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Abstract

In this paper it is shown that the intuitionistic fixed point theory
ÎD
i
α(strict) for α times iterated fixed points of strictly positive operator

forms is conservative for negative arithmetic and Π0
2 sentences over the

theory ACA−iα for α times iterated arithmetic comprehension without
set parameters. This generalizes results previously due to Buchholz
[5] and Arai [2].
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1 Introduction

The study of fixed points of positive arithmetic operators has long been cen-
tral to proof theory. Whereas the original interest was in least definable fixed
points and corresponding theories of iterated inductive definitions (cf. [6] for
a survey), it has turned out later that already the axiomatization of the
fixed point property alone, without claiming leastness of fixed points, is of
significant proof-theoretic interest.
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Probably the first result in this direction is Aczel’s proof in [1] that the clas-

sical (non-iterated) fixed point theory ÎD1 is equivalent to the classical sub-
system Σ1

1-AC of analysis and to Martin-Löf’s type theory with one universe.
This result was subsequently generalized by Feferman [7] in his proof of Han-

cock’s conjecture; in particular, finitely iterated fixed point theories ÎDn for
n < ω are introduced whose limit ÎD<ω is shown to be of the same strength
as predicative analysis. The transfinite iterations ÎDα of Feferman’s theories
have been analyzed only recently in Jäger, Kahle, Setzer, and Strahm [9].
For further recent work on classical fixed point theories the reader is advised
to consult [3, 10, 12, 14].

Not long ago it has been observed by Buchholz [5] that the choice of logic is
crucial in the context of fixed point theories, i.e., the corresponding systems
based on intuitionistic logic are much weaker than their classical counter-
parts. In [5] a certain intuitionistic theory ÎD

i
1(strong) for strongly positive

operator forms is introduced; see the next section for an exact definition of
this fixed point theory. It is shown loc. cit. that ÎD

i
1(strong) is conservative

over Heyting arithmetic HA for almost negative sentences by an embedding
of ÎD

i
1(strong) into HA augmented by Church’s thesis CT0. Buchholz’ result

was subsequently extended in Arai [2], where it is proved that even the finite

iterations ÎD
i
n(strong) for n < ω are conservative over HA for all arithmetic

sentences. Arai’s proof makes crucial use of Goodman’s theorem.

In this paper we will generalize the results of Buchholz and Arai in two direc-
tions. First of all, we show that one can even allow so-called strictly positive
operator forms so that the corresponding theories ÎD

i
n(strict) do not exceed

the strength of Heyting arithmetic HA. Strictly positive operators extend the
strongly positive ones; they have been widely studied in the context of intu-
itionistic inductive definability and capture many natural examples, cf. [6].
Secondly, in this paper we will also establish the strength of the transfinitely
iterated fixed point theories ÎD

i
α(strict) for α ≥ ω. In particular, it is proved

that ÎD
i
α(strict) is conservative over ACA−iα for all negative arithmetic and

Π0
2 sentences, where ACA−iα denotes the natural theory of α times iterated

arithmetic comprehension without set parameters.

Our proof of the above results exhibits in a very perspicuous manner why it-
erated intuitionistic fixed point theories for strictly positive operators simply
correspond to iterated arithmetical comprehension without parameters. A
crucial first step in the argument below goes back to an observation of Buch-
holz [4] in the context of iterated inductive definitions, where it is shown that
the “realizability content” of strictly positive operators corresponds to cer-
tain general forms of accessibility inductive definitions. In a second step one
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observes that such accessibility operators allow for very simple arithmetic
solutions obtained by diagonalization, as long as one is only interested in
their fixed point property. This second observation is closely related to Fe-
ferman’s sketch at the end of [7], where he shows how to produce a Π0

2 fixed
point solution for the operator corresponding to Kleene’s O, an argument
apparently going back to a mistake of Kleene himself, in his first attempt in
1944 to establish the complexity of his O.

