
A proof-theoretic characterization
of the basic feasible functionals

Thomas Strahm∗

Version of July 2004

Final version to appear in Theoretical Computer Science

Abstract

We provide a natural characterization of the type two Mehlhorn-Cook-
Urquhart basic feasible functionals as the provably total type two
functionals of our (classical) applicative theory PT introduced in [30],
thus providing a proof of a result claimed in the conclusion of [30].
This further characterization of the basic feasible functionals under-
pins their importance as a key candidate for the notion of type two
feasibility.

1 Introduction

In this paper we deal with applicative theories in the spirit of Feferman’s
explicit mathematics (cf. [12, 13]). The paper is a successor to Strahm [30]
(cf. also [29]), where so-called bounded applicative theories with a strong
relationship to classes of computational complexity have been introduced
and analyzed. For a more detailed background on applicative theories, we
refer the reader to [30] and the articles cited there. Recently, Cantini [7] has
studied substantial extensions of the theories introduced in [30] by choice
and uniformity principles as well as a form of self-referential truth.

The main emphasis in [30] is on four applicative systems PT, PS, PTLS,
and LS, and the determination of their provably total type one functions on
binary words as the functions computable in polynomial time, polynomial

∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-
strasse 10, CH-3012 Bern, Switzerland. Email: strahm@iam.unibe.ch. Homepage:
http://www.iam.unibe.ch/~strahm

1

space, polynomial time and linear space, as well as linear space, respectively.
The primary concern in the present paper is on the characterization of the
provably total type two functionals of the system PT. The methods developed
in the paper indeed also yield corresponding results for the systems PS, PTLS,
and LS, cf. our remarks in the conclusion of this article.

It is a distinguished advantage of applicative theories that they allow for a
very intrinsic and direct discussion of higher type issues, since higher types
arise naturally in the untyped setting. Moreover, due to the fact that the
untyped language does not a priori restrict the class of functionals which
can be expressed, it makes perfect sense to consider the class of higher type
functionals which are provably total in a given applicative system.

In the last decade, intense research efforts have been made in the area of so-
called higher type complexity theory and, in particular, feasible functionals
of higher types. This research is still ongoing and it is not yet clear what the
right higher type analogue of the polynomial time computable functions is.
Most prominent in the previous research is the class of so-called basic feasible
functionals Bff, which has proved to be a very robust class with various
kinds of interesting typed lambda calculus, function algebra, programming
language, and, most importantly, oracle Turing machine characterizations.

The basic feasible functionals of type 2, Bff2, were first studied in Melhorn
[25]. More than ten years later in 1989, Cook and Urquhart [11] introduced
the basic feasible functionals at all finite types in order to provide functional
interpretations of feasibly constructive arithmetic; in particular, they defined
a typed formal system PVω and used it to establish functional and realizabil-
ity interpretations of an intuitionistic version of Buss’ theory S1

2. The basic
feasible functionals Bff are exactly those functionals which can be defined by
PVω terms. Subsequently, much work has been devoted to Bff, cf. e.g. Cook
and Kapron [10, 20], Irwin, Kapron and Royer [19], Pezzoli [26], Royer [27],
and Seth [28]. The survey article Clote [9] contains some of the key results
concerning the basic feasible functionals.

The main result obtained in this article states that the provably total type
two functionals of PT coincide with the basic feasible functionals of type two;
this result has been announced in the conclusion of [30]. Moreover, in [30],
an embedding of PVω into PT has been exhibited. The characterization of
Bff2 as the provably total type two functionals of the classical applicative
theory PT gives further evidence for the naturalness and robustness of Bff2.

The plan of this paper is as follows. In Section 2 we provide a function
algebra definition of the type two basic feasible functionals. Section 3 is
devoted to a recapitulation of the applicative theory PT introduced in [30].

2

In Section 4 we set up a suitable notion of provably total type two functional
and show that the functionals in Bff2 are provably total in PT. The main
bulk of the paper is contained in Section 5, where basic feasible functionals
are extracted from quasi cut-free PT derivations by means of an extension
of the realizability argument used in [30]. We conclude the paper with some
remarks concerning related work and extensions of the results obtained in
this article.

2 The basic feasible functionals Bff

Let us start by giving the standard function algebra characterization of the
basic feasible functionals of type two, Bff2, cf. e.g. [9]. Alternatively, one
could define Bff2 as those functionals which are definable by closed type
two terms of the typed lambda calculus PVω, cf. e.g. [11, 30].

In the sequel we denote by W the set of finite binary words {ε, 0, 1, 00, 01, . . .},
more compactly, W = {0, 1}∗. Here ε signifies the empty word. As usual, we
let s0 and s1 denote the binary successor functions which concatenate 0 and
1 to the end of a given binary word, respectively. Moreover, ∗ and × stand
for the binary operations of word concatenation and word multiplication,
respectively, where x×y denotes the word x, length of y times concatenated
with itself.

A type 1 function is a mapping from W to W. We will write WW for the set of
all functions from W to W. A type 2 functional is a mapping from (WW)k×Wl

to W, for some k, l. We call such a mapping a functional of rank (k, l). In

the sequel we let F (~f, ~x), G(~f, ~x), . . . range over type two functionals. An
important type 2 functional is the so-called application functional Ap, which
is defined as Ap(f, x) = f(x), for all f, x.

In the following we introduce some schemes for defining functionals. F is
defined from H, G1, . . . , Gm by functional composition if for all ~f, ~x,

F (~f, ~x) = H(~f, G1(~f, ~x), . . . , Gm(~f, ~x)).

F is defined from G by expansion if for all ~f,~g, ~x, ~y,

F (~f,~g, ~x, ~y) = G(~f, ~x).

F is defined from G, H0, H1, K by bounded recursion on notation (BRN) if

for all ~f, ~x, y,

F (~f, ~x, ε) = G(~f, ~x),

F (~f, ~x, siy) = Hi(~f, ~x, y, F (~f, ~x, y)), (i = 0, 1)

F (~f, ~x, y) ≤ K(~f, ~x, y).

3

Here x ≤ y signifies that the length of the word x is less than or equal to the
length of the word y.

We are now ready to define the class Bff2 of basic feasible functionals of
type 2. Bff2 is the smallest class of functionals such that

(i) the 0-ary function constant to ε, the identity function, the binary suc-
cessor functions s0 and s1, word concatenation ∗, and word multiplica-
tion × belong to Bff2;

(ii) the application functional Ap belongs to Bff2;

(iii) Bff2 is closed under functional composition and expansion;

(iv) Bff2 is closed under bounded recursion on notation (BRN).

