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Abstract

In this article we introduce systems for metapredicative Mahlo in ex-
plicit mathematics and admissible set theory. The exact upper proof-
theoretic bounds of these systems are established.

1 Introduction

In classical set theory an ordinal κ is called a Mahlo ordinal if it is a regular
cardinal and if, for every normal function f from κ to κ, there exists a regular
cardinal µ less than κ so that {f(ξ) : ξ < µ} ⊂ µ. The statement that
there exists a Mahlo ordinal is a powerful set existence axiom going beyond
theories like ZFC. It also outgrows the existence of inaccessible cardinals,
hyper inaccessibles, hyperhyperinaccessible and the like.

There is also an obvious recursive analogue of Mahlo ordinal. Typically, an
ordinal α is baptized recursively Mahlo, if it is admissible and reflects every
Π2 sentence on a smaller admissible ordinal. The corresponding formal theory
KPM has been proof-theoretically analyzed by Rathjen [14, 15]. KPM is a
highly impredicative theory, and its proof-theoretic strength is significantly
beyond that of KPi, the second order theory (∆1

2-CA) + (BI) and Feferman’s
theory T0, which are all proof-theoretically equivalent (cf. [3, 6, 10]).

This article can be seen as a further contribution to the general program of
metapredicativity. We have studied other metapredicative theories in Jäger,
Kahle, Setzer and Strahm [8], Jäger and Strahm [11], and Strahm [19, 21];
there also some further background material can be found.

One aim here is to look at metapredicative Mahlo in admissible set theory.
The corresponding theory, named KPm0, is admissible set theory above the
natural numbers as urelements plus Π2 reflection on the admissibles. As
induction principles we have complete induction on the natural numbers for
sets, but do not include ∈ induction.
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A further aim of this paper is to introduce the concept of Mahloness into
explicit mathematics and to analyze the proof-theoretic strength of its meta-
predicative version. An extension of Feferman’s theory T0 by Mahlo axioms
is studied in Jäger and Studer [12]. Setzer [18] presents a related formulation
in the framework of Martin-Löf type theory.

For the formalization of Mahlo in explicit mathematics we work over the
basic theory EETJ which comprises the axioms of applicative theories and
has type existence axioms for elementary comprehension and join. To obtain
Mahlo, we introduce the concept of universe with the idea that universes
act as explicit analogues of admissibles. Then we add Mahlo axioms which
require that, for each name a of a type and for every operation f which maps
names of types into names of types, there exists a universe with name m(a, f)
which contains a and is closed under f . The theory EMA is EETJ plus these
Mahlo axioms and induction on the natural numbers for types. It provides
one basic formalism for metapredicative Mahlo in explicit mathematics.

In the following we will see that the proof-theoretic ordinals of KPm0 and
EMA are less than or equal to ϕω00, for ϕ being the ternary Veblen function.
Together with the results of Strahm [20] we thus conclude that ϕω00 is
the proof-theoretic ordinal of KPm0 and EMA. If complete induction on
the natural numbers for arbitrary formulas is added, we obtain systems of
strength ϕε000.

2 The theory KPm0

In this section we introduce the metapredicative theory KPm0 for a recur-
sively inaccessible Mahlo universe. Basically, KPm0 is the theory KPi0 of
Jäger [7] augmented by an axiom scheme for Π2 reflection on the admissi-
bles. It is equivalent to the theory KPM of Rathjen [14] if complete induction
on ω is restricted to sets and all other forms of ∈ induction are omitted.

For the following it will be convenient to work in a framework with the natural
numbers as urelements. Therefore, we let L1 denote the language of first
order arithmetic, which has number variables a, b, c, d, e, f, u, v, w, x, y, z, . . .
(possibly with subscripts), symbols for all primitive recursive functions and
relations, as well as a unary relation symbol Q. Q plays the role of an
anonymous relation variable with no specific meaning. Its role will become
clear in Definition 1 below. There is also a symbol ∼ for forming negative
literals.1

1This formulation of the language is chosen for the Tait-style reformulation of our
systems in the next section.
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The number terms (r, s, t, r1, s1, t1, . . . ) of L1 are defined as usual. Positive
literals of L1 are all expressions R(s1, . . . , sn) for R a symbol for an n-ary
primitive recursive relation as well as expressions of the form Q(s). The
negative literals of L1 have the form ∼E so that E is a positive literal. The
formulas of L1 are now generated from the positive and negative literals
of L1 by closing against disjunction, conjunction, as well as existential and
universal number quantification. The negation ¬A of an L1 formula A is
defined by making use of De Morgan’s laws and the law of double negation.
Moreover, the remaining logical connectives are abbreviated in the standard
way.

KPm0 is formulated in the extension L∗ = L1(∈,N, S,Ad) of L1 by the mem-
bership relation symbol ∈, the set constant N for the set of natural numbers
and the unary relation symbols S and Ad for sets and admissibles, respec-
tively.

The terms (r, s, t, r1, s1, t1, . . . ) of L∗ are the terms of L1 plus the set constant
N. The formulas (A,B,C,A1, B1, C1, . . . ) of L∗ as well as the ∆0, Σ, Π, Σn

and Πn formulas of L∗ are defined as usual. The notation ~s is shorthand for a
finite string s1, . . . , sn whose length will be specified by the context. Equality
between objects is not represented by a primitive symbol but defined by

(s = t) :=

{
(s ∈ N ∧ t ∈ N ∧ (s =N t)) ∨
(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s))

where =N is the symbol for the primitive recursive equality on the natural
numbers. The formula As is the result of replacing each unrestricted quanti-
fier ∃x(. . . ) and ∀x(. . . ) in A by (∃x ∈ s)(. . . ) and (∀x ∈ s)(. . . ), respectively.
In addition, we freely make use of all standard set-theoretic notations and
write, for example, Tran(s) for the ∆0 formula saying that s is a transitive
set.

Let F be a collection of L∗ formulas. Induction on the natural numbers with
respect to F consist of all formulas

A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x)(F -IN)

so that A(a) belongs to F . Below we are particularly interested in the two
induction schemas (∆0-IN) and (L∗-IN).

Now we introduce the theory KPm0 for metapredicative Mahlo. Its logical
axioms comprise the usual axioms of classical first order logic with equality.
The non-logical axioms of KPm0 can be divided into the following five groups.
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I. Ontological axioms. We have for all terms r, ~s and t of L∗, all function
symbols h and relation symbols R of L1 and all axioms A(~a) of group III
whose free variables belong to the list ~a:

(1) r ∈ N ↔ ¬S(r).

(2) ~s ∈ N → h(~s) ∈ N.

(3) R(~s) → ~s ∈ N.

(4) r ∈ t → S(t).

(5) Ad(t) → (N ∈ t ∧ Tran(t)).

(6) Ad(t) → (∀~x ∈ t)At(~x).

(7) Ad(r) ∧ Ad(t) → r ∈ t ∨ r = t ∨ t ∈ r.

