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Abstract

The aim of this article is to give the proof-theoretic analysis of various sub-
systems of Feferman’s theory T; for explicit mathematics which contain the
non-constructive p-operator and join.

We make use of standard proof-theoretic techniques such as cut-elimination
of appropriate semi-formal systems and asymmetrical interpretations in stan-
dard structures for explicit mathematics.

1 Introduction

Systems of explicit mathematics were introduced in Feferman [5, 9]. Two families
of theories were presented there, namely the theories Ty and T, together with their
various subsystems. T; results from T, by adding the so-called non-constructive
minimum operator, a predicatively justified quantification operator over the natural
numbers.

Complete proof-theoretic information about Ty and its various subsystems is avail-
able since 1983 by the work of Feferman [5, 9], Feferman and Sieg [14], Jéger [20]
and Jéger and Pohlers [22]. A crucial step in the proof-theoretic analysis of subsys-
tems of T; was established only recently in the two papers by Feferman and Jager
[13, 12]." Whereas the first of these papers deals with pure applicative theories
plus non-constructive p-operator, the second paper is concerned about extensions of
these systems with (variable) types and classes. More precisely, a theory EET(u) of
elementary explicit type theory with non-constructive p-operator is studied in [12]
in the context of various induction principles on the natural numbers, namely set
induction (S-ly), type induction (T-ly) and formula induction (F-ly) (cf. Section 2
for precise definitions), and the following proof-theoretic equivalences to well-known
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subsystems of analysis are established there:

EET(p) 4+ (S-Iy) = PA,
EET (1) + (T-lv) = (I%-CA)o,,
EET(p) + (F-ln) = (I%-CA)ey,.

The crucial class existence principle of EET(x) is the axiom of elementary compre-
hension (ECA). However, there are two other class existence principles which are
relevant in explicit mathematics, namely the join axiom (J) and inductive genera-
tion (IG), cf. Feferman [5, 9]. It is established in Section 8 that u does not increase
proof-theoretic strength if (IG) is present, since the applicative axioms with u can be
interpreted by making use of II} comprehension, which in turn follows from (1G). As
a consequence, the remaining interesting systems to be studied in the context of the
non-constructive p-operator contain join (J) but not inductive generation (1G). Ac-
cordingly, it is the aim of this paper to give an exact proof-theoretic analysis of the

three systems EET(p) +(J) +(S-In), EET (1) +(J) + (T-In) and EET (x) 4+ (J) + (F-In).

The system EET () + (J) + (F-ly) corresponds to the theory T in the terminology

of Feferman [5], where the following conjecture is raised about the proof-theoretic

strength of TgN), cf. p. 123:

T s (proof-theoretically) reducible to predicative analysis Uy<r, Ra. (i)
Furthermore, Feferman writes, cf. ibidem:
It may even be that TgN) is of the same strength as predicative analysis. (i)

In the following we prove (i) and disprove (ii). More precisely, the main results of
this article can be stated as follows:

EET(p) + (J)+ (S-Iy) = PA,
EET(u) + (J) + (T-ly) = (II%-CA).,,
EET (1) + () + (F-In) = (TT5-CA) <pepo-

Before we turn to the details of our presentation, let us briefly indicate the main
lines of the proof-theoretic analysis of the above systems.

The treatment of EET (1) 4+ (J) + (S-In) is straightforward by establishing that this
system is a conservative extension of the theory BON(u) + (S-ly) of Feferman and
Jager [13], so that the equivalence of the latter theory to PA yields the desired result.

Let us turn to the systems EET (u)+ (J) 4+ (T-lIy) and EET () 4+ (J) + (F-ly). As far as
their lower bounds are concerned, we know from [13] that (IT° -CA)_., is contained

2Here ‘=" denotes the usual notion of proof-theoretic equivalence as it is defined, e.g., in Fefer-
man [11].



in EET(u) + (J) + (T-ly), and a generalization of the proof given in [13] yields an
embedding of (I1% -CA) e into EET (1) + (J) + (F-Iy).

The corresponding upper bounds are obtained by first providing Tait style reformu-
lations 77 and 73 of EET(u) + (J) + (T-ly) and EET(u) + (J) + (F-ly), respectively,
where 75 includes a form of the w rule in order to handle full formula induction on
the natural numbers, (F-ly). Partial cut elimination in 7; and 75 yields quasi normal
derivations of EET(u) + (J) + (T-ly) and EET () + (J) + (F-ly) of length less than w
and ey, respectively; those are subsequently used in order to provide asymmetrical
interpretations into initial segments of standard structures for EET(u)+ (J), namely
Gm(w) and Gon(g), respectively (cf. Section 4 for precise definitions).

The question arises where the standard structures Gop(w) and Ggp(e) can be formal-
ized in order to yield the desired proof-theoretic upper bounds of EET ()+(J)+(T-Iy)
and EET (1) + (J) + (F-ly). As in Feferman and Jéger [13, 12], the proper treatment
of the application operation again requires certain fixed point theories with ordinals,
which were introduced in Jéger [21] and extended to second order theories with or-
dinals in Jiger and Strahm [24]. The theory W-EQ of [24] is in fact appropriate for
formalizing the treatment of EET(p)+ (J)+(T-In) that we have sketched above, and
it is shown in [21, 24] that W-EQ has the same strength as (II%.-CA)..,; this yields
the exact strength of EET(u) 4+ (J) + (T-In).

For the description of Ggn(ep), finally, we introduce a new second order theory
with ordinals plus elementary comprehension iterated through all levels below &,
namely the system EQ..,, and we show that this theory has the same strength as
(TT2,-CA) < pepo by complete ordinal analysis. This finishes the brief sketch of our
treatment of EET(p) + (J)+(S-In), EET(p) +(J) + (T-Iy) and EET (p) + (J) + (F-Iy).

2 The formal framework for elementary explicit
type theory

In this section we briefly recapitulate the elementary explicit type theory with non-
constructive p-operator EET(x) and its various extensions.

The language L, of applicative theories with types is a two-sorted language with
individual variables a,b,c,x,y, 2, f,g,h,... and type variables A,B,C, XY, Z,...
(both possibly with subscripts). In addition, L, includes individual constants k,s
(partial combinatory algebra), p, py, p; (pairing and unpairing), 0 (zero), sy (succes-
sor), py (predecessor), dy (definition by numerical cases), ry (primitive recursion),
p (unbounded minimum operator), (C¢)e<, (elementary comprehension) and j (join).
L, has a binary function symbol - for (partial) term application, unary relation sym-
bols | (defined) and N (natural numbers) as well as binary relation symbols =, €
and R (naming relation).

The individual terms (r,s,t,...) of L, are inductively defined as follows:



1. The individual variables and individual constants are individual terms.
2. If s and t are individual terms, then so also is (s - t).

In the following we write (st) or just st instead of (s-t), and we adopt the convention
of association to the left, i.e. s159...s, stands for (...(s1s3)...s,). Furthermore,
we write (t1,ty) for p(ty,t2) and (tq,...,t,) for (t1, (t2,...,tn)).

The formulas (F,G, H,...) of L, are inductively defined as follows:

1. Bach atomic formula N(t), t], (s =), (s € A), (A = B) and R(s,A) is a
formula.

2. If F and G are formulas, then so also are =F, (F'V G) and (F' A G).
3. If F'is a formula, then so also are dzF', Vo F', X F and VX F.