Since we will only be dealing with type two functionals in this paper, we
will often simply write Bff instead of Bff2. For an extensive survey on the
many characterizations of the type two basic feasible functionals we refer the
reader to the paper by Irwin, Kapron, and Royer [19].

3 The applicative theory PT

In this section we will recapitulate the theory PT that we have introduced
and analyzed in Strahm [30], and we will survey some of its standard models
and extensions.

The applicative theory PT is formulated in the language L; it is a language of
partial terms with individual variables a, b, c, x, y, z, u, v, f, g, h, . . . (possibly
with subscripts). L includes individual constants k, s (combinators), p, p0, p1

(pairing and unpairing), dW (definition by cases on binary words), ε (empty
word) s0, s1 (binary successors), pW (binary predecessor), c⊆ (initial subword
relation), as well as the two constants ∗ (word concatenation) and × (word
multiplication). Finally, L has a binary function symbol · for (partial) term
application, unary relation symbols ↓ (defined) and W (binary words) as well
as a binary relation symbol = (equality).

The terms r, s, t, . . . of L (possibly with subscripts) are inductively gener-
ated from the variables and constants by means of application ·. We write
ts instead of ·(t, s) and follow the standard convention of association to the
left when omitting brackets in applicative terms. As usual, (s, t) is a short-
hand for pst. Moreover, we use the abbreviations 0 and 1 for s0ε and s1ε,
respectively. Furthermore, we write s ⊆ t instead of c⊆st = 0 and s ≤ t for

4

×1s ⊆ ×1t; s ⊂ t and s < t are understood accordingly. Finally, s∗t stands
for ∗st, and s×t for ×st.

The formulas A, B, C, . . . of L (possibly with subscripts) are built from the
atomic formulas (s = t), s↓ and W(s) by closing under negation, disjunction,
conjunction, implication, as well as existential and universal quantification
over individuals.

Our conventions concerning substitutions are as follows. As usual we write
t[~s/~x] and A[~s/~x] for the substitution of the terms ~s for the variables ~x in
the term t and the formula A, respectively. In this connection we often write
A(~x) instead of A and A(~s) instead of A[~s/~x].

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as t is defined or t
has a value. The partial equality relation ' is introduced by

s ' t := (s↓ ∨ t↓) → (s = t).

In the following we will use the following natural abbreviations concerning
the predicate W (~s = s1, . . . , sn):

~s ∈ W := W(s1) ∧ · · · ∧W(sn),

(∃x ∈ W)A := (∃x)(x ∈ W ∧ A),

(∀x ∈ W)A := (∀x)(x ∈ W → A),

(∃x ≤ t)A := (∃x ∈ W)(x ≤ t ∧ A),

(∀x ≤ t)A := (∀x ∈ W)(x ≤ t → A),

(t : W → W) := (∀x ∈ W)(tx ∈ W),

(t : Wm+1 → W) := (∀x ∈ W)(tx : Wm → W).

We call an L formula positive if it is built from the atomic formulas by means
of disjunction, conjunction as well as existential and universal quantification
over individuals; i.e., the positive formulas are exactly the implication and
negation free L formulas. We let POS stand for the collection of positive
formulas. Further, an L formula is called W free, if the relation symbol W
does not occur in it.

Most important in the sequel are the so-called bounded (with respect to W)
existential formulas or Σb

W formulas of L. A formula A(f, x) belongs to the
class Σb

W if it has the form (∃y ≤ fx)B(f, x, y) for B(f, x, y) a positive and
W free formula. It is important to recall here that bounded quantifiers range
over W, i.e., (∃y ≤ fx)B(f, x, y) stands for

(∃y ∈ W)[y ≤ fx ∧ B(f, x, y)].

5

Further observe that the matrix B of a Σb
W formula can have unrestricted

existential and universal individual quantifiers, not ranging over W, however.

Assuming that the bounding operation f in a Σb
W formula has polynomial

growth, Σb
W formulas can be seen as a very abstract applicative analogue

of Buss’ Σb
1 formulas (cf. [6]) or Ferreira’s NP formulas (cf. [14, 15]). No-

tice, however, whereas the latter classes of formulas define exactly the NP
predicates, Σb

W formulas of L in general define undecidable sets in the stan-
dard models of PT described below; indeed already equality between terms
is undecidable in these models.

We now introduce the applicative theory PT. The underlying logic of PT is
the classical logic of partial terms due to Beeson [2, 3]; it corresponds to E+

logic with strictness and equality of Troelstra and Van Dalen [31]. According
to this logic, quantifiers range over defined objects only, so that the usual
axioms for ∃ and ∀ are modified to

A(t) ∧ t↓ → (∃x)A(x) and (∀x)A(x) ∧ t↓ → A(t),

and one further assumes that (∀x)(x↓). The strictness axioms claim that
if a compound term is defined, then so also are all its subterms, and if a
positive atomic statement holds, then all terms involved in that statement
are defined. Note that t↓ ↔ (∃x)(t = x), so definedness need not be taken
as basic symbol. The reader is referred to [2, 3, 31] for a detailed exposition
of the logic of partial terms.

The non-logical axioms of PT first of all include the defining axioms for the
constants and relations of L, which are divided into the following six groups.

I. Partial combinatory algebra and pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),

(3) p0(x, y) = x ∧ p1(x, y) = y.

II. Definition by cases on W

(4) a ∈ W ∧ b ∈ W ∧ a = b → dWxyab = x,

(5) a ∈ W ∧ b ∈ W ∧ a 6= b → dWxyab = y.

III. Closure, binary successors and predecessor

(6) ε ∈ W ∧ (∀x ∈ W)(s0x ∈ W ∧ s1x ∈ W),

6

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W → W ∧ pWε = ε,

(9) x ∈ W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈ W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

IV. Initial subword relation.

(11) x ∈ W ∧ y ∈ W → c⊆xy = 0 ∨ c⊆xy = 1,

(12) x ∈ W → (x ⊆ ε ↔ x = ε),

(13) x ∈ W ∧ y ∈ W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y),

V. Word concatenation.

(14) ∗ : W2 → W,

(15) x ∈ W → x∗ε = x,

(16) x ∈ W ∧ y ∈ W → x∗(s0y) = s0(x∗y) ∧ x∗(s1y) = s1(x∗y).

