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Introduction

Unfolding schematic formal systems (Feferman ’96)

Given a schematic formal system S, which operations and predicates, and
which principles concerning them, ought to be accepted if one has
accepted S ?

Example (Non-finitist arithmetic NFA)

Logical operations: ¬, ∧, ∀.

(1) x ′ 6= 0

(2) Pd(x ′) = x

(3) P(0) ∧ (∀x)(P(x)→ P(x ′)) → (∀x)P(x).
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Introduction

Schematic formal systems

The informal philosophy behind the use of schemata is their
open-endedness

Implicit in the acceptance of a schemata is the acceptance of any
meaningful substitution instance

Schematas are applicable to any language which one comes to
recognize as embodying meaningful notions
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Introduction

Background and previous approaches

General background: Implicitness program (Kreisel ’70)

Various means of extending a formal system by principles which are
implicit in its axioms.

Reflection principles, transfinite recursive progressions (Turing ’39,
Feferman ’62)

Autonomous progressions and predicativity (Feferman, Schütte ’64)

Reflective closure based on self-applicative truth (Feferman ’91)
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Defining unfolding

How is the unfolding of a schematic system S defined ?

We have a general notion of (partial) operation and predicate

Predicates are just special kinds of operations, equipped with an ∈
relation

Underlying partial combinatory algebra with pairing and definition by
cases:

(1) kab = a,
(2) sab↓ ∧ sabc ' ac(bc),
(3) p0(a, b) = a ∧ p1(a, b) = b,
(4) dab> = a ∧ dab⊥ = b.

Operations are not bound to any specific mathematical domain
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Defining unfolding

The full unfolding U(S)

The universe of S has associated with it an additional unary relation
symbol, US, and the axioms of S are to be relativized to US.

Each function symbol f of S determines an element f ? of our partial
combinatory algebra.

Each relation symbol R of S together with US determines a predicate
R? of our partial combinatory algebra with R(x1, . . . , xn) if and only if
(x1, . . . , xn) ∈ R?.

Operations on predicates, such as e.g. conjunction, are just special
kinds of operations. Each logical operation l of S determines a
corresponding operation l? on predicates.

Families or sequences of predicates given by an operation f form a
new predicate Join(f ), the disjoint union of the predicates from f .
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Defining unfolding

The substitution rule

Substitution rule (Subst)

A[P̄]

A[B̄/P̄]
(Subst)

P̄ = P1, . . . ,Pm: sequence of free predicate symbols

B̄ = B1, . . . ,Bm: sequence of formulas

A[B̄/P̄] denotes the formula A[P̄] with Pi replace by Bi (1 ≤ i ≤ n)
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Defining unfolding

The three unfolding systems

Definition (U(S), U0(S), U1(S))

U(S): full (predicate) unfolding of S

U0(S): operational unfolding of S (no predicates)

U1(S): U(S) without (Join)

Remark: The original formulation of unfolding made use of a background
theory of typed operations with general Least Fixed Point operator. The
present formulation is a simplification of this approach.
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Unfolding non-finitist arithmetic

The proof theory of the three unfolding systems for NFA

Theorem (Feferman, Str.)

We have the following proof-theoretic characterizations.

1 U0(NFA) is proof-theoretically equivalent to PA.

2 U1(NFA) is proof-theoretically equivalent to RA<ω.

3 U(NFA) is proof-theoretically equivalent to RA<Γ0 .

In each case we have conservation with respect to arithmetic statements of
the system on the left over the system on the right.
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Interlude: Ramified analysis and the ordinal Γ0

Ramified analysis

L2: Language of second-order arithmetic.

Given a collection M of sets of natural numbers, define M? to consist of
all sets S ⊆ N such that for some condition A(x) ∈ L2 we have

∀x(x ∈ S ↔ AM(x))

Definition (Ramified analytic hierarchy)

M0 := arithmetically definable sets

Mα+1 := M?
α

Mλ :=
⋃
β<λ

Mβ
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Interlude: Ramified analysis and the ordinal Γ0

The systems RAα

We let RAα denote a (semi) formal system for Mα.

