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Abstract

This paper studies systems of explicit mathematics as introduced by
Feferman [9, 11]. In particular, we propose weak explicit type systems
with a restricted form of elementary comprehension whose provably
terminating operations coincide with the functions on binary words
that are computable in polynomial time. The systems considered are
natural extensions of the first-order applicative theories introduced in
Strahm [19, 20].
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1 Introduction

Explicit mathematics was introduced by Feferman [9, 10, 11] in the early
seventies. Beyond its original aim to provide a basis for Bishop-style con-
structivism, the explicit framework has gained considerable importance in
proof theory in connection with the proof-theoretic analysis of subsystems
of second order arithmetic and set theory as well as for studying the proof
theory of abstract computations.

There are two basic kinds of objects which are present in explicit math-
ematics, namely operations and types. The former may be thought of as
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mechanical rules of computation, which can freely be applied to each other:
self-application is meaningful, though not necessarily total. The basic ax-
ioms concerning operations are those of a partial combinatory algebra, thus
giving immediate rise to explicit definitions (lambda abstraction) and a form
of the recursion theorem. The standard interpretation of the operations is
the domain of the partial recursive functions.

Types, on the other hand, are collections of operations and must be thought
of as being generated successively from preceding ones. In contrast to the
restricted character of operations, types can have quite complicated defining
properties. What is essential in the whole explicit mathematics approach,
however, is the fact that types are again represented by operations or, as we
will call them in this case, names. Thus each type U is named or represented
by a name u; in general, U may have many different names or representations.
It is exactly this interplay between operations and types on the level of names
which makes explicit mathematics extremely powerful and, in fact, witnesses
its explicit character.

In previous proof-theoretic investigations on full systems of explicit math-
ematics, the focus has mainly been on theories ranging in strength from
primitive recursive arithmetic PRA to highly impredicative systems. Weaker
systems have only been studied for the operational core of explicit mathemat-
ics, so-called applicative theories. A first system PTO related to polynomial
time computability was introduced in Strahm [18] and extended in Cantini
[4]. Later, an improved version of PTO called PT was proposed in Strahm
[19, 20] together with additional theories for other complexity classes. Can-
tini [6] has considered extensions of PT which we will address below. Finally
in [5], he has also examined tiered applicative frameworks in the spirit of
implicit computational complexity.

In this paper, we start off from Strahm’s PT, which we summarise in Section
2, and extend it with types and names. To this end, we will propose and
analyse a weak form of the well-known schema of elementary comprehension
which is present in most systems of explicit mathematics. In particular, we
will use the neat formulation due to Jäger [15] employing a naming relation
< between individuals and types. In our approach we will design a theory
PET which features a natural restriction of the finite axiomatisation of ele-
mentary comprehension provided by Feferman and Jäger [12] together with
type induction on the binary words W. More precisely, our restriction ex-
cludes complement types and replaces the type W of binary words by types
for initial segments {x ∈ W : x ≤ a} for each a ∈ W, where ≤ denotes the
less-than-or-equal relation with respect to the length of words.
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In order to establish that PET proves the totality of the polynomial time
computable functions, we will embed a natural restriction PT− of PT which
is strong enough to represent bounded recursion on notation in the form of a
type two functional. This embedding is not completely straightforward and
will use a bootstrapping functional mapping each operation f on W to an
operation f ∗ such that f ∗x = max

y⊆x
fy.

For the proof of the upper bounds we will start off from a model of PT−

and extend it to a model of PET satisfying the same first-order sentences.
The construction is carried out in stages by defining the set of names and
their extensions successively. Then one can show that the so-obtained model
enjoys type induction.

Finally, we will propose some natural extensions of PET. They mostly rely
on Cantini [6], who studies various extensions of the first-order theory PT
by means of axioms for self-referential truth, a uniformity principle and a
positive axiom of choice. In particular, we will describe a nice application
of Cantini’s uniformity principle which allows us to add a type generator for
universal quantification. The full system PT can then be embedded into PET
extended by this type constructor.

2 Recapitulating the first-order theory PT

In this section we will recapitulate the theory PT that was introduced and
analysed in Strahm [19].

The applicative theory PT is formulated in the language L; it is a language of
partial terms with individual variables a, b, c, x, y, z, u, v, f, g, h, . . . (possibly
with subscripts). L includes individual constants k, s (combinators), p, p0, p1

(pairing and unpairing), dW (definition by cases on binary words), ε (empty
word), s0, s1 (binary successors), pW (binary predecessor), c⊆ (initial subword
relation), as well as the two constants ∗ (word concatenation) and × (word
multiplication). Finally, L has a binary function symbol · for (partial) term
application, unary relation symbols ↓ (defined) and W (binary words) as well
as a binary relation symbol = (equality).

The terms r, s, t, . . . of L (possibly with subscripts) are inductively generated
from the variables and constants by means of application ·. In the following
we often abbreviate ·(s, t) simply as (st), st or sometimes also s(t); the
context will always ensure that no confusion arises. Further, we follow the
standard convention of association to the left when omitting brackets in
applicative terms. Finally, we will write s∗t and s×t instead of ∗st and
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×st, respectively.

The formulas A, B, C, . . . of L (possibly with subscripts) are built from the
atomic formulas (s = t), s↓ and W(s) by closing under negation, disjunction,
conjunction, implication, as well as existential and universal quantification
for individual variables.