VI. Word multiplication.

(17) × : W2 → W,

(18) x ∈ W → x×ε = ε,

(19) x ∈ W ∧ y ∈ W → x×(s0y) = (x×y)∗x ∧ x×(s1y) = (x×y)∗x.

Finally, and most crucially, PT includes the induction axioms (Σb
W-IW). This

principle allows induction along W with respect to formulas in the class
Σb

W, under the proviso that the bounding operation f has the right type.
Accordingly, the scheme (Σb

W-IW) of Σb
W notation induction on W includes

for each formula A(x) ≡ (∃y ≤ fx)B(f, x, y) in the formula class Σb
W,

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧ A(s1x))

→ (∀x ∈ W)A(x)
(Σb

W-IW)

Two fundamental consequences of the partial combinatory algebra axioms (1)
and (2) of PT are the theorem about lambda abstraction and the recursion or
fixed point theorem, cf. [30] and [2, 12] for a proof. Clearly, recursion nicely
demonstrates the power of self-application. It will be an essential tool for
defining functionals in the next section of this paper.

7

Let us briefly turn to some models of the theory PT. First of all, the model
PRO of partial recursive operations is the standard recursion-theoretic model
of PT. The universe of PRO consists of the set of all finite 0-1 sequences
W = {0, 1}∗, and W is interpreted by W. Application · is interpreted as
partial recursive function application, i.e. x · y means {x}(y) in PRO , where
{x} is a standard enumeration of the partial recursive functions over W. It
is easy to find interpretations of the constants of L so that all the axioms of
PT are true in PRO .

A further important model of PT is the open term model M(λη). This
model is based on the usual λη reduction of the untyped lambda calculus
(cf. [1, 17]) and exploits the well-known equivalence between combinatory
logic with extensionality and λη. In order to deal with the constants different
from k and s, one extends λη reduction by the obvious reduction clauses for
these new constants and checks that the so-obtained new reduction relation
enjoys the Church Rosser property.1

The universe of the model M(λη) now consists of the set of all L terms.
Equality = means reduction to a common reduct and W is interpreted as the
set of all L terms t so that t reduces to a “canonical” word w for some w ∈ W.2

Finally, the constants are interpreted as indicated above and application of t
to s is simply the term ts. As usual, we write M(λη) |= A in order to express
that the formula A is true in M(λη). Let us observe that in the term model
M(λη), two important additional principles are satisfied, namely the axioms
(Tot) for totality of application and (Ext) for extensionality of operations,

(Tot) (∀x, y)(xy↓) (Ext) (∀f, g)[(∀x)(fx = gx) → f = g]

There are many more interesting models of the combinatory axioms, which
can easily be extended to models of PT. These include further recursion-
theoretic models, term models, continuous models, generated models, and
set-theoretic models. For detailed descriptions and results the reader is re-
ferred to Beeson [2], Feferman [13], and Troelstra and van Dalen [32].

1Actually, suitable interpretations for the constants c⊆, ∗ and × can also be given using
the other constants of L; this is easily accomplished by making use of the above-mentioned
recursion or fixed point theorem.

2For each w ∈ W, we let w denote the canonical closed L term for w which is constructed
form ε by means of the successor operations s0 and s1; in the sequel we sometimes identify
w with w when working in the language L.

8

4 Bff in PT

In this section we first clarify the notion of a provably total type two func-
tional in a given applicative theory. Then we show that the basic feasible
functionals of type two are provably total in PT. Indeed, this result already
follows from our embedding of PVω into PT in [30], but we recapitulate the
argument below in order to make the paper self-contained.

Assume that M is a standard structure for L, i.e., a structure where the
predicate W for binary words obtains a standard interpretation. What does
it mean for a functional F of rank (k, l) to be definable in M? To answer
this question, let us temporarily write WW for the set of all individuals f in
the universe |M| of M so that f : W → W is true in M. Further, for such
an f , write f̂ for the function from W to W that is defined by f in M.

Now we call a type 2 functional F of rank (k, l) definable in M, if there
exists a closed L term tF so that we have for all f1, . . . , fk in WW and all
w1, . . . , wl in W that

M |= tF f1 . . . fkw1 . . . wl = F (f̂1, . . . , f̂k, w1, . . . , wl).
3

Observe that if g1, . . . , gk, h1, . . . , hk ∈ WW such that ĝ1 = ĥ1, . . . , ĝk = ĥk,
then definability of F in M via tF yields for all w1, . . . , wl ∈ W,

M |= tF g1 . . . gkw1 . . . wl = tF h1 . . . hkw1 . . . wl.

As a final preparatory step towards the crucial notion of a provably total
type 2 functional, let us use the following abbreviation in the language L,

t : (WW)k ×Wl → W := (∀~f : W → W)(∀~x ∈ W)t ~f~x ∈ W.

Here ~f and ~x have length k and l, respectively. Now let T be an L theory
and F a type 2 functional of rank (k, l). We call F provably total in T, if
there exists a closed L term tF such that

(i) T tF : (WW)k ×Wl → W, and, in addition,

(ii) tF defines F in the open term model M(λη).

In (ii) we have chosen M(λη), since the open term model is the standard
model of the theory PT + (Tot) + (Ext), for which proof-theoretic upper

3Note that if tF defines F in M, then it defines each functional F ′ which differs from
F on function arguments not in WW only. For this reason, we will identify F with all
such F ′s when using the notion of definability of a type two functional in a model M.

9

bounds will be established in the next section. If one is only interested in
PT without (Ext) and (Tot), one could equally well choose the recursion-
theoretic model PRO in (ii). Moreover, if the reader finds it unnatural that
not all set-theoretic functions from W to W live in M(λη) or PRO , it is
worth mentioning that there are suitable extensions of these models, with
codes added for all functions from W to W, cf. e.g. Feferman [12]. Moreover,
the arguments given in this paper are easily seen to work for these extended
models.

We are now ready to show that all functionals in Bff are provably total in
our applicative theory PT. The argument given below makes crucial use of
the recursion theorem and Σb

W notation induction.

Theorem 1 The basic feasible functionals are provably total in PT.

Proof Clearly, the initial functions (i) of Bff are easily shown to be provably
total in PT. In addition, the application functional Ap is represented by the
L term λf, x.fx. Further, the provably total functions of PT are readily seen
to be closed under functional composition and expansion. Hence, the crucial
step of the proof consists in establishing closure under bounded recursion on
notation (BRN).