Problem

How do we justify the ordinals α in the generation of Mα respectively
RAα ?

Autonomity condition

RAα is only justified if α is a recursive ordinal so that RA<α proves the
wellfoundedness of α.
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Interlude: Ramified analysis and the ordinal Γ0

The ordinal Γ0

Question

Where does this procedure stop, i.e. which ordinals can be reached by such
an autonomous process ?

Definition (The ordinal Γ0)

ϕ0(β) := ωβ

ϕα(β) := βth common fixed point of (ϕξ)ξ<α

Γ0 := least ordinal > 0 that is closed under ϕ

Theorem (Feferman, Schütte)

Aut(RA) = Γ0
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Unfolding finitist arithmetic

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of
the set of natural numbers ?

Example (Finitist arithmetic FA)

Logical operations: ∧, ∨, ∃.

(1) x ′ = 0 → ⊥
(2) Pd(x ′) = x

(3)
Γ → P(0) Γ, P(x) → P(x ′)

Γ → P(x)
.

Note that the statements proved are sequents Σ of the form Γ → A,
where Γ is a finite sequence (possibly empty) of formulas. The logic is
formulated in Gentzen-style.
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Unfolding finitist arithmetic

Generalization of the substitution rule (Subst)

We have to generalize the substitution rule (Subst) to rules of inference:

Substitution rule (Subst’)

Given that the rule of inference

Σ1,Σ2, . . . ,Σn

Σ

is derivable, we can adjoin each of its substitution instances

Σ1[B̄/P̄], Σ2[B̄/P̄], . . . ,Σn[B̄/P̄]

Σ[B̄/P̄]

as a new rule of inference.
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Unfolding finitist arithmetic

The proof theory of the three unfolding systems for FA

The full unfolding of FA includes the basic logical operations as operations
on predicates as well as Join.

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic, U0(FA), U1(FA) and
U(FA) are proof-theoretically equivalent to Skolem’s Primitive Recursive
Arithmetic PRA.

Support of Tait’s informal analysis of finitism.
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Unfolding finitist arithmetic with bar rule

Aim of this section

In the following

We will study a natural bar rule BR leading to extensions U+
0 (FA),

U+
1 (FA) and U+(FA) of our unfolding systems for finitism

The so-obtained extensions will all have the strength of Peano
arithmetic PA

This shows one way how Kreisel’s analysis of extended finitism fits in
our framework
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Unfolding finitist arithmetic with bar rule

Defining U+
0 (FA): Preliminaries

Let ≺ be a binary relation whose characteristic function is given by a
closed term t≺ so that U0(FA) proves t≺ : N2 → {0, 1}. We write
x ≺ y instead of t≺xy = 0 and further assume that ≺ is a linear
ordering with least element 0, provably in U0(FA).

Let f denote a new constant of our applicative language. There are
no non-logical axioms for f; it serves as an anonymous function from
N to N, representing a possibly infinite descending sequence along a
given ordering.
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Unfolding finitist arithmetic with bar rule

Expressing wellfoundedness

The rule NDS(f,≺) says that for each possibly infinite descending chain f
w.r.t. ≺ there is an x such that fx = 0. Formally, it is given as follows:

The rule NDS(f,≺)

u ∈ N → fu ∈ N,

u ∈ N, fu 6= 0 → f(u′) ≺ fu,

u ∈ N, fu = 0 → f(u′) = 0

(∃x ∈ N)(fx = 0)
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Unfolding finitist arithmetic with bar rule

Formulating the bar rule

Let s̄r = sr
1, . . . , s

r
n and s̄p = sp

1 , . . . , s
p
n be sequences of terms of length n.

Accordingly, let t̄r = tr
1, . . . , t

r
m and t̄p = tp

1 , . . . , t
p
m be sequences of terms

of length m. The superscripts ’r’ and ’p’ stand for recursion and
parameter, respectively.