II. Number-theoretic axioms. We have for all axioms A(~a) of Peano arithmetic
PA which are not instances of the schema of complete induction and whose
free variables belong to the list ~a:

(Number theory) (∀~x ∈ N)AN(~x).

III. Kripke Platek axioms. We have for all terms s and t and all ∆0 formulas
A(a) and B(a, b) of L∗:

(Pair) ∃x(s ∈ x ∧ t ∈ x).

(Tran) ∃x(s ⊂ x ∧ Tran(x)).

(∆0-Sep) ∃y(S(y) ∧ y = {x ∈ s : A(x)}).

(∆0-Coll) (∀x ∈ s)∃yB(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)B(x, y).

IV. Mahlo axioms. We have for all ∆0 formulas A(a, b,~c) whose parameters
belong to the list a, b,~c:

(M) (∀x)(∃y)A(x, y,~c) → (∃z)[Ad(z) ∧ ~c ∈ z ∧ (∀x ∈ z)(∃y ∈ z)A(x, y,~c)]

V. Induction axioms. These consist of the schema (∆0-IN) of complete induc-
tion on the natural numbers for ∆0 formulas.

Observe that ∈ induction is not available in KPm0. This is the price for
obtaining a metapredicative theory. The situation here is analogue to that
for theories of iterated admissible sets dealing with recursive inaccessibility.
The theory KPi introduced in Jäger [5] can be considered as a formalized
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approach to a recursively inaccessible universe; it contains full induction on
the natural numbers and full ∈ induction. KPi is fairly strong and proof-
theoretically equivalent, for example, to the theory (∆1

2-CA) + (BI), however,
if we omit ∈ induction and restrict induction on the natural numbers to sets,
the resulting theory KPi0 has proof-theoretic ordinal Γ0 (cf. Jäger [7]).

In the following we will measure the proof-theoretic strength of formal the-
ories in terms of their proof-theoretic ordinals. As usual, for all primitive
recursive relations ≺ and all L∗ formulas A(a) we set:

Prog(≺, A) := (∀x ∈ N)[(∀y ∈ N)(y ≺ x→ A(y))→ A(x)],

TI(≺, A) := Prog(≺, A)→ (∀x ∈ N)A(x).

Thus TI(≺, A) expresses transfinite induction along the relation ≺ for the
formula A(a). The proof-theoretic ordinal of a theory T is defined by referring
to transfinite induction for the anonymous relation Q.

Definition 1 1. An ordinal α is provable in a theory T, if there is a
primitive recursive wellordering ≺ of order type α so that T TI(≺,Q).

2. The least ordinal which is not provable in T is called the proof-theoretic
ordinal of T and is denoted by |T|.

The proof-theoretic ordinals of the theories which we consider in this paper
are most easily expressed by making use of a ternary Veblen or ϕ function
which we are now going to define. The usual Veblen hierarchy, generated by
the binary function ϕ, starting off with the function ϕ0β = ωβ, is well known
from the literature, cf. Pohlers [13] or Schütte [17]. The ternary ϕ function
is obtained as a straightforward generalization of the binary case by defining
ϕαβγ inductively as follows:

(i) ϕ0βγ is just ϕβγ;

(ii) if α > 0, then ϕα0γ denotes the γth ordinal which is strongly critical
with respect to all functions λξ, η.ϕδξη for δ < α.

(iii) if α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of
the functions λξ.ϕαδξ for δ < β.

For example, ϕ10α is Γα, and more generally, ϕ1αβ denotes a Veblen hier-
archy over λα.Γα. It is straightforward how to extend these ideas in order to
obtain ϕ functions of all finite arities, and even further to Schütte’s Klam-
mersymbole [16].
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In Strahm [20] a primitive recursive notation system based on the ternary
Veblen function is used to show that ϕω00 and ϕε000 are lower bounds of
the proof-theoretic ordinals of KPm0 and KPm0 + (L∗-IN), respectively. In
this article we will establish that these lower bounds are sharp.

Actually, we do not give a detailed proof-theoretic treatment of KPm0; rather
we turn to corresponding systems of explicit mathematics and exhibit their
upper proof-theoretic bounds via an interpretation into suitable theories of
ordinals. A proof-theoretic analysis of the latter systems will be carried out
in detail. An obvious adaptation of the proof-theoretic treatment of these
theories for ordinals also works for KPm0.

3 The theory EMA

The counterpart of the theory KPm0 in explicit mathematics is the system
EMA which we will describe below. The role of admissibles in set theory is
now played by (names of) so-called universes. The Mahlo axiom of KPm0

allows to reflect set-theoretic Π2 formulas on admissibles. In EMA we reflect
functions from names to names on universes. The remaining axioms of EMA
are the usual first order axioms of explicit mathematics, axioms for uniform
elementary comprehension and join, as well as complete induction on the
natural numbers for types.

EMA is formulated in the second order language L for individuals and types.
It comprises individual variables a, b, c, f, g, h, u, v, w, x, y, z, . . . as well as
type variables U, V,W,X, Y, Z, . . . (both possibly with subscripts). L also
includes the individual constants k, s (combinators), p, p0, p1 (pairing and
projections), 0 (zero), sN (successor), pN (predecessor), dN (definition by nu-
merical cases) and additional individual constants, called generators, which
will be used for the uniform naming of types, namely nat (natural numbers),
id (identity), co (complement), int (intersection), dom (domain), inv (inverse
image), j (join) and m (universe generator). There is one binary function
symbol · for (partial) application of individuals to individuals. Further, L
has unary relation symbols ↓ (defined) and N (natural numbers) as well as
three binary relation symbols ∈ (membership), = (equality) and < (naming,
representation). Finally, L has a symbol ∼ for forming negative literals.

It is convenient that L also includes an anonymous unary relation symbol
Q and a corresponding generator q. As in the previous section, Q plays
the role of an anonymous predicate on the natural numbers with no specific
mathematical meaning.

The individual terms (r, s, t, r1, s1, t1, . . . ) of L are built up from individual
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variables and individual constants by means of our function symbol · for
application. In the following we often abbreviate (s · t) simply as (st), st or
sometimes also s(t); the context will always ensure that no confusion arises.
We further adopt the convention of association to the left so that s1s2 . . . sn
stands for (. . . (s1 ·s2) . . . sn). We also set t′ := sNt. Finally, we define general
n tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

The positive literals of L are the formulas N(s), s↓, s = t, U = V , s ∈ U
and <(s, U), and the negative literals of L have the form ∼E so that E
is a positive literal. Since we work with a logic of partial terms, it is not
guaranteed that all terms have values, and s↓ is read as s is defined or s has
a value. Moreover, N(s) says that s is a natural number, and the formula
<(s, U) is used to express that the individual s represents the type U or is a
name of U .

