
Proof-theoretic contributions

to explicit mathematics

Habilitationsschrift

Thomas Strahm

Institut für Informatik und

angewandte Mathematik

Universität Bern

2001

Contents

Introduction 1

I Metapredicative systems of explicit mathematics 15

Plan of Part I 17

1 Systems of explicit mathematics with universes 19

1.1 Elementary explicit type theory with join 20

1.2 Introducing universes: the limit and Mahlo axioms 24

2 Wellordering proofs 29

2.1 Ordinal-theoretic preliminaries 30

2.2 Lower bounds for ETJ . 32

2.3 Lower bounds for EIN . 33

2.4 Lower bounds for EMA . 40

3 From explicit mathematics to theories with ordinals 49

3.1 Introducing theories with ordinals 50

3.2 Embedding ETJ into OAD . 53

3.3 Embedding EIN into OIN . 57

3.4 Embedding EMA into OMA 59

4 Proof-theoretic analysis of theories with ordinals 63

4.1 Upper bounds for OAD . 64

4.2 Upper bounds for OIN . 65

4.3 Upper bounds for OMA . 70

4.4 Putting the pieces together . 77

5 Related systems 79

vi CONTENTS

5.1 Systems of strength ETJ . 79

5.2 Systems of strength EIN . 80

5.3 Systems of strength EMA . 83

Conclusion of Part I 85

II Applicative theories and complexity 87

Plan of Part II 89

6 Some recursion-theoretic characterizations of

complexity classes 91

6.1 Time and space complexity classes 92

6.2 Four function algebras . 93

7 The applicative framework 97

7.1 The theory B of operations and words 97

7.2 Bounded forms of induction 102

8 Deriving bounded recursions 105

8.1 Provably total word functions 105

8.2 Bounded induction yields bounded recursion 106

9 Higher types in PT and the system PVω 111

9.1 The systems PVω and EPVω 112

9.2 Embedding PVω and EPVω into PT 114

10 Realizing positive derivations 117

10.1 Adding totality and extensionality 117

10.2 Preparatory partial cut elimination 118

10.3 The realizability theorems . 121

10.4 Putting the pieces together . 130

11 Further applicative systems 131

11.1 A type two functional for bounded quantification 131

11.2 Positive induction equals primitive recursion 135

11.3 Full induction and Peano arithmetic 138

Conclusion of Part II 141

CONTENTS vii

Bibliography 145

List of symbols 157

A Formal systems . 157

B Axioms and rules . 158

C Other symbols . 159

Introduction

Proof theory came into being in the twenties of the last century, when it was

inaugurated by David Hilbert in order to secure the foundations of mathe-

matics. It was Hilbert’s aim to overcome the foundational crisis, in which

mathematics found itself at the beginning of the 20th century. This crisis

had its origin in the new set-theoretic viewpoint, which was based on Can-

tor’s “paradise” of infinite sets and which led to new non-constructive proof

methods in mathematics. Hence, a foundational justification of these new

principles was in order, and this need was confirmed by the discovery of

various contradictions in the first formulations of set theory, most famously

Russell’s paradox.

It was the aim of Hilbert’s program to (i) axiomatize the whole of mathematics

in a “big” axiom system M and, subsequently, (ii) show the consistency of M

in a small fragment F of M, which is based on finitistic principles only. As

is well-known, Kurt Gödel [44] proved in 1930 that Hilbert’s program must

fail in the above form. His famous incompleteness results show, in particular,

that in each consistent axiom system S containing a modificium of arithmetic,

the consistency of S is not derivable in S itself.

Gödel’s results did not at all destroy proof theory, but they showed that

proof-theoretic research had to transgress the strict finitistic standpoint pro-

posed by Hilbert. The crucial first step in this direction was made by Gerhard

Gentzen [41] in 1936, who gave a completely new consistency proof for the

system of Peano arithmetic PA. Gentzen’s proof used, apart from finitistic

methods, only induction along a wellordering of ordertype ε0, the first fixed

point of the ordinal function α 7→ ωα. Significant aspects of Gentzen’s proof

are that (i) the wellordering of ordertype ε0 can be coded as a decidable,

even primitive recursive relation on the natural numbers, and moreover, (ii)

induction along that ordering is only needed for decidable, quantifier-free

statements. Thus, ε0 characterizes the infinitary content of first-order num-

2 Introduction

ber theory PA, and it also measures the initial segment of the true arithmetic

sentences which are provable in PA.

Gentzen’s treatment of first-order arithmetic constitutes the paradigmatic

example of a so-called ordinal analysis of a formal system S, whose aim is

to attach a specific informative recursive ordinal to S, the so-called proof-

theoretic ordinal of S, in symbols |S|. For example, |S| can be defined to be

the order type of the least wellordering which is used to derive the consis-

tency of S. Since Gentzen’s treatment of PA, an ordinal analysis has been

accomplished for a large number of formal systems, ranging from subsys-

tems of second order arithmetic to various systems of admissible set theory,

cf. Pohlers [93] and Rathjen [96] for recent surveys. Indeed, such analyses

do not only give us precise information about the consistency strength of a

given system S, but usually one obtains as a byproduct further results, such

as e.g. an exact characterization of the computational power of S in terms of

its provably total number-theoretic functions. Summing up, ordinal analysis

can be seen as a contribution to what is sometimes called the modified Hilbert

program nowadays.

A serious opponent of Hilbert was the Dutch mathematician L. E. J. Brouwer,

who was a convinced critic of the set-theoretic viewpoint and of all non-

constructive arguments in mathematics. According to his opinion, mathe-

matics had to be developed on purely constructive grounds; in particular,

Brouwer did not accept the law of excluded middle. Brouwer’s intuitionism

was later formalized by Heyting and led to the evolvement of intuitionistic

formal systems. The development of computability theory in the thirties of

the last century provided an adequate interpretation of intuitionism.

The study of formal systems for constructive mathematics and, more gen-

erally, constructive aspects of proofs has always been an important subject

area for proof theory. It was particularly stimulated by the publication of Er-

rett Bishop’s book in 1967 on the constructive foundations of analysis, which

initiated the development of a host of formal systems adequate for the repre-

sentation of Bishop-style constructive mathematics (BCM); among them are

Martin-Löf’s theory of transfinite types [80, 81] and Feferman’s systems of

explicit mathematics [27, 29]. Bishop’s understanding of constructive mathe-

matics was in the sense of a high-level programming language: a constructive

proof of an assertion gives immediate rise to an algorithm, which realizes the

proof. Bishop’s ideas substantially influenced work in computer science, more

Introduction 3

specifically research on the so-called proofs-as-programs paradigm.

Explicit mathematics was introduced by Feferman loc. cit. in the early sev-

enties. Beyond its original aim to provide a basis for Bishop-style construc-

tivism, the explicit framework has gained considerable importance in proof

theory in connection with the proof-theoretic analysis of subsystems of sec-

ond order arithmetic and set theory. In particular, it was possible to reduce

prima-facie non-constructive systems to a constructively justifiable frame-

work. The most famous example in this connection is the reduction of the

subsystem of second order arithmetic based on ∆1
2 comprehension and bar

induction to the most prominent framework of explicit mathematics, T0,

achieved by Jäger [56] and Jäger and Pohlers [65]. Corresponding reduc-

tions in the framework of Martin-Löf type theory have been later obtained

independently by Griffor and Rathjen [45] and Setzer [112]. Justifications of

non-constructive in terms of constructive systems by means of proof-theoretic

reductions can be seen as a further important step in the modified or extended

Hilbert program.

More recently, systems of explicit mathematics have been used to study var-

ious forms of abstract computation, especially from a proof-theoretic per-

spective. It has turned out that already the operational core of explicit

mathematics, so-called applicative theories, are of significant interest for this

purpose. A lot of work in this connection has been devoted to the analysis

of higher type functionals from generalized recursion theory, e.g. the non-

constructive µ operator or the Suslin operator E1, cf. Feferman and Jäger

[35, 36], Glass and Strahm [43], Jäger and Strahm [68, 69, 70], Marzetta and

Strahm [84], and Strahm [123]. For a comprehensive survey of many of these

results cf. Jäger, Kahle, and Strahm [63]. We will be examining the abstract

computations perspective of explicit mathematics in Part II of this habilita-

tion thesis in the context of computational complexity, more precisely, time-

and space bounded notions of computability.

Systems of explicit mathematics have also been employed to develop a general

logical framework for functional programming and type theory, where it is

possible to derive properties of functional programs such as termination and

correctness. The programs considered are taken from functional program-

ming languages, which are either based on the untyped λ calculus or the

polymorphic typed λ calculus. For more details, cf. the references Feferman

[31, 32, 34] and Jäger [60]. A discussion of the call-by-value and call-by-name

4 Introduction

point of view in the applicative setting of explicit mathematics is given in

Stärk [116]. Moreover, for frameworks closer to actual programming lan-

guages, cf. Hayashi and Nakano [47] and Talcott [125]. The former reference

contains, among other things, the description of an experimental implemen-

tation for extracting programs from constructive proofs in a Feferman-style

explicit mathematics setting. Most recently, Studer [124] has shown how to

use explicit mathematics as a logical foundation of object-oriented program-

ming.

Let us now give a short explanation of the two basic kinds of objects which

are present in explicit mathematics. These are operations or rules and clas-

sifications or types. The former may be thought of as mechanical rules of

computation, which can freely be applied to each other: self-application is

meaningful, though not necessarily total. The basic axioms concerning op-

erations are those of a partial combinatory algebra, thus giving immediate

rise to explicit definitions (lambda abstraction) and a form of the recursion

theorem. The standard interpretation of the operations is the domain of

the partial recursive functions. Classifications or types, on the other hand,

are collections of operations and must be thought of as being generated suc-

cessively from preceding ones. In contrast to the restricted character of

operations, types can have quite complicated defining properties. What is

essential in the whole explicit mathematics approach, however, is the fact

that types are again represented by operations or, as we will call them in

this case, names. Thus each type U is named or represented by a name

u; in general, U may have many different names or representations. It is

exactly this interplay between operations and types on the level of names

which makes explicit mathematics extremely powerful and, in fact, witnesses

its explicit character.

The main emphasis of our contributions in the first part of this habilitation

thesis is on types and certain type existence principles, whereas in the sec-

ond part of the thesis, we will work in the pure operational core of explicit

mathematics. In both parts we will primarily be concerned with a thorough

analysis of the proof-theoretic and computational content of the relevant sys-

tems. It is our aim in the sequel to give a very informal and general overview

of this thesis. We try to avoid any technicalities at this stage and sketch the

main results and ideas. Let us now start with Part I.

? ? ?

Introduction 5

We begin with a very simple example of a type existence axiom in explicit

mathematics. Given two types U and V with associated names u and v,

respectively, we have the type U intersected with V , in symbols U∩V , whose

name is given uniformly by an operation int as int(u, v). Apart from axioms

claiming the existence of certain ground types such as e.g. the identity type or

the type of the natural numbers, there are further very simple type generating

axioms, e.g. the one for forming complements of a type or the closure under

quantification over operations. All these axioms have in common that they

do not refer to the general notion of type or name in their defining condition:

this is the reason why they are called elementary. In particular, quantification

over types is not allowed in an elementary type existence principle. There is

a further very natural principle of a rather different character, the so-called

Join axiom for generating types. It applies to any type U with name u and

an operation f for which fx is the name of a type Vx for each x in U , and

produces (the name of) a new type j(u, f), the disjoint union of the types

Vx for x ∈ U . The elementary type existence principles together with the

join operation can be considered as the very basic type generating axioms of

explicit mathematics.

The crucial notion in our considerations in Part I of this thesis is the one of

a universe. Roughly speaking, a universe is a type of types which is closed

under previously recognized type existence principles, the idea being that

the acceptance of those principles leads to the acceptance of a corresponding

universe. The proper way to understand the notion “types of types” in

our explicit mathematics framework is in the form of “types of names (of

types)”, of course. The type existence principles which are relevant as closure

conditions for our universes are those described above, namely the elementary

closure properties of types together with the join principle.

Universes are a frequently studied concept in the constructive context at least

since the work of Martin-Löf, cf. e.g. Martin-Löf [80, 81] or Palmgren [88] for

a survey. Their justification is very closely related to reflection principles in

classical and admissible set theory, leading to the existence of large cardinals

and their recursive analogues, respectively. Universes were first discussed

in the framework of explicit mathematics in Feferman [30] in connection

with his proof of Hancock’s conjecture. Later they have been reconsidered

by Marzetta [83, 82] in the context of a non-uniform limit axiom, cf. also

Marzetta and Strahm [84]. For a survey of some of the relevant previous

6 Introduction

results cf. Jäger, Kahle, and Studer [64]. Further references will be given in

the course of this thesis.

Coming back to the notion of universe described above, i.e. types of types

closed under the elementary type existence principles and join, the question

arises: what are natural principles for generating such universes? In this

thesis we will study two fundamental notions for generating universes, namely

the limit axiom (L) and the Mahlo axiom (M). The axiom (L) is in a sense the

simplest way for constructing universes: given a name a of a type, (L) claims

the existence of a universe named u(a) such that a is an element of u(a). Here

u is an operation which produces the name u(a) uniformly in a given name

a. The Mahlo axiom (M), on the other hand, features a more sophisticated

way for generating universes: given a name a and an operation f mapping

(names of) types to (names of) types, there is a (name of) a universe m(a, f)

which contains a and is closed under f ; once more this universe is named by

the operation m uniformly in a and f . In the following we are interested in

the two systems of explicit mathematics EIN and EMA. Both are based on

explicit elementary type theory with join plus the limit axiom (L) and the

Mahlo axiom (M), respectively, as well as complete induction on the natural

numbers with respect to types.

There is a strong connection between universes in explicit mathematics and

regular cardinals in classical set theory as well as admissible ordinals in ad-

missible set theory. On the basis of this correspondence, the universe of

discourse of EIN clearly resembles the notion of an inaccessible cardinal in

classical set theory or a recursively inaccessible ordinal in admissible set the-

ory. Accordingly, EMA’s universe of discourse is closely related to Mahlo

cardinals in impredicative set theory and recursively Mahlo ordinals in ad-

missible set theory. These analogies are further witnessed by the fact that the

corresponding large cardinals and large admissible ordinals give immediate

rise to models of EIN and EMA, which are based on classical and admissible

set theory, respectively. Thus EIN and EMA provide further natural examples

of Feferman’s marriage of convenience between generalized recursion theory

and classical set theory, cf. Feferman [28].

The main results in the first part of this habilitation thesis concern the deter-

mination of the exact proof-theoretic strength of EIN and EMA. In addition,

we are also interested in the extension of EIN and EMA by the schema (L-IN)

of complete induction on the natural numbers with respect to all formulas

Introduction 7

in the underlying language L; recall that in EIN and EMA, induction on the

natural numbers is available with respect to types only. We will character-

ize the proof-theoretic ordinal of all these systems by means of the so-called

ternary Veblen of ϕ function, which is a straightforward generalization of the

well-known binary ϕ function, cf. Section 2.1 for details. More precisely, we

will establish the following proof-theoretic ordinals:

|EIN| = ϕ100 |EIN + (L-IN)| = ϕ1ε00

|EMA| = ϕω00 |EMA + (L-IN)| = ϕε000

The determination of the proof-theoretic strength of EIN is previously due to

Kahle [74], cf. also Strahm [121]. The relevant argument used is a refinement

of Marzetta’s [82, 83] treatment of a non-uniform version of EIN, cf. also

Marzetta and Strahm [84]. The first analysis of EIN + (L-IN) is given in

Strahm [121]. Finally, the proof theory of explicit metapredicative Mahloness

EMA and EMA + (L-IN) has been developed in Jäger and Strahm [66] (upper

bounds) and Strahm [118] (lower bounds).

The ordinal ϕ100 in fact equals the famous Feferman-Schütte ordinal Γ0,

the limiting number of predicative provability. It was found independently

by Feferman and Schütte in the early sixties of the last century as a result

of the foundational program to study the principles and ordinals which are

implicit in a predicative conception of the universe of sets of natural num-

bers. Since then numerous theories have been found which are not prima

facie predicatively justifiable, but nevertheless have predicative strength in

the sense that Γ0 is an upper bound to their proof-theoretic ordinal. It is

common to all these predicative theories that their analysis requires methods

from predicative proof theory only, in contrast to the present proof-theoretic

treatment of stronger impredicative systems. On the other hand, it has long

been known that there are natural systems which have proof-theoretic ordi-

nal greater than Γ0 and whose analysis makes use just as well of methods

which every proof-theorist would consider to be predicative. Nevertheless,

not many theories of the latter kind have been known until recently.

Metapredicativity is a new area in proof theory which is concerned with

the analysis of formal systems whose proof-theoretic ordinal is beyond the

Feferman-Schütte ordinal Γ0, but which can be given a proof-theoretic anal-

ysis that uses methods from predicative proof theory only. It has recently

been discovered that the world of metapredicativity is extremely rich and

8 Introduction

that it includes many natural and foundationally interesting formal systems,

cf. e.g. Jäger [53], Jäger, Kahle, Setzer, and Strahm [62], Jäger and Strahm

[66, 71], Kahle [73], Rathjen [97, 99], Rüede [106, 105, 103, 104], and Strahm

[118, 121, 122]. A short discussion of this recent research work is given in

Chapter 5 of this thesis.

The analysis of the systems of explicit mathematics EIN and EMA, possibly

augmented by the schema of full induction on the natural numbers (L-IN),

clearly makes use of methods of predicative proof theory only. In particu-

lar, the wellordering proofs given in Chapter 2 of this thesis are predicative

in spirit in the sense that they resemble and in fact generalize well-known

wellordering proofs in systems of ramified analysis below Γ0. Further, our

upper bound computations are based on techniques from predicative proof

theory such as asymmetric interpretation as well as generalized forms of the

second cut elimination theorem of predicative proof theory. Thus, the re-

sults presented in the first part of this thesis substantially extend the realm

of metapredicative proof theory.

Feferman’s most famous system of explicit mathematics T0 also includes

the so-called principle of inductive generation. It asserts the existence of

(least definable) accessible parts of binary relations. It is well-known that

the presence of the axiom of inductive generation greatly raises the proof-

theoretic strength of a given system. For a detailed analysis of EIN and EMA

augmented by inductive generation, the reader is referred to Jäger and Studer

[72] and Tupailo [129]. For corresponding work in the context of Martin-Löf

type theory, see Setzer [113] and Rathjen [98].

This concludes our introductory remarks on our work in the first part of this

thesis. For a more detailed overview we refer the reader to the Plan of Part

I as well as to the introductory texts at the beginning of each chapter.

? ? ?

One of the central aims of theoretical computer science is to classify algo-

rithms with respect to their computational complexity. Traditionally, the

complexity of computing a function is measured by means of various kinds

of time- and space bounded Turing- or register machines. Numerous impor-

tant complexity classes have been identified, among them are the polynomial

time computable functions, the functions computable on various levels of the

polynomial time hierarchy, or the polynomial space computable functions; of

Introduction 9

crucial interest is the notion of polynomial time computability, which is the

most widely studied mathematical model of feasible computability.

In the past years, intense research efforts have been made in order to find

machine-independent characterizations of various classes of computational

complexity by means of methods and concepts from mathematical logic. This

led to new approaches to complexity in terms of finite model theory, subre-

cursion theory, lambda calculi, proof theory, and so on. The results obtained

shed new light on the nature and structure of complexity classes and their

mutual relationships.

In Part II of this habilitation thesis we focus on a proof-theoretic approach to

computational complexity. In particular, we are interested in studying var-

ious questions related to bounded complexities in the expressively powerful

applicative core of explicit mathematics, thus leading to generalized notions

of complexity on abstract structures. These new investigations are hoped

to provide a better understanding of bounded complexities from a proof-

theoretic and abstract computability point of view.

The first-order applicative fragment of explicit mathematics is perfectly apt

for studying and representing algorithms. Indeed, the axioms of a partial

combinatory algebra guarantee the representability of all recursive functions,

though in general the proof of totality or convergence in a given applicative

setting heavily depends on the forms of induction allowed. Hence, it is natural

to measure the strength of an applicative theory in terms of its provably total

functions. A further distinguished advantage of this applicative approach is

the fact that higher types arise very naturally and, hence, it also makes sense

to consider the class of higher type functionals which provably converge in a

specific axiomatic framework.

We will be mainly interested in this thesis in the classes of functions on

the binary words W = {0, 1}? which are computable on a multitape Turing

machine in polynomial time, simultaneously polynomial time and linear space,

polynomial space, and linear space. In the sequel we abbreviate these classes

as FPtime, FPtimeLinspace, FPspace, and FLinspace, respectively.

It is our aim to develop four applicative systems, one for each of the four

complexity classes above. Our theories can be seen as natural applicative

analogues of well-known systems of bounded arithmetic, cf. the monographs

Buss [15], Hájek and Pudlák [46], and Kraj́ıček [76].

All our systems are based on the theory B of operations and words. Its princi-

10 Introduction

pal axioms are those of a partial combinatory algebra plus a unary predicate

W for the binary words. Possibly, B is augmented by the (total) operations

of word concatenation ∗ and word multiplication ×; here x×y denotes the

word x, length of y times concatenated with itself. The crucial formulas in

the language of B are the so-called Σb
W formulas: those are formulas having

a leading bounded existential quantifier followed by a positive and W free

condition, see Section 7.2 for the exact definition. There are two forms of

induction with respect to Σb
W formulas which will be at the heart of our

delineation of complexity classes. The first one is usual notation induction

along the branches of the full binary tree; it is denoted by (Σb
W-IW). The

second induction principle is simply induction along the lexicographic order-

ing of the full binary tree, which orders words by their length and words of

the same length lexicographically; we call this principle with respect to Σb
W

formulas (Σb
W-I`).

Depending on whether we have (Σb
W-IW) or (Σb

W-I`), and whether we assume

as given only word concatenation or both concatenation and word multipli-

cation, we can now distinguish four natural applicative theories. The theory

B augmented by ∗, × and (Σb
W-IW) is denoted by PT. If we replace in this

system (Σb
W-IW) by (Σb

W-I`), we use the name PS for the resulting theory.

Moreover, the theories PTLS and LS are obtained from PT and PS by simply

dropping the axioms about word multiplication ×. For a given applicative

system S, let us denote by ProvTot(S) the class of its provably total word

functions. In this thesis we will establish the following crucial results con-

cerning the provably total functions of our four applicative systems, cf. our

paper Strahm [117]:

ProvTot(PT) = FPtime ProvTot(PTLS) = FPtimeLinspace

ProvTot(PS) = FPspace ProvTot(LS) = FLinspace

In order to prove lower bounds for our applicative theories we will make use

of suitable function algebra characterizations of the above complexity classes.

The latter can be very pleasantly represented in the applicative framework,

thereby making direct use of the recursion or fixed point theorem as well

as our bounded induction principles. The corresponding upper bounds will

be obtained by (partial) cut elimination in a Gentzen-style reformulation

of our systems combined with a suitable realizability interpretation in their

standard open term model.

Introduction 11

Turning to the system PT whose provably total functions coincide with the

polynomial time computable functions, we will see that in PT we can also em-

bed well-known systems of bounded arithmetic such as e.g. Buss’ S1
2 (cf. Buss

[15]) or, equivalently, Ferreira’s system of polynomial time computable arith-

metic PTCA+ (cf. Ferreira [37, 38]). In contrast to the tedious “bootstrap-

ping” of say S1
2, which requires heavy coding machinery, the introduction of

the polynomial time computable functions in our system PT is very smooth

and coding-free.

As we have already indicated above, we will also be interested in higher type

aspects of our applicative systems, in particular PT. The general background

is the relatively new area of higher type complexity theory and, in particular,

work on feasible functionals. The fundamental aim in this field is to identify

a sensible higher type analogue of the polynomial time computable functions.

Most prominent in the previous research is the class of so-called basic feasible

functionals BFF, which has proved to be a very robust class with various kinds

of machine and programming language characterizations.

The basic feasible functionals go back to Melhorn [85] and Cook and Urquhart

[26]. In the latter paper they are introduced via a typed formal system

PVω in order to establish functional and realizability interpretations of an

intuitionistic version of Buss’ S1
2. The terms of PVω define exactly the BFF’s.

We will show that Cook and Urquhart’s system PVω is directly contained

in our applicative theory PT; thus, the basic feasible functionals are proof-

theoretically justified in a type-free applicative setting.

Finally, we will present further natural applicative systems for various classes

of computable functions. In particular, we will study a system PH which is

closely related to the polynomial time hierarchy; the crucial principle of PH

is a very uniform type two functional π for bounded quantification. Further

investigations concern applicative theories whose provably total functions are

exactly the primitive recursive functions.

For a more extensive overview of Part II of this habilitation thesis, we ask

the reader to consult the Plan of Part II as well as the introductions to the

various chapters.

? ? ?

12 Introduction

Remarks

Part I and Part II of this thesis can be read entirely independently of each

other. Moreover, the devoted reader who reads both parts of this thesis will

realize that there is only a tiny overlap between the two parts with respect to

the formulation and standard consequences of the basic applicative axioms

of explicit mathematics.

Finally, let us mention that throughout these investigations we have made

free use of the papers Strahm [121], Jäger and Strahm [66], Strahm [118],

and Strahm [117].

Acknowledgements 13

Acknowledgements

I am deeply thankful to my academic teacher and friend Professor Gerhard

Jäger. His steady support and his enthusiasm for logic and theoretical com-

puter science have greatly influenced the genesis of this work and my personal

scientific development.

I have benefited immensely from the close contact and collaboration with

Professor Solomon Feferman. His numerous writings on explicit mathematics

have always been very challenging. My two visits to Stanford in 1995 and

1998 were most enjoyable.

The frequent discussions with Professor Andrea Cantini on our common re-

search interests have been very stimulating for my work. I particularly well

remember the Castiglioncello workshop in 1998 and my short visit to Florence

last spring.

Many thanks to all my friends from the Bern research group for lots of help

and discussions and, especially, for the great atmosphere they have shared

with me in all these years.

Last but not least, I would like to thank my wife Pascale for all her under-

standing and support and my parents for their steady encouragement over

the years.

Bern, January 2001, Thomas Strahm

Part I

Metapredicative systems of

explicit mathematics

Plan of Part I

In the following we give a short informal plan of the first part of this habili-

tation thesis.

In the first chapter we will define the basic theory of explicit mathematics

ETJ. We will introduce the notion of universe and spell out in detail the

fundamental universe generating axioms, i.e. the limit axiom (L) and the

Mahlo axiom (M), resulting in the two extensions EIN and EMA of ETJ. We

will briefly address some of the basic consequences of these systems.

Chapter 2 is devoted to detailed wellordering proofs for the systems EIN

and EMA, possibly augmented by the schema of complete induction on the

natural numbers (L-IN) for arbitrary formulas in the underlying language

L. More precisely, we will establish the lower bounds Γ0, ϕ1ε00, ϕω00 and

ϕε000 for the systems of explicit mathematics EIN, EIN + (L-IN), EMA and

EMA+(L-IN) with ϕ denoting the ternary Veblen function. The methodology

of our wellordering proofs is related to well-known wellordering proofs for

predicative analysis.

In Chapter 3 we will introduce specific theories with ordinals over Peano

arithmetic suitable for dealing with certain non-monotone inductive defini-

tions. Central are the two theories OIN and OMA which describe a recursively

inaccessible and recursively Mahlo universe of discourse. A crucial feature of

our theories is the fact that induction on the ordinals is not permitted. The

systems of explicit mathematics EIN and EMA will be embedded into OIN

and OMA by means of formalized inner model constructions.

Upper bounds for OIN and OMA, possibly augmented by full induction on

the natural numbers (LO-IN), will be established in Chapter 4 of this thesis,

thus showing that the lower bounds obtained in Chapter 2 are indeed the

best possible ones. In the treatment of our ordinal theories we will only use

methods from predicative proof theory, thus showing the metapredicativity

18 Plan of Part I

of our theories with ordinals and, hence, systems of explicit mathematics.

In Chapter 5, finally, we will provide a short and informal guided tour through

the landscape of (metapredicative) systems which are closely related to EIN

and EMA. We will address subsystems of second order arithmetic, admissible

set theories without foundation, and (iterated) fixed point theories, among

others.

Chapter 1

Systems of explicit

mathematics with universes

In this chapter we will introduce the various systems of explicit mathematics

which will be relevant in Part I of this habilitation thesis. We start by

describing the basic theory of explicit mathematics ETJ, which is based on

elementary comprehension and the axiom about join as well as induction

on the natural numbers with respect to types; some of the crucial and well-

known consequences of ETJ are mentioned without proof.

Next we will define the fundamental notion of a type being a universe in our

explicit framework. Basically, a universe is a type of (names of) types which

reflects the type generating principles of the theory ETJ. Two fundamental

principles claiming the existence of universes will be spelled out, namely the

limit axiom (L) and the Mahlo axiom (M), leading to the two extensions

EIN and EMA of ETJ, respectively. EIN is called the theory for explicit inac-

cessibility, whereas EMA is our formal system for explicit Mahloness. Both

systems contain, in addition, certain natural ordering principles for universes,

one of whose basic consequences will be briefly addressed.

The central aim in Part I of this thesis is to give a complete ordinal analysis

of EIN and EMA, possibly augmented by the schema of complete induction on

the natural numbers with respect to all formulas in the underlying language

of explicit mathematics.

20 Systems of explicit mathematics with universes

1.1 Elementary explicit type theory with join

This section is devoted to the exact definition of the system ETJ1 of explicit

elementary type theory plus join as well as the discussion of some of its basic

consequences.

All systems of explicit mathematics considered in Part I of this thesis are

formulated in the second order language L for individuals and types. It

comprises individual variables a, b, c, f, g, h, u, v, w, x, y, z, . . . as well as type

variables U, V,W,X, Y, Z, . . . (both possibly with subscripts). L also includes

the individual constants k, s (combinators), p, p0, p1 (pairing and projections),

0 (zero), sN (successor), pN (predecessor), dN (definition by numerical cases)

and additional individual constants, called generators, which will be used for

the uniform naming of types, namely nat (natural numbers), id (identity),

co (complement), int (intersection), dom (domain), inv (inverse image), j

(join), as well as u and m (universe generators). There is one binary function

symbol · for (partial) application of individuals to individuals. Further, L

has unary relation symbols ↓ (defined) and N (natural numbers) as well as

three binary relation symbols ∈ (membership), = (equality) and < (naming,

representation).2

For a uniform definition of the notion of proof-theoretic ordinal (cf. Definition

4 below) it is convenient that L also includes an anonymous unary relation

symbol Q and a corresponding generator q. The relation Q plays the role of an

anonymous predicate on the natural numbers with no specific mathematical

meaning.

The individual terms (r, s, t, r1, s1, t1, . . .) of L are built up from individual

variables and individual constants by means of our function symbol · for

application. In the following we often abbreviate (s · t) simply as (st), st or

sometimes also s(t); the context will always ensure that no confusion arises.

We further adopt the convention of association to the left so that s1s2 . . . sn
stands for (. . . (s1 ·s2) . . . sn). We also set t′ := sNt. Finally, we define general

n tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

1ETJ is basically the theory EETJ of Jäger, Kahle and Studer [64] plus induction on
the natural numbers for types.

2The use of a binary naming relation < for formalizing explicit mathematics is due to
Jäger [59].

1.1 Elementary explicit type theory with join 21

The positive literals of L are of the form N(s), s↓, s = t, U = V , s ∈ U and

<(s, U). Since we work with a logic of partial terms, it is not guaranteed

that all terms have values, and s↓ is read as s is defined. Moreover, N(s)

says that s is a natural number, and the formula <(s, U) is used to express

that the individual s represents the type U or is a name of U .

The formulas (A,B,C,A1, B1, C1, . . .) of L are generated from the positive

literals by closing under the usual propositional connectives, as well as exis-

tential and universal quantification for individuals and types. The following

table contains a useful list of abbreviations:

s ' t := s↓ ∨ t↓ → s = t,

s ∈ N := N(s),

(∃x ∈ N)A(x) := (∃x)(x ∈ N ∧ A(x)),

(∀x ∈ N)A(x) := (∀x)(x ∈ N→ A(x)),

U ⊂ V := (∀x)(x ∈ U → x ∈ V),

s ∈̇ t := (∃X)(<(t,X) ∧ s ∈ X),

(∃x ∈̇ s)A(x) := (∃x)(x ∈̇ s ∧ A(x)),

(∀x ∈̇ s)A(x) := (∀x)(x ∈̇ s→ A(x)),

s =̇ t := (∃X)[<(s,X) ∧ <(t,X)],

s ⊂̇ t := (∃X,Y)[<(s,X) ∧ <(t, Y) ∧X ⊂ Y],

<(s) := (∃X)<(s,X).

The vector notation ~U and ~s is sometimes used to denote finite sequences of

type variables U1, . . . , Um and individual terms s1, . . . , sn, respectively, whose

length is given by the context.

The logic of ETJ is Beeson’s classical logic of partial terms (cf. Beeson [8] or

Troelstra and Van Dalen [127]) for the individuals and classical logic with

equality for the types. Observe that Beeson’s formalization includes the usual

strictness axioms.

The nonlogical axioms of the theory ETJ for elementary explicit types with

join are divided into the following groups I–V:

I. Applicative axioms. These axioms formalize that the individuals form a

partial combinatory algebra, that we have pairing and projection and the

usual closure conditions on the natural numbers plus definition by numerical

cases.

22 Systems of explicit mathematics with universes

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0(a, b) = a ∧ p1(a, b) = b,

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x),

(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

II. Explicit representation and extensionality. The following axioms state that

each type has a name, that there are no homonyms and that equality of types

is extensional.

(1) (∃x)<(x, U),

(2) <(a, U) ∧ <(a, V)→ U = V ,

(3) (∀x)(x ∈ U ↔ x ∈ U)→ U = V .

III. Basic type existence axioms. In the following we provide a finite axioma-

tization of uniform elementary comprehension plus join.

Natural numbers

<(nat) ∧ (∀x)(x ∈̇ nat↔ N(x)).

Representation of Q

<(q) ∧ (∀x)(x ∈̇ q↔ Q(x)) ∧ q ⊂̇ nat.

Identity

<(id) ∧ (∀x)(x ∈̇ id↔ (∃y)(x = (y, y))).

Complements

<(a) → <(co(a)) ∧ (∀x)(x ∈̇ co(a)↔ x ˙6∈ a).

Intersections

<(a) ∧ <(b) → <(int(a, b)) ∧ (∀x)(x ∈̇ int(a, b)↔ x ∈̇ a ∧ x ∈̇ b).

