
Secure Remote Management and Software
Distribution for Wireless Mesh Networks

Thomas Staub, Daniel Balsiger, Michael Lustenberger and Torsten Braun
Institute of Computer Science and Applied Mathematics

Neubrückstrasse 10
CH-3012 Bern

Switzerland
{staub|balsiger|lustenbe|braun}@iam.unibe.ch

Abstract— Wireless mesh networks (WMN) are usually spread
over large physical areas. They can include node locations that
are difficult to reach, e.g., roof tops. Physical access to certain
nodes can even be unfeasible depending on bureaucratic or
technical problems. During the life time of a WMN it is necessary
to process reconfigurations and software updates. Configuration
errors and faulty software updates may then destroy the access to
individual nodes. Costly on-site reconfiguration is required. We
propose a secure management architecture for WMNs handling
configuration errors as well as faulty software updates and
avoiding on-site repairs. The architecture is tailored to productive
and extensive testbed networks, in which reconfiguration is even
more frequent. It is a fully distributed management solution
and provides fallback solutions for configuration errors, and
kernel panics. The paper presents our architecture and its
implementation including the Linux image, the development
system and the management console.

I. INTRODUCTION

Wireless mesh networks (WMN) are evolving to an im-
portant access technology for broadband services. There are
multiple deployments of WMN related to research, e.g. MIT
Roofnet [1], [2], Orbit project [3], Microsoft Research [4],
[5]. Furthermore, there are multiple cities which are currently
deploying metropolitan area networks [6]. All these deploy-
ments cover geographically large areas. One can imagine that
WMNs are deployed in hostile environments such as forests,
deserts, or arctic regions. After deployment not all nodes may
be physically accessible or the access may be very complicated
and therefore costly.

Reconfiguration and software updates are necessary during
the lifetime of any WMN. The reconfiguration and update
process is a possible point of failure of the network. The net-
work may be disconnected because of wrong configuration or
faulty software updates. The change of radio communication
parameters can affect the physical topology of the network as
well as cut off nodes from the network. Without an automated
reconfiguration, which supports the user in case of defective
configuration or errors, physical access to individual nodes
may be required.

As experimental research becomes more and more crucial
in the design of wireless networks, safe reconfiguration and
update of the extend testbed networks are important and time-
saving issues. UCSB’s ATMA [7] provides a management
framework for experimental wireless networks. It is based on

an additional WMN deployed beside the experimental net-
work. We think that reconfiguration and updates are essential
for both productive and experimental environments. Therefore,
we prefer a solution that works the same way in both scenarios.

We provide an architecture that offers secure and safe
reconfiguration and update of the WMN without the need of
additional infrastructure, e.g. wired or wireless back-haul net-
works. Our architecture guarantees availability of the network
despite of configuration errors and faulty software updates. It
further provides the possibility to test configurations that are
automatically reverted after a certain amount of time, in case
of errors.

The paper is organized as follows. In Section II, our
architecture with its basic concepts is presented. The following
sections show our implementation. Section III describes our
used hardware platform. In Section IV, our embedded Linux
image is presented. Section V discusses the configuration and
update mechanisms. We conclude with Section VI.

II. ARCHITECTURE

Fig. 1. Example of a WMN: One node is temporally unavailable, e.g., lack
of power. Another node is added to the network for the first time. Multiple
nodes provide management functionalities for the network.

The target scenario for our architecture is a reconfigurable
WMN (see Fig. 1). The WMN consists of multiple wireless

mesh nodes. It is not guaranteed that every node is always
reachable. Nodes could be unavailable, e.g. when they have
been switched off by users or by loss of power. Attention
has been given to these nodes during reconfiguration in our
architecture.

For the management of the network either distinct manage-
ment nodes or ordinary mesh nodes can be used. Management
nodes are usually equipped with better hardware than the nor-
mal mesh nodes and can provide further features. Monitoring
of the network as well as the configuration of all network
parameters is the primary task of the management nodes.
Their functionalities can be accessed via a web interface. They
could further provide tools, e.g., node image generators or a
complete development environment.

A. Distribution of Configurations and Software Updates
Our architecture disseminates network and node config-

urations as well as software updates in a distributed way
as shown in Fig. 2. Each node is periodically asking its
neighbors for newer configurations and software. If updates are
available, the node downloads them to its exchange storage.
Neighbors of this node will download the updates from there.
The downloaded configuration and software updates will be
activated after a predefined time.

