voltage of sensor nodes with a sampling resolution of up to
20 kHz (up to 500 kHz buffered). SNMDs measure the resistive voltage drop
across a 1 Ω shunt resistor. The accuracy of the SNMD has been evaluated us-
ing high-precision laboratory equipment for different current ranges. The SNMD
firmware corrects each sampled measurement by an error term, which was ob-
tained during evaluative testing in advance. This has been shown to reduce the
measurement error introduced by the measurement circuit below ± 0.5% for any
current in the range of 0-100 mA in [13]. As the accuracy of the SNMD has been
calibrated using highly accurate state-of-the art measurement equipment, we
can safely assume that it provides best possible physical hardware-based energy
measurements. Throughout the experimental analysis of this paper, we decided
to stick to a sampling rate of 1000 Hz, as the accuracy gain with even higher
rates proved to be negligible with the chosen node type and bandwidth settings.
Other node platforms, e.g. nodes with IEEE 802.15.4-based radios with higher
bandwidth could however probably profit from the high maximum sampling rate
of the SNMD.

3.2 The Modular Sensor Boards (MSB430) Platform

The MSB430 node [7] has a CC1020 [16] byte-level radio transceiver operating
in the 804-940 MHz ISM frequency band. In its base configuration, the node
features a Sensirion SHT11 temperature and humidity sensor, as well as the
Freescale MMA7260Q accelerometer. Besides ScatterWeb2 OS [17], the MSB430
can be run with the popular Contiki OS [2] since recently (v.2.4). While the
maximum raw bit rate of the CC1020 is 153.6 kbit/s, the ScatterWeb2 OS we
utilized throughout this paper currently only supports a data rate of 19.2 kbit/s.

3.3 Experiment Setup

We kept the measurement setup as simple as possible, in order to be able to re-
peatedly perform a significant number of experiment runs with different wireless
channel protocols and traffic rates on the same experiment setup. We lay out
nodes A, B, C with a distance of 30cm on a table, as depicted in Fig. 1. As we



Fig. 1: Node A generating packets, node B hooked to SNMD

wanted to simultaneously obtain both the software-based estimations and the
unaffected physical hardware-based measurements of the same node B, we had
to keep node B unplugged from any serial interface, as the node would otherwise
draw some small current from the powered USB serial interface cable. Hence, in
order to obtain the software-based estimations of node B without accessing it
over a serial cable, we let node B write its energy estimation model data (time
in transmit mode, time in receive mode, etc.) into the packet payload.

Packets are 50 bytes each (10 bytes header, 40 bytes payload). In each ex-
periment run, node A starts sending constant-rate traffic of rate r towards node
B during Texp = 600s. Right after the reception of the first packet, Node B
starts keeping track of the time its transceiver resides in the different states.
After injecting its estimation model data into the packet, Node B forwards the
packets to node C, which decapsulates the packet and logs node B ’s energy esti-
mation data to the serial interface, which is connected to a Desktop PC. During
the entire experiment, the current trace of node B is read from the SNMD’s serial
interface, which is connected to the same Desktop PC. As discussed later in the
analysis, we varied the traffic rate r at node A from very low rates (1 packet every
100s) to high rates (2 packets/s) with each different wireless channel MAC proto-
col. We measured 10 independent runs for each setting, and evaluated different
node instances. In Section 4, node B (the measurement node) was exchanged
with other node instances of the same type.

4 Hardware-dependent Energy Consumption Deviations

Applying software-based energy estimation inevitably introduces inaccuracies.
The differences between the estimated power consumption and the physically
measured power consumption can generally be explained by the slightly differing
behavior of the nodes’ electronic hardware components, or may stem from the
inherent imperfection of the software-based model and the applied estimation
methodology. This section elaborates on the effect of the slight deviations on the
power consumption of different node instances of the same node type, whereas
Section 5 discusses the impact of choosing an appropriate estimation model and
calibrating the model parameters.