The bar rule BR

Whenever we have derived the four premises

(1) NDS(f,≺)

(2) x , y ∈ N → s̄r ∈ N ∧ s̄p ∈ N

(3) x , y ∈ N,
∧
i

[sr
i ≺ x ⊃ P(sr

i , s
p
i )] → t̄r ∈ N ∧ t̄p ∈ N

(4) x , y ∈ N,
∧
i

[sr
i ≺ x ⊃ P(sr

i , s
p
i )],

∧
j

[tr
j ≺ x ⊃ P(tr

j , t
p
j )] → P(x , y)

we can infer x ∈ N ∧ y ∈ N → P(x , y).
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Unfolding finitist arithmetic with bar rule

How to use the rule: nested recursion
In U+

0 (FA), whenever we have derived NDS(f,≺), then we can use the bar
rule BR in order to justify nested recursion along ≺.

Example (Justifying nested recursion using BR)

As usual, (r)x is r if r ≺ x and 0 otherwise. Define F by (x 6= 0)

F (0, y) ' H(y)

F (x , y) ' G (x , y , F ( k(x , y ,F (l(x , y)x , y))x , p(x , y ,F (m(x , y)x , y)) ))

We set n = 2 and m = 1 and choose the following terms:

sr
1 = l(x , y)x , sp

1 = y

sr
2 = m(x , y)x , sp

2 = y

tr
1 = k(x , y ,F (l(x , y)x , y))x , tp

1 = p(x , y ,F (m(x , y)x , y))
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Unfolding finitist arithmetic with bar rule

Summarizing ...

We summarize our previous findings in the following theorem.

Theorem

Assume that NDS(f,≺) is derivable in U+
0 (FA). Then U+

0 (FA) justifies
nested recursion along ≺.
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Unfolding finitist arithmetic with bar rule

Tait’s seminal 1961 paper

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

For each ordinal α < ε0 let ≺α be a primitive recursive standard
wellordering ≺α of ordertype α

Let us write NDS(f, α) instead of NDS(f,≺α)

Aim at showing that U+
0 (FA) derives NDS(f, α) for each α < ε0

Use one direction of Tait’s famous result, i.e. that nested recursion on
ωα entails ordinary recursion on ωα or, more useful in our setting,
nested recursion on ωα entails NDS(f, ωα)

Tait’s argument can be directly formalized in U+
0 (FA)

For more details, see the Appendix
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Unfolding finitist arithmetic with bar rule

U+
0 (FA): Lower bounds

Theorem

Provably in U+
0 (FA), nested recursion along ωα entails NDS(f, ωα).

Corollary

We have for each α < ε0 that U+
0 (FA) derives NDS(f, α).
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Unfolding finitist arithmetic with bar rule

Upper bounds

U+
0 (FA) is readily interpretable in the subsystem of second order arithmetic

ACA0 as follows:

Fix a function variable f in L2 and translate (a · b) as {a}f (b), where
{n}f for n = 0, 1, 2, . . . is a enumeration of the functions that are
partial recursive in f

The constant f is interpreted as a natural number i so that
{i}f (x) ' f (x)

The translation of BR is validated by observing that ACA0 proves
WF(≺)→ TI(≺,A) for each arithmetic formula A

On top of this interpretation, one models predicates (including join) to
show that even the strength of U+(FA) does not go beyond PA.
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Unfolding finitist arithmetic with bar rule

The proof theory of the three unfolding systems for FA
with bar rule

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic with bar rule, U+
0 (FA),

U+
1 (FA) and U+(FA) are proof-theoretically equivalent to Peano arithmetic

PA.

Support of Kreisel’s analysis of extended finitism.
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Appendix: Wellfoundedness of exponentiation
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Appendix: Wellfoundedness of exponentiation

Tait’s argument in a nutshell

(based on a compact presentation of W. Tait in a personal communication
with S. Feferman)

We want to show that nested recursion on ωδ entails NDS(f, ωδ).