1.1 Elementary explicit type theory with join 23

Domains

<(a) → <(dom(a)) ∧ (∀x)(x ∈̇ dom(a)↔ (∃y)((x, y) ∈̇ a)).

Inverse images

<(a) → <(inv(a, f)) ∧ (∀x)(x ∈̇ inv(a, f)↔ fx ∈̇ a).

Joins

<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧ Σ(a, f, j(a, f)).

In this last axiom the formula Σ(a, f, b) expresses that b names the disjoint

union of f over a, i.e.

Σ(a, f, b) := (∀x)(x ∈̇ b↔ (∃y, z)(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

IV. Uniqueness of generators. These axioms essentially guarantee that different

generators create different names. To achieve this, we have for syntactically

different generators r0 and r1 and arbitrary generators s and t:

(1) r0 6= r1,

(2) (∀x)(sx 6= t),

(3) (∀x, y)(sx = ty → s = t ∧ x = y).

V. Type induction on the natural numbers. This axiom provides complete

induction on the natural numbers for types.

(T-IN) (∀X)(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).

This completes the description of our basic explicit framework ETJ for ele-

mentary type theory with join. We will also be interested in the strength-

ening of ETJ (and its extensions) by induction on the natural numbers for

all formulas of the language L. Accordingly, formula induction (L-IN) is the

schema

(L-IN) A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x)

for each L formula A. We will write ETJ + (L-IN) for ETJ augmented by the

schema (L-IN).

We conclude this section with mentioning some crucial consequences of ETJ.

As usual, the axioms of a partial combinatory algebra allow one to define λ

abstraction and to prove a recursion or fixed point theorem. For proofs of

these standard results the reader is referred to [8, 27].

24 Systems of explicit mathematics with universes

Lemma 1 (Abstraction and recursion) 1. For each L term t and all

variables x there exists an L term (λx.t) whose variables are those of

t, excluding x, so that ETJ proves

(λx.t)↓ ∧ (λx.t)x ' t.

2. There exists a closed L term rec so that ETJ proves

recf↓ ∧ recfx ' f(recf)x.

In the original formulation of explicit mathematics, elementary comprehen-

sion is not dealt with by a finite axiomatization but directly as an infinite

axiom scheme. An L formula is called elementary if it contains neither the

relation symbol < nor bound type variables. The following result of Feferman

and Jäger [36] shows that this scheme of uniform elementary comprehension

is provable from our finite axiomatization. Join and uniqueness of generators

are not needed for this argument.

Lemma 2 (Elementary comprehension) For every elementary formula

A(u,~v,W1, . . . ,Wn) with at most the indicated free variables there exists a

closed term t of L so that ETJ proves:

1.
∧n
i=1<(wi,Wi) → <(t(~v, w1, . . . , wn)),

2.
∧n
i=1<(wi,Wi) → (∀x)(x ∈̇ t(~v, w1, . . . , wn)↔ A(x,~v,W1, . . . ,Wn)).

1.2 Introducing universes: the limit and

Mahlo axioms

Important types in explicit mathematics are the so-called universes. In this

section we introduce two important axioms for generating such universes,

namely the limit and the Mahlo axioms, resulting in the crucial extensions

EIN and EMA of ETJ, respectively. In addition, we briefly address some

natural ordering principles for universes.

First, we want to introduce the concept of a universe into explicit mathe-

matics. In a nutshell, a universe is supposed to be a type which consists of

names only and reflects the type existence principles of the theory ETJ.

For the detailed definition of a universe we introduce some auxiliary nota-

tion and let C(W, a) be the closure condition which is the disjunction of the

following L formulas:

1.2 Introducing universes: the limit and Mahlo axioms 25

(1) a = nat ∨ a = q ∨ a = id,

(2) (∃x)(a = co(x) ∧ x ∈ W),

(3) (∃x, y)(a = int(x, y) ∧ x ∈ W ∧ y ∈ W),

(4) (∃x)(a = dom(x) ∧ x ∈ W),

(5) (∃x, f)(a = inv(x, f) ∧ x ∈ W),

(6) (∃x, f)[a = j(x, f) ∧ x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W)].

Thus the formula (∀x)(C(W,x) → x ∈ W) states that W is a type which is

closed under the type constructions of ETJ, i.e., elementary comprehension

and join. If, in addition, all elements of W are names, we call W a universe,

in symbols, U(W). Moreover, we write U(a) to express that the individual a

is the name of a universe.

U(W) := (∀x)(C(W,x)→ x ∈ W) ∧ (∀x ∈ W)<(x),

U(a) := (∃X)(<(a,X) ∧ U(X)).

We are now ready to state the crucial universe existence principles studied

in this thesis, namely the limit and Mahlo axioms, leading to two systems of

explicit mathematics EIN and EMA, respectively.

A very simple way to claim the existence of universes is by adding an oper-

ation u which assigns to each name a a universe u(a) containing a. This is

easily expressed by the following limit axiom (L):

(L) <(a) → U(u(a)) ∧ a ∈̇ u(a).

This axiom can be seen as an explicit analogue of the corresponding limit

axiom well-known from theories for iterated admissible sets, cf. Jäger [58].

A more sophisticated and stronger form of generating universes is given by

the so-called Mahlo axioms in explicit mathematics. For their formulation

the following shorthand notations are useful.

(f : < → <) := (∀x)(<(x)→ <(fx)),

(f : s→ s) := (∀x ∈̇ s)(fx ∈̇ s).

Obviously, (f : < → <) and (f : s→ s) means that f maps names to names

and elements of (the type named by) s to elements of (the type named by)

s, respectively.

26 Systems of explicit mathematics with universes

We can now introduce the Mahlo axiom for explicit mathematics. Given a

name a and an operation f from names to names one simply claims that

there exists (a name of) a universe m(a, f) which contains a and reflects

f . Taking up the analogy that regular cardinals in classical set theory cor-

respond to universes in explicit mathematics, our formulation of Mahlo in

explicit mathematics may be regarded as a uniform version of Mahlo in set

theory.

<(a) ∧ (f : < → <) → U(m(a, f)) ∧ a ∈̇ m(a, f),(M.1)

<(a) ∧ (f : < → <) → (f : m(a, f)→ m(a, f)).(M.2)

It is readily clear that the universe generator u can be defined in terms of

m by means of the operation λa.m(a, λx.x). In fact, we will see in the next

chapter that m even allows for much stronger “iterations” of u.

It is an interesting topic to see what kind of ordering principles for universes

can be consistently added to the previous axioms. This question is discussed

at full length in Jäger, Kahle and Studer [64], and it is shown there that

one must not be too liberal. As a consequence of these considerations we

do not claim linearity and connectivity for arbitrary universes, but only for

so-called normal universes, i.e. universes which are named by means of the

type generator u and m,

Uno(a) := U(a) ∧ [(∃x)(a = u(x)) ∨ (∃x, f)(a = m(x, f))].

The principles of linearity and connectivity of normal universes are then given

by the following two axioms:

(∀x, y)[Uno(x) ∧ Uno(y) → x ∈̇ y ∨ x =̇ y ∨ y ∈̇ x],(Uno-Lin)

(∀x, y)[Uno(x) ∧ Uno(y) → x ⊂̇ y ∨ y ⊂̇ x].(Uno-Con)

It is shown in [64] that connectivity of normal universes also implies transitiv-

ity of normal universes in its most general form. For the reader’s convenience

we briefly sketch the relevant argument.

Lemma 3 (Strong transitivity) We have that ETJ + (Um-Con) proves

Uno(a) ∧ Uno(b) ∧ c =̇ a ∧ c ∈̇ b → a ⊂̇ b.

1.2 Introducing universes: the limit and Mahlo axioms 27

Proof. Assume the premise of the implication to be proved. Then c is also a

name of the universe named by a. Since universes never contain their names

(cf. e.g. Marzetta [82]) we have c ˙6∈ a, thus b 6⊂̇ a. But now connectivity of

normal universes (Uno-Con) yields a ⊂̇ b as desired. 2

We are now in a position to define the two central systems of explicit math-

ematics EIN and EMA for explicit inaccessibility and explicit Mahloness, re-

spectively. According to our discussion above, EIN is contained in EMA.

EIN := ETJ + (L) + (Uno-Lin) + (Uno-Con),

EMA := ETJ + (M.1) + (M.2) + (Uno-Lin) + (Uno-Con).

In the sequel we will be interested in a detailed proof-theoretic analysis of EIN

and EMA, possibly augmented by the schema (L-IN) of complete induction

on the natural numbers N with respect to all formulas in L. In particular,

we will establish the following proof-theoretic ordinals:

|EIN| = Γ0 |EIN + (L-IN)| = ϕ1ε00

|EMA| = ϕω00 |EMA + (L-IN)| = ϕε000

We will also briefly address the (well-known) proof theory of ETJ as well as

ETJ + (L-IN). Special emphasis will be put in the following chapters on very

uniform proofs of lower as well as upper proof-theoretic bounds.

Chapter 2

Wellordering proofs

In this chapter we will provide detailed wellordering proofs for the systems

introduced in Chapter 1, cf. Strahm [118]. We will start with some ordinal-

theoretic preliminaries including, in particular, a detailed definition of the

ternary Veblen or ϕ function ϕαβγ.

In a first step we will briefly review the well-known lower bounds for the two

systems ETJ as well as ETJ+(L-IN). Then we will turn to the system EIN for

explicit inaccessibility and show that in the presence of type induction, trans-

finite induction is available along initial segments of the Feferman-Schütte

ordinal Γ0; this result is previously due to Feferman [30]. The extension of

EIN by the full induction schema (L-IN) signifies a dramatic increase in proof-

theoretic strength. In particular, (L-IN) allows for the build up of hierarchies

of universes of length bounded by a fixed ordinal α less than ε0. As a conse-

quence, this will yield that transfinite induction is derivable in EIN + (L-IN)

for initial segments of the ordinal ϕ1ε00.

The system EMA for explicit Mahloness features, in addition, the existence

of hierarchies of hyperuniverses, 2-hyperuniverses and so on. For example,

a hyperuniverse is a universe which is closed under the universe generating

operation u. We will show that the ordinal ϕω00 is a lower bound to the

proof-theoretic strength of the theory EMA. Further, the stronger system

EMA + (L-IN) derives the existence of α-hyperuniverses for each α less than

ε0 and, therefore, it proves induction along initial segments of the ordinal

ϕε000.

The term metapredicative indeed applies to the wellordering proofs for EIN

and EMA given in this chapter. First of all, the notation system used is

30 Wellordering proofs

based on the ternary ϕ function, which is a straightforward generalization

of the well-known binary ϕ function; in particular, no collapsing is used in

this notation system. Secondly and most importantly, the general method-

ology of the wellordering proofs given below is very much in the spirit of

the wellordering proofs for predicative systems due to Feferman and Schütte,

cf. e.g. [30, 33, 110]. For example, instead of working in initial segments of

the ramified analytic hierarchy or the ordinary jump hierarchy one considers

hierarchies of universes, n-hyperuniverses, or α-hyperuniverses.

2.1 Ordinal-theoretic preliminaries

In the following we will measure the proof-theoretic strength of formal the-

ories in terms of their proof-theoretic ordinals. As usual, for all primitive

recursive relations <1 and all L formulas A(a) we set:

Prog(<, A) := (∀x ∈ N)[(∀y ∈ N)(y < x→ A(y))→ A(x)],

TI(<, A) := Prog(<, A)→ (∀x ∈ N)A(x).

Thus TI(<, A) expresses transfinite induction along the relation < for the

formula A(a). The proof-theoretic ordinal of a theory T is defined by referring

to transfinite induction for the anonymous relation Q.

Definition 4 1. An ordinal α is provable in a theory T, if there is a

primitive recursive wellordering < of order type α so that T TI(<,Q).

2. The least ordinal which is not provable in T is called the proof-theoretic

ordinal of T and is denoted by |T|.

The ordinals which are relevant for the theories considered in this thesis are

most easily expressed by making use of a ternary Veblen or ϕ function which

we are going to define now. The usual Veblen hierarchy generated by the

binary function ϕ, starting off with the function ϕ0β = ωβ is well known

from the literature, cf. Pohlers [92] or Schütte [110]. The ternary ϕ function

is obtained as a straightforward generalization of the binary case by defining

ϕαβγ inductively as follows:

1Of course, by making use of the recursion theorem and a little amount of complete
induction on the natural numbers one can easily represent primitive recursive functions
and relations in ETJ.

2.1 Ordinal-theoretic preliminaries 31

(i) ϕ0βγ is just ϕβγ;

(ii) if α > 0, then ϕα0γ denotes the γth ordinal which is strongly critical

with respect to all functions λξ, η.ϕδξη for δ < α.

(iii) if α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of

the functions λξ.ϕαδξ for δ < β.

For example, ϕ10α is Γα, and more generally, ϕ1αβ denotes a Veblen hier-

archy over λα.Γα. It is straightforward how to extend these ideas in order to

obtain ϕ functions of all finite arities, and even further to Schütte’s Klam-

mersymbole [109].

We let Λ3 denote the least ordinal greater than 0 which is closed under the

ternary ϕ function. In the following we confine ourselves to the standard

notation system which is based on this function. Since the exact definition

of such a system is a straightforward generalization of the notation system

for Γ0 (cf. [92, 110]), we do not go into details here. We write ≺ for the

corresponding primitive recursive wellordering of order type Λ3 and assume

without loss of generality that 0 is the least element with respect to ≺.

Further, we let Lim denote the primitive recursive set of limit notations and

we presuppose a primitive recursively given fundamental sequence (`[n] : n ∈
N) for each limit notation `; we will assume that `[0] > 0. As the definition

of fundamental sequences is easy in the setting of ϕ functions we do not give

it here and refer the reader to the relevant proofs in the next sections.

There exist primitive recursive functions acting on the codes of our notation

system which correspond to the usual operations on ordinals. In the sequel it

is often convenient in order to simplify notation to use ordinals and ordinal

operations instead of their codes and primitive recursive analogues. Then

(for example) ω and ω + ω stand for the natural numbers whose order type

with respect to ≺ are ω and ω + ω.

When working in the systems ETJ, EIN and EMA in this chapter, we let

a, b, c, d, e, . . . range over the field of ≺ and ` denote limit notations. In ad-

dition, we write Prog(A) instead of Prog(≺, A) and TI(A, a) for the formula

Prog(A) → (∀b ≺ a)A(b). Further, I(a) abbreviates (∀X)TI(X, a). If we

want to stress the relevant induction variable of a formula A, we sometimes

write Prog(λx.A(x)) and TI(λx.A(x), a) instead of Prog(A) and TI(A, a), re-

spectively. Finally, we let Prog(U) and Prog(u) stand for Prog(λx.x ∈ U)

32 Wellordering proofs

and Prog(λx.x ∈̇ u), respectively; the formulas TI(U, a) and TI(u, a) are un-

derstood analogously.

2.2 Lower bounds for ETJ

The proof theory of ETJ and ETJ + (L-IN) is well-known and due to Fe-

ferman [29]. Nevertheless, in favor of a uniform presentation, let us briefly

recapitulate the relevant results and ideas.

Of course, it is trivial to observe that Peano arithmetic PA is contained in

ETJ. Indeed, it is even possible to get a direct embedding of the subsystem

ACA0 of second order arithmetic based on arithmetic comprehension and

induction on the natural numbers for sets; this embedding uses the obvious

translation of the language of second order arithmetic into the language L

of types and names. Thus we have the following theorem, which can also be

obtained by carrying through the usual wellordering proof directly in ETJ.

Theorem 5 We have for all ordinals α less than ε0 that ETJ proves I(α).

Thus, ε0 ≤ |ETJ|.

The crucial observation to be made in establishing the lower bound of ETJ

augmented by (L-IN) is that in ETJ+(L-IN) we can prove that the arithmetical

jump hierarchy iterated along each initial segment of ε0 is well-defined. To

see this, assume that we are given an arithmetical formula A(X, u). Then we

can use the recursion theorem in order to find an operation jumpA satisfying

the following recursion equations:

jumpAx0 ' x,

jumpAx(a+1) ' {u ∈ N : A(jumpAxa, u)},
jumpAx` ' j({a : a ≺ `}, jumpAx).

The crucial task is to show the well-definedness of this A jump hierarchy

below ε0, i.e., one must derive for each fixed α less that ε0 the statement

(?) <(x) → (∀a ≺ α)<(jumpAxa).

It is readily seen that (?) can be proved by transfinite induction along initial

segments of ε0, which is available in ETJ + (L-IN) for arbitrary formulas of

L, due to the presence of (L-IN). Hence, the standard subsystem of analysis

2.3 Lower bounds for EIN 33

Π1
0-CA<ε0 (cf. e.g. [35]) is contained in ETJ + (L-IN). Thus we have e.g. by

Feferman [33] or Schütte [110] that ETJ + (L-IN) proves transfinite induction

with respect to types along each initial segment of the ordinal ϕε00.

Theorem 6 We have for all ordinals α less than ϕε00 that ETJ + (L-IN)

proves I(α). Thus, ϕε00 ≤ |ETJ + (L-IN)|.

We will see in Chapter 4 that the lower bounds sketched in this section are

indeed best possible.

2.3 Lower bounds for EIN

In this section we establish proof-theoretic lower bounds for the two systems

EIN and EIN + (L-IN). More specifically, we show that EIN and EIN + (L-IN)

prove I(α) for all ordinals α less than Γ0 and ϕ1ε00, respectively.

Let us start with the system EIN which includes the limit axiom (L) and

induction on the natural numbers for types only. It has been shown by

Marzetta [83, 82] that (a non-uniform version of) EIN interprets Friedman’s

subsystem of second order arithmetic ATR0, which is based on the schema

of arithmetical transfinite recursion and induction on the natural numbers

for sets, cf. [115]. Using the well-known fact that |ATR0| = Γ0 (cf. [40, 57]),

Marzetta’s embedding yields the desired lower bound for EIN, of course.

Nevertheless, in the following let us briefly sketch a direct wellordering proof

for EIN, which will also be relevant in the wellordering proofs for the stronger

systems treated below. The following lemma constitutes the crucial step in

deriving transfinite induction below Γ0.

Lemma 7 We have that EIN proves

<(x) ∧ (∀y ∈̇ u(u(x)))TI(y, a) → (∀y ∈̇ u(x))TI(y, ϕa0).

Proof. (Sketch) Let us indicate the key steps of this argument: given a name x

and assuming (∀y ∈̇ u(u(x)))TI(y, a), we also have (∀y ∈̇ u(u(x)))TI(y, ωa+1),

due to the fact that universes are closed under elementary (and hence arith-

metical) comprehension. Further, given an arbitrary name y in u(x) we can

now set up the ordinary (arithmetical) jump hierarchy starting with y below

ωa+1 in u(x); this hierarchy can be described by making use of the recursion

theorem and using join at limit stages, cf. the previous section. The fact

34 Wellordering proofs

that the hierarchy is total or well-defined in u(x) is shown by induction up

to ωa+1 and indeed this is possible since the relevant statement to be estab-

lished, expressing that the levels of the hierarchy belong to u(x), defines a

type in u(u(x)), a universe above u(x), by closure of u(u(x)) under elemen-

tary comprehension. But the existence of the jump hierarchy starting from

y below ωa+1 immediately entails TI(y, ϕa0), for example by Lemma 5.3.1 in

Feferman [33] or Lemma 10 on p. 187 in Schütte [110]. 2

A straightforward iterated application of the above lemma yields the fol-

lowing crucial theorem about the proof-theoretic lower bound of the theory

EIN.

Theorem 8 We have for all ordinals α less than Γ0 that EIN proves I(α).

Thus, Γ0 ≤ |EIN|.

Proof. We inductively define the fundamental sequence (αj : j ∈ N) for Γ0 by

α0 := 1 and αj+1 := ϕαj0. We further use the notation u(j)(x) for the j-fold

application of u to x, i.e. u(0)(x) := x and u(j+1)(x) := u(u(j)(x)). We have

to show that EIN proves (∀X)TI(X,αk) for each natural number k. Towards

that aim one makes straightforward use of the previous lemma in order to

show by induction on j ≤ k that EIN proves

<(x) → (∀y ∈̇ u(k+1−j)(x))TI(y, αj).

If we choose j = k in this last assertion, then we obtain that EIN derives

<(x) → (∀y ∈̇ u(x))TI(y, αk).

In particular, this entails that (∀x)(<(x) → TI(x, αk)) is provable in EIN.

Since we have an axiom saying that each type has a name, we have thus

shown in EIN the assertion (∀X)TI(X,αk). 2

This ends our discussion of the lower bound of EIN. In conclusion, EIN allows

for the build up of finite towers of universes, but nothing essentially stronger.

Using the techniques sketched above, it is also not difficult to establish sharp

lower bounds for the systems ETJ and ETJ plus (L-IN) augmented by an

axiom claiming the existence of exactly n universes on top of each other. For

details see Feferman [30] and Marzetta and Strahm [84].

We now turn to the wellordering proof of the system EIN+(L-IN). The crucial

difference in strength between EIN and EIN + (L-IN) consists in the fact that

2.3 Lower bounds for EIN 35

the presence of (L-IN) allows us to build transfinite hierarchies of universes

of length α for each fixed α less than ε0.

Towards that aim, we introduce an operation h via the recursion theorem in

order to satisfy the following recursion equations:

hx0 ' u(x),

hx(a+1) ' u(hxa),

hx` ' u(j({a : a ≺ `}, hx)).

Hence, the hierarchy starts with a universe containing (the name) x, at suc-

cessor stages one puts a universe on top of the hierarchy defined so far, and

at limit stages a universe above the disjoint union of the previously defined

hierarchy is taken. The well-definedness of h below ε0 is asserted in the

following lemma.

Lemma 9 We have for all ordinals α less than ε0 that EIN + (L-IN) proves

1. (∀x)[<(x) → (∀a ≺ α)U(hxa)],

2. (∀x)[<(x) → (∀a ≺ α)(∀b ≺ a)(hxb ∈̇ hxa)].

Proof. For the proof of this lemma it is crucial to observe that we have

transfinite induction up to each α less than ε0 available in EIN + (L-IN) with

respect to arbitrary statements of L. This is due to the presence of the

full schema of induction on the natural numbers. Hence, both claims can

be proved by transfinite induction up to an α ≺ ε0. For the first assertion

this is immediate. For the second claim one has to show that the statement

(∀b ≺ a)(hxb ∈̇ hxa) is progressive with respect to ≺. This is straightforward

if a is not a limit notation. If a is limit and b ≺ a, then also b+1 ≺ a and

hxb ∈̇ hx(b+1). On the other hand, one easily sees that there is a name

of the universe denoted by hx(b+1) which belongs to hxa, since we have by

definition j({b : b ≺ a}, hx) ∈̇ hxa. But then hxb ∈̇ hxa is immediate by

strong transitivity (Lemma 3). This concludes our argument. 2

Crucial for the wellordering proof below is the notion Icx(a) of transfinite

induction up to a for all types (respectively names) belonging to a universe

hxb for b ≺ c, which is given as follows:

Icx(a) := (∀b ≺ c)(∀y ∈̇ hxb)TI(y, a).

The next lemma tells us that I`x(a) can be represented by a type in hx`.

36 Wellordering proofs

Lemma 10 We have for all ordinals α less than ε0 that EIN + (L-IN) proves

(∀x, `)[<(x) ∧ ` ≺ α → (∃y ∈̇ hx`)(∀a)(a ∈̇ y ↔ I`x(a))].

Proof. We work in EIN+(L-IN) and assume <(x) as well as ` ≺ α ≺ ε0. Then

we know by the definition of hx` that j({b : b ≺ `}, hx) ∈̇ hx`. By closure of

hx` under join this readily entails that also (a name of) the type

{(b, u, v) : b ≺ ` ∧ u ∈̇ hxb ∧ v ∈̇ u}

belongs to hx`. Therefore, by closure of hx` under elementary comprehen-

sion, there exists a type (name) y in hx` which satisfies the condition claimed

by the lemma. 2

The following lemma is crucial for the base case of Lemma 12 below and

makes important use of Lemma 7 above.

Lemma 11 We have for all ordinals α less than ε0 that EIN + (L-IN) proves

(∀x, `)[<(x) ∧ ` ≺ α → Prog(λa.I`x(Γa))].

Proof. Assuming that x is a name and ` ≺ α is a limit notation, we aim

at showing that λa.I`x(Γa) is progressive. This claim is immediate by an easy

inductive argument from

(1) (∀b)[I`x(b) → I`x(ϕb0)].

Towards a proof of (1) assume I`x(b) and fix a c ≺ `. We have to show

(∀y ∈̇ hxc)TI(y, ϕb0). Since ` is limit we also have c+1 ≺ ` and, hence, our

assumption yields (∀y ∈̇ hx(c+1))TI(y, b). Further, since hx(c+1) = u(hxc)

and hxc = u(w) for a suitable name w, we are now in a position to apply

Lemma 7 and obtain (∀y ∈̇ hxc)TI(y, ϕb0). Since c was an arbitrary notation

less than ` we thus have shown I`x(ϕb0). This ends our proof of (1).

Now in order to establish Prog(λa.I`x(Γa), it is clearly enough to show the

following claims (2)–(4):

I`x(Γ0),(2)

I`x(Γa) → I`x(Γa+1),(3)

Lim(a) ∧ (∀a′ ≺ a)I`x(Γa′) → I`x(Γa).(4)

2.3 Lower bounds for EIN 37

For (2), observe that we are given a fundamental sequence zv = Γ0[v] for

Γ0, where z0 = 1 and zv+1 = ϕzv0. Hence, (2) follows from (1) by ordinary

induction. The argument for (3) is completely analogous by using the fun-

damental sequence zv = Γb+1[v] for Γb+1 with z0 = Γb + 1 and zv+1 = ϕzv0.

Finally, for (4) just observe that if Lim(a), then Γa is the supremum over

a′ ≺ a of Γa′ , so that the claim is immediate in this case. All together this

completes the proof of our lemma. 2

An important tool in the proof of Lemma 12 below is the formula Mainα(a).

It is the natural adaptation to our setting of similar formulas employed in

a wellordering proof below Γ0 in Feferman [33] and the metapredicative

wellordering proof in Jäger, Kahle, Setzer and Strahm [62]. Its definition

makes use of the binary relation ↑ on the field of ≺,

a ↑ b := (∃c, `)(b = c+ a · `).

Here of course + and · are the primitive recursive operations corresponding to

ordinal addition and multiplication on the field of ≺. The formula Mainα(a)

now has the following definition:

Mainα(a) := (∀x, b, c)[<(x) ∧ c � α ∧ ω1+a ↑ c ∧ Icx(b) → Icx(ϕ1ab)].

We are now ready to turn to the crucial lemma concerning Mainα(a). It

corresponds to Main Lemma I in [62], formulated in the framework of explicit

mathematics with universes.

Lemma 12 We have for all ordinals α less than ε0 that EIN + (L-IN) proves

the statement Prog(λa.Mainα(a)).

Proof. In order to show Prog(λa.Mainα(a)) it is enough to verify the follow-

ing claims (1)–(3):

Mainα(0),(1)

Mainα(a) → Mainα(a+1),(2)

Lim(a) ∧ (∀w ∈ N)Mainα(a[w]) → Mainα(a).(3)

Towards a proof of (1) we fix a name x and assume that c = c0 + ω · ` for a

limit notation `. We have to show

(4) Ic0+ω·`
x (b) → Ic0+ω·`

x (Γb).

38 Wellordering proofs

Towards this aim, assume Ic0+ω·`
x (b). It is sufficient to verify I

c0+ω·`[u]
x (Γb) for

each natural number u. Since `[u] > 0 we have that c0 + ω · `[u] is always

limit, and hence we obtain by Lemma 11,

(5) Prog(λa.Ic0+ω·`[u]
x (Γa))

for each u in N. But we have by Lemma 10 that {a : I
c0+ω·`[u]
x (a)} forms a

type in the universe hx(c0 + ω · `[u]), so that Ic0+ω·`
x (b) and (5) immediately

imply I
c0+ω·`[u]
x (Γb) for each natural number u. This finishes the proof of (4)

and, hence, assertion (1) of our lemma has been verified.

For the proof of (2), let us assume Mainα(a), i.e.

(6) (∀x, d, e)[<(x) ∧ d � α ∧ ω1+a ↑ d ∧ Idx(e) → Idx(ϕ1ae)].

We want to establish Mainα(a+1). So fix a name x and assume

(7) c � α ∧ c = c0 + ω1+a+1 · ` ∧ Icx(b).

We have to show Icx(ϕ1(a+1)b). Again it is sufficient to establish

(8) Ic0+ω1+a+1·`[u]
x (ϕ1(a+1)b)

for each natural number u. We set c[u] := c0 + ω1+a+1 · `[u] and readily

observe that ω1+a ↑ c[u] for each u in N. Hence, we can derive from (6)

(9) (∀u ∈ N)(∀e)[Ic[u]
x (e) → Ic[u]

x (ϕ1ae)].

Our next immediate task is to establish the assertion

(10) (∀u ∈ N)Prog(λe.Ic[u]
x (ϕ1(a+1)e)).

The proof of (10) requires the verification of the three claims

Ic[u]
x (ϕ1(a+1)0),(11)

Ic[u]
x (ϕ1(a+1)e) → Ic[u]

x (ϕ1(a+1)(e+1)),(12)

Lim(e) ∧ (∀e′ ≺ e)Ic[u]
x (ϕ1(a+1)e′) → Ic[u]

x (ϕ1(a+1)e).(13)

In order to verify (11), observe that we are given a fundamental sequence zw =

ϕ1(a+1)0[w] for ϕ1(a+1)0, where z0 = 1 and zw+1 = ϕ1azw. Hence, (11)

follows from (9) by ordinary induction. As to (12), we have a fundamental

sequence zw = ϕ1(a+1)(e+1)[u] for ϕ1(a+1)(e+1) with z0 = ϕ1(a+1)e+1

2.3 Lower bounds for EIN 39

and zw+1 = ϕ1azw. Again the claim follows from (9) by ordinary induction.

Finally, for (13), we observe that if Lim(e), then ϕ1(a+ 1)e is the supremum

over e′ ≺ e of ϕ1(a+1)e′, hence there is nothing to prove in this case. Thus we

have finished the verification of (10). Since I
c[u]
x (ϕ1(a+1)e) can be represented

by a type in the universe hx(c[u]) for each u (Lemma 10), and we know Icx(b)

by (7), we are now in a position to conclude from (10),

(∀u ∈ N)Ic[u]
x (ϕ1(a+1)b).

But this is exactly (8) and, hence, the verification of (2) is concluded.

Let us finally turn to a proof of assertion (3). For a given name x we assume

Lim(a) ∧ (∀w ∈ N)Mainα(a[w]),(14)

c � α ∧ c = c0 + ω1+a · ` ∧ Icx(b).(15)

Observe that we have ω1+a = ωa since a is limit. We have to show Icx(ϕ1ab).

Indeed, it is enough to establish

(16) Ic0+ωa·`[u]
x (ϕ1ab)

for each natural number u. If we set c[u] := c0 + ωa · `[u], then one readily

sees that for each w in N, we can write c[u] in the form

(17) c[u] = c0 + ω1+a[w] · `w

for a suitable limit notation `w depending on w (and `[u]). Hence, we have

that ω1+a[w] ↑ c[u] for each natural number w and, therefore, we can derive

from (14) that

(18) (∀u,w ∈ N)(∀e)[Ic[u]
x (e) → Ic[u]

x (ϕ1a[w]e)].

In a further step we now want to establish the assertion

(19) (∀u ∈ N)Prog(λe.Ic[u]
x (ϕ1ae)).

Again this breaks into three subcases (20)–(22), namely

Ic[u]
x (ϕ1a0),(20)

Ic[u]
x (ϕ1ae) → Ic[u]

x (ϕ1a(e+1)),(21)

Lim(e) ∧ (∀e′ ≺ e)Ic[u]
x (ϕ1ae′) → Ic[u]

x (ϕ1ae).(22)

40 Wellordering proofs

As to (20), we have a fundamental sequence zw = ϕ1a0[w] for ϕ1a0 so that

z0 = 1 and zw+1 = ϕ1a[w]zw, hence, (20) is an immediate consequence of

(18). The proof of (21) runs similarly. Finally, (22) is straightforward as

above. All together we have concluded the verification of (19). Again, we

can represent I
c[u]
x (ϕ1ae) by a type of level c[u], so that we can now derive

from (19) and our assumption Icx(b) in (15),

(∀u ∈ N)Ic[u]
x (ϕ1ab).

This is literally (16) and, hence, we are done with (3). In fact, this also

finishes the proof of our crucial lemma. 2

Using the main lemma above we are now in a position to derive the following

main theorem of this section, thus establishing the desired lower bound for

EIN + (L-IN).

Theorem 13 We have for all ordinals α less than ϕ1ε00 that EIN + (L-IN)

proves I(α). Thus, ϕ1ε00 ≤ |EIN + (L-IN)|.

Proof. It is enough to show that EIN + (L-IN) proves (∀X)TI(X,ϕ1α0) for

each α less than ε0. For that purpose, fix an arbitrary α < ε0. Then we also

have ω1+α · ω < ε0 and, hence, we have Prog(λa.Mainω1+α·ω(a)) as a theorem

of EIN + (L-IN) by our main lemma above. Since transfinite induction below

ε0 is available in EIN + (L-IN) with respect to arbitrary statements of L, we

obtain that EIN + (L-IN) proves Mainω1+α·ω(α), i.e. the statement

(∀x, b, c)[<(x) ∧ c � ω1+α · ω ∧ ω1+α ↑ c ∧ Icx(b) → Icx(ϕ1αb)].

By choosing c as ω1+α ·ω and b as 0 in this assertion, one derives the following

as a theorem of EIN + (L-IN):

(∀x)[<(x) → Iω
1+α·ω

x (ϕ1α0)].

But now we can readily conclude that EIN + (L-IN) proves (∀X)TI(X,ϕ1α0).

This is as desired and concludes the proof of the theorem. 2

2.4 Lower bounds for EMA

In this section we turn to the wellordering proof for the system EMA and

show that ϕω00 ≤ |EMA|; we also briefly indicate the lower bound ϕε000 of

EMA + (L-IN).

2.4 Lower bounds for EMA 41

The wellordering proofs for EIN and EIN + (L-IN) given in all detail in the

previous section have been presented in such a way that they easily generalize

to provide the wellordering proof for EMA outlined in this section. As a

consequence, large parts of the proofs of lemmas and theorems in this section

are simply relativized versions of similar proofs given above, so that in many

cases we can confine ourselves to simply formulating the relevant results and

refer to the previous section for detailed proofs.

