On the Proof Theory of Applicative Theories

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt, von
Thomas Adrian Strahm

von Oberthal und Bern

Leiter der Arbeit: Prof. Dr. G. Jéger,

Institut fiir Informatik und angewandte Mathematik

1996

On the Proof Theory of Applicative Theories

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt, von
Thomas Adrian Strahm

von Oberthal und Bern

Leiter der Arbeit: Prof. Dr. G. Jéger,
Institut fiir Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultdt angenommen.

Der Dekan:
Bern, den 6. Juni 1996 Prof. Dr. H. Pfander

Contents

Introduction

1

Syntax and semantics of theories with self application
1.1 The formal framework
1.2 Basic consequences of the axioms
1.2.1 Explicit definitions and recursion theorems
1.2.2 Basic inconsistency results
1.3 Models L
1.3.1 Recursion-theoretic models
1.3.2 Termmodels
1.3.3 Continuous and other models
1.4 Complexity issues in models L.
1.5 Finitary inductive data types L.
1.6 Explicit substitutions

Basic proof theory of applicative theories

2.1 Induction principles on the natural numbers

2.2 Some systems of arithmetic

2.3 Systems of strength PRA oo
2.3.1 Lowerbounds,
2.3.2 Upperbounds,

2.4 Systems of strength PA
2.4.1 Lower bounds
242 Upperbounds

Polynomial time applicative theories and extensions

3.1 The theory PTO

3.2 Polynomial time computable arithmetic and extensions
3.2.1 The theories PTCA and PTCA*™
3.2.2 The theory PTCAT + (E-Ref)

3.3 The proof-theoretic strength of PTO
3.3.1 Lower bounds
3.3.2 Upperbounds,
3.3.3 The proof of the fixed point theorem

10
10
12
13
13
14
15
15
18
19

22
22
24
24
24
25
29
29
29

3.4 The theory PTOT 49

3.5 Additional topics and open problems 51
3.5.1 Totality 52

3.5.2 The theories PTO + (W-lyy) and PTO + (O-lw) 52

353 Wwersus Nin PTOo ... 54

3.6 Extension to the Grzegorczyk hierarchy 54

4 The non-constructive p operator 57
4.1 The quantification operator 58
4.1.1 The theory BON(p) o o oo oo 58

4.1.2 Models of BON(p)o 58

4.2 Predicative subsystems of analysis 60
4.3 Lower bounds 61
4.3.1 Embedding Lo into Ly Lo 61

4.3.2 Lower bounds for BON(x) + (S-Iy) and BON(p) + (F-Iy) . . . 62

4.3.3 The wellordering proof for BON(x) + (N-Iy) 63

4.4 Fixed point theories with ordinals 68
4.4.1 The formal framework and main results 68

442 Thesystem To o o o o oL 72

4.4.3 The proof-theoretic strength of PAg, 75

4.4.4 The proof-theoretic strength of PAY 78

4.5 Upper bounds L 79
4.5.1 Formalizing CTT(p)in Lo oo oo 80

4.5.2 Embedding theories with p into fixed point theories with ordinals 81

4.5.3 The Church Rosser proof for —,, 83

46 Onpversus E . . . oo oo 86
Proof-theoretic equivalences 87
List of symbols 89

Introduction

In the mid seventies, Feferman [18, 20] introduced systems of explicit mathematics in
order to provide an alternative foundation of constructive mathematics. More pre-
cisely, is was the origin of Feferman’s program to give a logical account to Bishop’s
style of constructive mathematics. Right from the beginning, systems of explicit
mathematics turned out to be of general interest for proof theory, mainly in con-
nection with the proof-theoretic analysis of subsystems of first and second order
arithmetic and set theory. Complete proof-theoretic information about the most
prominent framework for explicit mathematics, Ty, is available since 1983 by the
work of Feferman [18, 20], Feferman and Sieg [30], Jéger [45] and Jéger and Pohlers
[49]. An excellent and uniform presentation of many of these results is contained,
among other things, in Glaf’ thesis [37].

More recently, systems of explicit mathematics have been used to develop a general
logical framework for functional programming and type theory, where it is possi-
ble to derive such important properties of functional programs as termination and
correctness. The programs considered are taken from functional programming lan-
guages, which are either based on the untyped A calculus (e.g. SCHEME) or the
polymorphic typed A calculus (e.g. ML). Important references for the use of ex-
plicit mathematics as an abstract logical basis for functional programming and type
theory are Feferman [25, 26, 27] and Jéger [47]. For frameworks closer to actual
programming languages, cf. Hayashi and Nakano [40] and Talcott [69]. The former
reference contains — among other things — the description of an experimental im-
plementation for extracting programs from constructive proofs in a Feferman-style
explicit mathematics setting.

There are two kinds of objects relevant in explicit mathematics, namely operations
or rules and classifications or types. The former are characterized by the applica-
tive axioms of a partial combinatory algebra plus natural numbers, giving rise to
a standard interpretation in terms of the (indices of) partial recursive functions.
Hence, an object is not only an input to a program, but acts as a program itself so
that self-application is meaningful, though not necessarily total. Observe that our
way of describing operations is clearly intensional. Classifications or types, on the
other hand, must be thought of a being generated successively from preceding ones.
Although they may define rather complicated properties, they are always explicitly
given or represented by means of operations. Nevertheless, the two basic notions

of operation and classification are asymmetric in the sense that the characteristic
function of a type need not generally be given by an operation or rule. This ends our
brief discussion on the two basic sorts of objects that are present in explicit math-
ematics. The reader is referred to Feferman [18, 20] and Jéger [46] for information
concerning the ontology of operations and classifications.

In this thesis we exclusively focus on the applicative basis of explicit mathematics,
i.e. the operation/rule part described above. The so-obtained frameworks are re-
ferred to as applicative theories in the sequel: these are well-known of already being
of significant foundational interest for mathematics and computer science, cf. e.g. the
text books Beeson [3] and Troelstra and Van Dalen [71] for extensive surveys.

Apart from some contributions concerning the syntax and semantics of theories with
self-application, the main concern of this thesis is of proof-theoretic nature. We will
give a broad discussion of the proof-theoretic strength of many applicative theories,
where special emphasis will be put on the definition and analysis of feasible theo-
ries with self-application as well as the study of the non-constructive quantification
operator i or, more familiar, Kleene’s type two functional F in an applicative frame-
work. In the sequel let us try to outline some general aspects concerning these two
central issues of our thesis.

In the last decade, there have been many activities in the field of so-called bounded
arithmetic, emerging from Buss’ important work in [5]. A huge variety of formal
systems of arithmetic and their relationship to computational complexity has been
investigated, and this research is still going on, cf. [7, 13, 12] for a survey and
further references. A natural question — first posed by Feferman in [26] — is whether
a similar program can be carried through in the context of explicit mathematics
or applicative theories. Most interestingly, is it possible to set up a natural self-
applicative framework in such a way that the provably total functions are exactly
the polynomial time computable functions? We have shown in [67] that a direct
mimicking of systems of bounded arithmetic in applicative theories does not work:
this is due to the presence of unbounded recursion principles in the self-applicative
setting. Hence, a theory had to be developed that is truly in the spirit of applicative
systems. In this thesis, we present a first-order theory PTO of operations and
binary words, which embodies the full expressive power of self-application, though
its provably total functions are just the polytime ones. PTO includes a very natural
induction principle on binary words, so-called set induction. The upper bound
computation for PTO goes via a reduction to Ferreira’s system of polynomial time
computable arithmetic (cf. [32, 33]) plus a suitable reflection principle so that the
distinctive feasibility w.r.t. provable II3 statements of this latter theory yields the
desired bound for PTO. We will show how our approach can be extended in order to
define applicative theories G, that capture exactly the nth level of the Grzegorczyk
hierarchy. In particular, the provably total function of G3 are just the elementary
functions in the sense of Kalmar.

Let us now turn to the non-constructive p operator. In [18] Feferman has not only
introduced the system T, mentioned above, but also a theory T; that is obtained
from T, by strengthening the applicative axioms by the quantification operator pu.
The standard interpretation of the operations is now given in terms of IT} recursion
theory, namely the partial TI} functions. Only recently it has been possible to
obtain complete proof-theoretic information about subsystems of T by the work of
Feferman and Jéger [28, 29] and Glafi and Strahm [38]. For the relevance of systems
of explicit mathematics with p for mathematical practice, cf. Feferman [19, 23].

In this thesis we give an extensive discussion of first-order applicative theories that
are based on the non-constructive p operator, starting off from the paper Feferman
and Jéger [28]. The two principles of complete induction on the natural numbers
studied there are set induction and full formula induction. In our investigations
we will be particularly interested in forms of induction lying between these two
induction principles, namely positive forms of induction on the natural numbers.
The corresponding systems with p turn out to have the proof-theoretic strength of
the least primitive recursively closed ordinal, pw0. Moreover, special emphasis will
be put on the role of the axiom of totality in our applicative setting with u. By
totality we mean that a applied to b always yields a value ¢ for all objects a and b of
our universe of discourse. Clearly, recursion-theoretic models are no longer possible
in the presence of totality: the standard models for total applicative theories are term
models with suitable forms of term reduction and Church Rosser properties. Such
models provide a natural operational semantics of total applicative theories which is
based on term reduction. The definition of term models in the presence of p is not
completely trivial: we will define so-called infinitary term models that include special
reductions for p and we show that the corresponding reduction relations satisfy the
Church Rosser property. As in [28], the crucial tool for establishing upper bounds for
applicative theories with p are so-called fixed point theories over Peano arithmetic
with ordinals. They have been introduced in Jiger [48] and extended in Jéger and
Strahm [51] to second order theories with ordinals. In [28] ordinal theories have
been used in order to describe the standard recursion-theoretic model of the partial
[T} functions. Here we will demonstrate that the above mentioned infinitary term
models together with their Church Rosser properties can be formalized in suitable
fixed point theories with ordinals, thus establishing the desired proof-theoretic upper
bounds for total applicative theories with p. In particular, it will turn out that
totality (and even extensionality) does not raise the proof-theoretic strength of all
theories with p studied in these investigations.

This finishes our very sketchy discussion of some central aspects of this thesis. We
are doing without a detailed plan of our work at this point and refer the reader
to the introductions of the individual chapters and sections as well as the table of
contents. Finally, let us mention that throughout these investigations we have made
free use of the papers Jiger and Strahm [52, 50] and Strahm [68, 66].

Acknowledgments

I am deeply grateful to Prof. Gerhard Jéger for introducing me to mathematical
logic and proof theory and for his steady encouragement during the past years. He
has not only been an excellent guide, but also a friend.

[am indebted to Prof. Solomon Feferman for many inspiring discussions on explicit
mathematics and applicative theories and, especially, for inviting me to Stanford
University last autumn.

I benefited greatly from frequent conversations with Prof. Andrea Cantini on weak
applicative theories. Many thanks are due to him, too.

Last but not least, [want to thank all the present and former members as well as
guests of our research group for sharing many mathematical and also other thoughts
and for always providing such a friendly working atmosphere.

Bern, June 1996, Thomas Adrian Strahm

Chapter 1

Syntax and semantics of theories
with self application

It is the aim of the first chapter of this thesis to give a very brief introduction into
the syntax and semantics of theories with self-application, thereby laying the basis
for the proof-theoretic investigations to be discussed in the remaining chapters.

In Section 1 we introduce the language and axioms of the basic theory BON of opera-
tions and numbers. The first part of Section 2 is centered around explicit definitions
and recursion theorems in BON, and in the second part we address some basic incon-
sistency results concerning extensions of BON. Section 3 contains a short survey of
various models of BON, where some emphasis is put on recursion-theoretic and term
models. In Section 4 we will establish some undecidability results for total models
of BON, thus generalizing the Scott-Curry undecidability theorem of the untyped A
calculus. Section 5 contains a very short discussion on finitary inductive data types
as an alternative to the type of the natural numbers in BON. In Section 6, finally,
we give a review of our paper [68] on partial applicative theories and explicit sub-
stitutions, thereby shedding some more light on crucial differences between partial
and total applicative theories.

For more comprehensive introductions to applicative theories the reader is referred
to Beeson [3], Cantini [9], Feferman [18, 20], and Troelstra [71].

1.1 The formal framework

Let us begin with describing the formal framework of the basic theory BON of
operations and numbers, cf. Feferman and Jéger [28].

We start off from the language L. of partial combinatory logic. L. is a first order lan-
guage of the logic of partial terms with individual variables a, b, ¢, x,y, 2, u, v, w, f, g,
h, ... (possibly with subscripts). In addition, L. includes individual constants k, s
(combinators) and p, pg, p1 (pairing and unpairing). L. has a binary function sym-
bol - for (partial) term application, a unary relation symbol | (defined) as well as

a binary relation symbol = (equality). The language Ly of basic operations and
numbers comprises L. and, in addition, includes constants 0 (zero), sy (numerical
successor), py (numerical predecessor), dy (definition by numerical cases), ry (primi-
tive recursion) and possibly other constants to be specified separately. Furthermore,
Ly has a unary relation symbol N (natural numbers).

The individual terms (r,s,t,r1,s1,11,...) of Ly are inductively defined as follows:
1. The individual variables and individual constants are individual terms.
2. If s and ¢ are individual terms, then so also is (s - t).

As usual t[s/z] denotes the term ¢ where each occurrence of the variable x is replaced
by the term s. In the following we write (st) or just st instead of (s-t), and we adopt
the convention of association to the left, i.e. s1sy...5s, stands for (...(s152)...5,).
We also write (t1,t2) for ptity and (¢q,ts, .. ., t,) for (t1, (ts,...,t,)). Further we put
t' := syt and 1 := 0’. Finally, the numeral 7 is inductively given by 0 := 0 and
n——i—l = SNTL.

The formulas (A, B,C, Ay, By,C4,...) of Ly are inductively defined as follows:
1. Each atomic formula N(¢), ¢t] and (s =t) is a formula.
2. If A and B are formulas, then so also are =A, (AV B), (AAB) and (A — B).
3. If A is a formula, then so also are (3x)A and (Vx)A.

Our applicative theories are based on partial term application. Hence, it is not
guaranteed that terms have a value, and t| is read as “¢ is defined” or “t has a
value”. The partial equality relation ~ is introduced by

s~t:= (s|Vt])— (s=1).

In addition, we write (s # t) for (s| At| A =(s =t)). Finally, we use the following
abbreviations concerning the predicate N:

teN = N(1),
(Jr e N)A (Fz)(x e NA A),
(Ve e N)A = (Vz)(x € N — A),
(teN—=N) = (VzeN)(tz €N),
(Va

)
(t € N™*! — N)
Before we turn to the exact axiomatization of BON, let us give an informal inter-
pretation of its syntax. The individual variables are conceived of as ranging over
a universe V of computationally amenable objects, which can freely be applied to
each other. Self-application is meaningful, but not necessarily total. V' is assumed
to be combinatory complete, due to the presence of the well-known combinators k

8

and s, and V' is closed under pairing. There is an infinite collection of objects N C V'
which is generated from 0 by the successor operation sy; there exists a corresponding
predecessor operation py. Finally, dy acts as a definition by cases operator on N,
and an operation ry guarantees closure under primitive recursion on N.

The underlying logic of BON is the classical logic of partial terms due to Beeson [3];
it corresponds to ET logic with strictness and equality of Troelstra and Van Dalen
[70]. The non-logical axioms of BON are divided into the following five groups.

|. Partial combinatory algebra.
(1) kry =,
(2) szyl A szyz ~ xz2(yz).
[1. Pairing and projection.
(3) po(z,y) =2 A pu(z,y) = .
[11. Natural numbers.
(4) 0 N A (Vx € N)(2' € N),
(5) (Vo e N)(z' #0Apy(z') = z),
(6) (Vr € N)(z #0 — pnz € NA (pyz) = 2).
[V. Definition by numerical cases.
(7) ae NAbEN A a=0b— dyzyab = z,
(8) ae NAbEN A a#b— dyzyab =y.
V. Primitive recursion on N.
(9) (feN—=N) A (geN>*—=N) — (ryfg € N> = N),
(10) (feEN=N)A(geN*=N)AzeNAyeNAh=rfg—
hz0 = fx A hx(y') = gry(hzy).

It is important to observe that the theory BON does not include complete induction
on the natural numbers N. We will discuss the effect of adding various induction
principles to BON in the next chapters, where we will be studying the proof theory
of applicative theories.

Before we turn to the discussion of basic consequences and facts about the axioms
of BON, let us briefly recall the notion of a subset of N from [19, 28]. Sets of
natural numbers are most naturally understood in our applicative context via their
characteristic functions which are total on N. Accordingly, we define

f€PN) := Ve eN)(fr=0V fz=1),

9

with the intention that an object z belongs to the set f € P(N) if and only if
(fo =0).

For now, we will be interested in three possible strengthenings of the applicative
axioms, namely totality, extensionality, and full definition by cases. The totality
axiom (Tot) expresses that application is always total, i.e.

(Tot) (V) (Vy)(zyl).

In the sequel we will often write TON instead of BON + (Tot). The extensionality
axiom (Ext) claims that operations are extensional in the following sense:

(Ext) (Vo) (fz ~ gx) — (f = 9).

Finally, by full definition by cases (Dy) we mean the strengthening of definition by
numerical cases dy on N to definition by cases dy on the universes V:

(Dv) (a =b— dyzyab=z) A (a # b — dyzyab = y).

This finishes the description of the formal framework for applicative theories.

1.2 Basic consequences of the axioms

In this section we address some of the most important consequences of the axioms
of BON. Furthermore, we collect some well-known inconsistency results concerning
strengthenings of BON by (Tot), (Ext) and (Dy), cf. [3, 9, 18, 20, 71].

1.2.1 Explicit definitions and recursion theorems

Let us start with the well-known notion of A abstraction, which, due to the presence
of k and s, is definable in BON.

Proposition 1 (Explicit definitions) For each Ly term t there exists an Ly term
(Ax.t) whose free variables are those of t, excluding x, so that

BON F (Az.t)] A (Az.t)z ~t.
Proof. Define (Ax.t) by induction on the complexity of ¢ by: (Ax.x) := skk; (Ax.t) :=
kt for ¢ a variable different from x or a constant; (Az.t;ty) = s(Ax.t;)(Ax.ty). O
In the following we write Az ... x,.t for Axy.(Axe.(... (Az,.t)...)).

Observe that our definition of A abstraction is different from the well-known defini-
tion in the context of a total logic: there one usually defines (Az.t) := kt if does
not occur in t; this definition, however, no longer guarantees (Az.t)| in a partial
setting. As a consequence, the A abstraction of our theorem behaves very badly

10

with respect to substitutions, i.e. for x # y and x not occurring in s we generally
do not have

sl — (Az.t)[s/y] = Ax.t[s/y]. (%)

For example, (Az.y)[z2/y] = k(zz), but Az.zz = s(kz)(kz). The failure of (x) is
not really problematic, since (Az.t)[s/y] and Az.t[s/y] are easily shown to be exten-
sionally equal, and this is actually enough for working in BON. For an extensive
discussion about substitutions in partial applicative theories we refer to our paper
Strahm [68]. A short overview of that paper is given in Section 1.6 of this chapter.

In a next step we give a partial and a total version of the recursion theorem. We
begin with the fixed point theorem for BON.

Proposition 2 (Recursion theorem for BON) There exists an L. term rec, so
that
BON Frec,f| A (Vx)(rec,fx ~ f(rec,f)x).

Proof. Choose rec, as Af.(A\yz.f(yy)z)(Ayz.f(yy)z). O

Due to the presence of a total application operation, TON, i.e. BON + (Tot), proves
a slightly stronger version of the recursion theorem, which literally corresponds to
the fixed point theorem for the untyped lambda calculus. We will see in the next
paragraph that this strengthening allows one to derive inconsistency results in the
presence of totality.

Proposition 3 (Recursion theorem for TON) There exists an L. term rec; so
that
TON F rec,f = f(rec,f).

Proof. Choose rec; as Af.(Ay.f(yy))(Ay.f(yy)). O

As usual we get from both recursion theorems that the partial recursive functions are
(numeralwise) representable by appropriate Ly terms in BON and TON, respectively.

Corollary 4 The partial recursive functions are (numeralwise) representable in
BON and TON.

At this point the reader may wonder why we did include the primitive recursor ry
in the theory BON: although such a combinator is definable by making use of the
recursion theorem and its defining axiom (10) can be derived in BON, induction
is required in order to establish the totality axiom (9) about ry; since we will be
interested in very weak forms of complete induction on N that are not strong enough
to derive (9), we claim the totality of ry as an axiom of BON.

We finish this paragraph by giving an application of the recursion theorem in BON,
which guarantees the existence of a combinator noty that provably does not belong
to N. This result is due to Kahle [53].

11

Proposition 5 There exists an Ly term noty so that
BON F noty € N.

Proof. Choose noty as rec,(Azxy.dy10(xy)0)0, and assume noty € N. Then easy
calculations show that noty = 0 implies noty = 1, and noty = 0 follows from
noty # 0. This is a contradiction and, therefore, noty ¢ N. [

1.2.2 Basic inconsistency results

In this paragraph we shortly address some well-known basic inconsistency results
concerning extensions of BON and TON. The main tools to establish these incon-
sistencies are the recursion theorems.

In a first step we show that totality (Tot) is inconsistent with full definition by cases
(Dy).
Proposition 6 TON + (Dy) is inconsistent.

Proof. Let s := rec;(Ax.dy1020). Then easy calculations show that s = 0 implies
s =1, and s # 0 yields s = 0: contradiction. [

As an immediate consequence we get that totality plus “everything is a number” is
inconsistent, too. Actually, this is also a corollary to Kahle’s Proposition 5.

Corollary 7 TON + (Vz)N(z) is inconsistent.

In the following we see that not only totality (Tot), but also extensionality (Ext) is
inconsistent with full definition by cases.

Proposition 8 BON + (Ext) + (Dy) is inconsistent.
Proof. Let s := rec,(Ayx.dy10y(Az.0)). Then we have s| and for all =
sz ~ dy10s(Az.0).

Hence, if s = (A2.0), then (Vx)(sx = 1), which is impossible; therefore, s # (Az.0).
But then (Vz)(sz = 0); this yields s = (Az.0) by extensionality (Ext): contradiction.
U

Corollary 9 BON + (Ext) + (Vz)N(z) is inconsistent.

By using similar techniques as above one can also show that both totality (Tot) and
extensionality (Ext) are inconsistent with the following statements:

(i) there is a characteristic function for equality = on the universe V;
(ii) there is an injective operation from the universe V' into the numbers N.
Moreover, (Tot) is easily seen to be inconsistent with the statement
(iii) there is a characteristic function for the natural numbers N.

Is (Ext) inconsistent with (iii), too?

12

1.3 Models

In this section we briefly discuss some basic models of BON and its extensions.
We mainly concentrate on recursion-theoretic and term models, since these will be
important for our metamathematical investigations in the rest of this thesis.

1.3.1 Recursion-theoretic models

We give two recursion-theoretic models, namely one in terms of ordinary ¢ recursion
theory and one in terms of II{ recursion theory.

3Y recursion theory: the model PRO

The universe of the model PRO of partial recursive operations consists of the set
of natural numbers N. N is interpreted as N and application - as ordinary partial
recursive function application, i.e. z - y means {z}(y) in PRO, where {z} is a stan-
dard enumeration of the partial recursive functions. It is easy to find appropriate
interpretations of k and s such that the axioms of a partial combinatory algebra are
satisfied, and the remaining constants of Ly are straightforwardly interpreted, too.
The sets in P(N) are exactly the recursive sets, and the total operations from N to
N the total recursive functions. Observe that application in PRO is truly partial,
hence PRO [~ (Tot). Moreover, PRO [~ (Ext) for trivial reasons, but PRO = (Dy),
since V = N is true in PRO.

PRO provides a natural example of a domain where objects may be programs as
well as inputs to programs. The model underlines the constructive and operational
character of applicative theories.

II} recursion theory: the model ERO

The model ERO is obtained from PRO by replacing ordinary partial recursive func-
tion application by application of partial IT} functions: these are obtained by IT}
uniformization of a I} enumeration of the II} relations, cf. Rogers [57]. This in-
terpretation of application is equivalent to partial recursive function application in
Kleene’s type two functional E, i.e., z - y means {z}*(y) in ERO, where

E(f) = {07 if (3z)(f(z) = 0),

1, else,

for f a total function from N to N, cf. Hinman [42] for details. P(N) corresponds
to the hyperarithemtic sets in this model, and the total operations from N to N are
exactly the hyperarithmetic functions.

The model ERO of E recursive operations will be the standard model of the theory
BON plus the so-called non-constructive g operator, which we will study in detail
in Chapter 4.

13

1.3.2 Term models

In the sequel we will address partial and total term models of BON and TON,
respectively. For that purpose we need some general notions concerning reduction
relations. We adopt the notation from Barendregt [2], pages 50ff.

A notion of reduction is just a binary relation R on the Ly terms. If R; and R, are
notions of reduction, then Ry R, denotes R; U Ry. A notion of reduction R induces
the binary relation —x of one step R reduction (the compatible closure of R) and
the binary relation —p of R reduction (the reflexive, transitive closure of —g).

The notion of reduction p that is appropriate for building models of our theories
is just the usual notion of reduction for combinatory logic (cf. e.g. [2]) extended
by reduction rules for the constants p, po, p1, SN, Pn, dn and ry. The relation p is
given by the following redex-contractum pairs, where tg,t1,%s, s are Ly terms and
m,n € N with m # n:

ktot,
stotits
po(ptot1)
p1(ptoty)
PN (SNTTT)
dutol T
dutol T
rntot1s 0

rNt0t18 m—+1

tUS,

T T D DD T D DO
E

tlS m(rNtUtls m)

Using the standard method of parallelization it is straightforward to prove that —,
has the Church Rosser property (cf. e.g. [2]).