As usual we write (F' — G) for (-F'VG). An L, formula F is called stratified if the
relation symbol R does not occur in F'; the elementary L, formulas are the stratified
L, formulas which do not contain bound type variables. L, is defined to be the first
order part of L), i.e. L, is the sublanguage of I, which we obtain by omitting the
relation symbols € and R as well as the constants (C¢)e<, and j.

In the sequel we write ¢’ for syt and 1 for 0’. More generally, the numerals of L,
are inductively given by 0 = 0 and n + 1 = sy7. In addition, we use the following
abbreviations concerning the predicate .

te N := N(t),
(Jxr e N)F = Jz(xr € NAF),
(Ve € N)F = Vz(xr € N — F),

(t:N— N) := (Yx e N)(tx € N),
(t: N™1 - N) = (Vz € N)(tz: N™ — N),
te P(N) == (VxeN)({tz =0Vix=1),

ACN = Ve(zxe A—xz€N).

The quantifications (3z € A)F and (Vo € A)F are understood analogously.

The logic of applicative theories with types is the (classical) logic of partial terms,
cf. Beeson [1]. Accordingly, the partial equality relation ~ is introduced by

s~t = (s|Vt])—(s=1).

We have prepared the ground in order to state the axioms of EET, the first order
part of which corresponds to the theory BON of basic operations and numbers of
Feferman and Jéger [13]. Hence, the applicative part of EET contains the following
axioms (1)—(10).



[. PARTIAL COMBINATORY ALGEBRA.
(1) kzy =,
(2) szy | A szyz ~ xz(yz).
II. PAIRING AND PROJECTION.
(3) po(,y) =2 A pi(z,y) = .
ITI. NATURAL NUMBERS.
(4) 0 N A (Vx € N)(2' € N),
(5) (Vo € N)(z' #0Apy(a) =),
(6) (Vre N)(x#0 — pyz € NA(pyz) = x).
IV. DEFINITION BY CASES ON N.
(7) ae NAbE N A a=b— dyzyab = x,
(8) ae NAbeE N A a#b— dyzyab =y.
V. PRIMITIVE RECURSION ON N.
9) (f: N=>N)A(g:N*—=N) = (rvfg: N* = N),

(10) (f: N—=N)A(g: N> =N)AseENAyENANh=ryfg—
hz0 = fx A hx(y') = gry(hzy).
As usual the axioms of a partial combinatory algebra allow one to define lambda

abstraction and to prove a recursion theorem (cf. e.g. [1, 5]).

As already mentioned above, the binary relation 8 between objects and types acts
as a naming relation, i.e. R(s, A) means that s is a name of A or s represents A.
While the naming of types must be understood intensionally, the types themselves
are extensional in the usual set-theoretical sense.

VI. EXTENSIONALITY.
(EXT) Ve(r€e A—ze€B) - A=B.

The axioms about explicit representation state that every type has a name, (E.1),
and that there are no homonyms, i.e. different types have different names, (E.2).

VII. ExpLICIT REPRESENTATION.

(E.1) JzR(x, A),
(E.2) R(a, B) A R(a,C) — B=C.
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As usual one introduces an element relation € between individual terms given by
set = AXR(EX) AN se X).

In order to facilitate the naming process, we will adopt the conventions of [12]. In
particular, let us assume that we have some fixed standard Godel numbering of the
formulas of L,. Furthermore, let v0,v1,...and V0,V1,... be an arbitrary but fixed
enumeration of the individual and type variables, respectively. If F'is an L, formula
with all its individual variables from the list v0,...,vm and all its type variables
among VO,...,Vn, and if T =g, ..., 2m and Y =Yy, ..., Y,, then we write F[Z, 57]
for the L, formula which results from F' by simultaneously replacing vi by x; and
VibyY; (0<i<m,0<j<mn) Finaly, if ¥ = xy,...,z, and X = Xy,..., X,
then we write R(Z, X) instead of Ao R(z;, X;).

We are ready to state the axioms for elementary comprehension. (ECA.1) assumes
the existence of a type given by an (elementary) defining formula. The paradigm
of explicitness tells us that we also need a name for this type and that this name is
built uniformly in the individual and type variables of the defining formula. This is
the content of (ECA.2).

—

VIII. ELEMENTARY COMPREHENSION. Let F[z, ¥, Z] be an elementary L, formula
with Godelnumber e; then we have:

(ECA.1) IXVa(x € X < Fla,d, B)),

-

(ECA.2) R(b, B) AVz(z € A F[z,a,B]) — R(c.(d@,b), A).

Observe that according to our conventions above, it is not necessary to encode
information about the comprehension variable and the order of the parameters in
the constants c,.

This finishes the description of the axioms of elementary explicit type theory EET,
which is defined to be the L, theory consisting of the axiom groups I-VIII. Further-
more, let BON be the L, theory containing the axiom groups -V only.

One of our main concerns is the analysis of the join axiom in the presence of the
non-constructive minimum operator. Let us write A = X(B, f) for the statement

Vi(x € A — x = (pyx,p1z) A ppr € B A IXR(f(pyz), X) A pyz € X)),

i.e. Ais the disjoint sum over all x € B of the types named by fz. Now the (uniform)
axiom of join (J) has the form

() R(a, A) Az e AIVR(2,Y) — IZ(R((a, f), Z) A Z = (A, f)).

In the following we are mainly interested in three forms of complete induction on the
natural numbers N, namely set induction, type induction and formula induction.
Sets of natural numbers are represented via their total characteristic functions.
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SET INDUCTION ON N (S-ly)
fEPIN)ANFfO=0A(NVz € N)(fx=0— f(«')=0) — (Vo € N)(fz =0),
TYPE INDUCTION ON N (T-Iy)
0OeAANNVzeN)(zeA—2a' € A) - (Vx e N)(z € A),
FORMULA INDUCTION ON N (F-Iy)
F(0)A (Vx € N)(F(z) — F(2')) — (Vo € N)F(x)

for all formulas F'(z) of L,.

We finish this section by giving the exact axiomatization of the non-constructive
minimum operator .

THE UNBOUNDED MINIMUM OPERATOR

(1) (f:N—=N)— pfeN,

(n2) (f: N = N)A@EFzeN)(fr=0) — f(uf)=0.
In the sequel we write EET(u) for EET + (u.1, p.2)

Remark 1 Jdger and Strahm [23, 25] consider a slight strengthening of the axioms
for pu. In contrast to the theories studied in [23], this extension is irrelevant for the
theories studied in this article as far as proof-theoretic strength is concerned.

3 Predicative subsystems of analysis

For the sake of completeness, let us briefly recapitulate the definition of some well-
known subsystems of analysis, which will be relevant in the sequel.

Let £, be the usual language of second order arithmetic with number variables
x,y,2,..., set variables X, Y, Z, ... (both possibly with subscripts), the constant 0
as well as function and relation symbols for all primitive recursive functions and
relations. The number terms (r,s,t,...) of Ly and the formulas (F,G, H,...) are
defined as usual. An £, formula F'is called arithmetic, if F' does not contain bound
set variables; let I12 denote the class of all arithmetic £, formulas.

In the following we presuppose some standard primitive recursive coding machinery:
(to,...,t, 1) is the sequence number associated to the numbers ty,..., ¢, 1 with
related projections (-); so that ({to,...,t, 1)) =t; for 0 < i < n.