The wellordering proof for EMA can be most perspicuously presented by

making use of certain subsystems Sn of EMA. The crucial type existence

axiom of Sn claims the existence of n-hyperuniverses, which can be seen as

an analogue of n-(hyper)inaccessible sets. We will see that the existence of

n-hyperuniverses for each natural number n is an immediate consequence of

the Mahlo axioms (M.1) and (M.2). Moreover, the proof-theoretic strength

of EMA is already exhausted by its subsystems Sn for each n ∈ N.

For the formulation of Sn we augment our language L by a generator constant

un for each natural number n. Below we define the notion of a type W being

an n-hyperuniverse, n-U(W); accordingly, n-U(u) expresses that u is the

name of an n-hyperuniverse,

0-U(W) := U(W),

(n+1)-U(W) := U(W) ∧ (∀x ∈ W)(un(x) ∈ W),

n-U(u) := (∃X)(<(u,X) ∧ n-U(X)).

The defining axiom for the constant un claims for each name x that un(x) is

the name of an n-hyperuniverse containing x,

<(x) → n-U(un(x)) ∧ x ∈̇ un(x).

The theory Sn now extends elementary explicit type theory with join ETJ by

(i) the defining axioms for the constants um (m ≤ n), as well as (ii) linearity

and connectivity axioms for universes which are normal with respect to the

generators um (m ≤ n). Hence, if we identify u0 with u, then the system S0

is simply the theory EIN based on the limit axiom (L) and type induction on

the natural numbers (T-IN).

We observe that due to the presence of the linearity and connectivity axioms

for normal universes in Sn, we also have strong transitivity for such universes

according to (the proof of) Lemma 3 above.

42 Wellordering proofs

Lemma 14 (n-hyperuniverses in EMA) We have for all natural numbers

n that Sn is contained in EMA.

Proof. The type generators un can be defined in EMA by means of m,

u0 = λx.m(x, λy.y), un+1 = λx.m(x, un).

One readily shows by induction on n and by making use of the Mahlo axioms

(M.1) and (M.2) that the so-defined un’s satisfy their defining axioms in Sn.

In the case n = 0 we have that u0(x) is a universe containing x for each name

x, since trivially (λy.y) is a total operation from < to <. For the induction

step we assume that the defining axiom for un has been derived in EMA; in

particular, this yields that un : < → < and, hence, by the Mahlo axioms

we have for each name x that (i) un+1(x) is a universe containing x and (ii)

un+1(x) is closed under un, thus showing that indeed (n+1)-U(un+1(x)). This

concludes our inductive argument.

Further, the linearity and connectivity axioms (Um-Lin) and (Um-Con) of EMA

entail the corresponding axioms of Sn. We have established that Sn is a

subsystem of EMA for each natural number n. 2

In sequel we will establish that Sn proves I(α) for each ordinal α less than

ϕ(n+1)00. This shows in particular that ϕω00 is a lower bound for the

proof-theoretic ordinal of EMA. The key lemma to be proved in the sequel

says that if x is a name and we know that transfinite induction holds below

a with respect to all types (names) in un(un(x)) (i.e. a universe containing a

universe that contains x), then transfinite induction holds even below ϕna0

for all types (names) in un(x).

Main Lemma 15 We have for all natural numbers n that Sn proves

(?) <(x) ∧ (∀y ∈̇ un(un(x)))TI(y, a) → (∀y ∈̇ un(x))TI(y, ϕna0).

The proof of this main lemma is by (meta) induction on n. The assertion

of the lemma in case n = 0 literally coincides with our previous Lemma 7

for EIN and, indeed, our main lemma is just the natural generalization of

Lemma 7.

Let us now turn to the induction step. For that purpose we fix a natural

number n and assume that (?) is true for n, aiming at a proof of the assertion

2.4 Lower bounds for EMA 43

of our main lemma for n+1. I.e. we want to show in the theory Sn+1 that for

all names x,

(??) (∀y ∈̇ un+1(un+1(x)))TI(y, a) → (∀y ∈̇ un+1(x))TI(y, ϕ(n+1)a0).

A crucial ingredient in the proof of (??) are (uniform) transfinite hierarchies

of n-hyperuniverses within an (n+1)-hyperuniverse; these are the natural

generalizations of the h hierarchy discussed in the previous section. In par-

ticular, using the recursion theorem, we let hn be a closed term of L so that

we have provably in ETJ:

hnx0 ' un(x),

hnx(a+1) ' un(hnxa),

hnx` ' un(j({a : a ≺ `}, hnx)).

Of course, in general, one needs some amount of transfinite induction in order

to show that hn is well-defined in an (n+1)-hyperuniverse y. Therefore, in

order to express the well-definedness of hn below a in y, we let Hiern(y, a)

denote the conjunction of the following three formulas:

(i) (∀x ∈̇ y)(∀b ≺ a)(hnxb ∈̇ y),

(ii) (∀x ∈̇ y)(∀b ≺ a)n-U(hnxb),

(iii) (∀x ∈̇ y)(∀b ≺ a)(∀c ≺ b)(hnxc ∈̇ hnxb).

The following lemma is a generalization of Lemma 9 above. It expresses that

hn is well-defined below a in an (n+1)-hyperuniverse un+1(x) provided that

transfinite induction below a is available with respect to all types (names) in

un+1(un+1(x)).

Lemma 16 We have that Sn+1 proves

<(x) ∧ (∀y ∈̇ un+1(un+1(x))TI(y, a) → Hiern(un+1(x), a).

Proof. Reasoning in Sn+1 we assume that x is a name and for all types

(names) y in un+1(un+1(x)) transfinite induction is available below a. We

have to show Hiern(un+1(x), a), i.e. for all z ∈̇ un+1(x),

(∀b ≺ a)(hnzb ∈̇ un+1(x)),(1)

(∀b ≺ a)n-U(hnzb),(2)

(∀b ≺ a)(∀c ≺ b)(hnzc ∈̇ hnzb).(3)

44 Wellordering proofs

Since {b ≺ a : hnzb ∈̇ un+1(x)} defines a type in un+1(un+1(x)) by elementary

comprehension, (1) follows by a straightforward transfinite induction. More-

over, (2) is immediate from (1) by the definition of hn, the fact that universes

consist of names only, and the defining axioms for the un’s.

As to (3), we first observe that {b ≺ a : (∀c ≺ b)(hnzc ∈̇ hnzb)} defines

a type in un+1(x) (and hence in un+1(un+1(x)) by transitivity): to see this

one basically applies join to (1) and subsequently uses an obvious instance

of elementary comprehension. Given our general assumption, we can now

derive (3) by an inductive argument in literally the same manner as in the

proof of Lemma 9. 2

The formulas nIcx(a), expressing transfinite induction up to a for all types

(respectively names) belonging to a n-hyperuniverse hnxb for b ≺ c, are the

straightforward generalizations of the formula Icx(a) used above.

nIcx(a) := (∀b ≺ c)(∀y ∈̇ hnxb)TI(y, a).

According to the next lemma, we have that nI`x(a) forms a type in hnx`. This

is the generalization of Lemma 10 and the proof is literally the same.

Lemma 17 We have that Sn+1 proves

<(x)∧Hiern(un+1(x), a) →

(∀y ∈̇ un+1(x))(∀` ≺ a)(∃z ∈̇ hny`)(∀b)[b ∈̇ z ↔ nI`y(b)].

The following lemma makes crucial use of our general induction hypothesis,

i.e. the claim (?) of our Main Lemma 15 for n. It directly generalizes Lemma

11 of the previous section.

Lemma 18 We have that Sn+1 proves

<(x) ∧ Hiern(un+1(x), a) → (∀y ∈̇ un+1(x))(∀` ≺ a)Prog(λb.nI`y(ϕ(n+1)0b)).

Proof. Presupposing that x is a name and Hiern(un+1(x), a), we want to

establish that (λb.nI`y(ϕ(n+1)0b)) is progressive for arbitrary y ∈̇ un+1(x)

and limit notations ` ≺ a. In literally the same way as in the proof of

Lemma 11, this claim is immediate from

(1) (∀c)[nI`y(c) → nI`y(ϕnc0)].

2.4 Lower bounds for EMA 45

Aiming at a proof of (1) we assume nI`y(c) and fix a d ≺ `. We have to

derive (∀z ∈̇ hnyd)TI(z, ϕnc0). Since ` is limit we have d+1 ≺ ` and, hence,

our assumption forces (∀z ∈̇ hny(d+1))TI(z, c). In addition, since we have

hny(d+1) = un(hnyd) and hnyd = un(w) for some name w in un+1(x), we are

now able to apply our general assumption (?) for n and obtain

(∀z ∈̇ hnyd)TI(z, ϕnc0).

As d ≺ ` was chosen arbitrarily, we have indeed shown nI`y(ϕnc0). This

concludes our verification of (1) and, hence, the proof of this lemma. 2

We are now in a position to turn to the natural generalization (and rela-

tivization) of the formulas Mainα(a). Accordingly, we define the formulas

nMainxa(b) in the following manner:

nMainxa(b) := (∀y ∈̇ x)(∀c, d)[d � a ∧ ω1+b ↑ d ∧ nIdy(c) → nIdy(ϕ(n+1)bc)]

Given a name x and assuming Hiern(un+1(x), a), the following lemma says

that the formula nMainun+1(x)
a (b) defines a type in the universe un+1(un+1(x)).

The proof of the lemma is straightforward and very similar in spirit to the

proof of Lemma 17 and Lemma 10.

Lemma 19 We have that Sn+1 proves

<(x)∧Hiern(un+1(x), a) →

(∃y ∈̇ un+1(un+1(x)))(∀b)[b ∈̇ y ↔ nMainun+1(x)
a (b)].

Proof. Reason in Sn+1 and assume that x is a name so that Hiern(un+1(x), a)

holds. In particular, we have for each z ∈̇ un+1(x),

(1) (∀c ≺ a)hnzc ∈̇ un+1(x).

Applying join twice to (1) allows us to conclude that (a name of) the type

(2) {(c, u, v) : c ≺ a ∧ u ∈̇ hnzc ∧ v ∈̇ u}

belongs to the universe un+1(x) (and hence also to un+1(un+1(x))). Since the

name of the type (2) is uniformly given in each z ∈̇ un+1(x) we can apply

join in the universe un+1(un+1(x)) in order to obtain a name of the type

(3) {(z, c, u, v) : z ∈̇ un+1(x) ∧ c ≺ a ∧ u ∈̇ hnzc ∧ v ∈̇ u}

46 Wellordering proofs

in the universe un+1(un+1(x)). But now, clearly, {b : nMainun+1(x)
a (b)} is given

elementarily in the type (3) and, hence, the claim of our lemma is proved. 2

The crucial result concerning the formulas nMainxa(b) is the following pro-

gressivity lemma, which is the analogue of Lemma 12. The proof is literally

the same as the one given in all detail for Lemma 12, with the only difference

that it uses Lemma 18 and Lemma 17 instead of Lemma 11 and Lemma 10.

Hence, we can state the following assertion without proof.

Lemma 20 We have that Sn+1 proves

<(x) ∧ Hiern(un+1(x), a) → Prog(λb.nMainun+1(x)
a (b)).

This concludes our preparatory work towards a proof of (??) in Sn+1, which

is now immediate.

Proof of (??) concluded. Let x be a name and suppose

(1) (∀y ∈̇ un+1(un+1(x)))TI(y, a).

Given this assumption, it is our aim to derive

(2) (∀y ∈̇ un+1(x))TI(y, ϕ(n+1)a0).

We can assume without loss of generality that a is an ε number, since uni-

verses are closed under arithmetical comprehension. Thus, it is enough to

establish

(3) (∀y ∈̇ un+1(x))TI(y, ϕ(n+1)b0)

for each b ≺ a. We fix such a b and observe that we also have ω1+b · ω ≺ a.

Further, by our assumption (1), Lemma 16 and Lemma 20 we have

(4) Prog(λe.nMainun+1(x)
a (e)).

But (4) together with (1), Lemma 16 and Lemma 19 immediately show that

we have nMainun+1(x)
a (b), i.e. spelled out

(5) (∀y ∈̇ un+1(x))(∀c, d)[d � a ∧ ω1+b ↑ d ∧ nIdy(c) → nIdy(ϕ(n+1)bc)].

By choosing c = 0 and d = ω1+b · ω in (5) we get

(6) (∀y ∈̇ un+1(x))nIω
1+b·ω

y (ϕ(n+1)b0).

2.4 Lower bounds for EMA 47

But now one immediately realizes that (6) entails (3). Since b ≺ a was

arbitrary, we have thus shown (2). This is as desired and ends our proof

of (??), given that the assumption (?) of our main lemma holds for n. All

together this concludes our proof of Main Lemma 15. 2

In exactly the same manner as in the proof of Theorem 8 we can now suc-

cessively apply our Main Lemma 15 in order to get the desired lower bound

for the theories Sn.

Theorem 21 We have for all natural numbers n and all ordinals α less than

ϕ(n+1)00 that Sn proves I(α). Thus, ϕ(n+1)00 ≤ |Sn|.

Due to Lemma 14 we have now established the desired lower bound for EMA.

Corollary 22 ϕω00 ≤ |EMA|.

We conclude this section by making a few remarks concerning the lower

bound of EMA augmented by the full schema (L-IN) of complete induction

on the natural numbers. The lower bound computations given so far can

be extended in a rather straightforward manner in order to yield ϕε000 as

a proof-theoretic lower bound of the systems EMA + (L-IN). The principal

benefit of the induction schema compared to the induction axiom is that one

has available α-hyperuniverses for α less than ε0 instead of n-hyperuniverses

for n less than ω.

Theorem 23 ϕε000 ≤ |EMA + (L-IN)|.

We will establish in the following two chapters that the lower bounds proved

for the systems ETJ, EIN, and EMA, possibly augmented by the schema (L-IN)

of formula induction, are indeed best possible.

Chapter 3

From explicit mathematics to

theories with ordinals

In this chapter we will introduce certain ordinal theories over Peano arith-

metic PA, and we will provide formalized model constructions for ETJ, EIN,

and EMA in these theories, cf. Jäger and Strahm [66]. A detailed proof-

theoretic analysis of theories with ordinals in the next chapter will yield

sharp upper bounds for the various systems of explicit mathematics.

The language and spirit of our ordinal theories is related to Jäger’s framework

of Peano arithmetic with ordinals PAΩ, cf. Jäger [61], which has previously

been used in the proof-theoretic treatment of various applicative theories and

systems of explicit mathematics, cf. Feferman and Jäger [35, 36], Jäger and

Strahm [67, 68, 69], Marzetta and Strahm [84], and Strahm [123]. Further,

numerous impredicative ordinal theories have been extensively studied by

Arai in connection with his program of finitary analysis of proof figures,

cf. e.g. Arai [3].

Below we will define the three ordinal theories OAD, OIN, and EMA, whose

universe of discourse is admissible, recursively inaccessible, and Mahlo, re-

spectively. All three theories are first order frameworks tailored for dealing

with certain non-monotone inductive definitions. Crucial for their strength

are the various reflection principles and the fact that induction on the or-

dinals is omitted completely. Thus, the slogan for our ordinals (or: pseudo-

ordinals) is: strong reflection, but no foundation.

50 From explicit mathematics to theories with ordinals

3.1 Introducing theories with ordinals

All our ordinal theories are based on the language L1 of first order arith-

metic. L1 has number variables a, b, c, d, e, f, u, v, w, x, y, z, . . . (possibly with

subscripts), symbols for all primitive recursive functions and relations, as

well as a unary relation symbol Q. Q plays the role of an anonymous relation

variable with no specific meaning (cf. Definition 4 above). There is also a

symbol ∼ for forming negative literals.1

The number terms (r, s, t, r1, s1, t1, . . .) of L1 are defined as usual. Positive

literals of L1 are all expressions R(s1, . . . , sn) for R a symbol for an n-ary

primitive recursive relation as well as expressions of the form Q(s). The

negative literals of L1 have the form ∼E so that E is a positive literal. The

formulas of L1 are now generated from the positive and negative literals

of L1 by closing against disjunction, conjunction, as well as existential and

universal number quantification. The negation ¬A of an L1 formula A is

defined by making use of De Morgan’s laws and the law of double negation.

Moreover, the remaining logical connectives are abbreviated in the standard

manner.

In the following we make use of the usual primitive recursive coding machin-

ery in L1: 〈. . .〉 is a standard primitive recursive function for forming n-tuples

〈t1, . . . , tn〉; Seq is the primitive recursive set of sequence numbers; lh(t) de-

notes the length of (the sequence number coded by) t; (t)i is the ith compo-

nent of (the sequence coded by) t if i < lh(t), i.e. t = 〈(t)0, . . . , (t)lh(t)
.−1〉 if

t is a sequence number.

Now let P be a fresh n-ary relation symbol and write L1(P) for the extension

of L1 by P. An L1(P) formula which contains at most a1, . . . , an free is called

an n-ary operator form, and we let A(P, a1, . . . , an) range over such forms.

All our ordinal theories are formulated in the language LO which extends

L1 by adding a new sort of ordinal variables σ, τ, η, ξ, . . . (possibly with sub-

scripts), new binary relation symbols < and = for the less and equality rela-

tion on the ordinals, respectively, and a unary relation symbol Ad to express

that an ordinal is admissible. Moreover, LO includes an (n+1)-ary relation

symbol PA for each operator form A(P, a1, . . . , an).

1This formulation of the language is chosen for the Tait-style reformulation of our
systems in the next section.

3.1 Introducing theories with ordinals 51

The number terms of LO are the number terms of L1, and the ordinal terms

of LO are the ordinal variables. The positive literals of LO are the positive

literals of L1 plus all expressions (σ < τ), (σ = τ) and PA(σ,~s) for each n-ary

operator form A(P,~a). We write PσA(~s) for PA(σ,~s). The negative literals of

LO are the expressions ∼E with E a positive literal of LO.

The formulas (A,B,C,A1, B1, C1, . . .) of LO are generated from the positive

and negative literals by closing under conjunction and disjunction, quantifi-

cation over natural numbers, and the bounded ordinal quantifiers (∃ξ < σ)

and (∀ξ < σ) as well as the unbounded ordinal quantifiers (∃ξ) and (∀ξ).

An LO formula is called ΣO if it does not contain ordinal quantifiers of the

form (∀ξ); it is called ΠO if it does not have ordinal quantifiers of the form

(∃ξ). Finally, the ∆O

0 formulas of LO are those formulas which are both ΣO

and ΠO; the ΣO1 formulas of LO are the ∆O

0 formulas plus all formulas of

the form (∃ξ)A(ξ) with A a ∆O

0 formula and accordingly for ΠO1 formulas.

Further, we write Aσ to denote the LO formula which is obtained from A by

replacing all unbounded ordinal quantifiers (Qξ) in A by bounded ordinal

quantifiers (Qξ < σ). Additional abbreviations are

P<σA (~s) := (∃ξ < σ)PξA(~s) and PA(~s) := (∃ξ)PξA(~s).

The stage is now set in order to introduce our base theory OAD, whose

universe of ordinals is admissible. For reasons of organizational simplicity we

have also included in OAD the basic axioms about Ad, although OAD does

not prove the existence of an admissible ordinal.

OAD is formulated in classical two-sorted predicate logic with equality in

both sorts, containing the axioms of Peano arithmetic PA, linearity axioms

for ordinals, operator axioms, ΣO reflection axioms, Ad axioms, and ∆O

0

induction on the natural numbers.

I. Number-theoretic axioms. The axioms of Peano arithmetic PA with the

exception of complete induction on the natural numbers.

II. Linearity axioms.

σ 6< σ ∧ (σ < τ ∧ τ < η → σ < η) ∧ (σ < τ ∨ σ = τ ∨ τ < σ).

III. Operator axioms. For all operator forms A(P,~a):

PσA(~s)↔ A(P<σA , ~s).

52 From explicit mathematics to theories with ordinals

IV. ΣO reflection axioms. For all ΣO formulas A:

A→ (∃ξ)Aξ.

V. Axioms for Ad. For all ΣO formulas A(~τ) whose free ordinal variables are

from the list ~τ :

Ad(σ) ∧ ~τ < σ ∧ Aσ(~τ) → (∃ξ < σ)Aξ(~τ).

VI. ∆O

0 induction on the natural numbers. For all ∆O

0 formulas A(a):

(∆O

0 -IN) A(0) ∧ (∀x)(A(x)→ A(x′)) → (∀x)A(x).

We observe that there are no induction principles for ordinals and that in-

duction on the natural numbers is restricted to ∆O

0 formulas.

This concludes the description of our base theory OAD. The two systems

OIN and OMA are now obtained from OAD by adding the limit axiom and

the Mahlo axioms, respectively. The limit axiom for ordinals claims that for

each ordinal there is a greater admissible ordinal; this is formalized by the

following simple axiom (L-Ad):

(L-Ad) (∀σ)(∃τ)(σ < τ ∧ Ad(τ))

The LO theory OIN is defined to be OAD plus (L-Ad). Since its ordinal

universe of discourse is a limit of admissible ordinals and, in addition, sat-

isfies ΣO reflection on the ordinals, we have that OIN describes a recursively

inaccessible universe of ordinals.

The principle corresponding to Mahloness in our ordinal-theoretic frame-

work is so-called ΠO2 reflection on admissible ordinals. The crucial schema

(ΠO2 -Ref-Ad) includes for all ∆O

0 formulas A(ξ, η, ~τ) whose free ordinal vari-

ables are from the list ξ, η, ~τ :

(ΠO2 -Ref-Ad)
(∀ξ)(∃η)A(ξ, η, ~τ) →

(∃σ)[Ad(σ) ∧ ~τ < σ ∧ (∀ξ < σ)(∃η < σ)A(ξ, η, ~τ)].

Thus, (ΠO2 -Ref-Ad) expresses that each true ΠO2 formula is reflected by an

admissible ordinal which is greater than all the parameters of the formula. We

let OMA be the LO theory which extends OAD by the schema (ΠO2 -Ref-Ad).

In the following we are also interested in extending our three ordinal theories

by the schema (LO-IN) of complete induction on the natural numbers for

3.2 Embedding ETJ into OAD 53

arbitrary formulas in the language LO. Accordingly, let us write in the sequel

OAD + (LO-IN), OIN + (LO-IN), and OMA + (LO-IN) for the corresponding

extensions of OAD, OIN, and OMA, respectively.

This concludes the description of the ordinal theories which will be relevant

in the sequel. In the following section we will show how to model the systems

of explicit mathematics ETJ, EIN, and EMA in the ordinal theories OAD, OIN,

and OMA.

3.2 Embedding ETJ into OAD

In this section we show how to build a formalized model construction for ETJ

in the ordinal theory OAD. This construction will be extended in the next

two sections in order to yield an interpretation of EIN and EMA in OIN and

OMA, respectively.

The crucial idea for interpreting ETJ in OAD is to choose a suitable operator

form A(P, a, b, c) so that the relation symbol PA can then be used to single

out the numbers which name types, and to define elementhood in the names

of types. Before doing this, we have to translate term application and the

individual constants of the language L into L1.

We interpret application · of L in the sense of ordinary recursion theory so

that (a·b) in L is translated into {a}(b) in L1, where {n} for n = 0, 1, 2, 3, . . . is

a standard enumeration of the partial recursive functions. Then it is possible

to assign pairwise different numerals to the constants k, s, p, p0, p1, sN, pN and

dN so that the applicative axioms (1)–(8) of ETJ are satisfied. We also require

that the constant 0 of L is interpreted as the 0 of L1 and the term sNa of L

as a+1 in L1. In addition, we let pairing and projections of L go over into

the primitive recursive pairing and unpairing machinery introduced above.

Further, for each L term t there exists an L1 formula Valt(a) expressing that

a is the value of t under the interpretation described above. Accordingly, the

atomic formulas t↓, (s = t) and N(t) are given their obvious interpretations

in L1 with the translation of N ranging over all natural numbers.

For dealing with the generators we choose, again by ordinary recursion theory,

numerals nat, q, id, co, int, dom, inv, j, u, and m so that we have the following

54 From explicit mathematics to theories with ordinals

properties:

nat = 〈0, 0〉, q = 〈1, 0〉, id = 〈2, 0〉, {co}(a) = 〈3, a〉,

{int}(〈a, b〉) = 〈4, a, b〉, {dom}(a) = 〈5, a〉, {inv}(〈a, b〉) = 〈6, a, b〉,

{j}(〈a, b〉) = 〈7, a, b〉, {u}(a) = 〈8, a〉, {m}(〈a, f〉) = 〈9, a, f〉,

{e0}(a) 6= e1

for all natural numbers a, b and all e0 and e1 from the set ranging over

nat, q, id, co, int, dom, inv, j, u, and m. Of course, u and m will not yet play a

role in this section and only be used later.

As mentioned above, it is our strategy to define a specific operator form

A(P, a, b, c) and use the corresponding relation symbol PA for dealing with

codes for types and elements of types. Later our interpretation will be so

that

<(a) translates into (∃ξ)PξA(a, 0, 0) and

b ∈̇ a translates into (∃ξ)PξA(a, b, 1).

Before turning to our final operator form A(P, a, b, c) we introduce the aux-

iliary ternary operator form A0(P, a, b, c) which is the disjunction of the fol-

lowing formulas (1)–(16):

(1) a = 〈0, 0〉 ∧ b = 0 ∧ c = 0,

(2) a = 〈0, 0〉 ∧ c = 1,

(3) a = 〈1, 0〉 ∧ b = 0 ∧ c = 0,

(4) a = 〈1, 0〉 ∧ Q(b) ∧ c = 1,

(5) a = 〈2, 0〉 ∧ b = 0 ∧ c = 0,

(6) a = 〈2, 0〉 ∧ (∃x)(b = 〈x, x〉) ∧ c = 1,

(7) (∃u)[a = 〈3, u〉 ∧ P(u, 0, 0)] ∧ b = 0 ∧ c = 0,

(8) (∃u)[a = 〈3, u〉 ∧ P(u, 0, 0) ∧ ¬P(u, b, 1)] ∧ c = 1,

(9) (∃u, v)[a = 〈4, u, v〉 ∧ P(u, 0, 0) ∧ P(v, 0, 0)] ∧ b = 0 ∧ c = 0,

3.2 Embedding ETJ into OAD 55

(10) (∃u, v)[a = 〈4, u, v〉 ∧ P(u, 0, 0) ∧ P(v, 0, 0) ∧ P(u, b, 1) ∧ P(v, b, 1)]

∧ c = 1,

(11) (∃u)[a = 〈5, u〉 ∧ P(u, 0, 0)] ∧ b = 0 ∧ c = 0,

(12) (∃u, x)[a = 〈5, u〉 ∧ P(u, 0, 0) ∧ P(u, 〈b, x〉, 1)] ∧ c = 1,

(13) (∃u, f)[a = 〈6, u, f〉 ∧ P(u, 0, 0)] ∧ b = 0 ∧ c = 0,

(14) (∃u, f)[a = 〈6, u, f〉 ∧ P(u, 0, 0) ∧ P(u, {f}(b), 1)] ∧ c = 1,

(15) (∃u, f)[a = 〈7, u, f〉 ∧ P(u, 0, 0) ∧ (∀x)(P(u, x, 1) → P({f}(x), 0, 0))]

∧ b = 0 ∧ c = 0,

(16) (∃u, f)[a = 〈7, u, f〉 ∧ P(u, 0, 0) ∧ (∀x)(P(u, x, 1) → P({f}(x), 0, 0))

∧ (∃y, z)(b = 〈y, z〉 ∧ P(u, y, 1) ∧ P({f}(y), z, 1))] ∧ c = 1.

If we had foundation on the ordinals, this operator form A0(P, a, b, c) would

be sufficient for our model construction. By induction on the ordinals we

could show for example that (∃ξ)PξA0
(a, 0, 0) implies that there is a least such

ξ. In our context, however, induction on the ordinals is not available. Thus,

in order to have a “unique time stamp” for triples (a, b, c) to get into stages

generated, we work with the following operator form A(P, a, b, c):

A(P, a, b, c) := A0(P, a, b, c) ∧ ¬P(a, 0, 0).

Given this careful definition of the operator form A(P, a, b, c), the following

lemma concerning the stages of A(P, a, b, c) is trivially provable in OAD:

Lemma 24 The following assertions are provable in OAD:

1. PσA(a, 0, 0) ∧ PτA(a, 0, 0) → σ = τ ,

2. PσA(a, b, 1) → PσA(a, 0, 0),

3. PσA(a, 0, 0) → (∀b)[PA(a, b, 1)↔ PσA(a, b, 1)].

Before turning to the interpretation of the types, the ∈ relation and the

naming relation we introduce the following definitions:

Rep(a) := (∃ξ)PξA(a, 0, 0), E(b, a) := (∃ξ)PξA(a, b, 1).

In our embedding of ETJ into OAD we first assume that the number and

types variables of L are mapped into the number variables of LO so that no

56 From explicit mathematics to theories with ordinals

conflicts arise; to simplify the notation we often identify the type variables

with their translations in LO. Then we let the type variables of ETJ range

over Rep and the translation of the atomic formulas of L involving types is

as follows:

<(t, U)∗ := (∃x)[Valt(x) ∧ Rep(x) ∧ Rep(U) ∧ (∀y)(E(y, x)↔ E(y, U))],

(t ∈ U)∗ := (∃x)[Valt(x) ∧ E(x, U)],

(U = V)∗ := (∀x)(E(x, U)↔ E(x, V)).

On the basis of these basic cases the translation of arbitrary L formulas A

into LO formulas A∗ should be obvious. The embedding of ETJ into OAD is

given by the following theorem.

Theorem 25 We have for all L formulas A(~U,~a) with all its free variables

indicated that

ETJ A(~U,~a) =⇒ OAD Rep(~U) → A∗(~U,~a).

Moreover, this embedding carries over to the presence of full formula induc-

tion (L-IN) and (LO-IN), respectively.

Proof. The proof proceeds by induction on the length of the derivation

of the formula A. If A is an applicative axiom or an axiom concerning the

uniqueness of generators, then its translation is provable in OAD by our as-

sumptions about the coding of the first order part of ETJ. The translations

of the axioms about explicit representation and extensionality are easily ver-

ified. In the case of the basic type existence axioms we confine ourselves to

showing the translation of the axioms about Intersection and Join.

Let us first turn to Intersection. Assume we are given two natural numbers

a and b so that Rep(a) and Rep(b). Hence, there exist ordinals σ and τ with

PσA(a, 0, 0) and PτA(b, 0, 0). Using ΣO reflection, choose an ordinal η greater

than σ and τ , and carry through the following distinction by cases.

Case 1: ¬P<ηA (〈4, a, b〉, 0, 0). Then our operator form A(P, a, b, c) yields

PηA(〈4, a, b〉, 0, 0). Moreover, we also have

(∀x)[PηA(〈4, a, b〉, x, 1) ↔ P<ηA (a, x, 1) ∧ P<ηA (b, x, 1)].

In view of Lemma 24 we thus have Rep(〈4, a, b〉) and for all natural numbers

x that E(x, 〈4, a, b〉) if and only if E(x, a) and E(x, b).

3.3 Embedding EIN into OIN 57

Case 2: P<ηA (〈4, a, b〉, 0, 0). Because of Lemma 24 there exists a unique ξ less

than η so that PξA(〈4, a, b〉, 0, 0). Hence, the operator form A(P, a, b, c) forces

P<ξA (a, 0, 0), P<ξA (b, 0, 0) and ¬P<ξA (〈4, a, b〉, 0, 0). Now we proceed as in the

previous case.

In a next step we discuss Join. For that purpose assume that we are given

natural numbers a and f so that Rep(a) and

(1) (∀x)(E(x, a) → Rep({f}(x))).

Hence, there is an ordinal τ with PτA(a, 0, 0). Moreover, thanks to Lemma

24, (1) is equivalent to the assertion

(2) (∀x)(PτA(a, x, 1) → (∃ξ)PξA({f}(x), 0, 0).

We are now in a position to apply ΣO reflection to (2) in order to find an

ordinal η greater than τ so that

(3) (∀x)(PτA(a, x, 1) → P<ηA ({f}(x), 0, 0).

Using (3) we can now proceed by case distinction on ¬PηA(〈7, a, f〉, 0, 0), re-

spectively PηA(〈7, a, f〉, 0, 0) as before in order to obtain the desired conclusion

concerning Join.

Finally, let us verify the translation of type induction on the natural numbers

(T-IN). Given an a so that Rep(a) as well as

E(0, a) ∧ (∀x)(E(x, a)→ E(x′, a)),

the desired conclusion is immediate by ∆O

0 induction on the natural numbers

(∆O

0 -IN) and using the fact that there is an ordinal number σ so that for all

natural numbers x, E(x, a) is equivalent to PσA(a, x, 1). 2

3.3 Embedding EIN into OIN

In a further step we now aim at an extension of the ∗ translation in order to

yield an embedding of EIN into OIN and of EIN + (L-IN) into OIN + (LO-IN).

The crucial new aspect in the interpretation of EIN is to take care of the limit

axiom (L). First, for the recursion-theoretic interpretation of the generator

58 From explicit mathematics to theories with ordinals

u, recall that we have chosen the natural number u so that we have for all

natural numbers a, {u}(a) = 〈8, a〉.

In order to deal with the generator u we have to make sure that u(a) is only

made a name provided that the codes generated so far constitute a universe

containing a. We can now very elegantly use our operator A0 from above in

order to express that the names given by P form a universe,

Univ(P) := (∀a, b, c)[A0(P, a, b, c) → P(a, b, c)].

In a next step we now define the operator B0(P, a, b, c) to be the disjunction

of A0(P, a, b, c) and the following formulas (17) and (18):

(17) (∃x)[a = 〈8, x〉 ∧ P(x, 0, 0)] ∧ Univ(P) ∧ b = 0 ∧ c = 0,

(18) (∃x)[a = 〈8, x〉 ∧ P(x, 0, 0)] ∧ Univ(P) ∧ P(b, 0, 0) ∧ c = 1.

As before we can define the final operator form B(P, a, b, c) for our interpre-

tation of EIN in the following manner:

B(P, a, b, c) := B0(P, a, b, c) ∧ ¬P(a, 0, 0).

The crucial lemma concerning “time stamps” (Lemma 24) now holds for PB
instead of PA. Moreover, the translation ∗ of L into LO is defined as above,

but always using PB instead of PA. We continue using the shorthand expres-

sions Rep(a) and E(b, a) and always assume that the appropriate operator

form is given by the context.

The embedding theorem of EIN [+(L-IN)] into OIN [+(LO-IN)] can now be

stated in the expected manner.