The formulas (A,B,C,A1, B1, C1, . . . ) of L are generated from the positive
and negative literals by closing against disjunction, conjunction, as we as ex-
istential and universal quantification for individuals and types. The negation
¬A of an L formula A is defined as usual. The following table contains a
useful list of abbreviations:

s ' t := s↓ ∨ t↓ → s = t,

s ∈ N := N(s),

(∃x ∈ N)A(x) := (∃x)(x ∈ N ∧ A(x)),

(∀x ∈ N)A(x) := (∀x)(x ∈ N→ A(x)),

U ⊂ V := (∀x)(x ∈ U → x ∈ V ),

s ∈̇ t := (∃X)(<(t,X) ∧ s ∈ X),

(∃x ∈̇ s)A(x) := (∃x)(x ∈̇ s ∧ A(x)),

(∀x ∈̇ s)A(x) := (∀x)(x ∈̇ s→ A(x)),

s =̇ t := (∃X)[<(s,X) ∧ <(t,X)],

s ⊂̇ t := (∃X, Y )[<(s,X) ∧ <(t, Y ) ∧X ⊂ Y ],

<(s) := (∃X)<(s,X).

The vector notation ~U and ~s is sometimes used to denote finite sequences
of type variables U1, . . . , Um and individual terms s1, . . . , sn, respectively,
whose length is given by the context.

The logic of EMA is Beeson’s classical logic of partial terms (cf. Beeson [2]
or Troelstra and Van Dalen [22]) for the individuals and classical logic with
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equality for the types. Observe that Beeson’s formalization includes the usual
strictness axioms.

Before turning to our theory EMA for metapredicative Mahlo in explicit
mathematics, we introduce the auxiliary theory EETJ which provides a frame-
work for explicit elementary types with join. The nonlogical axioms of EETJ
can be divided into the following groups:

I. Applicative axioms. These axioms formalize that the individuals form a
partial combinatory algebra, that we have paring and projection and the
usual closure conditions on the natural numbers plus definition by numerical
cases.

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0(a, b) = a ∧ p1(a, b) = b,

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x),

(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

As usual, from axioms (1) and (2), one derives a theorem about λ abstraction
and a form of the recursion theorem.

II. Explicit representation and extensionality. The following axioms state that
each type has a name, that there are no homonyms and that equality of types
is extensional.

(1) (∃x)<(x, U),

(2) <(a, U) ∧ <(a, V )→ U = V ,

(3) (∀x)(x ∈ U ↔ x ∈ U)→ U = V .

III. Basic type existence axioms. In the following we provide a finite axioma-
tization of uniform elementary comprehension plus join.

Natural numbers

<(nat) ∧ (∀x)(x ∈̇ nat↔ N(x)).
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Representation of Q

<(q) ∧ (∀x)(x ∈̇ q↔ Q(x)) ∧ q ⊂̇ nat.

Identity

<(id) ∧ (∀x)(x ∈̇ id↔ (∃y)(x = (y, y))).

Complements

<(a) → <(co(a)) ∧ (∀x)(x ∈̇ co(a)↔ x ˙6∈ a).

Intersections

<(a) ∧ <(b) → <(int(a, b)) ∧ (∀x)(x ∈̇ int(a, b)↔ x ∈̇ a ∧ x ∈̇ b).

Domains

<(a) → <(dom(a)) ∧ (∀x)(x ∈̇ dom(a)↔ (∃y)((x, y) ∈̇ a)).

Inverse images

<(a) → <(inv(a, f)) ∧ (∀x)(x ∈̇ inv(a, f)↔ fx ∈̇ a).

Joins

<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧ Σ(a, f, j(a, f)).

In this last axiom the formula Σ(a, f, b) expresses that b names the disjoint
union of f over a, i.e.

Σ(a, f, b) := (∀x)(x ∈̇ b↔ (∃y, z)(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

IV. Uniqueness of generators. These axioms essentially guarantee that different
generators create different names. To achieve this we have, for syntactically
different generators r0 and r1 and arbitrary generators s and t:

(1) r0 6= r1,

(2) (∀x)(sx 6= t),

(3) (∀x, y)(sx = ty → s = t ∧ x = y).

In the original formulation of explicit mathematics, elementary comprehen-
sion is not dealt with by a finite axiomatization but directly as an infinite
axiom scheme. An L formula A is called elementary if it contains neither
the relation symbol < nor bound type variables. The following theorem of
Feferman and Jäger [4] shows that this scheme of uniform elementary com-
prehension is provable from our finite axiomatization. Join and uniqueness
of generators are not needed for this argument.
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Theorem 2 For every elementary formula A(u,~v,W1, . . . ,Wn) with at most
the indicated free variables there exists a closed term t so that one can prove
in EETJ:

1.
∧n
i=1<(wi,Wi) → <(t(~v, w1, . . . , wn)),

2.
∧n
i=1<(wi,Wi) → (∀x)(x ∈̇ t(~v, w1, . . . , wn)↔ A(x,~v,W1, . . . ,Wn)).

In the following we employ two forms of induction on the natural numbers,
type induction and formula induction. Type induction is the axiom

(∀X)(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).(T-IN)

Formula induction, on the other hand, is the schema

A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x)(L-IN)

for each L formula A. According to Feferman [3], one has the following
theorem about the proof-theoretic strength of EETJ plus type and formula
induction, respectively.

Theorem 3 The theory EETJ + (T-IN) is proof-theoretically equivalent to
Peano arithmetic PA and to the system (Σ1

1-AC)0; the theory EETJ + (L-IN)
is proof-theoretically equivalent to (Σ1

1-AC).2

The next step is to introduce the concept of a universe in explicit mathemat-
ics. To put it very simply, a universe is supposed to be a type which consists
of names only and reflects the theory EETJ.

For the detailed definition of a universe we introduce some auxiliary nota-
tion and let C(W, a) be the closure condition which is the disjunction of the
following L formulas:

(1) a = nat ∨ a = q ∨ a = id,

(2) (∃x)(a = co(x) ∧ x ∈ W ),

(3) (∃x, y)(a = int(x, y) ∧ x ∈ W ∧ y ∈ W ),

(4) (∃x)(a = dom(x) ∧ x ∈ W ),

(5) (∃x, f)(a = inv(x, f) ∧ x ∈ W ),

(6) (∃x, f)[a = j(x, f) ∧ x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W )].

2(Σ1
1-AC)0 is (Σ1

1-AC) with induction restricted to sets.
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Thus the formula (∀x)(C(W,x) → x ∈ W ) states that W is a type which is
closed under the type constructions of EETJ, i.e. elementary comprehension
and join. If, in addition, all elements of W are names, we call W a universe.

Definition 4 1. We write U(W ) to express that the type W is a universe,

U(W ) := (∀x)(C(W,x)→ x ∈ W ) ∧ (∀x ∈ W )<(x).

2. We write U(a) to express that the individual a is a name of a universe,

U(a) := (∃X)(<(a,X) ∧ U(X)).

Based on (names of) universes we can now introduce the Mahlo axiom for
explicit mathematics. Given a name a and an operation f from names to
names one simply claims that there exists (a name of) a universe m(a, f)
which contains a and reflects f . Taking up the analogy that regular cardinals
in classical set theory correspond to universes in explicit mathematics, our
formulation of Mahlo in explicit mathematics may be regarded as a uniform
version of Mahlo in classical set theory.