In the following we will work with (codes of) ordinals below ε0 and assume
that < denotes the corresponding ordering relation on them.

A possibly infinite descending sequence f in ωδ

Let f be a fixed function from ω to ωδ satisfying for all natural numbers n
the condition

f (n) > 0→ f (n + 1) < f (n) and f (n) = 0→ f (n + 1) = 0. (?)
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Appendix: Wellfoundedness of exponentiation

Ordinal-theoretic preliminaries

Given an ordinal α < ωδ in its normal form

α = ωα1a1 + · · ·+ ωαnan

where δ > α1 > · · · > αn and ai < ω (1 ≤ i ≤ n), we set

α{i} = ωα1a1 + · · ·+ ωαnak (k = min(n, i))

α[i ] =

{
ωαi + ai if 0 < i ≤ n
0 if n < i

Clearly, α[i ] < ωδ and 0{i} = 0[i ] = 0. Further, we have the following
important property.
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Appendix: Wellfoundedness of exponentiation

Ordinal-theoretic preliminaries (ctd.)

Lemma

We have that α{i + 1} < β{i + 1} if and only if

α{i} < β{i} ∨ (α{i} = β{i} ∧ α[i + 1] < β[i + 1]).
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Appendix: Wellfoundedness of exponentiation

The crucial property

The crucial step in Tait’s argument is to define a function µ : ω2 → ω
such that (writing µi (j) for µ(i , j))

The property (??)

f (j + µi (j)) = 0 ∨ f (j + µi (j)){i} < f (j){i} (??)

It will then suffice to choose µ0(0) as a root of f , since according to (??),
f (µ0(0)) = 0.
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Appendix: Wellfoundedness of exponentiation

Defining µi (j)

The definition of µi (j) will be by nested recursion on f (j)[i + 1] < ωδ.

Let n be the number of summands in the normal form of f (j). If
i ≥ n, we may simply set µi (j) = 1; then (??) holds due to property
(?) of our given function f .

So assume 0 ≤ i < n. Because f (j)[i + 2] < f (j)[i + 1], we can use
µi+1(j) = µ̄ in the definition of µi (j). Hence, according to (??) we
have for µ̄ that either (1) or (2) holds:

f (j + µ̄) = 0 (1)

f (j + µ̄){i + 1} < f (j){i + 1} (2)

If (1) holds, we set µi (j) = µ̄.
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Appendix: Wellfoundedness of exponentiation

Defining µi (j) (ctd.)

In case of (2), we use the lemma above to obtain one of the following
properties (3) or (4):

f (j + µ̄){i} < f (j){i} (3)

f (j + µ̄){i} = f (j){i} ∧ f (j + µ̄)[i + 1] < f (j)[i + 1] (4)

In case of (3), we again set µi (j) = µ̄.

If (4) holds, then clearly µi (j + µ̄) = ¯̄µ is defined. In this case we set
µi (j) = µ̄+ ¯̄µ. Then we can verify, using property (??) for ¯̄µ, that
one of the following conditions (5) or (6) holds:

f (j + µi (j)) = f ((j + µ̄) + ¯̄µ) = 0 (5)

f (j + µi (j)){i} < f (j + µ̄){i} = f (j){i} (6)

This is as desired and concludes the definition of µi (j).
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Appendix: Wellfoundedness of exponentiation

Summarizing...

Summarizing, µi (j) has been defined to satisfy the following equation:

The recursive definition of µi(j)

µi (j) =


1 if i ≥ n

µi+1(j)
if f (j + µi+1(j)) = 0 or

f (j + µi+1(j)){i} < f (j){i}
µi+1(j) + µi (j + µi+1(j)) else

It is now easy to explicitely express the definition of µi (j) as a nested
recursion on ωδ.
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Appendix: Wellfoundedness of exponentiation

The end

Thank you for your attention!
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