Let PA denote the usual first order theory of Peano arithmetic formulated in the
first order part £; of £5. For the definition of theories with iterated arithmetical
comprehension we refer to a primitive recursive standard wellordering < of order



type I'y and field N, and the reader is assumed to be familiar with the Veblen func-
tions ¢4, cf. Pohlers [29] or Schiitte [30]. Furthermore, let <,, denote the restriction
of < to {m:m < n}, and let us write TI(a, F') for the formula

(Vo <n)((Vy < 2)F(y) — F(z)) — (Vo <n)F(z),

provided that the order type of <, is a. In addition, if F(X,z) is an £, formula
(possibly with other free variables) and n € N, then Hr (X, n) denotes the £, formula
given by

Hp(X,n) == Vyly € X < y={(W)o, )1) A ()o < nAF(X)¥°, (y)1)],

where (X)W is the set {(v,2) € X : 7 < (y)o}. If a is an ordinal less than T,
then let (T1°.-CA),, denote the £, theory comprising the axioms of PA, the formulas
TI(<,, F) for all £, formulas F', and the universal closure of

HXHG*(X, TL)

for every arithmetic £y formula G(X, z), where the order type of <,, is a. Finally, let
(IT%,-CA) ., denote the union of the theories (I12-CA)s for # < «. For more details
about theories with iterated comprehension the reader is referred to [4, 13, 15, 32].

In order to establish proof-theoretic lower bounds of systems of explicit mathematics,
we will make use of two interpretations of the language £, of second order arithmetic
into the language L, of elementary explicit type theory; they only differ in the
interpretation of the set variables of L£5. The first order part of L, is translated
in the obvious way by interpreting the number variables of £, as ranging over the
predicate N and assigning an L, term ¢; to each primitive recursive function f
in a straightforward manner. According to the first interpretation, (), the set
variables of Ly are interpreted as subtypes of N. This is in contrast to the second
interpretation, (), where the set variables are supposed to range over elements of
P(N). In particular, we have for all £, formulas F' that

AXF(X)N = IX(X C N A F¥ (X)),
(AXF(X)N := Jz(xr € P(N) A FN(1)),
and similarly for universal set quantifiers. Observe that the interpretation (-)V is

actually a translation from Ly into L,, the first order part of L,. For more details
about these translations the reader is referred to [13, 12].

4 Standard structures

The purpose of this section is to define standard structures for EET(x) + (J). Initial
segments of those will be used in Section 7, where proof-theoretic upper bounds of
EET(x)+ (J) + (T-In) and EET(p) + (J) + (F-In) are obtained by partial reductions
using so-called asymmetrical interpretations.
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A standard structure for EET(p)+(J) is obtained by extending a model of BON(x) to
an L, structure which interprets the second order part of EET(x)+(J). The standard
models for BON(x) have a recursion-theoretic flavor, but the interpretation of the
second order part is done in a set-theoretical way. Standard structures for systems of
explicit mathematics were introduced in Feferman [5, 8, 9]; refined versions thereof
are studied in Takahashi [33] and Gla8 [17].

Whereas the standard model for BON is given in terms of ordinary Y recursion
theory, the standard model for BON(x) makes use of IIj recursion theory. It is
obtained by taking the universe N, interpreting N as N and (z - y) as {z}"(y),
where {z}* is a standard enumeration of the functions which are partial recursive
in F. Here E denotes the well-known type 2 equality functional given by

_Jo, ifdxf(x) =0,
E(f) = {1, else,

cf. Hinman [18]. The functional F is interdefinable with u, of course. A (formalized)
version of this standard model of BON(y) is described in detail in [13].

In the following let us start off from an arbitrary model 9t of BON(u),
M = (M, App, Nat, k.8, ..., 1),

where M denotes the universe of 9, App C M? interprets application, Nat is
the interpretation of the predicate N and R,§, ..., v are the denotations of the
constants of L, in 9. We first interpret the constants (c.)e<, and j in some suitable
way. For example, choose €, and j in M so that ¢,v = (1,e,v) and ju = (2,v)
holds for all v € M. Then we define the L, structures So(a) = (M, Ty, Ra) by
transfinite recursion on the ordinals, where T,, C Pow (M) is the range of the type
variables of L, and R, C M x T, interprets the naming relation . The € relation
is interpreted as the restriction of the usual element relation to M x T,. In the
following we inductively define representations p, C M and collections 7(w) C M
for each w € p,; then R, and T, are obtained by setting

Ry = {(w,7(w)):w€ps}, T = {r(w):w € pa}.
(1) If @ = 0, then we set py = 0.

(2) If « = f+1, then pg C p,. In addition, we distinguish the following two
cases:

(i) If Flz,7,7] is an elementary L, formula with Godelnumber e, then we
have €. (¥, @) € p, for all ¥ € M and @ € pg, and 7(C (¥, @)) is the set

{m € M : w(B) = Flm, 7, 7(a)]},

where 7() is the sequence 7(wy), ..., T(wy,) for & = wy, ..., w,.



(ii) If v € ps and f € M so that

Sm(0) = (Vo € 7(v)) IV R(fz,Y),

then we have j(v, f) € pa, and 7(j(v, f)) is the set

{m € M : Sqn(B) = m = (pym,pym) A pym € 7(v) A pym € f(pym)}.

(3) If v is a limit ordinal, then we set po := Uy ps-

This finishes the description of the L, structures Gop(a) = (M, Ty, R, ). Finally, let
us put
69)? = (ma TJ R))

where T'= U, T, and R = U, R, It is easy to see that Ggp(k) = Ggy for a regular
cardinal k > card(9). Moreover, it is straightforward to check that the axioms of
EET (i) + (J) are true in Ggy.

Proposition 2 Gy is a model of EET (i) + (J). More precisely, if k = card(M),
then it is Ggm = Ggm(/ﬂ+).

5 Lower bounds

In this section let us briefly address the lower bounds for EET(u) + (J) + (S-In),
EET(u) + (J) + (T-ly) and EET(p) + (J) + (F-ly). As the methods are very similar
to those in Feferman and Jdger [13, 12|, we will only concentrate on the main
differences.

For the systems EET(u) 4+ (J) + (S-In) and EET(u) + (J) + (T-In) the desired lower
bounds are already available by Feferman and Jiger [12], namely Peano arithmetic
PA and the subsystem of second order arithmetic (IT2.-CA)_.,, respectively. There-
fore, we will only consider the system EET(u) + (J) + (F-ly) for the rest of this
section, and we will show that it contains the theory (II% -CA) e 0.

The system (IT%-CA)_., is contained in EET + (J) + (F-Iy) via the translation (-}
of Section 3 (cf. e.g. GlaB [17]). This is due to the fact that EET + (F-ly) proves
transfinite induction up to each o < gy w.r.t. arbitrary L, formulas, so that arith-
metic comprehension can be iterated below gy in the presence of the uniform axiom

of join (J).
Proposition 3 We have for all L, sentences F':
(II%-CA).., W F = EET +(J) 4 (F-ly) - FV.

By methods of Schiitte [30] it is well-know that (I12,-CA).., proves (VX)TI(a, X)
for each o < e(0. Hence, we have the following corollary.
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Corollary 4 EET + (J) + (F-Iy) proves TI ™ (a, F) for all elementary L, formulas
F and all o < pg0.

We have prepared the grounds in order to embed the theory (II2-CA).y,e00 into
EET (1) + (J) + (F-ly) via our (second) translation (-)V.

Theorem 5 We have for all L, sentences F':
(TI%-CA)cpeo F F = EET(p) + (J) + (F-Iy) - F.

