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Abstract

We give a broad discussion of reflection principles in explicit math-
ematics, thereby addressing various kinds of universe existence prin-
ciples. The proof-theoretic strength of the relevant systems of explicit
mathematics is couched in terms of suitable extensions of Kripke-
Platek set theory.

1 Introduction

The chief aim of this paper is to survey various reflection principles in the
realm of Feferman’s explicit mathematics. We will discuss explicit analogues
of the classical notions of inaccessibility, Mahloness, and weak compactness.
Proof-theoretically speaking, our explicit formulations will be seen to corre-
spond to their recursive interpretations and their strength can be measured in
terms of theories of admissible sets for a recursively inaccessible, recursively
Mahlo, and Π3 reflecting universe of sets, respectively.

Explicit mathematics was introduced by Feferman around 1975. The
three landmark papers laying the foundations of the subject are Feferman
[4, 5, 6]. With respect to classical and recursive interpretations of an explicit
mathematics framework, Feferman [5] is of particular interest.

At the heart of our considerations in this paper are universes, which
are a frequently studied concept in constructive mathematics at least since
the work of Martin-Löf [23]. They were first discussed in the framework of
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explicit mathematics in Feferman [7] in connection with his proof of Han-
cock’s conjecture. Universes can be considered as types of types (or names),
which are closed under previously recognized type formation operations, i.e.,
a universes reflects those operations. Thus, universes are closely related to
reflection principles in classical and admissble set theory. For a survey of
some of the relevant previous results on universes in explicit mathematics,
see Jäger, Kahle, and Studer [18].

The plan of this paper is as follows. In Section 2 we set out the formal
framework of explicit mathematics with universes. Section 3 presents Kripke-
Platek set theory augmented by various forms of reflection. In Section 4 we
give a short description of the ordinal notations we use; in particular, we
discuss n-ary ϕ-functions. Section 5 contains a conceptual discussion on re-
cursive and classical interpretations of explicit mathematics. In Section 6 we
introduce the limit axiom into explicit mathematics and address the strength
of the so-obtained theories. Section 7 is devoted to the Mahlo axiom. Finally,
in Section 8, we elaborate on so-called 2-universes and their relationship to
Π3 reflection.

2 The formal framework of explicit mathe-

matics

The systems of explicit mathematics which we will consider in the following
are formulated in the second order language L for individuals and types. It
comprises individual variables a, b, c, f, g, h, u, v, w, x, y, z, . . . as well as type
variables U, V,W, X, Y, Z, . . . (both possibly with subscripts). L also includes
the individual constants k, s (combinators), p, p0, p1 (pairing and projections),
0 (zero), sN (successor), pN (predecessor), dN (definition by numerical cases),
and additional individual constants, called generators, which will be used for
the uniform naming of types, namely nat (natural numbers), id (identity), co
(complement), is (intersection), dom (domain), inv (inverse image), j (join),
and `, m, π (reflectors). There is one binary function symbol · for (partial)
application of individuals to individuals. Further, L has unary relation sym-
bols ↓ (defined), N (natural numbers), U (universes) as well as three binary
relation symbols ∈ (membership), = (equality), and < (naming, representa-
tion).

The individual terms (r, s, t, r1, s1, t1, . . .) of L are built up from individual
variables and individual constants by means of our function symbol · for
application. In the following we often abbreviate (s · t) simply as (st), st or
sometimes also s(t); the context will always ensure that no confusion arises.
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We further adopt the convention of association to the left so that s1s2 . . . sn

stands for (. . . (s1 ·s2) . . . sn). We also set t′ := sNt. Finally, we define general
n tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2 and (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

The atomic formulas of L are the expressions N(s), s↓, (s = t), (U = V ),
(s ∈ U), U(V ), and <(s, U); the formulas (A, B, C,A1, B1, C1, . . .) of L are
generated from the atomic formulas by closing against negation, disjunction,
conjunction, as we as existential and universal quantification for individuals
and types.

Since we work with a logic of partial terms, it is not guaranteed that all
terms have values, and s↓ is read as s is defined or s has a value. Moreover,
N(s) says that s is a natural number, and the formula <(s, U) is used to
express that the individual s represents the type U or is a name of U .

In the following we often omit parentheses and brackets whenever there
is no danger of confusion. Moreover, we frequently make use of the vector
notation ~U and ~s for finite strings of type variables U1, . . . , Um and individual
terms s1, . . . , sn, respectively, whose length is not important or given by the
context. The following table contains a useful list of abbreviations:

(s ' t) := s↓ ∨ t↓ → s = t,

(s ∈ N) := N(s),

(∃x ∈ N)A(x) := (∃x)(x ∈ N ∧ A(x)),

(∀x ∈ N)A(x) := (∀x)(x ∈ N → A(x)),

(V ⊂ W ) := (∀x)(x ∈ V → x ∈ W ),

(s ∈̇ t) := (∃X)(<(t,X) ∧ s ∈ X),

(∃x ∈̇ s)A(x) := (∃x)(x ∈̇ s ∧ A(x)),

(∀x ∈̇ s)A(x) := (∀x)(x ∈̇ s → A(x)),

<(s) := (∃X)<(s, X),

<(~r, ~U) := <(r1, U1) ∧ . . . ∧ <(rn, Un),

where the vector ~r consists of the individual terms r1, . . . , rn and the vector
~U of the type variables U1, . . . , Un.
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All our systems of explicit mathematics will be formulated in Beeson’s
classical logic of partial terms (cf. Beeson [2] or Troelstra and Van Dalen [35])
for the individuals and classical logic with equality for the types. Observe
that Beeson’s formalization includes the usual strictness axioms.