Firstly, we will need the cut-off operator | in order to describe bounded
recursion in PT. Informally speaking, t | s is t if t ≤ s and s else. More
formally, we can make use of definition by cases dW and the characteristic
function c⊆ in order to define |; then t | s simply is an abbreviation for the
L term dWts(c⊆(1×t)(1×s))0.

Assume now that the basic feasible functional F of rank (k, l) has been de-
fined from G, H0, H1, and K by bounded recursion on notation. By induction
hypothesis, we know that the latter functionals are provably total in PT via
L terms tG, tH0 , tH1 , and tK , respectively. Next, we invoke the recursion the-
orem and definition by cases on W in order to find a closed L term tF , so
that we have for all ~f, ~x, and y ∈ W,

tF ~f~xε ' tG ~f~x | tK ~f~xε,

tF ~f~x(siy) ' tHi
~f~xy(tF ~f~xy) | tK ~f~x(siy) (i = 0, 1).

Assume now, in addition, that ~f : W → W and ~x ∈ W, and consider the Σb
W

formula A(y) given as follows,

A(y) := (∃z ≤ tK ~f~xy)(tF ~f~xy = z).

Observe that our assumptions readily yield tK ~f~x : W → W. Using the above
recursion equations and the fact that tG, tH0 , tH1 , and tK are already known

10

to have the correct type, provably in PT, we can immediately derive by Σb
W

notation induction on W the statement (∀y ∈ W)A(y). All together we have
shown that PT proves tF : (WW)k ×Wl → W. This ends our proof that the
basic feasible functionals are provably total in PT. 2

5 Extracting Bff’s from PT derivations

In this section we will show that the lower bound established in the previous
section is indeed sharp, i.e., each provably total type 2 functional of PT is
basic feasible. Our upper bound argument is in fact a refinement of the
argument used in Strahm [30] in order to show that the provably total type
1 functions of PT are computable in polynomial time. As we have already
mentioned, we will directly treat the extension of PT by the axioms (Tot)
and (Ext), which we will call PT+ in the sequel. Observe that PT+ proves t↓
for each L term t, so that the logic of partial terms can be replaced by usual
first order classical predicate calculus with equality.

Similarly to [30], the upper bound argument proceeds in two steps. Firstly,
a sequent-style reformulation of PT+ is used to show that cut formulas in
PT+ derivations can be restricted to be positive. The second crucial step
consists in providing a realizability interpretation in the standard open term
model M(λη) of PT+ in order to extract type two functionals in Bff from
quasi-normal PT+ derivations.

In the following we let Γ, ∆, Λ, . . . range over finite sequences of formulas in
the language L; a sequent is a formal expression of the form Γ ⇒ ∆. As
usual, the natural interpretation of the sequent A1, . . . , An ⇒ B1, . . . , Bm is
(A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm). Our sequent-style reformulation of PT+

is presented in detail in [30] so that that we can confine ourselves to a brief
sketch here. We presuppose the context-sharing version of Gentzen’s sequent
calculus LK as our logical basis. The main task is to set up a sequent-style
reformulation of PT+ so that all main formulas of non-logical axioms and
rules are positive. This is easily achieved for axioms (1)–(19) of PT as well as
the equality and extensionality axioms, cf. [30]. Moreover, the axiom schema
(Σb

W-IW) of PT+ for Σb
W notation induction on W is replaced by a suitable

rule of inference in the Gentzen-style formulation of PT+. For that purpose,
let A(u) be of the form (∃y ≤ tu)B(u, y) for B being a positive and W free
formula. Then an instance of the (Σb

W-IW) notation induction rule is given
as follows,

Γ, W(u) ⇒ W(tu), ∆ Γ ⇒ A(ε), ∆ Γ, W(u), A(u) ⇒ A(siu), ∆

Γ, W(s) ⇒ A(s), ∆

11

Here u denotes a fresh variable not occurring in Γ, ∆ and i ranges over 0, 1,
i.e., the rule of inference has four premises. Clearly, the main formulas of
this rule are positive.

It should be clear that we have provided an adequate sequent-style reformu-
lation of PT+; in particular, the axiom schema (Σb

W-IW) as given in Section 3
of this paper is readily derivable by means of the corresponding rule of infer-
ence stated above, where as usual the presence of side formulas is crucial. In
the following we often identify PT+ with its Gentzen-style version and write
PT+ Γ ⇒ ∆ in order to express that the sequent Γ ⇒ ∆ is derivable
in PT+. Moreover, we will use the notation PT+

?
Γ ⇒ ∆ if the sequent

Γ ⇒ ∆ has a proof in PT+ so that all cut formulas appearing in this proof
are positive.

Due to the fact that all the main formulas of non-logical axioms and rules
of PT+ are positive, we now obtain the desired partial cut elimination the-
orem for PT+. Its proof is immediate from the well-known proof of the cut
elimination theorem for LK (cf. e.g. Girard [16]) and is therefore omitted.

Theorem 2 (Partial cut elimination for PT+) We have for all sequents
Γ ⇒ ∆ that PT+ Γ ⇒ ∆ entails PT+

?
Γ ⇒ ∆.

The second crucial step in our upper bound argument consists in a realiz-
ability interpretation applied to quasi cut-free PT+ derivations of sequents
of suitable formulas. Whereas in [30] we could confine ourselves to sequents
of positive formulas, in the present context we need to consider a larger class
of formulas since we want to extract computational information about the
provably total functionals of type 2. Recall that the totality statements in
which we are interested have the general form t : (WW)k×Wl → W; this can
be rewritten in sequent and free variable form in the following manner,

f1 : W → W, . . . , fk : W → W, x1 ∈ W, . . . , xl ∈ W ⇒ tf1 . . . fkx1 . . . xl ∈ W

This motivates the following definition. A formula A belongs to the class C1,
if A is in POS, or there are formulas B, C in POS so that A has the form
(B → C) or (∀x)(B → C). Clearly, the above sequent consists of C1 formulas
only, and, moreover, the formula on the right hand side of ⇒ is positive.

The following corollary directly follows from the above partial cut elimination
theorem and a quick inspection of the axioms and rules of PT+. It will be
crucial for our realizability arguments below.