PRrROOF The argument runs in exactly the same way as the proof of Theorem 9 in
Feferman and Jéger [13], with the only exception that EET(u) + (J) + (F-ly) proves
transfinite induction below ¢e,0 for arbitrary L, formulas, whereas in the proof of
Theorem 9 in [13] it is only available for each o < g5. More precisely, if « is less
than 70 and n € N so that the order type of <,, is a, then for each elementary L,
formula F'(X,x) with additional parameters Y, 7 there exists an L, term h so that

EET(p) +(J) + (F-ln) 7€ P(N)AZE€ N — hijZ€ P(N) AH¥(hijZ,n),

where essential use is made of the axioms for the unbounded p operator, the recursion
theorem and the previous corollary. For the details of this argument the reader is
referred to [13]. O

6 Second order theories with ordinals and
iterated elementary comprehension

In this section we introduce certain fixed point theories with ordinals and (iterated)
elementary comprehension which will be crucial in order to determine the proof-
theoretic upper bounds of EET(x) + (J) + (T-In) and EET(u) + (J) + (F-ly).

Theories of ordinals over PA have been introduced in Jéger [21], and they have played
an essential role in Feferman and Jéger [13] in order to analyze (first order) applica-
tive theories with the non-constructive minimum operator. They have recently been
extended in Jiger and Strahm [24] to second order systems with elementary compre-
hension, which in turn were used in Feferman and Jéger [12] in order to determine
the proof-theoretic upper bound of the system EET(u) + (F-ly). In order to prove
an upper bound for EET (x) + (J) 4+ (F-In), we need extensions of the theories in [24],
where elementary comprehension is iterated through every ordinal less than gg.

In the first paragraph of this section we recapitulate the system EQ and its restric-
tions of [24], and we introduce the system EQ_.,. The second paragraph contains
the proof-theoretic analysis of EQ_,,.
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6.1 The theories EQ) and @QO

We first introduce the notion of an inductive operator form. Let P be an n-ary
relation symbol which does not belong to the language Ly, and let Ly(P) denote the
extension of £y by P. An Ly(P) formula F is called P-positive if each occurrence of
P in F'is positive. We call P-positive formulas without free or bound set variables
which contain at most & = x1, ..., z, free inductive operator forms; we let A(P, ¥)
range over such forms.

Now we extend L, to a new second order language Lq by adding a new sort of
ordinal variables (o,7,1,€,...), new binary relation symbols < and = for the less
relation and the equality relation on the ordinals® and an (n+ 1)-ary relation symbol
P, for each inductive operator form A(P, ¥) for which P is n-ary.

The number terms of Lo are the number terms of Ly; the ordinal terms of Lo are
the ordinal variables of L. The formulas of Lo (F,G, H, .. .) are defined inductively
as follows:

1. Each atomic formula of £y is an atomic formula of Lq.

2. The formulas (0 < 7), (0 = 7) and Py(o,t) are atomic formulas of Lq.

3. If F and G are Lg formulas, then so also are =F, (F'V G) and (F A G).

4. If F'is an Lq formula, then so also are dxF', VaF', X F and VX F.

5. If F is an Lq formula, then so also are (3§ < 0)F, (V€ < o)F, IEF and VEF.

For every Lq formula F' we write F'” to denote the L formula which is obtained
by replacing all unbounded ordinal quantifiers (Q¢) in F' by (Q¢ < o). Additional
abbreviations are:

P:l(;) = PA(Uag)a
P(5) = (3 <a)Pi(3),
PA(5) = FP4(D).

An Lq formula without free or bound set variables is called Af if all its ordinal
quantifiers are bounded; it is called X% [IT] if all positive [negative] universal ordi-
nal quantifiers and all negative [positive| existential ordinal quantifiers are bounded.
Finally, the elementary Lq formulas are the Lq formulas without bound set vari-
ables.

We are ready to give the exact axiomatization of the theory @, which is based on
the usual many-sorted predicate calculus with equality and classical logic.

3In general it will be clear from the context whether < and = denote the less and equality
relation on the nonnegative integers or on the ordinals.
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I. NUMBER-THEORETIC AXIOMS. These include the usual axioms of PA except for
complete induction on the natural numbers.

I1. INDUCTIVE OPERATOR AXIOMS. For every inductive operator form A(X, z):
P3(5) < A(P3”,35).
III. ¥ REFLECTION AXIOMS. For every X% formula F:

(X%-Ref) F — 3¢FC,

IV. LINEARITY OF < ON THE ORDINALS.

(LO) oo N(o<TAT<n—o<nA(c<TVo=1VT<o0).

V. ELEMENTARY COMPREHENSION. For every elementary formula F'(z) of Lg:
(ECA) IXVy(y € X < F(y)).

VI. FOrRMULA INDUCTION ON THE NATURAL NUMBERS. For all L formulas
F(z):
(Lao-In) F(0) AVz(F(x) — F(x +1)) — YoF(z).

VII. A INDUCTION ON THE ORDINALS. For all A formulas F(o):

(Af-lo) ve((vn <& F(n) — F(£)) — VEF(E).

This finishes the description of EQ. Let W-EQ and R-EQ denote those subsystems
of ES2, where complete induction on the natural numbers is restricted to elementary
and Af formulas, respectively. The proof-theoretic strength of R-E2, W-E€) and ES2
is established in J&ger and Strahm [24].

Proposition 6 We have the following proof-theoretic equivalences:
1. R-EQ = PA.
2. W-EQ = (II°.-CA) ..
3. EQ = (M%-CA).., .

We finish this paragraph by introducing the system Eﬁ<€0, which will be analyzed
in the following subsection.

The theory @GO is the extension of ﬁ where elementary comprehension can be
iterated through each ordinal less than 9. More precisely, if « is an ordinal less
than e, then EQ, denotes the Lq theory which is obtained from EQ by replacing
the axioms of elementary comprehension (ECA) by the universal closure of

(ECA,) AXHp(X,n)

for every elementary Lq formula F(X,x), where the order type of <,, is a. Finally,
EQ<60 is defined to be the union of the theories EQ[; for 4 < &y.

13



6.2 The proof-theoretic strength of EQ<EO

In this subsection we will analyze the proof-theoretic strength of EQO. For that

purpose we will introduce a semi-formal system E€2* which combines features of the
systems EQ} of Jéger and Strahm [24] and RA* of Schiitte [30].

The language L£* of EQ2* is similar to Lg, but set variables X, Y, ... are replaced by
X* Y .. with  <T'y. Number and ordinal terms of £* are those of Ln. The set
terms of £* are defined simultaneously with the formulas of £* (notice that £* will
only support formulas in negation normal form):

1. X% is a set term.
2. If F is an £* formula, then {x : F'} is a set term.

3. R(ty,...,t,) is an £* formula for n-ary primitive recursive relation symbols R
and number terms ¢, ...,1,.

4. (o <71),(0 £71),(0 =7),(0c # 1) are L* formulas for ordinal terms o, 7.
5. Pa(o,t), 7 Py(o,t) are £* formulas for number terms ¢ and ordinal terms o.
6. (te€S),(tgS) are L* formulas for number terms ¢ and set terms S.

7. Formulas are closed under V, A, dz,Vx, 3&,VE, 3 < 0,VE < 0, 3IX* VX? for
a # 0.

The negation —F of an L£* formula F'is defined as usual by applying the de Morgan’s
rules. A, X2 % formulas of £* are defined similarly to Lq.

The level of a set term S is defined by
lev(S) = max{« : a set variable X occurs in S}.

The level of an £* formula is defined analogously.