We start our discussion with total term models, since these are more general and
familiar from the untyped A calculus and combinatory logic.

The total term model CTT

The universe of C'T'T consists of all closed Ly terms. The constants are interpreted
by themselves, and term application means just juxtaposition of terms in CTT.
Crucial is the treatment of equality: two Ly terms are equal in C'T'T if and only
if they have a common reduct with respect to —,. Moreover, the natural numbers
in CTT are those Ly terms which reduce to some numeral 7 with respect to — .
Indeed, CTT is a model of TON, thanks to the Church Rosser property of —»,.
Moreover, it is not difficult to see that CTT [~ (Ext), cf. Beeson [3] for details. We
also have CTT £ (Dy) by definition, actually, by Proposition 6 we know that there
exists no model of TON + (Dy).

14

An extensional version TTE of CTT can be obtained by considering the term model
of the An calculus (extended by reduction rules for the additional constants of Ly)
and using the standard translation of combinatory logic into A calculus. In the
context of extensionality, the universe of a total term model consists of all terms of
Ly and not only the closed Ly terms, of course.

In Chapter 4 we will define and study the term model analogue CTT(u) of ERO.
CTT(u) is a so-called infinitary term model, which satisfies the axioms of the non-
constructive p operator as well as totality (Tot).

The normal term model CNT

The universe of CNT consists of all closed Ly terms in normal form, the constants
of Ly are interpreted by themselves, and t; -t means InFirst(t,ty); here InFirst(t,t5)
denotes the uniquely determined normal term s provided that ¢;t, can be reduced to
s according to the leftmost minimal strategy, InFirst(t;ts) is undefined otherwise.
Using the leftmost minimal strategy, at each stage of a reduction sequence the left-
most minimal redex is contracted, where a redex is called minimal, if it does not
contain any other redexes. It is necessary to use the leftmost minimal strategy in
order to be consistent with the strictness axioms of BON. Finally, equality means
identity in CNT and the natural numbers N are exactly the numerals of Ly. Obvi-
ously, CNT £ (Tot), and also CNT = (Ext), cf. [3]. Moreover, it is easy to see that
a slight modification of CNT satisfies (Dy).

1.3.3 Continuous and other models

We finish this section by mentioning some continuous models of our theories, without
giving their definition. Among them are Scott’s D, Plotkin’s Pw, Engeler’s Dy,
Barendregt’s Bohm tree model, and Scott’s information systems; for details and
references, cf. [2, 3, 41, 71]. All these models satisfy the axiom of totality (Tot).
Another interesting class of partial models are the so-called generated models of
Feferman [20]; we will see a particular example of such a model construction in
Chapter 3, where we will discuss polynomial time operations in applicative theories.

1.4 Complexity issues in models

In this section we address some complexity issues in models of TON, i.e. models with
a total application operation. In particular, we are interested in the complexity of
application, equality, and natural numbers.

There seems to be a striking difference in the complexities of these relations, de-
pending on whether the application relation is partial or total: in the partial models
PRO and CNT discussed in the last section, application is truly r.e., whereas the
natural numbers and equality have trivial complexity; this is in sharp contrast to the

15

total term model C'T'T, where application is trivial, but the natural numbers and
equality are undecidable. Similar remarks apply to effective versions of continuous
models. The question arises whether the above relations are generally undecidable
in an arbitrary model of TON. In the following we show that if 9t is a model of TON
that can be described in N, then equality and natural numbers are undecidable in
2N as long as application is numeralwise definable in 9. In particular, if application
is r.e., then equality and numbers are undecidable.

In order to be able to discuss undecidability issues more easily, let us introduce the
notion of a number-theoretic interpretation of Ly. The recursion-theoretic models
and term models obviously fit this definition in a straightforward way.

Definition 10 A number-theoretic interpretation of Ly is a structure
M = (U, App, Eq, Nat, k, 5, ..., i),

so that the following conditions are satisfied: (i) Nat C U C N; (ii) Eq C U?; (iii)
App is a partial function from U? to U; (iv) ¢ € U for all constants ¢ of Ly.

It is clear what it means for a number-theoretic interpretation to be a model of
BON or TON. The notion of numeralwise definability within a number-theoretic
interpretation 91 is crucial for the theorem to be proved below.

Definition 11 Let 9 = (U,...) be a number-theoretic interpretation of Ly. A
function F': U™ — U is called numeralwise definable in 9, if there exists an f € U
so that

fml...mn:F(ml,...,mn)

holds in 9 for all m4,...,m, € U.

The following theorem is a generalization of the Scott-Curry undecidability theorem
to arbitrary, not necessarily term models. Its proof very closely follows the one given
in Hindley and Seldin [41].

Theorem 12 Let 9 = (U, App, Eq, Nat, ...) be a number-theoretic model of TON
so that App is numeralwise definable in 9. Assume further that A and B are sets
of natural numbers so that (i) A,B C U; (ii) A # 0, B # 0; (iii)) A, B are closed
under equality Eq in 9. Then A and B are recursively inseparable.

Proof. Let us assume that the hypothesis (i)—(iii) hold and assume by contradiction
that A and B are recursively separable. Hence, there exists a recursive function F
so that we have for all natural numbers n:

E(n)=0V E(n)=1; neA = En)=1 neB = En)=0. (1)

Since 9 = TON and the recursive functions are representable in TON, there exists
an e € U which numeralwise defines F in 91. In the following we work in the model

16

M. Since App is numeralwise definable in 9, there exists an f € U so that we have
for all m,n € U:
fmn =mn. (2)

Moreover, there is a g € U satisfying gn = 7 for all natural numbers n; the operation
g exists in 9N, since MM is closed under recursion, and we have

g0="0; gn+1= fsu(gn). (3)

Since A and B are non-empty, there exists an a € A and a b € B. Further, let h
and 7 in U be given by:

h := Az.dyab(e(fz(gx)))0; j := hh. (4)

From the definition of j, (2) and (3) we get

7 = dnab(e(fh(gh)))0 = dyab(e(hh))0 = dyab(e)0. (5)

Assume now E(j) = 0. Then we have ej = 0 and, hence, by (5) j = a. Since A is
closed under equality, this implies j € A: this is a contradiction, since now E(j) =1
by (1). Analogously, we get a contradiction by assuming E(j) = 1. Since E(j) =0
or E(j) = 1, we get an overall contradiction and, hence, A and B are recursively
inseparable. [

Corollary 13 Let Mt = (U, App, Eq, Nat, ...) be a number-theoretic model of TON
so that App is numeralwise definable in 9. Then the sets {x € U : Nat(z)} and
{(z,y) € U*: Eq(z,y)} are not recursive.

Proof. Assume that {z € U : Nat(x)} is recursive. Then {x € U : Nat(z)} and
{r € U : =Nat(z)} are recursively separable. Observe that by Proposition 7, the
second of these sets is non-empty. Furthermore, both sets are closed under equality
Eq, since 9t = TON. All together, we have a contradiction to our theorem. The
argument for {(z,y) € U*: Eq(x,y)} is similar. O

Corollary 14 Let 9t = (U, App, Eq, Nat, ...) be a number-theoretic model of TON
so that the graph of App isr.e. Then {zx € U : Nat(x)} and {(x,y) € U : Eq(z,y)}
are not recursive.

Proof. If the graph of App is r.e., then App is a partial recursive function and,
hence, numeralwise definable in every model of TON. O

The question arises whether the result of the last corollary is sharp. In particular,
is there a number-theoretic model of TON so that App is non r.e. but Eq and Nat
are decidable? Moreover, is Corollary 13 indeed more general than Corollary 147

17

1.5 Finitary inductive data types

In the following we indicate how to replace the natural numbers N by an arbitrary
finitary inductive data type D in the formulation of our applicative theories.

Let us briefly recall the basic notions, cf. [72]. A finitary inductive data type D is
generated from a finite set of atoms a; (i € I), and a finite set of constructors ¢; of
arity n; (j € J) as follows:

(1) a; €D (i €l);
(2) z1,..y20; €D = ci(w1,..,20,) €D (j € J).
The corresponding principle of D induction has the form

{A(a) bier {Al@) A2 ANA(xny) = Algi(a, .-, 20;)) ey
(Vz € D)A(z) !

and the scheme for function definition by primitive recursion on D has the following
obvious clauses:

(1) f(,a:) = g:(y) (i € I);
(2) f(W,cj(@r, ... n,)) = hi(§, 20,20, f(F,01), ., f(F2ny) (J €).

It is easily seen that the natural numbers, lists, finitely branching trees, etc. fit the
definition of an inductive date type D.

A formulation of our applicative theories which is based on D instead on N is ob-
tained in a straightforward manner as follows. The language Lp extends L. by
a unary relation symbol D, constants a; for the atoms of I, and constants c; for
the constructors of D. Moreover, one adds for each constructor c; corresponding
deconstructor operations Cj, . ..,Cjn;, and Lp includes constants dp for definition
by cases on D, and rp for primitive recursion on D. The respective axioms are
formulated in the obvious way.

It is well-known that a finitary inductive date type D can be embedded into N by
means of standard sequence coding. Based on this, it is straightforward to provide
an interpretation of a partial applicative theory based on D in terms of ordinary
recursion theory, i.e. we obtain an analogue of the model PRO for such a theory.
Things get slightly more involved if we turn to systems based on D and including
the axiom of totality (Tot). Here one can consider a modification of the term model
CT'T which includes suitable reductions for terms involving the date type D, e.g.

Ejyicj(tb s 7tnj) P tz (]- S 1 S Tl,j).

It is a matter of routine to establish the Church Rosser property for such a modified
reduction relation.

18

Based on the above ideas, we will see in the next chapter that proof-theoretic up-
per bounds for theories with NN also provide upper bounds for systems with a fini-
tary inductive data type ID. In general, applicative theories based on N are proof-
theoretically equivalent to those based on D as long as we have unbounded primitive
recursors in our systems. The situation changes drastically if we consider applica-
tive theories with a bounded primitive recursor built in. Such systems are generally
not equivalent for all inductive data types D. In Chapter 3 we will study an ap-
plicative theory for polynomial time operations based on the data type W of finite
0-1 sequences; the corresponding theory based on N is very likely to be of minor
proof-theoretic strength, cf. the discussion in Section 3.5.3.

It has to be mentioned that a completely satisfactory treatment of inductively gen-
erated data types in explicit mathematics can only be achieved by considering ap-
propriate flexible type theories above applicative theories. The reader is referred to
Feferman [24, 25, 26, 27] for further information.

This finishes our short discussion on finitary inductive data types. We have seen that
N plays a “universal” role among all inductive data types D and, hence, it is perfectly
justified to stick to theories based on N in the sequel. As already mentioned, an
exception will be our polynomial time applicative theory which will be based on the
sett W of finite 0-1 words.

1.6 Explicit substitutions

In this section we give a brief review of our paper [68] on partial applicative theories
and explicit substitutions. We try to discuss the basic ideas rather than giving
precise definitions and proofs of theorems.

It is a reasonable question to ask whether the axioms for a partial combinatory
algebra of BON can be replaced by some form of the partial A calculus in such a
manner that BON and its partial A version are mutually interpretable into each other
so that the relevant models are preserved in a natural way. It is well-known that
this question has a positive answer as long as the underlying logic is total, however,
the situation changes drastically if one considers a partial application operation as
it is our case with BON.

A straightforward A analogue BON, of BON is obtained by allowing the possibility
for building A terms, and by replacing the axioms of a partial combinatory algebra
by the two axioms

(Az.t)| (Az.t(x))y ~ t(y).

Now the main problem encountered is that substitution in BON, is defined as usual
in the metalanguage and, hence, the substitution property (%) of Section 1.2.1 is
satisfied for trivial reasons. On the other hand, we have seen that (x) fails for the
encoding of A abstraction in partial combinatory logic and, therefore, the straight-

19

forward embedding of BON, into BON fails. As a consequence, the models PRO
and CNT of BON do not readily carry over to models of BON,.

The question arises whether it is possible to find another encoding of A in BON or
our model PRO satisfying the substitution property (x). Elena Pezzoli has found an
elegant formal argument showing that the existence of a recursion-theoretic interpre-
tation of BON, which has a partial recursive term evaluation function contradicts the
undecidability of the halting problem, answering the above question in the negative.
The proof of her theorem is included in [68].

Theorem 15 It is not possible to make the partial recursive functions model PRO
of BON into a model of BON, in such a way that the term evaluation function
f(t,a) =~ ||t||a, for t a A term and « an assignment of variables, is partial recursive.

The following corollary is immediate from the fact that PRO is a model of BON.
Corollary 16 There is no recursive encoding of A in BON validating (x).

We have seen that a stronger concept of substitution in the partial A calculus makes
its embedding into partial combinatory logic fail and, therefore, PRO is not pre-
served as a model of BON,. The deep reasons for the failure of this embedding
have to be seen in the fact that pushing a substitution inside an abstraction is not
consistent with a strongly intensional point of view. Indeed, the problems described
above completely disappear in the presence of the extensionality axiom (Ext). In
particular, () holds in BON + (Ext). For further discussion on this point we refer
again to [68].

In the following we briefly sketch a modified version BON,, of BON,, which is
equivalent to BON and, therefore, enjoys a recursion-theoretic interpretation. The
novel point of BON,, is the use of explicit substitutions. Accordingly, substitution
is no longer a notion of the metalanguage, but an operation axiomatized in the
theory under consideration itself. To be more precise, a substitution # is a finite set
{t1/x1, ..., ty/xs} so that the x; are distinct variables and the ¢; are terms; those
are defined simultaneously with the substitutions by closing under application, A
abstraction, and substitution application t6 for arbitrary substitutions #. Note that
tf is a purely syntactical object, which can only be evaluated by means of appropriate
axioms to be specified now. The extended (axiom of BON,, reads as

(Az.t)0y ~ t(y/x - 0),

where (y/x-0) is {y/x} UO~" and 6~ is § with any binding for = deleted. Other
important axioms of BON,, are the so-called substitution axioms; they allow a
careful evaluation of substitutions in the following way:

T ~ t (t/z € 0)
(ts)0 =~ (t0)(s0)
(th)o =~ t(fo)
t(s/x-0) ~ tb (x & fvar(t) U dom(6))
te ~ t.

20

Here (fo) denotes the composition of § and o, fvar(t) the free variables of ¢, and
dom(f) the domain of the substitution 6; ¢ is the empty substitution. For precise
definitions see [68]. It is crucial to observe that among our substitution axioms we
do not have an axiom which allows us to push a substitution € inside an abstraction
(Az.t). This is exactly what we want to prevent. Terms of the form (Az.t)f can only
be resolved if applied to another object, say y. This is reflected in the extended (3
axiom, where an interleaving substitution 6 is allowed. If # is the empty substitution
¢, then we have the usual 3 axiom.

The following theorem states in a compact form the results which are proved in [68].

Theorem 17 1. The theories BON,, and BON are mutually interpretable into
each other; in particular, BON,, enjoys the standard recursion-theoretic in-
terpretation PRO.

2. There is a suitable term rewriting system for BON,, which has the Church
Rosser property and whose substitution fragment is strongly normalizing.

Let us mention that the theory of explicit substitutions has been treated in the
literature before, but from a different point of view. The main work has been done in
the context of implementation of functional programming languages, and application
in those systems is always total. The very concern of the our work, however, is to
study a partial application operation. A key reference for the previous work on
explicit substitution is the paper by Abadi, Cardelli, Curien and Lévy [1].

We finish this section by mentioning some recent work by Robert Stark. In [64] he
establishes a very natural relationship between the number-free fragment of BON,,
and the programming language SCHEME. Moreover, in [65] he discusses a system
LV, which is a partial form of the call-by-value A calculus and is shown to be equiva-
lent to partial combinatory logic. Although LV avoids explicit substitutions, it shows
some drawbacks with respect to extensions to theories of operations and numbers.

21

Chapter 2

Basic proof theory of applicative
theories

In this chapter we give a complete proof-theoretic characterization of BON in the
presence of various induction principles on the natural numbers, and including the
axioms of totality (Tot) and extensionality (Ext), cf. Jiger and Strahm [52]. We
obtain various applicative theories of strength PRA and PA. Although the results
concerning systems of strength PA are well-known (cf. e.g. [71]), we include them for
reasons of completeness. The delineation of systems of strength PRA including total-
ity and extensionality is independently due to Cantini [9]. Finally, we mention that
corresponding results for applicative theories without totality and extensionality are
established in Feferman [26, 27].

In the first section we introduce a bunch of induction principles on the natural num-
bers, and we briefly discuss their logical relationship. Section 2 contains a short
definition of first order arithmetic and some subsystems; we mention Parson’s re-
sult. In Section 3 we discuss various systems of strength PRA. In particular, we
obtain upper bounds for such systems by means of formalized term model construc-
tions; these are introduced in a rather general form, since we will use them again
in Chapter 4, where we will discuss infinitary term models that are based on the
non-constructive p operator. Hence, the considerations of this section must also be
seen as a preparation for the work in Chapter 4. Finally, in Section 4 we see that
our methods extend to systems of strength PA in a straightforward manner.

2.1 Induction principles on the natural numbers

In this section we introduce various induction principles on the natural numbers N,
whose exact proof-theoretic strength over BON will be determined in the sequel.

Let us start by defining the positive and the negative formulas of Ly by a simulta-
neous inductive definition as follows.

22

Definition 18 (F* and F~ formulas)

1

2
3.
4

The

. Each atomic formula N(¢), ¢| and (s =t) is an F* formula.
. If Ais an F™ [F7] formula, then —A is an F~ [F*] formula.
If Aand B are F* [F~] formulas, then (AVB) and (AAB) are F [F~] formulas.

. If Ais an F~ [F*] formula and B is an F* [F~] formula, then (A — B) is an
F+ [F~] formula.

If Aisan F" [F7] formula, then (3z € N)A and (Vx € N)A are F* [F]

formulas.

YT and II- formulas of Ly are defined in the very same way with the only

exception that clause 5. is replaced by

57

. If Aisa XF [IT7] formula, then (32 € N)A [(Vz € N)A] is a XF [II] formula.

In the following we are interested in six forms of complete induction on the natural
numbers, namely set induction, operation induction, N induction, X% induction,
positive formula induction, and full formula induction.

Set induction on N, (S-ly).

Ope

FEPIN)AFO=0A(Vz €N)(fz =0— f(z') =0) — (Vz € N)(fz =0).
ration induction on N, (O-ly).
fOo=0A Nz eN)(fz=0— f(z')=0) — (Vx € N)(fz =0).

N induction on N, (N-Iy).

fOENA (Vz e N)(fzr €N — f(z') € N) — (Vz € N)(fzr € N).

Y induction on N, (X*ly). For all ¥* formulas A(z) of Ly:

A0) A (Vz € N)(A(x) — A(2")) — (Vx € N)A(z).

Positive formula induction on N, (F*™-ly). The above scheme for all F™ formulas.

Formula induction on N, (F-ly). The above scheme for all formulas of Ly.

Obs

erve that it is trivial from the definitions that
(S—lN) C (O—lN) C (E+—|N) C (F+—|N) C (F—'N) and (N—'N) C (E+—|N).

Moreover, the following non-trivial result is proved in Kahle [53].
Proposition 19 (N-ly) implies (S-In) over BON.

The

exact relationship between (O-ly) and (N-ly) is much more delicate, and it seems

that none of the two is implied by the other one over BON. Kahle [53] discusses a

strengthening BON of BON so that (O-ly) and (N-ly) are equivalent over B/O\N, and
he shows that (O-ly) and (N-ly) are even equivalent over BON in the presence of

the

quantification operator p (cf. Proposition 81). This last result will be used in

Chapter 4, where we will give a detailed discussion of x. Nevertheless, we will see in
the next section that (O-ly) and (N-ly) are proof-theoretically equivalent over BON.

23

2.2 Some systems of arithmetic

Let us briefly fix some terminology concerning well-known subsystems of Peano
arithmetic PA.

In the following let £; be the usual first order language of arithmetic with number
variables u, v, w,x,y, z, f, g, h, ... (possibly with subscripts), the constant 0, as well
as function and relation symbols for all primitive recursive functions and relations.
The number terms of £y (r,s,t,71,s1,11,...) are defined as usual.

We will use standard notation for coding sequences of natural numbers: (...) is
a primitive recursive function for forming n tuples (to,...,t, 1); Seq denotes the
primitive recursive set of sequence numbers; Ih(t) gives the length of the sequence
coded by t, i.e. if t = (tg,...,t,_1) then Ih(t) = n; (¢); denotes the ith component of
the sequence coded by ¢ if i < Ih(t). Furthermore, - is the usual primitive recursive
cut-off difference on the naturals.

As usual PA denotes the system of Peano arithmetic formulated in £;: PA includes
defining axioms for all primitive recursive functions and relations as well as all
instances of complete induction on the natural numbers. PRA is the system of
primitive recursive arithmetic and is obtained from PA by restricting induction to
quantifier free £; formulas. It is well-known from Parsons [55] that PRA is proof-
theoretically equivalent to PRA + (X9-ly), i.e. the subsystem of PA with induction
restricted to ¥{ formulas; as usual, for B a quantifier free formula, A is called 3 if
it has the form (3z)B, and it is I1J if it has the shape (Vz)(3y)B.

Proposition 20 PRA+(X9-ly) is a conservative extension of PRA for IT3 statements.

2.3 Systems of strength PRA

In this section we show that the induction principles (S-ly), (O-In), (N-ly), and
(X*ly) over BON always yield systems of proof-theoretic strength PRA. More pre-
cisely, we establish lower bounds for the partial theories, i.e. systems based on BON,
and upper bounds for systems including the axiom of totality (Tot). Moreover, we
will always see that the methods for proving upper bounds for total applicative
theories easily extend to systems including the axiom of extensionality (Ext).

2.3.1 Lower bounds

We obtain a natural embedding of the language L£; of arithmetic into the language
Ly as follows: the number variables of £; are supposed to range over N; symbols
for primitive recursive functions translate into their corresponding Ly terms using
the recursion operator ry so that their totality is derivable in BON. Summing up,
the translation (-)N from £; to Ly is such that

((F)A@@)" = (Fz € N)A (),

24

and similarly for universal quantifiers. Moreover, it is straightforward to establish
that each quantifier free formula of £; can be represented in Ly by a set in the sense
of P(N) as follows.

Lemma 21 For every quantifier free formula A(Z) of £, with at most ¥ free there
exists an individual term t4 of Ly so that

1. BON + (Vf € N)(tAf: 0 VtAf: 1),
2. BON F (V7 € N)(AN(F) « £,7 = 0).

It is immediate from this lemma that quantifier free induction of PRA translates
into set induction (S-ly) and, hence, we can state the following embedding.

Proposition 22 We have for every £ formula A(Z) with at most T free:
PRAF A(F) == BON+ (S-ly)F 7 e N — AN(Z).

A fortiori, we have that PRA is contained in BON + (O-ly) and BON + (X*Iy).
Moreover, BON + (N-ly) contains PRA by Kahle’s Proposition 19.

2.3.2 Upper bounds

In the sequel we give an interpretation of TON + (X*ly) into PRA + (329-ly). The
interpretation is based on a formalization of the total term model CTT that we have
described in Section 1.3.2. We will see that a slight adaptation of our interpretation
actually yields an upper bound for the system TON + (Ext) + (X*ly), too. At the
end of this section we indicate how this last result may even further be strengthened.

In order to formalize term models we need a Godelnumbering of the closed terms of
the language Ly. Therefore, let us assign to each constant c of Ly and the application
symbol - natural numbers "c' and - in some appropriate way. In particular, "¢
and 7-7 must not be elements of Seq. The Gédelnumber of a compound term (st)
is then given in the obvious way by

I—St—l — <l_,—l, I—STJ l_t7>.

In the following, CTer(z) denotes the primitive recursive predicate expressing that
x is the Godelnumber of a closed term of Ly. If ¥ = xy,...,z, then we often write
CTer(Z) instead of CTer(xy) A --- A CTer(z,). Furthermore, let Num : N — N
be the primitive recursive function satisfying Num(x) = "z, i.e. Num(x) is the
Godelnumber of the xth numeral of Ly.

Since we are going to use formalized term models again in Chapter 4, we introduce
them in a rather general form right from the beginning. For that purpose, let us
assume that R is a notion of reduction on the closed Ly terms. In the sequel we
will need formalized versions of R, —x and —» g, respectively, on the Godelnumbers

25

of closed terms of Ly. Therefore, let £ be a first order language containing £,
and let RedCong(z,y) be an £ formula formalizing R. Then the formalized ver-
sion Redlg(x,y) of —x can be described by the following primitive recursive (in
RedCong) definition:

Redln(z,y) == CTer(z) A CTer(y) A Redl(z,),
where Red1}(z, y) is the disjunction of the following formulas:
(1) RedConp(z,y),
(2) == ("7 (21, (2)2) Ay = ("7 (2)1, (y)2) A Redlp((2)2, (y)2),
(3) @ = ("7 (21, (2)2) Ay = ("7, (W, (2)2) A Redlr((x)1, (y)1)-

In order to formalize the reflexive, transitive closure —p of —py one defines an
intermediate predicate RedSeqgr(x,y,z) with the intended meaning that = codes a
reduction sequence from the closed term with Godelnumber y to the closed term
with Godelnumber z with respect to R:

RedSeqgr(z,y,2) := Seq(x) A CTer(y) A CTer(z) A RedSeqy(x,y, 2),
where RedSeq},(x,y, z) is the disjunction of the following formulas:
(1) Ih(z) =1 Az =(y) Ny=2
(2) Ih(z) >1 AN y=(2)o N 2= (2)m@)~1 N (Vi <Ih(z) = 1) Redlg((x)i, (x)it1)-
The formalization Redg of — g is then given in a straightforward manner as follows:
Redg(z,y) := (3z)RedSeqr(z,x,y).