2 The theories ÎDi
α(strict) and ACA−iα

In this section we want to give a precise definition of the fixed point the-
ories ÎD

i
α(strict) for strictly positive operator forms and their subsystems

ÎD
i
α(strong) as well as ÎD

i
α(acc) for strongly positive and accessibility op-

erator forms, respectively. Moreover, we introduce the theories ACA−iα for
iterated arithmetic comprehension without parameters.

All systems are based on suitable extensions of the language L1 of intuition-
istic first order arithmetic. We assume that L1 includes number variables
(a, b, c, u, v, w, x, y, z, . . . ) and symbols for all primitive recursive functions
and relations. The number terms (r, s, t, . . .) and formulas (A,B,C, . . .) of
L1 are defined as usual. Let us agree that L1 is based on →, ∧, ∨, ∀, ∃, and
that ¬ is defined in terms of → and 0=1. Further, recall that an L1 formula
is called negative, if it does not contain ∨ and ∃. Finally, the almost negative
L1 formulas are exactly those formulas which do not contain ∨, and ∃ only
in front of atomic formulas.

In order to define the class of strictly positive and accessibility operator forms
we let P and Q denote fresh unary relation symbols and denote by L1(P,Q)
the extension of L1 by P and Q; the language L1(Q) is defined similarly.
The strictly positive (with respect to P ) formulas of L1(P,Q) (cf. e.g. [6]) are
now inductively generated as follows:

1. The formulas of L1(Q) are strictly positive.

2. The formulas of the form P (t) are strictly positive.

3. The strictly positive formulas are closed under ∧, ∨, ∀, and ∃.

4. If A is an L1(Q) formula and B is strictly positive, then (A → B) is
strictly positive.

The strongly positive (with respect to P ) formulas of L1(P,Q) (cf. Arai [2] and
Buchholz [5]) are defined to be the subclass of the strictly positive formulas
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which is generated by clauses (1)–(3) in the above inductive definition. A
strictly positive L1(P,Q) formula which contains at most x and y free is
called a strictly positive operator form, and we let A(P,Q, x, y) range over
such forms; the strongly positive operator forms are defined analogously.

A very important further subclass of the strictly positive operator forms
are operators for accessibility inductive definitions. Accordingly, we call
A(P,Q, x, y) an accessibility operator form, if it is of the shape

A ∧ (∀z)(B(z)→ P (z)),

for formulas A and B belonging to the language L1(Q). Observe that A and
B in general depend on the parameters x and y in such operator forms.

In order to formulate transfinitely iterated fixed point theories below we have
to fix an ordinal notation system. In the following we confine ourselves to
the standard notation system of order type Γ0 which is based on the binary
ϕ or Veblen function (cf. e.g. [11, 13]). We let ≺ stand for the corresponding
primitive recursive wellordering and assume without loss of generality that
the field of ≺ is the set of all natural numbers and that 0 is the least element
with respect to ≺. Finally, we set for all formulas A(x) and number terms s:

TI(s, A) := (∀x)[(∀y)(y ≺ x→ A(y))→ A(x)] → (∀x ≺ s)A(x).

The stage is now set in order to introduce the theories ÎD
i
α(strict) for each α

less than Γ0.1 ÎD
i
α(strict) is formulated in the language Lfix, which extends L1

by a new unary relation symbol PA for each strictly positive operator form
A(P,Q, x, y). In the following let us write PAs (t) for PA(〈t, s〉) and PA≺s(t)
for t = 〈(t)0, (t)1〉 ∧ (t)1 ≺ s∧PA(t). Here 〈·, ·〉 denotes a primitive recursive
coding function with associated projections (·)0 and (·)1; in the sequel we
will write, for example, 〈t1, t2, t3〉 for 〈〈t1, t2〉, t3〉.