Nodes that have been down during the distribution of the
updates will get the configurations and software updates from
their neighbors as soon as they are up again. If critical
parameters like wireless communication channel or band have
been changed and the awaken node has no connection to any of
its former neighbors, it will fall back to its initial configuration
and will try to join the network as a brand new node (see
Section II-B).

In order to guarantee the connectivity of the network after
a reconfiguration, fall back solutions and checks are intended.
For example if the transmission power of the wireless radio
is reduced, the connectivity of the network is tested. If there
is any topology change, the transmission power is stepwise
increased until the original connectivity is reached again. Other
disruptive changes like wireless channel are also considered in
our architecture.

If the user wishes to test a certain configuration, we in-
troduce a temporary update feature in our architecture. The
user generates and deploys a test configuration. He further
defines a validity time for the new configuration. All nodes
backup their configuration, before loading the new one. After
the configuration has been fully distributed and set up in the
network, a timer on each node is started. The user has now
the possibility to check his test configuration. If it satisfies his
needs, he can confirm it by sending a confirmation message
to each node. The confirmation message stops the timer at the
nodes. If the configuration is erroneous or the user did not
confirm it, the old configuration will be loaded at the nodes.
The network will operate in its last state again.

Our architecture provides a safe way to upgrade the node’s
operating system. The update images are first checked for
integrity by the help of hashes and checksums. The updated

kernel and filesystem are put in the update storage of the
nodes. The system is now instructed to load the operating
system only once from the update storage. On the next reboot
it would load again from the default storage. If the software
update succeeds and the node is up with the new operating
system, the update can be made permanent by copying the
updates to the default storage. If there occurs any problem
while booting the new operating system, e.g., a kernel panic,
the system will be automatically rebooted and load the old
operating system from the default storage.

(a) Nodes periodically check for updates. A new configuration is
injected at a management node (M) or a normal node.

(b) First nodes (A, B) get the update from node M.

(c) Next nodes (C, D) get the update from node A and B.

Fig. 2. Distribution of node configuration and software updates.

There exist separated images for configuration of an indi-
vidual nodes, its state (e.g. its log files), and the operating

system. This permits the exchange of the operating system
without loosing the node’s configuration and state. Further-
more, configuration switches do not destroy the state of the
node.

B. Integration of a New Node into the Network
New nodes should be easily integrated into the WMN.

Figure 3 depicts the addition of a new non configured node
to the network. A standard image has been loaded to the new
node. Furthermore, the node has received a unique host name,
its public/private key pair as well as the public keys of the
other network nodes. The keys are essential to guarantee that
only authorized nodes can connect to the network.

(a) New node searches for networks and known peers.

(b) New node sets temporary network parameters and tries to
get its configuration from the neighbors. After the new node has
received its configuration, it is fully integrated in the network.

(c) If no configuration for the new node exists, the node
announces its state to a management node. The user has to
generate a new configuration. The new node is integrated in
the network after having received the generated configuration.

Fig. 3. Integration of a new node into an existing network.

A new node joins the network by first scanning for active
communication channels. On the found channels it searches for
IP networks, assigns itself an unused IP address and tries to

load configurations from its neighbors. The node authenticates
its communication peers with the help of the public keys in its
storage. The same is done by the network nodes. They only
provide configurations and software updates to known nodes.
Therefore, the public key of the new node has to be distributed
to all network nodes before the node can join the network.
We encourage to use a pool of key pairs when setting up a
network. All public keys are then loaded on all nodes at setup
time. If there are no key pairs left in the pool for a new node,
the additional public key of the new node has to be loaded on
all network nodes by the distribution mechanism described in
Section II-A. As the image for a new node is usually created at
the management node, the distribution of an additional key is
invoked automatically if necessary. The configuration of the
new node can be already distributed in the network. In this
case, the new node simply loads its configuration from one
of its neighbors and is then fully integrated in the network. If
there is no configuration available, the node signals its lack of
configuration to any management node found in the network.
The user is then prompted to generate a configuration at the
management node.