Now we define the cut rank rk(F) for £* formulas F:

1. If Fisa X% or a I? formula, then rk(F) = 0. Below we define the rank
function for formulas which are not X or I1* formulas.

t € X =r1k(t ¢ X = wa, tk(t € {z: F}) =1k(t € {x : F}) =
F(t)) + 1.
F
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Notice that rk(F') = rk(—F). We make the following observations:
1. If lev(F) = a, then wa < rk(F) < w(a+1).
2. If lev(S) < «, then rk(F(S)) < rk(IX*F(X?)).

In EQ* we restrict £* formulas to simple £* formulas, i.e. to formulas which do not
contain free number variables. Derivations are denoted in a Tait-style manner; I"
denotes a finite set of simple £* formulas. The axioms of EQ2* are given as follows:

I. EQuALITY AXIOMS FOR NUMBERS.
I, -F, G

if F' and G are numerically equivalent, i.e. they differ only in (closed) number terms
which have same value.

II. NUMBER-THEORETIC AXIOMS.
[, R(ty,...,t,)

if R is a primitive recursive relation symbol and R(ty,...,t,) is true.

III. EQUALITY AXIOMS FOR ORDINALS.
Fa o 7£ T, _'F(U)a F(T)

for all A formulas F'.

IV. INDUCTIVE OPERATOR AXIOMS AND LINEARITY OF <.
I, F

if F'is an instance of an inductive operator axiom or of the linearity axiom for <.

V. % REFLECTION AXIOMS.
T, —F, 3¢F*¢

for ¢ formulas F.

VI. Af} INDUCTION ON THE ORDINALS.

[, 3¢((Yn < E)F(n) A =F(€)), VEF(E)

for A formulas F.
The rules of EQ* are divided into four groups:
VII. LOGICAL RULES.

T, F T, G IF I,G
T,FVG T,FVG T,FAG

15



VIII. SET TERM RULES.

[, F(t)
Ite{x: F}
IX. QUANTIFIER RULES.

[, F(s)

I, doF(x)

L, F(S)
T AXeF(Xe) lev(S) < «

L, F(r)

I, 3EF(€)

I,7<oAF(r)
L, (3 <o)F(S)

I, F(s)...

L, —F(t)
It {z: F}

for all number terms s

..T, F(S)...

[, Ve F(z)

for all S, lev(S) < «

T, VXoF(X?)

I, F(1)
[, VEF(E)

I'7<o0— F(r)
L, (V€ <o) F(E)

(ve)

(ve)

X. Cut RULES.
IF I, -F

r

Here we marked rules with (vc) if they have to respect the usual variable conditions.
By EQ* }% [' we denote that there is a derivation of I' in EQ* such that « is an
upper bound for the proof length and p is a strict upper bound for cut ranks which
occur in the derivation.

Standard proof-theoretic techniques can be applied here to obtain partial cut elim-
ination, cf. Pohlers [29] or Schiitte [30]. Due to the presence of the axiom groups
IIT-VI, EQ2* does not enjoy full cut elimination; this is reflected by the requirement
B # 0 below.

Proposition 7 (Partial cut elimination)

EQ g I = EQFE-T  for 3 #0.

In the next step we embed ES\)QO into EQ2*. For that we have to introduce:

An £* formula F” is an a-instance of an Lq formula F' if F” is obtained from F' by
— replacing free number variables by arbitrary closed number terms.
— free set variables are replaced by set terms of £* with level < a.
— bound set variables get the superscript a.

Notice if F' is an a-instance of an Lq formula, then rk(F’) < w(a + 1). We obtain
the following embedding similarly to Jager and Strahm [24], Theorem 37.
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Proposition 8 IfFEQF F and F' is an a-instance of F', then EQ* % F'.

Thus for an embedding of @QO into EQ2* we have to interpret only the axioms
(ECA,) for all @ < gy in EQ*.

Proposition 9 Let o be the order type of <,,. Then for elementary formulas F':
s w(y(n)+tw n n
EQ (I 30 (X0 ), (1)
where v(n) = max{lev(S) : S occurs in F'} + .

ProoFr We will only sketch this roughly without paying attention to ordinal bounds;
the reader may convince her- or himself that the ordinal bounds noted in (1) are
sufficient.

Define the set term

R(n) = {(z,y) : x < n AIX"™(Hp (X" 2) A F(X7™ y))}. (2)
Notice that lev(R(n)) < vy(n) + 1. We prove
EQ* - Hp(R(n),n) (3)

simultaneously with (1) by induction on <. We have the induction hypothesis
EQ" + (Vo < n)Hp(R(z),x). (4)
Further, notice that for x < m < n the induction hypothesis of (1) implies because
of y(z) +1 < y(m)
EQ* F 33X MY (X, 2) — XY@ HL(X 1)
o XN (X, ).
Moreover, by Simpson [32], V.2.3, we have
EQF Hp(X,m) AHp(Y,m) —» X =Y. (5)
This yields, using Proposition 8,
EQ"F R(n)" = {{z,y):x <mAIX" ")(H (X7 ) A F(XY™ )}
= {(z,y) 2z <m A IXT (HE (XM ) A F(XY™ )}
= R(m).
Combining this with (4) we obtain
EQ* F (Vo < n)Hp(R(n)", x),
from which we can conclude by (5), Proposition 8 and (2):
EQ"F R(n) = {(z,y) :x < nAF(R(n)",y)}
This is in fact (3); and (1) is a consequence of (3). O

As an immediate consequence we obtain:
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Proposition 10 If E§<EO + F, then there is an v < ¢y and a y-instance F' of F'

«Q

such that EQ* |~ F' with o < g.
Theorem 11 | EQ.., |< ¢(z40)0.

PROOF Take an arithmetical (£,) sentence F' with E@<€O + F'. Then by Proposition
10 there is o < g¢ such that EQ* I% F. By Proposition 7 we obtain # < paa such

that EQ* I% F. Using the infinitary system Z of Jiger and Strahm [24], Theorem
39, we obtain an ordinal v < w?’*1 such that ZQ }% F. Using predicative cut
elimination for Z ([24], Theorem 25), we obtain an ordinal 6 < pyy < p(pe40)0

such that ZQ }% F. But this implies | EQ.., |< ¢(¢=00)0, e.g. by [24], Theorem 29.
U

In Section 7.3 we will see that Theorem 11 determines in fact the least upper bound
for the proof-strength of EQ,.

7 Upper bounds

In this section we establish the exact proof-theoretic upper bounds of the three
systems EET(x) + (J) + (S-In), EET(u) + (J) + (T-In) and EET () + (J) + (F-In),
whereas the strength of the first system follows from known results (cf. Section 7.3).
Hence, our main concern is about the latter two systems. In Section 7.1 we introduce
Tait style reformulations 7; and 75 of EET (p)+(J)+(T-In) and EET () +(J)+(F-ly),
respectively, which make it possible to prove a partial cut elimination theorem.
Quasi normal derivations of 7; and 75 are used in Section 7.2 in order to provide
asymmetrical interpretations of EET(x)+ (J) 4+ (T-In) and EET (i) + (J) + (F-In) into
Gm(w) and Ggn(ey), respectively. In Section 7.3, finally, we sketch how the results
of Section 7.1 and 7.2 can be formalized in second order theories with ordinals in
order to yield the desired proof-theoretic upper bounds.