Theorem 26 We have for all L formulas A(~U,~a) with all its free variables

indicated that

EIN A(~U,~a) =⇒ OIN Rep(~U) → A∗(~U,~a).

Moreover, this embedding carries over to the presence of full formula induc-

tion (L-IN) and (LO-IN), respectively.

Proof. Large parts of the proof are identical to the proof of Theorem 25. In

the following we confine ourselves to the main new points only.

3.4 Embedding EMA into OMA 59

First, we observe that that linearity (Uno-Lin) and connectivity (Uno-Con) of

normal universes are easily satisfied by construction and the crucial fact that

our ordinals are linearly ordered.

Before turning to the verification of (L) let us make one crucial remark con-

cerning universes. Our treatment of the axioms of ETJ in OAD in the proof of

Theorem 25 in fact revealed that our basic type existence axioms can already

be validated at admissible stages of our construction, i.e.,

(1) Ad(σ) → Univ(P<σB).

This observation is important for dealing with the limit axiom (L). For that

purpose, assume that we are given a natural number a so that Rep(a) holds.

Hence, there exists an ordinal number τ so that PτB(a, 0, 0). Using (L-Ad),

we can find an admissible ordinal σ so that τ < σ. The admissibility of σ

ensures Univ(P<σB) by (1). We can now proceed by case distinction:

Case 1: ¬P<σB (〈8, a〉, 0, 0). Then our operator B(P, a, b, c) gives PσB (〈8, a〉, 0, 0)

and, therefore, Rep(〈8, a〉). Our operator form also forces for all x,

(2) E(x, 〈8, a〉) ↔ P<σB (x, 0, 0).

This shows in particular that 〈8, a〉 names a type which contains a. In view

of Univ(P<σB) we indeed have by (2) that (the translation of) U(〈8, a〉) is true

in our model.

Case 2: P<σB (〈8, a〉, 0, 0). Because of (the analogue of) Lemma 24 there exists

a unique ξ less than σ so that PξB(〈8, a, f〉). Hence, we have that the operator

form B(P, a, b, c) yields P<ξB (a, 0, 0) as well as Univ(P<ξB). The rest is as in the

previous case.

Therefore, our limit axiom (L) is shown to be valid in our model, and this

completes the proof of the embedding of EIN into OIN. 2

3.4 Embedding EMA into OMA

The final section of this chapter is devoted to showing how to embed EMA

into OMA. The central point will be to demonstrate how ΠO2 reflection on

admissible ordinals (ΠO2 -Ref-Ad) enables us to model the Mahlo axioms (M.1)

and (M.2).

60 From explicit mathematics to theories with ordinals

We first remind the reader that the generator m has been interpreted by a

natural number m so that for all a and f , {m}(〈a, f〉) = 〈9, a, f〉. Our aim is

now to modify the previous operator form B0(P, a, b, c) by replacing the two

clauses (17) and (18) for the limit axiom (L) by two new clauses (19) and (20)

taking care of the Mahlo axioms (M.1) and (M.2). Accordingly, we define

the new operator form C0(P, a, b, c) to be the disjunction of A0(P, a, b, c) and

the following clauses (19) and (20):

(19) (∃x, f)[a = 〈9, x, f〉 ∧ P(x, 0, 0) ∧ (∀y)(P(y, 0, 0) → P({f}(y), 0, 0))]

∧ Univ(P) ∧ b = 0 ∧ c = 0,

(20) (∃x, f)[a = 〈9, x, f〉 ∧ P(x, 0, 0) ∧ (∀y)(P(y, 0, 0) → P({f}(y), 0, 0))]

∧ Univ(P) ∧ P(b, 0, 0) ∧ c = 1.

The by now standard modification of C0(P, a, b, c) to the final operator form

C(P, a, b, c) for interpreting EMA is as follows:

C(P, a, b, c) := C0(P, a, b, c) ∧ ¬P(a, 0, 0).

Using PC we are now in a position to define the expected translation ∗ from

L into LO. Moreover, we have the following crucial embedding theorem from

EMA into OMA.

Theorem 27 We have for all L formulas A(~U,~a) with all its free variables

indicated that

EMA A(~U,~a) =⇒ OMA Rep(~U) → A∗(~U,~a).

Moreover, this embedding carries over to the presence of full formula induc-

tion (L-IN) and (LO-IN), respectively.

Proof. The only new axioms to be discussed in this proof are the Mahlo

axioms (M.1) and (M.2). To this end assume that we have a and f so that

Rep(a) and (∀x)(Rep(x)→ Rep({f}(x)). Hence, there exists a τ so that

(1) PτC (a, 0, 0).

A simple transformation of our second assumption yields, in addition, that

(2) (∀ξ)(∀x)(∃η)[P<ξC (x, 0, 0) → P<ηC ({f}(x), 0, 0)],

3.4 Embedding EMA into OMA 61

and, therefore, ΣO reflection applied to (2) gives

(3) (∀ξ)(∃η)(∀x)[P<ξC (x, 0, 0) → P<ηC ({f}(x), 0, 0)].

Hence, ΠO2 reflection on Ad, (ΠO2 -Ref-Ad), provides an admissible σ so that

(4) τ < σ ∧ (∀ξ < σ)(∃η < σ)(∀x)[P<ξC (x, 0, 0) → P<ηC ({f}(x), 0, 0)].

In view of (1) and by a simple transformation we derive

(5) P<σC (a, 0, 0) ∧ (∀x)[P<σC (x, 0, 0) → P<σC ({f}(x), 0, 0)].

As we have remarked above, the admissibility of σ forces Univ(P<σC). Using

the last assertion (5) we are now in a position to proceed by definition by

cases on ¬P<σC (〈9, a, f〉, 0, 0), respectively P<σC (〈9, a, f〉, 0, 0), in exactly the

same manner as at the end of the proof of Theorem 26.

All together this concludes the embedding of EMA into OMA. 2

Chapter 4

Proof-theoretic analysis of

theories with ordinals

In this chapter we will provide proof-theoretic upper bounds for the ordinal

theories OIN and OMA, possibly augmented by the full induction schema

(LO-IN), cf. Jäger and Strahm [66]. Together with the embedding theorems of

the previous chapter, we will finally obtain the desired upper proof-theoretic

bounds for the four systems of explicit mathematics EIN, EIN + (L-IN), EMA,

and EMA+(L-IN). We will assume in the following that the reader is familiar

with the tools and techniques of predicative proof theory, e.g. predicative cut

elimination theorems and the method of asymmetric interpretation.

We will see, in particular, that the strength of OIN and OIN + (LO-IN) is

already exhausted by claiming the existence of n, respectively α many ad-

missible ordinals for n less than ω and α less than ε0. Accordingly, OMA

and OMA + (LO-IN) are reducible to axioms asserting the existence of n-

inaccessible, respectively α-inaccessible ordinals for n less than ω and α less

than ε0. Hence, in order to conclude our proof-theoretic analysis, a detailed

treatment of α-inaccessibility will be in order.

The analysis of theories with ordinals clearly makes use of methods of predica-

tive proof theory only, although the corresponding reduction procedures are

more complex than for well-known predicative systems. Thus, the metapred-

icativity of our ordinal theories and, hence, systems of explicit mathematics

is witnessed.

64 Proof-theoretic analysis of theories with ordinals

4.1 Upper bounds for OAD

In the following let us very quickly sketch the well-known proof theory of the

ordinal theories OAD and OAD+(LO-IN). Since this is a very well-understood

territory, we confine ourselves to mentioning the main techniques and giving

pointers to the relevant literature.

Let us first turn to the theory OAD and recall that induction on the natural

numbers is restricted in OAD to ∆O

0 formulas. OAD is very similar to the

theory PAr
Ω of Jäger [61]. It is shown loc. cit. that PAr

Ω is a conservative

extension of Peano arithmetic PA. Indeed, one can literally follow the analysis

of PAr
Ω in [61] in order to establish the conservativity over PA of our ordinal

theory OAD.

We briefly outline the analysis of OAD. In a first step, one reformulates OAD

in Tait-style manner and observes that the main formulas of non-logical ax-

ioms and rules are ΣO. Hence, one obtains by finite partial cut elimination

that all but ΣO and ΠO cuts can be eliminated. In a second step, the ΣO-ΠO

fragment of our Tait calculus is reduced to PA via an asymmetric interpre-

tation: ordinal variables are replaced by finite ordinals so that a formula

PA(m,~s) with m ∈ N translates into an L1 formula that describes the build

up in stages of the corresponding inductive definition, and if m is a bound

for universal ordinal quantifiers, then m+2n provides a bound for existential

ordinal quantifiers, where n is the length of a given quasi cut-free derivation.

The so-obtained asymmetric interpretation validates ΣO and ΠO cuts as well

as ΣO reflection. In addition, ∆O

0 induction on the natural numbers, (∆O

0 -IN),

translates into complete induction for arbitrary L1 formulas. This concludes

our sketch of the conservativity of OAD over PA. Thus, we have the following

theorem.

Theorem 28 |OAD| ≤ ε0.

The principal difference in the proof-theoretic treatment of OAD + (LO-IN)

consists in the fact that the presence of complete induction on the natural

numbers for arbitrary LO formulas does no longer enable us to establish a

finite partial cut elimination theorem. To overcome this difficulty one follows

the standard procedure and replaces (LO-IN) by the ω rule at the prize of

infinite derivation lengths. Accordingly, we can now obtain quasi cut-free

derivations in (a Tait-style version of) OAD plus ω rule of length bounded by

ε0. Then we can proceed in a similar manner as above by using an asymmetric

4.2 Upper bounds for OIN 65

interpretation into a ramified system of ordinals describing the stages of

inductive definitions, where only ordinals below ε0 are needed. Finally, the

second cut elimination theorem of predicative proof theory (cf. [110, 92])

holds for this ramified system so that ordinal levels and derivation lengths

bounded by ε0 give rise to cut-free derivations of length bounded by ϕε00.

We refer the reader to [67, 69, 119, 123] for similar arguments. In conclusion,

we have the following theorem concerning the upper bound of our ordinal

theory OAD + (LO-IN).

Theorem 29 |OAD + (LO-IN)| ≤ ϕε00.

4.2 Upper bounds for OIN

It is the aim of this section to establish the upper proof-theoretic bounds Γ0

and ϕ1ε00 for the two systems OIN and OIN + (LO-IN), respectively. Since

the treatment of OIN is rather standard and well-known from the analysis of

similar formal systems, we will put some emphasis in the sequel on describing

the analysis of OIN + (LO-IN).

Let us start with introducing the basic semiformal system H, which will

be used in various ways in the rest of this chapter. Essentially, H is OAD

without ΣO reflection and with complete induction on the natural numbers

replaced by the ω rule. Moreover, in H we no longer have unbounded ordinal

quantifiers, and since H is semiformal with respect to the natural numbers,

free number variables are not present.

The language L of H is obtained from LO by omitting free number variables

and unbounded quantifiers over ordinals. In addition, we assume that L
includes a new constant 0 for the least ordinal. Therefore, the ordinal terms

of L are the constant 0 and the ordinal variables. We call two literals of

L numerically equivalent, if they are syntactically identical modulo number

subterms which have the same value.

H is formulated in a Tait-style manner for finite sets Γ,Λ, . . . (possibly with

subscripts) of L formulas. If A is an L formula, then Γ, A is a shorthand for

Γ ∪ {A}, and similar for expressions of the form Γ, A, B. The axioms and

rules of inference of H are now given as follows.

I. Axioms, group 1. For all finite sets Γ of L formulas, all numerically equiv-

66 Proof-theoretic analysis of theories with ordinals

alent L literals A and B, and all true L1 literals C:

Γ, ¬A, B and Γ, C.

II. Axioms, group 2. For all finite sets Γ of L formulas, all literals A(σ) of L,

all ordinal terms µ, ν of L and all (instances of) axioms B of OAD from the

groups II, III and V:

Γ, 0 = µ, 0 < µ and Γ, µ 6= ν, ¬A(µ), A(ν) and Γ, B.

III. Propositional rules. These are the usual Tait-style rules for disjunction

and conjunction.

IV. Number quantifier rules. For all finite sets Γ of L formulas and all L
formulas A(s):

Γ, A(s)

Γ, (∃x)A(x)
,

Γ, A(t) for all closed number terms t

Γ, (∀x)A(x)
(ω).

V. Ordinal quantifier rules. For all finite sets Γ of L formulas, all L formulas

A, all ordinal terms µ, ν of L and all ordinal variables σ so that the usual

variable conditions are satisfied:

Γ, µ < ν ∧ A(µ)

Γ, (∃ξ < ν)A(ξ)
,

Γ, σ < ν → A(σ)

Γ, (∀ξ < ν)A(ξ)
.

VI. Cut rules. For all finite sets Γ of L formulas and all L formulas A:

Γ, A Γ, ¬A
Γ

.

The derivability relation H α Γ is used to express that the finite set Γ of L
formulas has an H proof of depth less than or equal to α. Furthermore, we

write H α
0

Γ if Γ has a cut-free proof in H of depth less than or equal to α.

Moreover, we write H <α Γ and H <α
0

Γ if there exists a β < α such that

H β Γ and H β
0

Γ, respectively.

In the following we will be interested in extensions of H by axioms claiming

the existence of α many admissible ordinals which are ordered in an increasing

chain. The corresponding systems will be called H[α]. Later we will study

the generalizations H[S, n, α] of H[α].

The language L[α] of H[α] extends the language L by new constants c[β] for

each β < α. The semiformal system H[α] includes the axioms and rules of

inference of H (extended to the language L[α]) plus the following axioms

Γ, Ad(c[β]) and Γ, c[γ] < c[β]

4.2 Upper bounds for OIN 67

for all finite sets Γ of L[α] formulas and all ordinals γ < β < α. Finally, the

deducibility relation H[α] β Γ is understood as above.

Next we turn to a standard preliminary reduction of OIN and OIN + (LO-IN).

In particular, the ΣO fragment of OIN and OIN + (LO-IN) can be reduced

to the systems H[n] for n < ω and H[α] for α < ε0, respectively. This

procedure is a rather standard combination of partial cut elimination and

asymmetric interpretation, cf. e.g. the reduction of the set theory KPi0 to

finitely many admissibles in Jäger [57]. After eliminating (LO-IN) by means

of the ω rule and paying the well-known price with respect to derivation

lengths, the reduction for OIN + (LO-IN) is analogous. Hence, we can state

the following lemma without proof.

Lemma 30 We have the following reductions:

1. Assume that the ΣO sentence A is provable in OIN. Then there exists

a natural number n so that H[n+1] <ε0 Ac[n].

2. Assume that the ΣO sentence A is provable in OIN + (LO-IN). Then

there exists an ordinal α less than ε0 so that H[α+1] <ε0 Ac[α].

Moreover, the treatment of the systems H[n] for n < ω is very well under-

stood, cf. e.g. [57] for a similar scenario. Indeed, one iterates the procedure

for treating OAD + (LO-IN) (cf. the previous section) finitely often in order

to eliminate finitely many admissible ordinals. The elimination of each ad-

missible forces a further application of the binary ϕ function and, hence, the

whole procedure yields ordinal bounds below the Feferman-Schütte ordinal

Γ0. Thus, we are able to state the following upper bound for OIN.

Theorem 31 |OIN| ≤ Γ0.

Let us now turn to the analysis of the systems H[α] for limit ordinals α, finally

leading to the desired upper bound ϕ1ε00 for the ordinal theory OIN+(LO-IN).

Before stating the crucial lemma, let us introduce some notation and termi-

nology. For a formula A we use the notation A[τ1, . . . , τn] to express that

all its free ordinal variables belong to the list τ1, . . . , τn; the analogous con-

vention is employed for finite sets of formulas. Further, we call a finite set

Γ[τ1, . . . , τn] of L[α] formulas quasi closed if there exist β1, . . . , βn < α so

that Γ is of the form

τ1 6< c[β1], . . . , τn 6< c[βn], Λ[τ1, . . . , τn].

68 Proof-theoretic analysis of theories with ordinals

Hence, in a quasi closed set of L[α] formulas all occurring free ordinal vari-

ables are bound by some ordinal constant c[β] with β < α.

We are now in a position to formulate the following main lemma about

the reduction of H[β+ω1+ρ]. Its status is similar to the one of the second

elimination theorem of predicative proof theory, cf. e.g. [92, 110].

Lemma 32 (Reduction of H[β+ω1+ρ]) Assume that Γ is a quasi closed set

of L[β+ω1+ρ] formulas with the property that

H[β+ω1+ρ] α Γ.

Then we have for all ordinals γ less than ω1+ρ which are big enough for Γ

being a quasi closed set of L[β+γ] formulas that

H[β+γ] ϕ1ρα Γ.

Proof. We prove the claim by main induction on ρ and side induction on α.

We distinguish cases whether ρ = 0, ρ is a successor, or ρ is a limit ordinal.

ρ = 0. Let us assume that Γ is a finite and quasi closed set of L[β+k]

formulas for some natural number k so that H[β+ω] α Γ. If Γ is an axiom

of H[β+ω], then the claim is trivial. Furthermore, if Γ is the conclusion of

a rule different from the cut rule, the claim is immediate from the induction

hypothesis. Hence, the only critical case comes up if Γ is the conclusion of a

cut rule. Then there exist a natural number l ≥ k, α0, α1 < α and an L[β+l]

formula A so that

(1) H[β+ω] α0 Γ, A and H[β+ω] α1 Γ, ¬A.

Let AΓ be the formula which results from A by replacing all free ordinal

variables of A which do not occur in Γ by the ordinal constant 0. Then we

also have

(2) H[β+ω] α0 Γ, AΓ and H[β+ω] α1 Γ, ¬AΓ.

By the induction hypothesis we can conclude that

(3) H[β+l] ϕ10α0 Γ, AΓ and H[β+l] ϕ10α1 Γ, ¬AΓ.

Hence, by applying cut we yield H[β+l] δ Γ, where δ denotes the ordinal

max(ϕ10α0, ϕ10α1)+1. Finally, we obtain by the standard elimination pro-

cedure of finitely many admissibles (cf. our discussion above) that

(4) H[β+k] ϕ10α Γ.

4.2 Upper bounds for OIN 69

This concludes our proof in the case ρ = 0.

ρ = ρ0 + 1. Let γ < ω1+ρ0+1 and Γ be a finite and quasi closed set of L[β+γ]

formulas so that

(5) H[β+ω1+ρ0+1] α Γ.

Note that γ = ω1+ρ0 · k + γ′ for some natural number k and some γ′ less

than ω1+ρ0 . Again the only crucial case occurs if Γ is the conclusion of a cut.

Then there exist a natural number l > k, α0, α1 < α and an L[β+ω1+ρ0 · l]
formula A so that

(6) H[β+ω1+ρ0+1] α0 Γ, AΓ and H[β+ω1+ρ0+1] α1 Γ, ¬AΓ,

where AΓ is defined as before. By applying the side induction hypothesis to

the two assertions in (6) we derive

(7) H[β+ω1+ρ0 · l] ϕ1ρα0 Γ, AΓ and H[β+ω1+ρ0 · l] ϕ1ρα1 Γ, ¬AΓ,

and, hence, we also have H[β+ω1+ρ0 · l] δ Γ, for δ being the ordinal number

max(ϕ1ρα0, ϕ1ρα1) + 1. If we inductively define a sequence of ordinals δi by

δ0 := δ and δi+1 := ϕ1ρ0δi, then by applying the main induction hypothesis

l − k times one readily obtains:

H[β+ω1+ρ0 · (l−1)] δ1 Γ,

...(8)

H[β+ω1+ρ0 · (k+1)] δl−k−1 Γ,

H[β+ω1+ρ0 · k+γ′] δl−k Γ.

Here we have successively replaced β by

β + ω1+ρ0 · (l − 1), . . . , β + ω1+ρ0 · (k + 1), β + ω1+ρ0 · k

in the main induction hypothesis. Since δl−k < ϕ1ρα, we have indeed estab-

lished the desired assertion H[β+γ] ϕ1ρα Γ.

ρ limit. Assume that γ < ω1+ρ and Γ is a finite and quasi closed set of

L[β+γ] formulas so that

(9) H[β+ωρ] α Γ.

70 Proof-theoretic analysis of theories with ordinals

Again assume that Γ is the conclusion of cut. Then there exists ρ0 < ρ with

γ ≤ ω1+ρ0 , α0, α1 < α and an L[β+ω1+ρ0] formula A so that

(10) H[β+ωρ] α0 Γ, AΓ and H[β+ωρ] α1 Γ, ¬AΓ.

The side induction hypothesis applied to (10) produces

(11) H[β+ω1+ρ0] ϕ1ρα0 Γ, AΓ and H[β+ω1+ρ0] ϕ1ρα1 Γ, ¬AΓ,

and, hence, we also have H[β+ω1+ρ0] δ Γ, for δ being the ordinal number

max(ϕ1ρα0, ϕ1ρα1)+1. From this, we conclude by the main induction hy-

pothesis H[β+γ] ϕ1ρ0δ Γ. Since ϕ1ρ0δ < ϕ1ρα, this is our claim. This finishes

the discussion of the limit case and also the verification of the lemma. 2

We are now in a position to combine our main lemma with Lemma 30 in

order to obtain the desired upper bound for the system OIN + (LO-IN).

Theorem 33 |OIN + (LO-IN)| ≤ ϕ1ε00.

Proof. Let A be an arbitrary sentence of L1 and assume that A is derivable

in OIN + (LO-IN). By Lemma 30 there exists an ordinal α less than ε0 so

that H[ω1+α] α A. Now we can apply our previous lemma with β = γ = 0

and ρ = α and obtain H[0] ϕ1αα A. Observe that the system H[0] does not

contain constants for admissible ordinals and, hence, is identical to H. Thus,

we finally obtain by predicative cut elimination for H that H <ϕ1ε00
0

A.

The desired upper bound for the proof-theoretic ordinal of OIN + (LO-IN)

now follows by choosing the formula TI(<,Q) for A and using the well-known

boundedness argument for cut-free derivations of TI(<,Q), cf. [7, 92, 110]. 2

4.3 Upper bounds for OMA

We finally turn to the proof-theoretic treatment of the ordinal theories OMA

as well as OMA + (LO-IN). The plan is to establish |OMA| ≤ ϕω00 in detail

and only indicate how the relevant arguments can be generalized to obtain a

treatment of OMA + (LO-IN).

The analysis of OMA proceeds in two steps. First, the schema of ΠO2 reflection

on admissible ordinals, (ΠO2 -Ref-Ad), is eliminated in favor of n-inaccessible

ordinals for sufficiently large n less than ω. In a second step, we will treat

4.3 Upper bounds for OMA 71

auxiliary systems claiming the existence of α many n-inaccessible ordinals.

The latter calculi are the natural generalizations of the systems H[α] studied

in the previous section.

In order to be able to carry through the first reduction step, we need to

reformulate OMA in Tait-style manner. The Tait calculus OMAT is defined

in the obvious way and contains the following axioms and rules of inference.

I. Axioms. For all finite sets Γ of LO formulas, all ∆O

0 formulas A and all ∆O

0

formulas B which are axioms of OMA:

Γ, ¬A, A and Γ, B.

II. Propositional and quantifier rules. These include the usual Tait-style infer-

ence rules for the propositional connectives and all sorts of quantifiers.

III. ΣO reflection rules. For all finite sets Γ of LO formulas and for all ΣO

formulas A:
Γ, A

Γ, (∃ξ)Aξ
.

IV. ΠO2 refection on Ad rules. For all finite sets Γ of LO formulas and for all

∆O

0 formulas A(ξ, η, ~τ) whose free ordinal variables are from the list ξ, η, ~τ :

Γ, (∀ξ)(∃η)A(ξ, η, ~τ)

Γ, (∃σ)[Ad(σ) ∧ ~τ < σ ∧ (∀ξ < σ)(∃η < σ)A(ξ, η, ~τ)]
.

V. Cut rules. For all finite sets Γ of LO formulas and all LO formulas A:

Γ, A Γ, ¬A
Γ

.

The notion OMAT n Γ is used to express that the set Γ is provable in OMAT

by a proof of depth less than or equal to n; we write OMAT n
?

Γ if Γ is

provable in OMAT by a proof of depth less than or equal to n so that all its

cut formulas are ΣO1 or ΠO1 formulas. In addition, OMAT Γ or OMAT
?

Γ

means that there exists a natural number n so that OMAT n Γ or OMAT n
?

Γ,

respectively.

One readily notes that the main formulas of all axioms and rules of OMAT are

ΣO1 formulas. As a consequence, we obtain the following weak cut elimination

lemma for OMAT.

72 Proof-theoretic analysis of theories with ordinals

Lemma 34 (Weak cut elimination) We have for all finite sets Γ of LO
formulas that

OMAT Γ =⇒ OMAT
?

Γ.

Of course, the axioms and rules of OMAT are tailored so that OMA can

be embedded into OMAT in a straightforward manner. Thus we obtain the

following corollary.

Corollary 35 If the LO formula A is provable in OMA, then there exists a

natural number n so that OMAT n
?
A.

For the reduction of OMAT below, the notion of n-inaccessibility is crucial.

By recursion on n < ω we define a formula Ian(σ) to express that σ is an

n-inaccessible ordinal as follows:

Ia0(σ) := Ad(σ),

Ian+1(σ) := Ad(σ) ∧ (∀ξ < σ)(∃η < σ)[ξ < η ∧ Ian(η)].

We observe that each formula Ian(σ) is a ∆O

0 formula without free number

variables and therefore also an L formula.

Some further terminology is needed before we turn to the reduction of OMAT

to n-inaccessibility. If ~τ is the sequence of ordinal variables τ1, . . . , τm, then

(~τ 6< σ) stands for the set of literals

{τ1 6< σ, . . . , τm 6< σ}.

A finite set of L formulas Λ is called an instance of the finite set of LO for-

mulas Γ if it results from Γ by replacing all free number variables of formulas

in Γ by closed number terms of L1. Finally, we write Γσ for the finite set of

formulas which is obtained from Γ by replacing each formula A in Γ by its

restriction Aσ.

Lemma 36 (Reduction of OMAT) Assume that Γ[~τ] is a finite set of ΣO

formulas of LO. Then we have for all instances Λ[~τ] of Γ[~τ] and all natural

numbers n that

OMAT n
?

Γ[~τ] =⇒ H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ].

Proof. This lemma is proved by induction on n. In the following we

exemplarily treat the cases of cut and ΠO2 reflection on admissible ordinals.

4.3 Upper bounds for OMA 73

We note that complete induction on the natural numbers is dealt with as

usual by making use of the ω rule. In all other cases the claim is immediate

from the induction hypothesis.

Let us first look at the case where Γ[~τ] is the conclusion of a cut. Then there

are natural numbers n0, n1 < n and a ∆O

0 formula A[ξ, ~η] so that

(1) OMAT n0

?
Γ[~τ], (∃ξ)A[ξ, ~η] and OMAT n1

?
Γ[~τ], (∀ξ)¬A[ξ, ~η].

Suppose that Λ[~τ], (∃ξ)B[ξ, ~η] is an instance of Γ[~τ], (∃ξ)A[ξ, ~η]. Then in-

version applied to the second premise and the induction hypothesis yield

H ω(n0+2) ¬Ian0(σ), (~τ , ~η 6< σ), Λσ[~τ], (∃ξ < σ)B[ξ, ~η],(2)

H ω(n1+2) ¬Ian1(σ), (~τ , ~η, η0 6< σ), Λσ[~τ], ¬B[η0, ~η],(3)

where η0 is a fresh ordinal variable. From (2) and (3) we obtain

H <ω(n+2) ¬Ian(σ), (~τ , ~η 6< σ), Λσ[~τ], (∃ξ < σ)B[ξ, ~η],(4)

H <ω(n+2) ¬Ian(σ), (~τ , ~η 6< σ), Λσ[~τ], (∀ξ < σ)¬B[ξ, ~η].(5)

Here we have used the obvious fact that H <ω ¬Ian(σ), Iak(σ) for each natural

number k less than n. A cut applied to (4) and (5) reveals

(6) H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ]

since superfluous ordinal variables can be easily eliminated. This is as desired

and completes the treatment of the cut rule.

Let us now turn to the heart of the reduction, namely the interpretation of

ΠO2 reflection on admissible ordinals. Assume that Γ[~τ] is the conclusion of

the corresponding rule of OMAT. Hence, there exist an n0 < n and a ∆O

0

formula A[ξ, η, ~τ] so that

(7) OMAT n0

?
Γ[~τ], (∀ξ)(∃η)A[ξ, η, ~τ].

An application of inversion to (7) with a fresh ordinal variable τ0 forces

(8) OMAT n0

?
Γ[~τ], (∃η)A[τ0, η, ~τ].

Next we choose an instance Λ[~τ], (∃η)B[τ0, η, ~τ] of Γ[~τ], (∃η)A[τ0, η, ~τ] and

apply the induction hypothesis to (8) in order to obtain

(9) H ω(n0+2) ¬Ian0(σ0), (τ0, ~τ 6< σ0), Λσ0 [~τ], (∃η < σ0)B[τ0, η, ~τ].

74 Proof-theoretic analysis of theories with ordinals

But from (9) we can immediately derive by bounded universal ordinal quan-

tification that

(10) H <ω(n+2) ¬Ian0(σ0), (~τ 6< σ0), Λσ0 [~τ], (∀ξ < σ0)(∃η < σ0)B[ξ, η, ~τ].

Moreover, it is an easy task to check that we also have

(11) H <ω ¬Ian(σ), (~τ 6< σ), (∃σ0 < σ)[Ian0(σ0) ∧ ~τ < σ0].

By combining (10) and (11) and applying persistency, we can finally derive

(12) H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ], C[σ, ~τ]

for C[σ, ~τ] denoting the formula

(∃σ0 < σ)[Ad(σ0) ∧ ~τ < σ0 ∧ (∀ξ < σ0)(∃η < σ0)B[ξ, η, ~τ]].

Since C[σ, ~τ] is in fact an element of Λσ[~τ] we have indeed established that

H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ] as desired. Observe that we have made

crucial use of the fact that Λ[~τ] contains ΣO formulas only in order to be able

to apply persistency to Λσ0 [~τ]. All together this completes the reduction of

OMAT to n-inaccessibility. 2

Let L′ be some extension of L by additional constants for ordinals and let S be

a (finite or infinite) set of L′ formulas. The final part of this section is devoted

to the proof-theoretic analysis of semiformal systems H[S, n, α] for each n < ω

and each ordinal α. The crucial axioms of H[S, n, α] claim: (i) all formulas of

S; (ii) the existence of α many n-inaccessible ordinals which are ordered in an

increasing chain and are greater than all the ordinal constants occurring in

S. Thus, the calculi H[S, n, α] are generalizations of the systems H[α] studied

in the previous section. In particular, H[α] corresponds to H[S, 0, α] for S

being the empty set.

The language L[S, n, α] of H[S, n, α] is the extension of the language L gener-

ated by the constants occurring in S plus additional new constants c[S, n, β]

for each β < α. The semiformal system H[S, n, α] includes the axioms and

rules of inference of H (extended to the language L[S, n, α]) plus the following

axioms

(i) Γ, A and Γ, d < c[S, n, 0],

(ii) Γ, Ian(c[S, n, β]) and Γ, c[S, n, γ] < c[S, n, β],

4.3 Upper bounds for OMA 75

for all finite sets Γ of L[S, n, α] formulas, all elements A of S, all ordinal

constants d from S, and all ordinals γ < β < α. The deducibility relation

H[S, n, α] β Γ is understood in the obvious manner. Finally, the notion of a

quasi-closed set of L[S, n, α] formulas is defined analogously as for L[α].

The following lemma is the natural generalization of Lemma 32 to the context

of n-inaccessible ordinals.

Lemma 37 (Reduction of H[S, n, β+ω1+ρ]) Let Γ a quasi closed set of

L[S, n, β+ω1+ρ] formulas with the property that

H[S, n, β+ω1+ρ] α Γ.

Then we have for all ordinals γ less than ω1+ρ which are big enough for Γ

being a quasi closed set of L[S, n, β+γ] formulas that

H[S, n, β+γ] ϕ(n+1)ρα Γ.

Proof. This lemma is proved by induction on n < ω. The claim in case

of n = 0 is (apart from the presence of S) exactly our previous Lemma 32.

For the induction step we assume that our lemma holds for some natural

number n. Then we show our claim for n+1 by main induction on ρ and side

induction on α. The main steps of the argument are the same as those in

the proof of Lemma 32 in case ρ is a successor or limit ordinal. Therefore,

in the following we confine ourselves to discussing the case ρ = 0 only.

Hence, assume that Γ is a finite and quasi closed set of L[S, n+1, β+k] for-

mulas for some natural number k so that H[S, n+1, β+ω] α Γ. The only

critical case is if Γ is the conclusion of a cut rule. Then there exist a natural

number l ≥ k, α0, α1 < α and an L[S, n+1, β+l] formula A so that

(1) H[S, n+1, β+ω] α0 Γ, A and H[S, n+1, β+ω] α1 Γ, ¬A.

Let AΓ be the formula which results from A by replacing all free ordinal

variables of A which do not occur in Γ by the ordinal constant 0. Then we

also have

(2) H[S, n+1, β+ω] α0 Γ, AΓ and H[S, n+1, β+ω] α1 Γ, ¬AΓ.

By the induction hypothesis we infer

H[S, n+1, β+l] ϕ(n+2)0α0 Γ, AΓ,(3)

H[S, n+1, β+l] ϕ(n+2)0α1 Γ, ¬AΓ.(4)

76 Proof-theoretic analysis of theories with ordinals

Hence, we obtain by a cut

(5) H[S, n+1, β+l] δ Γ,

where δ denotes the ordinal max(ϕ(n+2)0α0, ϕ(n+2)0α1)+1. If l = k then

we are done; therefore, let us assume that l = l′+1 > k. In order to get rid of

the (n+1)-inaccessible c[S, n+1, l′] one uses standard partial cut elimination

and asymmetric interpretation (cf. also Lemma 30) in order to show

(6) H[S ′, n, δ+] δ+

Γ,

where S ′ denotes the set of axioms of the system H[S, n+1, β+l′] and δ+ is

the least ε number greater than δ. We know by induction hypothesis that

the claim of our theorem is true for n and, hence, we can conclude from (6),

(7) H[S ′, n, 0] ϕ(n+1)δ+δ+

Γ

since Γ ⊂ L[S ′, n, 0] by hypothesis. But in fact the system H[S ′, n, 0] is

just H[S, n+1, β+l′] and, moreover, we have that ϕ(n+1)δ+δ+ < ϕ(n+2)0α.