Fig. 2: Energy consumed by 8 different instances of nodes

4.1 Different Current Draws with Different Nodes

As discovered in previous experimental studies [18] [12], the power consumption
of different instances of the same type of sensor node often varies in the range of
some few percent. [18] presumes that this variation stems from differences in the
electronic components tolerances. We hence first examined multiple instances of
MSB430 nodes running different wireless MAC protocols, given a constant traffic
rate of 1 packet each 20s over Texp = 600s. With this evaluation, we quantify
the estimation inaccuracies caused by the variation in the energy consumption
of different instances of the same node type - in our case the MSB430 platform.

Figure 2 depicts the energy consumed by eight different instances of MSB430
nodes and the four examined protocols during 10 experiment runs. Each bar de-
picts the mean value and standard deviation measured during 10 independent
runs - the latter was low in most cases and is hence barely visible. The energy
consumption obviously varies heavily from protocol to protocol (eg. WiseMAC
vs. CSMA). The variation from node to node however is also clearly visible,
e.g. the energy consumed by node 6 running CSMA is roughly 4% higher than
that of node 2. We investigated the reason for these differences in the current
traces and found that indeed, the current drawn from different nodes can vary
to a certain degree, and that the variation can even differ for each of the dif-
ferent transceiver states. Figure 3 depicts the current traces of nodes 1 and 2
running CSMA and receiving a data packet, and sending it further to another
node. As one can clearly see, node 1 draws approx. 2 mA less than node 2 when
transmitting. Although the transmission power settings were set identically for

Fig. 3: Current draw of nodes B and C



all nodes, the current levels in the transmit state obviously varied to a certain
degree. A further anomaly we encountered is that some nodes drew more current
in receive mode when actually receiving data compared to listening to an idle
channel, whereas in most cases, no significant difference between these two cases
could be measured. This effect is visible in Figure 3 as well: node 1 consumes
approximately 3 mA more when receiving data, compared to node 2 which con-
sumes more or less the same current when receiving data or listening to an idle
channel. As both nodes are running the same interrupt service routine code and
did not run any other computationally intensive tasks during this time, the CPU
can neither be held accountable for this effect. We further discovered slight dif-
ferences in the peak energy consumption as well as in the duration of transceiver
switches depending on the protocol, and even depending on the traffic load. We
presume that these differences stem from the inaccuracies in the production of
the electronic components. Fast switching between the different operation modes
of the radio could probably also have a temporary impact on the behavior of
active circuit elements. Although the temperature is known to impact on the
power consumption of electronic devices, we can safely exclude this as an ex-
planation for the discovered deviations, as all experiments were run under room
temperature in the same laboratory environment.

4.2 Statistical Characterization of Node Deviations

In an attempt to quantify the discovered differences between the eight measured
node instances, we a) determined the mean and standard deviation of the mea-
sured energy consumptions of all measurement runs of all eight nodes for the
CSMA protocol in the experiment described in 3.3 (with Texp = 600s and a
traffic rate r of 0.05 packets/s), and b) compared each pair of nodes to deter-
mine the the maximally differing nodes. We chose CSMA because at examined
traffic rates, no packet loss occurred within all CSMA runs. Hence, the CSMA
experiment runs were most suited for examining the per-node differences.

a) The mean consumed energy of the eight different nodes throughout Texp
was 57.55 Joules with a standard deviation of 1.54%. Hence, roughly two thirds
of all node instances exhibit a value in-between 57.55 Joules ± 1.54%, given
that the variation between different nodes follows normal distribution. We con-
jectured that the latter is the case, as Jarque-Bera’s test on the normality of the
measurement variation (JB-value: 0.701) could not be rejected (cf. [19]).

b) The maximum deviation between the mean measured energy consump-
tion of the two maximally differing nodes was determined to be 4.24% (of the
respective higher value). We tested the claim that these two nodes do actually
differ significantly from each other, i.e. that the discovered deviations are not
caused by coincidence or the limited set of observations. We found that the null-
hypothesis of a two-sided t-test claiming that the two nodes exhibit the same
mean energy consumption (=on average consume the same amount of energy)
could safely be rejected at the 95% confidence level. This however was not the
case for all the node pairs, as some groups of nodes obviously exhibit similar
patterns in their energy consumption (cf. Figure 2).