Corollary 3 Assume that Γ and ∆ are finite sequences of formulas in C1

and POS, respectively, such that PT+ Γ ⇒ ∆. Then Γ ⇒ ∆ has a PT+

derivation all of whose sequents consist of C1 formulas on the left of ⇒ and
POS formulas on the right of ⇒ .

12

In a next step we now want to define realizability for formulas in the class
C1. As already mentioned above, we will make use of the standard open term
model M(λη) of PT+. We first spell out our realizability notion for the class
of positive formulas and then extend it to all C1 formulas.

Realizers ρ, σ, τ, . . . of positive formulas are simply elements of the set W
of binary words. Below we presuppose a polynomial time pairing operation
〈·, ·〉 on W with associated projections (·)0 and (·)1. Further, for each natural
number i let us write i2 for the binary notation of i. The crucial notion ρ r A
(“ρ realizes A”) for ρ ∈ W and A a positive formula, is given inductively as
spelled out below. It corresponds to the definition of realizability in [30].4

ρ r W(t) if M(λη) |= t = ρ,

ρ r (t1 = t2) if ρ = ε and M(λη) |= t1 = t2,

ρ r (A ∧B) if ρ = 〈ρ0, ρ1〉 and ρ0 r A and ρ1 r B,

ρ r (A ∨B) if ρ = 〈i, ρ0〉 and either i = 0 and ρ0 r A or

i = 1 and ρ0 r B,
ρ r (∀x)A(x) if ρ r A(t) for all terms t,

ρ r (∃x)A(x) if ρ r A(t) for some term t.

If Γ denotes the sequence of positive formulas A1, . . . , An and ~ρ = ρ1, . . . , ρn,
then we write ~ρ r Γ if ρi r Ai for all 1 ≤ i ≤ n. Moreover, if ∆ denotes the
sequence B1, . . . , Bm of positive formulas, then we say that ρ disjunctively
realizes the sequence ∆, in symbols, ρ r∨ ∆, if ρ = 〈i2, ρ0〉 for some 1 ≤ i ≤ m
and ρ0 r Bi. Hence, according to the notion ρ r∨ ∆, the sequence ∆ is
understood disjunctively, i.e. as the succedent of a given sequent.

We proceed by extending our realizability notion from positive formulas to
formulas in the class C1. Realizers Θ, Φ, Ψ, . . . of formulas in C1 \ POS are
arbitrary functions from W to W. In the following definition, A and B denote
formulas in the class POS.

Θ r (A → B) if ρ r A entails Θ(ρ) r B for all ρ,

Θ r (∀x)(A(x) → B(x)) if Θ r (A(t) → B(t)) for all terms t.

Similarly as above, if Γ = A1, . . . , An denotes a sequence of formulas in
C1 \ POS and ~Θ = Θ1, . . . , Θn, then we write ~Θ r Γ in order to express that
Θi r Ai for all 1 ≤ i ≤ n.

4The only minor difference to [30] is the infinitary clause for ∀, which is inessential for
positive formulas but necessary in the realizability of C1 formulas below.

13

Let us conclude our definition of the notion of realizability by observing
that it preserves equality in M(λη), i.e., if Θ and ρ realize A(s) and B(s),
respectively, and M(λη) |= s = t, then also A(t) and B(t) are realized by Θ
and ρ, respectively.

Let us introduce some final pieces of notation before we state the crucial
realizability theorem for PT+. For an L formula A we write A[~u] in order
to express that all the free variables occurring in A are contained in the
list ~u. The analogous convention is used for finite sequences of L formu-
las. Moreover, let Γ be a finite sequence of C1 formulas and assume that
Ai1 , . . . , Aik and Bj1 , . . . , Bjl

are the unique subsequences of Γ so that Air

is in C1 \ POS and Bjs is in POS for all 1 ≤ s ≤ k and 1 ≤ r ≤ l. If
~Θ = Θ1, . . . , Θk and ~ρ = ρ1, . . . , ρl, then the notation ~Θ, ~ρ r Γ simply ex-
presses that ~Θ r Ai1 , . . . , Aik and ~ρ r Bj1 , . . . , Bjl

.

The following realizability theorem is an extension of the corresponding re-
alizability theorem for PT+ in Strahm [30]. There are, however, some subtle
points in the proof to be taken care of, which could be handled in a more
direct manner in [30]. In particular, bounding arguments using monotonicity
have to be avoided in the context of the basic feasible functionals.

Theorem 4 (Extended realizability for PT+) Let Γ be a finite sequence
of formulas in C1 and let ∆ be a finite sequence of formulas in POS, and as-
sume that PT+

?
Γ[~u] ⇒ ∆[~u]. Then there exists a basic feasible functional

F so that we have for all terms ~s, and all ~Θ and ~ρ of appropriate length:

~Θ, ~ρ r Γ[~s] =⇒ F (~Θ, ~ρ) r∨ ∆[~s].

Proof The claim is proved by induction on the length of quasi cut-free deriva-
tions of sequents consisting of C1 formulas on the left and POS formulas on
the right. It is important that our realizing functions are invariant under
substitutions of terms ~s for the free variables ~u in the sequent Γ[~u] ⇒ ∆[~u].
This fact is always immediate and, therefore, in order to simplify notation,
we sometimes suppress substitutions in our discussion below.

First of all, the treatment of all logical and non-logical axioms of PT+ and the
rules of inference for ∨,∧,∃,∀ as well as cut and structural rules is identical
to the proof of Theorem 15 in Strahm [30], with the only difference that now
the realizing Bff′s in general have function arguments. Hence, we refer the
reader to [30] for a detailed treatment of these axioms and rules.

In the following let us address the rule for introduction of → on the left hand
side of a sequent. Assume that our last inference is of the form

Γ ⇒ A, ∆ Γ, B ⇒ ∆

Γ, A → B ⇒ ∆
,

14

and that F0 and F1 are the two realizing functionals in Bff for the left
and the right premise of this rule, respectively, given to us by the induction
hypothesis. Then we define the realizing functional F for the conclusion of
this rule by

F (~Θ, Ψ, ~ρ) =

{
〈(F0(~Θ, ~ρ))0 − 1, (F0(~Θ, ~ρ))1〉 if F0(~Θ, ~ρ)0 6= 1,

F1(~Θ, ~ρ, Ψ(F0(~Θ, ~ρ)1)) otherwise.

Clearly, F realizes the conclusion of the rule, and, moreover, F is in Bff.
Observe that we do not have to consider the rule for introduction of → on
the right hand side, due the the special form of our sequents. In fact, the
latter rule would not be realizable for obvious reasons.