Our conventions concerning substitutions are as follows. As usual we write
t[~s/~x] and A[~s/~x] for the substitution of the terms ~s for the variables ~x in
the term t and the formula A, respectively. In this connection we often write
A[~x] instead of A and A[~s] instead of A[~s/~x].

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as t is defined or t
has a value. The partial equality relation ' is introduced by

s ' t := (s↓ ∨ t↓) → (s = t).

We use the following list of abbreviations (i = 0, 1):

0 := s0ε 1 := s1ε

(s1, s2) := pst (s)i := pis

s ⊆ t := c⊆st = 0 lWs := 1×s

s ≤ t := lWs ⊆ lWt

Furthermore, the following shorthand notations are used with respect to the
predicate W (~s = s1, . . . , sn):

~s ∈ W := W(s1) ∧ · · · ∧W(sn),

Wa(s) := (W(s) ∧ s ≤ a),

~s ∈ Wa := Wa(s1) ∧ · · · ∧Wa(sn),

(∃x ∈ W)A := (∃x)(x ∈ W ∧ A),

(∀x ∈ W)A := (∀x)(x ∈ W → A),

(∃x ≤ t)A := (∃x ∈ W)(x ≤ t ∧ A),

(∀x ≤ t)A := (∀x ∈ W)(x ≤ t → A),

(t : W 7→ W) := (∀x ∈ W)(tx ∈ W),

(t : Wm+1 7→ W) := (∀x ∈ W)(tx : Wm 7→ W).

The underlying logic of PT is the classical logic of partial terms due to Beeson
[1, 2]; it corresponds to E+ logic with strictness and equality of Troelstra and
Van Dalen [21]. According to this logic, quantifiers range over defined objects
only:

∀xA ∧ t↓ → A[t](Q1)
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A[t] ∧ t↓ → ∃xA(Q2)

r↓ (r variable or individual constant)(D1)

(s · t)↓ → (s↓ ∧ t↓)(D2)

(s = t) → (s↓ ∧ t↓)(D3)

W(t) → t↓(D4)

r = r (r variable or constant)(E1)

(s = t) ∧ A[s] → A[t] (A atomic formula)(E2)

The basic theory of operations and binary words B was introduced in Strahm
[19]. The axioms are given in the following groups I.-IV.:

I. Partial combinatory algebra and pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),

(3) p0(x, y) = x ∧ p1(x, y) = y.

II. Definition by cases on W

(4) a ∈ W ∧ b ∈ W ∧ a = b → dWxyab = x,

(5) a ∈ W ∧ b ∈ W ∧ a 6= b → dWxyab = y.

III. Closure, binary successors and predecessor

(6) ε ∈ W ∧ (∀x ∈ W)(s0x ∈ W ∧ s1x ∈ W),

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W 7→ W ∧ pWε = ε,

(9) x ∈ W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈ W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

IV. Initial subword relation.

(11) x ∈ W ∧ y ∈ W → c⊆xy = 0 ∨ c⊆xy = 1,

(12) x ∈ W → (x ⊆ ε ↔ x = ε),

(13) x ∈ W ∧ y ∈ W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y).

In addition, we have the following axioms about word concatenation and
multiplication:
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V. Word concatenation.

(14) ∗ : W2 7→ W,

(15) x ∈ W → x∗ε = x,

(16) x ∈ W ∧ y ∈ W → x∗(siy) = si(x∗y) (i = 0, 1).

VI. Word multiplication.

(17) × : W2 7→ W,

(18) x ∈ W → x×ε = ε,

(19) x ∈ W ∧ y ∈ W → x×(siy) = (x×y)∗x (i = 0, 1).

In the following we write B(∗,×) for the theory B augmented by the axioms
in groups V. and VI.

Let us immediately turn to two crucial consequences of the partial combi-
natory algebra axioms (1) and (2) of B, namely abstraction and recursion.
These two central results appear in slightly different form than in the set-
ting of a total combinatory algebra, the essential ingredients in the proofs,
however, are the same. The relevant arguments are given, for example, in
Beeson [1] or Feferman [9].

Lemma 1 (λ-Abstraction) For each term t in L and every variable x
there is an L term (λx.t) with the same variables as t except x such that
B proves:

(λx.t)↓ ∧ (λx.t)x ' t

Lemma 2 (Recursion) There exists a closed L term rec so that B proves

recf↓ ∧ recfx ' f(recf)x.

The theory PT is an extension of B(∗,×) by a suitable induction schema on
W, so-called (Σb

W-IW). Towards defining this induction principle, we need
some preparatory definitions.

We call an L formula positive if it is built from atomic formulas by means
of disjunction, conjunction as well as existential and universal quantification
over individuals; i.e., the positive formulas are exactly the implication and
negation free L formulas. We let Pos stand for the collection of positive
formulas. Further, an L formula is called W free if the relation symbol
W does not occur in it. Finally, the class of bounded existential formulas,
Σb

W, can be introduced: a formula A[f, x] belongs to Σb
W if it is of the form

(∃y ≤ fx)B[f, x, y] where B[f, x, y] ∈ Pos and W-free. If, in addition, B
does not contain ∀ quantifiers, A is called a Σb−

W formula.
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The theory PT is now defined as the theory B(∗,×) plus (Σb
W-IW):

f : W 7→ W ∧ A[ε] ∧ (∀x ∈ W)(A[x] → A[s0x] ∧ A[s1x])

→ (∀x ∈ W)A[x]

where A[x] ≡ (∃y ≤ fx)B[f, x, y] a Σb
W-formula.