Before turning to various reflection principles in explicit mathematics, we
introduce the auxiliary theory s-EETJ which provides a framework for explicit
elementary types with join. Actually, s-EETJ is a variant of the theory EETJ,
introduced in Jäger, Kahle, and Studer [18], in which strict versions of the
basic type existence axioms are used. For more about strictness in explicit
mathematics see Jäger, Kahle, and Studer [18], and Jäger and Studer [21].
The nonlogical axioms of s-EETJ can be divided into the following groups:

I. Applicative axioms. These axioms formalize that the individuals form
a partial combinatory algebra, that we have paring and projection and the
usual closure conditions on the natural numbers plus definition by numerical
cases.

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0(a, b) = a ∧ p1(a, b) = b,

(4) 0 ∈ N,

(5) a ∈ N → a′ ∈ N,

(6) a ∈ N → a′ 6= 0 ∧ pN(a′) = a,

(7) a ∈ N ∧ a 6= 0 → pNa ∈ N ∧ (pNa)′ = a,

(8) a ∈ N ∧ b ∈ N ∧ a = b → dNxyab = x,

(9) a ∈ N ∧ b ∈ N ∧ a 6= b → dNxyab = y.

As usual, from axioms (1) and (2), one derives a theorem about λ abstraction
and a form of the recursion theorem.

II. Explicit representation and extensionality. The following axioms
state that each type has a name, that there are no homonyms and that
equality of types is extensional.

(1) (∃x)<(x, U),

(2) <(a, U) ∧ <(a, V ) → U = V ,
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(3) (∀x)(x ∈ U ↔ x ∈ V ) → U = V .

III. Basic type existence axioms. In the following we provide a finite
axiomatization of uniform elementary comprehension plus join.

Natural numbers

(1) <(nat),

(2) (∀x)(x ∈̇ nat ↔ N(x)).

Identity

(3) <(id),

(4) (∀x)(x ∈̇ id ↔ (∃y)(x = (y, y))).

Complements

(5) <(a) ↔ <(co(a)),

(6) <(a) → (∀x)(x ∈̇ co(a) ↔ x ˙6∈ a).

Intersections

(7) <(a) ∧ <(b) ↔ <(is(a, b)),

(8) <(a) ∧ <(b) → (∀x)(x ∈̇ is(a, b) ↔ x ∈̇ a ∧ x ∈̇ b).

Domains

(9) <(a) ↔ <(dom(a)),

(10) <(a) → (∀x)(x ∈̇ dom(a) ↔ (∃y)((x, y) ∈̇ a)).

Inverse images

(11) <(a) ↔ <(inv(a, f)),

(12) <(a) → (∀x)(x ∈̇ inv(a, f) ↔ fx ∈̇ a).

Joins

(13) <(a) ∧ (∀x ∈̇ a)<(fx) ↔ <(j(a, f)),

(14) <(a) ∧ (∀x ∈̇ a)<(fx) → (∀x)(x ∈̇ j(a, f) ↔ Σ(a, f, j(a, f))).
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In this last axiom, the formula Σ(a, f, b) expresses that b names the disjoint
union of f over a, i.e.

Σ(a, f, b) := (∀x)(x ∈̇ b ↔ (∃y, z)(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

IV. Uniqueness of generators. These axioms essentially guarantee that
different generators create different names (see the beginning of Section 2
for the definition of generators). To achieve this we have, for syntactically
different generators r0 and r1 and arbitrary generators s and t:

(1) r0 6= r1,

(2) (∀x)(sx 6= t),

(3) (∀x, y)(sx = ty → s = t ∧ x = y).

In the original formulation of explicit mathematics, elementary compre-
hension is not dealt with by a finite axiomatization but directly as an infinite
axiom scheme. If an L formula A is called elementary provided that it con-
tains neither the relation symbol < nor bound type variables, then we have
the following result.

Theorem 1 For every elementary formula A(u,~v, ~W ) with at most the in-
dicated free variables there exists a closed term t so that one can prove in
s-EETJ:

1. <(~w, ~W ) → <(t(~v, ~w)),

2. <(~w, ~W ) → (∀x)(x ∈̇ t(~v, ~w) ↔ A(x,~v, ~W )).

This theorem is first stated in Feferman and Jäger [9]; its proof is standard
and left to the reader as an exercise. Join and uniqueness of generators are
not needed for this argument.

In the following we employ two forms of induction on the natural numbers,
type induction and formula induction. Type induction is the axiom

(∀X)(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).(T-IN)

Formula induction, on the other hand, is the schema

A(0) ∧ (∀x ∈ N)(A(x) → A(x′)) → (∀x ∈ N)A(x)(L-IN)

for each L formula A.
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From Feferman [6] we know that EETJ + (T-IN) is proof-theoretically
equivalent to Peano arithmetic PA and to the system Σ1

1-AC0 of second order
arithmetic; EETJ + (L-IN) has the same proof-theoretic strength as Σ1

1-AC.1

The proof of these two results can be easily adapted to s-EETJ.