Let us now turn to the treatment of the Σb
W notation induction rule on W.

The corresponding analysis is similar to the one given in [30]. However,
the context of the basic feasible functionals requires more elaboration on
certain subtle points. For example, in [30] we have implicitly used the fact
that each polynomial time computable function is majorized by a monotone
polynomial, a fact which does not hold for the Bff’s. In the following, let
us describe the treatment of Σb

W induction on W in all detail. According to
the four premises of this rule, we have quasi cut-free PT+ derivations of the
four sequents

Γ, W(u) ⇒ W(tu), ∆,

Γ ⇒ A(ε), ∆,

Γ, W(u), A(u) ⇒ A(siu), ∆, (i = 0, 1)

for A(u) being of the form (∃y ≤ tu)B(u, y) with B positive and W free.
Hence, the induction hypothesis guarantees the existence of four basic feasible
functionals F, Gε, G0, and G1, so that we have for all L terms ~s and all
~Θ, ~ρ, σ, τ ,

~Θ, ~ρ r Γ[~s] =⇒ F (~Θ, ~ρ, σ) r∨ W(t[~s](σ)), ∆[~s],(1)

~Θ, ~ρ r Γ[~s] =⇒ Gε(~Θ, ~ρ) r∨ A[~s, ε], ∆[~s],(2)

~Θ, ~ρ r Γ[~s], τ r A[~s, σ] =⇒ Gi(~Θ, ~ρ, σ, τ) r∨ A[~s, siσ], ∆[~s] (i = 0, 1)(3)

It is our aim to find a basic feasible realizing functional for the conclusion of
the notation induction rule, i.e., a functional H in Bff so that we have for
all ~Θ, ~ρ, σ,

(4) ~Θ, ~ρ r Γ[~s] =⇒ H(~Θ, ~ρ, σ) r∨ A[~s, σ], ∆[~s].

15

The desired functional H is defined by recursion on notation on σ as follows:

H(~Θ, ~ρ, ε) = Gε(~Θ, ~ρ),

H(~Θ, ~ρ, siσ) =

H(~Θ, ~ρ, σ) if H(~Θ, ~ρ, σ)0 6= 1,

F (~Θ, ~ρ, siσ) if H(~Θ, ~ρ, σ)0 = 1 and

F (~Θ, ~ρ, siσ)0 6= 1,

Gi(~Θ, ~ρ, σ, H(~Θ, ~ρ, σ)1) otherwise.

It is now easy to verify (4) by (meta) notation induction on σ, using our
assertions (1)–(3) from the induction hypothesis.

In order to show that H is indeed basic feasible, we have to exhibit a bounding
functional K in Bff so that

(5) H(~Θ, ~ρ, σ) ≤ K(~Θ, ~ρ, σ)

for all ~Θ, ~ρ, σ. Indeed, it is clearly enough to bound H under the assumption
~Θ, ~ρ r Γ[~s], and we will see that our bounding functional K does not depend
on ~s. As we have already mentioned above, in the sequel we must avoid the
use of monotonicity arguments as they have been employed in [30].

We start our considerations concerning bounding by first defining an auxil-
iary functional H̃, which differs from H in the third case of the above case
distinction only. We will show that H̃ is basic feasible and use this fact
to rewrite H in such a way that an appropriate bounding functional for H
will fall out at once. H̃ is defined by recursion on notation in the following
manner:

H̃(~Θ, ~ρ, ε) = Gε(~Θ, ~ρ),

H̃(~Θ, ~ρ, siσ) =

H̃(~Θ, ~ρ, σ) if H̃(~Θ, ~ρ, σ)0 6= 1,

F (~Θ, ~ρ, siσ) if H̃(~Θ, ~ρ, σ)0 = 1 and

F (~Θ, ~ρ, siσ)0 6= 1,

Gi(~Θ, ~ρ, σ, H̃(~Θ, ~ρ, σ)1) if H̃(~Θ, ~ρ, σ)0 = 1 and

F (~Θ, ~ρ, siσ)0 = 1 and

Gi(~Θ, ~ρ, σ, H̃(~Θ, ~ρ, σ)1)0 = 1,
〈0, 0〉 otherwise.

Observe that if the definition of H̃ enters the last case of the above case
distinction, then H̃(~Θ, ~ρ, siσ) is set to 〈0, 0〉 and remains constant afterwards.

Moreover, for all subwords τ of σ, H̃(~Θ, ~ρ, τ) equals H(~Θ, ~ρ, τ) and, hence,

property (4) above also holds for H̃ instead of H for such τ ’s.

16

It is our aim now to find a bounding functional K̃ for H̃, again under the
proviso ~Θ, ~ρ r Γ[~s]. The crucial case in bounding H̃ is case three in the above

case distinction. There H̃(~Θ, ~ρ, siσ) is defined to be Gi(~Θ, ~ρ, σ, H̃(~Θ, ~ρ, σ)1)
under the assumptions

(6) H̃(~Θ, ~ρ, σ)0 = 1, Gi(~Θ, ~ρ, σ, H̃(~Θ, ~ρ, σ)1)0 = 1, F (~Θ, ~ρ, siσ)0 = 1.

These facts together with (1)–(3) and our discussion above readily entail the
following two assertions:

(7) H̃(~Θ, ~ρ, siσ)1 r A[~s, siσ] and F (~Θ, ~ρ, siσ)1 r W(t[~s](siσ)).

But now we have to recall that the formula A[~s, siσ] has the shape

(∃y ∈ W)[y ≤ t[~s](siσ) ∧ B[~s, y, siσ]],

with B positive and W free; hence, the only occurrence of W in A[~s, siσ]
stems from the leading bounded existential quantifier. But the bounding
term t[~s](siσ) of this quantifier evaluates to F (~Θ, ~ρ, siσ)1 in M(λη) according
to (7). It is now a matter of routine to find a basic feasible functional I5 so
that under our assumption (6), we have

H̃(~Θ, ~ρ, siσ) = Gi(~Θ, ~ρ, σ, H̃(~Θ, ~ρ, σ)1) ≤ I(~Θ, ~ρ, siσ).

Hence, we were able to bound H̃ in case we are in the third case of the above
case distinction.