It is obvious that the formalization RedCon, of our reduction relation p for BON is
primitive recursive. Hence, we have the following observation.

Remark 23 The formula Red,(z,y) is (equivalent in PRA to) a XY formula.

We are ready to describe our formalized term model construction in a general form.
Assume that £ is a first order language containing £;, and let RedCong be an L
formula formalizing a notion of reduction R. Then Redg is an £ formula, and the
translation * from Ly into £, depending on Redg, is given by the following clauses
1-8.

The * translation ¢* of an individual term ¢ of Ly is given as follows:
1. If ¢t is an individual variable, then ¢* is t.
2. If t is an individual constant, then ¢* is "¢

3. If t is the individual term (rs), then t* is (-7, 7%, s*).

26

The x translation A* of an Ly formula A is given as follows:

4. Tf A is the formula (s = t), then A* is

(3z)(Redg(s™,x) A Redg(t*,x)).

5. If A is the formula N(#), then A* is

(Jz)Redg(t*, Num(z)).

6. If A is the formula =B, then A* is =(B*).
7. If A is the formula (B j C) for j € {V,A,—}, then A*is (B* j C*).
8. If A is the formula (Qz)B for Q € {3,V}, then A* is (Qz)(CTer(x) N A¥).

For a specific choice of a notion of reduction R it is essential to verify the Church
Rosser property CR(Redg) of R, i.e. the statement

(Va,y1, y2)[Red(x, y1) A Red(z,y2) — (3z)(Red(y1, z) A Red(ys, z))].

It is well-known that the proof of the Church Rosser property for a usual combinatory
reduction relation uses finitary arguments only and, hence, can be formalized in PRA,
cf. e.g. Cantini [9] or Girard [36].

Proposition 24 PRA - CR(Red,).

In the sequel we will work with the translation % of Ly into £y, depending on
Red,. Before we state the final proof-theoretic reduction, we want to mention an
important lemma, which is an immediate consequence of the (formalized) Church
Rosser theorem.

Lemma 25 We have for all Ly formulas A(x):
PRAF Red,(z,y) — (A%(z) < A*(y)).
Corollary 26 Let Q € {3,V}. Then we have for all Ly formulas A(z):
PRAF ((Qx € N)A(x))" « (Qx)A*(Num(z)).

It is easy to verify the * translation of each axiom of TON in PRA + (2%-Iy). In
particular, axiom (9) is verified by means of (X¢-ly). Moreover, (X*ly) translates
into (X9-ly) by the above corollary and the fact that the x translation of a T
formula is (provably equivalent in PRA to) a 3} formula by Remark 23. Hence, we
can state the following theorem.

Theorem 27 We have for all Ly formulas A(Z) with at most T free:

TON + (S*ly) F A(Z) = PRA+ (S0-y) F CTer(Z) — A*(Z).

27

Together with Propositions 20 and 22 we are now in a position to state the following
proof-theoretic equivalences. Here “=” denotes the usual notion of proof-theoretic
equivalence as it is defined e.g. in Feferman [22].

Corollary 28 We have the following proof-theoretic equivalences:
PRA + (X9-y) = PRA.

From Proposition 20 and the fact that an Ly formula of the form (V& € N)(¢tZ € N)
translates into a IT19 statement under *, we get the following corollary.

Corollary 29 Suppose that t is a closed term of Ly so that
TON + (SHy) = (V& € N)(t7 € N).
Then t defines a primitive recursive function.

Let us briefly argue that these results still hold if the extensionality axiom (Ext) is
added to TON + (X*ly). To see this, one formalizes the term model TTE of the
An calculus (cf. Section 1.3.2) instead of CT'T, using the standard translation from
combinatory logic into A calculus. It is immediate that the proof of the Church
Rosser property for the An calculus (cf. [2]) is formalizable in PRA. Hence, we can
state the following strengthening of Corollary 28.

Theorem 30 We have the following proof-theoretic equivalences:
TON + (Ext) + (S-Iy) = TON + (Ext) + (O-ly) = TON + (Ext) + (N-Iy) =
TON + (Ext) + (X*ly) = PRA + (Z9-1y) = PRA.

Let us mention that the methods sketched so far also provide upper bounds for
theories based on a finitary inductive data type D instead of N. This is immediate
by formalizing the corresponding total term models, cf. Section 1.5.

We finish this section by addressing possible strengthenings of our last corollary.
Let us write BX™ for the least class of £y formulas which is obtained form the T
formulas by closing under the connectives =, V, A and —. Hence, a formula is in
BX T if it is a boolean combination of ¥t formulas. In particular, we have that
every quantifier free, not necessarily positive formula of Ly is in BX*T. If (BXHIy)
denotes the induction schema for such formulas, then we have that the system

TON + (Ext) + (BX™ly)

still has the same proof-theoretic strength as primitive recursive arithmetic PRA.
This follows from the fact that PRA + (29-ly) proves induction for formulas which
are X9 in ¢, in particular, boolean combinations of ¥{ formulas. For a proof of this
fact we refer to Héjek and Pudldk [39]. Since the x translation of a formula in BX"
is exactly such a 35(XY) formula, the methods of this section provide a reduction of
the above theory to PRA + (X9-ly), and hence to PRA.

28

Theorem 31 We have the following proof-theoretic equivalences:
TON + (Ext) + (BX™Iy) = PRA + (X%-ly) = PRA.

We finish this section be mentioning a very recent result by Cantini [10, 11]. A
formula A of Ly is called N positive or N, if the predicate N occurs in A positively
only. Further, let (N*-ly) denote the corresponding scheme of induction in Ly. Then
it follows from Cantini’s work that closed terms of type (N — N) of the system

TON + (Ext) + (N™-Iy)

give rise to primitive recursive algorithms. This is established by partial cut elim-
ination and formalized asymmetric interpretation within PRA + (X%-1y). Observe
that (N*ly) no longer allows a inner model construction in PRA + (3%-Iy).

Observe that the above two extensions actually are strengthenings into different
directions: although we have that X% is contained in N7, it is not the case that
N* contains the class BXT. Is it even possible to allow boolean combinations of N*
formulas without going beyond PRA?

2.4 Systems of strength PA

For completeness, let us very briefly indicate that the induction principles (F'*-ly)
and (F-ly) yield systems of strength PA. More precisely, PA is contained in the
system BON + (F*-ly) and, moreover, TON + (Ext) 4 (F-ly) can be interpreted in PA
by the methods of the previous section.

2.4.1 Lower bounds

Let us work again with the translation (:)V from £; into Ly. It is immediate from
Lemma 21 that the translation of atomic formulas and negated atomic formulas is
equivalent to a positive equation in BON. Hence, AN is equivalent to an F* formula
in BON for each £; formula A. Hence, we can state the following proposition.

Proposition 32 We have for every £ formula A(Z) with at most T free:
PAF A(F) = BON+ (F™ly) -7 e N — AN(®).

A fortiori, PA is a lower bound for the system BON + (F-ly).

2.4.2 Upper bounds

From the work done in the previous section it is immediate that our translation x
based on Red, gives us an embedding of TON + (F-ly) into PA.

29

Theorem 33 We have for all Ly formulas A(Z) with at most & free:
TON + (F-Iy) F A(¥) = PAF CTer(%) — A*(Z).

Together with Proposition 32 we have thus obtained the following proof-theoretic
equivalences.

Corollary 34 We have the following proof-theoretic equivalences:
TON + (F*-Iy) = TON + (F-ly) = PA.

Moreover, it is again possible to extend these results to include the extensionality
axiom (Ext). Hence, we get the following analogue of Theorem 30.

Theorem 35 We have the following proof-theoretic equivalences:
TON + (Ext) + (F*-ly) = TON + (Ext) + (F-ly) = PA.

We have seen in this section that positive formula induction (F*-ly) and full formula
induction (F-ly) have the same proof-theoretic strength over BON, namely PA. This
will be very different with respect to extensions of BON by the non-constructive p
operator, where (F-ly) will turn out to be much stronger than (F*-Iy).

30

Chapter 3

Polynomial time applicative
theories and extensions

It is the aim of this chapter to propose a first order theory PTO of operations and
binary words, which allows full self-application and whose provably total functions
on W = {0,1}* are exactly the polynomial time computable functions. In spite
of its proof-theoretic weakness, PTO has an enormous expressive power due to the
presence of full (partial) combinatory logic, i.e. there are terms for each partial
recursive function. The main bulk of the material presented in this chapter will
appear in our paper [66].

When trying to set up a theory with self-application of polynomial strength, one
might first try to mimic first order systems of bounded arithmetic — say Buss’ S} -
in the applicative setting in a direct way. However, it is shown in Strahm [67] that
this naive approach does not work, and one immediately ends up with systems of
the same strength as primitive recursive arithmetic PRA; this is due to the pres-
ence of unbounded recursion principles in the applicative language. Hence, a direct
translation of induction principles from bounded arithmetic is not successful, and a
theory had to be found that is better tailored for the applicative framework.

The formulation of the proposed theory PTO is very much akin to the basic theory
of operations and numbers BON; in particular, PTO contains the usual axioms for
a partial combinatory algebra and, hence, all the results of the first chapter of this
thesis directly apply to PTO. In fact, PTO can be viewed as the polynomial time
analogue of the theory BON + (S-ly) that we have studied in the previous chapter.
The choice of a unary predicate W for binary words instead of a predicate N for
natural numbers is not mandatory, but more natural in the context of polynomial
time computability. Crucial in the formulation of PTO is the principle of set induc-
tion on W, (S-ly), which is very natural and — most important — in the spirit of
applicative theories.

The proof of the fact that PTO captures exactly polynomial time is established
along the lines of reductive proof theory. More precisely, we show that PTO contains
Ferreira’s system of polynomial time computable arithmetic PTCA (cf. [32, 33]) via a

31

natural embedding. Furthermore, PTO is reducible to the theory PTCA™ 4 (3-Ref),
where PTCA™ denotes the extension of PTCA by NP induction and (X-Ref) is the
reflection principle for ¥ formulas. ¥ reflection (2-Ref) is equivalent to the collection
principle for bounded formulas, (3% -CP). PTCA* + (X-Ref) is known to be a 19
conservative extension of PTCA™ by the work of Buss [6], Cantini [8], or Ferreira [31].
Moreover, PTCA™ is IIJ conservative over PTCA by Buchholz and Sieg [4], Cantini
8], and Ferreira [33]. Summing up, the provably total functions of PTCA™ + (X-Ref)
are exactly the polytime functions.

Finally, let us mention that our approach can easily be extended in order to provide
applicative theories capturing the nth level &£, of the Grzegorczyk hierarchy.

The plan of this chapter is as follows. In the first section we give an exact formulation
of the theory PTO. Section 2 is centered around the theory of polynomial time
computable arithmetic PTCA*™ plus the X reflection principle, and some known
proof-theoretic results are addressed. The exact proof-theoretic strength of PTO is
established in Section 3: we give an embedding of PTCA into PTO and show how
PTO can be reduced to PTCA™ 4 (3-Ref). Section 4 deals with various conservative
extensions of PTO, and in Section 5 we briefly address some additional topics and
open problems concerning PTO; in particular, we discuss the status of the totality
axiom (Tot) in PTO. In the final section of this chapter we sketch a generalization
of our approach to the Grzegorczyk hierarchy &, (n > 3).

3.1 The theory PTO

In this section we introduce the formal framework of the theory PTO for polynomial
time operations on binary words. We start off from a modified base theory BOW of
basic operations and binary words and define PTO to be BOW plus set induction
with respect to binary words W.

The language Ly of BOW is a language for the logic of partial terms. It includes
the language L. of partial combinatory logic plus the following constants: €,0,1
(empty word, zero, one), %, X,pw (word concatenation and multiplication, word
predecessor), cc (initial subword relation), dy (definition by cases on binary words),
rw (bounded primitive recursion). Finally, Ly includes a unary relation symbol W
(binary words).

The individual terms (r,s,t,r,s1,t1,...) and formulas (A, B,C, Ay, By,Ch,...) of
Ly are defined in the very same way as terms and formulas of the language Ly.
Moreover, we adopt the same conventions concerning left association, pairing and
the predicate W as for Ly. Further, we often use infix notation for x and x, i.e. s*t
abbreviates xst and s X t stands for xst. In addition, let us write s C ¢ instead of
ccst =0, and s <t for 1 x s C1xt Finally, (s =¢|r)is an abbreviation for

(r<tAsCtAlxs=1xr)V({t<rAs=t).

32

Let us give a brief informal interpretation of the syntax of the basic theory of op-
erations and binary words BOW to be introduced below. The individual variables
are supposed to range over a universe V' that forms a partial combinatory algebra
closed under pairing. There is a subset W C V', consisting of finite sequences of 0’s
and 1’s; W is generated from ¢, 0 and 1 by the operation % of word concatenation.
Furthermore, we have an operation x of word multiplication, where w; X wy denotes
the word w; concatenated with itself length of wy times. pw is supposed to be a
predecessor or destructor operation on W, and cc denotes the characteristic function
of the initial subword relation. dy provides a definition by cases operator on W.
The relation w; < wy means that the length of w; is less than or equal to the length
of wy; accordingly, w; | wy denotes the truncation of w; to the length of wy. This
gives meaning to the bounded recursor ny on W, which provides an operation ry f gb
for primitive recursion from f and g with length bound b.

We are ready to introduce the theory BOW of basic operations and binary words.
It is defined in complete analogy to the theory BON, where the natural numbers N
are replaced by the binary words W, and primitive recursion ry on N by bounded
primitive recursion ry on W. The axioms for a partial combinatory algebra and
pairing remain unchanged in the theory PTO; we repeat them for completeness
below. The underlying logic of BOW is again the classical logic of partial terms, and
its non-logical axioms are divided into the following eight groups.

|. Partial combinatory algebra.

(1) kzy =z,

(2) szyl A szyz ~ xz2(yz).
[1. Pairing and projection.

(3) po(z,y) =z A pi(z,y) =y.
[1l. Binary words.
4) ecWAOeEWALEW,
5) (x € W2 — W),
6

reW —xxe=u,

8) seEWAYyeW — ox0£yx1 Axx0#£e ANrxlFe,

(
(
(
(
(
(

9

)
)
)
N zeWAyeW — xx(yx0)=(zxy)«0Axx(yxl)=(xxy)=x1,
)
Jx EWAYyeWAzx0=yx0 — z =y,

)

(10) r e WAy eWAzxl=yx1l - x=y.

33

V. Word multiplication.

(11) x € W? — W,

(12) € W — z x € =€,

(13) reWAyeW — ox (yx0)=(zxy)sz Arx(y*xl)=(xxy)*x
Vv

. Predecessor on W.

(14) pw € W — W,

(15) pwe =,

(16) 2 € W — pw(r*x0) =z A pw(rx1) =

(17) x e WAz # e — (pwz)*x0=2x V (pwz) x1 ==x.

VI. Initial subword relation.
(18) re WAy eW — ccxy =0V ccay =1,
(19) xeW — (z Ce—x=c¢),
(20) e WAy eWAYy#e = (rCy—aCpwyVae=y).
VII. Definition by cases on W.
(21) a e WADEWAa=b — dwzyab = z,
(22) a e WADEWAa#b — dwzyab =y.
VIII. Bounded primitive recursion on W.
(23) (feEW—-W)A(geW> W) A (be W2 - W) — (rwfgbe W? — W),
(24) (fEW —=W) A (geW3 - W) A (beW? — W)A
rteEWAyeWAy#e AN h=rwfgh —
hwe = fx A hxy = gry(ha(pwy)) | bry.

Observe that in the formulation of bounded primitive recursion ny on W, we do not
require b to be a polynomial, but only a total operation on W. This formulation is
more natural, and we will see in Section 3.3.2 that it does not raise the proof-theoretic
strength of the theory PTO to be introduced below. Moreover, the above formulation
allows natural generalizations of our theory by stronger initial functions, cf. Section
3.6. Let us recall that bounded primitive recursion on W = {0,1}* with (word)
polynomials as initial functions exactly generates the polynomial time computable
functions on W, cf. Ferreira [32] and Cobham [14].

34

Sets of binary words are understood in our context in the same way as sets of
natural numbers, namely via their total characteristic functions on W. Accordingly,
we define P(W) by

fePW) := VeeW)(fr=0V fe=1).
Moreover, the principle of set induction on W reads in an analogous way as follows.

Set induction on W, (S-ly).
feEPW)A fe=0A(Vz e W)(f(pwz) =0 — fx =0) — (Vo € W)(fz =0).

Our applicative theory of polynomial time operations PTO is now defined to be
BOW plus set induction on W, i.e. BOW + (S-lyy). The principle of set induction
(S-lw) is crucial for the proof-theoretic strength of PTO. We will see in Section 3.3.2
that the premise f € P(W) allows one to treat set induction in a certain theory of
arithmetic which has polynomial strength only.

Since BOW contains the usual axioms for a partial combinatory algebra, the results
of Chapter 1 mutis mutandis carry over to BOW and PTO. In particular, we obtain
a natural adaptation of the standard recursion theoretic model PRO in terms of
ordinary recursion theory on W, and explicit definitions and the partial form of the
recursion theorem are available in our new setting. Accordingly, there exists a term
ty for each partial recursive function f, however, PTO does generally not prove the
totality of f. For example, PTO includes a term t.y, which defines the exponential
function.

Let us finish this section by making some brief comments concerning polynomial
time functionals. Cook and Urquhart [16] introduced a class BFF of basic feasible
functionals in all finite types in order to provide functional interpretations of feasibly
constructive arithmetic. The type 1 functions of BFF coincide with the polynomial
time computable functions. It is straightforward from the axioms of PTO and A
abstraction in PTO that there exists an Ly term ¢y for each functional F' in BFF
so that the defining equations and the well-typedness of F' are derivable in PTO.
Further work on BFF' and feasible functionals in general can be found in Cook and
Kapron [15] and Seth [61].

3.2 Polynomial time computable arithmetic and
extensions

In this section we give an introduction into Ferreira’s framework of polynomial
time computable arithmetic. In particular, we introduce the three systems PTCA,
PTCAT and PTCA* +(X-Ref). We recapitulate the crucial result saying that all these
theories prove the same IT5 statements and, hence, their provably total functions are
exactly the polytime functions. In Section 3.3 we will show that PTO contains PTCA
and is reducible to PTCA™ + (X-Ref), thus establishing PTO’s exact proof-theoretic
strength.

35

3.2.1 The theories PTCA and PTCA™"

The theory PTCA of polynomial time computable arithmetic over binary strings was
introduced by Ferreira [32, 33]. PTCA can be viewed as a polynomial time analogue
of Skolem’s system of primitive recursive arithmetic PRA. The theory PTCA is
formulated in the first order language £, which is based on the elementary language
L. The latter contains individual variables a, b, ¢, x,y, z,u,v,w, f, g, h, ... (possibly
with subscripts), constants €, 0, 1, the binary function symbols * and x! as well as
the binary relation symbols = and C; the meaning of these symbols is identical to the
one of the corresponding operations in Lyw. Now L, is obtained from L. by adding
a function symbol for each description of a polynomial time computable function,
where the terms of L, act as bounding terms, similar to Cobham’s characterization
of the polytime functions. Terms (r,s,t,...) and formulas (A, B,C,...) of L, (both
possibly with subscripts) are defined as usual. For the details the reader is referred
to [32, 33].

There are two sorts of bounded quantifiers which are relevant in the sequel. The
sharply bounded quantifiers have the form (Jz)(z CtA...) or (Va)(x Ct — ...),
and in the following we just write (3 C ¢)(...) and (Vx C ¢)(...). Furthermore,
we have (generally) bounded quantifiers (3z)(x < tA...) and (Vz)(x <t — ...),
where x < t reads as 1 x x C 1 x t as in the previous section. Again we use the
usual shorthands as above. If A is an arbitrary £, formula, then we write A" for the
formula which is obtained from A by replacing each unbounded quantifier (Qz) by
the corresponding bounded quantifier (Qx < t). The following definition contains
important classes of £, formulas.

Definition 36 Let us define the following classes of £, formulas.

1. QF denotes the set of all quantifier free £, formulas.
2. A formula is called A} if all its quantifiers are sharply bounded.

3. A formula is in the class X} if it has the form (dz <)A for A a formula in
QF.

4. A formula is called extended Y° or eX? if (i) all its positive existential and
negative universal quantifiers are bounded, and (ii) all its positive universal
and negative existential quantifiers are sharply bounded.

5. An £, formula is called X% or bounded if all its quantifiers are bounded.

6. A XY formula has the form (3z)A for A in QF; a IIJ formula is of the shape
(Vz)(Jy)A for A in QF.

7. A formula is in the class X if all its positive universal and negative existential
quantifiers are bounded. II formulas are defined dually to ¥ formulas, i.e. they
are equivalent to negations of ¥ formulas.

!'We again use infix notation for * and x and often write ts instead of ¢ * s.

36

The A} formulas are the polynomial time decidable matrices of [32, 33]. Further-
more, the X! formulas define exactly the NP predicates and the % formulas the
predicates in the Meyer-Stockmeyer polynomial time hierarchy.

The theory of polynomial time computable arithmetic PTCA is a first order theory
based on classical logic with equality, and comprising defining axioms for the base
language L as well as defining equations for each description of a polytime function
in £,. In addition, PTCA includes the notation induction scheme

A(e) A (Vo) (A(w) — A(z0) A A(z1)) — (Va)A(z)

for each £, formula A(z) in QF. It is well-known that PTCA proves induction for
Ab formulas; for details we refer to [32, 33]. Furthermore, it is straightforward

to establish that the provably total functions of PTCA are exactly the polytime
functions (cf. [4, 33]).

Let PTCA*" denote the extension of PTCA, where notation induction is allowed
for NP predicates, i.e. formulas in $6. The system PTCA™ is closely related to
Buss’ system S} (cf. [5]). Induction is provable in PTCAT for extended ¥} formulas
(cf. [32, 33]). In analogy to Parson’s result we obtain that PTCA™ is a conservative
extension of PTCA with respect to I13 statements. Proofs can be found in [4, 8, 33].

Proposition 37 Suppose PTCAT + (Vx)(3y)A(z,y), where A is a QF formula.
Then we have PTCA F (Vz)(Jy) A(z, y).

Corollary 38 Suppose PTCA" = (Vz)(Jy)A(x,y), where A is a QF formula. Then
there exists an L, term t(x) so that PTCA - (Vx)A(z, t(x)).

In the following we often write |s| (the length of s) instead of 1 x s, s C ¢ instead
of s CtAs #t and s < tinstead of 1 x s C 1 x t. The abbreviation s = t|r
is understood in the same way as in the previous section. In addition, p denotes
the obvious predecessor function on binary words and cc is the binary characteristic
function of the initial subword relation. Finally, we use the trivial representation of
the natural numbers as tally words, which is given by 0 = € and n +1 = ml. We
will write n instead of @ whenever it is clear from the context that we mean n as a
tally word and not as a natural number.

We finish this paragraph by adopting some conventions concerning polynomial time
sequence coding within PTCA.% For the details the reader is again referred to Ferreira
(32, 33]. Let (...) denote a polytime function for forming n-sequences (g, ..., t,—1)
of binary words, and let Ih(¢) denote the length of the sequence coded by ¢, i.e. if
t = (to,...,tn_1), then Ih(t) = m. We write Seq,(t) for Seq(t) A 1h(t) = m. There
is a polytime projection function so that (t),, denotes the mth component of the
sequence coded by ¢ if m C Ih(t); we write last(t) for (¢)pan)) and (¢)mn instead of

2Some notations coincide with those already introduced in the context of £;, however, this will
never cause confusion.

37

((t)m)n- Furthermore, let ~ denote the polytime sequence concatenation function.
For example, if ¢ is the sequence (g, t1,t2, t3), then Ih(t) = 1111, (). = to, (t)1 = t1,
(t)11 = to, (t)111 = t3, last(t) = t3 and ¢t = (to, t1) ~(t2,t3). Finally, let SqBd(a,b)
denote a suitable £, term, so that PTCA proves

Seq(v) A Ih(v) < |b]1 A (Yw C Th(v))((v)w < a) — v < SqBd(a,b).

SqBd is easily constructed from the terms in Le.

3.2.2 The theory PTCA* + (3-Ref)

In order to interpret our theory of polynomial time operations on binary words PTO,
we will need the crucial principle of X reflection (X-Ref), which has the form

(3-Ref) A — (Jx)A*,

where A is a formula in X. Tt is not difficult to see that (3-Ref) is equivalent to the
collection principle for bounded formulas (£%_-CP), which reads as

(%8 -CP) (Vo <t)(Fy)A — (Fz)(Va < t)(Fy < 2)A,

where A is a ¥% formula. It is known that adding X reflection (or equivalently
bounded collection) to a suitable bounded theory yields a IT conservative extension.
This was first proved by Buss [6]. Another elementary model-theoretic proofis due to
Ferreira [31]. Finally, a very perspicuous proof-theoretic proof making use of partial
cut elimination and an asymmetric interpretation has recently been established by
Cantini [8], cf. the sketch below.