The following shorthand notations are useful for obtaining a compact form
of our Mahlo axiom:

(f : < → <) := (∀x)(<(x)→ <(fx)),

(f : s→ s) := (∀x ∈̇ s)(fx ∈̇ s).

Obviously, (f : < → <) and (f : s→ s) means that f maps names to names
and elements of (the type named by) s to elements of (the type named by)
s, respectively. Mahloness in explicit mathematics is now expressed by the
axioms

<(a) ∧ (f : < → <) → U(m(a, f)) ∧ a ∈̇ m(a, f),(M.1)

<(a) ∧ (f : < → <) → (f : m(a, f)→ m(a, f)).(M.2)

It is an interesting topic to see what kind of ordering principles for universes
can be consistently added to the previous axioms. This question is discussed
at full length in Jäger, Kahle and Studer [9], and it is shown there that
one must not be too liberal. As a consequence of these considerations we
do not claim linearity and connectivity for arbitrary universes, but only for
so-called normal universes, i.e. universes which are named by means of the
type generator m,

Um(a) := (∃x, f)[a = m(x, f) ∧ U(a)].
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Linearity and connectivity of normal universes are then given by the following
two axioms:

(∀x, y)[Um(x) ∧ Um(y) → x ∈̇ y ∨ x =̇ y ∨ y ∈̇ x],(Um-Lin)

(∀x, y)[Um(x) ∧ Um(y) → x ⊂̇ y ∨ y ⊂̇ x].(Um-Con)

It is shown in [9] that connectivity of normal universes also implies transi-
tivity of normal universes in its most general form.

The theory EMA of explicit mathematics, whose universe is Mahlo, comprises
the theory EETJ plus type induction (T-IN), the Mahlo axioms (M.1) and
(M.2) as well as the ordering principles (Um-Lin) and (Um-Con).

Strahm [20] provides a proof that ϕω00 is a lower bound to the proof-theoretic
ordinal of EMA and that ϕε000 is a lower bound to the proof-theoretic ordinal
of EMA + (L-IN). In the next two sections we will prove that these ordinals
are also upper bounds of the proof-theoretic ordinal of the theories EMA
and EMA + (L-IN), respectively, thus establishing the exact proof-theoretic
strength of these systems.

No methods of impredicative proof theory are used in our analysis of EMA
and EMA + (L-IN) so that the metapredicativity of both systems is estab-
lished. Impredicative Mahlo in explicit mathematics is obtained by adding
the principle of inductive generation to EMA, cf. Jäger and Studer [12].

4 The theory OMA

In this section we introduce the ordinal theory OMA for the Mahlo axiom.
It is a first order theory with ordinals tailored for dealing with certain non-
monotone inductive definitions which provides the appropriate framework for
modelling our theory EMA. In the next section we will determine the upper
proof-theoretic bounds of OMA.

In the following we make use of the usual primitive recursive coding machin-
ery in L1: 〈. . .〉 is a standard primitive recursive function for forming n-tuples
〈t1, . . . , tn〉; Seq is the primitive recursive set of sequence numbers; lh(t) de-
notes the length of (the sequence number coded by) t; (t)i is the ith compo-
nent of (the sequence coded by) t if i < lh(t), i.e. t = 〈(t)0, . . . , (t)lh(t)

.−1〉 if
t is a sequence number.

Now let P be a fresh n-ary relation symbol and write L1(P) for the extension
of L1 by P. An L1(P) formula which contains at most a1, . . . , an free is called
an n-ary operator form, and we let A(P, a1, . . . , an) range over such forms.
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The theory OMA is formulated in the language LO which extends L1 by
adding a new sort of ordinal variables σ, τ, η, ξ, . . . (possibly with subscripts),
new binary relation symbols < and = for the less and equality relation on
the ordinals, respectively, and a unary relation symbol Ad to express that an
ordinal is admissible. Moreover, LO includes an (n + 1)-ary relation symbol
PA for each operator form A(P, a1, . . . , an).

The number terms of LO are the number terms of L1, and the ordinal terms
of LO are the ordinal variables. The positive literals of LO are the positive
literals of L1 plus all expressions (σ < τ), (σ = τ) and PA(σ,~s) for each n-ary
operator form A(P,~a). We write PσA(~s) for PA(σ,~s). The negative literals of
LO are the expressions ∼E with E a positive literal of LO.

The formulas (A,B,C,A1, B1, C1, . . . ) of LO are generated from the positive
and negative literals by closing under conjunction and disjunction, quantifi-
cation over natural numbers, and the bounded ordinal quantifiers (∃ξ < σ)
and (∀ξ < σ) as well as the unbounded ordinal quantifiers (∃ξ) and (∀ξ).
An LO formula is called ΣO if it does not contain ordinal quantifiers of the
form (∀ξ); it is called ΠO if it does not have ordinal quantifiers of the form
(∃ξ). Finally, the ∆O

0 formulas of LO are those formulas which are both ΣO

and ΠO; the ΣO1 formulas of LO are the ∆O

0 formulas plus all formulas of
the form (∃ξ)A(ξ) with A a ∆O

0 formula and accordingly for ΠO1 formulas.
Further, we write Aσ to denote the LO formula which is obtained from A by
replacing all unbounded ordinal quantifiers (Qξ) in A by bounded ordinal
quantifiers (Qξ < σ). Additional abbreviations are

P<σA (~s) := (∃ξ < σ)PξA(~s) and PA(~s) := (∃ξ)PξA(~s).

The theory OMA is formulated in classical two sorted predicate logic with
equality in both sorts, containing the axioms of Peano arithmetic PA, linearity
axioms for the ordinals, operator axioms and certain reflection principles.

I. Number-theoretic axioms. The axioms of Peano arithmetic PA with the
exception of complete induction on the natural numbers.

II. Linearity axioms.

σ 6< σ ∧ (σ < τ ∧ τ < η → σ < η) ∧ (σ < τ ∨ σ = τ ∨ τ < σ).

III. Operator axioms. For all operator forms A(P,~a):

PσA(~s)↔ A(P<σA , ~s).

IV. ΣO reflection axioms. For all ΣO formulas A:

A→ (∃ξ)Aξ.
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V. Axioms for ΠO2 reflection on Ad. For all ∆O

0 formulas A(ξ, η, ~τ) whose free
ordinal variables are from the list ξ, η, ~τ :

(∀ξ)(∃η)A(ξ, η, ~τ) → (∃σ)[Ad(σ) ∧ ~τ < σ ∧ (∀ξ < σ)(∃η < σ)A(ξ, η, ~τ)].

VI. Axioms for Ad. For all ΣO formulas A(~τ) whose free ordinal variables are
from the list ~τ :

Ad(σ) ∧ ~τ < σ ∧ Aσ(~τ) → (∃ξ < σ)Aξ(~τ).

VII. ∆O

0 induction on the natural numbers. For all ∆O

0 formulas A(a):

A(0) ∧ (∀x)(A(x)→ A(x′)) → (∀x)A(x).