The theory ÎD
i
α(strict) is based on intuitionistic logic with equality and com-

prises the following axioms: (i) the axioms of Heyting arithmetic HA with
the scheme of complete induction for all formulas of Lfix, (ii) the fixed point
axioms

(∀a ≺ α)(∀x)[PAa (x)↔ A(PAa , P
A
≺a, x, a)]

for all strictly positive operator forms A(P,Q, x, y), as well as (iii) the axioms

TI(α,A) for all Lfix formulas A. We write ÎD
i
<α(strict) for the union of the

theories ÎD
i
β(strict) for β less than α. The theories ÎD

i
α(strong) as well as

1Of course, the restriction to ordinals less than Γ0 is not essential; it just stems from
the choice of our notation system for the purpose of this article.
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ÎD
i
α(acc) are defined in the same manner as ÎD

i
α(strict), but only for strongly

positive and accessibility operator forms, respectively.

Finally, we want to introduce the theories ACA−iα for α times iterated arith-
metic comprehension without parameters. It is most convenient to formulate
ACA−iα as a first order system. For that purpose we let Lit denote the ex-
tension of L1 by new unary relation symbols HA for each L1(Q) formula
A(Q, x, y) with at most x, y free. The formulas HA

s (t) and HA
≺s(t) are defined

similarly as above.

The theory ACA−iα is based on intuitionistic logic with equality and com-
prises the following axioms: (i) the axioms of Heyting arithmetic HA with
the scheme of complete induction for all formulas of Lit, (ii) the iterated
arithmetical comprehension without parameters axioms

(∀a ≺ α)(∀x)[HA
a (x)↔ A(HA

≺a, x, a)]

for all L1(Q) formulas A(Q, x, y), as well as (iii) the axioms TI(α,A) for all
Lit formulas A. We write ACA−i<α for the union of the theories ACA−iβ for β
less than α.

In the next section we will also refer to the classical version ACA−α of ACA−iα .
It should not surprise the reader that ACA−α and ACA−iα prove the same
negative and Π0

2 sentences of L1. This can be established by employing
standard double negation and Friedman translation (cf. e.g. [6]).

Theorem 1 We have that ACA−α is conservative over ACA−iα for all negative
and Π0

2 sentences of L1.

3 Reduction of ÎDi
α(strict) to ACA−iα

It is the aim of this section to give a reduction of ÎD
i
α(strict) to ACA−iα which

preserves negative arithmetic and Π0
2 sentences. Our proof-theoretic analysis

of ÎD
i
α(strict) proceeds in two steps. First, we refer to Buchholz [4] in order

to reduce ÎD
i
α(strict) to ÎD

i
α(acc) using recursive realizability. Then we show

how to model ÎD
i
α(acc) directly in the classical theory ACA−α by means of

certain diagonalization techniques inherent in Feferman [7].

Let us now first turn to the reduction of ÎD
i
α(strict) to ÎD

i
α(acc). Here we can

literally follow Buchholz [4], paragraph 6, where a reduction of IDi
α(strict)

to IDi
α(acc) is carried through by means of a standard recursive realizability

interpretation. The reader can readily observe that this procedure carries
over to our theories “with hat” in order to yield the desired reduction of
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ÎD
i
α(strict) to ÎD

i
α(acc). Since the realizability argument is given in [4] in full

detail, we will confine ourselves in the sequel to describing the main steps
and ideas of the reduction only.

The notion e r C (“e realizes C”) for C a formula in L1(P,Q) is defined by
induction on the complexity of C in the following manner, where {e} denotes
a standard enumeration of the partial recursive functions.

e r C := C if C is an atomic formula of L1

e r P (t) := P (〈t, e〉)
e rQ(t) := Q(〈(t)0, (e)1, (t)1〉)
e r A ∧B := (e)0 r A ∧ (e)1 rB
e r A ∨B := ((e)0 = 0→ (e)1 r A) ∧ ((e)0 6= 0→ (e)1 rB)
e r A→ B := (∀u)(u r A→ {e}(u) rB)
e r (∀x)A(x) := (∀x)({e}(x) r A(x))
e r (∃x)A(x) := (e)1 r A((e)0).