Proposition 39 Suppose PTCAT + (X-Ref) + (Vz)(Jy)A(z,y), where A is a X
formula. Then we have PTCAT = (Vx)(Jy)A(x, y).

As consequence we get by Corollary 38 the desired conservation result.

Corollary 40 Suppose PTCA*' + (X-Ref) - (Vz)(Jy)A(x,y), where A is a QF for-
mula. Then there exists an L, term t(x) so that PTCA - (Vz)A(z, t(x)).

Let us mention that ¥ reflection (X-Ref) follows from Weak Konig’s Lemma for
trees defined by bounded formulas, (3% -WKL). In fact, the first order strength
of (X% -WKL) is exactly (X-Ref) (over the base theory PTCAY), cf. Ferreira [34].
Furthermore, (X2 -WKL) is a consequence of strict [T} reflection, which by Cantini
8] again yields a II3 conservative extension of PTCA.

Let us finish this section by giving a very brief sketch of Cantini’s proof of Propo-
sition 39. Actually, his proof in [8] is in the context of strict II} reflection which
implies (X-Ref), however, the idea of the argument is the same. In a first step one
reformulates PTCAT + (2-Ref) in a Tait calculus T; in particular, ¥} induction and
(X-Ref) are stated by their corresponding rules. One immediately observes that

38

the main formulas of the non-logical axioms and rules of T are ¥ and, hence, each
T derivation can be transformed into a quasinormal T derivation so that each cut
formula is either ¥ or IT; this is established by the usual (finite) cut elimination argu-
ment, cf. [56, 59]. In a second step, the 3-II fragment of of T is reduced to PTCA™T
by means of an asymmetric interpretation argument, where for each quasinormal
derivation d in T one provides a term t4 of L, so that t4(x) is an appropriate bound
for existential quantifiers provided x is a given bound for the universal quantifiers.
(X-Ref) is trivially interpreted in this argument and X% induction is basically left
untouched by our interpretation, since its induction formulas are bounded. The rule
for the existential quantifier is treated in an obvious manner, and the cut rule is
taken care of as usual in asymmetric interpretations by composition of given terms.
This concludes our brief proof sketch of Proposition 39.

It is immediate from the proof sketched above that the argument works equally well
for arbitrary bounded theories. This fact will be used in Section 3.6 of this chapter.

3.3 The proof-theoretic strength of PTO

In the following we address the exact proof-theoretic strength of PTO. In the first
paragraph we show that Ferreira’s systems of polynomial time computable arith-
metic PTCA is contained in PTO. In the second paragraph we establish an interpre-
tation of PTO into the system PTCA™ + (X-Ref), thus demonstrating the crucial role
of ¥ reflection. As a byproduct of our interpretation we obtain that closed terms of
type (W — W) of PTO give rise to polytime algorithms. In the final paragraph of
this section we give a detailed proof of the fixed point theorem (Theorem 43), which
is essential for our interpretation in the second paragraph.

3.3.1 Lower bounds

There is a natural embedding of the language £, into the language Ly, which is
similar in spirit to our interpretation of L£; into Ly in Section 2.3.1. Using the
bounded recursion operator ry, each (description of) a polytime function can be
represented in PTO by an Ly term. Furthermore, the recursion equations and the
totality of the corresponding function are derivable in PTO. Hence, we have an
Ly formula AW(Z) for each £, formula A, where the individual variables of £, are
supposed to range over W, i.e.

(A A@E,)" = 3y e WAV (Z,y),

and similarly for universal quantifiers. Moreover, each quantifier free formula of £,
can be represented in Ly by a set in the sense of P(W).

Lemma 41 For every quantifier free formula A(Z) of L, with at most ¥ free there
exists an individual term t4 of Ly so that

39

1. PTOF (Vf € W)(tAf: 0 VtAf: 1),
2. PTOF (VZ € W)(AW(Z) © £47 = 0).

It is an immediate consequence of this lemma that notation induction for quantifier
free formulas carries over to set induction in Ly. Hence, we have the following
embedding of PTCA into PTO.

Proposition 42 We have for every L, formula A(Z) with at most ¥ free:
PTCAF A(Z¥) = PTOFFeW — AY(7).

This finishes our discussion of the lower bound for PTO.

3.3.2 Upper bounds

In the following we show that PTO can be embedded into PTCA™ 4 (X-Ref), which is
known to be a IT conservative extension of PTCA by the results of Section 3.2.2. As
a consequence, we obtain that the provably total functions of PTO are computable
in polynomial time.

The main step in establishing an embedding of PTO into PTCA™ + (X-Ref) is to find
an L, formula App(z,y, z) which interprets zy ~ z. Together with an interpretation
of the constants of Ly this will yield a translation of Ly into £, in a standard way.
In the definition of App we will make use of a construction similar to Feferman [20],
p. 200, Feferman and Jéger [28], p. 258 or Beeson [3], p. 144. In particular, App will
be represented as a fixed point of a XY positive inductive definition. The details of
this construction are very relevant due to the weakness of PTCA' + (X-Ref).

In order to describe a suitable inductive operator form below, it will be convenient
to work with an extension £,(Q) of £, by a ternary relation symbol ¢ which does
not belong to £,. If A(Q) is an £,(Q) formula and B(z,y, z) an £, formula, then
A(B) denotes the result of substituting B(r, s, t) for every occurrence of Q(r, s, t) in
the formula A(Q).

In the following let us first turn to the interpretation of the recursion operator ry.
Toward this end, assume that A(f,z,y) is a fixed £,(Q) formula with at most f,z,y
free. Then we define for each natural number n greater than 0 an £,(Q)) formula

A,(f,x1, ..., 2, y) by recursion on n as follows:
Al(faxlay) = A(fa xlay)a
Apii(fyzry .o yxng,y) = (32)(An(f, 21,0 20, 2) AN A2, Ty, y))-

If A(f,z,y) is assumed to interpret fx ~ y, then A,(f,z1,...,2,,y) interprets
fry,...x, ~y. We will drop the subscript n whenever it is clear from the context.

40

Now we are ready to define the £,(Q) formula Reca(f, g,b,z,y, z). It describes the
graph of the function which is defined from f and g by bounded primitive recursion
with length bound b in the sense of A. The exact formulation of Recy is as follows:

Recs(f,g,b,2,y,2) =
(Fv)[Seq(v) A Ih(v) = |y[1 A A(f, 2, (v)) A
(Vw C y)(w # e —
(Fur, u2)[As(g, , w, (V) pw))y 1) A Az (b, 2w, u2) A (V)] = ur|us))
Az = ()l
In a next step we define a @) positive £,(Q) formula A(Q,,y, z), a so-called in-

ductive operator form; a fixed point of A will later serve as an interpretation of the
application operation. Let us choose pairwise different binary words k, S, p, po, p1,

~

%, X, pw, Cc, dw and fy, which do not belong to Seq U {e,0,1}. In addition, put
¢ =¢ 0=0and 1 =1. Then we define A(Q,x,y,2) to be the disjunction of the

following formulas (1)—(26):
(1) @ =kAz=(ky),
(2) Seqs(z) A (x)o =k A ()1 =2,
(3) =58 AN z=(S,y),
(4) Seqz(x) A (x)o =8 A 2= (5 (2)1,9),
(5) Seqs(x) A ()0 =5 A (v, w) (Q((@)1, ¥, v) A Q((@)2, ¥, w) A Qv, w, 2)),
(6) 2=p A z=(py),
(7) Seqz(x) A (x)o=p A z=((2)h,y),
(8) z=po Ay = (2),
9) z=p1 A y={(¥)o,2),
(10) x =% A z = (%),
(11) Seqa(z) A (x)g =% A z=(x)1 x ¥,
(12) z = x A 2= (x,y),
(13) Seqa(z) A (x)o =X A z=(x); Xy,
(14) =pw A z = p(y),
(15) x =¢c A z=(Cc,y)
(16) Seqa(z) A ()9 =¢c A z=cc((x)1,y),

(17) z =dw A z = (dw,y),

(18) Seqz(x) A (2)o =dw A 2 = {dw, (2)1,9)

(19) Seas(x) A (2)o =dw A 2 = (dw, (@)1, ()2,),

(20) Sequ(z) A (z)o =dw A (2)s =y A z = ()1,

(21) Seas(x) A (2)o =dw A (2)s #y A z = (2)s,

(22) z=tw A z = (tw,y),

(23) Seqa(x) A (2)o =Tw A z = (tw, (#)1,9),

(24) Seqs(x) A (x)o =Ttw A z = (fw, ()1, (),),

(25) Seqs(w) A (x)o =Ttw A z = (fw, ()1, ()2, ()3, 9)
(26) Segs(x) A (x)o = tw A Recq((2)1, ()s, ()3, (), 9, 2)

This finishes the definition of the @ positive £,(Q) formula A(Q,z,y,z). Note
that A is in fact a X9 definition (modulo (X-Ref)). Hence, we know from standard
recursion theory (cf. e.g. Hinman [42]) that the least fixed point of A is an r.e. set.
The usual proof of this fact uses a careful construction from below by defining
some sort of computability predicate, similar to the proof of Kleene’s normal form
theorem. Since we have all the sequence coding available in our weak setting, it is
more or less straightforward to see that this construction can be carried through in
PTCA*. The details, however, are long and tedious. Moreover, one easily verifies
that the so-obtained r.e. set - call it App - defines a fixed point of A, where an obvious
application of (X-Ref) is needed. PTCAT + (X-Ref) does not prove the minimality
of App, of course. Instead, it is not difficult to establish the functionality of App.
Summing up, we have the following theorem, whose proof is contained in the next
paragraph of this section.

Theorem 43 There exists a ¥y formula App(x,y,z) of L, with free variables as
shown so that PTCA™ + (X-Ref) proves:

1. (Vz,y,2)(A(App, x,y,2) < App(z,y,2)).

2. (vxayazlazZ)(App(xayazl) A App(xayazZ) — k1= 22)‘

Now the stage is set in order to describe a translation * from Ly into £,. Let us
first define an £, formula V;*(x) for each individual term ¢ of Ly so that the variable
x does not occur in t. The formula V;*(x) expresses that z is the value of ¢ under
the interpretation x. The exact definition is by induction on the complexity of t:

1. If ¢ is an individual variable, then Vj*(z) is (¢t = x).

~

2. If ¢ is an individual constant, then V;*(z) is (¢t =

42

3. If ¢ is the individual term (rs), then
Vi) = Qi v2) (Vi) A Vi(y2) A App(yi, ya, @)).

In a second step we define the * translation of an Ly formula A as follows:

4. If A is the formula W(¢) or ¢|, then A* is

(F2)V/ ().

5. If A is the formula (s = t), then A* is

(F2) (Vi (@) A Vi (2)-

6. If A is the formula =B, then A* is =(B*).
7. If A is the formula (B j C) for j € {V,A,—}, then A*is (B* j C*).
8. If A is the formula (Qz)B for Q € {3,V}, then A* is (Qx)B*.

This finishes the description of the translation x from Lw into £,. In a further
step we have to verify the x translation of the BOW axioms (1)—(24) and of set
induction on W, (S-ly), in the theory PTCA™ + (X-Ref). In the following we only
discuss axiom (23) for bounded primitive recursion and set induction (S-ly). The
remaining axioms are easily verified by making use of Theorem 43.

Let us first turn to the bounded recursor ry, and let us show the totality of ry in
PTCA*" 4 (X-Ref). We will realize the crucial role of ¥ reflection (X-Ref) for the
first time.

Lemma 44 The x translation of axiom (23) about ry is provable in the theory
PTCA™ + (X-Ref), i.e. PTCAT + (X-Ref) proves

(fEW—=W)A (geW? = W) A (beW? - W) — (rwfgb e W? — W)J*.

Proof. In the sequel we work informally in the theory PTCA™ + (X-Ref) and assume

(f €W — W), (1)
(b e W? — W), 2)
(g€ W? — W)*. (3)

If we spell out (1), (2) and (3) according to the translation x, we obtain

(Vo)(32)App(f, z, 2), (4)
(Va,w)(32)Appy (b, x, w, 2), (5)
(V,w,v)(32)Apps(g, x, w, v, 2). (6)

43

It is our aim to show (rwfgb € W? — W)*| i.e.
(Va, w)(3z) App((tw, f, 9, b, 7), w, 2), (7)
which by Theorem 43 is equivalent to
(Va,w)(3z)Recapp(f, 9,b, z,w, 2). (8)

In the sequel fix arbitrary zp, and y,. Furthermore, by (4) choose zy so that
App(f,xo, 20). Now we obtain from (5) and ¥ reflection (3-Ref) an a; so that

(Vw C y9)(3z < a1)Appy* (b, zo, w, z). (9)

If we set as = zpaq, then (6) and another application of (X-Ref) provide us with an
a3 so that
(Yw C o) (Vo < a2)(32 < a3) Apps* (g, xo, w, v, 2). (10)

Now set ay = SqBd(as, yo) and consider the statement E\e/cApp(f, g,b,20,y,2z), which
is given by the formula
.é\é/CApp(fa 9, ba To, Y, Z) =
(Fv < aq)[Seq(v) A Ih(v) = |y|1 A (v)e =20 A
(Vw C y)(w # e —

(Fur < az)(Fuy < a)[App5*(g, o, w, (V) pew)), U1) A
14pp(211 (b7 Zo, W, u2) A

(0)jw) = uauz))

Nz = (U)M].

In the following let us write A(y) for the £, formula which is given by

Yy g Yo — (E!Z S GJQ)I/{_\QJCApp(fagJ ba anyaz)'

Then one easily verifies that (9) and (10) imply

Ale) A (Vy)(A(y) — A(y0) A A(yl)). (11)

Since A(y) is an extended X} formula of £,, induction is available in PTCA™ for A.
Hence, (11) implies A(yo), from which we immediately derive

(ElZ)ReCAPP(fagaba anyﬂaz)‘ (12)

Since xy and yo were arbitrary, we have shown (8), and this finishes our proof. [

In a next step we show that the % translation of set induction is provable in the
system PTCA™ 4 (X-Ref). Again the presence of ¥ reflection (X-Ref) is crucial: the
requirement f € P(W) allows one to “reflect” X¥ induction by X! induction.

44

Lemma 45 The * translation of set induction (S-lw) is provable in the system
PTCAT + (X-Ref), i.e. PTCA™ 4 (X-Ref) proves

[fePW) A fe=0A (Vz e W)(f(pwz) =0 — fz=0) — (Vo € W)(fz=0)]".

Proof. Let us work informally in PTCA™T + (X-Ref). Assume the x translations of
fe€P(W), fe=0and (Vx € W)(f(pwz) =0 — fz =0). Hence, we get

(Vz)(3ly)App(f, z,y), (1)
App(f,€,0), (2)
(Vz)[App(f,z,0) — App(f,20,0) A App(f,z1,0)]. (3)
Now fix an arbitrary xy. By ¥ reflection (3-Ref) there exists an a so that
(Vo C 20)(Jy < a)App"(f, 7,y). (4)
As an immediate consequence we get that
(Vo C 20)(Vy)[App(f,2,y) < App"(f.z,y)]- (5)

Let us now write A(z) for the extended X% statement
z g Ty — Appa(faxao)'

Then one easily derives (Vz)A(x) by X} induction, making use of (2), (3) and (5).
Hence, we have obtained

App®(f,x0,0), (6)
and since o was arbitrary, we have derived the x translation of (Vz € W)(fz = 0)
in PTCA™ + (X-Ref). This finishes our proof. O

The reader may have noticed that in the proofs of Lemma 44 and Lemma 45 we
did not make use of the full strength of the ¥ reflection principle (X-Ref). In fact,
reflection is only needed for formulas of the shape (Vo < y)A, so that each positive
universal and each negative existential quantifier in A is sharply bounded. We can
also dispense with the initial universal bounded quantifier, expect for obtaining the
bound a3 in equation (10) of the proof of Lemma 44. Similar remarks will apply
to the treatment of the theory PTO™ in Section 3.4, cf. the proof of Lemma 58.
However, the full ¥ reflection principle will be needed for analyzing the theory
PTO" + (X*-CPw) at the end of Section 3.4. For reasons of notational simplicity,
we refrained from displaying the fine structure of ¥ reflection in the formulation of
theorems and proofs. This is perfectly justified by the fact that full ¥ reflection
does not take us beyond polynomial strength, cf. Corollary 40.

We are now in a position to state the following embedding theorem.

Theorem 46 We have for all Ly formulas A:
PTOF A = PTCA" + (Z-Ref) - A"

45

“—n

From Corollary 40 and Proposition 42 we get the following equivalences. Here
denotes a natural adaptation to our weak setting of Feferman’s [22] notion of proof-
theoretic equivalence.

Corollary 47 We have the following proof-theoretic equivalences:
PTO = PTCA" + (X-Ref) = PTCA.

From Corollary 40 and the fact that an Ly formula of the form (Vi € W)(tZ € W)
translates into a I19 statement under x, we get the following crucial corollary.

Corollary 48 Suppose that t is a closed term of Ly so that
PTO F (Vi € W)(tZ € W).

Then t defines a polytime function on W.

3.3.3 The proof of the fixed point theorem

In this paragraph we give a detailed proof of Theorem 43. In particular, we show
that the operator form A(Q,z,y, z) has a ¥ fixed point App which is functional,
provably in PTCA™ + (X-Ref). As already indicated, App will be constructed from
below by making use of a specific computability predicate Comp(c), expressing
that ¢ is a computation sequence with respect to the operator form A. Informally,
a computation sequence ¢ with respect to A is a sequence ¢ = ((c)o, - - -, (€)p(in(e)))
so that each (c), is a sequence ((¢)a0,(€)a1,(€)q2) of length 3 with the intended
meaning that (¢)so applied to (¢),1 yields (¢)q2 in the sense of A and, moreover,
this is computed or “proved” by ((c)o,. .., (¢)pa))-

Let us first define £, formulas App, (f,z1,...,%,,y,a,c)* for each n > 1 by induc-
tion on n as follows:

Appl(faxlaya a, C) = (Elb C a)((c)b = <f,aj1,y>),
Appn+1(f;l’1,--.,xn+1,y,a, C) =
(z < ¢)(3b C a)[App,(f,T1,- - X0, 2,0, ¢) A (C)p = (2, Tni1, Y)]-

The intended meaning of App,,(f,x1,..., %, y,a,c) is that fz,...z, ~ y with re-
spect to the sequence c restricted to the entries with index smaller than a.

Remark 49 App, (f,z1,...,%n,y,a,c) is an extended X% formula.

In a next step we define an £, formula Recap,(f,g,b,2,y,2,a,¢). It defines the
graph of the function which is defined from f and g by bounded primitive recursion

3In the sequel it will always be clear from the number of parameters shown whether we mean
Appn(fa T1y.++3Tn,Y, a,c) or Appn(fa Ty, 7xn>y)'

46

with length bound b in the sense of the computation sequence ¢ with entry indices
smaller than a.

Recapp(f,9,0,2,y,2,a,¢) =
(Fv < ¢)[Seq(v) A Ih(v) = |y|l A Appy(f, =, (v)e,a,¢) A
(Vw C y)(w # e —
(Fur, uz)[Apps(g, 2, w, (V) pew)), U1, @, €) N Appy(b, , w, us, a, c)
A (0w = u1us])
Az = ()l

Remark 50 Reca,,(f,9,b,2,y,2,a,c) is an extended 3¢ formula.

In the following let us write A;(z, y, 2) for the ith clause of the operator form A for
i # 5 and 1 # 26. We are ready to define the £, formula Comp 4, which expresses
that ¢ is a computation sequence in the sense of the operator form A.

Compa(c) := Seq(c) A (Ya C Ih(c))[Seqs((¢)a) N C((€)a0, (€)a,s (€)az,a)l,
where C'(x,y, z,a) is the disjunction of the A;(x,y, z) for i # 5 and i # 26 plus the
two disjuncts

(57) Seqs(z) A (x)g =5 A
(3v,w <)[Appi((2)1, ¥, v, a,¢) A App,((2)2, Y, w, a,¢) A Appy (v, w, 2, a, ¢)],
(26) Seqs(z) A (x)o =Ttw A Recapp((2)1, (x)2, (v)s, ()4, 9, 2, a, ¢).

Remark 51 Comp,(c) is an extended X% formula.

Now we are in a position to define the £, formula App(x,y, z), which expresses that
there is a computation sequence ¢ whose last entry is (x,y, z).

App(z,y,z) = (3c)[Compa(c) A last(c) = (z,y, z)].
Remark 52 App(z,y,2) is equivalent to a XV formula, provably in PTCA™.

Remark 53 The reader might ask why we did at all make use of the operator
form A(Q,z,y,z) in Section 3.3.2 instead of giving the above definition directly.
The reason is conceptual clarity: the only properties that we have used in order to
establish the embedding of PTO into PTCA™ + (X-Ref) are the fixed point property
and the functionality property, i.e. the two claims of Theorem 43. This is in full
accordance with previous treatments of applicative theories, cf. e.g. Feferman and
Jéger [28].

[t remains to show that (i) App is a fixed point of the operator form A, and (ii)
App is functional, and in addition, (i) and (ii) are provable in PTCA™ + (3-Ref). In
the following we work informally in the theory PTCA™ + (3-Ref), and we first want
to show that App is functional.

47

Lemma 54 PTCAF (Va,y, 21, 20) (App(z,y, 21) A App(z,y,29) — 21 = 23).
Proof. We assume Comp(b) A Comp(c) and show the A} statement

v Clh(e) — (Yu € v)(Yw C 1h(0))[(0)w = (()up; ()u1s (B)w2) = (D)wz = (C)u,]

by induction on v. Then our claim immediately follows. If v = ¢, then one of the
clauses A; for some 7 different from 5 and 26 applies, and our assertion is immediate.
For the induction step let us assume that our assertion holds for some v; in order to
verify it for v1, we have to distinguish several cases. If we are again in the case of
one of the clauses A; for ¢ different from 5 and 26, then our claim follows as above.
If clause (5’) for the s combinator applies, then we are immediately done by the
induction hypothesis. Finally, if we are in the case of clause (26’) for ry, then our
assertion follows from the induction hypothesis and an obvious subsidiary induction.
This settles our claim about the functionality of App. O

[t remains to show that App(x,y,z) defines a fixed point of the positive opera-
tor A(Q,x,y, z), provably in PTCAT 4 (X-Ref). We split the proof of the fixed
point property into the two implications (i) A(App,x,y, z) — App(x,y, z), and (ii)
App(z,y,2) — A(App, y, 2).

Lemma 55 PTCA" 4 (X-Ref) - (Va,y, 2)(A(App, x,y, 2) — App(z,y, 2)).

Proof. Let us assume A(App,x,y,z). Then exactly one of the clauses (1)—(26)
applies. If we have A;(x,y, z) for an ¢ different from 5 and 26, then we are done
by the computation sequence ¢ = ((z,y, 2)). Now suppose that clause (5) applies.
Then we have Seqs(x) A (z)p =S, and there exist binary words v and w so that

App((z)1,y,v) A App((x)a,y,w) A App(v,w, z).

The above three conjuncts provide A computation sequences cg, ¢; and co, and
obviously the sequence ¢ = cy~cy~co~((z,y, 2)) witnesses App(z,y, z) as desired.
Finally, we have to consider clause (26) for rw. Therefore, assume

SGQ5($) A (37)0 = ?W N ReCAPP((x)la (x)Za (ZU)3, (37)4, Y, Z)
Then there exists a v, and by (3-Ref) an a so that we have
Seq(v) A Ih(v) = |y[L A App®((2)1, (x)s, (v)e) A
(Vw C y)(w # € —
(Elula Uy < a)[Appg((x)Q, (:U)4, w, (U)\P(w)b ul) A Appg((x)i% (33)4, w, u2) A
(0)) = wr]uz])

Az = (0)y-
Now it is straightforward to establish the statement
yCy —
(Bc <y’ a))[Compa(c) A Recapp (€)1, ()2, (2)3, (2)1,9's (0)yy), p(1h(€)), €)]

48

by induction on y’, where t(y',a) is a suitable L, term which provides an upper
bound for the length of ¢ (as a binary word). For example, choose the term ¢(y', a)
as (aaaaa8 x y'1). By setting y' = y, there now exists an A computation sequence
¢y so that Recapp((2)1, ()2, ()3, (2)4,y, 2, p(Ih(cy)), ¢y). Our argument is finished,
since the sequence ¢, = ¢,~((z,y, z)) witnesses App(z,y,2). O

Our last aim is to show the other direction of the fixed point property.
Lemma 56 PTCA - (Vz,y,2)(App(z,y, 2) — A(App, z,y, 2)).

Proof. Suppose App(x,y,z) holds for some binary words z,y and z. Hence, there
exists a sequence c so that

Comp(c) A last(c) = (z,y, z).

If A;(z,y,z) holds for some i different from 5 and 26, then our claim is trivial. If
(x,y, z) was computed according to clause (5’), then an obvious decomposition of ¢
yields the desired result. Finally, let us consider the case where we have

Seqs () A (x)o = tw A Recapp((2)1; ()2, (2)s, (€)1, y, 2, p(Ih(c)), ¢).

Then an easy decomposition of ¢ yields Recap,((2)1, ()2, ()3, (x)4) as desired. O

This ends the proof of Theorem 43.

3.4 The theory PTO™

In this paragraph we propose an extension PTO™ of PTO, which results from PTO by
strengthening set induction to a form of complete induction on W which is related to
NP induction, though it is formally much stronger. Furthermore, we briefly address
a collection principle which does not raise the proof-theoretic strength of PTO™.