(Σb
W-IW)

Later, we will also be interested in a natural subsystem of PT, called PT−,
where induction is only allowed for Σb−

W formulas, i.e. PT− is B(∗,×) plus
(Σb−

W -IW).

Let us quickly review the formal definition of the notion of a provably total
function of a given theory T formulated in a language that contains L. For
that purpose, let W = {0, 1}∗ denote the set of finite binary words. First
note that for each word w ∈ W we have a canonical closed term w of L which
represents w; of course, w is constructed from the empty word ε by means
of the successor operations s0 and s1. In the sequel we sometimes identify w
with w when working in the language L.

Definition 3 A function F : Wn → W is called provably total in an L theory
T, if there exists a closed L term tF such that

1. T ` tF : Wn 7→ W and, in addition,

2. T ` tF w1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

Let us write FPtime for the class of polynomial time computable functions
on W. The following theorem has been established in Strahm [19].

Theorem 4 The provably total functions of PT coincide with FPtime.

The lower bound for PT is established by deriving a natural form of bounded
recursion of notation within PT. For its formulation we need the cut-off
operator |. Informally speaking, t |s is t if t ≤ s and s else. More formally, we
can make use of definition by cases dW on W and the characteristic function
c⊆ in order to define |; then t | s simply is an abbreviation for the L term
dWts(c⊆(lWt)(lWs))0.

The following lemma is proved in Strahm [19].

Lemma 5 (Bounded recursion on notation) There is a closed term rW
in L such that PT− proves

f : W 7→ W ∧ g : W3 7→ W ∧ b : W2 7→ W →
(rWfgb : W2 7→ W∧

[x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = rWfgb] →
hxε = fx ∧ hxy = gxy(hx(pWy)) | bxy)
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We close this section by stating a lemma concerning the existence of a poly-
nomial time pairing operation on binary words which is provably total in PT−

and, in addition, has certain natural properties. We will use this function
in Section 5 of this paper. Observe that PT has a built-in pairing operation
p with associated projections p0 and p1, but this form of pairing does not
necessarily map binary words to binary words.

Lemma 6 (Polynomial time pairing operation) There are closed L
terms tp, tp0 and tp1 such that PT− proves:

(1) tp : W2 7→ W ∧ tp0 : W 7→ W ∧ tp1 : W 7→ W,

(2) x ∈ W ∧ y ∈ W → (tp0(tpxy) = x ∧ tp1(tpxy) = y),

(3) x ∈ W ∧ y ∈ W ∧ u ∈ W ∧ v ∈ W ∧ x ≤ u ∧ y ≤ v → tpxy ≤ tpuv.

In the sequel we will write 〈s, t〉 for tpst and 〈s〉i for tpis. The proof of the
above lemma is standard but tedious and hence will be left as an exercise to
the reader.

3 Introducing the explicit type theory PET

In this section, we will introduce PET, a theory of polynomial time opera-
tions with explicit types. The theory PET is an extension of the applicative
base theory B(∗,×) by means of a natural restriction of elementary compre-
hension, which is one of the crucial principles of explicit mathematics, see
Feferman [9, 11]. Below we will use the language of explicit mathematics due
to Jäger [15] which is based on a so-called naming relation <. Our type exis-
tence axioms are very naturally presented by means of a finite axiomatisation
in the spirit of Feferman and Jäger [12].

PET is formulated in the second order language LT which extends the lan-
guage L of PT by type variables U, V,W, X, Y, Z, . . . , binary relation symbols
< (naming) and ∈ (elementhood), as well as (individual) constants w (initial
segment of W), id (identity), dom (domain), un (union), int (intersection),
and inv (inverse image).

The formulas A, B, C, . . . of LT (possibly with subscripts) are built from the
atomic formulas of L as well as formulas of the form (s ∈ X), <(s, X) and
(X = Y ), by closing under negation, disjunction, conjunction, implication,
as well as existential and universal quantification over individuals and types.
If A is an LT formula, we let FVI(A) and FVT (A) denote the set of its free
individual and type variables, respectively. Finally, we write FVI(t) for the
set of individual variables occurring in the term t.
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Types are extensional and have (explicit) names which are intensional. The
names are generated via uniform operations and the link to the types they
are referring to is established by the naming relation <. The element relation
∈ is also a relation between an individual and a type, expressing that the
individual is a member of the type. As we will mostly refer to types by using
their names, we introduce a few additional abbreviations (~s = s1, . . . , sn,
~X = X1, . . . , Xn):

<(~s, ~X) := <(s1, X1) ∧ · · · ∧ <(sn, Xn),

<(s) := ∃X<(s, X),

<(~s) := <(s1) ∧ · · · ∧ <(sn),

s ∈̇ t := ∃X(<(t,X) ∧ s ∈ X).

We are now ready to spell out the axioms of PET in detail. We start by
presenting PET by means of a finite axiomatization of a restricted form of
elementary comprehension; later we will carefully investigate the correspond-
ing class of elementary formulas.

3.1 Axioms of PET

The logical axioms of PT are extended by the following strictness axioms for
the new relation symbols:

s ∈ X → s↓(D5)

<(s, X) → s↓(D6)

In addition, the logic of the types is just the usual predicate logic with equal-
ity.