Fig. 4: Current Draw of node B

Fig. 5: Node B as modeled by the Three States Model

5 Evaluating Software-based Energy-Estimation Models

In this section we analyze the impact of the choice of the estimation model on
the resulting estimation accuracy for experiments with different traffic load levels
and wireless channel protocols. With the variation between different nodes being
in the range of more than 4% for the specified experiment scenario, we decided
to use exactly the same sensor node and also the same SNMD device throughout
the entire analysis in this section, in order not to introduce variations caused by
differing measurement hardware and measured hardware.

5.1 Three States Model (recv/idle, transmit, sleep)

The most frequently used model to date for estimating a node’s energy con-
sumption - especially in E2-MAC protocol studies - consists in modeling the
latter as a function of the three states of the radio transceiver receive/idle lis-
tening, transmit and sleep (cf. [12] [3] [4]). We henceforth refer to this model as
the Three States Model. The Contiki OS (v. 2.4) energy estimation mechanism
models the radio’s power consumption using this model, but separately tries to
keep track of the CPU power consumption, which can vary depending on the
Low-Power-Mode (LPM) it is currently operating. The ScatterWeb2 OS used in
this study puts the CPU to LPM1 as soon all events have been processed, where
the node’s current is approximately 1.8 mA, given that the radio is turned off.
With the CPU active and the radio off, the node current is roughly 3.5 mA. As
our examined E2-MAC protocols generally do not incur intensive computations,
we neglected to account for the CPU costs separately, and considered the CPU’s
power consumption to be integrated within the three states of the transceiver.
Estimating the CPU power consumption in software when applying E2-MAC
protocols is anyway not easy to achieve, as most of the MAC-related CPU activ-
ity takes place in interrupt service routines. Accounting for such may even cause



more costs than the protocol-related computations themselves (c.f. [18]). If the
CPU activity does not vary much across state changes of the radio transceiver,
modeling the CPU and radio integrally safely holds. Figure 4 illustrates that for
the given E2-MAC protocol, accounting for CPU in a combined manner with
the three different power levels of the radio transceiver is sufficient.

We henceforth modeled the energy consumption of our S-MAC [3], T-MAC
[8], WiseMAC [9] and CSMA implementations using the abovementioned Three
States Model. We let the nodes keep track of the time differences between the
transceiver switches, in order to determine how much time has been spent in
each state. Figure 4 depicts the current draw during the active interval of an S-
MAC frame containing an RTS/CTS handshake and a subsequent data packet
transmission. Figure 5 illustrates how this current draw is being approximated by
the Three States Model. The total energy consumed (denoted as E) corresponds
to the area below the current draw multiplied by the supply voltage, which is
assumed to be constant. Analytically, the Three States Model can be formulated
as equation MI. The consumed energy E is calculated as the sum of the total
time spent in the receive state multiplied by the respective power level TrcvPrcv,
and the respective terms for the transmit and sleep states (TslpPslp and TtxPtx).
This approach is identical to the one applied in [12], [3] and [4].

E = PrcvTrcv +PtxTtx +PslpTslp = IrcvVrcvTrcv +ItxVtxTtx +IslpVslpTslp (MI)

Parameter Definition through Example Measurement: [3], [4], [10] and
[12] calibrate the parameters of their energy model by measuring the currents
the nodes draw in the different states, and multiplying it with the supply volt-
age to obtain Prcv, Ptx and Pslp. They do so by using either oscilloscopes or
high-precision multimeters and by measuring the current in each state over a

Fig. 6: Measured vs. Estimated Energy Consumption



certain timespan. In the first attempt, we pursued exactly the same approach,
and determined the mean values of Ircv, Itx, Islp by measuring each state of the
measurement node using the SNMD for a couple of seconds. The stable mean
values were determined to be 23.5353 mA, 37.4872 mA and 2.1495 mA for Ircv,
Itx, Islp, respectively. We further set the voltage according to the supply voltage
of the SNMD to Vrcv = Vtx = Vslp = 4.064V .