In the following let the Ly formula NP(f, g, x) be given by

NP(f,g,z) == (Jy < fx)(gxy = 0).*

In addition, P(W?) denotes the obvious generalization of P(W) to binary (curried)
characteristic functions on W, i.e.

fePW? = (Vo,y € W)(foy =0V foy = 1).

Then PTO™ is defined to be PTO, where set induction (S-ly) is replaced by the NP

induction axiom (NP-ly):

feW—=WAgePW*)ANP(f,g,€) A (Vo € W)(NP(f, g, pwz) — NP(f, g, 2))
— (Yz € W)NP(f, g,).

4Bounded quantifiers are understood to be restricted to W.

49

It is easy to see that set induction (S-ly) in fact follows from the above induction
principle (NP-ly).

We know from Proposition 42 that PTCA is contained in PTO via the translation
()W, By making use of Lemma 41, it is now straightforward to verify that PTO™
validates the NP induction principle of PTCAT with respect to (-)V. Hence, the
following analogue of Proposition 42 holds.

Proposition 57 We have for every L, formula A(Z) with at most ¥ free:
PTCAT F A(F) = PTOTFZcW — AY(7).

On the other hand, we will now show that PTO™ is not stronger than PTO. In
particular, we establish the x translation of (NP-ly) in PTCA* + (X-Ref).

Lemma 58 The x translation of (NP-ly) is provable in PTCA*" + (X-Ref).

Proof. In the following let us work informally in PTCA™* + (3-Ref) and assume the
 translation of the premise of (NP-ly). The assumptions (f € W — W)* and
(g € P(W?))* yield

(Vz)(312)App(f, z, 2), (1)
(Vz,y)(3'2)App, (g, 2, v, 2). (2)

In the sequel fix an arbitrary xy. By (1) and (X-Ref) there exists an a; so that
(Vz C x9)(Fz < ay)App™ (f, z, 2). (3)

In addition, (2) and (X-Ref) provide us with an ay so that
(Vo € 20)(Vy < a1)(32 < a2) App3*(9, 7,9,). (4)
In the following we write A(f, g,x) for the formula
(3z < a1)(Fy < 2)[Appy* (f,2,2) A Apps*(g,©,y,0)].
Then it is straightforward to check from (3) and (4) that

(Vo C z)[NP*(f, 9,2) < A(f,g,2)]. (5)

On the other hand, we have assumed
NP*(f,g,¢), (6)
(Vz)(NP*(f,g,2) — NP*(f,g,20) A NP*(f,g,21)). (7)

Hence, we can derive (Vz)B(x) by X% induction from (5), (6) and (7), where B(x)
denotes the formula
x g Ty — A(fagax)

We have shown NP*(f,g,x), and since z, was arbitrary, this finishes our proof.
O

The following analogue of Theorem 46 has been established.

20

Theorem 59 We have for all Ly formulas A:
PTO" A = PTCA" + (Z-Ref) - A*.

From Corollary 40 and Proposition 57 we can derive the same corollaries as in the
previous section.

Corollary 60 We have the following proof-theoretic equivalences:
PTO" = PTCA™ + (X-Ref) = PTCA.
Corollary 61 Suppose that t is a closed term of Ly so that
PTO™ I (V& € W)(t% € W).
Then t defines a polytime function on W.

We finish this section by formulating a collection principle in Ly which does not
raise the proof-theoretic strength of PTO™ either. The class of ¥ formulas of Ly
is defined similarly to the class of T formulas of Ly (cf. Definition 18):

1. Each atomic formula W(¢), t| and (s =t) is a £ formula.
2. If A and B are 7 formulas, then so also are (AV B) and (A A B).

3. If Ais a ¥* formula, then so also are (Vz < y)A and (3z € W)A.
Further, the scheme of ¥ collection on W, (X7-CPy), has the form
(Z-CPw) (Ve <y)(Fz e W)A — (Fu e W)(Vz < y)(3z < u)A,
where A is a X7 formula of Ly.

Now it is easy to verify that PTCAT + (X-Ref) validates the % translation of each
instance of (X*CPy) and, therefore, PTO" + (X*-CPy) does not go beyond poly-
nomial strength, too. Here the full strength of (X-Ref) is needed in order to handle
(X-CPw), of course.

Theorem 62 We have the following proof-theoretic equivalences:

PTO" + (S*-CPy) = PTCA" + (S-Ref) = PTCA.

3.5 Additional topics and open problems

In this section we first address the very interesting open problem concerning the
axiom of totality (Tot) in the context of PTO, thereby encountering the question
whether the Church Rosser property for combinatory logic is provable in feasible
arithmetic. In the second paragraph we discuss the status of the principles of oper-
ation induction on W and W induction on W over PTO. Finally, the last paragraph
contains very brief thoughts on a reformulation of PTO which is based on N instead
of W.

5To be precise, we should define simultaneously £ and II~ formulas.

o1

3.5.1 Totality

The theories PTO and PTO™ are based on a partial form of term application, and
the proof-theoretic reduction described in Section 3.3.2 makes substantial use of this
fact. The question arises whether the assumption of a total application operation
does raise the strength of PTO. More precisely, what is the exact proof-theoretic
strength of PTO + (Tot)?

We have seen in Section 2.3.2 that totality (Tot) does not raise the strength of
various applicative theories of strength at least PRA, and we will prove in the next
chapter that this is also true for systems including the non-constructive p operator.
For our upper bound argument in Section 2.3.2 we have made substantial use of
the fact that the Church Rosser property of our reduction relation p is derivable
in primitive recursive arithmetic PRA, cf. Proposition 24. If we consider a suitable
total term model of PTO which is based on the usual reduction relation for total
combinatory logic, then we do not know whether the corresponding Church Rosser
property is provable in PTCAT 4 (X-Ref). Certainly, we do not need full PRA in order
to formalize the Church Rosser theorem: recently, Duccio Pianigiani (manuscript
in preparation) has shown that a careful formalization of the usual Church Rosser
proof can be carried through in 1A + (exp). However, it is not clear at the moment
how to avoid the use of the exponential function and whether this is possible at all.

Hence, we are left with the two questions whether the Church Rosser property is
derivable in a feasible system, and whether PTO + (Tot) is conservative over PTO.
A positive answer to the first of these questions would almost certainly yield a
positive answer to the second by combining methods of Sections 2.3.2 and 3.3.2.
Moreover, we strongly conjecture that the answer to the second question is positive;
in particular, the provably total functions of PTO + (Tot) are still computable in
polynomial time.

Recently, Cantini [10] has established — among other things — that the provably
total functions of the system PTO + (Tot) have polynomial growth rate only.% His
analysis of PTO + (Tot) makes use of partial cut elimination and an asymmetric
interpretation with respect to the W predicate. However, it does not follow from
Cantini’s argument that the provably total functions of PTO + (Tot) are computable
in polynomial time.

3.5.2 The theories PTO + (W-ly) and PTO + (O-ly)

In the sequel we briefly address extensions of PTO by W induction on W, (W-ly),
and operation induction on W, (O-ly). These induction principles are defined in
complete analogy to the corresponding principles in Ly, cf. Section 2.1. We repeat
them for reasons of completeness here.

6 Actually, Cantini establishes this result for a substantial extension of PTO + (Tot).

22

W induction on W, (W-ly).

fee WA (Vz e W)(f(pwz) € W — fr e W) — (Vo € W)(fz € W).
O-lw).
flpwz) =0 — fxr =0) — (Yo € W)(fz =0).

Operation induction on W,

(
fe=0A (Vz € W)(
We first turn to the discussion of W induction in PTO, cf. also the introduction to
this chapter. It follows from our work [67] that PTO + (W-ly) proves the totality
of every primitive recursive function and, hence, contains PRA. This is due to the
fact that exponentiation can be defined in PTO by means of the recursion theorem
(Proposition 2), and its totality is provable by (W-ly). Once exponentiation is
available, one establishes in a straightforward manner the totality of every primitive
recursive function in PTO + (W-ly), where another application of the recursion
theorem provides the corresponding Ly terms. Moreover, the methods of Section
2.3.2 allow one to establish an upper bound of PTO + (W-ly) in PRA + (2%-Iy) so
that (Tot) and (Ext) are validated by the corresponding interpretation. Hence, we
can state the following theorem.

Theorem 63 We have the following proof-theoretic equivalences:
PTO + (W-ly) = PTO + (Tot) + (Ext) + (W-ly) = PRA + (X%-Iy) = PRA.

In the second half of this paragraph we briefly address operation induction on W,
(O-ly). One immediately observes that our upper bound argument for PTO does
not carry over to PTO + (O-lyy): the requirement f € P(W) in the proof of Lemma
45 is essential in order to apply ¥ reflection (3-Ref). Hence, the question arises
whether PTO + (O-ly) is stronger than PTO. In partial answer to that question,
it follows again from Cantini’s work in [10] that the provably total functions of the
system PTO + (O-ly) have polynomial growth rate only.

It is interesting to compare this last result with Kahle’s work in [53]. There he
introduces a strengthening BON of BON so that (O-ly) and (N-ly) are equivalent

over BON. The corresponding extension PTO of PTO is obtained by adding the
following strengthening of definition by cases dyw on W:

dwryab e W — a e WADbL e W.
Then (O-ly) and (W-ly) are equivalent over PTO by Kahle [53] and, hence, the

—

system PTO + (O-ly) proves the totality of every primitive recursive function by
Theorem 63. Further, one easily verifies that our upper bound argument for PTO
carries over to PTO, and the one for PTO + (W-lw) to PTO+ (W-ly). Summing up,
the system PTO + (O-ly) is strictly stronger than EI'\O, which in turn is equivalent
to PTO. Moreover, PTO + (O-ly) is strictly contained in PTO + (O-lw) by [10]. In
particular, the methods used by Cantini do not validate the above strengthening
of definition by cases dy on W. This immediately becomes clear by looking at the
asymmetric interpretation argument given in [10].

23

Theorem 64 We have the following proof-theoretic equivalences:

PTO + (O-ly) = PTO + (Tot) + (Ext) + (O-ly) = PTO + (W-ly) = PRA.

3.5.3 W versus N in PTO

Let us very briefly address the possibility of replacing the basic type W in PTO by
the type for the natural numbers N. Our remarks are rather tentative and details
are not worked out yet.

We obtain a theory based on the language Ly which is formulated analogously to
PTO as follows: we have as our base functions addition and multiplication, and we
formulate a bounded primitive recursor in the same way as the recursor ry of PTO,
making use of the < relation on the naturals to be included in the system under
discussion. In addition, we allow set induction on N, (S-ly). The so-obtained system
is strongly conjectured to capture the second level &, of the Grzegorczyk hierarchy.
It is well-known that a number-theoretic function belongs to &, if and only if, it is
computable in linear space, cf. Rose [58].

3.6 Extension to the Grzegorczyk hierarchy

In this section we address an extension of our approach to the levels &, (n > 3) of the
Grzegorczyk hierarchy. In particular, we sketch applicative theories G, (n > 3) so
that the provably total functions of G,, are exactly the number-theoretic functions in
&,. As the formulation of the theories and the corresponding upper bound argument
run in complete analogy to PTO, we restrict ourselves to the discussion of the most
central aspects of the new theories G,,.

In the following we use a characterization of &, which is due to Ritchie (cf. Sieg
[62]). For a detailed discussion on the Grzegorczyk hierarchy the reader is referred
to Rose [58]. Let us first define the following sequence (A,),en of number-theoretic
functions:

A[](.T,y) =Y + 17

z ifn=0
An+1(f17, 0) = 0 lf n = 1
1 if 2 <n,

An+1(x,y+1) = An(x,An+1(:r,y))-

A,, denotes the nth branch of the Ackermann function. In particular, A;, A, and As
denote addition, multiplication and exponentiation, respectively. Then &, is defined
to be the smallest class of number-theoretic functions that contains the usual base
functions, A,, (m < n), and is closed under substitution and bounded primitive
recursion. &5 corresponds to the Kalmar elementary functions.

o4

The applicative theories G, (n > 3) are now obtained as follows. They are based
on a straightforward modification of BON, where the recursor ry is replaced by a
corresponding bounded primitive recursor; we include the < relation on the naturals
in order to formulate this new recursor. Moreover, G,, includes defining equations
and totality axioms for the new operations a,, for A4,, for each m < n. Finally, we
allow set induction on N, (S-ly), in each of the theories G,.

The systems of arithmetic corresponding to G, are described in Sieg [62]. These are
extension 1Ag + (U,) of 1Ay by function symbols for the elements of the set U, :=
{A;, 3 <m < n}, and each number-theoretic function in &, can be introduced in
|Ag+ (Uy,); hence, 1Ag+(E,) is a definitional extension of 1Ag+ (U,). Moreover, each
Ay(E,) formula is equivalent to a quantifier free formula in the extended language,
provably in 1A + (&), cf. [62]. Hence, we see that 1A¢ + (£,) is contained in G,, by
the very methods of Section 3.3.1.

Let us now turn to the discussion of the upper bound of the theories G, (n > 3).
The theories 1Ag + (&,) are not suited for an upper bound argument, and we need
again the principle of ¥ reflection, (X-Ref); this is formulated in the very same
way as in the context of polynomial time computable arithmetic. An inspection of
our sketch of Cantini’s argument at the end of Section 3.2.2 is convincing enough
to see that [Ag + (&,) + (X-Ref) is a conservative extension of 1A + (&,) for IT9
statements, and this is in full accordance with the results of Buss [6] and Ferreira
[31]. Now it is immediate to check that our upper bound argument for PTO in
PTCA™ + (3-Ref) can be adapted in a straightforward manner in order to give a
reduction of G, to IAg + (&,) + (X-Ref) for n > 3; the details of the argument
are almost literally the same as for PTO, and in some sense even easier due to the
presence of exponentiation. Hence, we can state the following theorem.

Theorem 65 Let n > 3. Then we have the following proof-theoretic equivalences:
G, = 1Ag + (&) + (X2-Ref) = 1A¢ + (&,).

Formulas of the form (VZ# € N)(tZ € N) translate into a II3 statement under our
interpretation. Moreover, provable T1J statements of 1Ag+ (&,,) + (X-Ref) are already
derivable in |Ag+(&,) by our discussion above. Since the provably total functions of
Ao+ (&) are exactly the functions in &, (cf. [62]), we have established the following
corollary.

Corollary 66 Let n > 3, and suppose that t is a closed term so that
G, F (V& € N)(tZ € N).
Then t defines a function in the nth level &, of the Grzegorczyk hierarchy.

Let us finish this section by briefly addressing the question of whether totality (Tot)
can conservatively be added to G, for each n > 3. The answer to this question is
positive: we have seen in Section 3.5.1 that — due to Duccio Pianigiani — the Church

25

Rosser property for the combinatory reduction relation is derivable in 1Aq+ (exp) or,
equivalently, 1Aq + (£3). Now it is possible to obtain an upper bound of G, + (Tot)
in 1Ag + (£,) + (X-Ref) by combining methods of Sections 2.3.2 and 3.3.2 so that
we can state the following strengthening of Theorem 65.

Theorem 67 Let n > 3. Then we have the following proof-theoretic equivalences:
Gp + (Tot) = 1Ag + (&) + (X-Ref) = 1Ay + (&,).

Moreover, it seems very likely that the methods of Pianigiani’s Church Rosser proof
in 1A¢+(exp) extend to the corresponding extensional reduction relations so that the
last theorem should hold in the presence of extensionality (Ext), too. The details,
however, still have to be checked.

26

Chapter 4

The non-constructive ;1 operator

The central theme of this last chapter of our thesis are applicative theories based
on the non-constructive quantification operator p or, more familiar, Kleene’s type
two quantification functional . We establish the proof-theoretic strength of BON
plus g in the presence of various induction principles on the natural numbers, most
interestingly, set induction (S-ly), various forms of positive induction, and full for-
mula induction (F-ly). Special emphasis will be put on theories including totality
(Tot) and extensionality (Ext), as well as intermediate forms of complete induction,
cf. Jager and Strahm [52, 50]. Corresponding results for theories based on a partial
form of term application plus (S-ly) and (F-ly) are due to Feferman and Jéger [28].

As in Feferman and Jéger [28], upper bounds for applicative theories with 1 operator
will be obtained via so-called fixed point theories over Peano arithmetic with ordi-
nals; these have been introduced in Jéger [48] and extended in Jager and Strahm [51]
to second order theories with ordinals. In contrast to [28], ordinal theories will not
be used in order to describe recursion-theoretic models, but so-called infinitary term
models together with their corresponding Church Rosser properties. Such models
validate totality (Tot) and, possibly, extensionality (Ext).

The exact plan of this chapter is as follows. First, we state the exact axiomatization
of i, and we discuss the standard recursion-theoretic model ERO of BON(u) (cf. Sec-
tion 1.3.1) and, most important for our purpose, the infinitary term model CTT(p)
of TON(u). In Section 2 we briefly review some predicative subsystems of analysis
based on iterated arithmetic comprehension; these will be used in order to measure
the proof-theoretic strength of BON(x) plus various induction principles. Section 3
is dedicated to lower bound computations. We briefly review the lower bounds for
BON(u) in the presence (S-lIy) and (F-ly) of [28], and then concentrate on interme-
diate forms of induction. In particular, we give a detailed well-ordering proof for the
systems BON(u) + (N-ly). In Section 4 we introduce the framework of fixed point
theories over Peano arithmetic with ordinals. We state the proof-theoretic strength
of all the theories that are relevant in the sequel, and we exemplary carry through
the exact proof-theoretic analysis of two such systems. Upper bounds for theories
based on p and totality are established in Section 5 by formalizing the infinitary

o7

term model CTT(p) in the previously introduced ordinal theories. At the end of
that section, we give a complete Church Rosser proof for the reduction relation of
CTT(p), and we convince ourselves that this proof can be formalized in a suitable
fixed point theory with ordinals. Finally, Section 6 contains some short remarks
concerning an axiomatization that is directly based on E instead of p.

4.1 The quantification operator pu

In this section we introduce the axioms for the non-constructive quantification op-
erator u, and we address recursion-theoretic as well as term models of the theory

BON(u).

4.1.1 The theory BON(u)

In the sequel we assume that our language Ly contains an additional constant p
for the non-constructive quantification operator u. We follow its axiomatization
in Jiger and Strahm [52], which is a slight strengthening of the formulation given
in Feferman [19] and Feferman and Jéger [28, 29]. For an axiomatization that is
directly based on Kleene’s type two functional F instead of u, we refer to our brief
discussion in the last section of this chapter.

The unbounded minimum operator

(1) (FEN—=N) o uf N,

(2) (f€N—N)AGEreN)(fe=0) - f(uf) =0,

We write BON(y) instead of BON + (p.1, 11.2); TON(u) reads similarly.

In the sequel we will be interested in the proof-theoretic strength of the following
theories, where special emphasis will be put on the presence of totality (Tot) and
extensionality (Ext):

BON(y) + (S-In) BON() 4 (O-In) BON(p) + (N-Iy)
BON(x) + (*1y) BON(u) + (F&ly) BON(x) + (F-ly).

Before we begin with our proof-theoretic investigations, let us briefly discuss some
models of the theory BON(p).

4.1.2 Models of BON(u)

Let us briefly address the standard models of the theory BON(u), namely recursion-
theoretic models and term models.

o8

The recursion-theoretic model

We have already met the standard recursion-theoretic model ERO of BON(u) in
Section 1.3.1. Tt is based on application of partial II} functions or, alternatively,
partial recursive function application in Kleene’s type two functional E. Recall
that sets in the sense of P(N) are exactly the hyperarithmetic sets, and semi-sets
(r.e. sets) the II} sets in ERO. Observe that E and p are interdefinable in this
standard recursion-theoretic framework, of course. For a (formalized) description
of ERO which is directly based on p, cf. Feferman and Jéger [28]. Obviously,
ERO [~ (Tot) and ERO [~ (Ext).

Term models

Let us now turn to the description of the total term model CTT(u) of the theory
BON(u)+(Tot). This is defined in complete analogy to CT'T, with the only exception
that it is based on the notion of reduction p U p, or pu for short, where p is a new
set of redex-contractum pairs.

Definition 68 The stages p,, of the p redex-contractum pairs are defined by trans-
finite recursion on the ordinals and generated by the following two clauses (1) and
(2), where t is a closed Ly term and k,l,m € N:

(1) If tm 7, 0 and (VE)(3D[th 7o 1 A (k <m — [> 0)], then ut p, m,
(2) If (Vk)(3L > 0)(tk T4 1), then ut p, 0,

where
Ta= U ppg -
B<a

This finishes the specification of our new reduction relation —,, by taking p as
Ua Ko

Now it is crucial to verify that —,, has the Church Rosser property. Since we will
need a formalized version of CTT(u) in Section 4.5 for proving upper bounds of
theories based on BON(u) plus totality, we postpone the Church Rosser proof until
Section 4.5; then we will provide the necessary details of this long and tedious proof
together with indications concerning its formalization in a certain fixed point theory
with ordinals. Nevertheless, let us state the theorem for now.

Theorem 69 The reduction relation —»,, has the Church Rosser property.

As a corollary we get that CTT(u) is a model of BON(), and the axiom of totality
is satisfied in CTT(u), of course.

Corollary 70 CTT(u) = BON(u) + (Tot).

We finish this section by mentioning that we again obtain an extensional version
TTE(p) of CTT(p) by strengthening p to its extensional version 8n. The Church
Rosser proof for —,, then extends to —gp.

29

4.2 Predicative subsystems of analysis

For the sake of completeness, let us briefly recapitulate the definition of some well-
known subsystems of second order arithmetic, which will be relevant in the sequel.

Let £, denote the usual language of second order arithmetic, which extends £; by
set variables XY, Z, ... (possibly with subscripts) and the binary relation symbol €
for elementhood between numbers and sets. Terms and formulas of £, are defined
as usual. We write s € (X); for (s,t) € X. An £, formula is called arithmetic, if
it does not contain bound set variables; let TI2. denote the class of arithmetic £,
formulas.

For the definition of theories with iterated arithmetic comprehension we refer to a
primitive recursive standard well-ordering < of order type I'y with least element 0
and field N, and the reader is assumed to be familiar with the Veblen functions ¢,
cf. Pohlers [56] or Schiitte [59] for precise definitions. Furthermore, let <,, denote
the restriction of < to {m : m < n}, and let us write TI(a, A) for the formula

(Vo) ((Vy < 2)A(y) — A(z)) — (Vo <n)A(z),
provided that the order type of <, is a.
Let A(X,y) be an arithmetic £, formula with at most X,y free. Then the A jump
hierarchy along <,, starting with X is given by the following transfinite recursion:

(Y)U = X:

Y)i == {{m,j):j <iANA((Y);,m)}

for all 0 < ¢ < n, and we write H4(X,Y,n) for the arithmetic £, formula which
formalizes this definition.

If is an ordinal less than Ty, then we write (IT%.-CA), for the system of second
order arithmetic which extends PA by TI(a, A) for all £, formulas A plus

(VX)AY)Hp(X,Y,n)

for all arithmetic L, formulas B(X,y) with at most X,y free, where the order type
of <, is a.. (II%-CA)., denotes the union of the theories (II%-CA)s for 3 < a. For
more information about theories with iterated comprehension the reader is referred
to [17, 35, 63].

We finish this section by mentioning a theorem concerning the proof-theoretic or-
dinal of theories with iterated arithmetic comprehension. The proof follows by the
methods of Schiitte [59].

Theorem 71 Let « be a limit ordinal less than I'y. Then the system of second
order arithmetic (112 -CA)_ . has proof-theoretic ordinal pa0.

In particular, the proof-theoretic ordinals of (IT% -CA),. and (I12.,-CA)_., are w0
and pey0, respectively.

60

4.3 Lower bounds

In this section we give a thorough discussion of the proof-theoretic lower bounds for
BON(y) plus various forms of complete induction on the natural numbers. In the
first paragraph we extend our embedding (-)N of £; to an embedding of £, into Ly;
we address a crucial application of the unbounded p operator, namely elimination
of number quantifiers. The second part of this section contains a brief sketch of the
lower bounds for BON(x) in the presence of set induction (S-ly) and full formula
induction (F-ly) as they are established in Feferman and Jéger [28]. In particular,
BON(p) + (S-ly) contains PA and (I1% -CA)_., is interpretable into BON(z) + (F-ly).
The third paragraph, finally, contains a lower bound of BON(y) in the presence of
intermediate forms of induction, cf. [50]. In particular, we give a wellordering proof
for each initial segment of pw0 in the system BON(u)+(N-ly); together with a recent
result of Kahle [53], this will also determine a lower bound for BON(u) + (O-ly).
Hence, (TT2.-CA)_« is reducible to BON(u) plus (N-lIy) and (O-ly), respectively.

4.3.1 Embedding £, into Ly

In Section 2.3.1 we have discussed an embedding ()N of the language of first order
arithmetic £y into the language Ly. We now extended this embedding to the lan-
guage L, as follows. The set variables of £, are supposed to range over P(N) and,
accordingly, an atomic £, formula (z € Y) is translated into (yz = 0), where z
and y are the variables of Ly which are associated to the variables x and Y of £,,
respectively. Hence, the extended translation (-)V is such that

(AN AX)Y = 3z € P(N) A (),

and similarly for universal quantifiers. In order to simplify the notation, we identify
terms and formulas of £, and their translation into £y when there is no danger of
confusion. In addition, we freely use symbols for primitive recursive relations, which
are introduced as usual via their characteristic functions.