Theorem 2 The theory s-EETJ + (T-IN) is proof-theoretically equivalent to
PA and Σ1

1-AC0; the theory s-EETJ + (L-IN) is proof-theoretically equivalent
to Σ1

1-AC.

The next step is to introduce the concept of a universe in explicit math-
ematics. To put it very simply: a universe is supposed to be a type which
consists of names only and reflects the theory s-EETJ. For a detailed formu-
lation of the appropriate axioms we introduce some auxiliary notation and
let C(W, a) be the closure condition which is the disjunction of the following
L formulas:

(1) a = nat ∨ a = id,

(2) (∃x)(a = co(x) ∧ x ∈ W ),

(3) (∃x, y)(a = is(x, y) ∧ x ∈ W ∧ y ∈ W ),

(4) (∃x)(a = dom(x) ∧ x ∈ W ),

(5) (∃x, f)(a = inv(x, f) ∧ x ∈ W ),

(6) (∃x, f)(a = j(x, f) ∧ x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W )).

Thus the fixed point property (∀x)(C(W, x) ↔ x ∈ W ) states that W is a
type which is closed under elementary comprehension and join in the strict
sense.

V. Basic axioms for universes. These axioms state that universes consist
of names only, satisfy the fixed point property imposed by C and are transitive
in a certain sense.

Ontological axioms

(1) U(W ) ∧ s ∈ W → <(s),

(2) U(V ) ∧ U(W ) ∧ (∃x)(<(x, V ) ∧ x ∈ W ) → V ⊂ W .

Fixed points

(3) U(W ) → (∀x)(C(W, x) ↔ x ∈ W ).

1Σ1
1-AC0 is Σ1

1-AC with induction on the natural numbers restricted to sets.
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The second ontological axiom is a sort of transitivity axiom, stating, that
the universe V is a subuniverse of the universe W provided that some name
of V belongs to W .

EU is defined to be the theory, formulated in L, which extends the system
s-EETJ by these basic axioms for universes and type induction (T-IN). Ob-
serve, however, that within EU the existence of universes cannot be proved.
Even if we could show that all elements of a type W are names and that W
satisfies the required fixed point property, there would be no possibility in
EU to conclude that U(W ).

This is different in Jäger, Kahle, and Studer [18], where universes are
introduced as a defined concept. In this article we also discussed the question
of what sort of ordering principles can or should be imposed on universes,
and it turned out that one must not ask for too much.

Universes – or, more precisely, names of universes – will play an im-
portant rôle in the following in formulating reflection principles for explicit
mathematics.

3 Theories for admissible sets

It is often very illuminating to compare systems of explicit mathematics to
theories for admissible sets (with the natural numbers as urelements). In
this section we recall some basic ingredients of these set theories and say a
few words about some important axioms. Full information and all missing
details are supplied in Jäger [12, 14, 15].

Theories for admissible sets can conveniently be formulated in a language
L? = L1(∈, N, S, Ad) which extends some standard first order language L1

with the usual vocabulary for all primitive recursive functions and relations
by the membership relation symbol ∈, the set constant N for the set of natural
numbers and the unary relation symbols S and Ad for sets and admissible
sets, respectively. The system KPu of Kripke-Platek set theory (above the
natural numbers as urelements) has the following axioms:

1. Ontological axioms. They claim that (i) each object is either a natural
number or a set, (ii) each admissible is transitive, contains the set N
and reflects the Kripke-Platek axioms, (iii) the admissibles are linearly
ordered.

2. Number-theoretic axioms. They comprise the usual axioms for all prim-
itive recursive functions and relations.
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3. Kripke-Platek axioms. They provide pairing, for any set a transitive
superset, ∆0 separation, and ∆0 collection.

4. Induction principles. They consist of the schema (L?-IN) of complete
induction on the natural numbers and the schema (L?-I∈) of ∈ induc-
tion, both for arbitrary formulas of L?.

The theory KPur is the subsystem of KPu in which the induction schemata
(L?-IN) and (L?-I∈) are restricted to ∆0 formulas; KPu0 is KPu with (L?-IN)
restricted to ∆0 formulas and ∈ induction omitted completely.

The standard models of KPu are the admissible sets which contain the
set of natural numbers as element. If we add the limit axioms (L),

(∃z)(Ad(z) ∧ a ∈ z),(L)

stating that any set is element of an admissible set, we obtain three new
theories

KPi := KPu + (L), KPir := KPur + (L), KPi0 := KPu0 + (L),

depending on the induction principles which are included. They deal with
recursively inaccessible sets, i.e. admissible limits of admissibles.

A further strengthening is achieved if Π2 reflection, which is proof-theore-
tically equivalent to ∆0 collection over KPu− (∆0 collection), is upgraded to
Π2 reflection on admissibles. The Mahlo axioms (M) postulate

A(~a) → (∃z)(Ad(z) ∧ ~a ∈ z ∧ Az(~a))(M)

for all Π2 formulas A(~u) whose parameters belong to the list ~u. The exten-
sions of KPu and its two subsystems KPur and KPu0 are the theories

KPm := KPu + (M), KPm r := KPur + (M), KPm0 := KPu0 + (M)

whose least standard model is the structure Lµ(N) with µ being the first
recursively Mahlo ordinal.