Figure 6 depicts the mean values of the energy measurements and the esti-
mations being computed with the Three States Model - using the parameters
for Prcv, Ptx Pslp measured in the example trace. One can clearly see that the
estimations fit quite well for low traffic rates, but that the gaps between mean
estimations and mean measurements become larger with higher rates of packets
being sent over the measurement node. For most protocols - especially S-MAC
and T-MAC - the energy estimation over-estimates the energy consumed by the
node with increasing load. This increasing over-estimation stems from the fact
that the Three States Model does not account for the transceiver switches. As
one can clearly see comparing Figure 4 with Figure 5, the current draw decreases
to roughly 4 mA when the transceiver is switched to receive or transmit - hence
drawing less current than estimated with the Three States Model. By defining
parameters through example measurement, the impact of the applied traffic load
and the frequent transceiver switches as well as the particularities of the MAC
protocol are not being taken into account at all. Extrapolating from a short
example measurement of a node hence leads to suboptimal parameters for the
Three States Model, even when using the same node for parameter calibration
and the evaluation of the accuracy.

Parameter Definition through Ordinary Least Squares (OLS): Being
able to physically measure the current draw of a sensor node and at the same
time obtain the software-based estimation calculated by the node itself offers
the opportunity to relate the estimations to the real-world measurements. Using
the plethora of experimental data gained in the many experiments runs (in total
over 12 GB), we reflected upon a method to determine more resilient parameters
for the unknown variables Prcv, Ptx, Pslp of the Three States Model. Ideally, the
software-based energy estimation running on the node should neither rely on
the particularities of a specific MAC protocol, nor on the shape or intensity of
the traffic. Ordinary Least Squares (OLS) Regression Analysis yielded the most
suitable technique to determine the unknown variables for a linear estimation
model with multiple unknown variables. OLS minimizes the sum of squared
errors (SSE) between estimations and observations (= the measurements). We
formulated a multivariate OLS regression model with the explanatory variables
Trcv, Ttx, Tslp (the times spent in the different transceiver states, calculated at
runtime), as well as the physically measured dependent variable E obtained using
the SNMD device. The resulting estimation equation hence simply comprises
equation MI and the error term ε for the residuals.

E = PrcvTrcv + PtxTtx + PslpTslp + ε (OLS-I)



With the above multivariate OLS model, the unknown parameters are estimated
as the OLS estimator β̂ = ( ˆPrcv, P̂tx, ˆPslp) which calculates as

β̂ = ((X ′X)−1X ′)y

where X is the matrix of all the observations of the explanatory variables, con-
sisting in 3 columns (Trcv, Ttx, Tslp) and a row for each measurement, and y
the vector with the corresponding observations of the dependent variable. We
assessed the coefficient of determination R2 to measure the goodness of fit of the
multivariate linear regression model and obtained a surprisingly high value of
R2 = 0.9980.

Estimation Accuracy of the Three States Model: In order to determine
the accuracy of the OLS-calibrated software-based model, a cross-validation with
totally new experimental data is inevitable to omit overfitting effects (cf. [19]).
The determination of the parameters Prcv, Ptx, Pslp using OLS regression was
hence achieved on a first set of experiment runs, the so-called training set. The
results concerning the estimation accuracy of this section however were gained
with a new set of experimental data, to which we will further refer as vali-
dation set. We fed β̂ containing the OLS estimators of the unknown variables

ˆPrcv, P̂tx, ˆPslp into the node’s estimation model and estimated the energy con-
sumption with the validation set. We considered the so-called mean absolute
error (MAE) (=the average difference, cf. [19]) between the estimations and
the measured values to be the best statistical measure for the accuracy of the
employed Three States Model. The MAE and its standard deviations calculated
across all protocols and traffic rates in the validation set (henceforth always
given as percentage of the SNMD-measured values) is depicted in Figure 7. For
each traffic rate, the estimation error using the OLS estimator parameters is
4.2% to 35.9% lower than the corresponding error when using the model pa-
rameters defined through example measurement. Across all measurements, the

Fig. 7: Absolute Mean Estimation Error (in %) vs. Traffic Rate (packets/s)



Fig. 8: Current Draw of node B

Fig. 9: Current modeled by the Three States Model with State Transitions

mean absolute estimation error and standard deviation (denoted as µ ± σ) of
the Three States Model with the parameters defined by example measurement
equals 3.77% ± 3.17%. When determining the parameters by OLS, we obtain
3.00 % ± 2.55% - hence achieving an overall MAE reduction error by 21%.