This is the right place to mention a crucial application of the unbounded p operator,
namely elimination of number quantifiers (cf. [28]). The following lemma is the
analogue of Lemma 21 in the context of p. Its proof proceeds straightforwardly by
induction on the complexity of A.

Lemma 72 For every arithmetic £, formula A()? ,) with at most X, free there
exists an individual term ¢4 of Ly so that

1. BON(p) - (V& € P(N))(VF € N)(t4Zf = O V £475 = 1),
2. BON() - (VZ € P(N))(VF € N)(AN(Z, §) < ta7F = 0).

We finish this paragraph with a remark concerning our notion of set in the ap-
plicative framework. Sometimes it will be convenient to work with a slightly more

61

general notion of set (cf. Section 4.3.3). According to this generalization, a set is
not necessarily an element of P(N) but an element of (N — N), and as before, an
object x belongs to a set (f € N — N) if and only if (fx = 0). It is easily seen
that these two notions of a set are equivalent. In particular, BON + (S-ly) proves
set induction for “extended sets”,

(feEN=N)AfO=0A(Vz e N)(fr=0— f(z') =0) = (Voz € N)(fz =0).

Moreover, Lemma 21 and Lemma 72 are easily seen to hold for extended sets, too.
Therefore, we will tacitly use both P(N) and (N — N) as our notion of set, whichever
is more convenient.

4.3.2 Lower bounds for BON(x) + (S-Iy) and BON(u) + (F-Iy)

In this paragraph we briefly address the lower bounds of the systems BON(u)+(S-ly)
and BON(u) + (F-ly). The lower bound PA for BON(yx) + (S-ly) is immediate, and
a detailed reduction of (IT2.-CA).., to BON(x) + (F-ly) is given in Feferman and
Jager [28]. We only give a very brief sketch of this proof here; similar techniques
will be presented in detail when we give the well-ordering proof for the system
BON(u) + (N-ly) in the next paragraph.

Let us first turn to the system BON(u) + (S-Iy). By Lemma 72 we know that each
Ly formula A can be represented as a set in the sense of P(N) in BON(u). Hence,
induction for £; formulas in PA translates into (S-ly) under the translation (-)N, and
we can state the following extension of Proposition 22, cf. [28].

Proposition 73 We have for every £ formula A(Z) with at most T free:
PAF A(Z) = BON(u)+ (S-In) F#e N — AN(D).

In a next step we briefly discuss the embedding of the system (IT% -CA).., into
BON(u) + (F-In). For the precise proof the reader is referred to Feferman and Jéger
[28]. We must prove in BON(u) + (F-Iy) that the A jump hierarchy up to a fixed
ordinal @ < gy exists for each arithmetic £, formula A(X,y). First of all, we have
a term t, for each such arithmetic A by Lemma 72 so that ¢4 represents A and,
moreover, ¢4 behaves as a set in the sense of P(N) provided the parameters of A are
known to be numbers and sets, respectively. Hence, one hopes to build iterations
of A by means of the recursion theorem for BON (Proposition 2). How do we know
that such iterations yield sets in BON(u) + (F-lIy)? It follows from standard proof
theory that BON(u)+ (F-ly) proves transfinite induction with respect to Ly formulas
along each initial segment of £y and, hence, we prove by transfinite induction up to
each o < g¢ that the hierarchy up to o generated by its corresponding term really is
a hierarchy of sets in the sense of P(N). Summing up, if « is less than ¢y and n € N
so that the order type of <,, is a, then for each elementary £, formula A(X,y) there
exists an Ly term A so that

BON(u) + (F-In) F 2z € P(N) — hx € P(N) A Ha(x, hz,n).

62

The remaining axioms of (IT% -CA).., are easily dealt with, too. We are ready to
state the embedding of (IT% -CA).., into BON(u) + (F-ly), cf. [28].

Theorem 74 We have for every L, formula A()?,) with at most X, 7 free:
(M%-CA)cey F A(X,) = BON(u) + (F-In) &€ PIN)AGEN — AV(E, 7).

This finishes our short discussion of the lower bound for x systems based on set and
formula induction. In the next paragraph we turn to discussion of lower bounds in
the presence of intermediate forms of induction.

4.3.3 The wellordering proof for BON(x) + (N-Iy)

In the sequel we show that BON(u) + (N-ly) proves transfinite induction along
each initial segment of pw0. This yields the lower bound (IT2.-CA)_ . for the sys-
tem BON(x) + (N-ly). Moreover, a result of Kahle to be mentioned below shows
that (O-ly) and (N-ly) are equivalent over BON(x) and, hence, a lower bound for
BON(x) + (O-ly) will be available, too.

Throughout this paragraph we are implicitly working with our embedding (-)N of
L, into Ly which we have described at the beginning of this section. Recall that <
is a primitive recursive standard wellordering of order type I'y with field N and least
element 0. As usual we set (with respect to <):

Prog(A) = (Vz)(Vy < 2)A(y) — A(z)),
TI(a,A) := Prog(A) — (Vz < a)A(x).

Moreover, TI(a, f) abbreviates TI(a, fx = 0). In the sequel we want to show that
BON(x) + (N-Iy) - (Vf € N — N)TI(a, f)

for each a < w0 or, equivalently, for each a = pk0 (k < w).

In order to make the wellordering proof work, we need a certain amount of transfinite
induction with respect to formulas of the form tx € N. More precisely, we have to
extend N induction (N-ly) to N transfinite induction up to w* for each k < w. This
can be established in a straightforward manner, however, there is one point where
attention is needed: in the proof of Lemma 76 below we will use the fact that the
class of formulas tx € N is closed under universal quantifiers of the form (Vo < s),
a closure property which is not immediately obvious. Observe that in the proof of
the following lemma we make essential use of the non-constructive p operator for
the first time.

Lemma 75 For every Ly term s there exists an Ly term t so that

BON(p) F (Vz € N)((Vy < z)sy € N « tx € N).

63

Proof. Let r be an Ly term for the characteristic function of <. For a given Ly
term s choose the term ' of Ly given by

t' = Ay.dn(sy)0(ryx)O0. (1)
Then it is straightforward to verify that
BONFzeN — [(Vy € N)(ryz =0 — sy € N) < (' € N — N)]. (2)
Using the axiom (yu.1) for the non-constructive p operator we have
BON(u) - (¢ € N — N) < ut’ € N. (3)
Hence, we can take ¢t := Az.ut" and read off our assertion from (2) and (3). O

This finishes our preparation for the following lemma, which guarantees N transfinite
induction up to w* for each k < w.

Lemma 76 We have for all k < w:
BON(z) + (N-Iy) F TI(w*, fz € N).

Proof. We prove the claim by induction on k. The case k = 0 is trivial. For
the induction step assume that the assertion is true for some k£ < w. Let us work
informally in BON(z) + (N-ly) and make free use of the preceding lemma. We show

Aly) == (Vo <uw* y)fz eN (1)

by (N-ly) induction on y, assuming Prog(fxz € N). This will immediately yield the
induction step. A(0) is trivially satisfied. So assume A(y) and show A(y'). First,
one easily verifies

(Va)[(Vb < a)(Vz < w* -y +b)fr eN — (Vo <" y+a)fzr N| (2)

by making use of the assumptions A(y) and Prog(fx € N). Furthermore, by apply-
ing the (meta) induction hypothesis to (2) we obtain

(Va < w®) (Vo < ¥ -y +a)fr €N, (3)
From (3) and Prog(fxz € N) we can conclude
(Va < w*)f(W* -y +a) €N, (4)

which together with A(y) yields A(y’) as desired. This finishes our proof. [

On the other hand, we already know that BON(u) + (N-ly) proves transfinite induc-
tion up to each ordinal less than ¢y with respect to sets: according to Proposition
19, BON(p) + (N-Iy) proves set induction (S-ly) and, moreover, BON(p) + (S-In)
contains PA via the embedding (-)N by Proposition 73.

In the sequel we need primitive recursive auxiliary functions p and e on our ordinal
notations, which satisty

64

(i) p(0) =€(0) = 0; p(w*) =0 and e(w?) = q;
(i) if @ = w™ + -+ -4+ w* for more than one summand so that a, < --- < ay, then
pla) =w™ 4+ -+ w " and e(a) = a,.

In addition, let us define some sort of jump operator .J, which is given by the
following arithmetic definition:

J(X,a) = (Vy)(Vz < y)(xr € X) = (Vo <y +a)(z € X)).

Let (f € N — N) be a set. In order to prove TI(a, f) for each a < ¢w0, we build
up a hierarchy of sets (Hp)ps,+ for each & < w. The definition of the hierarchy
corresponds to the formulas R(P, @, t) of Schiitte [59], p. 184ff. More precisely,

HO — f:
Hy = {y: (V2)(pla) 22 <a — J(H.,p(e(a),y)))}, (0<a).

In order to formalize (Hj)y o« in BON(p) + (N-ly), we need some preliminary con-
siderations. The arithmetic £, formula A(X,a,y) is given by

AX, a,y) = (V2) (pla) 22 <a — J((X):, ple(a), 9)))-

According to Lemma 72 (cf. also the comments following it), there exists an Ly term
ta so that BON(u) proves:

(V& € N — N)(Va,y € N)(tazay € N),
(Vo € N — N)(Va,y € N)(A"(z, a,y) < tazay = 0).

An application of the same lemma provides us with a term s so that the following
is derivable in BON(p):

(Vz,y € N)(szy € N),
(Vz,y € N)((z = ((x)o, (2)1) A (2)1 < y) < sxy =0).

Finally, the operation g is given by

g = Azyz.(dn(2(2)1(2)0)1(s2y)0).

If x is assumed to be an operation which enumerates the sets xb, then gza is a
characteristic function of the disjoint union of the sets (zb)p<q-

We have prepared the ground in order to introduce an operation h so that hfa
represents the ath level of the H hierarchy with initial set f. It is given by the
recursion theorem to satisfy

) Ty if a =0,
hiay = { ta(g(hf)a)ay, otherwise.

So far we do not know that hfa represents a set in BON(u) + (N-ly). This is the
content of the following crucial lemma.

65

Lemma 77 We have for all k < w:
BON(p) + (N-Iy) - (Vf € N — N)(Va < w*)(hfa € N — N).

Proof. Let us first fix a k¥ < w and an (f € N — N). We work informally in
BON(u) + (N-ly) and show that

Prog(ra € N), (1)

where 7 is defined to be the term Aa.p(hfa). Then our assertion immediately follows
from (1), Lemma 76 and an application of the axiom (x.1). In order to prove (1) let
us assume

(Vb < a)(rb € N), (2)
ie. (Vb < a)(u(hfb) € N). The equivalence (p.1) yields

(Vb < a)(hfb € N — N). (3)

It is our aim to show (hfa € N — N), which by (u.1) yields ra € N as desired.
If a = 0, then (hfO € N — N) holds since it is (f € N — N) by assumption.
Otherwise, we have to show (ta(g(hf)a)a € N — N). But this is immediate, since
(3) implies (g(hf)a € N — N), and ¢4 maps sets and numbers into sets according to
our discussion above. This finishes the proof of (1), and hence our assertion follows
as shown. O

We have established the existence of the hierarchy (H,),-.+ as a hierarchy of sets
in BON(y) + (N-ly) for each k < w, and its defining properties can be proved there.

The next lemma is essential in the wellordering proof for BON(x) + (N-ly). It
corresponds to Lemma 9 of Schiitte [59], and its proof is very similar to the proof
of Lemma 9. A careful but straightforward formalization of that proof only uses set
induction (S-ly), which is available in BON(x) 4+ (N-ly) by Proposition 19. For the
details the reader is referred to [59].

Lemma 78 We have for all k < w:
BON(z) + (N-Iy) - (f € N = N)A O < a < w" A (Vb < a)Prog(hfb) — Prog(hfa).

We are now able to show that BON(p) + (N-Iy) proves transfinite induction up to
k0 for each k < w. This will immediately yield the desired lower bound.

Theorem 79 We have for all k < w:
BON(u) + (N-Iy) F (Vf € N — N)TI(pkO0, f).

Proof. In the following we work informally in the theory BON(u) + (N-ly). Let us
choose k < w and an arbitrary (f € N — N). By Lemma 77 we have a hierarchy of
sets (hfa)g<ur+1 with initial set Af0 = f. Hence, we trivially have

Prog(f) — Prog(hf0). (1)

66

A combination of (1) and the previous lemma yields

Prog(f) Aa < W™ A (Vb < a)Prog(hfb) — Prog(hfa). (2)
If we abbreviate B(a) := a < w**' — Prog(hfa), then (2) amounts to
Prog(f) — Prog(B). (3)

Furthermore, it is easily seen that B can be represented as a set tg, provably in
BON(x) + (N-ly), for example, choose

tg := Aa.dy(prog(hfa))l(raw®*t)0, (4)

where prog is the set corresponding to Prog according to Lemma 72, and r repre-
sents the characteristic function of <. Therefore, we can conclude from (3) and set
transfinite induction up to w*** that

Prog(f) — Prog(hfu"). (5)
In addition, we trivially have
Prog(hfw*) — (hfw"0=0). (6)
Since p(w*) = 0 and e(w*) = k we get by the definition of hfw" that
(hf*0 = 0) — J(f,ok0). (7)

Furthermore, it is immediate from the definition of J that
J(f, ok0) — (Vo < ok0)(fz = 0). (8)
If we combine (5)—(8) we obtain TI(f,k0) as desired. [

When measuring the proof-theoretic ordinal |S| of a formal system S as usual by
means of transfinite induction, this is most naturally done for an anonymous (free)
relation variable U. In our applicative framework we assume that U C N and,
moreover, there is a total characteristic function ¢y of U on N: ¢y € P(N). With
this definition in mind we are now able to derive the following corollary from our
theorem.

Corollary 80 ¢w0 < [BON(x) + (N-ly)|.

Instead of giving a wellordering proof for BON(x) + (N-ly), it would have also been
possible to provide a direct embedding of the second order system (T2 -CA)_,. or,
more comfortably, (I1{-CA)_,w, into BON(x) + (N-ly). Such an embedding makes
use of formalized recursion theory and the same techniques for building hierarchies
of sets as in the wellordering proof above. For a similar embedding in a different
setting the reader is referred to Jéger and Strahm [50].

We finish this section by briefly addressing the lower bound of BON(p) + (O-ly).
It is immediately available by our lower bound for BON(x) + (N-ly) and a result
by Kahle [53], which says that (O-ly) and (N-ly) are equivalent over BON(u). We
mention his theorem from [53] without proof.

67

Proposition 81 (N-ly) and (O-ly) are equivalent over BON(u).

Together with Corollary 80 we thus obtain the following lower bound result for the
system BON(p) + (O-ly).

Corollary 82 ¢w0 < [BON(p) + (O-ly)|.

This finishes our discussion on lower bounds for systems with g plus intermediate
forms of induction on the natural numbers.

4.4 Fixed point theories with ordinals

In this section we discuss fixed point theories over Peano arithmetic with ordinals
as they have been introduced in Jédger [48]. They will be used in the next section
in order to determine proof-theoretic upper bounds of applicative theories with
operator.

In the first paragraph we introduce the fixed point theories PAG, PAS,, PAS and
PAq, and we state the main proof-theoretic equivalences. The remaining paragraphs
contain a detailed discussion of the upper bounds of PA§, and PAY, cf. Jiger [48] and
Jiger and Strahm [50]. These two systems contain Af! induction on the ordinals
plus ¥ and full induction on the natural numbers, respectively. In particular, we
introduce an infinitary system T.,, which we subsequently use in order to provide
asymmetric interpretations of suitable Tait-style reformulations T; and T, of PAS
and PA{, respectively.

4.4.1 The formal framework and main results

In this paragraph we introduce the formal framework for fixed point theories over
Peano arithmetic with ordinals; we state the main proof-theoretic results, some of
which will be established in some detail in the remaining paragraphs of this section.

The language Lq

We first introduce the notion of an inductive operator form. Let P be an n-ary
relation symbol which does not belong to the language £, and let £;(P) denote the
extension of £1 by P. An £;(P) formula is called P positive if each occurrence of P
in it is positive. We call P positive formulas which contain at most ¥ = zq,...,z,
free inductive operator forms; we let A(P,Z) range over such forms.

Now we extend L£; to a new first order language L by adding a new sort of ordinal
variables (o, 7,1,&,...), new binary relation symbols < and = for the less relation
and the equality relation on the ordinals' and an (n + 1)-ary relation symbol Py for
each inductive operator form A(P, Z) for which P is n-ary.

'In general it will be clear from the context whether < and = denote the less and equality
relation on the nonnegative integers or on the ordinals.

68

The number terms of Lo are the number terms of £q; the ordinal terms of Lq are
the ordinal variables of Lq. The formulas of Lo (A, B,C, ...) are inductively defined
as follows:

1. If R is an n-ary relation symbol of £;, then R(sq,...,s,) is an atomic formula
of EQ

2. The formulas (0 < 7), (0 = 7) and Py(o, §) are atomic formulas of Lq.

3. If A and B are Lq formulas, then so also are —=A, (AV B), (A A B) and
(A — B).

4. If Ais an Lq formula, then so also are (3z)A and (Vz)A.

5. If A is an Lg formula, then so also are (I < o)A, (V€ < o)A, (F€)A and
(VE)A.

For every Lq formula A we write A to denote the L formula which is obtained
by replacing all unbounded ordinal quantifiers (Q¢) in A by (Q¢ < o). Additional
abbreviations are:

P.fl(;) = PA(Uag)a
P°(3) = (3¢ <o)P4(3),
Pu(8) = (F)P4(3).

Finally, the following classes of L formulas are crucial in the framework of Peano
arithmetic with ordinals.

Definition 83 (Af formulas) The A formulas of Lq are inductively defined as
follows:

1. Every atomic formula of Lq is a Af formula.

2. If A and B are A formulas, then so also are —=A, (AV B), (A A B) and
(A — B).

3. If Ais a Af formula, then so also are (3z)A and (Vr)A.
4. If Ais a A formula, then so also are (3¢ < o)A and (V€ < o) A.

Definition 84 (X% and II formulas) The X% and II® formulas are inductively
generated as follows:

1. Every Af! formula is a ¥ and II® formula.
2. If Aisa X% [[I9] formula, then —A is a II* [£9] formula.

3. If A and B are X% [[1%] formulas, then (A V B) and (A A B) are ¢ [[19]
formulas.

69

4. If Ais a 1% [X%] formula and B is a ¥ [II¥] formula, then (A — B) is a X%
[119] formula.

5. If Ais a ¥ [I19] formula, then (32)A and (Vx)A are X [I19] formulas.
6. If Aisa X9 [[I1?] formula, then (3¢ < o)A and (V€ < o)A are £ [I19] formulas.

7. If Ais a X% formula, then (3¢)A is a X% formula; if A is a I formula, then
(VE)A is a T formula.

This finishes our description of the syntax of Ln. In a next step we turn to the
axioms of our fixed point theories with ordinals.

The theories PAG, PA},, PAS and PAg

In the following we introduce four fixed point theories with ordinals; the first three
of those will be relevant in the sequel for the proof-theoretic analysis of applicative
theories wit pu.

We start off with the specification of the weakest of our fixed point theories, the
system PAg. It is based on the usual two-sorted predicate calculus with equality
and classical logic. The non-logical axioms of PAf, are divided into the following six
groups:

[. Number-theoretic axioms. The axioms of Peano arithmetic PA with the exception
of complete induction on the natural numbers.

—

Il. Inductive operator axioms. For all inductive operator forms A(P, %)
PI(3) — APS°,).
I1l. 3% Reflection axioms, (X-Ref). For all £ formulas A:
A — (3€)AS.
[V. Linearity axioms.
oo N(o<TAT<n—o<nA(c<TVo=1VT<o0).

V. Af induction on the natural numbers, (Af-ly). For all Af formulas A(x):
A0) A (Vo)(A(x) — A(z")) — (Vo)A(x).

VI. Af induction on the ordinals, (Af-lg). For all A formulas A():
(VO < A(n) — A()] — (VE)A(&).

This finishes the description of the theory PAf. PAg is now defined to be PAg
plus induction on the natural numbers for X% formulas, i.e. PAY, is PAL + (X%-Iy).

70

Moreover, PA§ is obtained from PAf by allowing induction on the natural numbers
for arbitrary Lq formulas, i.e. PAY is PAG, + (F-ly). Finally, we obtain the full theory
PAq by adding formula induction on the ordinals to PAY, i.e. PAq is PAY + (F-lg).
Observe that we trivially have

PAl, C PA?, C PAY C PAg.

We finish this paragraph by mentioning the following crucial fixed point lemma,
which says that the ¥ formulas P4 describe fixed points of the inductive operator
form A(P, Z):

Lemma 85 We have for all inductive operator forms A(P, Z):
PAG = (VZ)(Pa(@) = A(Pa, 7).

Proof. Immediate from the inductive operator and £ reflection axioms. [

Main results

In the sequel let us briefly mention the main results concerning the proof-theoretic
strength of the four fixed point theories PAg, PAg, PAY and PAg. We will provide
the detailed upper bound computations for the theories PA and PAY in the rest of
this section, and sketch the relevant arguments for PAf, and PAg immediately after
the following theorem. 1., 3. and 4. of the theorem are due to Jéger [48] where, in
particular, a detailed treatment of PAG, is carried through; 2. is established in Jager
and Strahm [50]. Below, ID; denotes the well-known fixed point theory for positive
operators (cf. Feferman [21]) and ID¥ is the subsystem of ID; where induction on
the natural numbers is restricted to formulas which are positive in the fixed pomt
constants, cf. [50]. Hence, it is immediate from Lemma 85 that the theories ID¥ Dy,
and ID; are contained in PA,, PAY, and PAq, respectively. Alternatively, the lower
bounds for the ordinal theories PAg, and PA{ follow from the results of Sections 4.3
and 4.5.

Theorem 86 We have the following proof-theoretic equivalences:

1. PA}, = PA.
2. PAS, = ID¥ = (IT% -CA) ..
3. PAY = ID; = (1% -CA).,.

4. PAq

ID;.

Let us now briefly sketch the argument which shows that PAf, is a conservative
extension of Peano arithmetic PA. For the details, the reader is referred to [48]. In a
first step, one reformulates PAg, in a Tait-style calculus T in a straightforward manner
and observes that the main formulas of the non-logical axioms and rules of T are X,

71

Hence, we obtain by (finite) partial cut elimination for T that all but ¥ and IT** cuts
can be eliminated from T derivations. In a second step, the -II fragment of T is
reduced to PA via an asymmetric interpretation: ordinal variables are replaced by
finite ordinals so that a formula P4(m, §) with m € N translates into an £; formula
that describes the build up in stages of the corresponding inductive definition, and
if m is a bound for universal ordinal quantifiers, then m + 2" provides a bound
for existential ordinal quantifiers, where n is the length of a given T derivation.
The so-obtained asymmetric interpretation validates X and II® cuts as well as 2%
reflection. In addition, A} induction on the natural numbers, (Af-ly), translates
into complete induction for arbitrary £; formulas. This finishes our brief sketch of
the conservativity of PAf, over PA. A similar interpretation will be used in the upper
bound argument for the system PA§, cf. Section 4.4.4.

As to the full theory PAq, it is straightforward that PAg can be embedded into the
system of Kripke-Platek set theory KPu, which by Jager [44] is proof-theoretically
equivalent to ID;. A direct treatment of PAg is possible, too.

In the following paragraphs we establish the proof-theoretic upper bounds for the
systems PAS, and PA{) in some more detail.

4.4.2 The system T

In this section we introduce the infinitary system T, which will be used for the
proof-theoretic treatment of PAg, and PAY below. It is based on the language L,
which extends Lq by constants a for all ordinals av < gy (in the sense of the notation
system).? In addition, we assume that L, contains an anonymous (free) relation
symbol U, cf. the comments after Theorem 79. The ordinal terms (0,6o,6,,...) of
L are the ordinal variables and the ordinal constants of L. The literals of L.,
are the literals of L extended to the language L, plus the literals involving U. To
simplify the notation we often write A(«) instead of A(@) if «v is an ordinal less than
€p-

The formulas of L, are inductively generated as follows:
1. Every literal of £, is an L, formula.
2. If A and B are L, formulas, then so also are (AV B) and (A A B).
3. If Ais an L formula, so also are (3z)A, (Vx)A, (I§ < 0)A and (V€ < 0)A.

Since T, is a Tait-style system, we assume that the negation = A of an L., formula
A is defined as usual by making use of De Morgan’s laws and the law of double
negation. Notice that L., formulas do not contain unbounded ordinal quantifiers.
The LS formulas are the L., formulas which do not contain free number and free

2We can allow all ordinals from our notation system here, but we will only need those below &y
in the sequel.

72

ordinal variables. Furthermore, a literal of £ is called primitive if it is not of the
form U(s), -U(s), P{(5) or =P4(5). Obviously, every primitive literal of LS is
either true or false, and in the following we write TRUE for the set of true primitive
literals.

In order to measure the complexity of cuts in T, we assign a rank to each LS
formula. This definition is tailored so that the process of building up stages of an

—

inductive definition is reflected by the rank of the formulas P%(5)
Definition 87 The rank rn(A) of a £, formula A is inductively defined as follows:

1. If Ais a literal R(5), ~R(5), U(s), U(s), (a < B), (o £), (a =) or
(a # [3), then rn(A) := 0.

2. If Ais a literal P(S) or =P4(5), then rn(A) := w(a + 1).

3. If Ais a formula (BV C) or (B A C) so that rn(B) =/ and rn(C) =+, then
rn(A) := max(f,v) + 1.

4. If A is a formula (3x)B(z) or (Va)B(z) so that rn(B(0)) = «, then rn(A) :=
a+ 1.

5. If Ais a formula (3¢ < o) B(§) or (V€ < a)B(§), then

rn(A) = sup{rn(B(f)) +1: § < a}.