Finally, there is the schema of Π3 reflection which gives proof-theoretic
strength far beyond that of (M). It demands

A(~a) → (∃z)(Ad(z) ∧ ~a ∈ z ∧ Az(~a)).(Π3 Ref)

for any Π3 formula A(~u) of L?, again with all its parameters from the list ~u;
of course, it would be sufficient to ask for a transitive witness.
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4 Ordinal notations

Most proof-theoretic ordinals which we explicitly mention in this paper are
easily expressed by making use of a n-ary Veblen functions ϕn for all natural
numbers n greater than 0. The usual Veblen hierarchy, generated by the
binary function ϕ, starting off with the function ϕ0β = ωβ, is well known
from the literature, cf. Pohlers [25] or Schütte [30]. The ternary ϕ3 function
is obtained as a straightforward generalization of the binary case by defining
ϕ3(α, β, γ) inductively as follows:

(i) ϕ3(0, β, γ) is just ϕβγ.

(ii) If α > 0, then ϕ3(α, 0, γ) denotes the γth ordinal which is strongly
critical with respect to all functions λξ, η.ϕ3(δ, ξ, η) for δ < α.

(iii) If α > 0 and β > 0, then ϕ3(α, β, γ) denotes the γth common fixed
point of the functions λξ.ϕ3(α, δ, ξ) for δ < β.

For example, ϕ3(1, 0, α) is Γα, and more generally, ϕ3(1, α, β) denotes a Ve-
blen hierarchy over λα.Γα. It is straightforward how to extend these ideas in
order to obtain ϕn functions of all finite arities, and even further to Schütte’s
Klammersymbole [29].

Instead of ϕ3(α, β, γ) we simply write ϕαβγ. Φ0 is chosen to be the least
ordinal greater than 0 which is closed under all functions ϕn for n > 0.
This ordinal Φ0 can also be written as ΘΩω0 if one prefers to work in the
context of ordinal notation systems based on the Aczel-Buchholz-Feferman
Θ-functions. A full exposition of this approach can be found in Buchholz [3].

5 Classical and recursive interpretations of

explicit mathematics

Explicit mathematics is a very flexible formalism which permits classical
and recursive interpretations. This “feature” of explicit mathematics is the
main theme of Feferman [5], but it is already inherent in the standard model
constructions described, for example, in Feferman [4]. More recently, in
Feferman [8] a so-called operational set theory is introduced, which is a partial
adaptation of explicit mathematics notions to the set-theoretical framework.
It provides a step towards Feferman’s unfolding of set theory and deals with
generalizations of small large cardinals and their interpretations in classical
as well as admissible set theory.
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Without going into details, we briefly repeat the main ideas underlying
the classical and recursive interpretations of explicit mathematics:

(1) The types of L are extensional, all individual terms of L, on the other
hand, are regarded as intensional objects ; some of the intensional indi-
viduals name extensional types.

(2) Because of self-application, any individual term also acts as a (possibly
partial) intentional operation on the universe and, in this sense, is a
representation of a (partial) extensional function on the universe.

(3) In the set-theoretic interpretations of explicit mathematics, we may
choose, for example, some sufficiently large initial segment Vα of the
cummulative hierarchy as universe of the individuals. Via some suit-
able coding mechanism, these individuals represent the ordinary set-
theoretic functions belonging to Vα plus further partial functions from
Vα to Vα. Let us write ‖s‖ for the partial function represented by s.
The application operation in these interpretations is so that the indi-
vidual s applied to the individual t yields the value ‖s‖(t) if t belongs
to the domain of ‖s‖; otherwise, s applied to t is undefined.

(4) The universe of any recursion-theoretic interpretation of explicit math-
ematics is the set N of the natural numbers. Then we fix some standard
indexing {e} for e = 0, 1, . . . for the partial recursive functions on N.
Application of e to n is then simply treated as {e}(n).

(5) Thus, in set-theoretic interpretations the individuals represent stan-
dard set-theoretic (partial) functions, whereas in recursion-theoretic
functions the individuals code partial recursive functions on the nat-
ural numbers. From the set-theoretic perspective the join axioms are
therefore a sort of replacement axioms, in contrast to the recursion-
theoretic approach in which join corresponds to ∆0 replacement or ∆0

reflection; cf., e.g., the definition of Kleene’s O.

As mentioned above, the formalism and the axioms of explicit mathematics
abstract from any particular interpretation. Nevertheless, set-theoretic and
recursion-theoretic models do have a certain significance, especially for fur-
thering the intuitive understanding of the various notions. Applied to our
definition of universe in explicit mathematics, the remarks (1)–(5) have the
following consequences:

(6) Typical universes in the set-theoretic Vα-interpretations are generated
by initial segments Vκ so that κ is a regular cardinal number.
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(7) In the recursion-theoretic world, universes correspond to admissible
(i.e. recursively regular) sets above N.

This is not surprising since the recursive analogue of a regular cardinal is
that of an admissible ordinal.

Universes in explicit mathematics are also related to universes in Martin-
Löf type theory, cf., e.g., Martin-Löf [23, 24], and to fixed points – not
necessarily least fixed points – of positive arithmetic operators as studied,
for example, in Feferman [7] and Jäger et al. [17].

6 The limit axiom

It is in the spirit of explicit mathematics to work with uniform versions of
reflection principles. We do not simply formulate that there exists a type
which reflects a certain property but use an appropriate reflector to denote
such a type, uniformly in the relevant parameters. Actually, the reflectors
provide us with canonical names of universes. In the following we write

U(s) := (∃X)(<(s, X) ∧ U(X))

in order to have a compact notation for the fact that the individual term s
is a name of a universe.