The key observation made by Buchholz is that the assertion erC for a strictly
positive L1(P,Q) formula C is equivalent in intuitionistic logic to an “accessi-
bility statement” of the form A∧(∀z)(B(z)→ P (z)), with A and B formulas
of L1(Q). The reader should not have difficulties in verifying this assertion
and in case of doubt can consult Buchholz [4], Lemma 6.1. Using this cru-

cial fact, the realizability interpretation of ÎD
i
α(strict) to ÎD

i
α(acc) is rather

straightforward. More precisely, one associates to a given strictly positive
operator form A(P,Q, x, y) the accessibility operator form A+(P,Q, x, y),

A+(P,Q, x, y) := (x)1 rA(P,Q, (x)0, y).

Then one defines the realizability relation e rC for C being a formula in the
language Lfix by choosing e rPA(t) as PA

+
(〈(t)0, e, (t)1〉) and using the same

clauses as above in the remaining cases. It is now a matter of routine to
check that if the Lfix sentence A is derivable in ÎD

i
α(strict), then there exists

a natural number n so that ÎD
i
α(acc) proves the assertion n r A; for details

cf. [4]. As usual, realizability yields conservativity for almost negative for-
mulas (cf. [15]) and, hence, we can summarize our discussion in the following
theorem.

Theorem 2 We have that ÎD
i
α(strict) is conservative over ÎD

i
α(acc) for all

almost negative sentences of L1.

The second step of the reduction of ÎD
i
α(strict) consists in the proof-theoretic

analysis of ÎD
i
α(acc). More precisely, we now show how to embed the classical

version ÎDα(acc) of ÎD
i
α(acc) into ACA−α . The crucial step in this embedding
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is a simple diagonalization argument, similar in spirit to Aczel’s analysis of
ÎD1 by means of the Σ1

1 axiom of choice, cf. [7]. But in contrast to full ÎD1,
which forces a Σ1

1 solution for the required fixed point, we can already do
with an arithmetic fixed point due to the presence of accessibility inductive
definitions. This observation is closely related to the argument given at the
end of Feferman [7], where it is shown how to produce a Π0

2 fixed point for
the definition of Kleene’s O; indeed, O is just a special kind of accessibility
inductive definition.

Theorem 3 We have that ÎDα(acc) is conservative over ACA−α for all sen-
tences of L1.

Proof. First of all it is trivial to figure out an embedding of ACA−α into

ÎDα(acc), since accessibility operator forms of L1(P,Q) cover arbitrary L1(Q)
formulas A(Q, x, y). Therefore, let us see how we can obtain an embedding

of ÎDα(acc) into ACA−α preserving sentences in L1.

For that purpose we fix an arbitrary accessibility operator form A(P,Q, x, y).
Hence, there are L1(Q) formulas A and B, so that A(P,Q, x, y) has the form

(1) A ∧ (∀z)(B(z) → P (z)).

Note that A and B in general depend on the variables x and y. First, we
choose a natural number n so that A and B are equivalent to a Π0

n, respec-
tively a Σ0

n formula of L1(Q). Our aim now is to find a fixed point solution
by means of diagonalization of a universal Π0

n predicate. Towards that aim,
let E(Q, u, x, y, z) be a universal Π0

n formula of L1(Q) which enumerates for
u = 0, 1, 2, . . . all Π0

n formulas C(x, y, z) of L1(Q). Let us now have a look at
the L1(Q) formula

(2) A(E(Q, u, u, ·, y), Q, x, y),

which results from A(P,Q, x, y) by replacing each subformula of the form
P (t) by E(Q, u, u, t, y). Due to the special form (1) of our accessibility oper-
ator form A(P,Q, x, y), one readily sees that (2) is trivially equivalent to a
Π0
n formula of L1(Q). Hence, there is a natural number k effectively depend-

ing on A, so that (2) is equivalent to E(Q, k, u, x, y). But now indeed, by
substituting k for u, we have established the equivalence of the two formulas

(3) E(Q, k, k, x, y) and A(E(Q, k, k, ·, y), Q, x, y).