5.2 Three States Model with State Transitions

With the mean absolute estimation error still in the range of 3% or more, we
investigated further means to improve the estimation accuracy. As Figure 8 ex-
hibits, the current draw temporarily drops to approximately 4 mA during the
state switches. These state switches remain unaccounted for in the OLS re-
gression model specified in equation OLS-I. We first attempted to sum up the
transition times between the transceiver states. This approach however led to un-
satisfactory results, as the ScatterWeb2 OS only supports a clock in milliseconds
precision. Simply counting the transceiver switches and integrating them into
the OLS regression model however led to a significant improvement in the esti-
mation accuracy. The number of transceiver switches (from an arbitrary state)
to the receive, transmit or sleep state was hence accounted for with the addi-
tional regressands srcv, stx, and sslp. We refer to this model as the Three States
Model with State Transitions hereafter, as specified in equation MII.

E = TrcvPrcv + TtxPtx + TslpPslp + αsrcv + βstx + γsslp (MII)

According to this enhanced model, the energy consumed by an arbitrary node
is a function of the total time it has its radio transceiver in the three differ-
ent states (denoted as Trcv, Ttx, Tslp) and the three adjustment terms αsrcv,
βstx, and γsslp. The parameters α, β, γ compensate for the transceiver switches
to the states receive, transmit and sleep. Their optimal values are determined
empirically using OLS regression.



Parameter Definition through Ordinary Least Squares (OLS): We spec-
ified the corresponding OLS regression model to equation MII with the explana-
tory variables Trcv, Ttx, Tslp, srcv, stx, sslp, as well as the dependent variable E
(for which we obtain the real measured value using the SNMD device) as

E = PrcvTrcv + PtxTtx + PslpTslp + αsrcv + βstx + γsslp + ε (OLS-II)

The OLS estimator β̂ = ( ˆPrcv, P̂tx, ˆPslp, α̂, β̂, γ̂) is calculated in analogy to Sec-
tion 5.1. We obtained a coefficient of determination of R2 = 0.9998 for the
multivariate linear regression model OLS-II, a slightly higher value than for
OLS-I. However, when comparing the goodness of fit of two regression mod-
els, the R2 indicator is not a meaningful criterion, as it never decreases when
adding more regressands. The so-called adjusted coefficient of determination R̄2

(cf. [19]) adjusts for the number of explanatory terms in a model. Unlike R2,
this coefficient only increases when the increase of explanatory variables actu-
ally improves the model. An increase of R̄2 upon addition of an explanatory
variable to a multivariate OLS model is hence generally understood as a proof
that the new model delivers a better fit to the measured data. An even better
coefficient for comparing the goodness of fit of two regression models however
is the Akaike Information Criterion (AIC) (cf. [19]). The lower the AIC value,
the better the fit to the model. We measured the R̄2 and AIC coefficients before
and after adding the transceiver switches srcv, stx, sslp, to the OLS model (OLS-I

vs OLS-II). With R̄2 increasing from R̄2
I = 0.9801 to R̄2

II = 0.9980, and AIC
decreasing from AICI = 2.5036 to AICII = 0.2154, we can safely claim that
the Three States Model with State Transitions delivers a significantly better fit
to the measurement data than the today’s most widely used simple Three States
Model.

Estimation Accuracy of the Three States Model with State Transi-
tions: We calibrated the OLS estimators for the parameters of the second
model with the training set, and examined the resulting estimation accuracy
on the validation set . Across all measurements, the MAE and standard devia-
tion (denoted as µ±σ) of the software-based estimations using the Three States
Model with State Transitions (and the parameters determined by OLS) com-
pared to the physically measured values equals 1.13% ± 1.15%. Comparing this
result to the 3.00 % ± 2.55% obtained with the Three States Model (and the
parameters determined by OLS), our proposed model enhancement led to an
overall reduction of the MAE by remarkable 62.3% (cf. Figure 7).

6 The Impact of Calibration on the Estimation Accuracy

This section evaluates the impact of different possible granularities of calibration
on the achievable accuracy of the software-based energy estimation technique.
Throughout this section we henceforth utilize the same multivariate OLS regres-
sion methodology and the Three States Model with State Transitions as described
in Section 5, as applying this model generally led to the lowest estimation errors.