A very first and elementary form of reflecting the axioms of EETJ is to
claim that we have “many” universes in the sense that each name of a type
belongs to a universe,

∀a(<(a) → U(`(a)) ∧ a ∈̇ `(a)).(Lim)

Keeping the set-theoretic and recursion-theoretic interpretations of explicit
mathematics in mind, it arises quite naturally that the canonical models of
EU + (Lim) comprehend the notion of (recursive) inaccessibility; (recursive)
regularity because of modelling EETJ, and limit of (recursive) regularity be-
cause of (Lim).

However, the induction principles available in EU + (Lim) are very weak
and so the situation is analogous to that of the theory KPi0 of iterated ad-
missible sets: the least standard model of KPi0 is the structure Lι(N), ι the
least recursively inaccessible ordinal, whereas its proof-theoretic strength is
characterized by the famous Feferman-Schütte ordinal Γ0.

Theorem 3 (Jäger, Kahle, Strahm) The theory EU + (Lim) is a frame-
work for predicative mathematics; its extension by formula induction on N
goes beyond predicativity. More precisely, we have:
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1. The theory EU + (Lim) is proof-theoretically equivalent to the theories

KPi0, ÎD<ω and ATR0; it thus has the proof-theoretic ordinal Γ0, i.e.
ϕ100.

2. The theory EU + (Lim) + (L-IN) is proof-theoretically equivalent to the

theories KPi0+(L?-IN) and ÎD<ε0; it thus has the proof-theoretic ordinal
ϕ1ε00.

Here ÎD<ω and ÎD<ε0 are theories for iterated fixed points of positive arith-
metic operators (cf. e.g. Feferman [7]), ATR0 is Friedman’s theory of arith-
metic transfinite recursion (cf., e.g., Friedman [10] or Simpson [32]). For a
proof of this theorem we refer to Kahle [22] and Strahm [33]; a construction
in Jäger and Strahm [20] provides a natural model of EU + (Lim).

Feferman’s famous theory T0 was the starting point of explicit mathe-
matics; it extends the theory EETJ + (L-IN) by the powerful principle of
inductive generation (IG): an new generator i is added to L, and for every
type W named w and every binary relation R on W with name r there exists
the type of the R-accessible elements of W and is named i(w, r); induction
along i(w, r) is permitted for arbitrary formulas of L. The restriction (IG)�
of (IG) claims induction along i(w, r) for types only. So we set:

T0� := EETJ + (IG)� + (T-IN),

T0 := EETJ + (IG) + (L-IN),

s-T0� := EU + (IG)�,

s-T0 := EU + (IG) + (L-IN).

It is clear that s-T0� has the same proof-theoretic strength as T0� and s-T0

the same as T0. In Jäger and Studer [21] it is shown that adding the limit
axiom (Lim) to the theories s-T0� and s-T0 does not change their respective
proof-theoretic strength. Together with the results in Feferman [4], Jäger
[13] and Jäger and Pohlers [19] we thus obtain the following theorem.

Theorem 4 (Jäger, Studer) Adding the limit axiom (Lim) to s-T0� and
s-T0 does not increase the proof-theoretic strength of these theories. Hence
we have:

1. The theory s-T0� + (Lim) is proof-theoretically equivalent to T0�, thus
also to KPir and ∆1

2-CA0.

2. The theory s-T0+(Lim) is proof-theoretically equivalent to T0, thus also
to KPi and ∆1

2-CA + (BI).
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The theory ∆1
2-CA is, of course, the usual system of second order arithmetic

with ∆1
2 comprehension; ∆1

2-CA0 is ∆1
2-CA with induction on the natural

numbers restricted to sets, and (BI) stands for bar induction.

7 The Mahlo axiom

A next quality in reflection is provided by the Mahlo principle. In classical set
theory an ordinal κ is called a Mahlo ordinal if it is a regular cardinal and if,
for every normal function f from κ to κ, there exists a regular cardinal µ less
than κ so that {f(ξ) : ξ < µ} ⊂ µ. The statement that there exists a Mahlo
ordinal is a powerful set existence axiom going beyond theories like ZFC.
It also outgrows the existence of inaccessible cardinals, hyper inaccessibles,
hyperhyperinaccessible and the like.

In explicit mathematics we try to stay as close as possible to the set-
theoretic formulation: we simply replace regular cardinals by universes and
employ the reflector m to obtain uniformity. In order to formulate our Mahlo
axiom in a compact way, we have to introduce some handy abbreviations.
The corresponding definitions of [<]n(f) and [s]n(f) for n a natural number
greater than 0 will be set out in a more general form than needed for stating
the Mahlo axiom; however, this general definition will be used below when
we will introduce 2-universes and Π3 reflection in explicit mathematics. We
define the following formulas by induction on n > 0:

[<]1(f) := (∀x)(<(x) → <(fx)),

[<]n+1(f) := (∀x)([<]n(x) → [<]n(fx)),

f ∈̇ [s]1 := (∀x ∈̇ s)(fx ∈̇ s),

f ∈̇ [s]n+1 := (∀x ∈̇ [s]n)(fx ∈̇ [s]n).

In a nutshell, the formulas [<]n(f) and f ∈ [s]n express that the operation
f represents a (total) type n operation on the collection of all names < and
the elements of s, respectively. For the Mahlo case below, we only need these
definitions for n = 1; the case n = 2 will be relevant in the next section.