III. HARDWARE

For our wireless mesh network we use the Wireless Router
Application Platform (WRAP) from PCEngines [8]. Our nodes
are WRAP2.C and its RoHS (EU restriction of the use
of certain hazardous substances in electrical and electronic
equipment) compliant successor board WRAP2.E. It is an
embedded board with 233 MHz AMD Geode SC1100 CPU,
128MB RAM, Compact Flash card slot, one Ethernet port,
two miniPCI sockets and one serial port. We have preferred
WRAP to any Linksys Router based solution with OpenWrt
[9] because of its ability to carry two wireless miniPCI cards.
This enables multi-radio/multi-channel communication. Our
nodes are equipped with two Atheros 802.11a/b/g miniPCI
cards. We have further added a 3V Lithium coin cell as battery
backup for the real time clock of the node.

IV. EMBEDDED LINUX IMAGE FOR WIRELESS MESH
NODES

Existing solutions (like OpenWrt [9]) do not meet all our
requirements or are tailored for other hardware than the WRAP
platform we use. Our intention is to provide a node image,
which is as small as possible while providing maximum
functionality. We have achieved this by using special software
written for embedded systems. Our selection includes busybox
[10] as a replacement of common UNIX utilities and uClibc
[11] as small C library. Busybox is a well-known tool for
small or embedded devices. It combines tiny versions of many
common UNIX utilities (e.g. ls, dmesg, top, date) into a single
small executable with a size of only 712 KB in our case.

By the help of busybox and uClibc we provide a platform
where standard software could be used, e.g., bash, openssh
or openssl. This makes the image easily extensible and cus-
tomizable. We further provide a development system, on which
newly required software can be compiled and installed to

the node image. With an existing solution, adding such new
functionality can be very difficult. The result is an all-purpose
image which looks nearly like a standard Linux system. Our
image includes the following security features that are also
described in Hardened Linux From Scratch (HLFS) book [12]:

• Position Independent Executable (PIE) [13]
• PaX [14]
• Grsecurity [15]
• Stack Smashing Protector (SSP) [16]
A Position-Independent-Executable (PIE) [13] is an exe-

cutable which is a hybrid of a shared library and a normal
executable. Programs compiled as PIE appear as shared ob-
ject. The executable behaves like a shared library. Its base
addresses can be relocated. In our image all object code is
position independent and the grsecurity kernel [15] prohibits
text relocation. This closes a security hole that could enable
attackers to modify the memory and execute their own code.
PaX randomizes the return addresses of PIE programs with
Address Space Layout Randomization (ASLR). This further
prevents that attackers could take advantage of security bugs
as the return addresses are not known to them.

Stack Smashing Protector (SSP) [16] has been developed
for protecting applications from stack smashing attacks. This
is the largest class of attacks. The protection uses minimal
time and space overhead while protecting all functions.

All the described features are used by default when com-
piling software on the development system.

The resulting image uses about 24.0 MB in uncompressed
form in RAM and compressed less than 10 MB on the flash
device. Nodes with 128 MB of RAM have still more than 100
MB free for applications.

A. Boot Process
The Compact Flash card has two partitions. Two partitions

are needed for safe kernel updates (see Section IV-C). Partition
1 (/dev/hda1) contains kernel images, the corresponding root
filesystem images, and some boot loader files. Partition 2
(/dev/hda2) holds all configuration images, a state directory,
and some boot loader files (see Section IV-B).

Normally, the Linux standard boot loader grub starts the
default image from the first partition (/dev/hda1) of the flash
device. An image consists of three files: the kernel image
itself, a compressed filesystem archive (.cpio initramfs) and
the sha1/md5 checksum file. The filesystem archive is loaded
into RAM and mounted as root (/) at the very beginning of
the boot process. The whole system lies therefore in RAM
in order to gain performance and to take care of the limited
write cycles of a Compact Flash card. Compared to an ordinary
RAM disk Initramfs requires no fixed size in RAM and can
grow and shrink as needed. The whole root tree is writable.
As soon as the root filesystem has been mounted, the init
process is executed. The init scripts first create device nodes,
load the configuration files from the actual configuration image
and state files from the state directory (described in detail
in Section IV-B). Afterwards, configured services like system
logging, web server, secure remote shell (SSH), network time

(NTP) and a terminal on the serial line are started. If a network
configuration is available at the node, network devices and
network parameters are set up accordingly.

B. Individual Configuration and State
As all the files are kept in an initramfs archive, they can be

changed individually while the system is running. But changes
are not saved over a reboot due to the reload of the original
archive at the next boot. Therefore, a procedure is required to
save files permanently over reboots. Examples are files like
/var/log/wtmp and /var/log/messages, several individual node
and network keys, configuration files for individual node setup,
password files etc.