Thus (7) immediately reveals

(8) H[S, n+1, β+l′] <ϕ(n+2)0α Γ.

Repeating this whole step l − k times enables us to get rid of finitely many

(n+1)-inaccessibles and we finally obtain

(9) H[S, n+1, β+k] ϕ(n+2)0α Γ.

This concludes our proof in the case ρ = 0. 2

It remains to combine our previous results in order to get the desired upper

bound ϕω00 for OMA. In the following we simply write H[n, α] instead of

H[S, n, α] if S is the empty set. Similarly c[n, α] stands for c[S, n, α] with

empty S.

Theorem 38 |OMA| ≤ ϕω00.

Proof. Assume that the L1 sentence A is provable in OMA. By Corollary

35 there exists a natural number n so that OMAT n
?
A. This enables us to

invoke the reduction lemma for OMAT, i.e. Lemma 36, in order to derive

(1) H <ω2 ¬Ian(σ), A.

4.4 Putting the pieces together 77

A substitution of the ordinal constant c[n, 0] for the ordinal variable σ fol-

lowed by a cut on the formula Ian(c[n, 0]) reveals

(2) H[n, ω] <ω2

A.

Now we are in a position to apply Lemma 37 with S the empty set and

β = γ = ρ = 0 and obtain

(3) H[n, 0] <ϕ(n+1)0ω2

A.

The theory H[n, 0] does not contain constants for n-inaccessibles and, hence,

is identical to H. Finally, by standard predicative cut elimination for H and

observing that ϕ(n+1)0ω2 < ϕω00 we conclude

(4) H <ϕω00
0

A.

The desired upper bound with respect to the proof-theoretic ordinal of OMA

now follows by the standard argument as explained at the end of the proof

of Theorem 33. 2

The methods applied in this section indeed also provide sharp bounds for the

ordinal theory OMA+(LO-IN). The pattern is as follows. First, OMA+(LO-IN)

is embedded into OMAT plus ω rule, thus getting rid of full complete induc-

tion (LO-IN) in favor of infinite derivation lengths. Weak cut elimination for

OMAT plus ω rule is proved as before, but because of the infinite derivations

we now have

OMA + (LO-IN) A =⇒ OMAT + (ω) <ε0
?
A

for each LO sentence A. From now on we can proceed as before, but always

working with families (Iaα(σ) : α < ε0) instead of families (Ian(σ) : n < ω).

Carrying through everything in detail finally gives the following result about

the upper proof-theoretic bound of OMA + (LO-IN).

Theorem 39 |OMA + (LO-IN)| ≤ ϕε000.

4.4 Putting the pieces together

We are now in the position to piece together all the results concerning the

strength of the systems of explicit mathematics ETJ, EIN, and EMA, as well

78 Proof-theoretic analysis of theories with ordinals

as the ordinal theories OAD, OIN, and OMA, all systems possibly augmented

by the schema of complete induction on the natural numbers (L-IN) and

(LO-IN), respectively.

The following main theorem is an immediate consequence of Theorem 5,

Theorem 6, Theorem 8, Theorem 13, Corollary 22, Theorem 23, Theorem 25,

Theorem 26, Theorem 27, Theorem 28, Theorem 29, Theorem 31, Theorem

33, Theorem 38, and Theorem 39.

Theorem 40 We have the following proof-theoretic ordinals:

1. |ETJ| = |OAD| = ε0.

2. |ETJ + (L-IN)| = |OAD + (LO-IN)| = ϕε00.

3. |EIN| = |OIN| = Γ0.

4. |EIN + (L-IN)| = |OIN + (LO-IN)| = ϕ1ε00.

5. |EMA| = |OMA| = ϕω00.

6. |EMA + (L-IN)| = |OMA + (LO-IN)| = ϕε000.

This concludes our proof-theoretic analysis of the various systems of explicit

mathematics as well as theories with ordinals. Let us mention once more

that our wellordering proofs and upper bound computations made use of

techniques and tools of predicative proof theory only; hence, all our systems

clearly belong to the world of metapredicativity.

Chapter 5

Related systems

The final chapter of the first part of this habilitation thesis is devoted to

an informal discussion of various systems which are closely related to the

systems of explicit mathematics and, hence, theories with ordinals which we

have been examining in the previous chapters.

We will divide our overview into systems which are related to ETJ, EIN,

and EMA, respectively, all possibly augmented by the full induction schema

(L-IN). In our discussion we will consider (i) subsystems of second order

arithmetic, (ii) admissible set theories without foundation, (iii) fixed point

theories, (iv) Martin-Löf type theories, and (v) Frege structures. Let us

mention that our list of theories below is neither systematic nor complete.

5.1 Systems of strength ETJ

Let us briefly mention some systems which are proof-theoretically equivalent

to ETJ and ETJ + (L-IN). Of course, there is a huge variety of such systems

and, therefore, in the sequel we concentrate on theories which are somehow

close in spirit to ETJ and ETJ + (L-IN).

The standard system of second order arithmetic Σ1
1-AC0 based on the Σ1

1

axiom of choice,

(Σ1
1-AC) (∀x)(∃Y)A(x, Y) → (∃Z)(∀x)A(x, Zx),

for Σ1
1 formulas A(x, Y), and induction on the natural numbers restricted to

sets, is well-known to be a conservative extension of Peano arithmetic PA,

80 Related systems

cf. e.g. [14]. Clearly, (Σ1
1-AC) is closely related to Join in explicit mathematics

and, indeed, we have that ETJ and Σ1
1-AC0 are proof-theoretically equivalent.

The corresponding system Σ1
1-AC with induction on the natural numbers

admitted for all formulas in the language L2 of second order arithmetic, is

proof-theoretically equivalent to the system Π1
0-CA<ε0 for iterated arithmetic

comprehension below ε0 (cf. [14]) and, hence, according to our discussion

in Section 2.2, we have that ETJ + (L-IN) and Σ1
1-AC are proof-theoretically

equivalent with limiting ordinal ϕε00.

Moreover, there are very natural subsystems of Kripke-Platek set theory

which are closely related to ETJ and ETJ + (L-IN), but also to our ordinal

theories OAD and OAD + (LO-IN). The set theory KPu0 of Jäger [58] formal-

izes an admissible universe of sets above the natural numbers as urelements;

in KPu0 induction on the natural numbers is restricted to set-theoretic ∆0

formulas and ∈ induction is omitted completely. It is shown loc. cit. that

KPu0 is a conservative extension of Peano arithmetic PA. If the schema of

induction is added to KPu0 for all set-theoretic formulas or Ls formulas for

short, then one obtains a system of strength exactly Σ1
1-AC, cf. Jäger [54, 58].

Thus, ETJ and ETJ + (L-IN) are proof-theoretically equivalent to KPu0 and

KPu0 + (Ls-IN), respectively.

Finally, there are well-known systems of Martin Löf’s type theory which can

be measured against ETJ and ETJ + (L-IN). The standard version ML of

constructive type theory is known to be of the same strength as Heyting

arithmetic HA and, hence, ETJ, cf. e.g. [8, 128] for a detailed discussion.

Moreover, if ML is extended by one universe which reflects the type generating

principles of ML, then the resulting system is proof-theoretically equivalent

to Σ1
1-AC; this was first shown by Aczel [1], see also Feferman [30].

5.2 Systems of strength EIN

We proceed with our discussion and now turn to systems which are related

to EIN and EIN + (L-IN). Very close in spirit to EIN is Jäger’s admissible set

theory KPi0, which extends KPu0 by the limit axiom claiming that each set

is contained in an admissible set,

(∀x)(∃y)(x ∈ y ∧ Ad(y)).

5.2 Systems of strength EIN 81

Thus KPi0 formalizes a recursively inaccessible universe of sets. Recall, how-

ever, that we have no foundation in KPi0 and induction on the natural num-

bers for ∆0 formulas only. We assume, in addition, that admissibles are

linearly ordered in KPi0. It is shown in Jäger [57] that |KPi0| = Γ0.

If we augment KPi0 with the full schema of complete induction on the natural

numbers, (Ls-IN), then we obtain that |KPi0 + (Ls-IN)| = ϕ1ε00. The lower

bound computation runs similar to the wellordering proof for EIN + (L-IN),

however, some additional considerations are needed, cf. the crucial lemma due

to Jäger reported in [122, 118]. For determining the upper proof-theoretic

bound of KPi0 + (Ls-IN) one essentially follows the pattern of the treatment

of our ordinal theory OIN + (LO-IN).

Turning to subsystems of second order arithmetic, we have already mentioned

that EIN interprets Friedman’s ATR0 (cf. Marzetta [82, 83]), and in fact such

an embedding was first given by Jäger in KPi0. We recall that the axiom

schema (ATR) of arithmetical transfinite recursion claims the existence of the

arithmetic jump hierarchy along each given wellordering. Recently, Avigad

[4] gave a neat equivalent formulation of (ATR). His principle (FP) asserts

for each X positive arithmetic operator A(X,Y, x, y)1 (possibly depending

on a set parameter Y and a number parameter y) the existence of an A fixed

point,

(FP) (∃X)(∀x)[x ∈ X ↔ A(X, Y, x, y)].

It is shown in [4] that (ATR) and (FP) are equivalent over ACA0.

Further systems which are closely related to the axioms (FP) and (ATR)

are iterated fixed point theories for positive arithmetic operators. These were

first studied by Feferman [30] in finitely iterated form and, more recently, in

Jäger, Kahle, Setzer, and Strahm [62] for transfinite iterations. The princi-

pal axioms of the theory ÎDα claim for each X positive arithmetic operator

A(X, Y, x, y) a hierarchy (HAa)a≺α of A fixed points,

(∀a ≺ α)(∀x)[HAa (x) ↔ A(HAa ,H
A
≺a, x, a)].

Here ≺ denotes a standard primitive recursive wellordering of order type at

least α and HA≺a is the disjoint union of HAb (b ≺ a). Moreover, ÎD<α denotes

1These operators are not to be confused with the operators for non-monotone inductive
definitions used in our ordinal theories above.

82 Related systems

the union of the theories ÎDβ for β less than α. It has been shown in [30]

that |ÎD<ω| = Γ0. Moreover, the proof-theoretic analysis of ÎDα for α ≥ ω in

[62] reveals, in particular, the following important special cases:

|ÎDω| = Γε0 , |ÎD<ωω | = ϕ1ω00, |ÎD<ε0| = ϕ1ε00.

Summarizing, we have that EIN and EIN+(L-IN) are proof-theoretically equiv-

alent to ÎD<ω and ÎD<ε0 , respectively. For a direct reduction of EIN + (L-IN)

to ÎD<ε0 see Strahm [121]. Moreover, autonomous fixed point progressions

and a notion of transfinite fixed point recursion are studied in Strahm [118],

cf. also Rüede [106]. Finally, various research efforts were made in connection

with fixed point theories based on intuitionistic logic, cf. the work of Arai

[2], Buchholz [13], as well as Rüede and Strahm [107].

Let briefly return to subsystems of second order arithmetic, in particular

extensions of ATR0 which can be measured against transfinitely iterated fixed

point theories. If we denote by ATR the system ATR0 plus the full schema of

induction on the natural numbers, then it is known by Friedman (cf. Simpson

[114]) and Jäger [55] that |ATR| = Γε0 ; thus, ATR is equivalent to ÎDω by the

above mentioned result from [62]. On the other hand, it is known since long

that the schema of Σ1
1 dependent choice, (Σ1

1-DC), consisting of the assertions

(Σ1
1-DC) (∀X)(∃Y)A(X, Y) → (∀X)(∃Z)[Z0 = X ∧ (∀u)A(Zu, Zu+1)]

for each Σ1
1 formula A of L2, is not derivable in ATR, cf. Simpson [115]. Hence,

it is natural to ask about the strength of ATR0 +(Σ1
1-DC) and ATR+(Σ1

1-DC):

it is shown in Jäger and Strahm [71] that these two systems prove the same

arithmetic sentences as ÎD<ωω and ÎD<ε0 , respectively. In particular, we have

that our system of explicit mathematics EIN + (L-IN) is also equivalent to

ATR + (Σ1
1-DC).

Coming back to Martin-Löf type theory, it is known from Feferman [30]

that constructive type theory with finitely many universes ML<ω is proof-

theoretically equivalent to ÎD<ω and, hence, to the system EIN. More recently,

Rathjen [97, 99] has investigated the so-called superuniverse in type theory

and shown that its strength is exactly ϕ1Γ00, the proof-theoretic ordinal of

the system ÎD<Γ0 . Finally, we want to mention the recent work of Kahle [73]

in the context of Aczel’s Frege structures (cf. also Cantini [17]) augmented

by a suitable notion of universe, which provides systems that can also be

compared with transfinitely iterated fixed point theories.

5.3 Systems of strength EMA 83

5.3 Systems of strength EMA

To conclude this chapter, let us discuss some systems of admissible set theory

and second order arithmetic which are proof-theoretically equivalent to EMA

and EMA + (L-IN).

The prime candidate in the framework of admissible set theory is the the-

ory KPm0 of Jäger and Strahm [66], which is the metapredicative version

of Rathjen’s KPM, cf. [94, 95]. KPm0 extends KPu0 by the schema of Π2

reflection on admissible sets, which asserts for all set-theoretic ∆0 formulas

A(a, b,~c) whose parameters belong to the list a, b,~c the statement

(∀x)(∃y)A(x, y,~c) → (∃z)[Ad(z) ∧ ~c ∈ z ∧ (∀x ∈ z)(∃y ∈ z)A(x, y,~c)].

We have that |KPm0| = ϕω00 and |KPm0 + (Ls-IN)| = ϕε000. The lower

bound and upper bound computations are very similar in spirit to those

presented in this thesis for EMA and OMA, respectively, cf. also Jäger and

Strahm [66] and Strahm [118].

An interesting principle in the context of second order arithmetic formally

similar to set-theoretic Π2 reflection on admissibles is the schema of Π1
2 re-

flection on countably coded ω models of Σ1
1-DC, cf. Rüede [106, 103, 104].

This axiom schema asserts for each arithmetic L2 formula A(X,Y, ~Z) with

all its set parameters indicated,

(∀X)(∃Y)A(X, Y, ~Z) →

(∃M)[M |=ω Σ1
1-DC ∧ ~Z ∈̇M ∧ (∀X ∈̇M)(∃Y ∈̇M)A(X,Y, ~Z)].

Here Z ∈̇ M abbreviates (∃u)(Z = Mu) with Mu denoting as usual the uth

“slice” of the countably coded model M . Rüede [106, 103, 104] analyzes the

above principle on the basis of ACA0 and ACA0 plus full induction on the

natural numbers and establishes the limiting ordinals ϕω00 and ϕε000.

A further natural axiom analyzed by Rüede is the so-called schema of Σ1
1

transfinite dependent choice, (Σ1
1-TDC), which is the expected transfinite

generalization of (Σ1
1-DC). It includes for each Σ1

1 formula A(X, Y) of L2,

(Σ1
1-TDC) (∀X)(∃Y)A(X,Y) ∧WO(U) → (∃Z)(∀a ∈ field(U))A(ZUa, Za).

In this formula, WO(U) expresses that U codes a wellordering and field(U)

signifies the field of U . Moreover, ZUa is the disjoint union of all projections

Zb with 〈b, a〉 in the wellordering U .

84 Related systems

Using the technique of so-called pseudo hierarchies (cf. [115]), Rüede [106,

103] was able to show that the schema of Π1
2 reflection on ω models of Σ1

1-DC

and the schema of transfinite dependent choice (Σ1
1-TDC) are equivalent on

the basis of ACA0. Thus, in view of our discussion above, we have that the

systems ACA0 + (Σ1
1-TDC) and ACA0 + (Σ1

1-TDC) + (L2-IN) are of the same

proof-theoretic strength as EMA and EMA + (L-IN), respectively.

This concludes our discussion on systems related to EMA and EMA + (L-IN).

Conclusion of Part I

In this first part of our habilitation thesis we have studied various formalisms

of explicit mathematics based on elementary comprehension and join and

augmented by certain principles for generating universes. In particular, we

have examined the limit axiom (L) and the Mahlo axiom (M) leading to the

two theories EIN and EMA of explicit inaccessibility and Mahloness, respec-

tively. We have given a detailed proof-theoretic analysis of these axiomatic

frameworks and classified their strength using a ternary Veblen or ϕ function.

Characteristic for the underlying proof-theoretic analyses is their metapred-

icativity: the techniques and tools used in this part of our thesis entirely

belong to the world of predicative proof theory, although the systems under

consideration go well beyond the Feferman Schütte ordinal Γ0 with respect

to their proof-theoretic strength.

The results obtained in the first part of this thesis significantly extend the

realm of metapredicativity. Next immediate steps concern the analysis of

reflection principles going beyond Mahloness, i.e. Π2 reflection on admissibles.

The obvious candidates are Π3 reflection or even reflection for arbitrary set-

theoretic statements. It turns out that the former corresponds to ϕ functions

of arbitrary finite arity whereas the latter takes us up to the Bachmann

Howard ordinal. An interesting question in this connection is whether there

is a sensible formal notion of the limit of metapredicativity and, if the answer

is positive, to determine this limit.

Let us return to explicit mathematics and briefly address the question of how

to formalize higher reflection principles in the language of types and names.

In their seminal paper [100], Richter and Aczel introduced the notion of a

2-admissible ordinal, which can be generalized in order to define the con-

cept of an n-admissible ordinal. In particular, they showed loc. cit. that the

2-admissible ordinals are exactly the Π3 reflecting ordinals. Moreover, the

cardinal analogue of 2-admissible ordinals are the 2-regular cardinals, which

86 Conclusion of Part I

turn out to be exactly the Π1
1 indescribable cardinals. Indeed, the definition

of a 2-admissible ordinal gives immediate rise to an explicit analogue of Π3

reflection, and the corresponding metapredicative system of explicit mathe-

matics has the strength mentioned above. It seems that even the notion of

an n-admissible ordinal for n > 2 can be used to obtain a suitable analogue

in the language of explicit mathematics of Πn reflection for each n > 3.

Summarizing, the considerations in the first part of this habilitation thesis

give rise to further interesting research work in connection with metapredica-

tivity as well as explicit notions of higher reflection. The latter are of interest

not only in their metapredicative but also in impredicative form.

Part II

Applicative theories

and complexity

Plan of Part II

Let us give a quick guided tour through this part of our habilitation thesis.

We start in Chapter 6 with a short review of known recursion-theoretic char-

acterizations of various function complexity classes on the binary words W

by means of bounded recursion on notation as well as bounded unary recur-

sion. The so-obtained machine-independent characterizations will be crucial

for lower as well as upper bound arguments used in the sequel of the thesis.

In Chapter 7 we set up the central applicative framework. We start with

introducing the basic theory B of operations and words and recall some of its

crucial properties. Then we present various forms of bounded induction and

define the four central systems PT, PS, PTLS, and LS, corresponding to the

functions computable in polynomial time, polynomial space, simultaneously

polynomial time and linear space, as well as linear space, respectively.

In Chapter 8 we provide lower bound arguments for our applicative sys-

tems, i.e., we show that the functions from the respective function complexity

classes are provably total in the four applicative theories mentioned above.

In particular, we will see that forms of bounded recursion are very natu-

rally derived by means of the fixed point theorem and exploiting our various

principles of bounded induction.

Higher type issues are at the heart of Chapter 9. There we will recapitulate

an intensional and an extensional version of the Cook-Urquhart system PVω

and show that both systems are naturally contained in our applicative system

PT for the polynomial time computable functions. Indeed, the embeddings

presented in this chapter also give rise immediately to higher type systems

corresponding to PS, PTLS, and LS.

Upper bounds for the four systems PT, PS, PTLS, and LS are established

in Chapter 10. The upper bound arguments proceed in two steps. First,

standard partial cut elimination is employed in a sequent-style version of our

90 Plan of Part II

systems in order to show that derivations of sequents of positive formulas can

be restricted to positive cuts. The second crucial step consists in establishing

very uniform realizability theorems for our four theories, where a notion of

realizability for positive formulas in the standard open term model M(λη)

is used.

In Chapter 11 we present further natural applicative systems for various

classes of computable functions. In particular, we will study a system PH

which is closely related to the polynomial time hierarchy; the crucial axiom of

PH is a very uniform type two functional π for bounded quantification. Fur-

ther investigations in this chapter concern applicative theories whose prov-

ably total functions are exactly the primitive recursive functions.

Chapter 6

Some recursion-theoretic

characterizations of complexity

classes

In this chapter we review know recursion-theoretic characterizations of vari-

ous classes of computational complexity. We will work over the set of binary

words W = {0, 1}∗. Our main interest in the sequel are the functions on W

which are computable on a Turing machine in polynomial time, simultane-

ously polynomial time and linear space, polynomial space, and linear space.

For an extensive discussion of recursion-theoretic or function algebra charac-

terizations of complexity classes the reader is referred to the survey article

Clote [22].

Historically, the first function algebra characterizations of time and space

complexity classes are due to Ritchie and Cobham in 1963 and 1964, re-

spectively. Cobham [23] gave a characterization of the polynomial time

computable functions by means of bounded recursion on notation. Ritchie

[101] showed that Grzegorczyk’s class E2 coincides with the linear space

computable functions. Thus, both the polynomial time and linear space

computable functions can be considered in a suitable manner as a natural

restriction of the class of primitive recursive functions.

92 Characterizations of complexity classes

6.1 Time and space complexity classes

In the sequel we denote byW the set of finite binary words {ε, 0, 1, 00, 01, . . .},
more compactly, W = {0, 1}∗. Here as usual ε signifies the empty word. In

order to study computability of word functions F fromW
n toW we make use

of the usual notion of a multitape Turing machine, cf. e.g. [5, 12, 51, 86, 87, 89]

for this and related concepts. Our main concern is the characterization of

complexity classes according to the use of resources, particularly time and

space. More precisely, we are interested in the following four classes FPtime,

FPtimeLinspace, FPspace, and FLinspace of functions on W, cf. also

the above cited references for more information on these standard classes.

Definition 41 We introduce the following four classes of word functions.

1. Define FPtime to denote the class of functions on W which are com-

putable on a multitape Turing machine in time bounded by a polynomial

in the length of the input.

2. Define FPtimeLinspace to denote the class of functions on W which

are computable on a multitape Turing machine in time bounded by

a polynomial in the length of the input and simultaneously in space

bounded by a linear function in the length of the input.

3. Define FPspace to denote the class of functions on W which are com-

putable on a multitape Turing machine in space bounded by a polyno-

mial in the length of the input.

4. Define FLinspace to denote the class of functions on W which are

computable on a multitape Turing machine in space bounded by a linear

function in the length of the input.

We are interested in various kinds of successor operations on the binary

words W. As usual, s0 and s1 denote the binary successor functions which

concatenate 0 and 1 to the end of a given binary word, respectively. We are

also given a unary lexicographic successor s` on W, which satisfies for all x

in W the following recursion equations,

s`(ε) = 0, s`(s0x) = s1x, s`(s1x) = s0(s`x).

Observe that s` is the successor operation in the natural wellordering <` of

W according to which words are ordered by length and words of the same

6.2 Four function algebras 93

length are ordered lexicographically. Thinking of binary words as binary

representations of natural numbers, s` essentially corresponds to the usual

successor operation on the natural numbers. Clearly, we have that s0, s1, and

s` belong to FPtimeLinspace.

Finally, we let ∗ and × stand for the binary operations of word concatenation

and word multiplication, respectively, where x×y denotes the word x, length

of y times concatenated with itself. We have that ∗ and × satisfy for all x, y

in W the following recursion equations,

x∗ε = x,

x∗(s0y) = s0(x∗y),

x∗(s1y) = s1(x∗y),

x×ε = ε,

x×(s0y) = (x×y)∗x,
x×(s1y) = (x×y)∗x.

Word concatenation ∗ belongs to FPtimeLinspace, whereas word multi-

plication × belongs to FPtime. Obviously, × is not a member of the class

FPtimeLinspace.

6.2 Four function algebras

Towards a function algebra characterization of the complexity classes men-

tioned above, we now want to introduce two schemas of bounded recursion.

For that purpose, let G, H0, H1 and K be given functions on binary words of

appropriate arities. We say the function F is defined by bounded recursion

on notation (BRN) from G,H0, H1 and K, if

F (~x, ε) = G(~x),

F (~x, siy) = Hi(~x, y, F (x, ~y)), (i = 0, 1)

F (~x, y) ≤ K(~x, y)

for all ~x, y in W. Here x ≤ y signifies that the length of the word x is less

than or equal to the length of the word y. On the other hand, a function F

is defined by bounded lexicographic recursion (BRL) from G,H and K, if

F (~x, ε) = G(~x),

F (~x, s`y) = H(~x, y, F (x, ~y)),

F (~x, y) ≤ K(~x, y)

for all ~x, y in W. Hence, the crucial difference between bounded recursion

on notation (BRN) and bounded lexicographic or unary recursion (BRL) is

94 Characterizations of complexity classes

that the former recursion scheme acts along the branches of the binary tree,

whereas the latter form of bounded recursion is with respect to the lexico-

graphic ordering of the full binary tree.

In the following we use the notation of Clote [22] for a compact representation

of function algebras. Accordingly, we call (partial) mappings from functions

on W to functions on W operators. If X is a set of functions on W and OP

is a collection of operators, then [X ; OP] is used to denote the smallest set

of functions containing X and closed under the operators in OP. We call

[X ; OP] a function algebra.

Our crucial examples of operators in the sequel are (BRN) and (BRL). A

further operator is the composition operator (COMP), which takes func-

tions F,G1, . . . , Gn and maps them to the usual composition H of F with

G1, . . . , Gn, i.e., we have for all ~x in W,

H(~x) = F (G1(~x), . . . , Gn(~x)).

Below we also use I for the usual collection of projection functions and we

simply write ε for the 0-ary function being constant to the empty word ε.

We are now ready to state the function algebra characterizations of the four

complexity classes which are relevant in this thesis. The characterization

of FPtime is due to Cobham [23]. The delineations of FPtimeLinspace

and FPspace are due to Thompson [126]. Finally, the fourth assertion of

our theorem is due to Ritchie [101]. For a uniform presentation of all these

results we urge the reader to consult Clote [22].

Theorem 42 We have the following function algebra characterizations of

the complexity classes defined above:

1. [ε, I, s0, s1, ∗,×; COMP,BRN] = FPtime.

2. [ε, I, s0, s1, ∗; COMP,BRN] = FPtimeLinspace.

3. [ε, I, s`, ∗,×; COMP,BRL] = FPspace.

4. [ε, I, s`, ∗; COMP,BRL] = FLinspace.

Let us mention that indeed word concatenation ∗ is redundant in the presence

of word multiplication ×, and we have included it in the formulation of this

theorem for reasons of uniformity only.

6.2 Four function algebras 95

The inclusion “⊆” in the proof of the equations in the above theorem is rather

straightforward. A crucial task in establishing the reverse direction is to show

that the function NEXTM(x, c) = d belongs to the corresponding function

algebra. Here c, d encode configurations of a suitable Turing machine M on

input x and d is the configuration obtained in one step from configuration c.

Chapter 7

The applicative framework

In this chapter we will introduce the applicative systems which will be rel-

evant in the rest of this thesis. We start with a precise description of the

basic theory of operations and words B. The crucial axioms of B are those

of an untyped partial combinatory algebra. We briefly review the central

consequences of these axioms, namely abstraction and recursion. Further

we will address B’s standard recursion-theoretic model and mention further

important classes of models.

Later we will discuss two basic forms of bounded induction on the binary

words W, which will be used to set up the central applicative frameworks

PT, PTLS, PS, and LS. An important notion is the one of a so-called Σb
W

formula, which can be seen as an abstract applicative analogue of Σb
1 or NP

formulas in the context of first order bounded arithmetic.

7.1 The theory B of operations and words

All applicative systems to be considered below are formulated in the language

LW; it is a language of partial terms with individual variables a, b, c, x, y, z, u,

v, f, g, h, . . . (possibly with subscripts). LW includes individual constants k, s

(combinators), p, p0, p1 (pairing and unpairing), dW (definition by cases on

binary words), ε (empty word) s0, s1 (binary successors), pW (binary prede-

cessor), s`, p` (lexicographic successor and predecessor), c⊆ (initial subword

relation) and lW (tally length of binary words). We also assume that the

two constants ∗ (word concatenation) and × (word multiplication) belong to

LW, however, not all our applicative systems will have axioms about ∗ and

98 The applicative framework

×. Finally, LW has a binary function symbol · for (partial) term application,

unary relation symbols ↓ (defined) and W (binary words) as well as a binary

relation symbol = (equality).

The terms (r, s, t, . . .) of LW (possibly with subscripts) are inductively gen-

erated from the variables and constants by means of application ·. We write

ts instead of ·(t, s) and follow the standard convention of association to the

left when omitting brackets in applicative terms. As usual, (s, t) is a short-

hand for pst. Moreover, we use the abbreviations 0 and 1 for s0ε and s1ε,

respectively. Furthermore, we write s ⊆ t instead of c⊆st = 0 and s ≤ t for

lWs ⊆ lWt; s ⊂ t and s < t are understood accordingly. Finally, s∗t stands

for ∗st, and s×t for ×st.

The formulas (A,B,C, . . .) of LW (possibly with subscripts) are built from

the atomic formulas (s = t), s↓ and W(s) by closing under negation, disjunc-

tion, conjunction, implication, as well as existential and universal quantifi-

cation over individuals.

Our conventions concerning substitutions are as follows. As usual we write

t[~s/~x] and A[~s/~x] for the substitution of the terms ~s for the variables ~x in

the term t and the formula A, respectively. In this connection we often write

A(~x) instead of A and A(~s) instead of A[~s/~x].

Our applicative theories are based on partial term application. Hence, it is

not guaranteed that terms have a value, and t↓ is read as t is defined or t

has a value. The partial equality relation ' is introduced by

s ' t := (s↓ ∨ t↓)→ (s = t).

In the following we will use the following natural abbreviations concerning

the predicate W (~s = s1, . . . , sn):

~s ∈ W := W(s1) ∧ · · · ∧W(sn),

(∃x ∈ W)A := (∃x)(x ∈ W ∧ A),

(∀x ∈ W)A := (∀x)(x ∈ W→ A),

(∃x ≤ t)A := (∃x ∈ W)(x ≤ t ∧ A),

(∀x ≤ t)A := (∀x ∈ W)(x ≤ t→ A),

(t : W→ W) := (∀x ∈ W)(tx ∈ W),

(t : Wm+1 → W) := (∀x ∈ W)(tx : Wm → W).

7.1 The theory B of operations and words 99

Before we turn to precise axiomatizations, let us give a short informal inter-

pretation of the syntax of the language LW. The individual variables are con-

ceived of as ranging over a universe V of computationally amenable objects,

which can freely be applied to each other. Self-application is meaningful,

but not necessarily total. V is assumed to be combinatory complete, due to

the presence of the well-known combinators k and s, and V is closed under

pairing. There is a collection of objects W ⊆ V , consisting of finite sequences

of 0’s and 1’s. W is closed under various kinds of successor and predecessor

operations as well as definition by cases. In addition, there are operations

for the initial subword relation as well as the tally length of a binary word.

Possibly, operations for word concatenation and/or word multiplication are

explicitly included.

We now introduce the basic theory of operations and words B. The under-

lying logic of B is the classical logic of partial terms due to Beeson [8, 9];

it corresponds to E+ logic with strictness and equality of Troelstra and Van

Dalen [127]. According to this logic, quantifiers range over defined objects

only, so that the usual axioms for ∃ and ∀ are modified to

A(t) ∧ t↓ → (∃x)A(x) and (∀x)A(x) ∧ t↓ → A(t),

and one further assumes that (∀x)(x↓). The strictness axioms claim that

if a compound term is defined, then so also are all its subterms, and if a

positive atomic statement holds, then all terms involved in that statement

are defined. Note that t↓ ↔ (∃x)(t = x), so definedness need not be taken

as basic symbol. The reader is referred to [8, 9, 127] for a detailed exposition

of the logic of partial terms.

We are now ready to spell out in detail the non-logical axioms of B. To

improve readability we divide the axioms into the following six groups.

I. Partial combinatory algebra and pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),

(3) p0(x, y) = x ∧ p1(x, y) = y.

II. Definition by cases on W

(4) a ∈ W ∧ b ∈ W ∧ a = b → dWxyab = x,

100 The applicative framework

(5) a ∈ W ∧ b ∈ W ∧ a 6= b → dWxyab = y.

III. Closure, binary successors and predecessor

(6) ε ∈ W ∧ (∀x ∈ W)(s0x ∈ W ∧ s1x ∈ W),

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W→ W ∧ pWε = ε,

(9) x ∈ W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈ W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

IV. Lexicographic successor and predecessor

(11) s` : W→ W ∧ s`ε = 0,

(12) x ∈ W → s`(s0x) = s1x ∧ s`(s1x) = s0(s`x),

(13) p` : W→ W ∧ p`ε = ε,

(14) x ∈ W → p`(s`x) = x,

(15) x ∈ W ∧ x 6= ε → s`(p`x) = x.

V. Initial subword relation.

(16) x ∈ W ∧ y ∈ W → c⊆xy = 0 ∨ c⊆xy = 1,

(17) x ∈ W → (x ⊆ ε↔ x = ε),

(18) x ∈ W ∧ y ∈ W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y),

(19) x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z.

VI. Tally length of binary words

(20) lW : W→ W ∧ lWε = ε,

(21) x ∈ W → lW(s0x) = s1(lWx) ∧ lW(s1x) = s1(lWx),

(22) x ∈ W ∧ lW(x) = x → lW(s`x) = s1x,

(23) x ∈ W ∧ lW(x) 6= x → lW(s`x) = lW(x),

7.1 The theory B of operations and words 101

(24) x ∈ W ∧ y ∈ W → x ≤ y ∨ y ≤ x.

Let us immediately turn to two crucial consequences of the partial combi-

natory algebra axioms (1) and (2) of B, namely abstraction and recursion.

These two central results appear in slightly different form than in the set-

ting of a total combinatory algebra, the essential ingredients in the proofs,

however, are the same. The relevant arguments are given, for example, in

Beeson [8] or Feferman [27].

Lemma 43 (Abstraction) For each LW term t and all variables x there

exists an LW term (λx.t) whose variables are those of t, excluding x, so that

B proves

(λx.t)↓ ∧ (λx.t)x ' t.

As usual, we generalize λ abstraction to several arguments by iterating ab-

straction for one argument, i.e., (λx1 . . . xn.t) abbreviates (λx1.(. . . (λxn.t)).