In order to find the final bounding functional K̃ for H̃, we first note that the
basic feasible functionals are closed under the bounded maximum functional,
cf. Cook and Kapron [10]. More precisely, if N is a Bff, then the functional
M defined by

M(~Θ, ~ρ, σ) = max
τ⊆σ

N(~Θ, ~ρ, τ)

is in Bff, too, where max is understood with respect to the (tally) length of
binary words. Hence, we can now spell out the desired bounding functional
K̃ for H̃, where as above, ∗ denotes concatenation of binary words.

K̃(~Θ, ~ρ, σ) = max
τ⊆σ

(
F (~Θ, ~ρ, τ)∗I(~Θ, ~ρ, τ)

)
∗〈0, 0〉

Inspecting the definition of H̃, one readily sees that K̃ does its job. Thus,
we have established that H̃ is a basic feasible functional.

5The definition of I makes use of F and is defined according to the specific form of the
Σb

W formula A; the precise definition is tedious but obvious, given our simple notion of
realizability for positive formulas.

17

Finally, in the light of our discussion following the definition of H̃, an easy
(meta) inductive argument shows that the recursion equations for our main

functional H defined above can be rewritten by means of H̃ in the following
manner:

H(~Θ, ~ρ, ε) = Gε(~Θ, ~ρ),

H(~Θ, ~ρ, siσ) =

H(~Θ, ~ρ, σ) if H(~Θ, ~ρ, σ)0 6= 1,

F (~Θ, ~ρ, siσ) if H(~Θ, ~ρ, σ)0 = 1 and

F (~Θ, ~ρ, siσ)0 6= 1,

Gi(~Θ, ~ρ, σ, H(~Θ, ~ρ, σ)1) if H(~Θ, ~ρ, σ)0 = 1 and

F (~Θ, ~ρ, siσ)0 = 1 and

Gi(~Θ, ~ρ, σ, H(~Θ, ~ρ, σ)1)0 = 1,

Gi(~Θ, ~ρ, σ, H̃(~Θ, ~ρ, σ)1) otherwise.

Clearly, an adequate basic feasible bounding functional K for H satisfying
(5) is given by the obvious definition

K(~Θ, ~ρ, σ) = K̃(~Θ, ~ρ, σ)∗max
τ⊆σ

max
i=0,1

(
Gi(~Θ, ~ρ, τ, H̃(~Θ, ~ρ, τ)1)

)
Observe that the first three cases in the above rewriting of H are covered
by the K̃ functional, whereas the last case is taken care of by the second
functional in the above definition of K. Hence, K is indeed a bounding
functional for H.

This ends our proof that H is in Bff and, hence, the treatment of the Σb
W

notation induction rule. The proof of the extended realizability theorem is
thus complete. 2

Corollary 5 Let t be a closed L term and assume that the sequent

f1 : W → W, . . . , fk : W → W, x1 ∈ W, . . . , xl ∈ W ⇒ tf1 . . . fkx1 . . . xl ∈ W

is derivable in PT+, for distinct variables f1, . . . , fk and x1, . . . , xl. Then
there exists a basic feasible functional F of rank (k, l) so that t defines F in
the open term model M(λη).

Proof Assuming that the above sequent in provable in PT+, by Theorem 2
we know that it has derivation with positive cuts only. By the realizability
theorem we obtain a basic feasible functional G of rank (k, l) so that we have
for all terms r1 . . . rk, s1 . . . sl and all Θ1, . . . , Θk, ρ1, . . . , ρl,

G(Θ1, . . . , Θk, ρ1, . . . , ρl)1 r W(tr1 . . . rks1 . . . sl),

18

provided that Θi r ri : W → W and ρj r W(sj) for 1 ≤ i ≤ k and 1 ≤ j ≤ l.
Hence, given in addition that ri is in WW6 and sj = w for some w in W, the
latter condition is readily satisfied by choosing Θi = r̂i and ρj = w. Thus,
our desired basic feasible functional F of rank (k, l) is given by

F (Θ1, . . . , Θk, ρ1, . . . , ρl) = G(Θ1, . . . , Θk, ρ1, . . . , ρl)1

for all Θ1, . . . , Θk and ρ1, . . . , ρl. This ends the proof of the corollary. 2

Finally, together with Theorem 1, we have now proved the main result of
this article.

Corollary 6 The provably total type two functionals of PT coincide with
the basic feasible functionals of type two. Moreover, this characterization
remains true in the presence of totality of application (Tot) and extensionality
of operations (Ext).

6 Conclusion

In this article we have established that the provably total type two func-
tionals of our classical applicative theory PT coincide with the basic feasible
functionals of type two. This proof-theoretic characterization of the basic
feasible functionals is hoped to provide further evidence for the naturalness
and robustness of the class Bff2.

In his PhD thesis [28], Anil Seth has used a version of Buss’ S1
2 augmented

by function variables in order to give a proof-theoretic characterization of
Bff2 in the spirit of Buss’ [6] delineation of the polynomial time computable
functions. Despite of the importance of Seth’s approach, we believe that the
theory PT is somewhat more natural for studying notions of computability
in higher types: indeed, as we have already argued, the finite types arise
directly in PT, and it is not necessary to augment the language by new
primitives as in the case of bounded arithmetic. Moreover, deriving Bff2 in
PT is coding free and much more pleasant than in corresponding systems of
bounded arithmetic.

It follows from our embedding of PVω into PT in Strahm [30] that in fact the
basic feasible functionals in arbitrary finite types are provably total in PT.
Thus the question arises whether the converse also holds above type 2, i.e.,
whether each PT provably total functional of type greater than two is basic
feasible. We strongly conjecture that the answer to this question is positive.

6As above, WW denotes the set of all terms s so that M(λη) |= s : W → W.

19

Indeed, it is possible to adapt the modified realizability interpretation used
in Section 9 of Cantini [7] in order to show that the provably total higher type
functionals of an intuitionistic version of PT are basic feasible. However, it is
not obvious how to reduce the classical theory PT to its intuitionistic version
so that statements expressing totality of arbitrary higher type functionals are
preserved.7

In [30] we have also introduced and analyzed the systems PS, PTLS, and
LS which are related to polynomial space, simultaneously polynomial time
and linear space, and linear space, respectively. Using the function algebra
characterization of these complexity classes (cf. e.g. Theorem 1 in [30]) it is
straightforward to come up with corresponding higher type systems which
are patterned in the same manner as PVω. Moreover, the characterization
result for the provably total type two functionals of PT directly carries over
to PS, PTLS, and LS and the corresponding classes of type two functionals.