Towards formalizing our argument in ACA−α , choose now the L1(Q) formula
D(Q, x, y) as E(Q, k, k, x, y). Using this definition, the hierarchy axioms of
ACA−α for D readily yield

(4) (∀a ≺ α)(∀x)[HD
a (x)↔ D(HD

≺a, x, a)↔ E(HD
≺a, k, k, x, a)].
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Moreover, straightforward formalization of our discussion above shows that
ACA−α proves

(5) (∀a ≺ α)(∀x)[E(HD
≺a, k, k, x, a)↔ A(E(HD

≺a, k, k, ·, a), HD
≺a, x, a)].

By combining (4) and (5) we get that ACA−α derives

(6) (∀a ≺ α)(∀x)[HD
a (x)↔ A(HD

a , H
D
≺a, x, a)].

Clearly, (6) reveals that we now get an embedding of ÎDα(acc) into ACA−α
by interpreting PA as HD and leaving the arithmetic part of Lfix untouched.
This is as desired and ends our proof of the theorem. 2

We are now in a position to combine Theorem 1, Theorem 2, and Theorem
3 in order to obtain the following main result of this article.

Theorem 4 We have that ÎD
i
α(strict), ÎD

i
α(strong) and ÎD

i
α(acc) are conser-

vative over ACA−iα for all negative and Π0
2 sentences of L1.

It is not difficult to see that the theories ACA−in for n < ω are directly
interpretable in Heyting arithmetic HA; hence, we have conservativity of
ÎD

i
<ω(strict) over HA for negative and Π0

2 sentences of L1.

Moreover, observe that the theory ACA−iω is in fact just a first order version
of the second order system ACAi based on arithmetic comprehension with set
parameters and the full schema of induction on the natural numbers. The
reader will not find it difficult to provide mutual embeddings between ACA−iω
and ACAi. Summing up, we are in a position to state the following corollary
to our main theorem.

Corollary 5 We have the following conservation results:

1. ÎD
i
<ω(strict), ÎD

i
<ω(strong) and ÎD

i
<ω(acc) are conservative over HA for

all negative and Π0
2 sentences of L1.

2. ÎD
i
ω(strict), ÎD

i
ω(strong) and ÎD

i
ω(acc) are conservative over ACAi for

all negative and Π0
2 sentences of L1.

Recall that Arai [2] has proved conservativity of ÎD
i
<ω(strong) over HA for all

sentences of L1. Hence, it is a natural question to ask whether conservativity
of ÎD

i
α(strict) over ACA−iα indeed also holds for all L1 sentences.
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4 Proof-theoretic ordinals of ACA−α

Since systems with parameter-free arithmetic comprehension are probably
less well-known than the corresponding systems based on arithmetic com-
prehension with parameters, let us briefly state the proof-theoretic ordinal
|ACA−α | of ACA−α , cf. e.g. [9] for a precise definition of the notion of proof-
theoretic ordinal.

Theorem 6 Assume that α < Γ0 is of the form ωαn +ωαn−1 + · · ·+ωα1 +m
for ordinals αn ≥ αn−1 ≥ · · · ≥ α1 > 0 and m < ω, and let ε(α) denote the
least ε number greater than α. Then we have:

|ACA−α | = ϕαn(ϕαn−1(· · ·ϕα1ε(α)) · · · ).

We omit a rigorous proof of this theorem, since the relevant arguments and
techniques are well-established in the literature. The lower bounds are ob-
tained by well-known predicative well-ordering techniques, cf. e.g. [8, 13].
Upper proof-theoretic bounds can be derived using suitable predicative cut-
elimination in a semi-formal system of ramified analysis, e.g the system RA?

of Schütte [13], and the fact that iterated arithmetic comprehension can be
modeled in RA?.
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