PET consists of the axioms of B(∗,×) (i.e. PT without the Axiom (Σb
W-IW))

plus the following axioms about types. The axioms in group I. are the so-
called ontological axioms about the naming relation and extensionality; in
group II. we state the axioms about type existence; finally, we include type
induction in group III. We recall from Section 2 that Wa(x) abbreviates
(W(x) ∧ x ≤ a).

I. Explicit representation and extensionality

∃x<(x, X)(O1)

<(a, X) ∧ <(a, Y ) → X = Y(O2)

∀z(z ∈ X ↔ z ∈ Y ) → X = Y(O3)
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II. Type existence axioms

a ∈ W → <(w(a)) ∧ ∀x(x ∈̇ w(a) ↔ Wa(x))(wa)

<(id) ∧ ∀x(x ∈̇ id ↔ ∃y(x = (y, y)))(id)

<(a) → <(inv(f, a)) ∧ ∀x(x ∈̇ inv(f, a) ↔ fx ∈̇ a)(inv)

<(a) ∧ <(b) → <(un(a, b)) ∧ ∀x(x ∈̇ un(a, b) ↔ (x ∈̇ a ∨ x ∈̇ b))(un)

<(a) ∧ <(b) → <(int(a, b)) ∧ ∀x(x ∈̇ int(a, b) ↔ (x ∈̇ a ∧ x ∈̇ b))(int)

<(a) → <(dom(a)) ∧ ∀x(x ∈̇ dom(a) ↔ ∃y((x, y) ∈̇ a))(dom)

III. Type induction on W, (T-IW)

ε ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X) → (∀x ∈ W)(x ∈ X)

Let us now turn to the definition of a subclass of the so-called elementary
formulas in explicit mathematics.

3.2 Restricted elementary comprehension

In this subsection we will show that the finite axiomatisation of type exis-
tence in PET gives rise to a natural restriction of the well-known schema of
elementary comprehension. In this context, the notion of a Σb

T formula is
crucial. In addition, we will define a set of designated free individual vari-
ables FVW(A) which can be thought of as binary words bounding existential
quantifiers in a Σb

T formula A. These variables act as parameters in the
comprehension schema below.

Definition 7 (Σb
T formulas) The class of Σb

T formulas of LT and the set
of variables FVW(A) are inductively defined as follows:

1. If A is an LT formula of the form (s = t), s↓ or (s ∈ X), then A is a
Σb

T formula and FVW(A) := ∅.

2. If A is the formula Wa(t) with a /∈ FVI(t), then A is a Σb
T formula and

FVW(A) := {a}.

3. If A is the formula (B ∧ C) or (B ∨ C) with B and C in Σb
T and, in

addition,

(FVI(B) \ FVW(B)) ∩ FVW(C) = ∅,
(FVI(C) \ FVW(C)) ∩ FVW(B) = ∅,

then A is a Σb
T formula and FVW(A) := FVW(B) ∪ FVW(C).
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4. If A is the formula ∃xB with B ∈ Σb
T and x /∈ FVW(B), then A is a

Σb
T formula and FVW(A) := FVW(B).

Remark 8 We observe that the above definition also captures formulas
starting with a bounded (with respect to W) existential quantifier; namely, if
B[x] is a Σb

T formula, then (∃x ≤ a)B[x] can be expressed by the Σb
T formula

∃x(Wa(x) ∧B[x]).

In the sequel we will assume that for each LT formula A, we have a mapping
µA which assigns to each free type variable X in A a fresh individual variable
µA(X) that does not occur in A. We assume that µA is injective. The elegant
notation in the following definition is adapted from Krähenbühl [17].

Definition 9 Assume that A is a Σb
T formula. Then we define a term ρAx.B

by induction on the complexity of the formula B in Σb
T, where we assume

that x 6∈ FVW(B) and x not bound in B:

ρAx.(s = t) := inv(λx.(s, t), id),

ρAx.(s↓) := inv(λx.(s, s), id),

ρAx.(s ∈ Wa) := inv(λx.s, w(a)),

ρAx.(s ∈ X) := inv(λx.s, µA(X)),

ρAx.(C ∧D) := int(ρAx.C, ρAx.D)

ρAx.(C ∨D) := un(ρAx.C, ρAx.D)

ρAx.(∃yC) := dom(ρAx.(C[(x)0/x, (x)1/y])).

Let us write ρx.A instead of ρAx.A. The following theorem states that we
can derive uniform comprehension for Σb

T formulas in PET.

Theorem 10 (Restricted elementary comprehension in PET)
Assume that A is a Σb

T formula with FVT (A) = {X1, . . . , Xn} and
FVW(A) = {w1, . . . , wm}. If we let zi := µA(Xi) for 1 ≤ i ≤ n, then we
have:

(1) FVI(ρx.A) = (FVI(A) \ {x}) ∪ {z1, . . . , zn},

(2) PET ` W(~w) ∧ <(~z, ~X) → <(ρx.A),

(3) PET ` W(~w) ∧ <(~z, ~X) → (∀x)(x ∈̇ ρx.A ↔ A).

Using λ abstraction and projections, we obtain the following immediate con-
sequence of the above theorem.
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Corollary 11 Assume that A[x,~v, ~w, ~X] is a Σb
T formula with the following

free variables:

FVT (A) = {X1, . . . , Xn},
FVW(A) = {w1, . . . , wm},

FVI(A) \ FVW(A) = {x, v1, . . . , vk}.