The config directory on the second flash partition (/de-
v/hda2) contains different configuration images. A configura-
tion image is an ext2 loopback image and contains user defined
files, which are loaded at boot time by the init scripts as
early as possible before any node configuration is done. Each
configuration image contains a list of the files kept in it and
their destination in the real system. The list is contained in the
file /etc/conffiles on the real system. This file can be adapted
in order to add files which must be saved over a reboot.

A node can have more than one configuration image on
the flash device (/dev/hda2). The /etc/init.d/rc.config command
lists all existing configuration images, the actual configuration
image in use, loads or stores configurations from or to con-
figuration images, and creates new configuration images from
the actual system configuration.

Some files should not be stored in the configuration image
explained above because they should not be replaced in case
of configuration switches. For example the file /var/log/lastlog
should be loaded and saved anyway at each reboot indepen-
dently from a specific configuration image in order to store
reliable information on the last logins. All files of this kind
represent the state of the node. We store such files in the state
directory on the second partition. All files in the state directory
are loaded by the init scripts at boot time and stored when the
system reboots. The current log files are saved back to state
directory and new empty files are created at each boot. The
maximum space that different versions of log files may occupy
on disk can be configured. If this limit is reached, the oldest
log files are deleted. The /etc/init.d/rc.syslog script shows all
current log files and maximal quota for log files.

C. Safe Kernel Updates
The grub boot loader is able to perform the following

actions at boot time according to its configuration file menu.lst:
1) Install the MBR pointer to another boot partition (this

has the effect that the other partition is booted the next
time).

2) Boot the operating system from the current boot parti-
tion.

These actions provide us the opportunity to boot an update
kernel, and let the system fall back to the default kernel
when the update kernel fails to boot (e.g. kernel panic). The
procedure is depicted in Fig. 4. The following sequences

Fig. 4. Safe image and kernel update process with fallback.

provide examples for normal operation, a successful update,
and a faulty update:

1) Normal operation: The system is in default configura-
tion (S1). No update is planned. Therefore, the system remains
in default configuration after a reboot (N1/N2).

2) Successful update: The system is in default configura-
tion (S1). MBR points to /dev/hda1. The default image would
be loaded after reboot. An update is intended (U1). The layout
of grub is changed to update layout (U2). The update image is
copied to /dev/hda1 (S2). As MBR points to /dev/hda1, from
where grub configuration is read at the next reboot (U3). Grub
sets MBR pointer to /dev/hda2 and loads the update image. If
the update has been successful, the layout is reverted to the
default layout (U4/U5) and the default image is replaced by
the update image (S3). During the next reboot the boot loader
(grub) configuration on /dev/hda2 is read. MBR is changed
to point to /dev/hda1 again. The default image is loaded from
/dev/hda1 (U6/U7). The node returns to normal operation (S1).

3) Faulty update: The system is in default configuration.
MBR points to /dev/hda1 (S1). The update image is copied to
/dev/hda1 and the update layout is set (U1/U2/S2). The system
is rebooted (U3). MBR is reset to point to /dev/hda2. The
update image is loaded. The update image produces a kernel
panic (E1). The node is automatically rebooted (E2) and is
now in error state (S4). As the MBR points to /dev/hda2, the
MBR is reset to boot /dev/hda1 next time and the default image
is loaded (E3). The node runs with the old kernel again. The
update image is removed, the layout is reset to default (E4).
The node returns to normal operation (E4/S1).

The update of each node concerns only the kernel and

the corresponding initramfs image, which contains all basic
software of the system (configuration and state files are treated
separately as shown in Section IV-B). In order to manage
the configurations there exists the /etc/init.d/rc.update script,
which can initialize updates, detect working and failed updates
and make updates permanent.

The script includes consistency checks of the included files.
It checks the compressed kernel and the initramfs images by
comparing the sha1/md5 checksums, and the grub configura-
tion file menu.lst by parsing the file and checking the content
to the newly calculated form.

V. CONFIGURATION AND MANAGEMENT SOFTWARE

A. Management Console
For network management, we provide a LiveCD for the

Linux management node. It serves as the starting point for any
configuration. If the LiveCD detects an USB-storage device at
boot time, it loads its configuration (ssl-certificates, passwords,
node-definitions, cfengine-keys). If no USB device is detected
with these configuration files, the LiveCD prompts the user to
provide the initial configuration parameters on console. Once
the LiveCD has its initial configuration, the user connects with
a web browser to the LiveCD’s SSL web server. The new
network can be defined on the setup page. One has to provide
the number of nodes, their host names and some passwords.
Then the LiveCD generates individual images for each node.
The user installs each image on the corresponding node.