Lemma 44 (Recursion) There exists a closed LW term rec so that B proves

recf↓ ∧ recfx ' f(recf)x.

Clearly, recursion nicely demonstrates the power of self-application. It will

be an essential tool for defining operations in the various applicative systems

to be introduced below.

In the meanwhile let us briefly sketch B’s standard recursion-theoretic model

PRO of partial recursive operations. The universe of PRO consists of the set

of finite 0-1 sequences W = {0, 1}∗, and W is interpreted by W. Applica-

tion · is interpreted as partial recursive function application, i.e. x · y means

{x}(y) in PRO , where {x} is a standard enumeration of the partial recursive

functions over W. It is easy to find interpretations of the constants of LW so

that all the axioms of B are true in PRO .

There are many more interesting models of the combinatory axioms, which

can easily be extended to models of B. These include further recursion-

theoretic models, term models, continuous models, generated models, and

set-theoretic models. For detailed descriptions and results the reader is re-

ferred to Beeson [8], Feferman [29], and Troelstra and van Dalen [128]. We

will make use of the so-called extensional term model of B in our upper bound

arguments in Chapter 10; there we will define this model in some detail.

102 The applicative framework

We finish this section by spelling out the obvious axioms for word concatena-

tion and word multiplication in our applicative framework. Note, however,

that these axioms do not belong to the theory B.

VII. Word concatenation.

(25) ∗ : W2 → W,

(26) x ∈ W → x∗ε = x,

(27) x ∈ W ∧ y ∈ W → x∗(s0y) = s0(x∗y) ∧ x∗(s1y) = s1(x∗y).

VIII. Word multiplication.

(28) × : W2 → W,

(29) x ∈ W → x×ε = ε,

(30) x ∈ W ∧ y ∈ W → x×(s0y) = (x×y)∗x ∧ x×(s1y) = (x×y)∗x.

In the following we write B(∗) for the extension of B by the axioms (25)–(27),

and B(∗,×) for B plus the axioms (25)–(30).

7.2 Bounded forms of induction

We have not yet specified induction principles on the binary words W; these

are of course crucial for our proof-theoretic characterizations of complexity

classes below. We start by defining three central classes of LW formulas.

We call an LW formula positive if it is built from the atomic formulas by

means of disjunction, conjunction as well as existential and universal quan-

tification over individuals; i.e., the positive formulas are exactly the implica-

tion and negation free LW formulas. We let Pos stand for the collection of

positive formulas. Further, an LW formula is called W free, if the relation

symbol W does not occur in it.

Most important in the sequel are the so-called bounded (with respect to W)

existential formulas or Σb
W formulas of LW. A formula A(f, x) belongs to

the class Σb
W if it has the form (∃y ≤ fx)B(f, x, y) for B(f, x, y) a positive

and W free formula. It is important to recall here that bounded quantifiers

range over W, i.e., (∃y ≤ fx)B(f, x, y) stands for

(∃y ∈ W)[y ≤ fx ∧ B(f, x, y)].

7.2 Bounded forms of induction 103

Further observe that the matrix B of a Σb
W formula can have unrestricted

existential and universal individual quantifiers, not ranging over W, however.

Assuming that the bounding operation f in a Σb
W formula has polynomial

growth, Σb
W formulas can be seen as a very abstract applicative analogue of

Buss’ Σb
1 formulas (cf. [15]) or Ferreira’s NP formulas (cf. [37, 38]). Notice,

however, whereas the latter classes of formulas define exactly the NP pred-

icates, Σb
W formulas of LW in general define highly undecidable sets in the

standard recursion theoretic model PRO .

At the heart of our delineation of complexity classes below are forms of

bounded (with respect to W) induction. These principles allow induction

with respect to formulas in the class Σb
W, under the proviso that the bound-

ing operation f has the right type. We will distinguish usual notation induc-

tion on binary words and the corresponding “slow” induction principle with

respect to the lexicographic successor s`.

The scheme (Σb
W-IW) of Σb

W notation induction on W includes for each formula

A(x) ≡ (∃y ≤ fx)B(f, x, y) in the formula class Σb
W,

f : W→ W ∧ A(ε) ∧ (∀x ∈ W)(A(x)→ A(s0x) ∧ A(s1x))

→ (∀x ∈ W)A(x)
(Σb

W-IW)

Accordingly, the induction scheme (Σb
W-I`) of Σb

W lexicographic induction on

W claims for each formula A(x) ≡ (∃y ≤ fx)B(f, x, y) in the class Σb
W,

f : W→ W ∧ A(ε) ∧ (∀x ∈ W)(A(x)→ A(s`x))

→ (∀x ∈ W)A(x)
(Σb

W-I`)

We will prove in the next chapter (cf. Lemma 48) that indeed (Σb
W-I`) entails

(Σb
W-IW) over our base theory B. Further, let us mention that the principles of

set induction and NP induction considered in Strahm [120] (cf. also Cantini

[20]) are directly entailed by (Σb
W-IW). Moreover, also the axiom of operation

induction of Jäger and Strahm [69] is covered by the above bounded induction

schemes. An induction principle related to (Σb
W-IW) has previously been

studied by Cantini [16] in the context of polynomially bounded operations

(cf. also Cantini [20]).

Depending on whether we include (Σb
W-IW) or (Σb

W-I`), and whether we as-

sume as given only word concatenation or both word concatenation and word

104 The applicative framework

multiplication, we can now distinguish the following four applicative theories

PT, PTLS, PS, and LS:

PT := B(∗,×) + (Σb
W-IW) PTLS := B(∗) + (Σb

W-IW)

PS := B(∗,×) + (Σb
W-I`) LS := B(∗) + (Σb

W-I`)

As the naming of these system suggests, it is our aim in the sequel to establish

that the provably total operations on words of PT, PTLS, PS, and LS coincide

with FPtime, FPtimeLinspace, FPspace, and FLinspace, respectively.

On our way we will also be interested in some higher type aspects of our

applicative systems.

Chapter 8

Deriving bounded recursions

It is the main purpose of this chapter to show that the provably total word

functions of the systems PT, PTLS, PS, and LS include the classes FPtime,

FPtimeLinspace, FPspace, and FLinspace, respectively. We set up our

lower bound arguments in such a way as to facilitate the discussion on higher

type issues in the subsequent chapter.

In proving lower bounds, we will make use of the function algebra character-

izations of our complexity classes according to Theorem 42. A key step will

be to use the recursion or fixed point lemma (Lemma 44) and combine it with

our forms of bounded induction, (Σb
W-IW) and (Σb

W-I`). As a byproduct, we

will also show that Σb
W lexicographic induction (Σb

W-I`) entails Σb
W notation

induction (Σb
W-IW) over the base applicative theory B.

8.1 Provably total word functions

Let us first start with a formal definition of the notion of provably total word

function of a given LW theory. First note that for each word w ∈ W we

have a canonical closed term w of LW which represents w; w is inductively

constructed form ε by means of the successor operations s0 and s1 as follows:

ε = ε, s0w = s0w, s1w = s1w.

In the sequel we sometimes identify the LW term w with the binary word w

when working in the language LW.

Definition 45 A function F : Wn → W is called provably total in an LW

theory T, if there exists a closed LW term tF such that

106 Deriving bounded recursions

(i) T tF : Wn → W and, in addition,

(ii) T tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

The notion of a provably total word function is divided into two conditions

(i) and (ii). The first condition (i) expresses that tF is a total operation from

Wn to W, provably in the LW theory T. Condition (ii), on the other hand,

claims that tF indeed represents the given function F : Wn → W, for each

fixed word w in W.

Observe that one gets a too weak notion of provably total function if one

drops condition (i). For example, in the theory B it is well-known that one

can represent all recursive functions in the sense of (ii). The proof of this

fact runs completely analogous to the argument in the untyped λ calculus

showing that all recursive function are representable there (cf. [6, 48]). The

crucial ingredient in the proof is of course the recursion or fixed point lemma

(Lemma 44). Hence, for example, it is possible to find a closed LW term exp

representing a suitable form of exponentiation on W in the sense of condition

(ii) above, but indeed none of the theories introduced in the previous chapter

is able to derive the totality or convergence statement exp : W→ W.

8.2 Bounded induction yields bounded

recursion

Our general strategy for proving lower bounds in the sequel is to make use

of the function algebra characterizations of our complexity classes which we

have discussed in Chapter 6. Crucial in the set up of the four function

algebras of Theorem 42 are two forms of bounded recursion, namely bounded

recursion on notation (BRN) and bounded lexicographic recursion (BRL). We

will now show that (BRN) and (BRL) can be very smoothly and naturally

represented in B + (Σb
W-IW) and B + (Σb

W-I`), respectively. The key in the

proof below is the recursion or fixed point lemma (Lemma 44) and of course

our carefully chosen forms of bounded induction.

In the sequel we also need the cut-off operator | in order to describe bounded

recursion in our systems. Informally speaking, t | s is t if t ≤ s and s else.

More formally, we can make use of definition by cases dW and the character-

istic function c⊆ in order to define |; then t | s simply is an abbreviation for

the LW term dWts(c⊆(lWt)(lWs))0.

8.2 Bounded induction yields bounded recursion 107

Let us now first turn to bounded recursion on notation (BRN) in the system

B + (Σb
W-IW). In favor of a more compact and uniform presentation we state

this form of recursion in our applicative setting by making use of one step

function only and using the predecessor operation pW instead. Moreover, in

order to simplify notation, we have only displayed one parameter; the general

case with an arbitrary list of parameters is completely analogous.

Lemma 46 There exists a closed LW term rW so that B + (Σb
W-IW) proves

f : W→ W ∧ g : W3 → W ∧ b : W2 → W →
rWfgb : W2 → W ∧

x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = rWfgb →

hxε = fx ∧ hxy = gxy(hx(pWy)) | bxy

Proof. The crucial strategy of this proof consists in applying the recursion

or fixed point lemma (Lemma 44) in order to define the term rW and make

subsequent use of (Σb
W-IW) in order to establish the required totality or con-

vergence assertion about rW.

We first define t to be the following LW term depending on f , g, and b,

t := λhxy.dWf(λz.gzy(hz(pWy)) | bzy)εyx,

and then set rW := λfgb.rec t. We now have for h ' rWfgb,

hxy ' rec txy ' t(rec t)xy ' thxy ' dWf(λz.gzy(hz(pWy)) | bzy)εyx.

In particular, we obtain for all x and y in W with y 6= ε,

(1) hxε ' fx ∧ hxy ' gxy(hx(pWy)) | bxy.

In the following we reason in B + (Σb
W-IW) and assume in addition that

(2) f : W→ W ∧ g : W3 → W ∧ b : W2 → W.

Our crucial task is to show that indeed h : W2 → W, and this is of course

where bounded induction enters the scene. First, let c be an operation so

that cxy is simply fx if y = ε and bxy, otherwise. Obviously, we have that

c : W2 → W. Now we define A(y) to be the Σb
W formula

A(y) := (∃z ≤ cxy)(hxy = z).

108 Deriving bounded recursions

Recall at this point that bounded quantifiers range over W. Fixing the pa-

rameter x ∈ W, it is now a matter of routine to derive from (1) and (2),

(3) A(ε) ∧ (∀y ∈ W)(A(y) → A(s0y) ∧ A(s1y)).

Further, (3) brings us in the position to apply notation induction for Σb
W

formulas, (Σb
W-IW), and we can thus conclude

(4) (∀y ∈ W)(∃z ∈ W)(z ≤ cxy ∧ hxy = z),

for an arbitrarily chosen x in W. But (4) shows indeed that we have estab-

lished h to be an operation from W2 to W, i.e., h : W2 → W. This is as

claimed and ends our proof. 2

We want to emphasize that indeed we have established the existence of a

type two functional for bounded recursion on notation in B + (Σb
W-IW); this

will be the key for interpreting the Cook-Urquhart system PVω into PT in

the next chapter. At any rate, the previous lemma shows that the functions

in FPtime and FPtimeLinspace are provably total in PT and PTLS, re-

spectively. Moreover, observe that in fact we have only used very special

instances of (Σb
W-IW), namely (Σb

W-IW) has been applied for statements of the

form (∃z ≤ fy)(gy = z).

If we replace notation induction on W, (Σb
W-IW), by lexicographic induction

on W, (Σb
W-I`), then of course one expects that we can derive bounded lexi-

cographic recursion (BRL) instead of bounded recursion on notation (BRN).

The proof of this fact runs completely analogous to the proof of the previ-

ous lemma and is hence omitted. Clearly, the following lemma shows that

FPspace and FLinspace are contained in the provably total functions of

PS and LS, respectively.

Lemma 47 There exists a closed LW term r` so that B + (Σb
W-I`) proves

f : W→ W ∧ g : W3 → W ∧ b : W2 → W →
r`fgb : W2 → W ∧

x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = r`fgb →

hxε = fx ∧ hxy = gxy(hx(p`y)) | bxy

A natural question to ask is whether bounded recursion on notation in the

above functional form using the recursor rW is directly available in B+(Σb
W-I`),

8.2 Bounded induction yields bounded recursion 109

too. The answer is indeed positive due to the fact that over the base theory

B, lexicographic induction (Σb
W-I`) entails notation induction (Σb

W-IW). The

proof of this fact is completely analogous to the argument showing that Buss’

theory T1
2 contains his system S1

2, cf. Buss [15]. Nevertheless, since our setting

is different, and in some sense simpler, we spell out the relevant arguments

in some detail.

Lemma 48 We have that (Σb
W-I`) entails (Σb

W-IW) over our base theory B.

Proof. Let us work informally in the theory B + (Σb
W-I`). By the previous

lemma, bounded lexicographic recursion is at our disposal. Hence, we can

define the well-known “most significant part” function msp : W2 → W,

mspaε = a, mspab = pW(mspa(p`b)), mspab ≤ a,

for all a in W and b in W with b 6= ε. This function cuts off b bits to the right

of a, where b is understood in the sense of the lexicographic ordering <` on

W. Further, we have the cut-off operation .− : W2 → W,

a .− ε = a, a .− b = p`(a .− p`b), a .− b ≤ a,

for a, b ∈ W and b 6= ε. Finally, the length function | · | : W → W, which

measures the length of a word by means of the <` ordering can be defined

by bounded lexicographic recursion and by making us of the “tally” length

function which is available in B,

|ε| = ε, |a| = if p`a < a then s`|p`a| else |p`a|, |a| ≤ a,

for all a in W with a 6= ε. It is not difficult to see that the usual properties

of msp, .−, and | · | are derivable in B + (Σb
W-I`).

Consider now an arbitrary Σb
W formula A(x) ≡ (∃y ≤ fx)B(f, x, y) and

assume the premise of (Σb
W-IW), i.e.,

(1) f : W→ W ∧ A(ε) ∧ (∀x ∈ W)(A(x)→ A(s0x) ∧ A(s1x)).

We fix an a ∈ W and aim at showing A(a). For that purpose we let C(a, x)

be the formula A(mspa(|a| .− x)). Observe that since f : W → W, we also

have g : W→ W, for g being the operation λx.f(mspa(|a| .−x)). We can now

readily derive from (1),

(2) g : W→ W ∧ C(a, ε) ∧ (∀x ∈ W)(C(a, x)→ C(a, s`x)).

110 Deriving bounded recursions

This brings us in the position to apply (Σb
W-I`) in order to derive the statement

(∀x ∈ W)C(a, x) and, in particular, C(a, |a|). Clearly, A(a) is entailed by

C(a, |a|). We have established in B+(Σb
W-I`) the schema of notation induction

on W for Σb
W formulas, (Σb

W-IW). 2

Corollary 49 The assertion of Lemma 46 is derivable in B + (Σb
W-I`).

Corollary 50 We have that PT and PTLS are directly contained in PS and

LS, respectively.

In this section we have established lower bounds in terms of provably total

functions of the four central systems, PT, PTLS, PS, and LS. We collect the

corresponding results in the following theorem.

Theorem 51 We have the following lower bound results:

1. The provably total functions of PT include FPtime.

2. The provably total functions of PTLS include FPtimeLinspace.

3. The provably total functions of PS include FPspace.

4. The provably total functions of LS include FLinspace.

Let us finish this chapter by mentioning that the results of this section show

that the applicative theories PTO and PTO+ introduced and analyzed in

Strahm [120] are directly contained in our system PT. In particular, the

induction principles presented in [120] directly follow from the more general

induction principle (Σb
W-IW), and the axioms about bounded recursion on

notation in [120] are derivable in PT thanks to Lemma 46.

Chapter 9

Higher types in PT and the

system PVω

In the last decade intense research efforts have been made in the area of so-

called higher type complexity theory and, in particular, feasible functionals

of higher types. This research is still ongoing and it is not yet clear what

the right higher type analogue of the polynomial time computable functions

is. Most prominent in the previous research is the class of so-called basic

feasible functionals BFF, which has proved to be a very robust class with

various kinds of interesting characterizations.

The basic feasible functionals of type 2, BFF2, were first studied in Melhorn

[85]. More than ten years later in 1989, Cook and Urquhart [26] introduced

the basic feasible functionals at all finite types in order to provide functional

interpretations of feasibly constructive arithmetic; in particular, they defined

a typed formal system PVω and used it to establish functional and realizabil-

ity interpretations of an intuitionistic version of Buss’ theory S1
2. The basic

feasible functionals BFF are exactly those functionals which can be defined by

PVω terms. Subsequently, much work has been devoted to BFF, cf. e.g. Cook

and Kapron [25, 75], Irwin, Kapron and Royer [52], Pezzoli [91], Royer [102],

and Seth [111].

In this chapter we introduce an intensional and an extensional version of

the Cook-Urquhart system PVω and show that both systems are naturally

contained in our applicative system PT. Hence, in a sense, PT provides a

direct justification of PVω in a type-free applicative setting. In addition, the

embeddings established in the sequel also show that the well-known systems

112 Higher types in PT and the system PVω

of bounded arithmetic PTCA and PTCA+ of Ferreira [37, 38] or, equivalently,

Cook’s system PV [24] and Buss’ S1
2 [15] are directly contained in PT.

9.1 The systems PVω and EPVω

We start off with defining the collection T of finite type symbols (α, β, γ, . . .).

T is inductively generated by the usual clauses, (i) 0 ∈ T , (ii) if α, β ∈ T ,

then (α × β) ∈ T , and (iii) if α, β ∈ T , then (α → β) ∈ T . Hence, we have

product and function types as usual. Observe, however, that in our setting

the ground type 0 stands for the set of binary words and not for the set of

natural numbers. We use the usual convention and write α1 → α2 → · · · →
αk instead of (α1 → (α2 → · · · → (αk−1 → αk) · · ·)).

In the following we sketch a version of PVω which is similar in spirit to the

presentation of Heyting’s arithmetic in all finite types HAω in Troelstra and

Van Dalen [128]; however, the logic of PVω is classical logic. PVω is based on

combinators and noncommittal as to the exact nature of equality between

objects of higher types. Later we will also discuss an extensional version

EPVω of PVω.1

The language of PVω includes for each type symbol α ∈ T a countable collec-

tion xα, yα, zα, uα, vα, wα, . . . of variables of type α. Further, for each α ∈ T
we have a binary relation symbol =α for equality at type α, and for all α, β ∈
T there is an application operator ·α,β. The constants of PVω first of all in-

clude the “arithmetical” constants of LW, namely ε, s0, s1, pW, s`, p`, c⊆, lW, ∗,
and ×; these constants now receive their obvious types in the typed language

of PVω. In addition, we have typed versions of k, s, p, p0, p1 as well as dW,

and most importantly, a recursion operator r. More precisely, we have for all

types α, β, γ ∈ T the following constants with their associated types:

pα,β : α→ β → (α× β),

pα,β0 : (α× β)→ α,

pα,β1 : (α× β)→ β,

1Actually, the system EPVω introduced below corresponds to the Cook-Urquhart sys-
tem IPVω in [26] with classical logic instead of intuitionistic logic. What we call PVω in
this thesis is just an intensional version of EPVω. We follow Troelstra and Van Dalen [128]
in using this terminology.

9.1 The systems PVω and EPVω 113

kα,β : α→ β → α,

sα,β,γ : (α→ β → γ)→ (α→ β)→ α→ γ,

dα : α→ α→ 0→ 0→ α,

r : 0→ (0→ 0→ 0)→ (0→ 0)→ 0→ 0.

In the sequel we often omit the type superscripts of variables and constants

if these are clear from the context or unimportant.

The terms of PVω are now generated from the variables and constants by

the expected clause for application, namely: if t is a term of type (α → β)

and s a term of type α, then (t ·α,β s) is a term of type β. As usual we write

(ts) instead of (t ·α,β s); moreover, outer parenthesis are often dropped, and

we make free use of the convention of association to the left when writing

applicative terms. The formulas of PVω are built from the prime formulas

(t =α s) for t, s of type α, by means of ¬, ∧, ∨, →, (∀xα), and (∃xα). As in

the applicative setting above, we call a formula positive, if it is implication

and negation free.

The logic of PVω is many-sorted classical predicate calculus with equality.

The non-logical axioms of PVω include the defining axioms for the constants

of PVω: these consist of (i) the defining axioms for the “arithmetical” con-

stants of PVω, which are just the obvious rewriting to the typed setting of the

corresponding axioms of B, and (ii) the following axioms for the combinators

k, s, p, p0, p1 and r:

kxy = x, sxyz = xz(yz),

p0(pxy) = x, p1(pxy) = y, p(p0z)(p1z) = z,

dxyuu = x, u 6= v → dxyuv = y,

rxyzε = x, u 6= ε→ rxyzu = yu(rxyz(pWu)) | zu.

In the defining equations for r, the cut-off operator | is understood in the

same way as in the untyped applicative setting via the definition by cases

operator d and the characteristic function c⊆. We have that r provides a type

two functional for bounded recursion on notation in the natural expected

manner.

Last but not least, the system PVω includes induction on notation,

A(ε) ∧ (∀x0)(A(x)→ A(s0x) ∧ A(s1x)) → (∀x0)A(x),

114 Higher types in PT and the system PVω

for all formulas A(x) in the language of the system PVω which have the shape

(∃y ≤ tx)B(x, y), with B being a positive and quantifier free formula and t

a term of type (0→ 0).

As usual, the availability of the typed combinators k and s allows for the

definition of simply typed λ terms (λxα.t), for each type symbol α ∈ T . The

definition follows the usual pattern, cf. e.g. [128].

In a further step we now turn to an extensional version EPVω of PVω. The

extensionality axioms (Extα,β) for all α, β ∈ T are given in the expected

manner by

(Extα,β) (∀y, z)[(∀x)(yx = zx)→ y = z],

for y, z of type (α → β) and x of type α. Now EPVω is defined in the same

way as PVω, except that (i) it includes (Extα,β) for all α, β ∈ T , and (ii)

the induction formulas (∃y ≤ tx)B(x, y) of PVω are restricted in EPVω to

positive quantifier free formulas B not containing equalities of higher type.

To conclude this section, let us mention that the system PTCA+ of Ferreira

[37, 38] is directly contained in PVω. It corresponds to Buss’ [15] famous

bounded arithmetic theory S1
2.

9.2 Embedding PVω and EPVω into PT

Recall that in PVω we do not claim that equality =α for α a higher type

is extensional equality. Accordingly, we now sketch an embedding of PVω

into PT by means of the abstract intensional type structure 〈(ITα,=)〉α∈T .

This embedding is analogous to the embedding of HAω into the theory of

operations and numbers APP in [128]. We work in the applicative language

LW and define ITα inductively as follows:

x ∈ IT0 := x ∈ W,

x ∈ ITα×β := p0x ∈ ITα ∧ p1x ∈ ITβ ∧ p(p0x)(p1x) = x,

x ∈ ITα→β := (∀y ∈ ITα)(xy ∈ ITβ).

Equality in ITα is simply the restriction of equality in PT. We now get an

embedding (·)IT of PVω into PT by letting the variables of type α range

over ITα. Further, application ·α,β in PVω carries over to application · in PT,

restricted to ITα→β× ITα. Moreover, the constants of PVω different from r are

9.2 Embedding PVω and EPVω into PT 115

interpreted by the corresponding constants in LW. The recursor r of PVω can

be interpreted, for example, by the closed LW term λxyzu.rW(kx)(ky)(kz)εu,

where rW denotes the closed term stated in the assertion of Lemma 46. We

now have the following embedding theorem.

Theorem 52 We have for all sentences A that PVω A entails PT AIT.

Proof. The proof of the theorem is immediate except for the case of recursion

and induction in PVω. But the defining axioms for r and, more importantly,

the fact the r has the right type, are readily derivable in PT by the results of

Lemma 46. Moreover, the translation of notation induction in PVω directly

carries over to (Σb
W-IW) in PT; for, a formula of the form (∃y ≤ tx)B(x, y)

with t of type (0→ 0) and B positive and quantifier free directly translates

into a Σb
W formula in the untyped applicative setting of PT. 2

Next we also give an embedding of EPVω into our type-free applicative setting

PT, which is analogous to the embedding of an extensional version EHAω of

HAω into APP in [128]. In this embedding we now make use of an abstract

extensional type structure 〈(ETα,=α)〉α∈T in LW, cf. [128]. ETα and =α are

inductively given in the following manner:

x ∈ ET0 := x ∈ W,

x =0 y := x ∈ W ∧ y ∈ W ∧ x = y,

x ∈ ETα×β := p0x ∈ ETα ∧ p1x ∈ ETβ ∧ p(p0x)(p1x) = x,

x =α×β y := (p0x =α p0y) ∧ (p1x =α p1y),

x ∈ ETα→β := (∀y, z)(y =α z → xy =β xz),

x =α→β y := x ∈ ETα→β ∧ y ∈ ETα→β ∧ (∀z ∈ ETα)(xz =β yz).

EPVω can now be interpreted into PT via an embedding (·)ET in the same

way as we have embedded PVω into PT via (·)IT above. Therefore, we omit

the proof of the following theorem.

Theorem 53 We have for all sentences A that EPVω A entails PT AET.

Let us observe that if we interpret PT in its standard recursion-theoretic

model of partial recursive operations PRO , then IT and ET correspond to

the so-called hereditarily recursive operations HRO and hereditarily effective

operations HEO , respectively, cf. [128]. HRO forms the standard recursion-

theoretic model of PVω and HEO is the corresponding interpretation of EPVω.

116 Higher types in PT and the system PVω

We finish this chapter with the observation that the results of the previous

chapter give rise immediately to higher type systems for FPtimeLinspace,

FPspace, and FLinspace, which are naturally contained in the correspond-

ing type-free settings PTLS, PS and LS, respectively. For example, the type

system for FPspace has a type two recursor for bounded lexicographic re-

cursion, which is available in PS by Lemma 47. It might be of interest to

study these type systems from the recursion-theoretic and abstract machine

point of view.

Chapter 10

Realizing positive derivations

It is the aim of this chapter to establish proof-theoretic upper bounds of PT,

PTLS, PS, and LS. Namely, we will show that the lower bounds with respect

to provably total functions derived in Theorem 51 are indeed sharp.

For our upper bound arguments we will proceed in two steps. First, a partial

cut elimination argument in a sequent-style reformulation of our four systems

is employed in order to show that as far as the computational content of our

systems is concerned, we can restrict ourselves to positive derivations, i.e.,

sequent style proofs using positive formulas only.

In a second crucial step we use a notion of realizability for positive formulas in

the standard open term model of our systems: quasi cut-free positive sequent

derivations of PT, PTLS, PS, and LS are suitably realized by word functions in

FPtime, FPtimeLinspace, FPspace, and FLinspace, respectively, thus

yielding the desired computational information concerning the provably total

functions of these systems.

10.1 Adding totality and extensionality

Actually, in the following we will establish our upper bounds for slight

strengthenings of PT, PTLS, PS, and LS. Namely, we augment our applica-

tive frameworks by the axioms (Tot) for totality of application and (Ext) for

extensionality of operations,

(Tot) (∀x, y)(xy↓) (Ext) (∀f, g)[(∀x)(fx = gx)→ f = g]

118 Realizing positive derivations

We observe that B + (Tot) proves t↓ for each term t, so that in the presence

of (Tot) the logic of partial terms reduces to ordinary classical predicate

calculus. Accordingly, if T denotes one of the systems PT, PTLS, PS, or

LS, then we write T+ for the system T based on ordinary classical logic with

equality and augmented with the axiom of extensionality (Ext). Observe that

in the setting of T+ we no longer have the relation symbol ↓, so that instead

of axiom (2) of B we simply have the usual total version of the s combinator,

given by the axiom sxyz = xz(yz).

The simplest model of T+ is just the standard open term model M(λη),

which is based on a straightforward extension of usual λη reduction. We will

discuss this model is some more detail below, where it will be used in our

realizability interpretation of (the positive fragment of) T+.

The fact that the presence of (Tot) and (Ext) does not raise the strength of

a given partial applicative system is not too surprising as is witnessed by

the previous work on applicative theories. For sample references cf. Cantini

[17, 20] and Jäger and Strahm [68].

10.2 Preparatory partial cut elimination

In this section we turn to a preparatory partial cut elimination argument

for T+, where again T denotes any of the systems PT, PTLS, PS, or LS.

For that purpose, we will make use of a reformulation of T+ in terms of

Gentzen’s classical sequent calculus LK; in the sequel we assume that the

reader is familiar with LK as it is presented, for example, in Girard [42].

In the following we let Γ,∆,Λ, . . . range over finite sequences of formulas in

the language LW; a sequent is a formal expression of the form Γ ⇒ ∆. As

usual, the natural interpretation of the sequent A1, . . . , An ⇒ B1, . . . , Bm is

(A1 ∧ · · · ∧ An)→ (B1 ∨ · · · ∨Bm).

We are now aiming at a suitable sequent-style reformulation of T+. As men-

tioned above, our crucial aim is to prove a partial cut elimination theorem so

that the only cuts occurring in partially cut free derivations have positive cut

formulas. Hence, in order to solve this task, we must find a Gentzen-style

reformulation of T+ so that all the main formulas of non-logical axioms and

rules (including equality) are positive. In the following we sketch such a re-

formulation of T+; we are confining ourselves to the essential points without

spelling out each single axiom and rule in detail.

10.2 Preparatory partial cut elimination 119

The axioms of our basic theory of operations and words, B, are easily refor-

mulated in positive form. Just to give an example, axioms (4) and (5) about

definition by cases dW on W translate into the pair of sequents

W(r), W(s), r = s ⇒ dWt1t2rs = t1,

W(r), W(s) ⇒ r = s, dWt1t2rs = t2,

for all terms r, s, t1, t2 of LW. Observe that as usual in sequent formulations,

we take all substitution instances of the axioms of B. It is a matter of routine

to spell out in positive sequent form the other axioms of B. In some cases, an

axiom has to be split into several sequents, e.g., axiom (18) about the initial

subword relation is now given by the two sequents

W(s), W(t), s ⊆ t ⇒ t = ε, s ⊆ pWt, s = t,

W(s), W(t), s ⊆ pWt ∨ s = t ⇒ t = ε, s ⊆ t.

We leave it to the reader to provide suitable positive sequents of the other

axioms of B, and also of the axioms (25)–(30) concerning word concatenation

and word multiplication. Moreover, the extensionality axiom (Ext) of T+ now

simply takes the positive sequent form

(∀x)(sx = tx) ⇒ s = t,

for s and t being arbitrary terms in our applicative language LW, not con-

taining the variable x. Of course, T+ also includes the usual equality axioms;

clearly, these can be stated in positive sequent form as follows:

⇒ t = t s = t ⇒ t = s s = t, t = r ⇒ s = r,

s1 = t1, s2 = t2 ⇒ s1s2 = t1t2 s = t, W(s) ⇒ W(t).

Let us now turn to the reformulation of the schemas (Σb
W-IW) and (Σb

W-I`) of

Σb
W notation induction on W and lexicographic induction on W, respectively.

These will be replaced by suitable rules of inference in the Gentzen-style

formulation of T+. Let A(u) be of the form (∃y ≤ tu)B(u, y) for B being

a positive and W free formula. Then an instance of the (Σb
W-IW) notation

induction rule is given as follows:

Γ, W(u) ⇒ W(tu), ∆ Γ ⇒ A(ε), ∆ Γ, W(u), A(u) ⇒ A(siu), ∆

Γ, W(s) ⇒ A(s), ∆

120 Realizing positive derivations

Here u denotes a fresh variable not occurring in Γ,∆ and i ranges over

0, 1, i.e., the rule has four premises. Clearly, the main formulas of this rule

are positive. We do not need to spell out the corresponding rule for (Σb
W-I`)

lexicographic induction, since it is formulated in the very same manner except

that it uses the successor s` instead of s0 and s1, thus only having three

premises.

This ends the Gentzen-style reformulation of the non-logical axioms and rules

of T+. The logical axioms and rules of T+ are just the usual ones for Gentzen’s

LK, cf. e.g. [42]. I.e., we have identity axioms, the well-known logical rules

for introducing ∧,∨,¬,→,∀ and ∃ on the right-hand side and on the left-

hand side, the structural rules for weakening, exchange, and contraction, as

well as the cut rule. In contrast to [42], however, we are using the so-called

context-sharing or additive versions of these rules: this means that rules of

inference with several premises are using the same context; we have already

used this convention in the formulation of the induction rules above. To give

a further example, the cut rule in its context-sharing version takes the form

Γ, A ⇒ ∆ Γ ⇒ A, ∆

Γ ⇒ ∆

As usual, we call the formula A the cut formula of this cut. We do not spell

out all the rules of LK at the moment and refer the reader to the proofs of

the realizability theorems in the next section, where some of these rules will

be treated in all detail.

It should be clear that we have provided an adequate sequent-style refor-

mulation of T+; in particular, the axioms schemas (Σb
W-IW) and (Σb

W-I`) as

given in Section 7.2 of this thesis are readily derivable by means of the corre-

sponding rules of inference stated above, where as usual the presence of side

formulas is crucial. In the following we often identify T+ with its Gentzen-

style version and write T+ Γ ⇒ ∆ in order to express that the sequent

Γ ⇒ ∆ is derivable in T+. Moreover, we will use the notation T+
?

Γ ⇒ ∆

if the sequent Γ ⇒ ∆ has a proof in T+ so that all cut formulas appearing

in this proof are positive.

Due to the fact that all the main formulas of non-logical axioms and rules of

T+ are positive, we now obtain the desired partial cut elimination theorem for

T+. Its proof is immediate from the well-known proof of the cut elimination

theorem for LK and is therefore omitted.

10.3 The realizability theorems 121

Theorem 54 (Partial cut elimination for T+) We have for all sequents

Γ ⇒ ∆ that T+ Γ ⇒ ∆ entails T+
?