7.1 The Tait calculi 7; and 75

In the sequel we define two Tait calculi 7; and 75, which will be used for interpreting
EET(u) + (J) + (T-Iy) and EET(p) + (J) + (F-ly), respectively. They enjoy partial
cut elimination as it is needed for the asymmetrical interpretation described in the
next paragraph. Tait calculi for systems of explicit mathematics with join have
previously been studied in the literature in Marzetta [26, 27] and Gla8 [17].

The language ]Lg of 7, and 7, is the extension of L, by complementary relation
symbols #,1,¢, N and R for =, |, €, N and R, respectively. The atomic formulas
built from the latter group of relation symbols are called positive literals and those
obtained from relation symbols in the former group negative literals. The negation
=F of an Lg formula F' is defined as usual by applying the law of double negation
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and de Morgan’s laws. In the following we often identify L, formulas with their
translations into L.

The X* [IT"] formulas of I are inductively defined as follows:

1. The atomic formulas except those of the form R(s, A) [R(s, A)] are F [I17]
formulas.

2. The X% [IT7] formulas are closed against disjunction, conjunction, object quan-
tification and existential [universal] type quantification.

Note that F is a ¥ formula if and only —F is a II- formula. Moreover, X+
formulas are upward persistent and I1~ formulas are downward persistent in Ggp(«),
respectively.

The rank rn(F) of an L formula F is inductively defined as follows:
1. If Fis ¥ or IT, then rn(F) := 0.

2. The rank of ]Lg formulas which are neither X% nor II~ is defined as follows

(7 € {V,A},Q € {3,V}):

m(F j G) := max(rn(F), m(G))+1,
m(QzF) = rm(F)+2,
m(QXF) = m(F)+1.

Derivations in 7; and 7, are presented in a Tait-style manner. Accordingly, their
axioms and rules of inference are formulated for finite sets of formulas, which have
to be interpreted disjunctively. The capital Greek letters I', A, ... denote finite sets
of ]Lg formula, and we write, e.g., I', A, F, G for the union of I', A and {F,G}.

If D(21,...,2,) is a finite set of L formulas, and if s1,...,s, are L terms, then
the set

$17y oy S$a T, DS, 0y S0)

is called a faithful instance of T.
In the following we need a reformulation of the join axiom (J), which will be ad-
equate for the Tait calculi described below. Therefore, let us define two formulas
Ji(a, f, A, Z) and Jr(a, f, 2, A, Z) as follows:
Jila, [, A, Z) = R(a, f),Z) N Z =3(A, f),
To(a, f,2,A,7Z) = AXAY[R(i(a, ), Z) A

(z€Z — 2= (pyz,p12) ANPpz € AANR(f(ppz), X) APz € X) A

(2= (P2, P12) APpz € AN (R(f(Po2),Y) = Pz €Y) — 2 € Z)].

Now the verification of the next claim is easy.
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Lemma 12 The following holds by pure logic and the representation axiom (E.2):
(Vo € A)IYR(fz,Y) — [Z2T(a, f, A, Z) - Vz3ZTa(a, f,2,A, Z)].
In particular, the above is true in Ggp(«) for each ordinal .

We are ready to introduce the Tait calculus 7;. It comprises the following axioms
and rules of inference.

I. IDENTITY. For all finite sets I' of ]LII; formulas and all ]LZ formulas F' with
rn(F) = 0:

I, —-F, F
II. EQUALITY AND STRICTNESS FOR OBJECTS. For all finite sets I' of ]LZ formulas,

all L formulas F* with rn(F) = 0, all positive literals G of L, all L terms s and
t, all constants ¢ of ]LZ, and all variables x:

(1) T, ), t=t [, s#t, ~F(s), F(t)

(2) T, -G(), t]  T,stl,s| T, st tl

3) el Izl
III. EQUALITY FOR TYPES. For all finite sets I' of L} formulas and all L] formulas
F with rn(F) =0:

I,A=A T,A+B, -F(A), F(B)

IV. APPLICATIVE AND ONTOLOGICAL AXIOMS. These include all weakenings of
faithful instances of the axioms (1)—(10), (u.1), (©.2), (EXT), (E.1) and (E.2).

V. ELEMENTARY COMPREHENSION. These include all weakenings of faithful in-
stances of (ECA.1) and of the set

-

—R(b, B), Vz(z € A — Flz,a, B)), R(c.(a,b), A),

where Fz, 7, Z] is an elementary ]LZ formula with Goédelnumber e.
VI. TypE INDUCTION. These include all weakenings of type induction (T-ly).

VII. LocicAL RULES. For all finite sets I' of ]LII; formulas and all ]LII; formulas F

and G-
I, F I, G I, F r,G

I' FVvG I' FvVG I' FANG
VIII. QuAaNTIFIER RULES. For all finite sets I' of ]LZ formulas, all ]Lg formulas
F(u)and G(A), and all L] terms ¢, so that the usual variable conditions are satisfied:

I, ¢ A F(t) T, F(u)
[, dzF(z) [, Ve F(z)
I, G(A) I, G(A)
T, IXG(X) T, VXG(X)
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IX. JOIN. For all finite sets I' of L formulas and all L] terms r, s, t:

L, R(r,A) A sl A (Vo€ A)FY R(sz,Y)
T, i1, 3201, 5,1, A, Z)

X. Cur RULES. For all finite sets ' of ]LZ formulas and all ]sz; formulas F:

IF T,-F
T

This finishes the description of the Tait calculus 7;. The calculus 75 is now obtained
from 7; by substituting the axioms VI. for type induction by some kind of w rule,
namely:

XI. THE w RULE. For all finite sets [' of ]Lg formulas and all ]Lg terms t:

Lom#EE... forallm < w
[, -N(t)

In contrast to the usual w rule, the above rule still allows one to prove a partial cut
elimination theorem in a standard way; it is also used in Cantini [2].

In the following we write 7 for either 7; or 75. The derivability relation 7° }% [is
defined by induction on « as follows:

1. If " is an axiom of 7, then we have 7 I% I for all ordinals o and all k < w.

2. T }% ['; and «o; < « for every premise I'; of an inference rule or a cut whose
rank is less than k, then we have 7 }% I' for the conclusion I' of this rule.

Now the verification of the following lemma is a matter of routine.

Lemma 13 We have for all finite sets I', A of L[ formulas, all L] terms t, all
ordinals «, # and all k,l < w:

1. TH-T(uw) = T, T(1).
2. TH-T(4) = T I(B).
3. TITandT CAanda<fandk<l = T A

The stage is set in order to prove partial cut elimination for 7; and 75, respectively.
Since the main formulas of all axioms and rules (including the w rule) have rank 0,
we can eliminate all cuts of rank greater than 0. The proof is more or less standard
apart from the presence of the logic of partial terms. For similar arguments the
reader is referred to [29, 30].

Proposition 14 (Partial cut elimination) We have for all finite sets I, A of ]LZ
formulas, all ]LZJ; formulas F, all ordinals «, 3 and all k < w:
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L THS T, Fand THE: A, ~F and m(F) < k+1 — THE#D3 p oy

2THS T = ThHT.
In the following, EET (u) + (J) + (T-In) and EET(u) + (J) + (F-Iy) are embedded into
7, and 7y, respectively. The tautology and identity lemma reads as usual.
Lemma 15 We have for all finite sets I' of L formulas, all L] formulas F', and all
L terms t and s.
2.rn(F)

1. T'T F, _|F, F
2. TR 124 =F(s), F(t).
3. TESE 142 B, ~F(A), F(B).

Now the embeddings are more or less standard. In particular, the join axiom (J)
is proved by making use of the corresponding inference rule IX. The only unusual
point is the derivation of formula induction (F-ly) in 75 by making use of our special
w rule.