Observe that there are no induction principles for ordinals. In this respect
the theory OMA is related to KPm0 in which no ∈ induction is present. Even
very weak induction along the ordinals, for example for ∆O

0 formulas, would
make our theory much stronger than the theory EMA.

Later in this paper we will sometimes use the fact that, for each ordinal σ
in OMA, there exists an ordinal τ greater than σ. This is an immediate
consequence of ΣO reflection.

The next step is to build a model of EMA in OMA. The crucial idea is to
choose a suitable operator form A(P, a, b, c) so that the relation symbol PA
can then be used to single out the numbers which name types, and to define
elementhood in the names of types. Before doing this, we have to translate
term application and the individual constants of the language L into L1.

We interpret application · of L in the sense of ordinary recursion theory so
that (a ·b) in L is translated into {a}(b) in L1, where {n} for n = 0, 1, 2, 3, . . .
is a standard enumeration of the partial recursive functions. Then it is possi-
ble to assign pairwise different numerals to the constants k, s, p, p0, p1, sN, pN

and dN so that the applicative axioms (1)–(8) of EMA are satisfied. We also
require that the constant 0 of L is interpreted as the 0 of L1 and the term
sNa of L as a + 1 in L1. In addition, we let pairing and projections of L go
over into the primitive recursive pairing and unpairing machinery introduced
above.

For each L term t there also exists an L1 formula Valt(a) expressing that a
is the value of t under the interpretation described above. Accordingly, the
atomic formulas t↓, (s = t) and N(t) are given their obvious interpretations
in L1 with the translation of N ranging over all natural numbers.

14



For dealing with the generators we choose, again by ordinary recursion the-
ory, numerals nat, q, id, co, int, dom, inv, j and m so that we have the following
properties:

nat = 〈0, 0〉, q = 〈1, 0〉, id = 〈2, 0〉, {co}(a) = 〈3, a〉,

{int}(〈a, b〉) = 〈4, a, b〉, {dom}(a) = 〈5, a〉, {inv}(〈a, b〉) = 〈6, a, b〉,

{j}(〈a, b〉) = 〈7, a, b〉, {m}(〈a, b〉) = 〈8, a, b〉, {e0}(a) 6= e1

for all natural numbers a, b and all e0 and e1 from the set ranging over
nat, q, id, co, int, dom, inv, j and m.

It is our strategy to define a specific operator form A(P, a, b, c) and use the
corresponding relation symbol PA for dealing with codes for types and ele-
ments of types. Later our interpretation will be so that

<(a) translates into (∃ξ)PξA(a, 0, 0) and

b ∈̇ a translates into (∃ξ)PξA(a, b, 1).

Before turning to our final operator form A(P, a, b, c) we introduce the aux-
iliary ternary operator form A0(P, a, b, c) which is the disjunction of the fol-
lowing formulas (1)–(16):

(1) a = 〈0, 0〉 ∧ b = 0 ∧ c = 0,

(2) a = 〈0, 0〉 ∧ c = 1,

(3) a = 〈1, 0〉 ∧ b = 0 ∧ c = 0,

(4) a = 〈1, 0〉 ∧ Q(b) ∧ c = 1,

(5) a = 〈2, 0〉 ∧ b = 0 ∧ c = 0,

(6) a = 〈2, 0〉 ∧ (∃x)(b = 〈x, x〉) ∧ c = 1,

(7) (∃u)[a = 〈3, u〉 ∧ P(u, 0, 0)] ∧ b = 0 ∧ c = 0,

(8) (∃u)[a = 〈3, u〉 ∧ P(u, 0, 0) ∧ ¬P(u, b, 1)] ∧ c = 1,

(9) (∃u, v)[a = 〈4, u, v〉 ∧ P(u, 0, 0) ∧ P(v, 0, 0)] ∧ b = 0 ∧ c = 0,

(10) (∃u, v)[a = 〈4, u, v〉 ∧ P(u, 0, 0) ∧ P(v, 0, 0) ∧ P(u, b, 1) ∧ P(v, b, 1)]
∧ c = 1,

(11) (∃u)[a = 〈5, u〉 ∧ P(u, 0, 0)] ∧ b = 0 ∧ c = 0,
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(12) (∃u, x)[a = 〈5, u〉 ∧ P(u, 0, 0) ∧ P(u, 〈b, x〉, 1)] ∧ c = 1,

(13) (∃u, f)[a = 〈6, u, f〉 ∧ P(u, 0, 0)] ∧ b = 0 ∧ c = 0,

(14) (∃u, f)[a = 〈6, u, f〉 ∧ P(u, 0, 0) ∧ P(u, {f}(b), 1)] ∧ c = 1,

(15) (∃u, f)[a = 〈7, u, f〉 ∧ P(u, 0, 0) ∧ (∀x)(P(u, x, 1) → P({f}(x), 0, 0))]
∧ b = 0 ∧ c = 0,

(16) (∃u, f)[a = 〈7, u, f〉 ∧ P(u, 0, 0) ∧ (∀x)(P(u, x, 1) → P({f}(x), 0, 0))
∧ (∃y, z)(b = 〈y, z〉 ∧ P(u, y, 1) ∧ P({f}(y), z, 1))] ∧ c = 1.

This operator form takes care of all generators except the generator for the
Mahlo axiom. In order to deal with the generator m we have to make sure
that m(a, f) is only made a name provided that the codes generated so far
constitute a universe, contain a and reflect f . The following shorthand no-
tation expresses that the names given by P form a universe:

Univ(P) := (∀a, b, c)[A0(P, a, b, c) → P(a, b, c)].

A1(P, a, b, c) is the operator form given by the disjunction of A0(P, a, b) and
the following formulas (17) and (18):

(17) (∃x, f)[a = 〈8, x, f〉 ∧ P(x, 0, 0) ∧ (∀y)(P(y, 0, 0) → P({f}(y), 0, 0))]
∧ Univ(P) ∧ b = 0 ∧ c = 0,

(18) (∃x, f)[a = 〈8, x, f〉 ∧ P(x, 0, 0) ∧ (∀y)(P(y, 0, 0) → P({f}(y), 0, 0))]
∧ Univ(P) ∧ P(b, 0, 0) ∧ c = 1.

If we had foundation on the ordinals, this operator form A1(P, a, b, c) would
be sufficient for our model construction. By induction on the ordinals we
could show for example that (∃ξ)PξA1

(a, 0, 0) implies that there is a least such
ξ. In our context, however, induction on the ordinals is not available. Thus,
in order to have a “unique time stamp” for triples (a, b, c) to get into stages
generated, we work with the following operator form A(P, a, b, c):

A(P, a, b, c) := A1(P, a, b, c) ∧ ¬P(a, 0, 0).