Then we can find a closed LT term cA such that PET proves:

(1) W(~w) ∧ <(~z, ~X) → <(cA(~v, ~w, ~z)),

(2) W(~w) ∧ <(~z, ~X) → (∀x)(x ∈̇ cA(~v, ~w, ~z) ↔ A[x,~v, ~w, ~X]).

Let us close this section by mentioning that the schema of uniform Σb
T com-

prehension clearly entails the type existence axioms as given in the finite
axiomatisation of PET.

4 Lower bounds

In this section, we will show that PT− can be embedded into PET. PT−

is expressively weaker than PT, but proof-theoretically equivalent. Recall
from Lemma 5 (Bounded Recursion on Notation) that the provably total
functions of PT− are still the polynomial time computable functions. We
will first prove some auxiliary lemmas and then specify the embedding.

In Theorem 10 we have seen that any Σb
T-formula defines a type in PET.

With Axiom (T-IW) we have induction on any type which gives us induction
for Σb

T-formulas. In the following we will make heavy use of this fact. For
convenience we will also exploit the obvious equivalence

(∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X) ↔ (∀x ∈ W)(pWx ∈ X → x ∈ X).

Later, we will need some additional properties of the subword relation:

Lemma 12 The following statements are provable in PET:

(1) x ∈ W ∧ z ∈ W ∧ x ⊆ pWz → x ⊆ z,

(2) x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z (Transitivity),

(3) x ∈ W ∧ y ∈ W ∧ x ⊆ y → x ≤ y.

Proof In the following we will work informally in PET and assume that
x, y, z ∈ W.
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(1) Immediate with Axiom (13).

(2) The Σb
T-formula (c⊆xy = 1 ∨ c⊆yz = 1 ∨ c⊆xz = 0) is a reformulation

of transitivity. We will prove it by induction on z and assume c⊆xy = 0
and c⊆yz = 0.

z = ε: With Axiom (12) we know that also y = ε and thus x = ε. With
the same axiom we immediately get x ⊆ z.

We assume that transitivity holds for pWz, now we will prove that it also
holds for z. With Axiom (13) we know that v ⊆ w iff either v = w or
v ⊆ pWw for any words v, w. If x = y or y = z, x ⊆ z is immediate with
the equality axioms. Otherwise we have x ⊆ pWy (i) and y ⊆ pWz (ii).
With (i) and part (1) of this lemma we get x ⊆ y. Therefore also x ⊆ pWz
by induction hypothesis and (ii) and again with part (1) we get x ⊆ z.

(3) We can write this property as c⊆xy = 1 ∨ c⊆(1×x)(1×y) = 0 which
obviously is a Σb

T formula. Again we will only look at the case x ⊆ y in
the induction on y.

y = ε: As above, this implies that also x = ε. Therefore obviously
1×x = 1×y.

Assume the assertion holds for pWy. To prove that x ≤ y if x ⊆ y we
make the same case distinction as above: if x = y then x ≤ y is again
obvious. Otherwise x ⊆ pWy. By induction hypothesis we have 1×x ⊆
1×(pWy) (i). Further, 1×y = (1×pWy)∗1 = s1(1×pWy) (ii). With part
(1) we get 1×x ⊆ 1×y from (i) and (ii).

This concludes the proof of our lemma. 2

Remark 13 The above lemma, part (2) and the definition of ≤ immediately
imply that also ≤ is transitive, provably in PET.

In PET, type induction can also be stated differently. As this notion will be
more convenient in the following proofs, we will prove that both formulations
are equivalent:

(T-IbW) a ∈ W ∧ ε ∈ X ∧ (∀x ⊆ a)(pWx ∈ X → x ∈ X) → a ∈ X

Lemma 14 We have that (T-IW) and (T-IbW) are provably equivalent in PET
without (T-IW).

13



Proof The fact that (T-IbW) entails (T-IW) is trivial. For the converse impli-
cation, we take any type X and some a ∈ W. Then we can build the type
Y := {x : c⊆xa = 1 ∨ x ∈ X}. Its membership condition is equivalent to
x ⊆ a → x ∈ X if x ∈ W.

Now we assume that ε ∈ X and (∀x ⊆ a)(pWx ∈ X → x ∈ X) (?). Obviously,
ε ∈ Y from the definition of Y . Now we have to show that if x ∈ Y then
also s0x ∈ Y ∧ s1x ∈ Y . Hence, assume x ∈ Y . If c⊆(six)a = 1, then
obviously six ∈ Y . Otherwise, i.e., six ⊆ a, transitivity of ⊆ readily entails
x ⊆ a, which implies x ∈ X. Now we can use (?) to derive six ∈ X and thus
six ∈ Y .

Now we proved the conditions to apply (common) type induction (T-IW) and
get (∀x ∈ W)(x ∈ Y ). Therefore also a ∈ Y . As a ⊆ a ≡ c⊆aa = 0, a must
be in X. 2

In the following lemma we want to prove that every function f of type W 7→
W can be bound by a monotone function in the sense of the following lemma.
We will construct this function f ∗ as the function taking the maximum of f
applied to all subwords, i.e. f ∗x = max

y⊆x
fy. The functional mapping f to f ∗

is a well-known basic feasible functional, cf. e.g. Cook and Kapron [7, 16].