Obviously, [<]1(f) means that f maps names to names, and f ∈̇ [s]1 says
that f maps elements of (the type named by) s to elements of (the type
named by) s. The Mahlo axiom can now be formulated as in Jäger and
Strahm [20],

(∀a, f)(<(a) ∧ [<]1(f) →
U(m(f, a)) ∧ a ∈̇ m(f, a) ∧ f ∈̇ [m(f, a)]1).

(Mah)
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It states that for every name a and for every operation f from names to
names the reflector m picks the name m(f, a) of a universe which contains
a and is closed under f . Setzer [31] presents a related formulation in the
framework of Martin-Löf type theory.

The theory EU + (Mah) is significantly stronger than EU + (Lim). To
convey an idea why this is the case, we introduce by induction on the natural
numbers n a sequence `0, `1, . . . of terms of L so that

`0 := λx.m(λy.y, x),

`n+1 := λx.m(`n, x).

An iteration of this process into the transfinite would be possible, but details
are omitted here. Note that the Mahlo axiom (Mah) immediately gives us

EU + (Mah) ` (∀a)(<(a) → U(`0(a)) ∧ a ∈̇ `0(a)),

telling us that the term `0 plays the same rôle in EU + (Mah) as the reflector
` in EU + (Lim). Furthermore, a trivial inductive argument also shows

EU + (Mah) ` <(a) → U(`n(a)) ∧ a ∈̇ `n(a),

EU + (Mah) ` <(a) ∧ b ∈̇ `n(a) → `m(b) ∈̇ `n(a)

for all natural numbers n and m less than n. This means that, for any
name a, the term `1(a) names an inaccessible universe, the term `2(a) a
hyperinaccessible universe, the term `3(a) a hyperhyperinacessible universe,
and so on.

The exact proof-theoretic analysis of the two theories EU+(Mah) and EU+
(Mah) + (L-IN) is carried through in Jäger and Strahm [20] and Strahm [34].
The first article establishes that the ordinals ϕω00 and ϕε000 are respective
upper bounds of the proof-theoretic ordinals of these theories; the latter
paper proves that both bounds are sharp.

Theorem 5 (Jäger, Strahm) 1. The theory EU + (Mah) is proof-theo-
retically equivalent to the theories KPm0 and Σ1

1-TDC0; it thus has the
proof-theoretic ordinal ϕω00.

2. The theory EU + (Mah) + (L-IN) is proof-theoretically equivalent to the
theories KPm0 + (L?-IN) and Σ1

1-TDC; it thus has the proof-theoretic
ordinal ϕε000.
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The system Σ1
1-TDC of second order arithmetic with Σ1

1 transfinite dependent
choice and its subsystem Σ1

1-TDC0, which is obtained by restricting induction
on the natural numbers to sets, was introduced in Rüede [27]; for details see
also Rüede [28].

Upper proof-theoretic bounds for the Mahlo axiom in the context of the
theories T0� and T0 are most naturally obtained via model constructions
within theories for specific nonmonotone inductive definitions introduced in
Jäger [16]. We will not discuss these in this paper, but refer to Jäger and
Studer [21] for the following result.

Theorem 6 (Jäger, Studer) 1. The theory T0�+(Mah) is contained in
the theory KPm r.

2. The theory T0 + (Mah) is contained in the theory KPm.

Together with recent results of Tupailo [36] we can conclude that T0�+(Mah)
is proof-theoretically equivalent to KPm r and T0 + (Mah) to KPm.

The Mahlo axiom imposes certain closure properties on the collection of
all names. Accordingly, a name d of a universe represents a Mahlo universe,
written as mah-U(d), if these closure properties are satisfied with respect to
d, i.e.

(∀a, f)(a ∈̇ d ∧ f ∈̇ [d]1 →
m(f, a) ∈̇ d ∧ U(m(f, a)) ∧ a ∈̇ m(f, a) ∧ f ∈̇ [m(f, a)]1).

We want to point out that in general we cannot deduce from the simpler
property

(∀a, f)(a ∈̇ d ∧ f ∈̇ [d]1 → m(f, a) ∈̇ d)

that the name d of a universe represents a Mahlo universe. If we only know
that a ∈̇ d and f ∈̇ [d]1, then the Mahlo axiom (Mah) does not permit us to
conclude that U(m(f, a)), a ∈̇ m(f, a) or f ∈̇ [m(f, a)]1. We will come back
to similar problems in a broader context later.

8 2-Universes and Π3 reflection

In Aczel and Richter [1] and Richter and Aczel [26] the two authors are in-
terested in formulating constructive (recursive) analogues for large regular
ordinals and to connect those to closure ordinals of monotone and nonmono-
tone inductive definitions. For this purpose the notion of 2-regularity turns
out to be particularly interesting.
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Let κ be a regular cardinal and F a function from κκ to κκ. We say that
F is κ-bounded if for all g ∈ κκ and for all ξ < κ there exists an α < κ such
that

(∀h ∈ κκ)(g�α = h�α → F(g)(ξ) = F(h)(ξ)).

Hence κ-boundedness is a sort of continuity condition stating that the value
F(g)(ξ) is determined by less than κ values of g. An ordinal α is a κ-witness
for F if 0 < α < κ and

(∀g ∈ κκ)({g(ξ) : ξ < α} ⊂ α → {F(g)(ξ) : ξ < α} ⊂ α).