We write oc(B) for the set of ordinal constants which occur in the L, formula B.
The proof of the following lemma is a matter of routine (cf. [51, 50]).

Lemma 88 We have for all inductive operator forms A(P, %), all LS, formulas A
and all ordinals o < gy:

1. rn(A(P3%,3)) < rn(P%(5)).
2. If <« forall f € oc(A), then rn(A) < wa + w.

The system T, is formulated as a Tait-style calculus for finite sets (I', A, ...) of LS,
formulas (cf. e.g. [60]). If Ais an LS formula, then I', A is a shorthand for TU{A},
and similarly for expressions like I', A, B. T, contains the following axioms and
rules of inference.

|. Axioms. For all finite sets I" of LS formulas, all closed number terms s and ¢ with
identical value, and all literals A in TRUE:

I, =U(s), U(t) and T, A.

Il. Propositional rules. For all finite sets I' of £ formulas and all £5, formulas A

and B:
I, A I, B A TI,B

AV B’ I AV B’ I'CANB

73

[I1. Number quantifier rules. For all finite sets I' of £ formulas and all £ formulas
A(s):
I, A(s) I, A(t) for all closed number terms ¢ ()
L, () A(x)’ L, (Vo) A(x) '
IV. Ordinal quantifier rules. For all finite sets I" of £ formulas, all £S formulas A(«)
and all ordinals # with a < § < g¢:

I, A(w) [, A(y) forall y < 3
L, (3¢ < BA) L, (V¢ < B)A(¢)

V. Inductive operator rules. For all finite sets [' of £ formulas, all inductive operator
forms A(P, %), all closed number terms § and all ordinals « < &¢:

I, A(P3%,3) I, ~A(P3%,)
L, Pg(®) I, ~P4(3)
VI. Cut rules. For all finite sets I' of £ formulas and all £ formulas A:
I, A I, —A
T :

The formulas A and —A are the cut formulas of this cut; the rank of a cut is the
rank of its cut formulas.

As usual, for o and p less than T'y, we write T }% [if T is provable in T, by a
proof of depth less than or equal to « so that all cuts in this proof have rank less
than p, cf. e.g. [56] for a precise definition.

It is easy to check that the assignment of ranks and the rules of inference are tailored
so that the methods of predicative proof theory yield full cut elimination for T...
Therefore, we omit the proof of the following theorem and refer to Pohlers [56] or
Schiitte [59].

Theorem 89 (Cut elimination for T.,) We have for all finite sets I of LS for-
mulas and all ordinals «, (3, p less than I'y:

Tool—ﬁpr r = TOOL;”‘F.

We finish this paragraph by mentioning the following crucial persistency lemma. It
is proved by a straightforward induction on a.

Lemma 90 (Persistency) We have for all finite sets [' of LS, formulas, all X%
formulas A(€,Z) and I? formulas B(E,) of Lo(U) with free variables among those
indicated, all closed number terms 7, and all ordinals o, p < 'y and 3,7,0 < €y so
that § < 6:

L Tl T, A%(7,7) = Tl T, A%(7,7).

2 Tl T, BY(7,7) = T =T, BY(7,7).

In the following two paragraphs we use the framework presented so far in order to
give a proof-theoretic analysis of PA and PAS.

74

4.4.3 The proof-theoretic strength of PAg,

In the sequel we indicate the main lines of the proof-theoretic analysis of the system
PA3,, i.e. PAL + (X2-ly). The analysis proceeds in two steps: first, one observes that
a straightforward Tait-style reformulation T; of PA, enjoys partial cut elimination
so that the only cuts which are needed are in ¢ U II®2. Subsequently, the X$-II*
fragment of T; is reduced to T, via an asymmetric interpretation; the required
upper bound pw0 for PAS, is obtained by full cut elimination for T..

Let us start off with describing the first step of the above procedure. We define the
degree dg(A) of an Lq formula A in order to measure the complexity of cuts below.

Definition 91 The degree dg(A) of an Lq? formulas A is inductively defined as
follows:

1. If Ais a X% or 11 formula, then dg(A) := 0. Below we assume that 1. does
not apply.

2. If Ais a formula (BV C) or (BAC) so that dg(B) = m and dg(C) = n, then
dg(A) := max(m,n) + 1.

3. If Ais a formula (3x)B, (Vz)B, (3¢)B or (V€)B so that dg(B) = n, then
dg(A) :=n+1.

4. If A is a formula (3§ < 0)B or (V¢ < 0)B so that dg(B) = n, then dg(A) :=
n+ 2.

The Tait-style calculus T; for PA}, is formulated in the language Lo and comprises
the following axioms and rules of inference.

|. Axioms. For all finite sets I of Lq formulas, all A formulas A and all AY formulas
B which are axioms of PAY:

-4, A and T, B.
l1. Propositional and quantifier rules. These include the usual Tait-style inference rules
for the propositional connectives and all sorts of quantifiers.
[1I. ¢ Reflection. For all finite sets I' of L£q formulas and for all £ formulas A:
I, A
I, (39)A¢

IV. X induction on the natural numbers. For all finite sets I' of Lq formulas, all £
formulas A(z) and all number variables u which do not occur in I', A(0):
I, A(0) [, = A(u), A(u')
I, (Vo) A(z)

3For our Tait-style treatment below, we assume that negation is defined in Lgq.

5

V. Af induction on the ordinals. For all finite sets I' of L formulas, all Af formulas
A(o) and all ordinals variables £ which do not occur in T'; A(0):

L, _‘(VU < §)A(77)7 A(é)
I, A(o) '

VI. Cut rules. These are formulated in the same way as for T.

The notion T, I% [' is now defined in a straightforward manner, cf. the previous
paragraph. Since the main formulas of all non-logical axioms and rules of T; are
¥ we obtain the following partial cut elimination theorem for Ty; here 24(n) is
given as usual by 2y(n) = n and 2;,,(n) = 2%®),

Theorem 92 (Partial cut elimination for T;) We have for all finite sets I' of
Lq formulas and all natural numbers n and k:

AT — T,

Together with the obvious embedding of PAg, into T; we thus obtain the following
corollary.

Corollary 93 Let A be an L formula which is provable in PA,. Then there exists
a natural number n so that T, l% A.

This finishes our preliminary treatment of PAg,. In a second step we now provide an
asymmetric interpretation of the X2-II fragment of T; into T... For that purpose,
we introduce the crucial notion of an («,) instance. Let I' be a finite set of Lgq
formulas, A a finite set of £S, formulas and «, F < 9. Then A is called an («, f3)
instance of I" if it results from I' by replacing

(i) each free number variable by a closed number term and each free ordinal
variable by an ordinal less than «;

(ii) each universal ordinal quantifier (V¢) in the formulas of " by (V€ < «);
(iii) each existential ordinal quantifier (3¢) in the formulas of I' by (3¢ <).
We are ready to state the asymmetric interpretation theorem.

Theorem 94 (Asymmetric interpretation of T; into T.,) Assume thatT is a
finite set of £ and 11 formulas of Lq so that Ty k- I' for some natural number n.
Then we have for all ordinals o < w* and every («, « + w™) instance A of I':

wa+wn

Too |7w(a+wn) A.

76

Proof. The theorem is proved by induction on n. Apart from X% induction on the
natural numbers all axioms and rules of inference are treated as in similar asymmet-
ric interpretations, cf. e.g. Jager [43, 48] or Schiitte [59]. In the following argument
we make tacitly use of Lemma 90.

Now suppose that I' is the conclusion of the rule for ¥ induction on the natural
numbers. Then there exists a ©? formula A(z) and ng,n; < n so that

T = T, A(0), (1)
TR T, =Au), A(u'). (2)

Let m be the maximum of ny and n; and set Gy := o + w™(k + 1) for all natural
numbers k. We show by side induction on k that

Teo oy A A% (1) (3)

If £ = 0 then (3) follows from (1) and the main induction hypothesis. If £ > 0 then
the side induction hypothesis yields

Te |Z(a+7w“ A, AP (k — 1), (4)

Now we apply the main induction hypothesis to (2) with a replaced by fr ; and
obtain

Too by A, 2A%1(k — 1), A% (k). (5)
Hence (4), (5) and a cut imply

W8
Too ooy A A% (k). (6)

This finishes the proof of (3). A further application of Lemma 90 to (3) gives

TOO%A AP(k) (7)

for #:= a + w" and all natural numbers k. In (7) we can replace k by an arbitrary
closed term with value k. Hence, we are in a position to apply the inference rule for
numerical universal quantification and conclude

n
wetw

B
Teo }m A, (Vo)A (). (8)
Since the formula (Vz)AP(z) is contained in A, the treatment of ¥ induction on

the natural numbers is complete. [

Together with Corollary 93 and Theorem 89 we have thus obtained the following
reduction of the ¥ fragment of PA$, to the cut free part of T,

To be more precise, we mean the instance of AP(k) where all free variables are replaced
according to A.

7

Theorem 95 Let A be a closed ¥ formula which is provable in PA},. Then there
exists an a < pw(0 and a f < w* so that T }% A8,

As usual this result also gives an upper bound for the proof-theoretic ordinal of the
theory PA, cf. e.g. Pohlers [56] or Schiitte [59].

Corollary 96 |PA,| < pwO.

Moreover, a careful formalization of the above procedure yields a proof-theoretic
reduction (in the sense of Feferman [22]) of PA, to (II%-CA)..« or ID¥. Hence, we
have established the upper bound part of Theorem 86, 2.

4.4.4 The proof-theoretic strength of PAY}

We finish this section by showing how to adapt the argument of the proof-theoretic
analysis of PA, to the fixed point theory with full induction on the natural numbers,
PAY. As the procedure is very similar (and in some sense even simpler) to the one
of PA,, we restrict ourselves to mentioning the main lines of the argument only.

The first step in the treatment of PA{j consists in eliminating complete induction on
the natural numbers. For that purpose, we introduce an infinitary Tait-calculus T»,.
In T, we derive finite sets of simple L, formulas, or £ formulas for short: such
formulas contain neither free number variables nor constants for ordinals; however,
ordinal variables are allowed to occur in £3_ formulas. The axioms and rules of
inference of T, are essentially the same as those of T with the only crucial exception
that the rule for induction on the natural numbers is omitted in favor of the w rule.
The degree dg(A) of an £3_ formulas A is defined in the same way as in Definition
91, and once more we have the standard derivability relation T, I% [for o < Ty
and £ < w. Summing up, induction on the natural numbers becomes provable in T,
at the prize of infinite derivation lengths so that we obtain the following embedding
of PAY into T,.

Proposition 97 (Embedding of PAY into T,) Let A be a numerically closed Lq
formula which is provable in PAY. Then there exist o« < w 4+ w and k < w so that

Ty A
Similar to Theorem 92, we obtain partial cut elimination for T,.

Theorem 98 (Partial cut elimination for T,) We have for all finite sets I' of
L3 formulas, all ordinals o < I'g and all natural numbers k < w:

2k (a

T — T,

From Proposition 97 we derive the following corollary.

w

Corollary 99 Let A be a numerically closed L formula which is provable in PAJ.
Then there exists an ordinal o < g so that T, }% A.

78

The second step in the analysis of PAY is an asymmetric interpretation of the X%-TI%
fragment of T, into T. The notion of an («,) instance of a finite set I of L3
formulas is defined in the same way as in the previous paragraph. The asymmetric
interpretation of T, is slightly simpler than the one of Ty, since an asymmetric
treatment of £ induction on the natural numbers is no longer needed. In particular,
we can do with the function 2° instead of w” for bounding existential quantifiers.
The exact formulation of the theorem reads as follows.

Theorem 100 (Asymmetric interpretation of T, into T.,) Assume that ' is
a finite set of X and I1? formulas of L3, so that T, |- I' for some ordinal o < .
Then we have for all ordinals 3 < ¢ and every (3, 3 + 2%) instance A of T':

WBtw®

Too |7w(ﬁ+wa) A.

From Corollary 99 and Theorem 89 we can now derive the following reduction the-
orem for PA{}, together with a corollary concerning the upper bound for its proof-
theoretic ordinal.

Theorem 101 Let A be a closed ¥ formula which is provable in PA%. Then there
exists an a < peg90 and a # < gy so that T, }% AP,

Corollary 102 |PAY| < ¢g40.

Once more, formalization of the above arguments yields a proof-theoretic reduction
of PAY to (IT2,-CA).., or IDy, thus establishing the upper bound part of the main
Theorem 86, 3.

4.5 Upper bounds

This section contains the exact upper bound computations for TON(x) plus various
forms of complete induction on the natural numbers. The relevant proof-theoretic
reductions are obtained by formalizing the infinitary term model CTT(p) of TON(pu)
in fixed point theories with ordinals, cf. Jiger and Strahm [52]. The methods pre-
sented easily extend to systems with the extensionality axiom (Ext). Corresponding
results in the context of a partial application operation plus set induction and full
formula induction are due to Feferman and Jager [28]. For the treatment of positive
formula induction, cf. Jiger and Strahm [50].

In the first paragraph we show how the reduction relation —,, can be represented as
a fixed point of a suitable operator form. The second paragraph describes reductions
of TON(x) + (S-In), TON(i) + (F*Iy), and TON(u) + (F-Iy) to PAL, PAS,, and
PAY, respectively, via the formalized term model CTT(x). In the last paragraph,
finally, we give a complete Church Rosser proof for —,,, together with indications
concerning its formalization in the fixed point theory PAG,.

79

4.5.1 Formalizing CTT(u) in Lg

In the sequel we show how our infinitary term model CTT(u) of TON(p) (cf. Defini-
tion 68) can be represented in the language L so that the Church Rosser property of
— pu> CR(—), is derivable in the weakest of our fixed point theories with ordinals,
PAf,. The proof of this last claim will be given in Section 4.5.3.

Let us start off with the formalization of —,, in Lq. In particular, it is our aim to
represent —,, as a fixed point Pgeq,, of a binary inductive operator form Red,, to
be specified now.

Let P be a new binary relation symbol. Then the y redex-contractum pairs w.r.t. P
are given as follows:

RedCony, (P, v,y) = CTer(z) A CTer(y) A RedCon,, (P, v,y),
where RedCony, (P, x,y) is the disjunction of the following formulas:
(1) == (-, (@)2) A
(32)[Num(z) =y A P(("-7, (x)2,),707) A
(Vu)B0)(P(("-7, (2)2, Num(u)), Num(v)) A (u < zw0 > 0))],
(2) z= ("7 "p (2)2) Ay="0"A(Vu)(Fv > 0)P(("-7, (2)2, Num(u)), Num(v)).

Recall from Section 2.3.2 that RedCon,(x,y) denotes a primitive recursive formal-
ization of the p redex-contractum pairs. Then the following formula describes the
pp redex-contractum pairs w.r.t. P:

RedCony,y(P,z,y) := RedCony(z,y) V RedCon,(P,x,y).

Once we have given the formula RedCon,,(P,x,y), the formulas Redl,,(P,x,y),
RedSeqp, (P, x,y,), and finally Red,, (P, z,y) are defined exactly as in Section 2.3.2
with the only difference of containing the parameter P.

Remark 103 The formula Red,,(P,x,y) is a binary inductive operator form.

We are ready to put down the formal representation of —,, in L as a fixed point
Pred,, (2,y) of Red,, (P, x,y), ie. as the formula

(30) Prea,,, (%, 9)-

We have already stated in Theorem 69 that —,, has the Church Rosser property.
The next theorem says that the corresponding proof can be carried through in the
system PAg for the formalization Pgeq,, of —,,. The detailed arguments of this
fact will be given in the last paragraph of this section. Let us only mention now
that the presence of Af induction on the ordinals in PAy, (Af-lg), is crucial for the
Church Rosser proof.

Theorem 104 PAf, = CR(Pred,,)-

This finishes the formalization of —,, in the language Lq.

80

4.5.2 Embedding theories with 1 into fixed point theories
with ordinals

In this paragraph we establish embeddings of TON(u)+(S-In), TON(p)+(F*Iy), and

TON(u)+(F-ly) into PA,, PAS,, and PAY, respectively, via the formalized term model

construction CTT(u) of TON(u). It is possible to obtain corresponding results for

the extensional version TTE(u) of CTT (i) so that the above embeddings carry over
to the presence of extensionality (Ext).

In the sequel we work with the translation % that we have described in Section 2.3.2,
now depending on the formalization Pgeq,, of —,,. Hence, x translates Ly into Lq.
First, it is easy to derive the following analogue of Lemma 25 from the (formalized)
Church Rosser theorem in PAy, (Theorem 104).

Lemma 105 We have for all Ly formulas A(x):
PAG I Pred,, (7, y) — (A"(z) = A*(y)).
Corollary 106 Let Q € {3,V}. Then we have for all Ly formulas A(x):
PAG F ((Qz € N)A(x))* « (Qx)A"(Num(x)).

From this last corollary it is immediate that positive formula induction on the natural
numbers, (F*-ly), carries over to ©? induction on the natural numbers under * and,
of course, the % translation of each instance of full formula induction, (F-ly), is
verifiable by complete induction on the natural numbers for arbitrary Lq formulas.
The treatment of set induction (S-ly) by means of A induction on the natural
numbers is the content of the following lemma.

Lemma 107 The x translation of (S-ly) is provable in PAg, i.e. PAY, proves
[f€PN)AFfO=0A(Vz e N)(fx=0— f(z')=0) — (Vx € N)(fz =0)]".

Proof. In the following we work informally in PA},. Assume (f € P(N))*, (f0=0)*
and [(Vz € N)(fz =0 — f(2') = 0)]*. From the first premise and Theorem 104 we
conclude

(V) (3!y) Prea,,. ({7, f, Num(z)), Num(y)). (1)

The other two premises yield

PRedPP(<r'—|, f, r01>, r0‘|), (2)
(V:L‘)(PRedP”(C_-—', [y Num(x)), ,_01) - PRedPu(C—j? e NUIH(:L‘ + 1)>7 l—o—l))' (3)

From (1) we get by X reflection the existence of an ordinal « so that we have

(Y2, 9) (Pred,, ("7, f, Num(a)), Num(y)) < Pgg ("7, f, Num(z)), Num(y)))@)

81

Combining (2), (3) and (4) this amounts to

PI?eocéIpu(<’_'—l7f7 r0‘|>,|—0‘|), (5)
(V) (PRag,,, ("7 £, Num(x)), "0 Prgy ((-7, f, Num(z +1)),707)). (6)
Now recall that we have A induction on the natural numbers available in the system
PA{, and, therefore, (5) and (6) imply
(V) Preg,,, (-7, f, Num(z)),"07). (7)
But from (7) we immediately obtain [(Vz € N)(fx = 0)]*. This finishes our treat-
ment of (S-ly) in PA,. O

Finally, it is not difficult either to verify that the x translation of each axiom of
TON(p) is provable in PAf,. In particular, PA{, proves axioms (9), (u.1) and (u.2),
where in each case the presence of X reflection is crucial. Therefore, we have
established the proof-theoretic reduction of TON(u)+ (S-Iy), TON(x) + (F*Iy), and
TON(u) + (F-In) to PAG, PA,, and PAY, respectively.

Theorem 108 We have for all Ly formulas A(Z) with at most & free:
1. TON(p) + (S-ly) F A(F) = PAL F CTer() — A*(7).
2. TON(u) + (Frly) F A(#) = PAY + CTer(7) — A*(2).
3. TON(u) + (F-ly) F A(Z) = PAY F CTer(Z¥) — A*().

From Proposition 73, Theorem 74, Corollary 80, Corollary 82 and Theorem 86 we
are now able to derive the following proof-theoretic equivalences.

Corollary 109 We have the following proof-theoretic equivalences:
1. TON(p) + (S-Iy) = PA, = PA.

2. TON(u) + (O-ly) = TON(p) + (N-ly) = TON(p) + (ZHIy) =
TON(p) 4 (F*ly) = PA, = ID¥ = (1% -CA) o

3. TON(p) + (F-ly) = PA% = ID; = (II°-CA)_.,.
The corresponding proof-theoretic ordinals are €y, w0, and pey0, respectively.

As we have already indicated in Section 4.1.2, we obtain an extensional version
TTE(p) of CTT(p) in a straightforward manner as follows: the reduction relation
—»gnu O (not necessarily closed) A terms is defined in the same way as —,,, except
that Bn is used instead of p at each stage of the corresponding inductive definition.
The proof of the Church Rosser theorem for —g,, given in the next paragraph
is easily seen to extend to —»gy, so that the relevant arguments are formalizable
in PAG,. Hence, Theorem 104 holds for the extensional reduction relation —» gy,
too. All together, we are now in a position to state the following strengthening of
Corollary 109.

82

Theorem 110 We have the following proof-theoretic equivalences:
1. TON(u) + (Ext) + (S-Iy) = PA; = PA.

2. TON() + (Ext) + (O-ly) = TON(p) + (Ext) + (N-ly) =
TON(p) + (Ext) + (X*Iy) = TON(u) + (Ext) + (F™-ly) =
PAS, = ID¥ = (1% -CA)_ ..

3. TON(p) + (Ext) + (F-ly) = PAY = ID, = (II°-CA)_.,.
The corresponding proof-theoretic ordinals are €y, w0, and pe(0, respectively.

This finishes our discussion of the upper bound argument for applicative theories
with g operator. In the next paragraph we will provide the still missing Church
Rosser proof for —,,,.

4.5.3 The Church Rosser proof for —,,

In this paragraph we give a proof of Theorem 104. In particular, we show that —,,
has the Church Rosser property, and we argue that our proof can be carried through
in the system PA for the formalization Preqg,, of — .

The main idea is to prove that each stage —,, of —,, is confluent. This is achieved
by combining the p and p, reductions using the well-known Lemma of Hindley and
Rosen (Lemma 115).

As in Section 4.1.2 we put
Ta= U ppg -
fB<a

Furthermore, let us call a closed Ly term ¢ N singular w.r.t. T, if there isnon € N
so that t 7, m. The following lemma states an important property of terms put
which are N singular w.r.t. 7,. We do not give the proof of the lemma here, but it
is important to mention that the (formalized) proof only uses Af induction on the
ordinals, which is available in the system PAGg,.

Lemma 111 Let s(x) be an Ly term with at most x free, and let ut be a closed
Ln term which is N singular w.r.t. T,. Furthermore, assume that s(ut) T, m® for
some m € N. Then we have s(t') T, m for all closed Ly terms t'.

We will also need the following observation, the proof of which is straightforward
and, therefore, we omit it.

Lemma 112 We have for all closed Ly terms t and all m € N: if ut T, M, then
Pt g, T

®Observe that here s(ut) denotes s(x) where pt is substituted for z and not (necessarily) s
applied to ut.

83

The next lemma tells us that a p,, stage has the Church Rosser property provided
that —p,, is confluent for all § < . Again it is easy to see that the proof of this
lemma can be formalized in the system PAGg,.

Lemma 113 (V8 < a)CR(—py,) = CR(—,)

Proof. Let us assume (V3 < a)CR(—»,), which immediately implies CR(7,),
of course. Since CR(—,_) follows from CR(=,_) by an easy diagram chase, it is
enough to show CR(=,_). Here =, denotes the reflexive closure of —, . First
of all it is an easy consequence of CR(T,) that the following holds for all closed Ly
terms ¢ and all m,n € N:

ut p, m A pt p, @ = m =n. (1)
The second critical case comes up if we have terms s(z),¢ and m,n € N so that
ps(pt) po M, ps(ut) —p, ps(m), (2)

where ut p, ™. Then we have to show that pus(m) p, M. Assume that ps(ut) p, M
holds because of clause (1) of the definition of y, (Definition 68). Then we have

s(ut)m 74 0, (3)
and for each k there exists a k' so that
s(pt)k T4 K, (4)

where k' > 0 if & < m. Let us first assume that the term pt is N singular w.r.t. 7.
Then we can conclude from (3), (4) and Lemma 111 that

s(m)m T4 0, s(m)k T4 k' (5)

for all k£ € N, which immediately implies us(m) p, ™ by the very definition of u,,.
If ut is not N singular w.r.t. 7, then there exists an [€ N with ut 7, [. Using
the previous lemma this implies ut p,, I. Since pt p, 7 holds by hypothesis, this
amounts to [= n according to (1). We have shown ut 7, 7. From this we conclude
forall k € N:

s(pt)m T4 s(m)m, s(ut)k T4 s(M)k. (6)
Using (3), (4), (6) and CR(1,) we can immediately derive
s(m)m T4 0, s(m)k T4 k' (7)

for all £ € N. But (7) implies us(7) p, ™ by the definition of u, as desired. The
case where ps(ut) p, M has been derived by clause (2) of the definition of p, is
treated in a similar way. This finishes the proof of the lemma. O

84

In order to apply the Lemma of Hindley and Rosen below we have to introduce the
following terminology. Let R; and R, be two binary relations on a set X. Then R,
and Ry commute, if

(VZL’,xl,ZL’z € X)[ZU R1 r1 N T R2 Ty — (E|£U3 € X)(ZUI R2 T3 N\ 9 R1 £U3)]

The next lemma is the essential step towards the use of the lemma of Hindley and
Rosen. Again its proof can easily be formalized in the system PAg,.

Lemma 114 Assume that (V3 < a)CR(—y,). Then the reduction relations —
and —», commute.