On the web interface each node’s network setup may be
configured. This can either be done before generating the
images or afterwards when the nodes are already deployed.
In the second case the nodes will get their configuration from
one of their neighbor nodes if their configuration is already

Fig. 5. Management console: individual configuration page for one node.

available in the network or else signal the management console
that they have no configuration. Figure 5 shows a screenshot
of the web interface.

The user can adapt the configuration of the network at
any time. After a configuration has been setup, the new
configuration has to be committed in order to be distributed
by cfengine [17]. The whole configuration of the network,
including the current configuration of the LiveCD itself can
be stored on an USB-storage device, and restored at the
next start of the LiveCD. Therefore one LiveCD can be used
for managing more than one network. Its minimal hardware
requirements are: i586 compatible processor, 128 MB RAM,
Atapi/IDE cdrom device, USB port.

The LiveCD offers a development mode besides the man-
agement console mode. Started in development mode, the
LiveCD acts as full development system for the node image.
This functionality requires a free hard disk partition. In de-
velopment mode, the user is able to compile and install new
needed software for the node-image.

B. Distribution of Configuration Parameters

For the distribution of all configuration and possible updates
we use cfengine [17], [18], a powerful utility for organizing
and distributing system administration tasks in a network.

We use a distributed design as presented in Section II-A.
The only static parameters are the host names and the unique
public/private key-pair for each node. The configuration of the
network is dynamic and can be done at any time. In order
to work in such an environment cfengine is configured to
authenticate by host name and security key pair.

As the hosts have to be able to look up their names to
the current IP addresses even if no external name service is
available, the nodes have an individual /etc/hosts file. Each
time cfengine is executed, the /etc/hosts is dynamically created.
The script netcfpeers.sh tests the node’s peers with traceroute,

writes the /etc/hosts file and returns a list of available peers
to cfengine. Therefore, cfengine is able to distribute all of the
settings over different IP networks even if they are dynamic.
Each node stores all configurations of the networks. The public
keys of all nodes are distributed. This guarantees that every
node knows its neighbors.

Cfengine offers a lot of flexibility by its concept of dynamic
grouping of nodes into classes. The membership of a node to
a certain class is dynamically set by execution of any script.
According to the class all other actions of cfengine are defined.
We take advantage of this flexibility in our concept by defining
appropriate classes and actions.

The architecture of cfengine is based on pulling the desired
information from its peers. But it is possible to simulate a
push method by invoking the pull mechanism remotely. We
do not use this functionality and only rely on pulling. Every
node is server and client at the same time. In order to serve
requests for updating configuration files, the cfservd daemon
is running on each node. It only grants access to known
peers. Further, all transmissions of cfengine are encrypted.
The pulling mechanism cfexecd is executed by crond every
two minutes in our current setup, but the frequency can be
easily adapted. Cfagent first tries to update the configuration of
cfengine from its calculated peers within a random time-offset
of up to one minute. This reduces the probability of too many
simultaneous connections. After updating, cfengine carries out
administrative tasks. The current state of the node is checked
by scripts in order to classify the node for a particular class.
Afterwards, the new configuration is copied by comparing
the modification time of each file. During each run cfengine
tries to gather new information about the network from its
peers by copying the network.test directory. Periodically, every
15 minutes, cfengine checks for other updates like changed
configuration parameters or system updates. For example, a
class is defined in cfagent.conf for updates. A node is put

in this class if it receives a positive exit value when update-
test script is executed. If cfagent finds itself executed on a
node that has a newer version of these files available it will
just interact with the interface described in Section IV-C to
perform the update.

C. Network Update with User Interaction

If a new network configuration for a certain node is desired,
the user creates the configuration, e.g., with the management
console. The new configuration file is copied by the man-
agement console (or manually) to the exchangefiles directory.
Further, the user defines the wait cycles (intervall between two
cfagent runs, in our case two minutes) until the configuration
is permanent.

During the first cfengine cycle every node that has the
node with the new configuration as its own peer, gets the
information about the new configuration. The configuration is
not further processed, except of publishing it to other nodes.