Finally, if every κ-bounded function from κκ to κκ has a κ-witness, Aczel
and Richter call κ a 2-regular ordinal and prove that κ is 2-regular if and
only if it is weakly compact.

The two papers mentioned above also give an analogous formulation of 2-
regularity in terms of (recursion theory on) admissible sets. The so obtained
2-admissible ordinals are then shown to coincide with the Π3 reflecting ordi-
nals.

In the following we adapt the notions of 2-regular and 2-admissible ordinal
to the context of explicit mathematics and introduce so-called 2-universes
with the reflector π providing the uniformity denotation of the witnesses
and propose the following definition, which, however, will turn out to be
insufficient:

2-Ũ(d) :=


U(d) ∧
(∀a, f, g)(a ∈̇ d ∧ f ∈̇ [d]1 ∧ g ∈̇ [d]2 →

π(g, f, a) ∈̇ d ∧ U(π(g, f, a)) ∧ a ∈̇ π(g, f, a) ∧
f ∈̇ [π(g, f, a)]1 ∧ g ∈̇ [π(g, f, a)]2).

One should expect that any 2-universe is a Mahlo universe, even a hyper-
Mahlo universe. To check this claim, we define by induction on the natural
numbers n the following sequence m0, m1, . . . of terms of L:

m0 := λf.λx.π(λy.y, f, x),

mn+1 := λf.λx.π(mn, f, x).

With m0 taking over the part of the reflector m of the previous section, it
is immediately verified in EU that 2-Ũ(d) yields mah-U(d). Also, if 2-Ũ(d),
then m0 ∈̇ [d]2. But is each 2-universe d also hyper-Mahlo (in the obvious
natural sense)?
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Assume 2-Ũ(d) and pick a ∈̇ d and f ∈̇ [d]1. In order to prove that d is a
hyper-Mahlo universe, we need a Mahlo universe in d which contains a and
is closed under f . The canonical candidate for (a name of) this universe is
b := m1(f, a). Since m0 ∈̇ [d]2 according to the remark above, we thus have

b ∈̇ d, a ∈̇ b and f ∈̇ [b]1.

But the problem is to show that b represents a Mahlo universe. What we
know is that m0 ∈̇ [b]2, but this is not sufficient for making b to a Mahlo
universe: If c ∈̇ b and g ∈̇ [b]1, then m0(g, c) ∈̇ b. However, there seems to be
no possibility to derive, for example, that U(m0(g, c)). To achieve this, we
would need g ∈̇ [d]1, whereas only g ∈̇ [b]1 is available.

An elegant way to overcome this and similar problems and to improve
the clumsy definition of Mahlo universe at the end of Section 7 is to call
for appropriate strictness properties of our reflectors. A related approach –
name strictness – is studied in Jäger, Kahle, and Studer [18].

The strict variants of our limit axiom (Lim) and Mahlo axiom (Mah)
consist of two pairs (`.1) and (`.2) and (m.1) and (m.2), respectively, the
first part of each pair being the actual strictness assertion.

Strict limit axioms

<(`(a)) → U(`(a)) ∧ a ∈̇ `(a),(`.1)

<(a) → <(`(a)).(`.2)

Strict Mahlo axioms

<(m(f, a)) → U(m(f, a)) ∧ a ∈̇ m(f, a) ∧ f ∈̇ [m(f, a)]1,(m.1)

<(a) ∧ [<]1(f) → <(m(f, a)).(m.2)

Clearly, EU+(`.1)+(`.2) proves (Lim), and EU+(m.1)+(m.2) proves (Mah).
On the other hand, all natural structures which satisfy (Lim) or (Mah) also
satisfy (`.1) plus (`.2) or (m.1) plus (m.2), respectively. As a consequence,
all results stated in Section 6 and Section 7 remain true if (Lim) and (Mah)
are replaced by (`.1) + (`.2) and (m.1) + (m.2).

One of the immediate advantages, not the most important one, of course,
of the strictness of the reflector m is the possibility to give a simpler definition
of Mahlo universe, since

mah-U(d) ↔ U(d) ∧ (∀a, f)(a ∈̇ d ∧ f ∈̇ dd → m(a, f) ∈̇ d)
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is provable in EU + (m.1) + (m.2). For the direction from right to left, we
only hat to observe that m(a, f) ∈̇ d implies that m(a, f) is a name (since d
is a universe) and then apply (m.1).

The real benefit of the strictness of reflectors is in connection with the
reflector π. Following the pattern of the strict limit and Mahlo axioms, we
now present the axioms for a strict 2-universe.

Strict 2-universe axioms

<(π(g, f, a)) →
U(π(g, f, a)) ∧ a ∈̇ π(g, f, a) ∧ f ∈̇ [π(g, f, a)]1 ∧ g ∈̇ [π(g, f, a)]2,

(π.1)

<(a) ∧ [<]1(f) ∧ [<]2(g) → <(π(g, f, a)).(π.2)

They make sure that the collection < of the names has all the properties of
a 2-universe.

The extension of EU by the axioms (π.1) and (π.2) is called EU+(2-Uni).
The proof-theoretic analysis of this theory also reveals the correspondence
between the axioms (π.1) and (π.2) of explicit mathematics and the schema
of Π3 reflection in admissible set theory. In a series of unpublished notes, the
following theorem is proved.