Lemma 16 We have for all ]LZ formulas F' and all ]LZ terms t:

T, byt ~F(0), =(Vx € N)(F(x) — F(2')), 2N (1), F(2).
PROOF One first proves by an easy induction on n that
4-(rn(F

T, ) S F(0), (Ve € N)(F(2) — F('), F(), (6)
where essential use is made of Lemma 15.1. Furthermore, we have by Lemma 15.2
that

LD 7 4 1, ~F(m), F(1). (7)
If we apply (weakening and) cut to (6) and (7) we get
4-(rn(F)+n+1)+1 —_
T, PO <P (0), ~(Ve € N)(F(@) = F@), m# 4, F(t)  (8)

for all » < w. Now the claim is immediate by a use of the w rule. O
We are ready to state the embedding lemma. For similar results cf. e.g. [29, 30].
Lemma 17 We have for all L, formulas F':

1.EET(W)+ () + (T FF = (Onk<w) T F.
2. EET()+ () + (FI) FF = (Ja<w-2)(Fk <w) LI F.

By making use of partial cut elimination (Proposition 14), the embedding lemma
entails the following reduction of EET(u) + (J) + (T-In) and EET (x) + (J) + (F-ly),
respectively.

Theorem 18 We have for all ,, formulas F':
LEET()+ () + (T FF = (@On<w) T+

~F
2.EET(w)+ D)+ (FINFF = (Ba<e) L F.

1
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7.2 Asymmetrical interpretations

In the following we provide asymmetrical interpretations of 7; and 7, into initial
segments of the standard structures Ggy. In particular, if 97 is a model of BON(p)
with a standard interpretation of N, then the VX fragment of EET (u)+ (J) + (T-Iy)
and EET(u) + (J) + (F-ly) can be modeled in Sgp(w) and Sgn(eg), respectively.

Asymmetrical interpretations are a well-known technique in proof theory, cf. e.g. [3,
19, 30]. They have previously been applied in the context of explicit mathematics
in Marzetta [26, 27] and Glaf8§ [16, 17].

Before we turn to the interpretation itself, let us state essential persistency properties
of ¥ and I~ formulas w.r.t. the standard structures Ggp(a).

Lemma 19 Let MM = (M, ...) be a model of BON(p). Further, let o < 8, U € T,
and m € M. Then we have for all ¥ formulas F[A, @] and all II~ formulas G[A, @:

1. 6w(a) | FIU, 1] = Gm(B) = F[U,m).

In the sequel let us assume that F[/Y, d] is a set of ¥ and II~ formulas. Further, if
M = (M,...)is a model of BON(pu), then we write

| = Gml(a) =G0, i),

Sm(a, B) ETU, M (U € Ty, 10 € M),
provided that one of the following conditions is satisfied:
(1) there is a I~ formula F[A,d] in T so that Gy(a) = F[U,m];
(2) there is a ©* formula G[A, ] in T so that Goy(8) = G[U, ).

Hence, Gy(av, §) |= T[U, 7] means that the disjunction of the formulas in [U, 7]
is true in Ggy, where universal type quantifiers range over 7, and existential type
quantifiers range over T, and similarly for the representation relation . Finally,
a model Mt of BON(yu) is called standard, if the interpretation of the predicate N
consists of standard numbers only, i.e. if

N =™ n cw}.

Theorem 20 (Asymmetrical interpretation) Let 9t = (M, ...) be a standard
model of BON(y). Assume further that T {1+ T'[A,d] for a set T' of &+ and II~
formulas. Then we have for all ordinals (3:

UcTsandme M = Gw(8,8+2%) =T[U,m).
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PROOF The assertion is proved by induction on «. In the following we only dis-
cuss two relevant cases, namely join and cut. In all other cases the claim follows
from persistency (Lemma 19), the definition of Ggy and the induction hypothesis.
In particular, type induction (T-ly) and the w rule are trivially valid since 90U is
standard.

Let us first assume that I'[A, @) is the conclusion of the inference rule IX. for the join.
Then there are terms r|d|, s[d], t[d@] and an A € A so that t1, 3Z2Ts(r,s,t, A, Z) C T.
Furthermore, we have an oy < « so that

T 2 T[4, @), R(r[d), A) A s[@]l A (Vo € A)FYR(s[a]z,Y). (9)
Let us fix 3, Ue Tz and m € M. Then the induction hypothesis yields
Sm (8, 6 +2°) | L[U, ], R(r[ii], U) A s[i]l A (Vo € U)IYR(sliila, V), (10)

where U € U. If Gy(f3,8 + 2*) | T[U,m)], then the claim is immediate by
persistency. Otherwise, we have

Gm(f +2%) = R(r[m]|,U) A sim]] A (Vo € U)IY R(s[m]z,Y). (11)
By construction of Ggy we can conclude from (11) that

Cm(f + 2% + 1) = IZ(R(j(r[m], s|m)), Z) N Z =X(U, s|m))). (12)
Now the claim is immediate from Lemma 12.

As a second illustrative example let us consider the case where F[/Y, d] is the con-
clusion of a cut rule. Then the cut formula has rank 0, i.e. there is a ¥ formula
F[A,d] and ap, oy < « so that

T T[4,d), FIA,d] and T3 T[4, a), -F[A,d]. (13)

Choose 3,U € T and m € M. We have to show Gn(f3, 3+ 2%) = F[[j,m]. If we
apply the induction hypothesis to (13) with § and [+ 20, respectively, then we get

Gﬂﬁ(ﬁaﬁ + 2a0) ): F[[j,’fﬁ], F[Ua _’] (14)
So(f + 2,3+ 2% +24) & T[U,m], ~F[U,m). (15)
Observe that § + 2% + 2% < 3+ 2%, Hence, if it is
(i) (B, B+2%) ETU, M or (i) Gm(B+2%, 6+ 2% +2%) | T[U, ],

then our assertion immediately follows by persistency. But one of (i) and (ii) applies,
since otherwise (14) and (15) imply

Sam(f42%) = F[U,m] and Sgm(f+2%) = —F[U, m]. (16)
This, however, is not possible, and hence our claim is proved. [

Let us call the universal closure of a ¥ formula a VX sentence. By combining the
previous theorem with Theorem 18, we have established the following result.
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Theorem 21 Let 9 be a standard model of BON(u). Then we have for all VX
sentences F' of L, :

LEET() + () + (TA) FF = Gm(w) E F.

In the next paragraph we indicate how the results of the previous two paragraphs
can be formalized in theories of ordinals with (iterated) elementary comprehension
in order to get the final proof-theoretic reductions.

7.3 Final proof-theoretic equivalences

In this paragraph we sketch the final proof-theoretic upper bounds of the systems
EET(u) + (J) + (S-In), EET(p) + (J) + (T-Iy) and EET(u) + (J) + (F-ly). Essential
use will be made of the results of the previous two paragraphs as well as the second
order theories with ordinals of Section 6.

Let us begin with the theory EET(u) + (J) + (S-In), whose treatment is particularly
simple by making use of Feferman and Jdger [13]. Recall that BON denotes the
restriction of EET to the language L.

Theorem 22 EET(u) + (J) + (S-In) is a conservative extension of BON(u) + (S-ly).