The cfagent realizes the newer configuration files in the
network.test directory. The node is classified to belong to a
new class. This invokes an external bash module that takes care
of the setup. It discovers whether any dynamical network setup
needs to be done (DHCP). If this is the case, the node delays
the update to the next cycle. This procedure is repeated until
there is only statical configuration information. We have con-
figured udhcpc to virtually change the state of the device from
dynamic to static after having received the IP address from
the DHCP server. This static configuration is written back and
propagated as the new configuration to the node’s peers. After
all nodes have static IP addresses, the individual nodes save
their current configuration and remove the user interaction file
from previous updates. Further, they read the number of wait
cycles to keep the new configuration before falling back to
the old configuration. Then each individual node calculates
the new /etc/hosts file and the changed interfaces (and only
those) are restarted on the reconfigured node. The described
update procedure does not happen simultaneously, but is done
in a completely de-central way.

After the update each node indicates its readiness by touch-
ing a file in its exchangefiles directory. As soon as multiple
nodes are up again, the update notifications are distributed
over the new evolving network. The nodes are now waiting
for a user interaction during the defined fallback period. If no
user interaction has taken place, the nodes copy back their old
configuration and restart the affected network devices.

A user can check the state of the network on every single
node or over the web interface. If the network satisfies the
user’s requirements, he confirms the network to keep the cur-
rent configuration. The confirmation message has to reach all
of the nodes before they counted down their own wait cycles
(timer). If confirmed, the nodes set the current configuration
to default, disable the timer, and remove the old configuration.

If the network is in inconsistent state after partial successful
updates, it is recommend to define a timeout, after which a
node that has no connection to its previous neighbors reloads

the initial configuration and tries to join the network as a new
node (see Section V-D).

D. Plug&Play Integration of New Nodes

Fig. 6. A new node and its communication peer resolve the host name to
IP address mapping in order to exchange configuration.

A new node Nnew can join the deployed network and
is automatically configured, if it has a working base image
with the necessary keys. Image and keys can be generated
by the management console. There is no configuration needed
at the creation time of the image. All parameters including
the network configuration can be set, when a node joins the
network. There are two situations, in which a node is treated
as a new node:

1) The node had no connection for a given period of time
and thus falls back in new node mode. The node has
already all necessary keys of the network.

2) A brand-new node does not have all public keys of the
network. Either the node is created by the management
console and receives the public keys of the network as
well as its own public/private key pair with its image,
or the administrator has to copy all existing keys to the
new node manually. In both cases, the public key of the
new node has to be distributed to all existing nodes. The
management console takes care of all this work and will
distribute the keys using cfengine.

Nnew searches in all predefined configuration networks if
anyone is reachable (overhearing or active checks). If an active
node is found, the node selects an unoccupied IP address in
its IP network and tries to make two specific https requests.
The search is repeated until Nnew receives the correct answers
on its https requests. A more detailed view on the requests is
shown in Fig. 6:

1) Nnew connects to https://netnode/newnode.cgi and trans-
mits hreq= HELLOREQ,sha1(newnode.pub, newnode,
ticket) with ticket=floor(SystemTime / TicketValidTime).
The node in the network Nnet calculates hashes for
each node he knows according the rule: testhash=
sha1(node.pub, node, ticket). If one hash matches the
received one from Nnew and if no ticket from this node

was received the last TicketValidTime seconds, Nnet

knows the name and the IP address of Nnew and returns
hello=sha1(netnode.pub, netnode, ticket, hreq).

2) Nnew checks with the same procedure as Nnet in
step 1 if the received hello matches any known node.
Nnew sends the message join=JOIN,sha1(newnode.pub,
newnode, ticket, hello) via https://netnode/newnode.cgi
to Nnet to acknowledge the received message. Nnet

recognizes the join message as it knows the hello hash
and can calculate the join hash. Nnet now writes IP and
host name of Nnew to its /etc/hosts and replies with
ack=sha1(netnode.pub, netnode, ticket, join).

3) Nnew checks ack and writes Nnet host name and IP
address in its /etc/hosts.

4) Configuration of Nnew can now done by cfengine. If
a configuration for Nnew is already distributed, Nnew

will get it by cfengine, otherwise Nnew will show up
as a node waiting for configuration in the management
console.