Given this careful definition of the operator form A(P, a, b, c), the following
lemma concerning the stages of A(P, a, b, c) is trivially provable in OMA:

Lemma 5 The following assertions are provable in OMA:

1. PσA(a, 0, 0) ∧ PτA(a, 0, 0) → σ = τ ,

2. PσA(a, b, 1) → PσA(a, 0, 0),
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3. PσA(a, 0, 0) → (∀b)[PA(a, b, 1)↔ PσA(a, b, 1)].

Before turning to the interpretation of the types, the ∈ relation and the
naming relation we introduce the following definition:

Rep(a) := (∃ξ)PξA(a, 0, 0), E(b, a) := (∃ξ)PξA(a, b, 1).

In our embedding of EMA into OMA we first assume that the number and
types variables of L are mapped into the number variables of LO so that no
conflicts arise; to simplify the notation we often identify the type variables
with their translations in LO. Then we let the type variables of EMA range
over Rep and the translation of the atomic formulas of L involving types is
as follows:

<(t, U)∗ := (∃x)[Valt(x) ∧ Rep(x) ∧ Rep(U) ∧ (∀y)(E(y, x)↔ E(y, U))],

(t ∈ U)∗ := (∃x)[Valt(x) ∧ E(x, U)],

(U = V )∗ := (∀x)(E(x, U)↔ E(x, V )).

On the basis of these basic cases the translation of arbitrary L formulas A
into LO formulas A∗ should be obvious. The embedding of EMA into OMA
is given by the following theorem.

Theorem 6 We have for all L formulas A(~U,~a) with all its free variables
indicated that

EMA A(~U,~a) =⇒ OMA Rep(~U) → A∗(~U,~a).

Proof The proof proceeds by induction on the length of the derivation
of the formula A. If A is an applicative axiom or an axiom concerning
the uniqueness of generators then its translation is provable in OMA by our
assumptions about the coding of the first order part of EMA. The translations
of the axioms about explicit representation and extensionality as well as
linearity (Um-Lin) and connectivity (Um-Con) of normal universes are easily
verified. In the case of the basic type existence axioms we confine ourselves
to showing the translation of the axioms about Intersection.

Assume we are given two natural numbers a and b so that Rep(a) and Rep(b).
Hence, there exist ordinals σ and τ with PσA(a, 0, 0) and PτA(b, 0, 0). Choose
an ordinal η greater than σ and τ and carry through the following distinction
by cases.

Case 1: ¬P<ηA (〈4, a, b〉, 0, 0). Then our operator form A(P, a, b, c) yields
PηA(〈4, a, b〉, 0, 0). Moreover, we also have

(∀x)[PηA(〈4, a, b〉, x, 1) ↔ P<ηA (a, x, 1) ∧ P<ηA (b, x, 1)].
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In view of Lemma 5 we thus have Rep(〈4, a, b〉) and for all natural numbers
x that E(x, 〈4, a, b〉) if and only if E(x, a) and E(x, b).

Case 2: P<ηA (〈4, a, b〉, 0, 0). Because of Lemma 5 there exists a unique ξ less
than η so that PξA(〈4, a, b〉, 0, 0). Hence, the operator form A(P, a, b, c) forces
P<ξA (a, 0, 0), P<ξA (b, 0, 0) and ¬P<ξA (〈4, a, b〉, 0, 0). Now we proceed as in the
previous case.

Hence, the intersection axiom of EMA is verified. The other basic type exis-
tence axioms are treated accordingly. Observe that ΣO reflection is essential
for handling Join. By carrying through these proofs in detail one obtains
even more: the basic type existence axioms can already be seen to be valid
at the admissible stages of our construction, i.e.

Ad(σ) → Univ(P<σA ).(1)

We finally turn to the verification of the axioms (M.1) and (M.2). To this end
assume that we have a and f so that Rep(a) and (∀x)(Rep(x)→ Rep({f}(x)).
Hence, there exists a τ so that

PτA(a, 0, 0).(2)

A simple transformation of our second assumption yields, in addition, that

(∀ξ)(∀x)(∃η)[P<ξA (x, 0, 0) → P<ηA ({f}(x), 0, 0)],(3)

and, therefore, ΣO reflection gives

(∀ξ)(∃η)(∀x)[P<ξA (x, 0, 0) → P<ηA ({f}(x), 0, 0)].(4)

Hence, ΠO2 reflection on Ad provides an admissible σ so that

τ < σ ∧ (∀ξ < σ)(∃η < σ)(∀x)[P<ξA (x, 0, 0) → P<ηA ({f}(x), 0, 0)].(5)

In view of (2) and by a simple transformation we derive

P<σA (a, 0, 0) ∧ (∀x)[P<σA (x, 0, 0) → P<σA ({f}(x), 0, 0)].(6)

As we have remarked above the admissibility of σ forces Univ(P<σA ). As before
we proceed by a distinction by cases.

Case 1: ¬P<σA (〈8, a, f〉, 0, 0). Then our operator form A(P, a, b, c) gives
PσA(〈8, a, f〉, 0, 0) and, therefore, Rep(〈8, a, f〉). Our operator form also gives
for all x

E(x, 〈8, a, f〉) ↔ P<σA (x, 0, 0).(7)
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Combining (6) and (7) shows that 〈8, a, f〉 names a type which contains a
and is closed under f . In view of Univ(P<σA ) we indeed have by (7) that (the
translation of) U(〈8, a, f〉 is true in our model.

Case 2: P<σA (〈8, a, f, 〉, 0, 0). Because of Lemma 5 there exists a unique ξ
less than σ so that PξA(〈8, a, f〉). Hence, we have that the operator form
A(P, a, b, c) forces P<ξA (a, 0, 0) and (∀x)[P<ξA (x, 0, 0) → P<ξA ({f}(x), 0, 0)] as
well as Univ(P<ξA ). The rest is as in the previous case.

Therefore, our Mahlo axioms (M.1) and (M.2) are shown to be valid in our
model, and this completes the proof of the embedding of EMA into OMA. 2

5 Proof-theoretic analysis of OMA

Our next goal is to establish the upper proof-theoretic bound of OMA. First
we show that the proof-theoretic strength of OMA is already exhausted by
suitable theories for n-inaccessible ordinals for all finite n < ω. Afterwards,
we compute the upper proof-theoretic bounds of these auxiliary systems.

5.1 Reduction of OMA to n-inaccessibility

We begin our proof-theoretic analysis of OMA by eliminating the axiom of
ΠO2 reflection in favor of n-inaccessible ordinals for sufficiently large n less
than ω. To this end, we first reformulate OMA in a Tait-style manner.

The Tait-style version OMAT of OMA is formulated for finite sets Γ,Λ, . . .
(possibly with subscripts) of LO formulas. If A is an LO formula, then Γ, A
is a shorthand for Γ ∪ {A}, and similar for expressions of the form Γ, A, B.
The system OMAT contains the following axioms and rules of inference.

I. Axioms. For all finite sets Γ of LO formulas, all ∆O

0 formulas A and all ∆O

0

formulas B which are axioms of OMA:

Γ, ¬A, A and Γ, B.

II. Propositional and quantifier rules. These include the usual Tait-style infer-
ence rules for the propositional connectives and all sorts of quantifiers.