Lemma 15 There is a closed term max such that PET proves:

(1) f : W 7→ W → maxf : W 7→ W,

(2) f : W 7→ W ∧ f ∗ = maxf ∧ x ∈ W ∧ y ∈ W ∧ x ⊆ y → f ∗x ≤ f ∗y),

(3) f : W 7→ W ∧ f ∗ = maxf ∧ x ∈ W → fx ≤ f ∗x),

(4) f : W 7→ W ∧ f ∗ = maxf ∧ x ∈ W ∧ y ∈ W ∧ x ⊆ y → fx ≤ f ∗y.

Proof We first define an auxiliary function maxarg locating the subword

where f is maximised and write f̃ = maxargf :

maxargfε ' ε

maxargf(six) '

{
maxargfx if f(six) ≤ f(maxargfx)

six otherwise

We can construct this term with Lemma 2, λ-abstraction and definition by
cases. Now we have to prove that f̃ : W 7→ W, provided f : W 7→ W.

We fix some a ∈ W and define the Σb
T-formula A[x] ≡ (∃y ≤ a)(f̃x = y).

Now we will make use of (T-IbW) in order to show A[a]:

x = ε: f̃ ε = ε ≤ a.

14



Assume x ⊆ a and A[pWx]: As we know that z = f̃(pWx) ∈ W we can decide

whether fx ≤ fz or not. In the first case we have f̃x = f̃(pWx) ≤ a by

induction hypothesis. In the latter case we have f̃x = x which gives f̃x ≤ a
with Lemma 12.(3).

Now we define max := λf.λx.f(maxargfx).

(1) Obvious from totality of f̃ .

(2) Follows from the construction of f ∗ by induction on y.

(3) Follows from the construction of f̃ and induction.

(4) Immediate with parts (2) and (3) and Lemma 12.

This concludes the proof of our lemma. 2

Now we are in the position to state the main theorem of this section, which
will immediately entail the desired lower bounds for PET.

Theorem 16 PT− is contained in PET.

Proof Clearly, we only need to prove that PET ` (Σb−
W -IW), i.e. that in-

duction holds for any Σb−
W -formula A[x] ≡ (∃y ≤ fx)B[f, x, y]. Let us work

informally in PET and assume, in addition,

(1) f : W → W ∧ A[ε] ∧ (∀x ∈ W)(A[x] → A[s0x] ∧ A[s1x]).

Now we fix c ∈ W and aim at showing A[c]. First, we will need Lemma 15
in order to show that for c ∈ W and x ⊆ c we get

(2) (∃y ≤ fx)B[x, y] ↔ (∃y ≤ f ∗c)(y ≤ fx ∧B[x, y])

With Lemma 15 we immediately get fx ≤ f ∗c and then the equivalence is
obvious by Lemma 12. As f ∗c ∈ W for c ∈ W and B an Σb

T formula by
definition of Σb−

W , we can invoke Theorem 10 and construct a type X with
the defining property

(3) (∀x ⊆ c)(x ∈ X ↔ (∃y ≤ f ∗c)(y ≤ fx ∧B[x, y]))

By (1), (2) and (3) we immediately obtain

(4) ε ∈ X ∧ (∀x ⊆ c)(pWx ∈ X → x ∈ X)

Now we can apply (T-IbW) and derive c ∈ X and hence A[c] as desired. 2

The above theorem together with Lemma 5 shows that bounded recursion
on notation can be represented as a type two functional in PET. Hence, the
following corollary is immediate.
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Corollary 17 The polynomial time computable functions are provably total
in PET.

Indeed, we have that Buss’ S1
2 [3] and Ferreira’s PTCA+ [13, 14] as well as

Cook and Urquhart’s PVω [8] are all contained in PET, see Strahm [19, 20].
Hence, the basic feasible functionals are provably total in PET.

In Section 6 we will propose a natural extension of PET allowing us to embed
the full theory PT.

5 Upper bounds

In this section we want to show that PET is conservative over PT− for L
sentences. As the formula expressing the totality of a function on W is
an L sentence, the desired upper bounds can immediately be derived so
that the provably total functions of PET coincide with the polynomial time
computable functions.

Our proof strategy is to show that each model of PT− can be extended to a
model of PET. For the reader’s convenience, let us briefly recall the notion
of a structure for the language LT.

Definition 18 (LT structure) A LT-structure M? is a tuple

(M, T , E ,R, w, id, dom, un, int, inv)

where (i) M is a L-structure, (ii) T is a non-empty set of subsets of |M|,
(iii) E is the usual ∈ relation on |M| × T , (iv) R is a non-empty subset of
|M| × T , and (v) w, id, dom, un, int, inv are elements of |M|.

Model construction

Now we give a scheme for extending any model M of PT− to a model M?

of PET: First, we need to choose selected elements w, id, dom, un, int, inv
of |M| in order to interpret the corresponding constants of LT. This can
easily be done in such a way that cx 6= cy and cu 6= dv for all c 6= d ∈
{w, id, dom, un, int, inv} and all x 6= y, u, v ∈ |M|.
For the construction of T and R we introduce sets Rk ⊆ |M| by induction
on the natural number k and simultaneously for each m ∈ Rk establish a set
ext(m) ⊆ |M|. Then we set

Tk := {ext(m) : m ∈ Rk},
Rk := {(m, ext(m)) : m ∈ Rk},
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M?
k := (M, Tk,Rk, w, id, dom, un, int, inv).

k = 0: R0 contains names of the base types as well as their obvious exten-
sions, i.e.