Proof. From (V8 < a)CR(—pp,) we immediately get CR(T,). We show that the
following holds for all closed Ly terms ¢,#; and ty: if £ —, t; and ¢t —,_ #5, then
there exists a closed Ly term t; so that

ty =p 3, 1 >y, 3. (1)

From this the claim of the lemma follows by an easy diagram chase. In the sequel
we will discuss the only critical case, namely where we have terms s(z),¢ and an
n € N so that

S(ut) =, s, s(ut) =, s(ut), 2)

where ut p, @ and t —, t'. Then it is easy to check that put' p, 7 also holds, since
we know CR(T,). Hence, we can derive

S(ut') >, 5(7), (3)
and we are done. This finishes the sketch of the proof of this lemma. O

We have prepared the grounds in order to apply the Lemma of Hindley and Rosen.
For reasons of completeness, we give its detailed formulation below. For a proof the
reader is referred to Barendregt [2], where one easily sees that the proof there only
uses finitary arguments.

Lemma 115 (Hindley and Rosen) Let Ry and R, be two notions of reduction
and suppose that

(1) —g, and —» g, are Church Rosser,
(2) — g, commutes with —pg,.
Then —» g, r, has the Church Rosser property, too.

Taking R, as p and Ry as p, and assuming (V6 < o) CR(—py,) the assumptions (1)
and (2) of the Lemma of Hindley and Rosen are satisfied by Lemma 113, Lemma 114
and the fact that —, is Church Rosser. Hence, we can state the following lemma.

85

Lemma 116 (V8 < a)CR(—pu,) = CR(—pp,)-

We have shown that CR(—»pp,) is progressive and, hence, (Va)CR(—»,,) follows
by transfinite induction. Furthermore, (Vo) CR(—,,,) implies CR(—pp).

Corollary 117 CR(—).

This finishes our proof that —,, is confluent. Notice that the formalization of
CR(= pp,) in Lo is a Af formula and, therefore, only transfinite induction for Af
statements is used in the argument above. Together with our previous remarks
concerning the formalization of our Church Rosser proof, we have sketched that all
arguments can be carried through in the system PAg. This finishes the considerations
of this paragraph.

4.6 On u versus E

In this section let us briefly address the possibility of replacing the non-constructive
p operator by Kleene’s type two functional E, cf. e.g. Hinman [42]. We assume that
the axiomatization of E is given as follows; here E is supposed to be a new constant
of the language Ly.

The quantification functional E
(E1) (feN—=N) < Ef eN,

(E2) (feN—=N) — ((FzeN)(fr=0)« Ef=0).

Let us first discuss the logical relationship between E and p. Very recently, Kahle
[54] has established that E is definable in BON(y) without any use of induction. His
definition of E from pu is very tricky: the difficulty is to guarantee the backward
direction in the axiom (E.1). As far as the definability of u from E is concerned, it
seems that even in the presence of full formula induction, it is not possible to obtain
p from E over BON: the problem is again the backward direction of the axiom (p.1).

——

However, it is not difficult to verify that p is definable from E in the theory BON
(cf. Kahle [53] or Section 3.5.2) plus a certain amount of complete induction on the
natural numbers.

Let us now turn to the relationship between E and p as far as the proof-theoretic
strength of the theories studied in this chapter is concerned. First of all, since E
is definable from g, the upper bounds for E follow from those for u. Moreover,
one readily verifies that in the lower bound computations for BON(u) + (S-ly),
BON(x) + (N-ly), and BON(u) + (F-ly), it is always possible to replace u by E.
Hence, it remains to show that Kahle’s Proposition 81 holds in the presence of E
instead of p. This has been recently done by Kahle [54] so that operation induction
(O-ly) and N induction (N-ly) are equivalent over BON in the presence of E, too.
Summing up, all lower bounds for systems with p carry over to E straightforwardly
and, therefore, the proof-theoretic strength of all theories studied in this chapter
remains the same if 4 is replaced by E. This ends our discussion on p versus E.

86

Proof-theoretic equivalences

The following table gives a short survey of proof-theoretic equivalences. The left
column contains a typical reference system of arithmetic or analysis, in the middle
we list a bunch of applicative theories of the corresponding strength, and the right
column includes pointers to relevant theorems, propositions or corollaries.

PTCA

PRA

PTO
PTO*
PTO* + (Z*CPw)

Gy,
Gy, + (Tot)

BON +
BON +
BON +
BON +
BON +
TON + (Ext
TON + (Ext

(S-I)

(

(

(Z

(

(Ext) + (

(Ext) + (
TON + (Ext) + (

(Ext) + (

(Ext) + (

(W

(O

(

(

S-
O-ly)
N-In)
+|N)
BX*Iy)
S-In)
O-ly)
N-In)
TON + (Ext) + (X™Iy)
TON + (Ext
PTO + (W-lw)
PTO + (O -lw)
PTO + (Tot)

PTO + Tot)

(Ext) +
(Ext) +

+
+

BS+Iy)

Corollary 47
Corollary 60
Theorem 62

Theorem 65
Theorem 67

Proposition 22, Corollary 28
Proposition 22, Corollary 28
Proposition 22, Corollary 28
Proposition 22, Corollary 28
Proposition 22, Theorem 31
Theorem 30
Theorem 30
Theorem 30
Theorem 30
Theorem 31
Theorem 63

Theorem 64
Theorem 63

Theorem 64

PA

(Hgo_CA)<w“’

(Hgo'CA)<60

BON + (F*Iy)

BON + (F-Iy)

TON + (Ext) + (F*™ly)
TON + (Ext) + (F-In)
BON(x) + (S-In)

TON(u) + (Ext) + (S-In)
BON(1) + (O-ly)

BON(1) + (N-Iy)

BON(1) + (X*In)
BON(1) + (F*Iy)
TON(p) + (Ext) + (O-ly)
TON(p) + (Ext) + (N-Iy)
TON(u) + (Ext) + (X™Iy)
TON(p) + (Ext) + (F™Iy)

TON(u) + (Ext) + (F-ly)

88

Proposition 32, Corollary 34
Proposition 32, Corollary 34
Theorem 35
Theorem 35

Proposition 73, Corollary 109

Theorem 110

Corollary 82, Corollary 109
Corollary 80, Corollary 109
Corollary 80, Corollary 109
Corollary 80, Corollary 109
Theorem 110
Theorem 110
Theorem 110
Theorem 110

Theorem 74, Corollary 109
Theorem 110

List of symbols

The following list of symbols is divided into three separate tables: basic systems,
axioms and rules, and other symbols. The symbols in the first two tables are listed
alphabetically (disregarding non-roman characters), the ones in the last table are
given in the order of their appearance in the text.

A Basic systems

BON, 9 basic theory of operations and numbers
B/O\N, 53 BON plus N strict definition by cases
BON,, 19 A version of BON

BON,,, 20 A version of BON with explicit substitutions
BON(p), 58 BON plus axioms for p

BOW, 33 basic theory of operations and binary words
(T12.-CA) <4, iterated arithmetic comprehension below o
(T12.-CA)., iterated arithmetic comprehension up to «
E*, 9 E* logic of partial terms

G,, 55 applicative theories for Grzegorczyk classes
Ay, 52,55 bounded first order arithmetic

ID,, 71 one iterated inductive definitions

FE)I, 71 fixed point theory over Peano arithmetic
IDfE, 71 sharp 61

KPu, 72 Kripke Platek set theory with urelements
PA, 24 Peano arithmetic

PAqg, 71 Peano arithmetic with ordinals

PAG, 70 restricted Peano arithmetic with ordinals
PA;, 70 PA, plus X% induction on the natural numbers
PAG, 71 weak Peano arithmetic with ordinals

PRA, 24 primitive recursive arithmetic

PTCA, 37 polynomial time computable arithmetic
PTCA*, 37 PTCA plus ¥} induction

PTO, 35 applicative theory of polynomial time operations
ﬁ'\O, 53 PTO plus W strict definition by cases
PTO*, 49 PTO plus (NP-ly)

89

B Axioms and rules

o8
o8
), 74
E—i_'IN)a
go_CP)a
CPw),

[N
~— —

NN NN NN NN NN
MMQUMMWE =T

N =S

—

L=

§Q
N—
ot
ot

_lQ)a 71

28
38
o1

(infinitary) ramified system for ordinal theories
Tait-style system for PAg,

(infinitary) Tait-style system for PAY

BON plus totality (Tot)

TON plus axioms for p

first axiom for p operator

second axiom for p operator

w rule

BX* induction on the natural numbers
bounded collection

Y * collection on W

full definition by cases

first axiom for E

second axiom for E

defining equations for the nth level

of the Grzegorczyk hierarchy
exponentiation

extensionality axiom

positive formula induction on the natural numbers
full formula induction on the natural numbers
full formula induction on the ordinals
Y induction on the natural numbers
¥ induction on the natural numbers
A induction on the natural numbers
¥ induction on the natural numbers
A induction on the ordinals

N induction on the natural numbers

NP induction on binary words
operation induction on the natural numbers
operation induction on binary words

Y reflection

¥ reflection

set induction on the natural numbers
set induction on binary words

totality axiom

defining equations for {4,, : 3 <m < n}
W induction on binary words

Weak Konig’s lemma for X formulas

90

C Other symbols

Loy T

k,s, 7

P, Po, P1, 7
o 7

L, 7

Ly, 8

0, sn, Py, 8
dn, 8
In, 8
N, 8
t[s/x], 8
(tl,tz), 8
t, 8

n, 8§, 37
~, 8
P(N), 9
dy, 10
(Az.t), 10

A1y .. Ty 1),

rec,, 11
rec;, 11
noty, 12
PRO, 13
ERO, 13
E, 13
RiRy, 14
14
14

—R»

R,
p, 14
CTT, 14
TTE, 15
CNT, 15
InFirst, 15
D, 18
W, 19
0, 20
Fr, 23
F=, 23
¥, 23,51
I, 23
Ly, 24

language of partial combinatory logic
combinators

pairing and unpairing

partial term application

defined symbol

language of basic operations and numbers
zero, successor, predecessor
numerical definition by cases
primitive recursion on N

predicate for natural numbers
substitution of s for x in ¢
abbreviation for pt;ty

abbreviation for syt

nth numeral of Ly; n as a tally word
partial equality relation

power set of N

full definition by cases

A abstraction

iterated A\ abstraction

recursor for BON

recursor for TON

term that is provably not in N
model of partial recursive operations
model of E recursive operations
Kleene’s type 2 quantification functional
union of two notion of reduction R; and Rs
compatible closure of R

reflexive, transitive closure of R
notion of reduction for BON

closed total term model

open extensional term model

closed normal term model

leftmost minimal strategy

finitary inductive data type

set of finite 0-1 words

explicit substitution

positive formulas

negative formulas

¥ * formulas

I~ formulas

language of first order arithmetic

91

(...}, Seq, Seqn, Ih, ()i, (+)i;

last(-), ~, 24,37, 38
= 24

Y0 24, 36

15, 24, 36
(N, 24, 61
r 25

CTer, 25
Num(z), 25
RedConpg, 26
Redlg, 26
RedSeqr, 26
RedR, 26

(1), 26,42, 81
CR(-), 27

=, 28,46
BX*, 28

Ly, 32

6,0, 1, 32 36
*, X, 32,36
Pw, d\/\/, 32

cc, €, 32,36, 37
'y, 32

W, 32

<, 32, 36
s=t|r, 32,37
P(W), 35
BFF, 35

Le, 36

L, 36

At 36

p, 37

SqBd, 38

(W, 39

App, App,,, 40, 42, 46

sequence coding

cut-off difference

¥¢ formulas

I19 formulas

translation of £, into Ly
Godelnumbering of Ly

Godelnumbers of closed Ly terms
Godelnumber of the xth numeral of Ly
formalization of R

formalization of — g

formalized reduction sequences for R
formalization of —»p

x translations

formalized Church Rosser property
relation of proof-theoretic equivalence
boolean combinations of ¥ formulas
language of basic operations and binary words
empty word, zero, one

word concatenation and multiplication
word predecessor, definition by cases on W
initial subword relation

bounded primitive recursion on W
predicate for binary words
less-than-or-equal relation on binary words
truncation relation

power set of W

basic feasible functionals

elementary language of PTCA
language of PTCA

relativization of A to ¢

quantifier free formulas

formulas whose quantifiers are sharply bounded
bounded existential formulas

extended ¥} formulas

bounded formulas

Y and II formulas

length of s as a binary word

strict initial subword relation
predecessor function on binary words
sequence bounding function
translation of £, into Lw
interpretation of application in £,

92

Recy, 41,46
AQ), 41
Vi(a), 42
Compy(c), 47
P(W?), 49
En, H4

W, 58
CTT(pn), 59
Ky Bo, 99
Tao, 99,83
Bn, 59
Ly, 60

[y, 60

<, 60

<, 60
Yo, 60

TI, 60
Ha, 60
€0, 60
Prog, 63
Lg, 68

PA(Ua §), P_Z(E‘),
P37(5), Pa(s),

A% 69

AS 69

¥ 12, 69
Lo, LS, T2
rn(A), 73
%, 74, 76, 78
dg(A), 75
L3, 78
e, 84,85
E, 86

69

graph of bounded primitive recursion w.r.t. A
operator form for App

value of t w.r.t. %

¢ is an A computation sequence

power set of W?

Grzegorczyk hierarchy

non-constructive p operator

closed total term model with u

i redex-contractum pairs

union of —,, . for § <«

extensional version of p

language of second order arithmetic

first strongly critical ordinal

primitive recursive well-ordering of order type I'y
restriction of < to {m :m < n}

Veblen functions

transfinite induction

A jump hierarchy

first € number

progressiveness

language of Peano arithmetic with ordinals

stages and fixed points of A inductive definitions
relativization of A to o
A formulas

Y2 and I1? formulas
language of T

rank of an £ formula A
derivability relations
degree of an L formula A
language of T,

reflexive closure of —p
constant for Kleene’s F

93

Bibliography

[11]

[12]

[13]

ABADI, M., CARDELLI, L., CURIEN, P.-L., AND LEVY, J.-J. Explicit sub-
stitutions. Journal of Functional Programming 1, 4 (1991), 375-416.

BARENDREGT, H. P. The Lambda Calculus, revised ed. North Holland,
Amsterdam, 1984.

BEEsSON, M. J. Foundations of Constructive Mathematics: Metamathematical
Studies. Springer, Berlin, 1985.

BucHHOLZ, W., AND SIEG, W. A note on polynomial time computable arith-
metic. Contemporary Mathematics 106 (1990), 51-55.

Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

Buss, S. R. A conservation result concerning bounded theories and the collec-
tion axiom. Proceedings of the American Mathematical Society 100, 4 (1987),
709-715.

Buss, S. R., AND ScotT, P. J., Eds. Feasible Mathematics, vol. 9 of Progress
in Computer Science and Applied Logic. Birkhiuser, Basel, 1990.

CANTINI, A. Asymmetric interpretation for bounded theories. Mathematical
Logic Quarterly. To appear.

CANTINI, A. Logical Frameworks for Truth and Abstraction. To appear.

CANTINI, A. On the computational content of theories of operations with total
application, June 1995. Handwritten notes.

CANTINI, A. Proof-theoretic aspects of self-referential truth, September 1995.
Draft.

CLOTE, P., AND KRAJICEK, J., Eds. Arithmetic, Proof Theory and Compu-
tational Complexity. Claredon Press, Oxford, 1993.

Crore, P., AND REMMEL, J., Eds. Feasible Mathematics II, vol. 13 of
Progress in Computer Science and Applied Logic. Birkhauser, Basel, 1995.

94

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

CoBHAM, A. The intrinsic computational difficulty of functions. In Logic,
Methodology and Philosophy of Science II. North Holland, Amsterdam, 1964,
pp- 24-30.

Cook, S. A., AND KAPrRON, B. M. Characterizations of the basic feasible
functionals of finite type. In Feasible Mathematics, S. R. Buss and P. J. Scott,
Eds. Birkhauser, Basel, 1990, pp. 71-95.

Cook, S. A., AND URQUHART, A. Functional interpretations of feasibly
constructive arithmetic. Annals of Pure and Applied Logic 63, 2 (1993), 103—
200.

FEFERMAN, S. Formal theories for transfinite iteration of generalized inductive
definitions and some subsystems of analysis. In Intuitionism and Proof Theory,
Proceedings of the Summer Conference at Buffalo, New York, 1968, A. Kino,
J. Myhill, and R. E. Vesley, Eds. North Holland, Amsterdam, 1970, pp. 303—
326.

FEFERMAN, S. A language and axioms for explicit mathematics. In Algebra
and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathematics. Springer,
Berlin, 1975, pp. 87-139.

FEFERMAN, S. A theory of variable types. Revista Colombiana de Matematicas
19 (1975), 95-105.

FEFERMAN, S. Constructive theories of functions and classes. In Logic Col-
loquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North Holland,
Amsterdam, 1979, pp. 159-224.

FEFERMAN, S. Iterated inductive fixed-point theories: application to Han-
cock’s conjecture. In The Patras Symposium, G. Metakides, Ed. North Holland,
Amsterdam, 1982, pp. 171-196.

FEFERMAN, S. Hilbert’s program relativized: proof-theoretical and founda-
tional studies. Journal of Symbolic Logic, 53 (1988), 364-384.

FEFERMAN, S. Weyl vindicated: “Das Kontinuum” 70 years later. In Temi e
prospettive della logica e della filosofia della scienza contemporanee. CLUEB,
Bologna, 1988, pp. 59-93.

FEFERMAN, S. Finitary inductively presented logics. In Logic Colloquium
‘88, R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, Eds. North Holland,
Amsterdam, 1989, pp. 191-220.

FEFERMAN, S. Polymorphic typed lambda-calculi in a type-free axiomatic
framework. In Logic and Computation, W. Sieg, Ed., vol. 106 of Contemporary
Mathematics. American Mathematical Society, Providence, Rhode Island, 1990,
pp- 101-136.

95

[26]

[27]

FEFERMAN, S. Logics for termination and correctness of functional programs.
In Logic from Computer Science, Y. N. Moschovakis, Ed., vol. 21 of MSRI
Publications. Springer, Berlin, 1991, pp. 95-127.

FEFERMAN, S. Logics for termination and correctness of functional programs
II: Logics of strength PRA. In Proof Theory, P. Aczel, H. Simmons, and S. S.
Wainer, Eds. Cambridge University Press, Cambridge, 1992, pp. 195-225.

FEFERMAN, S., AND JAGER, G. Systems of explicit mathematics with non-
constructive p-operator. Part I. Annals of Pure and Applied Logic 65, 3 (1993),
243-263.

FEFERMAN, S., AND JAGER, G. Systems of explicit mathematics with non-
constructive p-operator. Part II. Annals of Pure and Applied Logic. To appear.

FEFERMAN, S., AND SIEG, W. Proof-theoretic equivalences between clas-
sical and constructive theories for analysis. In Iterated Inductive Definitions
and Subsystems of Analysis: Recent Proof-Theoretical Studies, W. Buchholz,
S. Feferman, W. Pohlers, and W. Sieg, Eds., vol. 897 of Lecture Notes in Math-
ematics. Springer, Berlin, 1981, pp. 78-142.

FERREIRA, F. A note on a result of Buss concerning bounded theories and the
collection scheme. Submitted to Portugaliae Mathematica.

FERREIRA, F. Polynomial Time Computable Arithmetic and Conservative
Extensions. PhD thesis, Pennsylvania State University, 1988.

FERREIRA, F. Polynomial time computable arithmetic. Contemporary Math-
ematics 106 (1990), 137-156.

FERREIRA, F. A feasible theory for analysis. Journal of Symbolic Logic 59, 3
(1994), 1001-1011.

FRIEDMAN, H. Iterated inductive definitions and ¥:1-AC. In Intuitionism and

Proof Theory, Proceedings of the Summer Conference at Buffalo, New York,
1968, A. Kino, J. Myhill, and R. E. Vesley, Eds. North Holland, Amsterdam,
1970, pp. 435-442.

GIRARD, J.-Y. Proof Theory and Logical Complexitiy. Bibliopolis, Napoli,
1987.

Grass, T. Standardstrukturen fiir Systeme Expliziter Mathematik. PhD the-
sis, Westfalische Wilhelms-Universitdt Miinster, 1993.

Grass, T., AND STRAHM, T. Systems of explicit mathematics with non-
constructive p-operator and join. Annals of Pure and Applied Logic. To appear.

96

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

HAJEK, P., AND PUDLAK, P. Metamathematics of First-Order Arithmetic.
Perspectives in Mathematical Logic. Springer, 1993.

HAvAsHI, S., AND NAKANO, H. PX: A Computational Logic. MIT Press,
Cambridge, MA, 1988.

HinDLEY, J. R., AND SELDIN, J. P. Introduction to Combinators and \-
Calculus. Cambridge University Press, 1986.

HinmAN, P. G. Recursion-Theoretic Hierarchies. Springer, Berlin, 1978.

JAGER, G. Beweistheorie von KPN. Archiv fiir mathematische Logik und
Grundlagenforschung 20 (1980), 53-64.

JAGER, G. Zur Beweistheorie der Kripke-Platek-Mengenlehre iiber den
natiirlichen Zahlen. Archiv fiir mathematische Logik und Grundlagenforschung
22 (1982), 121-139.

JAGER, G. A well-ordering proof for Feferman’s theory T. Archiv fiir math-
ematische Logik und Grundlagenforschung 23 (1983), 65-77.

JAGER, G. Induction in the elementary theory of types and names. In Com-
puter Science Logic '87, K. Borger et al., Ed., vol. 329 of Lecture Notes in
Computer Science. Springer, Berlin, 1988, pp. 118-128.

JAGER, G. Type theory and explicit mathematics. In Logic Colloquium ’87, H.-
D. Ebbinghaus, J. Fernandez-Prida, M. Garrido, M. Lascar, and M. R. Artalejo,
Eds. North Holland, Amsterdam, 1989, pp. 117-135.

JAGER, G. Fixed points in Peano arithmetic with ordinals. Annals of Pure
and Applied Logic 60, 2 (1993), 119-132.

JAGER, G., AND POHLERS, W. Eine beweistheoretische Untersuchung von
(A3-CA) + (BI) und verwandter Systeme. In Sitzungsberichte der Bayerischen
Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse.
1982, pp. 1-28.

JAGER, G., AND STRAHM, T. Some theories with positive induction of ordinal
strength ow0. Journal of Symbolic Logic. To appear.

JAGER, G., AND STRAHM, T. Second order theories with ordinals and ele-
mentary comprehension. Archive for Mathematical Logic 34, 6 (1995), 345-375.

JAGER, G., AND STRAHM, T. Totality in applicative theories. Annals of Pure
and Applied Logic 74, 2 (1995), 105-120.

KAHLE, R. Weak inductions in theories of operations and numbers. Tech. rep.,
Institut fiir Informatik und angewandte Mathematik, Universitat Bern, 1995.

97

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

KAHLE, R. Personal communication, March 1996.

PArsonNs, C. On a number theoretic choice schema and its relation to induc-
tion. In Intuitionism and Proof Theory, Proceedings of the Summer Conference
at Buffalo N.Y., 1968, J. Myhill, A. Kino, and R. Vesley, Eds. North Holland,
Amsterdam, 1970, pp. 459-473.

PoHLERS, W. Proof Theory: An Introduction, vol. 1407 of Lecture Notes in
Mathematics. Springer, Berlin, 1988.

RoGERs, H. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

Rosg, H. E. Subrecursion: Functions and Hierarchies, vol. 9 of Oxford Logic
Guides. Clarendon Press, Oxford, 1984.

ScHUTTE, K. Proof Theory. Springer, Berlin, 1977.

SCHWICHTENBERG, H. Proof theory: Some applications of cut-elimination. In
Handbook of Mathematical Logic, J. Barwise, Ed. North Holland, Amsterdam,
1977, pp. 867-895.

SETH, A. Complexity Theory of Higher Type Functionals. PhD thesis, Tata
Institute of Fundamental Research, Bombay, 1994.

S1EG, W. Herbrand analyses. Archive for Mathematical Logic, 30 (1991).

SIMPSON, S. G. Subsystems of second order arithmetic. Tech. rep., Pennsyl-
vania State University, 1986. Chapters II-V and VII.

STARK, R. F. Applicative theories with explicit substitutions and call-by-value
evaluation. Draft Notes, January 1995.

STARK, R. F. Partial combinatory logic and the call-by-value A-calculus. Draft
Notes, March 1995.

STrRAHM, T. Polynomial time operations in explicit mathematics. Journal of
Symbolic Logic. To appear.

STRAHM, T. Theories with self-application of strength PRA. Master’s thesis,
Institut fiir Informatik und angewandte Mathematik, Universitat Bern, 1992.

STrAHM, T. Partial applicative theories and explicit substitutions. Journal of
Logic and Computation 6, 1 (1996).

TarLcorT, C. A theory for program and data type specification. Theoretical
Computer Science 104 (1992), 129-159.

98

[70] TROELSTRA, A., AND VAN DALEN, D. Constructivism in Mathematics, vol. L.
North-Holland, Amsterdam, 1988.

[71] TROELSTRA, A., AND VAN DALEN, D. Constructivism in Mathematics, vol. II.
North Holland, Amsterdam, 1988.

[72] WAINER, S. S. Four lectures on primitive recursion. In Logic and Algebra of
Specification, F. L. Bauer, W. Brauer, and H. Schwichtenberg, Eds., vol. 94 of
NATO ASI Series. Springer, Berlin, 1993, pp. 377-410.

99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