III. ΣO reflection rules. For all finite sets Γ of LO formulas and for all ΣO

formulas A:

Γ, A

Γ, (∃ξ)Aξ
.
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IV. ΠO2 refection on Ad rules. For all finite sets Γ of LO formulas and for all
∆O

0 formulas A(ξ, η, ~τ) whose free ordinal variables are from the list ξ, η, ~τ :

Γ, (∀ξ)(∃η)A(ξ, η, ~τ)

Γ, (∃σ)[Ad(σ) ∧ ~τ < σ ∧ (∀ξ < σ)(∃η < σ)A(ξ, η, ~τ)]
.

V. Cut rules. For all finite sets Γ of LO formulas and all LO formulas A:

Γ, A Γ, ¬A
Γ

.

The notion OMAT n Γ is used to express that the set Γ is provable in OMAT

by a proof of depth less than or equal to n; we write OMAT n
?

Γ if Γ is

provable in OMAT by a proof of depth less than or equal to n so that all its
cut formulas are ΣO1 or ΠO1 formulas. In addition, OMAT Γ or OMAT

?
Γ

means that there exists a natural number n so that OMAT n Γ or OMAT n
?

Γ,
respectively.

One readily notes that the main formulas of all axioms and rules of OMAT are
ΣO1 formulas. As a consequence, we obtain the following weak cut elimination
theorem for OMAT.

Theorem 7 (Weak cut elimination) We have for all finite sets Γ of LO
formulas that

OMAT Γ =⇒ OMAT
?

Γ.

Of course, the axioms and rules of OMAT are tailored so that the OMA can
be embedded into OMAT in a straightforward manner. Thus we obtain the
following corollary.

Corollary 8 If the LO formula A is provable in OMA, then there exists a
natural number n so that OMAT n

?
A.

Our next immediate aim is to introduce the semiformal system H, which will
be used to interpret quasi-normalized OMAT derivations. Essentially, H is
OMAT without reflection rules and with complete induction on the natural
numbers replaced by the ω rule. Moreover, in H we no longer have unbounded
ordinal quantifiers, and since H is a semiformal system, free number variables
are not present.

The language L of H is obtained from LO by omitting free number variables
and unbounded quantifiers for ordinals. In addition, we assume that L in-
cludes a new constant 0 for the least ordinal. Therefore, the ordinal terms
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of L are the constant 0 and the ordinal variables. We call two literals of
L numerically equivalent, if they are syntactically identical modulo number
subterms which have the same value. The axioms and rules of inference of H
are now given as follows.

I. Axioms, group 1. For all finite sets Γ of L formulas, all numerically equiv-
alent L literals A and B, and all true L1 literals C:

Γ, ¬A, B and Γ, C.

II. Axioms, group 2. For all finite sets Γ of L formulas, all literals A(σ) of L,
all ordinal terms µ, ν of L and all (instances of) axioms B of OMA from the
groups II, III and VI:

Γ, 0 = µ, 0 < µ and Γ, µ 6= ν, ¬A(µ), A(ν) and Γ, B.

III. Propositional rules. The usual Tait-style rules for disjunction and conjunc-
tion.

IV. Number quantifier rules. For all finite sets Γ of L formulas and all L
formulas A(s):

Γ, A(s)

Γ, (∃x)A(x)
,

Γ, A(t) for all closed number terms t

Γ, (∀x)A(x)
(ω).

V. Ordinal quantifier rules. For all finite sets Γ of L formulas, all L formulas
A, all ordinal terms µ, ν of L and all ordinal variables σ so that the usual
variable conditions are satisfied:

Γ, µ < ν ∧ A(µ)

Γ, (∃ξ < ν)A(ξ)
,

Γ, σ < ν → A(σ)

Γ, (∀ξ < ν)A(ξ)
.

VI. Cut rules. For all finite sets Γ of L formulas and all L formulas A:

Γ, A Γ, ¬A
Γ

.

Similarly as before, H α Γ means that the finite set Γ of L formulas has an
H proof of depth less than or equal to α. Furthermore, we write H α

0
Γ if

Γ has a cut-free proof in H of depth less than or equal to α. Moreover, we
write H <α Γ and H <α

0
Γ if there exists a β < α such that H β Γ and H β

0
Γ,

respectively.

For the following theorem, the notion of n-inaccessibility is crucial. By recur-
sion on n < ω we define a formula Ian(σ) to express that σ is an n-inaccessible
ordinal as follows:

Ia0(σ) := Ad(σ),

Ian+1(σ) := Ad(σ) ∧ (∀ξ < σ)(∃η < σ)[ξ < η ∧ Ian(η)].
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We observe that each formula Ian(σ) is a ∆O

0 formula without free number
variables and therefore also an L formula.

Unfortunately we need some further terminology before we turn to the main
result of this section. If ~τ is the sequence of ordinal variables τ1, . . . , τm, then
(~τ 6< σ) stands for the set

{τ1 6< σ, . . . , τm 6< σ}.

A finite set of LO formulas Λ is called an instance of the finite set of LO for-
mulas Γ if it results from Γ by replacing all free number variables of formulas
in Γ by closed number terms of L1.

For an LO formula A we use the notation A[~τ ] to express that all its free
ordinal variables belong to the list ~τ ; the analogous convention is employed
for finite sets of LO formulas. Finally, we write Γσ for the finite set of LO
formulas which is obtained from Γ by replacing each formula A in Γ by its
restriction Aσ.

Theorem 9 (Reduction of OMAT) Assume that Γ[~τ ] is a finite set of ΣO

formulas of LO. Then we have for all instances Λ[~τ ] of Γ[~τ ] and all natural
numbers n that

OMAT n
?

Γ[~τ ] =⇒ H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ ].

Proof This theorem is proved by induction on n. In the following we
exemplarily treat the cases of cut and ΠO2 reflection on admissible ordinals.
We note that complete induction on the natural numbers is dealt with as
usual by making use of the ω rule. In all other cases the claim is immediate
from the induction hypothesis.

Let us first look at the case where Γ[~τ ] is the conclusion of a cut. Then there
are natural numbers n0, n1 < n and a ∆O

0 formula A[ξ, ~η] so that

OMAT n0

?
Γ[~τ ], (∃ξ)A[ξ, ~η] and OMAT n1

?
Γ[~τ ], (∀ξ)¬A[ξ, ~η].(1)

Suppose that Λ[~τ ], (∃ξ)B[ξ, ~η] is an instance of Γ[~τ ], (∃ξ)A[ξ, ~η]. Then in-
version applied to the second premise and the induction hypothesis yield

H ω(n0+2) ¬Ian0(σ), (~τ , ~η 6< σ), Λσ[~τ ], (∃ξ < σ)B[ξ, ~η],(2)

H ω(n1+2) ¬Ian1(σ), (~τ , ~η, η0 6< σ), Λσ[~τ ], ¬B[η0, ~η],(3)

where η0 is a fresh ordinal variable. From (2) and (3) we obtain

H <ω(n+2) ¬Ian(σ), (~τ , ~η 6< σ), Λσ[~τ ], (∃ξ < σ)B[ξ, ~η],(4)

H <ω(n+2) ¬Ian(σ), (~τ , ~η 6< σ), Λσ[~τ ], (∀ξ < σ)¬B[ξ, ~η].(5)
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Here we have used the obvious fact that H <ω ¬Ian(σ), Iak(σ) for each natural
number k less than n. A cut applied to (4) and (5) reveals

H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ ](6)

since superfluous ordinal variables can be easily eliminated. This is as desired
and completes the treatment of the cut rule.