There are some limitations of the described procedure. As it
would take a long time to search every possible IP network,
it is recommended to define some configuration networks. For
security reason (reply attacks) a new node can join a specific
node in the network only once in TicketValidTime seconds.
Therefore, if messages are lost, the node has to wait until the
ticket is invalid before its next try to join the same node in
the network.

VI. CONCLUSION AND FUTURE WORK

We have presented a distributed secure and safe manage-
ment architecture for WMNs. It supports the user in the
configuration task, and guarantees network availability even
after configuration errors or updates with faulty software
images. It does not require any additional infrastructure. The
whole configuration is done in-band. It offers timed updates.
A configuration can be tested and in case of errors the node
reverts to the old configuration after a certain amount of time.

As part of future work, we have planned extensive testing
of the described solution and support for IPv6. IPv6 would
provide unique IP addresses for all nodes. It simplifies dy-
namic setup, mobility management as well as security in
a WMN. As most parts of the embedded Linux already
support IPv6, only extensions to some configuration scripts are
needed. IPv4 Zeroconf protocols (e.g. multicast DNS) will be
integrated in our next release. We further focus on extensions
of configuration interface to include gateways to wireless
sensor networks. Other open issues are modular enhancements
of the management console in order to provide easy integration
of new configuration options, e.g. additional routing protocols,
experimentation setups.

ACKNOWLEDGEMENT

The work presented in this paper was partly supported by
the Swiss National Science Foundation under grant number
200020-113677/1.

REFERENCES

[1] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
evaluation of an unplanned 802.11b mesh network,” in MobiCom ’05:
Proceedings of the 11th annual international conference on Mobile
computing and networking. Cologne, Germany: ACM Press, August
2005, pp. 31–42.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level measurements from an 802.11b mesh network,” in International
Conferences on Broadband Networks (BroadNets), 2004.

[3] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the
ORBIT radio grid testbed for evaluation of next-generation wireless
network protocols,” in WCNC 2005 IEEE Wireless Communications and
Networking Conference, vol. 3, March 2005, pp. 1664 – 1669.

[4] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in 10th annual international conference on
Mobile computing and networking MobiCom ’04. Philadelphia, PA,
USA: ACM Press, 2004, pp. 114–128.

[5] ——, “Comparison of routing metrics for static multi-hop wireless
networks,” in Conference on Applications, technologies, architectures,
and protocols for computer communications SIGCOMM ’04. Portland,
Oregon, USA: ACM Press, August 2004, pp. 133–144.

[6] R. Karrer, A. Sabharwal, and E. Knightly, “Enabling large-scale wireless
broadband: The case for taps.” in 2nd Workshop on Hot Topics in
Networks (Hot-Nets II, Cambridge, MA, November 2003.

[7] C. C. Ho, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-
Royer, “A scalable framework for wireless network monitoring,” in
2nd ACM international workshop on Wireless mobile applications and
services on WLAN hotspots WMASH ’04. New York, NY, USA: ACM
Press, 2004, pp. 93–101.

[8] PC Engines GmbH, “Wireless Router Application Platform (WRAP),”
www.pcengines.ch, 2006. [Online]. Available: www.pcengines.ch

[9] M. Baker, G. Rozema, I. Kaloz, N. Thill, F. Fainelli, F. Fietkau,
M. Albon, and T. Yardley, “OpenWrt,” http://openwrt.org/, 2006.

[10] R. Landley, “Busybox,” http://www.busybox.net, 2006.
[11] E. Andersen, “uclibc,” http://www.ulibc.org, 2006.
[12] HLFS Development Team, “Hardened Linux From Scratch (HLFS),”

http://www.linuxfromscratch.org/hlfs, 2006.
[13] J. Jelinek, “Position Independent Executable (PIE),”

http://gcc.gnu.org/ml/gcc-patches/2003-06/msg00140.html, June 2003.
[14] PaX Project, “Pax,” http://pax.grsecurity.net/, 2006.
[15] B. Spengler, “Grsecurity,” http://www.grsecurity.net/, 2006.
[16] H. Etoh, “Stack Smashing Protector (SSP),” http://www.trl.ibm.com/

projects/security/ssp/, August 2005.
[17] M. Burgess, “Cfengine: a system configuration engine,”

http://www.cfengine.org, 1993.
[18] ——, “A tiny overview of cfengine: Convergent maintenance agent,”

in 1st International Workshop on Multi-Agent and Robotic Systems
MARS/ICINCO, Barcelona, Spain, September 2005.