Theorem 7 (Jäger, Strahm) 1. The theory EU+(2-Uni) is proof-theo-
retically equivalent to the theory KPi0 +(Π3-Ref); it thus has the proof-
theoretic ordinal Φ0, i.e. ΘΩω0.

2. The theory EU+(2-Uni)+ (L-IN) is proof-theoretically equivalent to the
theory KPi0 +(Π3-Ref)+ (L?-IN); it thus has the proof-theoretic ordinal
ΘΩε00.

In the sequel let us briefly sketch some of the crucial steps which are required
in proving the first part of the above theorem. In order to establish the upper
bound for EU+(2-Uni), we proceed via suitable theories of ordinals and non-
monotone inductive definitions as in the corresponding treatment of EU +
(Mah) in Jäger and Strahm [20]. The ordinal theory required now features a
suitable form of Π3 reflection. More precisely, we work with the strengthening
OP3 of OMA, where Π2 reflection on admissible ordinals is replaced by Π3

reflection on admissible ordinals. The embedding of EU + (2-Uni) into OP3
is similar in spirit to the embedding of EU + (Mah) in OMA; it proceeds via
a formalized model construction building in the new reflector π. Of course,
the 2-universe axioms of EU + (2-Uni) are now validated by making use of
the Π3 reflection axioms of OP3.
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In a next step we have to compute ordinal-theoretic upper bounds for
OP3. The central idea is to reduce the system OP3 to the family of theories
OMAn (n ∈ N), where OMAn is defined to be OMA plus Π2 reflection on
n-hyper-Mahlo ordinals; thus, OMA0 is just OMA. The first step in this
reduction uses a Tait-style reformulation of OP3, so that a standard partial
cut-elimination argument can be established. The main step then consists in
showing that, for a suitable class of statements, derivability in OP3 entails
provability in the family of theories OMAn (n ∈ N). More percisely, it can
be shown that a statement which has a quasi-normal derivation of length n
in OP3 can already been validated in the theory OMAn.

The last step in the upper bound computation now consists in the analysis
of the theories OMAn. The details of this analyis are long and tedious, but
essentially follow the pattern already used for the analysis of OMA. The
upshot is that for the proof-theoretic treatment of OMAn, the (n+3)-ary ϕ-
function is sufficient, in much the same way as the ternary ϕ-function has
been used in the case n = 0 for OMA. This concludes our brief sketch of the
upper bound computation for EU + (2-Uni).

In order to show that the above-mentioned upper bounds are sharp, one
has to carry through well-ordering proofs in EU + (2-Uni). The crucial ob-
servation is that the axiom (2-Uni) enables us to prove that there are Mahlo
universes, hyper-Mahlo universes, hyperhyper-Mahlo universes, and so on.
By induction we can prove that

EU + (2-Uni) ` <(a) ∧ [<]1(f)

→ U(mn(f, a)) ∧ a ∈̇ mn(f, a) ∧ f ∈̇ [mn(f, a)]1,

EU + (2-Uni) ` <(a) ∧ [<]1(f) ∧ b ∈̇ mn(f, a) ∧ g ∈̇ [mn(f, a)]1

→ mm(g, b) ∈̇ mn(f, a)

for all natural numbers n and m less than n. Consequently, any m1(f, a),
provided that <(a) and [<]1(f), names a Mahlo universes, m2(f, a) a hyper-
Mahlo universe, m3(f, a) a hyperhyper-Mahlo universe, and so on.

The existence of n-hyper-Mahlo universes for each n ∈ N allows one to
derive transfinite induction for all initial segments of the ordinal Φ0, i.e.,
the first ordinal > 0 which is closed under all n-ary ϕ-functions. The well-
ordering proofs use and generalize the techniques developed in Strahm [34].

We close the sketch of the proof of Theorem 7 by mentioning that no
techniques of impredicative proof theory are required for the analysis of these
systems; hence they are metapredicative in the sense of Jäger [11].
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To end this section, let us come back to the definition of 2-universe. When
working within EU + (2-Uni), we propse the following definition:

2-U(d) :=

{
U(d) ∧
(∀a, f, g)(a ∈̇ d ∧ f ∈̇ [d]1 ∧ g ∈̇ [d]2 → <(π(g, f, a))).

In virtue of (π.1) we immediately realize that 2-Ũ(d) is entailed by 2-U(d);

actually EU + (2-Uni) proves the equivalence of 2-U(d) and 2-Ũ(d). The
property (π.1) is also instrumental in showing that 2-U(d) yields that d codes
a universe which is Mahlo, hyper-Mahlo, hyperhyper-Mahlo, . . . , as we would
like it to be. Clearly, EU + (2-Uni) does not prove that there exists a d so
that 2-U(d).

9 Final remark

There is no principal problem to generalize the previous approach to n-
universes for any natural number n. Also the step into the transfinite, i.e.
the notion of α-universe for α ≥ ω, should be possible and thus provide an
explicit equivalent of Πα in the admissible setting.

It is much more demanding to address the task of studying much stronger
reflection principles, such as Π1

1 reflection or strict Π1
1 reflection, in explicit

mathematics. In Feferman’s operational set theory, the principles Op reflec-
tion and ∀-Op reflection indicate a possible direction; see Feferman [8]. As
for (pure) explicit mathematics, strong reflection principles will be treated
in future publications.
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