PROOF Let us establish this claim by an easy model-theoretic argument. Assume
that 90t is a model of BON () +(S-In) and consider the standard structure Goy above
9. By Proposition 2 we have that Goy = EET (1) + (J) and, in addition,

CmpEF < MEF

holds for all L, formulas F. In particular, Ggy = (S-In). Now the claim of the
theorem is immediate by Gddel completeness. [

Let us mention that it is also possible to provide a proof-theoretic proof of this the-
orem; it makes use of arguments similar to the ones of the previous two paragraphs.

By [13] we know that BON(x) + (S-ly) is proof-theoretically equivalent to (the first
order part of) R-EQ2, which in turn has the proof-theoretic strength of PA by Jager
[21] (cf. Proposition 6). Hence, we have established the following corollary.

Corollary 23 We have the following proof-theoretic equivalences:
EET (1) + (J) + (S-ly) = R-EQ = PA.
The upper bounds of the theories EET(x) + (J) + (T-In) and EET (i) + (J) + (F-Iy)

are obtained by formalizing the results of the previous two paragraphs in W-EQ and
EQ..,, respectively, thus yielding the desired proof-theoretic equivalences. In the
sequel we will only sketch these reductions, since the details of formalization are

fairly standard.
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Let us first mention that in all our reductions the applicative fragment L, of L, is
treated in exactly the same way as in Feferman and Jéger [13], namely by making
use of fixed point theories with ordinals. In particular, there exists a X% formula
App(z,y, z) which interprets the L, formula (xy ~ 2), and this translation is lifted
to a translation of all L, formulas in an obvious way.

The first step in reducing EET (1) + (J) + (T-Iy) and EET (1) + (J) + (F-Iy) to W-EQ
and @QO, respectively, is provided by Theorem 18. In the case of the theory
EET(u) + (J) + (F-In) a straightforward formalization of infinitary derivations and
cut elimination procedures is needed within EQ..,, cf. Schwichtenberg [31] for similar
arguments.

The second step of our reductions consists in formalizing Theorem 20 in W-EQ
and EQ..,, respectively. As far as this formalization is concerned, let us make the
following general remarks:

(i) it is sufficient to conmsider structures Ggp(cr) for a fixed a less than w or
€9, respectively, since we are working with a fixed derivation in the systems

EET(u) + (J) + (T-ly) and EET(p) + (J) + (F-ln), respectively;

(ii) for the same reason we can restrict ourselves to only finitely many instances
of the elementary comprehension axiom (ECA);

(iii) as a consequence of (ii), we get that a structure Ggp(a 4 1) can be described
elementary from Goy(«) in our theories with ordinals and elementary compre-
hension.

Furthermore, let us mention that in the case of EET(p) + (J) + (F-In) some straight-
forward formal truth definitions have to be described in EQ<€0 Summing up, struc-
tures Gon(a) can be formalized in W-EQ and EQ.., for a fixed o < w and a < =,
respectively. Hence, Theorem 20 can be formalized in these systems, and we have
established the following theorem:.

Theorem 24 We have the following embeddings:
1. EET(p) + (J) + (T-ly) can be embedded into W-ESQ.
2. EET(p) + (J) + (F-ly) can be embedded into EQ.,.

It is in fact already possible to embed EET (1) + (J) + (T-In) into the first order part
of W- EQ observe that W-EC is a conservative extension over its first order part.

Now the final proof-theoretic strength of the systems EET(u) + (J) + (T-ly) and
EET(u)+(J)+(F-ly) is available by Feferman and Jager [13] (Corollary 6), Theorem 5
and Theorem 11. Furthermore, together with the results of Feferman [10], the proof-
theoretic strength of EET(p) + (J) + (T-ly) and EET () + (J) + (F-In) can be related
to the well-known fixed-point theories ID; and I/[\)g, respectively.

26



Corollary 25 We have the following proof-theoretic equivalences:
1. EET(p) + (J) + (T-ly) = W-EQ = ID, = (II° -CA).,.
2. EET(N’) + (J) + (F'IN) = @Q?o = I/[\)Z = (Hgo_CA)<<p€00-

Let us finish this paragraph by mentioning that these proof-theoretic equivalences
always yield conservative extensions for (at least) arithmetic statements. This is
immediate from the corresponding reductions sketched above.

8 Extensions

Using support of standard structures it is also possible to determine the proof-
theoretic strength of systems of explicit mathematics with p-operator and inductive
generation (1G), cf. Feferman [5, 9], which asserts the existence of the accessible part
of binary relations w.r.t. arbitrary L,-definable classes. (IG)[ is a weakening of (IG)
asserting the existence of the accessible part of a relation w.r.t. types only.

Theorem 26 We have the following proof-theoretic equivalences:

1. EET(p) + (IG)| + (T-ly) = (II}-CA) .

2. EET(1) + (IG)] + (F-ly) = (IT}-CA).

3. EET(p) + (1G) + (F-ly) = (T1}-CA) + (BI).

4. EET(u) + (J) + (IG) + (F-ly) = (A}-CA) + (BI).

Here C is obtained by formalizing standard structures, cf. Section 4, which respect
inductive generation, cf. Feferman [5, 9], in the corresponding subsystem of analysis.
We make use of the fact that, using IT}-comprehension, the relation App is a set.
D follows from the fact that the subsystems of analysis are proof-theoretically re-
ducible to those systems of explicit mathematics without u-operator, cf. [9, 14, 20].
Moreover, the presence of p does not seem to facilitate these reductions.

Combining the method of standard structures with asymmetrical interpretations,
cf. Section 7, one can also handle the presence of the join axiom in the following
situations.

Theorem 27 We have the following proof-theoretic equivalences:
1. EET(u) + (J) + (1G) ] + (T-ly) = (I1}-CA)].
2. EET(p) + (J) + (IG)| + (F-lIy) = (II}-CA) .,
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Further, we mention that also the methods of Gla [17] for non-uniform type ex-
istence principles are applicable to the context where the p-operator is present. It
is possible to obtain similar results to [17]. For example we obtain with the non-
uniform version (J7) of the join axiom:

(J) (Vo € A)IYR(fz,Y) — 3Z(Z =X(A, f)).
Theorem 28 EET (1) + (J7) + (F-ly) = EQ_> = (I1% -CA) - e,

We notice that the proof uses a combination of methods of this paper and of [17]. It
is similarly to the proof of Theorem 11 and Section 5 and makes use of a sharpening
of Proposition 9 for the special case « = w and the fact that EQ_,. = EQ+ (ECA,).

We finish this section by mentioning two possible strengthenings of the applicative
axioms which do not raise the proof-theoretic strength of the theories considered in
this article. The totality axiom (Tot) expresses that application is always total, i.e.

(Tot) (V) (Vy) (zy L),

and the extensionality axiom (Ext) claims that operations are extensional in the
following sense:

(Ext) (Vz)(fr ~gz) — (f = g).

It is established in Jédger and Strahm [25] that the presence of (Tot) and (Ext)
does not raise the proof-theoretic strength of various theories including the non-
constructive p-operator, and one readily verifies that the methods used there carry
over to theories of types and names.

We finish this paper by taking up Feferman’s conjecture (ii) which we have mentioned
in the introduction. Although the results of this article disprove (ii), the question
arises whether there is a natural subsystem of T, of the same strength as predicative
analysis. A partial answer to this question is provided in Marzetta and Strahm [28],
where a system of explicit mathematics with universes plus p operator is studied,
whose ordinal strength is shown to be exactly I'y. An alternative approach consists
in setting up systems of explicit mathematics with p plus a form of the bar rule;
details will be presented elsewhere.
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