Γ ⇒ ∆.

The following corollary directly follows from the above theorem and a quick

inspection of the axioms and rules of T+. It will be crucial for our realizability

arguments below.

Corollary 55 Assume that Γ ⇒ ∆ is a sequent of positive formulas so

that T+ Γ ⇒ ∆. Then Γ ⇒ ∆ has a T+ derivation containing positive

formulas only.

10.3 The realizability theorems

In this section we use a realizability interpretation in the term modelM(λη)

in order to determine the computational content of sequent-style derivations

in the positive fragment of PT, PTLS, PS, and LS, respectively. We will

show that the crucial realizing functions for our four systems belong to

the corresponding function complexity classes on binary words, FPtime,

FPtimeLinspace, FPspace, and FLinspace. As immediate corollaries of

the four realizability theorems below we obtain the desired upper bounds for

the provably total functions of PT, PTLS, PS, and LS.

The notion of realizability as well as the style and spirit of our realizability

theorems are related to the work of Leivant [77], Schlüter [108], and Can-

tini [19, 21], all three in the context of FPtime. However, in contrast to

these papers, we work in a bounded unramified setting. Moreover, and this

is similar to [21, 108], we are able to realize directly quasi cut-free positive

derivations in the classical sequent calculus. Finally, in order to find our

realizing functions, we can make direct use of the function algebra character-

izations of FPtime, FPtimeLinspace, FPspace, and FLinspace given in

Theorem 42; hence, direct reference to a machine model is not needed.

In our definition of realizability below we will make use of the open term

model M(λη) of T+. This model is based on the usual λη reduction of the

untyped lambda calculus (cf. [6, 48]) and exploits the well-known equivalence

between combinatory logic with extensionality and λη. In order to deal with

the constants different from k and s, one extends λη reduction by the obvious

reduction clauses for these new constants and checks that the so-obtained new

122 Realizing positive derivations

reduction relation enjoys the Church Rosser property.1

The universe of the model M(λη) now consists of the set of all LW terms.

Equality = means reduction to a common reduct and W is interpreted as

the set of all LW terms t so that t reduces to a “standard” word w for

some w ∈ W. Finally, the constants are interpreted as indicated above and

application of t to s is simply the term ts. As usual, we write M(λη) |= A

in order to express that the formula A is true in M(λη).

We are now ready to turn to realizability. Our realizers ρ, σ, τ, . . . are simply

elements of the set W of binary words. We presuppose a low-level pairing

operation 〈·, ·〉 onW with associated projections (·)0 and (·)1; for definiteness,

we assume that 〈·, ·〉, (·)0, and (·)1 are in FPtimeLinspace. Further, for each

natural number i let us write i2 for the binary notation of i.

Since we are only interested in realizing positive derivations, we need to define

realizability only for positive formulas. Accordingly, the crucial notion ρ r A

(“ρ realizes A”) for ρ ∈ W and A a positive formula, is given inductively in

the following manner.

ρ r W(t) if M(λη) |= t = ρ,

ρ r (t1 = t2) if ρ = ε and M(λη) |= t1 = t2,

ρ r (A ∧B) if ρ = 〈ρ0, ρ1〉 and ρ0 r A and ρ1 r B,

ρ r (A ∨B) if ρ = 〈i, ρ0〉 and either i = 0 and ρ0 r A or

i = 1 and ρ0 r B,

ρ r (∀x)A(x) if ρ r A(u) for a fresh variable u,

ρ r (∃x)A(x) if ρ r A(t) for some term t.

If ∆ denotes the sequence A1, . . . , An of positive formulas, then we say that ρ

realizes the sequence ∆, in symbols, ρ r ∆, if ρ = 〈i2, ρ0〉 for some 1 ≤ i ≤ n

and ρ0 r Ai. Hence, according to the notion ρ r ∆, the sequence ∆ is

understood disjunctively, i.e. as the succedent of a given sequent.

It is important to note that in our definition of realizability, the realizers

ρ mainly control information concerning the predicate W and, in addition,

the usual information concerning conjunction and disjunction. However, the

above notion of realizability trivializes quantifiers over arbitrary individuals.

1Actually, suitable interpretations for the constants s`, p`, c⊆, lW, ∗ and × can also be
given using the other constants of LW.

10.3 The realizability theorems 123

The following properties concerning substitution will be crucial in the proof

of the realizability theorem below. The proof of the following lemma is

immediate from the definition of realizability and will therefore be omitted.

Lemma 56 (Substitution) We have for all positive formulas A, all vari-

ables u and all terms s and t:

1. If ρ r A(t) and M(λη) |= t = s, then ρ r A(s).

2. If ρ r A(u), then ρ r A(t).

Let us introduce some final piece of notation before we state the realizability

theorem for PT. For an LW formula A we write A[~u] in order to express

that all the free variables occurring in A are contained in the list ~u. The

analogous convention is used for finite sequences of LW formulas.

Theorem 57 (Realizability for PT+) Let Γ ⇒ ∆ be a sequent of positive

formulas with Γ = A1, . . . , An and assume that PT+
?

Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn →W in FPtime so that we have for all terms

~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Proof. We will prove our claim by induction on the length of quasi cut-free

derivations of sequents of positive formulas in PT+. In order to show that

our realizing functions are in FPtime we make use of the function algebra

characterization of FPtime given in Theorem 42. It is important that our

realizing functions are invariant under substitutions of terms ~s for the free

variables ~u in the sequent Γ[~u] ⇒ ∆[~u]. This fact is always immediate and,

therefore, in order to simplify notation, we often suppress substitutions in

our discussion of the various axioms and rules below.

We start with a discussion of the logical axioms and rules of our sequent

calculus LK. In the case of an identity axiom A ⇒ A for A being a positive

formula, we simply choose the function F with F (ρ) = 〈1, ρ〉 as our realizing

function so that our claim is immediate.

Let us turn to rules for conjunction introduction on the right and on the left.

If our last inference is of the form

Γ ⇒ A, ∆ Γ ⇒ B, ∆

Γ ⇒ A ∧B, ∆
,

124 Realizing positive derivations

and F0 and F1 are the two realizing functions for the left and the right premise

of this rule, respectively, given to us by the induction hypothesis, then we

define the realizing function F for the conclusion of the rule by

F (~ρ) =

F0(~ρ) if F0(~ρ)0 6= 1,

F1(~ρ) if F0(~ρ)0 = 1 and F1(~ρ)0 6= 1,

〈1, 〈F0(~ρ)1, F1(~ρ)1〉〉 otherwise.

In the case of introduction of ∧ on the left, i.e., if we have derived the

sequent Γ, A ∧ B ⇒ ∆ from Γ, A ⇒ ∆ or Γ, B ⇒ ∆, we choose F (~ρ, σ)

to be F0(~ρ, (σ)0), respectively F0(~ρ, (σ)1), for F0 being the realizing function

for the corresponding premise.

Next we discuss the rules for introducing a disjunction on the left and on the

right. We first assume that our last inference is of the form

Γ ⇒ A, ∆

Γ ⇒ A ∨B, ∆
,

and we let F0 denote the function given by the induction hypothesis. Then

the realizing function F for the conclusion of this rule is given as follows:

F (~ρ) =

{
F0(~ρ) if F0(~ρ)0 6= 1,

〈1, 〈0, F0(~ρ)1〉〉 otherwise.

The dual rule for introducing ∨ on the right is treated similarly. Now assume

that our derivation ends with the rule

Γ, A ⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒ ∆
,

and let F0 and F1 be our realizing functions for the premises of this rule.

Then we can simply define F by

F (~ρ, σ) =

{
F0(~ρ, (σ)1) if (σ)0 = 0,

F1(~ρ, (σ)1) otherwise.

This ends our discussion of ∨ introduction. Observe that we do not have to

consider introduction rules for negation and implication, since we are working

in the positive fragment of PT+.

We now address the quantification rules of LK. The introduction rules for

universal quantification on the right and on the left have their usual form,

Γ ⇒ A(u), ∆

Γ ⇒ (∀x)A(x), ∆

Γ, A(t) ⇒ ∆

Γ, (∀x)A(x) ⇒ ∆
,

10.3 The realizability theorems 125

for u a “fresh” variable and t an arbitrary term. Letting F0 denote the

function realizing the premise of these rules, it is straightforward to see that

we can simply take F = F0 for the function realizing the conclusion of the

corresponding rule, since our definition of realizability trivializes quantifiers.

In the case of the second of the above rules we further use the fact that our

notion of realizability is closed under substitution (Lemma 56). Finally, it

is easily seen that the choice F = F0 also works equally well for the two

introduction rules for the existential quantifiers, namely

Γ ⇒ A(t), ∆

Γ ⇒ (∃x)A(x), ∆

Γ, A(u) ⇒ ∆

Γ, (∃x)A(x) ⇒ ∆
.

In a further step we have to convince ourselves how to realize the structural

rules of LK, namely weakening, exchange and contraction. As these rules

are realized in a rather straightforward manner, we leave the details as an

exercise to the devoted reader.

We conclude our discussion of the logical axioms and rules by considering

the cut rule. Hence, by assumption, there exists a positive formula A so that

our derivation ends by an application of the rule

Γ, A ⇒ ∆ Γ ⇒ A, ∆

Γ ⇒ ∆

By induction hypothesis we are given realizing functions F0 and F1 for the

left and the right premise of this rule, respectively. We now obtain a realizing

function F for Γ ⇒ ∆ by setting

F (~ρ) =

{
F1(~ρ) if F1(~ρ)0 6= 1,

F0(~ρ, F1(~ρ)1) otherwise.

Let us now turn to the non-logical axioms and rules of PT+. First of all, it is

quite easy to find realizing functions for the positive sequents corresponding

to the axioms of B(∗,×). Instead of discussing all cases in detail we confine

ourselves to looking at a few examples.

Clearly, sequents corresponding to true equations in the term modelM(λη)

such as ⇒ st1t2t3 = t1t3(t2t3) are simply realized by the 0-ary function

F = 〈1, ε〉. Further, for the two sequents given in the previous paragraph

for definition by cases on W we can simply take the two realizing functions

F0(ρ, σ, τ) = 〈1, ε〉 as well as

F1(ρ, σ) =

{
〈1, ε〉 if ρ = σ,

〈22, ε〉 otherwise,

126 Realizing positive derivations

respectively. Further, in order to realize the two sequents corresponding to

axioms (25) and (28) concerning the totality of word concatenation and word

multiplication, namely

W(s), W(t) ⇒ W(s∗t), W(s), W(t) ⇒ W(s×t),

the two functions F0(ρ, σ) = 〈1, ρ∗σ〉 and F1(ρ, σ) = 〈1, ρ×σ〉 do the job.

Also, it is easy to see how to realize the equality axioms. E.g., the sequent

s = t, W(s) ⇒ W(t) can be realized by the function F (ρ, σ) = σ.

Recall that PT+ also includes an extensionality axiom for our notion of equal-

ity =, which we have formalized by the sequent (∀x)(sx = tx) ⇒ s = t. Also

this sequent is easily seen to realizable by the function F (ρ) = 〈1, ε〉.

Let us now turn to the crucial part of the proof, namely the treatment of the

rule for Σb
W notation induction on W. According to the four premises of Σb

W

induction, we have quasi cut-free PT+ derivations of the four sequents

Γ, W(u) ⇒ W(tu), ∆,

Γ ⇒ A(ε), ∆,

Γ, W(u), A(u) ⇒ A(siu), ∆, (i = 0, 1)

for A(u) being of the form (∃y ≤ tu)B(u, y) with B positive and W free.

Hence, the induction hypothesis guarantees the existence of four FPtime

functions F,Gε, G0, and G1 on W, so that we have for all LW terms ~s and all

binary words ~ρ, σ, τ ,

~ρ r Γ[~s] =⇒ F (~ρ, σ) r W(t[~s](σ)), ∆[~s],2(1)

~ρ r Γ[~s] =⇒ Gε(~ρ) r A[~s, ε], ∆[~s],(2)

~ρ r Γ[~s], τ r A[~s, σ] =⇒ Gi(~ρ, σ, τ) r A[~s, siσ], ∆[~s] (i = 0, 1)(3)

It is our crucial aim to find a realizing function for the conclusion of the

induction rule, i.e., a polynomial time computable function H so that we

have for all ~ρ, σ in W,

(4) ~ρ r Γ[~s] =⇒ H(~ρ, σ) r A[~s, σ], ∆[~s].

2Temporarily in this proof, if Γ = C1, . . . , Cm is a sequence of formulas contained in
the antecedent of a sequent, then we write ρ1, . . . , ρm r Γ if for all 1 ≤ i ≤ m, ρi r Ci.

10.3 The realizability theorems 127

Our desired word function H is defined for all ~ρ and σ in W as follows:

H(~ρ, ε) = Gε(~ρ),

H(~ρ, siσ) =

H(~ρ, σ) if H(~ρ, σ)0 6= 1,

F (~ρ, σ) if H(~ρ, σ)0 = 1 and F (~ρ, σ)0 6= 1,

Gi(~ρ, σ,H(~ρ, σ)1) otherwise.

It is now a matter of routine to check (4) by (meta) notation induction on

σ, using our assertions (1)–(3) from the induction hypothesis.

It still remains to check that the function H is indeed in FPtime. Clearly, H

is defined by recursion on notation from functions which are already known

to be in FPtime and, hence, it is sufficient to provide a suitable bound

for H; of course it is enough to bound H(~ρ, σ) under the assumption that

~ρ r Γ[~s]. Looking at our recursive definition of H, it is clear that H stays

constant whenever we enter the first or the second case of our three-fold case

distinction, so that bounding will be immediate from our discussion below.

Further, when setting

(5) H(~ρ, siσ) = Gi(~ρ, σ,H(~ρ, σ)1)

in the third case, we know that H(~ρ, σ)0 = 1 and F (~ρ, σ)0 = 1. Using (4)

and (1) together with our assumption ~ρ r Γ[~s] this means in particular that

(6) H(~ρ, σ)1 r A[~s, σ] and F (~ρ, σ)1 r W(t[~s](σ)).

But now we have to recall that the formula A[~s, σ] has the shape

(∃y ∈ W)[y ≤ t[~s](σ) ∧ B[~s, y, σ]],

with B positive and W free; hence, the only occurrence of W in A[~s, σ]

stems from the leading bounded existential quantifier. But the bounding

term t[~s](σ) of this quantifier evaluates to F (~ρ, σ)1 in M(λη) according to

(6). It is now easy to see that H(~ρ, σ)1 is bounded by a linear function L

in the length of F (~ρ, σ)1; this only uses some obvious properties of our low

level pairing function. It follows from these considerations that if we define

H(~ρ, siσ) by (5) according to the third case in our case distinction, then it

is clearly bounded. This ends our considerations concerning the bounding of

the function H.

128 Realizing positive derivations

We have shown that the conclusion of the Σb
W notation induction rule can be

realized by a FPtime function H. This ends our discussion of the induction

rule and, in fact, also the proof of the realizability theorem for PT+. 2

The following corollary is immediate from our realizability theorem for PT+

as well as the partial cut elimination theorem for PT+ (Theorem 54). It

shows that the provably total functions of PT+ are contained in FPtime.

Corollary 58 Let t be a closed LW term and assume that

PT+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPtime so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

Proof. Assuming that we have a closed LW term t so that the sequent

W(u1), . . . ,W(un) ⇒ W(tu1 . . . un)

is provable in PT+, we know that by partial cut elimination, this sequent

has a proof using positive cut formulas only. Hence, our theorem provides a

function G in FPtime so that we have for all LW terms s1, . . . , sn and all

words ρ1, . . . , ρn in W,

G(ρ1, . . . , ρn)1 r W(ts1 . . . sn),

whenever ρi r W(si) for all 1 ≤ i ≤ n. If we now set for given words w1, . . . , wn
in W,

si = wi, ρi = wi, and F (w1, . . . , wn) = G(w1, . . . , wn)1,

then the assertion of our corollary is immediate. 2

This ends our discussion of the realizability theorem for PT+ and its crucial

consequences. Turning to the realizability theorem for PTLS+, note that the

only difference between PT+ and PTLS+ i̇s the presence of word multiplication

× in PT+. Hence, the proof of the following theorem is literally the same as

the proof of the realizability theorem for PT+, but since× does not need to be

realized, the corresponding realizing function is indeed in FPtimeLinspace,

according to the function algebra characterization of FPtimeLinspace given

in Theorem 42. Again we can derive the desired corollary about the provably

total functions of PTLS+.

10.3 The realizability theorems 129

Theorem 59 (Realizability for PTLS+) Let Γ ⇒ ∆ be a sequent of pos-

itive formulas with Γ = A1, . . . , An and assume that PTLS+
?

Γ[~u] ⇒ ∆[~u].

Then there exists a function F : Wn → W in FPtimeLinspace so that we

have for all terms ~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 60 Let t be a closed LW term and assume that

PTLS+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPtimeLinspace so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

Let us now discuss the realizability theorems for the two systems PS+ and

LS+. Indeed, also the proof of these theorems runs very analogous to the proof

of the realizability theorem for PT+. The crucial difference between PS+ and

PT+ lies in the fact that PS+ contains lexicographic induction on W, (Σb
W-I`),

instead of the schema (Σb
W-IW) of notation induction on W present in PT+.

The only difference in the realization of the corresponding rules of inference in

the sequent-style setting is that one requires bounded lexicographic recursion

(BRL) in order to realize the (Σb
W-I`) rule, where, as we have seen above,

bounded recursion on notation (BRN) was needed for the realization of the

(Σb
W-IW) induction rule. Otherwise, the proof of the realizability theorem for

PS+ is identical to the one for PT+. Hence, using the characterization of

FPspace stated in Theorem 42, we are thus in a position to spell out the

following theorem together with its expected corollary.

Theorem 61 (Realizability for PS+) Let Γ ⇒ ∆ be a sequent of positive

formulas with Γ = A1, . . . , An and assume that PS+
?

Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn → W in FPspace so that we have for all

terms ~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 62 Let t be a closed LW term and assume that

PS+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

130 Realizing positive derivations

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPspace so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

As above, if word multiplication × is absent, then the proof for PS+ actually

produces realizing functions in FLinspace. Thus we obtain the following

realizability theorem for the system LS+.

Theorem 63 (Realizability for LS+) Let Γ ⇒ ∆ be a sequent of positive

formulas with Γ = A1, . . . , An and assume that LS+
?

Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn → W in FLinspace so that we have for all

terms ~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 64 Let t be a closed LW term and assume that

LS+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FLinspace so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

10.4 Putting the pieces together

The results of the previous section, namely Corollary 58, Corollary 60, Corol-

lary 62, and Corollary 64, can now be combined with our lower bound results

summarized in Theorem 51. Hence, we have now established the following

main theorem concerning the provably total functions of the four systems

PT, PTLS, LS, and PS.

Theorem 65 We have the following proof-theoretic results:

1. The provably total functions of PT coincide with FPtime.

2. The provably total functions of PTLS coincide with FPtimeLinspace.

3. The provably total functions of PS coincide with FPspace.

4. The provably total functions of LS coincide with FLinspace.

Moreover, this theorem holds true in the presence of totality of application

(Tot) and extensionality of operations (Ext).

Chapter 11

Further applicative systems

It is the aim of this chapter to consider further natural applicative systems for

various classes of computable functions. We start with the system PH which

is closely related to the polynomial time hierarchy Ph. The second section is

concerned with applicative systems for the primitive recursive functions and,

finally, in the last section we make some remarks concerning an applicative

setting which is of the same strength as Peano arithmetic PA.

In the course of this chapter we will see that the techniques developed in

this part of our thesis so far extend in a straightforward manner to various

systems considered in the following sections.

11.1 A type two functional for bounded

quantification

In this section we consider a natural type two functional π which allows for

the elimination of bounded quantifiers. Using the techniques of the previous

chapter we will show that the provably total functions of the theory PT

augmented by π are exactly the functions on W in the function polynomial

time hierarchy FPh.

It is worth mentioning at this point that the formulation and spirit of the

π functional is similar to the non-constructive µ operator which has been

studied extensively in the applicative context, cf. the papers Feferman and

Jäger [35, 36], Glass and Strahm [43], Jäger and Strahm [68], Marzetta and

Strahm [84], and Strahm [123]. In contrast to π, the operator µ tests for

132 Further applicative systems

unbounded quantification and, hence, is much stronger than the π functional.

The applicative axiomatization of the two functionals, however, is completely

analogous.

As usual, a function F on the binary words W is defined to be in the (func-

tion) polynomial time hierarchy FPh if F is computable in polynomial time

using finitely many oracles from the Meyer-Stockmeyer polynomial time hi-

erarchy Ph onW. It is well-known how to extend Cobham’s function algebra

characterization of FPtime so as to capture FPh: one simply closes the Cob-

ham algebra under bounded quantification. In the sequel we let (BQ) denote

the operator which maps an (n+1)-ary function F on W to the (n+1)-ary

function BQ(F), which is given for all ~x, y ∈W as follows:

BQ(F)(~x, y) :=

{
0 if (∃z ≤ y)F (~x, z) = 0,

1 otherwise.

The following theorem is folklore, cf. Clote’s survey article [22] on function

algebras and computation models.

Theorem 66 We have the following function algebra characterization:

[ε, I, s0, s1, ∗,×; COMP,BRN,BQ] = FPh.

For the formulation of our type two functional for bounded quantification

in the applicative setting, we assume that the applicative language LW is

extended by a new constant π. The axioms for π are divided into (π.1) and

(π.2): the first axiom claims that for a given total operation f on W and an

a ∈ W, it is always the case that πfa is a word whose length is bounded by

the length of a; the second axioms expresses, in addition, that πfa is a zero

of f provided that there exists a word x ≤ a with fx = 0. Hence, given that

f : W → W and a ∈ W, we have that indeed (∃x ≤ a)(fx = 0) is equivalent

to f(πfa) = 0, i.e., bounded quantifiers can be eliminated by means of π.

The type two functional π for bounded quantification

f : W→ W ∧ a ∈ W → πfa ∈ W ∧ πfa ≤ a(π.1)

f : W→ W ∧ a ∈ W ∧ (∃x ≤ a)(fx = 0) → f(πfa) = 0(π.2)

We now define the LW theory PH to be simply PT plus the two axioms (π.1)

and (π.2). We aim at showing that the provably total functions of PH are

exactly the functions in the function polynomial time hierarchy FPh.

11.1 A type two functional for bounded quantification 133

Clearly, we can make use of the function algebra characterization of FPh

given in the theorem above in order to show that the provably total functions

of PH contain FPh: with the help of π we have closure under bounded

quantification and, moreover, due to Lemma 46 we know that in PH closure

under bounded recursion on notation is available. Hence, we can state the

following theorem.

Theorem 67 The provably total functions of PH include FPh.

Indeed, let us mention that it is possible to show that Ferreira’s system

Σb
∞-NIA (cf. Ferreira [39]) or, equivalently, Buss’ system S2 (cf. Buss [15]) are

directly contained in PH.

In order to show that the lower bound stated in the above theorem is sharp,

we can make use in a straightforward manner of the partial cut elimina-

tion and realizability techniques introduced in the previous chapter. In the

following we sketch the main new steps of this procedure.

As above, we provide an upper bound directly for the system PH+, i.e., the

extension of PH by totality and extensionality. The Gentzen-style reformu-

lation of PH+ simply extends the Gentzen-style version of PT+ by two new

rules corresponding to the axioms (π.1) and (π.2) for π. As expected, in

these rules u denotes a fresh variable.

Γ, W(u) ⇒ W(tu), ∆

Γ, W(s) ⇒ W(πts) ∧ πts ≤ s, ∆
(π.1)

Γ, W(u) ⇒ W(tu), ∆

Γ, W(s), (∃x ≤ s)(tx = 0) ⇒ t(πts) = 0, ∆
(π.2)

We observe that the main formulas of both rules are positive, so that the

partial cut elimination theorem for PT+ (Theorem 54) readily extends to

PH+. Hence, we can assume that PH+ derivations of sequents of positive

formulas contain cuts with positive cut formulas only.

In the sequel we want to use the same notion of realizability as in the previous

chapter. Hence, we have to extend our open term model M(λη) so as to

incorporate the new constant π. The informal interpretation of πfa is simply

the least x ≤ a so that fx = 0, if such an x exists, and ε otherwise.1 Formally

1Leastness is always understood in the sense of the lexicographic ordering of the full
binary tree. In the sequel we use the notation (µx ≤ a)R(x) to denote the least x ≤ a

satisfying R(x) if it exists, and ε otherwise.

134 Further applicative systems

inM(λη), we can either write down appropriate reduction rules for π or use

recursion in M(λη) in order to define π directly. The realizability theorem

for PH+ is now spelled out in the expected manner.

Theorem 68 (Realizability for PH+) Let Γ ⇒ ∆ be a sequent of positive

formulas with Γ = A1, . . . , An and assume that PH+
?

Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn →W in FPh so that we have for all terms ~s

and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Proof. In addition to the proof of the realizability theorem for PT+ we only

have to show how to deal with the two rules (π.1) and (π.2). For that purpose

let us assume that we have a quasi cut free derivation of the sequent

Γ, W(u) ⇒ W(tu), ∆,

and let F0 denote the function in FPh which is given to us by the induction

hypothesis. In case of (π.1) it is not difficult to check that the following

function F can be used as a realizing function for the conclusion of this rule.

F (~ρ, σ) =

{
〈1, 〈(µτ ≤ σ.F0(~ρ, τ)1 = 0), ε〉〉 if (∀τ ≤ σ)F0(~ρ, τ)0 = 1,

F0(~ρ, (µτ ≤ σ)F0(~ρ, τ)0 6= 1) otherwise

It is easy to see that F is in FPh, since the functions in the polynomial time

hierarchy are clearly closed under bounded minimization. In the case of the

rule for (π.2) the realizing function F for its conclusion can be chosen as

follows. Again it is easy to see that this F is in FPh.

F (~ρ, σ, σ′) =

{
〈1, ε〉 if (∀τ ≤ σ)F0(~ρ, τ)0 = 1,

F0(~ρ, (µτ ≤ σ)F0(~ρ, τ)0 6= 1) otherwise

This ends our short discussion of the proof of the realizability theorem for

the system PH+. 2

As above, we can now derive the following crucial corollary.

Corollary 69 Let t be a closed LW term and assume that

PH+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPh so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

11.2 Positive induction equals primitive recursion 135

This last corollary combined with Theorem 67 yields the following main result

of this section.

Theorem 70 The provably total functions of PH coincide with FPh. In

addition, this theorem holds true in the presence of totality of application

(Tot) and extensionality of operations (Ext).

11.2 Positive induction equals primitive

recursion

In this section we briefly examine the effect of replacing our bounded induc-

tion principles (Σb
W-IW) and (Σb

W-I`) by the schema of induction for arbitrary

positive formulas. We will show that the corresponding applicative frame-

work characterizes exactly the class of primitive recursive functions. This

result is previously due to Cantini [18]2. However, the proof given here is

new and quite different from the techniques used by Cantini.

The primitive recursive functions FPrim on W are generated from the usual

initial functions by closing under composition and recursion on notation

(RN), where (RN) is simply (BRN) without the bounding condition. Hence,

using our function algebra notation, FPrim is defined to be the function

algebra [ε, I, s0, s1; COMP,RN]. Denoting by (RL) the corresponding schema

of unbounded lexicographic recursion, it is well known that indeed

[ε, I, s`; COMP,RL] = [ε, I, s0, s1; COMP,RN].

Hence, it does not matter whether we use lexicographic or notation recursion

in the context of unbounded recursion schemas.

Let us now turn to a natural applicative framework PR capturing FPrim.

The schema of positive notation induction on W, (Pos-IW), includes for each

formula A(x) in the class Pos,

(Pos-IW) A(ε) ∧ (∀x ∈ W)(A(x)→ A(s0x) ∧ A(s1x)) → (∀x ∈ W)A(x)

The schema of positive lexicographic induction on W, (Pos-I`), is stated ac-

cordingly. The applicative theory PR is now defined to be the theory B plus

2Actually, Cantini establishes a slightly stronger theorem in the sense that he also
allows negative equations to occur in induction formulas.

136 Further applicative systems

positive notation induction on W, (Pos-IW). Observe that we do not include

∗ and × in PR as these are easily definable as we will see now.

As can be expected, it is possible represent recursion on notation in PR in a

very direct and natural way, by referring to the recursion theorem of B and

exploiting (Pos-IW). In particular, we obtain in a straightforward manner

the following unbounded analogue of Lemma 46; it’s proof is an obvious

adaptation of the proof of Lemma 46 and, therefore, is left to the reader.

Lemma 71 There exists a closed LW term r̃W so that PR proves

f : W→ W ∧ g : W3 → W →
r̃Wfg : W2 → W ∧

x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = r̃Wfg →

hxε = fx ∧ hxy = gxy(hx(pWy))

Corollary 72 The provably total functions of PR include FPrim.

Indeed, PR does not only establish the convergence of each primitive recursive

function, but it also interprets in a straightforward manner the subsystem of

Peano arithmetic PA which is based on the schema of complete induction for

Σ1 formulas. The latter system is well-known to be a conservative extension

with respect to Π2 statements of primitive recursive arithmetic PRA as was

shown by Parsons [90].

Before we turn to the upper bound of PR let us quickly address the question

of whether it matters if we include (Pos-IW) or (Pos-I`) in our definition of

PR. As our discussion above concerning the corresponding function algebras

suggests, there should be no difference, and indeed this is confirmed by the

following lemma.

Lemma 73 We have that (Pos-I`) and (Pos-IW) are equivalent over our base

theory B.

Proof. Let us briefly sketch this equivalence. Firstly, the fact that (Pos-I`)

entails (Pos-IW) over B is shown by literally the same proof as in Lemma 48.

For the reverse direction we work informally in B plus (Pos-IW), aiming at

deriving each instance of (Pos-I`). Let A(x) be a positive formula and assume

(1) A(ε) ∧ (∀x ∈ W)(A(x)→ A(s`x)).

11.2 Positive induction equals primitive recursion 137

Now we first note that the length function | · | used in the proof of Lemma

48 is easily definable in B + (Pos-IW), due to our previous lemma. Now we

define the positive formula B(x) to be simply A(|x|) and readily observe that

(1) entails

(2) B(ε) ∧ (∀x ∈ W)(B(x)→ B(s0x) ∧B(s1x)).

From (2) and (Pos-IW) we have thus shown (∀x ∈ W)A(|x|). The final step

consists now in finding a term exp : W→ W, so that the theory B + (Pos-IW)

proves (∀x ∈ W)(|expx| = x). The definition of exp is straightforward by the

previous lemma and we leave the details to the reader. Using exp we are now

able to show that

(3) (∀x ∈ W)A(|x|)→ (∀x ∈ W)A(x),

and this suddenly completes the proof of the fact that (Pos-IW) entails (Pos-I`)

over the base theory B. 2

Clearly, this last lemma shows that in the theory PR we have available the

lexicographic analogue of Lemma 71.

The final part of this section is devoted to showing that the provably total

functions of PR do not go beyond the primitive recursive functions FPrim

on W. Again our realizability techniques work in a perspicuous manner. We

first reformulate the system PR+, i.e., PR + (Tot) + (Ext), in sequent style.

Positive induction on notation (Pos-IW) is stated as a rule in the same way

as for the system PT+, but of course without the premise concerning the

totality of a bounding function. Partial cut elimination for PR+ works as

before. As to the realizability theorem, its proof is literally the same as the

proof of the realizability theorem for PT+, with the only difference that in the

treatment of the notation induction rule, we have no bounding information

available and, hence, we can only conclude that the corresponding function

is primitive recursive.

Theorem 74 (Realizability for PR+) Let Γ ⇒ ∆ be a sequent of positive

formulas with Γ = A1, . . . , An and assume that PR+
?

Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn →W in FPrim so that we have for all terms

~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

138 Further applicative systems

Corollary 75 Let t be a closed LW term and assume that

PR+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPrim so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

From this corollary and Corollary 72 we are now in a position to state the

following crucial theorem concerning the provably total functions of PR. As

we have noted above, (a slight strengthening of) this theorem has previously

been obtained by Cantini [18], using a quite different argument.

Theorem 76 The provably total functions of PR coincide with FPrim. In

addition, this theorem holds true in the presence of totality of application

(Tot) and extensionality of operations (Ext).

11.3 Full induction and Peano arithmetic

A further natural strengthening of our applicative framework consists in al-

lowing induction on W for arbitrary formulas in the language LW. Using

known techniques, it easily follows that the so-obtained applicative systems

have the same proof-theoretic strength as Peano arithmetic PA.

By (LW-IW) and (LW-I`) we denote the schema of notation induction and

lexicographic induction on W, respectively, for arbitrary formulas of our ap-

plicative language LW. With the same argument as in Lemma 73 above one

establishes that (LW-IW) and (LW-I`) are equivalent over the base theory B.

For an interpretation of B + (LW-IW) or B + (LW-I`) in Peano arithmetic

PA, one makes use of an inner model construction, formalizing the standard

recursion-theoretic model PRO of B, cf. e.g. Feferman and Jäger [35] for a

similar argument. The so-obtained interpretation yields that the provably

total functions of B + (LW-IW) and B + (LW-I`) are exactly the α recursive

functions for α less than PA’s proof-theoretic ordinal ε0.

The interpretation of B + (LW-IW) or B + (LW-I`) can also be strengthened

so as to include the axiom of totality (Tot) and the axiom of extensionality

(Ext). In this case, one simply formalizes the standard term model M(λη)

11.3 Full induction and Peano arithmetic 139

of B + (Tot) + (Ext) in PA, cf. Cantini [17] or Jäger and Strahm [68] for more

details.

Let us conclude this section by noting that similar inner model constructions

are of no use in order to establish upper bounds e.g. for the system PR: the

reason is that in induction formulas in PR arbitrary unbounded universal

quantifiers over individuals are allowed, which makes an embedding in, say,

primitive recursive arithmetic PRA extended by Σ1 induction impossible.

Conclusion of Part II

In this part of our habilitation thesis we have presented a series of natu-

ral applicative systems of various bounded complexities. In particular, we

have elucidated frameworks for the functions on binary words computable in

polynomial time, polynomial time and linear space, polynomial space, lin-

ear space, as well as the polynomial time hierarchy. Our systems can be

viewed as natural applicative analogues of various bounded arithmetics; this

is witnessed by the fact that the latter are directly embeddable into various

applicative settings. A further distinguished feature of applicative theories

is that they allow for a very direct treatment of higher types issues: we

have seen that even higher order systems such as Cook and Urquhart’s PVω

are directly contained in the applicative theory PT for the polynomial time

computable functions.