– id ∈ R0 and ext(id) := {(m, m) : m ∈ |M|}
– wa ∈ R0 if a ∈ WM and ext(wa) := {m ∈ |M| : M |= m ∈ W ∧m ≤ a}

k > 0: Rk contains Rk−1. In addition, if a, b ∈ Rk−1 then

– inv(f, a) ∈ Rk and ext(inv(f, a)) := {m ∈ |M| : M?
k−1 |= fm ∈̇ a}

– un(a, b) ∈ Rk and ext(un(a, b)) := {m ∈ |M| : M?
k−1 |= m ∈̇ a ∨m ∈̇ b}

– int(a, b) ∈ Rk and ext(int(a, b)) := {m ∈ |M| : M?
k−1 |= m ∈̇ a∧m ∈̇ b}

– dom(a) ∈ Rk and ext(dom(a)) := {m ∈ |M| : M?
k−1 |= ∃y((m, y) ∈̇ a)}

Finally, we define T :=
⋃

k∈N Tk and R :=
⋃

k∈NRk. Then our desired LT

structure is given by

M? := (M, T ,R, w, id, dom, un, int, inv).

We are now ready to state the crucial model extension theorem.

Theorem 19 (Model extension) Any model M? constructed as described
above from a model M of PT− satisfies the following conditions:

(1) M |= A ⇐⇒ M? |= A for any L sentence A,

(2) M? |= T-IW,

(3) M? |= PET.

Proof

(1) As the first-order part of the model M remains untouched, the same
(first-order) formulas are satisfied in the extended model.

(2) In order to prove that M? satisfies type induction, we will show that
every type X of T is weakly Σb−

W definable. This means that membership
for this type can be expressed by a Σb−

W formula of L with a fixed bound,
namely

X = {m ∈ |M| : M |= (∃y ≤ kbm)B[m, y]}
for some b ∈ WM and B W-free, positive and without ∀. B may possibly
contain parameters in |M|. We will now use the fact that types are
added to T as the extension of a name and that every name is added at
a certain level. Therefore, we will make induction on Rk to show that
every name a can be weakly Σb−

W defined by a formula A:
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a ∈ R0: Then a = id or a = wb for some b ∈ WM. In the former case,
we choose A to be ∃z(x = (z, z)) which is a Σb−

W formula without
bound. In the latter case, A is set to (∃y ≤ b)(x = y).

a ∈ Rn+1 \Rn: Suppose b, c ∈ Rn. By induction hypothesis, there are
corresponding defining formulas B and C,

B[x] ≡ (∃y ≤ u)B′[x, y],

C[x] ≡ (∃z ≤ v)C ′[x, z],

where u, v ∈ WM. We distinguish the following cases:

– a = un(b, c): Then we set d = 〈u, v〉 and A[x] to be

(∃y ≤ d)[(〈y〉0 ≤ u ∧B′[x, 〈y〉0]) ∨ (〈y〉1 ≤ v ∧ C ′[x, 〈y〉1])],

where we use the properties of Lemma 6.

– a = int(b, c): This case is analogous to the previous one.

– a = inv(f, b): In this case we can choose A[x] to be B[fx].

– a = dom(b): We can choose the formula A[x] to be

(∃y ≤ u)∃zB′[(x, z), y].

This concludes our argument that each type X in T can be weakly Σb−
W

defined in M. It is now immediate that M? satisfies (T-IW) since M
validates (Σb−

W -IW).

(3) The remaining axioms are obvious by construction.

This concludes the proof of the model extension theorem. 2

The following corollary is now immediate by Gödel completeness and Theo-
rem 16.

Corollary 20 PET is a conservative extension of PT− with respect to L
formulas.

Corollary 21 The provably total functions of PET coincide with the func-
tions computable in polynomial time.

Further, it follows from Strahm [20] that the provably total type two func-
tionals of PET coincide with the basic feasible functionals of type two.
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6 Extensions of PET

In this section we will describe and treat some natural extensions of PET.
They mostly rely on Cantini [6] who – among other things – studies various
extensions of the first-order theory PT by means of axioms for self-referential
truth, a uniformity principle and a axiom of positive choice. Below we will
indicate how the principles studied by Cantini give rise to interesting exten-
sions of PET.

6.1 Uniformity and universal quantification

Cantini showed in [6] that adding a uniformity principle for positive formu-
las of L yields an extension of PT whose provably total functions are still
the functions computable in polynomial time. In our context, we can state
Cantini’s principle as follows. For each positive L formula A[x, y]:

(UP) ∀x(∃y ∈ W)A[x, y] → (∃y ∈ W)(∀x)A[x, y]

It is easy to see that (UP) readily entails the following form of bounded
uniformity for positive L formulas A[x, y]:

(UP’) ∀x(∃y ≤ t)A[x, y] → (∃y ≤ t)(∀x)A[x, y]

The principle (UP’) leads to a very natural extension of PET by adding a
type existence axiom for universal quantification; this axiom is the natural
dual analogue of the domain type present in PET:

(all) <(a) → <(all(a)) ∧ ∀x(x ∈̇ all(a) ↔ ∀y((x, y) ∈̇ a))

The presence of the axiom (all) makes the type existence axioms more sym-
metric, i.e. the types are generated from base types (initial segments of
W and the identity type) by closing under domains, unions, intersections,
existential quantification (inverse image) and universal quantification.