Fig. 10: Absolute Mean Estimation Error (in %) vs. Traffic Rate (packets/s)

6.1 Per-Node Calibration

Different wireless sensor node instances often exhibit a slightly different behavior
with respect to their power consumption levels in the different transceiver states.
This effect has been observed in previous studies [18] [12], and has been quantified
for the utilized MSB430 platform in Section 4. We have encountered node pairs
of the same node type that differed by more than 4% in their physically measured
energy consumption. Hence, even the best node-generic software-based energy
estimation mechanism can be more than 4%, if its underlying model parameters
were not calibrated on a per-node basis.

Researchers intending to calibrate their energy estimation model with only
one particular sensor node instance must therefore be aware that their energy
consumption estimates will deviate from the real energy consumption by the
unavoidable hardware-based variation, unless each node has previously been
calibrated individually. Calibrating on a per-node basis however means that
every single node needs to be physically measured (e.g. with an SNMD or a
high-resolution multimeter) ideally with different MAC protocols and different
traffic rates. Only this time-intensive calibration leads to the set of per-node but
protocol-generic estimation model parameters which has been shown in Section
5.2 to reduce the mean absolute estimation error (µ± σ) to 1.13% ± 1.15%.

6.2 Per-Node and Per-Protocol Calibration

In Section 5.2, we intentionally generalized from the particularities of the MAC
protocol by running OLS over four different MAC protocols. Hence, we obtained
protocol-independent (but node-specific) estimation parameters. In order to ob-
tain per-protocol (and node-specific) calibrated OLS estimator parameter values,
the methodology applied in Section 5 can be applied without any adaptation.
However only the observations of the specific protocol and node have to be cho-
sen from the training set in order to calculate the OLS estimator. The same
specialization effect can also be achieved by supplying more information to the



OLS regression model with introducing so-called dummy variables that indicate
the currently used protocol (cf. [19], p. 299ff). We propose this per-protocol cal-
ibration as an even more accurate estimation approach, which might be useful
if researchers know exactly what protocol they intend to use on the MAC layer
in advance. We calculated different OLS parameter sets for each of the four
protocols (S-MAC, T-MAC, WiseMAC, CSMA) and used the same node (node
1 in Figure 2) used in Section 5 for calculating the resulting accuracy on the
validation set. The combined approach of per-node and per-protocol calibration
obviously leads to the highest accuracy. Across all four protocols and traffic
rates, we obtained a mean estimation error and standard deviation (µ ± σ) of
only 0.42% ± 0.72%. The combined calibration approach however has multi-
plicative impact on the overhead before network deployment, as all nodes need
to be equipped with tailor-made estimation model parameters for each protocol.
Figure 10 illustrates the different estimation errors measured when applying the
the per-node and protocol-generic or the per-node and per-protocol calibration
approach.

7 Conclusions

This paper evaluates the accuracy of software-based energy estimation models
on the MSB430 platform. We have identified and quantified the different factors
which cause deviations of the software-based estimations from the real physically
measurable energy consumption. The inaccuracies in the production of the elec-
tronic components have been shown to impact on different power consumption
levels, which led to nodes differing by more than 4% in their energy consump-
tion. The paper conveys that software-based energy estimation can be a valuable
alternative to using sophisticated measurement hardware, especially in outdoor-
deployments where the latter is impossible - at least for evaluating protocols
where the CPU is used frugally, i.e., E2-MAC or routing protocols. Enhancing
today’s most widely used simple Three States Model with information regarding
the state transitions and applying multivariate OLS regression to calibrate the
model parameters has been shown to remarkably reduce the estimation error.
The mean absolute error (MAE) and standard deviation (µ ± σ) of the energy
estimations of the software-based model using protocol-generic but per-node cal-
ibrated parameters could be pushed to as few as 1.13% ± 1.15%. Applying even
more sophisticated parameter calibration of per-node and per-protocol calibra-
tion has been shown to reduce the mean absolute error and standard deviation
to as few as only 0.42% ± 0.72% across the four evaluated wireless channel MAC
protocols S-MAC, T-MAC, WiseMAC, and 802.11-like CSMA.
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