Apart from the world of bounded recursion schemas, bounded arithmetic and

bounded applicative theories there is the world of so-called tiered systems in

the sense of Cook and Bellantoni (cf. e.g. [10]) and Leivant (cf. e.g. [77, 79]).

Crucial for this approach to characterizing complexities is a strictly predica-

tive regime which distinguishes between different uses of variables in induc-

tion and recursion schemas, thus severely restricting the definable or provably

total functions in various unbounded formalisms. In our applicative setting

such a “predicativization” amounts to distinguishing between (at least) two

sorts or types of binary words W0 and W1, say, where induction over W1 is

allowed for formulas which are positive and do not contain W1, cf. Cantini

[19, 21] for such systems.

Unarguably, the tiered approach to complexity has led to numerous highly

interesting and intrinsic recursion-theoretic and also proof-theoretic charac-

terizations of complexity classes, which might lead to new subrecursive pro-

gramming paradigms. Also, higher type issues have recently been a subject

of interest in this area, cf. e.g. Leivant [78], Bellantoni, Niggl, Schwichtenberg

142 Conclusion of Part II

[11], and Hofmann [50]. In spite of its elegance, it has to be mentioned that

the tiered or ramified approach also has its drawbacks. First of all, there is

the general observation that reasoning in a system with ramifications can be

very difficult: for example, dealing with two tiers W0 and W1 only, one has to

take into account four kinds of functions from binary words to binary words,

which are not closed under composition, of course. Secondly, the strict pred-

icative regime disallows the direct formulation of many natural algorithms,

especially those obtained by various kinds of nested recursions, cf. Hofmann

[49] for a discussion. And thirdly, it is not at all clear how modern tiered

systems relate to the more traditional bounded subsystems of first and higher

order arithmetic.

Taking up these points of criticism in the context of the bounded world, of

course one has to pay a price in order to avoid ramifications and to deal only

with one type W of binary words. Namely, the systems discussed in this thesis

include initial functions such as word concatenation and word multiplication

as well as recursions and inductions need to be bounded. On the other hand,

nesting recursions is generally easy and in many cases it is also not difficult to

provide the necessary bounding information. Hence, both the bounded and

the tiered approach have their pros and cons. Summing up, in our opinion

it is worth exploring the bounded and the ramified world, and it would be

especially interesting to find out more about the exact relationship between

these two worlds.

Coming back to the work and results achieved in this thesis, let us briefly

address some directions for future research. Certainly, there is the need to

further study and elucidate the role of higher type functionals in the various

settings that we have been considering in this paper. Recently, we have done

a first step in this direction and shown that indeed

the provably total type two functionals of PT coincide with the basic feasible

functionals of type two,

and we conjecture that this result holds at all higher types. The proof that

a provably total type two functional of PT is basic feasible is simply a refine-

ment of the realizability theorem for PT established above. Details will be

given in a publication under preparation.

Finally, a further important research project consists in considering exten-

sions of the applicative systems of this thesis by adding suitable versions of

Conclusion of Part II 143

flexible typing and naming in the spirit of explicit mathematics in order to

answer the question of what type existence principles can live in a, say, feasi-

ble setting of explicit mathematics. We believe that the formalisms designed

in this thesis should help in finding suitable versions of “bounded explicit

mathematics”.

Bibliography

[1] Aczel, P. The strength of Martin-Löf’s type theory with one universe.

Tech. rep., Dept. of Philosophy, University of Helsinki, 1977.

[2] Arai, T. Some results on cut-elimination, provable well-orderings,

induction and reflection. Annals of Pure and Applied Logic 95 (1998),

93–184.

[3] Arai, T. An introduction to the finitary analyses of proof figures. In

Sets and Proofs, S. B. Cooper and J. Truss, Eds. Cambridge University

Press, 1999, pp. 1–25.

[4] Avigad, J. On the relationship between ATR0 and ÎD<ω. Journal of

Symbolic Logic 61, 3 (1996), 768–779.

[5] Balcázar, J. L., D́ıaz, J., and Gabarró, J. Structural Complex-

ity I. EATCS Monographs on Theoretical Computer Science. Springer

Verlag, Berlin, 1988.

[6] Barendregt, H. P. The Lambda Calculus, revised ed. North Hol-

land, Amsterdam, 1984.

[7] Beckmann, A. Separating fragments of bounded arithmetic. PhD

thesis, Universität Münster, 1996.

[8] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-

ematical Studies. Springer, Berlin, 1985.

[9] Beeson, M. J. Proving programs and programming proofs. In Logic,

Methodology and Philosophy of Science VII, Barcan Marcus et. al., Ed.

North Holland, Amsterdam, 1986, pp. 51–82.

146 Bibliography

[10] Bellantoni, S., and Cook, S. A new recursion-theoretic char-

acterization of the poly-time functions. Computational Complexity 2

(1992), 97–110.

[11] Bellantoni, S., Niggl, K.-H., and Schwichtenberg, H. Higher

type recursion, ramification and polynomial time. Annals of Pure and

Applied Logic 104, 1–3 (2000), 17–30.

[12] Bovet, D., and Crescenzi, P. Introduction to the Theory of Com-

plexity. Prentice Hall, 1994.

[13] Buchholz, W. An intuitionistic fixed point theory. Archive for Math-

ematical Logic 37 (1997), 21–27.

[14] Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W. It-

erated Inductive Definitions and Subsystems of Analysis: Recent Proof-

Theoretical Studies, vol. 897 of Lecture Notes in Mathematics. Springer,

Berlin, 1981.

[15] Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[16] Cantini, A. On the computational content of theories of operations

with total application, June 1995. Handwritten notes.

[17] Cantini, A. Logical Frameworks for Truth and Abstraction. North-

Holland, Amsterdam, 1996.

[18] Cantini, A. Proof-theoretic aspects of self-referential truth. In Tenth

International Congress of Logic, Methodology and Philosophy of Sci-

ence, Florence, August 1995, Maria Luisa Dalla Chiara et. al., Ed.,

vol. 1. Kluwer, September 1997.

[19] Cantini, A. Characterizing poly-time with an intuitionistic theory

based on combinatory logic and safe induction. Preprint, Firenze, 1999.

14 pages.

[20] Cantini, A. Feasible operations and applicative theories based on λη.

Mathematical Logic Quarterly 46, 3 (2000), 291–312.

[21] Cantini, A. Polytime, combinatory logic and positive safe induction.

Preprint, Firenze, 2000. 27 pages.

Bibliography 147

[22] Clote, P. Computation models and function algebras. In Handbook

of Computability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

[23] Cobham, A. The intrinsic computational difficulty of functions. In

Logic, Methodology and Philosophy of Science II. North Holland, Am-

sterdam, 1965, pp. 24–30.

[24] Cook, S. The complexity of theorem proving procedures. In 3rd

Annual ACM Symposium on Theory of Computing. 1971.

[25] Cook, S. A., and Kapron, B. M. Characterizations of the basic

feasible functionals of finite type. In Feasible Mathematics, S. R. Buss

and P. J. Scott, Eds. Birkhäuser, Basel, 1990, pp. 71–95.

[26] Cook, S. A., and Urquhart, A. Functional interpretations of

feasibly constructive arithmetic. Annals of Pure and Applied Logic 63,

2 (1993), 103–200.

[27] Feferman, S. A language and axioms for explicit mathematics. In

Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Math-

ematics. Springer, Berlin, 1975, pp. 87–139.

[28] Feferman, S. Recursion theory and set theory: a marriage of con-

venience. In Generalized recursion theory II, Oslo 1977, J. E. Fenstad,

R. O. Gandy, and G. E. Sacks, Eds., vol. 94 of Stud. Logic Found.

Math. North Holland, Amsterdam, 1978, pp. 55–98.

[29] Feferman, S. Constructive theories of functions and classes. In Logic

Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North

Holland, Amsterdam, 1979, pp. 159–224.

[30] Feferman, S. Iterated inductive fixed-point theories: application to

Hancock’s conjecture. In The Patras Symposion, G. Metakides, Ed.

North Holland, Amsterdam, 1982, pp. 171–196.

[31] Feferman, S. Polymorphic typed lambda-calculi in a type-free ax-

iomatic framework. In Logic and Computation, W. Sieg, Ed., vol. 106

of Contemporary Mathematics. American Mathematical Society, Prov-

idence, Rhode Island, 1990, pp. 101–136.

148 Bibliography

[32] Feferman, S. Logics for termination and correctness of functional

programs. In Logic from Computer Science, Y. N. Moschovakis, Ed.,

vol. 21 of MSRI Publications. Springer, Berlin, 1991, pp. 95–127.

[33] Feferman, S. Reflecting on incompleteness. Journal of Symbolic

Logic 56, 1 (1991), 1–49.

[34] Feferman, S. Logics for termination and correctness of functional

programs II: Logics of strength PRA. In Proof Theory, P. Aczel, H. Sim-

mons, and S. S. Wainer, Eds. Cambridge University Press, Cambridge,

1992, pp. 195–225.

[35] Feferman, S., and Jäger, G. Systems of explicit mathematics

with non-constructive µ-operator. Part I. Annals of Pure and Applied

Logic 65, 3 (1993), 243–263.

[36] Feferman, S., and Jäger, G. Systems of explicit mathematics

with non-constructive µ-operator. Part II. Annals of Pure and Applied

Logic 79, 1 (1996), 37–52.

[37] Ferreira, F. Polynomial Time Computable Arithmetic and Conser-

vative Extensions. PhD thesis, Pennsylvania State University, 1988.

[38] Ferreira, F. Polynomial time computable arithmetic. Contemporary

Mathematics 106 (1990), 137–156.

[39] Ferreira, F. Stockmeyer induction. In Feasible Mathematics, S. Buss

and P. Scott, Eds. Birkhäuser, 1990, pp. 161–180.

[40] Friedman, H., McAloon, K., and Simpson, S. A finite combina-

torial principle which is equivalent to the 1-consistency of predicative

analysis. In Patras Symposion, G. Metakides, Ed. North Holland, Am-

sterdam, 1982, pp. 197–230.

[41] Gentzen, G. Neue Fassung des Widerspruchsfreiheitsbeweises für die

reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der

exakten Wissenschaften, Neue Folge 4 (1938), 19–44.

[42] Girard, J.-Y. Proof Theory and Logical Complexitiy. Bibliopolis,

Napoli, 1987.

Bibliography 149

[43] Glass, T., and Strahm, T. Systems of explicit mathematics with

non-constructive µ-operator and join. Annals of Pure and Applied Logic

82 (1996), 193–219.

[44] Gödel, K. Über formal unentscheidbare Sätze der Principia Math-

ematica und verwandter Systeme. Monatshefte für Mathematik und

Physik 38 (1931), 173–198.

[45] Griffor, E., and Rathjen, M. The strength of some Martin-Löf

type theories. Archive for Mathematical Logic 33 (1994), 347–385.

[46] Hájek, P., and Pudlák, P. Metamathematics of First-Order Arith-

metic. Perspectives in Mathematical Logic. Springer, 1993.

[47] Hayashi, S., and Nakano, H. PX: A Computational Logic. MIT

Press, Cambridge, MA, 1988.

[48] Hindley, J. R., and Seldin, J. P. Introduction to Combinators

and λ-Calculus. Cambridge University Press, 1986.

[49] Hofmann, M. Linear types and non-size-increasing polynomial time

computation. In LICS ’99, Trento (1999), IEEE.

[50] Hofmann, M. Type systems for polynomial-time computation. Habil-

itation Thesis, Darmstadt, 1999. Appeared as LFCS Technical Report

ECS-LFCS-99-406.

[51] Hopcroft, J., and Ullman, J. Introduction to Automata Theory,

Languages, and Computation. Addision-Wesley, 1979.

[52] Irwin, R., Kapron, B., and Royer, J. On characterizations of the

basic feasible functionals, Part I. Journal of Functional Programming .

to appear.

[53] Jäger, G. Metapredicative and explicit Mahlo: a proof-theoretic

perspective. To appear in Proceedings Logic Colloquium 2000.

[54] Jäger, G. Beweistheorie von KPN. Archiv für mathematische Logik

und Grundlagenforschung 20 (1980), 53–64.

[55] Jäger, G. Theories for iterated jumps, 1980. Handwritten notes.

150 Bibliography

[56] Jäger, G. A well-ordering proof for Feferman’s theory T0. Archiv für

mathematische Logik und Grundlagenforschung 23 (1983), 65–77.

[57] Jäger, G. The strength of admissibility without foundation. The

Journal of Symbolic Logic 49, 3 (1984), 867–879.

[58] Jäger, G. Theories for Admissible Sets: A Unifying Approach to

Proof Theory. Bibliopolis, Napoli, 1986.

[59] Jäger, G. Induction in the elementary theory of types and names. In

Computer Science Logic ’87, E. Börger, H. Kleine Büning, and M.M.

Richter, Eds., vol. 329 of Lecture Notes in Computer Science. Springer,

Berlin, 1988, pp. 118–128.

[60] Jäger, G. Type theory and explicit mathematics. In Logic Colloquium

’87, H.-D. Ebbinghaus, J. Fernandez-Prida, M. Garrido, M. Lascar, and

M. R. Artalejo, Eds. North Holland, Amsterdam, 1989, pp. 117–135.

[61] Jäger, G. Fixed points in Peano arithmetic with ordinals. Annals of

Pure and Applied Logic 60, 2 (1993), 119–132.

[62] Jäger, G., Kahle, R., Setzer, A., and Strahm, T. The proof-

theoretic analysis of transfinitely iterated fixed point theories. Journal

of Symbolic Logic 64, 1 (1999), 53–67.

[63] Jäger, G., Kahle, R., and Strahm, T. On applicative theories.

In Logic and Foundations of Mathematics, A. Cantini, E. Casari, and

P. Minari, Eds. Kluwer, 1999, pp. 83–92.

[64] Jäger, G., Kahle, R., and Studer, T. Universes in explicit

mathematics. Annals of Pure and Applied Logic. To appear.

[65] Jäger, G., and Pohlers, W. Eine beweistheoretische Untersuchung

von (∆1
2-CA) + (BI) und verwandter Systeme. In Sitzungsberichte der

Bayerischen Akademie der Wissenschaften, Mathematisch-naturwis-

senschaftliche Klasse. 1982, pp. 1–28.

[66] Jäger, G., and Strahm, T. Upper bounds for metapredicative

Mahlo in explicit mathematics and admissible set theory. Journal of

Symbolic Logic. To appear.

Bibliography 151

[67] Jäger, G., and Strahm, T. Second order theories with ordinals

and elementary comprehension. Archive for Mathematical Logic 34, 6

(1995), 345–375.

[68] Jäger, G., and Strahm, T. Totality in applicative theories. Annals

of Pure and Applied Logic 74, 2 (1995), 105–120.

[69] Jäger, G., and Strahm, T. Some theories with positive induction

of ordinal strength ϕω0. Journal of Symbolic Logic 61, 3 (1996), 818–

842.

[70] Jäger, G., and Strahm, T. The proof-theoretic strength of the

Suslin operator in applicative theories. Preprint, Aug. 1999. To appear

in Festschrift for Solomon Feferman.

[71] Jäger, G., and Strahm, T. Fixed point theories and dependent

choice. Archive for Mathematical Logic 39 (2000), 493–508.

[72] Jäger, G., and Studer, T. Extending the system T0 of explicit

mathematics: the limit and Mahlo axioms. Submitted for publication.

[73] Kahle, R. Applikative Theorien und Frege-Strukturen. PhD thesis,

Institut für Informatik und angewandte Mathematik, Universität Bern,

1997.

[74] Kahle, R. Uniform limit in explicit mathematics with universes.

Tech. Rep. IAM-97-002, Institut für Informatik und angewandte Math-

ematik, Universität Bern, 1997.

[75] Kapron, B., and Cook, S. A new characterization of type 2 feasi-

bility. SIAM Journal on Computing 25 (1996), 117–132.

[76] Kraj́ıček, J. Bounded Arithmetic, Propositional Logic, and Complex-

ity Theory, vol. 60 of Encyclopedia of Mathematics and its Applications.

Cambridge University Press, 1995.

[77] Leivant, D. A foundational delineation of poly-time. Information

and Computation 110 (1994), 391–420.

[78] Leivant, D. Predicative recurrence in finite type. In Logical Foun-

dations of Computer Science, A. Nerode and Y. Matiyasevich, Eds.,

152 Bibliography

vol. 813 of Lecture Notes in Computer Science. Springer, 1994, pp. 227–

239.

[79] Leivant, D. Ramified recurrence and computational complexity I:

Word recurrence and poly-time. In Feasible Mathematics II, P. Clote

and J. Remmel, Eds. Birkhäuser, 1994, pp. 320–343.

[80] Martin-Löf, P. An intuitionistic theory of types: predicative part. In

Logic Colloquium ’73, H. Rose and J. Sheperdson, Eds. North Holland,

1975, pp. 73–118.

[81] Martin-Löf, P. Intutionistic Type Theory, vol. 1 of Studies in Proof

Theory. Bibliopolis, 1984.

[82] Marzetta, M. Predicative Theories of Types and Names. PhD thesis,

Institut für Informatik und angewandte Mathematik, Universität Bern,

1993.

[83] Marzetta, M. Universes in the theory of types and names. In Com-

puter Science Logic ’92, E. Börger et al., Ed., vol. 702 of Lecture Notes

in Computer Science. Springer, Berlin, 1993, pp. 340–351.

[84] Marzetta, M., and Strahm, T. The µ quantification operator in

explicit mathematics with universes and iterated fixed point theories

with ordinals. Archive for Mathematical Logic 37, 5+6 (1998), 391–413.

[85] Melhorn, K. Polynomial and abstract subrecursive classes. Journal

of Computer and System Science 12 (1976), 147–178.

[86] Odifreddi, P. Classical Recursion Theory. North-Holland, Amster-

dam, 1989.

[87] Odifreddi, P. Classical Recursion Theory Vol. II. North-Holland,

1999.

[88] Palmgren, E. On universes in type theory. In Twentyfive Years

of Constructive Type Theory, G. Sambin and J. Smith, Eds. Oxford

University Press, 1998.

[89] Papadimitriou, C. Computational Complexity. Addison-Wesley,

1994.

Bibliography 153

[90] Parsons, C. On a number theoretic choice schema and its relation

to induction. In Intuitionism and Proof Theory, Proceedings of the

Summer Conference at Buffalo N.Y., 1968, J. Myhill, A. Kino, and

R. Vesley, Eds. North Holland, Amsterdam, 1970, pp. 459–473.

[91] Pezzoli, E. On the computational complexity of type 2 functionals.

In Computer Science Logic ’97, vol. 1414 of Lecture Notes in Computer

Science. Springer, 1998, pp. 373–388.

[92] Pohlers, W. Proof Theory: An Introduction, vol. 1407 of Lecture

Notes in Mathematics. Springer, Berlin, 1989.

[93] Pohlers, W. Subsystems of set theory and second order number

theory. In Handbook of Proof Theory, S. R. Buss, Ed. North Holland,

1998, pp. 209–335.

[94] Rathjen, M. Proof-theoretic analysis of KPM. Archive for Mathe-

matical Logic 30 (1991), 377–403.

[95] Rathjen, M. Collapsing functions based on recursively large ordinals:

A wellordering proof for KPM. Archive for Mathematical Logic 33

(1994).

[96] Rathjen, M. The realm of ordinal analysis. In Sets and Proofs, S. B.

Cooper and J. Truss, Eds. Cambridge University Press, 1999, pp. 219–

279.

[97] Rathjen, M. The strength of Martin-Löf type theory with a supe-

runiverse. Part I. Archive for Mathematical Logic 39, 1 (2000), 1–39.

[98] Rathjen, M. The superjump in Martin-Löf type theory. In Logic

Colloquium ’98, S. Buss, P. Hájek, and P. Pudlák, Eds., vol. 13 of

Lecture Notes in Logic. Association for Symbolic Logic, 2000, pp. 363–

386.

[99] Rathjen, M. The strength of Martin-Löf type theory with a supe-

runiverse. Part II. Archive for Mathematical Logic. To appear.

[100] Richter, W., and Aczel, P. Inductive definitions and reflect-

ing properties of admissible ordinals. In Generalized recursion theory,

J. Fenstad and P. Hinman, Eds. North Holland, Amsterdam, 1974,

pp. 301–381.

154 Bibliography

[101] Ritchie, R. W. Classes of predictably computable functions. Trans-

actions of the American Mathematical Society 106 (1963), 139–173.

[102] Royer, J. Semantics vs. syntax vs. computations: Machine models

for type-2 polynomial-time bounded functionals. Journal of Computer

and System Science 54 (1997), 424–436.

[103] Rüede, C. Metapredicative subsystems of analysis. Submitted for

publication.

[104] Rüede, C. The proof-theoretic analysis of Σ1
1 transfinite dependent

choice. Submitted for publication.

[105] Rüede, C. Universes in metapredicative analysis. Submitted for pub-

lication.

[106] Rüede, C. Metapredicative subsystems of analysis. PhD thesis, In-

stitut für Informatik und angewandte Mathematik, Univeristät Bern,

2000.

[107] Rüede, C., and Strahm, T. Intuitionistic fixed point theories for

strictly positive operators, 2000. Submitted for publication.

[108] Schlüter, A. An extension of Leivant’s characterization of poly-

time by predicative arithmetic. Preprint, Stanford Univeristy, 1995. 13

pages.

[109] Schütte, K. Kennzeichnung von Ordnungszahlen durch rekursiv

erklärte Funktionen. Mathematische Annalen 127 (1954), 15–32.

[110] Schütte, K. Proof Theory. Springer, Berlin, 1977.

[111] Seth, A. Complexity Theory of Higher Type Functionals. PhD thesis,

Tata Institute of Fundamental Research, Bombay, 1994.

[112] Setzer, A. Proof-theoretical analysis of Martin-Löf type theory with

W type and one universe. PhD thesis, LMU Munich, 1993.

[113] Setzer, A. Extending Martin-Löf type theory by one Mahlo universe.

Archive for Mathematical Logic 39, 3 (2000), 155–181.

Bibliography 155

[114] Simpson, S. G. Σ1
1 and Π1

1 transfinite induction. In Logic Colloquium

’80, D. van Dalen, D. Lascar, and J. Smiley, Eds. North Holland, Am-

sterdam, 1982, pp. 239–253.

[115] Simpson, S. G. Subsystems of Second Order Arithmetic. Perspectives

in Mathematical Logic. Springer-Verlag, 1998.

[116] Stärk, R. F. Call-by-value, call-by-name and the logic of values. In

Computer Science Logic CSL ’96: Selected Papers, no. 1258 in Lecture

Notes in Computer Science. Springer, March 1997, pp. 431–445.

[117] Strahm, T. Theories with self-application and computational com-

plexity. Submitted for publication.

[118] Strahm, T. Wellordering proofs for metapredicative Mahlo. Submit-

ted for publication.

[119] Strahm, T. On the Proof Theory of Applicative Theories. PhD thesis,

Institut für Informatik und angewandte Mathematik, Universität Bern,

1996.

[120] Strahm, T. Polynomial time operations in explicit mathematics.

Journal of Symbolic Logic 62, 2 (1997), 575–594.

[121] Strahm, T. First steps into metapredicativity in explicit mathemat-

ics. In Sets and Proofs, S. B. Cooper and J. Truss, Eds. Cambridge

University Press, 1999, pp. 383–402.

[122] Strahm, T. Autonomous fixed point progressions and fixed point

transfinite recursion. In Logic Colloquium ’98, S. Buss, P. Hájek, and

P. Pudlák, Eds., vol. 13 of Lecture Notes in Logic. Association for Sym-

bolic Logic, 2000, pp. 449–464.

[123] Strahm, T. The non-constructive µ operator, fixed point theories

with ordinals, and the bar rule. Annals of Pure and Applied Logic 104,

1–3 (2000), 305–324.

[124] Studer, T. The mathematics of objects. PhD thesis, Universität

Bern, 2001. To appear.

[125] Talcott, C. A theory for program and data type specification. The-

oretical Computer Science 104 (1992), 129–159.

156 Bibliography

[126] Thompson, D. B. Subrecursiveness: machine independet notions of

computability in restricted time and storage. Mathematical Systems

Theory 6 (1972), 3–15.

[127] Troelstra, A., and van Dalen, D. Constructivism in Mathemat-

ics, vol. I. North-Holland, Amsterdam, 1988.

[128] Troelstra, A., and van Dalen, D. Constructivism in Mathemat-

ics, vol. II. North Holland, Amsterdam, 1988.

[129] Tupailo, S. Realization of constructive set theory into explicit math-

ematics: a lower bound for impredicative Mahlo universe. Submitted

for publication.

List of symbols

The following list of symbols is divided into three separate tables: formal

systems, axioms and rules, and other symbols. The symbols in all three

tables are given in the order of their appearance in the text.

A Formal systems

ETJ, 21 explicit elementary type theory plus join

EIN, 27 explicit inaccessibility

EMA, 27 explicit Mahloness

PA, 32 Peano arithmetic

ACA0, 32 restricted arithmetical comprehension

Π1
0-CA<ε0 , 33, 80 arithmetical comprehension iterated below ε0

ATR0, 33 restricted arithmetical transfinite recursion

Sn, 41 n-hyperuniverses

PAΩ, PAr
Ω, 49, 64 Jäger’s PA with ordinals

OAD, 51 ordinal theory (admissible)

OIN, 52 ordinal theory (recursively inaccessible)

OMA, 52 ordinal theory (Mahlo)

H, 65 basic semiformal system for ordinal theories

H[α], 66 H plus α many admissibles

KPi0, 67, 80 recursive inaccessibility without foundation

OMAT, 71 Tait-style reformulation of OMA

H[S, n, α], 74 H[S] plus α many n-inaccessibles

Σ1
1-AC0, Σ1

1-AC, 79, 80 restricted and full Σ1
1 axiom of choice

KPu0, 80 Kripke Platek set theory without foundation

ML, 80 Martin-Löf type theory

HA, 80 Heyting arithmetic

158 List of symbols

ÎDα, 81 α times iterated fixed points

ATR, 82 ATR0 plus full induction on N

ML<ω, 82 ML plus finitely many universes

KPm0, 83 recursive Mahloness without foundation

KPM, 83 recursive Mahloness with foundation

B, 99 basic theory of operations and words

PT, 104 B(∗,×) plus (Σb
W-IW)

PTLS, 104 B(∗) plus (Σb
W-IW)

PS, 104 B(∗,×) plus (Σb
W-I`)

LS, 104 B(∗) plus (Σb
W-I`)

S1
2, T1

2, 109 Buss’ systems of bounded arithmetic

PTO, PTO+, 110 Strahm’s 1995 systems

PTCA, PTCA+, 112 Ferreira’s systems of bounded arithmetic

PV, 112 Cook’s 1971 system

PVω, 113 higher type system for BFF (intensional)

EPVω, 114 higher type system for BFF (extensional)

HAω, 114 Heyting arithmetic in finite types

APP, 114 theory of operations and numbers

T+, 118 T extended by (Tot) and (Ext)

LK, 118 Gentzen’s sequent calculus

PH, 132 PT plus axioms about π

Σb
∞-NIA, 133 Ferreira’s full bounded arithmetic

S2, 133 Buss’ full bounded arithmetic

PR, 135 B plus (Pos-IW)

PRA, 136 Skolem’s primitive recursive arithmetic

B Axioms and rules

(T-IN), 23 type induction on N

(L-IN), 23 induction on N for all L formulas

(L), 25 limit axiom

(M.1), (M.2), 26 Mahlo axioms

(Uno-Lin), 26 linearity of normal universes

(Uno-Con), 26 connectivity of normal universes

(∆O

0 -IN), 52 ∆O

0 induction on the natural numbers

C Other symbols 159

(L-Ad), 52 limit of admissibles

(ΠO2 -Ref-Ad), 52 ΠO2 reflection on admissibles

(LO-IN), 52 induction on N for all LO formulas

(Σ1
1-AC), 79 Σ1

1 axiom of choice

(Ls-IN), 80 induction on N for all Ls formulas

(ATR), 81 arithmetical transfinite recursion

(FP), 81 Avigad’s fixed point axiom schema

(Σ1
1-DC), 82 Σ1

1 dependent choice

(Σ1
1-TDC), 83 transfinite Σ1

1 dependent choice

(Σb
W-IW), 103 Σb

W notation induction on W

(Σb
W-I`), 103 Σb

W lexicographic induction on W

(Extα,β), 114 extensionality axioms for typed language

(Tot), 117 totality of application

(Ext), 117 extensionality of operations

(π.1), (π.2), 132 axioms about π functional

(Pos-IW), 135 positive notation induction on W

(Pos-I`), 135 positive lexicographic induction on W

(LW-IW), 138 notation induction for all LW formulas

(LW-I`), 138 lexicographic induction for all LW formulas

C Other symbols

L, 20 language of explicit mathematics

k, s, 20, 97 combinators

p, p0, p1, 20, 97 pairing, unpairing

sN, pN, 20 successor, predecessor on N

dN, 20 definition by numerical cases

N, 20 predicate for natural numbers

nat, 20 natural numbers generator

id, 20 identity

co, 20 complement

int, 20 intersection

dom, 20 domain

inv, 20 inverse image

j, 20 join

160 List of symbols

u, 20 universe generator (limit)

m, 20 universe generator (Mahlo)

↓, 20, 98 definedness symbol

<, 20 naming relation

Q, 20 anonymous unary relation

q, 20 generator for Q

(λx.t), 24, 101 lambda abstraction

rec, 24, 101 recursion operator

U(W), 25 the type W is a universe

U(a), 25 the individual a names a universe

Uno(a), 26 the individual a names a normal universe

Prog(<, A), 30 progressiveness of A with respect to <

TI(<, A), 30 transfinite induction for A along <

|T|, 30 proof-theoretic ordinal of T

ϕαβγ, 30 ternary Veblen function

Λ3, 31 least ordinal closed under ternary ϕ function

≺, 31 standard wellordering of ordertype Λ3

Lim, 31 primitive recursive set of limit notations

I(a), 31 abbreviation for (∀X)TI(X, a)

h, 35 universe hierarchy operation

Icx(a) 35 induction formula for universes

a ↑ b, 37 abbreviation for (∃c, `)(b = c+ a · `)
Mainα(a), 37 main formula (simple case)

un, 41 n-hyperuniverse generator

n-U(W), 41 the type W is an n-hyperuniverse

n-U(u), 41 the individual u names an n-hyperuniverse

hn, 43 n-hyperuniverse hierarchy operation

Hiern(y, a), 43 hierarchy formula for n-hyperuniverses

nIcx(a), 44 induction formula for n-hyperuniverses

nMainxa(b), 45 main formula (generalized case)

L1, 50 language of first order arithmetic

〈t1, . . . , tn〉, 50 primitive recursive sequence coding

lh(t), 50 length of a sequence

(t)i, 50 projection to the ith component

LO, 50 language of ordinal theories

Ad, 50 unary predicate for admissibility

ΣO, 51 ΣO formulas

C Other symbols 161

ΠO, 51 ΠO formulas

∆O

0 , 51 ∆O

0 formulas

ΣO1 , 51 ΣO1 formulas

ΠO1 , 51 ΠO1 formulas

Valt(a), 53 value of t in recursion-theoretic model

Rep(a), 55 a codes a name

E(b, a), 55 b is an element of the type coded by a

Univ(P), 58 names given by P form a universe

L, 65 language of H

H α Γ, H α
0

Γ, 66 derivability relations for H

L[α], 66 language of H[α]

c[β], 66 constant for admissible ordinal

OMAT n Γ, 71 derivability in OMAT

OMAT n
?

Γ, 71 derivability in OMAT (quasi cut-free)

Ian(σ), 72 σ is an n-inaccessible ordinal

L[S, n, α], 74 language of H[S, n, α]

c[S, n, β], 74 constant for n-inaccessible ordinal

L2, 80 language of second order arithmetic

Ls, 80 language of set theory (with urelements)

WO(U), 83 U codes a wellordering

field(U), 83 the field of the ordering U

W, 92 set of binary words {0, 1}∗
ε, 92, 97 empty word

FPtime, 92 polytime functions on W

FPtimeLinspace, 92 polytime and linspace functions on W

FLinspace, 92 linspace functions on W,

FPspace, 92 polyspace functions on W

s0, s1, 92, 97 binary successor functions on W

s`, 92, 97 lexicographic successor on W

<`, 92 natural wellordering of W

∗, 93, 97 word concatenation

×, 93, 97 word multiplication

(BRN), 93 bounded recursion on notation

≤, 93, 98 less-than-or-equal relation on W

(BRL), 93 bounded lexicographic recursion

[X ; OP], 94 function algebra

(COMP), 94 composition operator

162 List of symbols

I, 94 collection of projection functions

LW, 97 language of B

dW, 97 definition by cases on binary words

pW, 97 binary predecessor

p`, 97 lexicographic predecessor

c⊆, 97 initial subword relation

lW, 97 tally length of binary words

W, 98 predicate for binary words

PRO , 101 model of partial recursive operations

Pos, 102 positive LW formulas

Σb
W, 102 bounded existential formulas of LW

w, 105 closed LW term for w in W

t | s, 106 cut-off operator

rW, 107 closed LW term for (BRN)

r`, 108 closed LW term for (BRL)

BFF, 111 basic feasible functionals

BFF2, 111 basic feasible functionals of type 2

T , 112 finite type symbols

=α, 112 equality at type α

pα,β, 112 typed combinators for pairing

pα,β0 , pα,β1 , 112 typed combinators for projections

kα,β, 113 typed k combinators

sα,β,γ, 113 typed s combinators

dα, 113 typed definition by cases combinators

r, 113 typed combinator for (BRN)

〈(ITα,=)〉α∈T , 114 abstract intensional type structure

〈(ETα,=α)〉α∈T , 115 abstract extensional type structure

HRO , 115 hereditarily recursive operations

HEO , 115 hereditarily effective operations

T+ Γ ⇒ ∆, 120 derivability in T+

T+
?

Γ ⇒ ∆, 120 derivability in T+ (positive cuts only)

M(λη), 121 open term model

i2, 122 binary notation of i

ρ r A, 122 ρ realizes A

ρ r ∆, 122 disjunctive realizability

FPh, 132 function polynomial time hierarchy

(BQ), 132 bounded quantification

C Other symbols 163

π, 132 bounded quantification operator

FPrim, 135 primitive recursive functions on W

(RN), 135 (unbounded) recursion on notation

(RL), 135 (unbounded) lexicographic recursion

r̃W, 136 closed LW term for (RN)