Last but not least, let us mention the important activities in the program
of so-called implicit computational complexity and tiered formalisms in the
sense of Bellantoni, Cook, and Leivant (cf. e.g. [4, 21, 23]). There questions
regarding higher types have recently been of interest, see for example Leivant
[22], Bellantoni, Niggl, Schwichtenberg [5], and Hofmann [18]. For applicative
theories based on safe induction, see Cantini [8].

Recently and independently, Leivant [24] has given a proof-theoretic charac-
terization of Bff in terms of second order logic with positive comprehension
We will compare our approach with Leivant’s elsewhere.

Acknowledgments.

We would like to thank the two anonymous referees for helpful comments on
a earlier version of this paper.

7As far as the provably total functionals of type 2 are concerned, it seems that the
forcing technique used in [7] can be used in order to reduce PT to a suitable extension of
intuitionistic PT (cf. [7]) so that the type 2 content is preserved. Moreover, the provably
total functionals of the latter extension can be shown to be basic feasible by combining
techniques of [7] with the ideas used in the present paper in order to avoid the use of
monotonicity. But as we have shown in our paper, the type two content of classical PT
can be read off directly, without using this heavy detour. To conclude this side remark, we
mention that the forcing interpretation of [7] does not seem to preserve totality assertions
above type 2.

20

References

[1] Barendregt, H. P. The Lambda Calculus, revised ed. North Holland,
Amsterdam, 1984.

[2] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-
ematical Studies. Springer, Berlin, 1985.

[3] Beeson, M. J. Proving programs and programming proofs. In Logic,
Methodology and Philosophy of Science VII, Barcan Marcus et. al., Ed.
North Holland, Amsterdam, 1986, pp. 51–82.

[4] Bellantoni, S., and Cook, S. A new recursion-theoretic character-
ization of the poly-time functions. Computational Complexity 2 (1992),
97–110.

[5] Bellantoni, S., Niggl, K.-H., and Schwichtenberg, H. Higher
type recursion, ramification and polynomial time. Annals of Pure and
Applied Logic 104, 1–3 (2000), 17–30.

[6] Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[7] Cantini, A. Choice and uniformity in weak applicative theories. In-
vited talk, Logic Colloquium 2001, 31 pages. Submitted for publication.

[8] Cantini, A. Polytime, combinatory logic and positive safe induction.
Archive for Mathematical Logic 41, 2 (2002), 169–189.

[9] Clote, P. Computation models and function algebras. In Handbook
of Computability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

[10] Cook, S. A., and Kapron, B. M. Characterizations of the basic
feasible functionals of finite type. In Feasible Mathematics, S. R. Buss
and P. J. Scott, Eds. Birkhäuser, Basel, 1990, pp. 71–95.

[11] Cook, S. A., and Urquhart, A. Functional interpretations of fea-
sibly constructive arithmetic. Annals of Pure and Applied Logic 63, 2
(1993), 103–200.

[12] Feferman, S. A language and axioms for explicit mathematics. In
Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-
matics. Springer, Berlin, 1975, pp. 87–139.

[13] Feferman, S. Constructive theories of functions and classes. In Logic
Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North
Holland, Amsterdam, 1979, pp. 159–224.

21

[14] Ferreira, F. Polynomial Time Computable Arithmetic and Conser-
vative Extensions. PhD thesis, Pennsylvania State University, 1988.

[15] Ferreira, F. Polynomial time computable arithmetic. In Logic
and Computation, Proceedings of a Workshop held at Carnegie Mellon
University, 1987, W. Sieg, Ed., vol. 106 of Contemporary Mathemat-
ics. American Mathematical Society, Providence, Rhode Island, 1990,
pp. 137–156.

[16] Girard, J.-Y. Proof Theory and Logical Complexitiy. Bibliopolis,
Napoli, 1987.

[17] Hindley, J. R., and Seldin, J. P. Introduction to Combinators and
λ-Calculus. Cambridge University Press, 1986.

[18] Hofmann, M. Type systems for polynomial-time computation. Habil-
itation Thesis, Darmstadt, 1999. Appeared as LFCS Technical Report
ECS-LFCS-99-406.

[19] Irwin, R., Kapron, B., and Royer, J. On characterizations of the
basic feasible functionals, Part I. Journal of Functional Programming
11 (2001), 117–153.

[20] Kapron, B., and Cook, S. A new characterization of type 2 feasi-
bility. SIAM Journal on Computing 25 (1996), 117–132.

[21] Leivant, D. A foundational delineation of poly-time. Information and
Computation 110 (1994), 391–420.

[22] Leivant, D. Predicative recurrence in finite type. In Logical Foun-
dations of Computer Science, A. Nerode and Y. Matiyasevich, Eds.,
vol. 813 of Lecture Notes in Computer Science. Springer, 1994, pp. 227–
239.

[23] Leivant, D. Ramified recurrence and computational complexity I:
Word recurrence and poly-time. In Feasible Mathematics II, P. Clote
and J. Remmel, Eds. Birkhäuser, 1994, pp. 320–343.

[24] Leivant, D. Implicit computational complexity for higher type func-
tionals (Extended abstract). In CSL ’02, J. Bradfield, Ed., vol. 2471 of
Lecture Notes in Computer Science. Springer, 2002, pp. 367–381.

[25] Melhorn, K. Polynomial and abstract subrecursive classes. Journal
of Computer and System Science 12 (1976), 147–178.

22

[26] Pezzoli, E. On the computational complexity of type 2 functionals.
In Computer Science Logic ’97, vol. 1414 of Lecture Notes in Computer
Science. Springer, 1998, pp. 373–388.

[27] Royer, J. Semantics vs. syntax vs. computations: Machine models for
type-2 polynomial-time bounded functionals. Journal of Computer and
System Science 54 (1997), 424–436.

[28] Seth, A. Complexity Theory of Higher Type Functionals. PhD thesis,
Tata Institute of Fundamental Research, Bombay, 1994.

[29] Strahm, T. Proof-theoretic Contributions to Explicit Mathematics.
Habilitationsschrift, University of Bern, 2001.

[30] Strahm, T. Theories with self-application and computational com-
plexity. Information and Computation 185 (2003), 263–297.

[31] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,
vol. I. North-Holland, Amsterdam, 1988.

[32] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,
vol. II. North Holland, Amsterdam, 1988.

23