In order to see that (all) does not increase the proof-theoretic strength of
PET, letM be any model of PT+(UP′). We can extendM to a modelM? of
PET+(all) in the obvious way by adding a clause for universal quantification
in the construction of Section 5. The crucial step in Theorem 19 is to show
that M? satisfies type induction. Towards this aim, we follow the strategy
in the proof of the above mentioned theorem and show that each type in M?

is weakly Σb
W definable in M. The only new case occurs for a = all(b) and

already knowing that b has a weak Σb
W definition, say B[u] = (∃v ≤ s)B′[u, v].

Then we have that M? satisfies

∀u[u ∈̇ b ↔ (∃v ≤ s)B′[u, v]]
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Thus, by construction of our model M? we obtain that

∀x[x ∈̇ a ↔ ∀yB[(x, y)] ↔ ∀y(∃v ≤ s)B′[(x, y), v]]

Now we are in a position to invoke (UP’) in order to get the equivalence

∀y(∃v ≤ s)B′[(x, y), v] ↔ (∃v ≤ s)∀yB′[(x, y), v].

The formula (∃v ≤ s)∀yB′[〈x, y〉, v] is clearly a weak Σb
W formula and, hence,

a = all(b) is weakly Σb
W definable. This shows that type induction holds in

our model M?.

To summarise, we have shown that A can already be derived in PT+(UP) if
A is an L formula which is provable in PET+(all). Moreover, by Cantini [6]
the provably total functions of the latter theory coincide with the functions
computable in polynomial time.

Furthermore, the full theory PT is contained in PET + (all): We can extend
the definition of Σb

T-formulas such that they are also closed under ∀ quan-
tification. For that purpose we have to extend Definition 7 and the term
ρA(A, x) of Definition 9. Theorem 10 also holds for this extended class of
formulas. With these preparations, we can obviously expand the proof of
Theorem 16 to induction for Σb

W-formulas.

6.2 Axiom of choice

In addition to the uniformity principle discussed above, Cantini [6] also con-
siders a form of positive choice in the context of PT with a partial truth
predicate and shows that this principle does not increase the proof-theoretic
strength. Positive choice in the language L includes for each positive L for-
mula A[x, y] the statement

(AC) (∀x ∈ W)(∃y ∈ W)A[x, y] → (∃f : W 7→ W)(∀x ∈ W)A[x, fx]

If we extend this schema to the language LT then, in addition, A is allowed
to contain positive occurrences of subformulas of the form t ∈ X. We will
call this principle (AC) as well and agree that the context always indicates
whether we refer to the first-order or second order form of the choice axiom.

Then it is easy to see by means of the model-theoretic argument of Section
5 that each (first-order) model of PT + (AC) can be extended to a model
of PET which satisfies choice (AC) in the extended language of PET as
described above. Hence, the provably total functions of PET+(AC) are still
the polynomial time computable ones.
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6.3 Totality and extensionality

The upper bound computations in Strahm [19] for PT and Cantini [6] for
its various extensions actually validate stronger applicative axioms as those
spelled out in PT. In particular, totality of application and extensionality of
operations can be added to our theories without increasing proof-theoretic
strength.

In the presence of the totality axiom (Tot), partial combinatory logic reduces
to total combinatory logic and the logic of partial terms can be replaced by
ordinary predicate logic with equality.

(Tot) ∀x∀y(xy↓)

If, in addition, extensionality of operations is assumed, then the applicative
basis is equivalent to ordinary untyped extensional lambda calculus λη.

(Ext) ∀f∀g(∀x(fx ' gx) → f = g)

We are now in a position to summarise the results of this section in the
following theorem.

Theorem 22 The provably total functions of PET augmented by any com-
bination of the principles (all), (AC), (Tot), and (Ext) coincide with the
polynomial time computable functions.

7 Conclusions and further work

In this paper, we considered a natural restriction of elementary comprehen-
sion with type induction as an extension of the theory PT. The polynomial
time computable functions were shown to be the provably total operations of
the proposed system PET. We also studied various conservative extensions
of PET.

The next natural step will be to add the so-called Join axiom, which con-
structs disjoint unions of types named by an operation; it has been widely
studied for many systems of explicit mathematics. In order to formulate this
axiom, we need a new constant j. Below we write Σ[f, a, x] for the formula

∃y∃z(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)

Now the Join axioms are given by the following assertions (J.1) and (J.2):
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<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f))(J.1)

<(a) ∧ (∀x ∈̇ a)<(fx) → ∀x(x ∈̇ j(a, f) ↔ Σ[f, a, x])(J.2)

It can be shown that join allows the construction of interesting new types
which presumably cannot be generated without it. We conjecture that join
does not increase the proof-theoretic strength of PET. We hope to give a
detailed proof of our conjecture in a future publication.

In Strahm [19], weak first-order applicative systems for various other com-
plexity classes were proposed. It is expected that the techniques of the
present paper readily generalize in order to set up natural systems of types
and names for those complexity classes. Details are in preparation and will
be included in a further publication.

Finally, we are also interested in weak theories of partial truth as studied
by Cantini e.g. in [6]. A first candidate for such a theory is presented in
Cantini [6] in form of a theory PTT. This is an extension of Strahm’s PT
with a partial truth predicate. The formulation of the theory is somehow
restrictive as the truth predicate is not allowed in induction formulas. It
would be interesting to find out whether this restriction can be relaxed and
a more liberal induction principle can be admitted without increasing the
proof-theoretic strength of the underlying system. Further, it is natural
to ask about the exact correspondence between weak systems of explicit
mathematics and weak partial truth theories.
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