Let us now turn to the heart of the reduction, namely the interpretation of
ΠO2 reflection on admissible ordinals. Assume that Γ[~τ ] is the conclusion of
the corresponding rule of OMAT. Hence, there exist an n0 < n and a ∆O

0

formula A[ξ, η, ~τ ] so that

OMAT n0

?
Γ[~τ ], (∀ξ)(∃η)A[ξ, η, ~τ ].(7)

An application of inversion to (7) with a fresh ordinal variable τ0 forces

OMAT n0

?
Γ[~τ ], (∃η)A[τ0, η, ~τ ].(8)

Next we choose an instance Λ[~τ ], (∃η)B[τ0, η, ~τ ] of Γ[~τ ], (∃η)A[τ0, η, ~τ ] and
apply the induction hypothesis to (8) in order to obtain

H ω(n0+2) ¬Ian0(σ0), (τ0, ~τ 6< σ0), Λσ0 [~τ ], (∃η < σ0)B[τ0, η, ~τ ].(9)

But from (9) we can immediately derive by bounded universal ordinal quan-
tification that

H <ω(n+2) ¬Ian0(σ0), (~τ 6< σ0), Λσ0 [~τ ], (∀ξ < σ0)(∃η < σ0)B[ξ, η, ~τ ].(10)

Moreover, it is an easy task to check that we also have

H <ω ¬Ian(σ), (~τ 6< σ), (∃σ0 < σ)[Ian0(σ0) ∧ ~τ < σ0].(11)

By combining (10) and (11) and applying persistency, we can finally derive

H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ ], C[σ, ~τ ](12)

for C[σ, ~τ ] denoting the formula

(∃σ0 < σ)[Ad(σ0) ∧ ~τ < σ0 ∧ (∀ξ < σ0)(∃η < σ0)B[ξ, η, ~τ ]].

Since C[σ, ~τ ] is in fact an element of Λσ[~τ ] we have indeed established that

H ω(n+2) ¬Ian(σ), (~τ 6< σ), Λσ[~τ ] as desired. Observe that we have made
crucial use of the fact that Λ[~τ ] contains ΣO formulas only in order to be
able to apply persistency to Λσ0 [~τ ]. Altogether this completes the reduction
of OMAT to n-inaccessibility. 2
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5.2 The semiformal systems H[S, n, α]

Let L′ be some extension of L by additional constants for ordinals and let
S be a (finite or infinite) set of L′ formulas. The final part of this section is
devoted to the proof-theoretic analysis of semiformal systems H[S, n, α] for
each n < ω and each ordinal α. The crucial axioms of H[S, n, α] claim: (i) all
formulas of S; (ii) the existence of α many n-inaccessible ordinals which are
ordered in an increasing chain and are greater than all the ordinal constants
occurring in S.

The language L[S, n, α] of H[S, n, α] is the extension of the language L gener-
ated by the constants occurring in S plus additional new constants c[S, n, β]
for each β < α. The semiformal system H[S, n, α] includes the axioms and
rules of inference of H (extended to the language L[S, n, α]) plus the following
axioms:

(i) Γ, A and Γ, d < c[S, n, 0],

(ii) Γ, Ian(c[S, n, β]) and Γ, c[S, n, γ] < c[S, n, β],

for all finite sets Γ of L[S, n, α] formulas, all elements A of S, all ordinal
constants d from S, and all ordinals γ < β < α. The deducibility relation
H[S, n, α] β Γ is understood as before.

We call a finite set Γ[τ1, . . . , τn] of L[S, n, α] formulas quasi closed if there
exist β1, . . . , βn < α so that Γ is of the form

τ1 6< c[S, n, β1], . . . , τn 6< c[S, n, βn], Λ[τ1, . . . , τn].

Hence, in a quasi closed set of L[S, n, α] formulas all occurring free ordinal
variables are bound by some ordinal constant c[S, n, β] with β < α.

The following main result of this paragraph is the natural generalization of
Main Lemma II in Jäger, Kahle, Setzer and Strahm [8] to the context of
n-inaccessible ordinals.

Theorem 10 (Reduction of H[S, n, β+ω1+ρ]) Let Γ be a quasi closed set
of L[S, n, β+ω1+ρ] formulas with the property that

H[S, n, β+ω1+ρ] α Γ.

Then we have for all ordinals γ less than ω1+ρ which are big enough for Γ
being a quasi closed set of L[S, n, β+γ] formulas that

H[S, n, β+γ] ϕ(n+1)ρα Γ.
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Proof This theorem is proved by induction on n < ω. In the case of
n = 0 one essentially proceeds as in the proof of Main Lemma II in [8], the
only difference being that instead of fixed points one eliminates admissible
ordinals. For the induction step we assume that our theorem holds for some
natural number n. Then we show our claim for n + 1 by main induction on
ρ and side induction on α. Again the main steps of the argument are similar
to the proof of Main Lemma II in [8], but for definiteness we spell out the
details in the sequel. We distinguish cases whether ρ = 0, ρ is a successor,
or ρ is a limit ordinal.

(a) ρ = 0. Assume that Γ is a finite and quasi closed set of L[S, n+1, β+k]
formulas for some natural number k so that H[S, n+1, β+ω] α Γ. If Γ is an
axiom of H[S, n+1, β+ω], then the claim is trivial. Furthermore, if Γ is the
conclusion of a rule different from the cut rule, the claim is immediate from
the induction hypothesis. Hence, the only critical case comes up if Γ is the
conclusion of a cut rule. Then there exist a natural number l ≥ k, α0, α1 < α
and an L[S, n+1, β+l] formula A so that

H[S, n+1, β+ω] α0 Γ, A and H[S, n+1, β+ω] α1 Γ, ¬A.(1)

Let AΓ be the formula which results from A by replacing all free ordinal
variables of A which do not occur in Γ by the ordinal constant 0. Then we
also have

H[S, n+1, β+ω] α0 Γ, AΓ and H[S, n+1, β+ω] α1 Γ, ¬AΓ.(2)

By the induction hypothesis we can conclude that

H[S, n+1, β+l] ϕ(n+2)0α0 Γ, AΓ,(3)

H[S, n+1, β+l] ϕ(n+2)0α1 Γ, ¬AΓ.(4)

Hence, by a cut we yield

H[S, n+1, β+l] δ Γ,(5)

where δ denotes the ordinal max(ϕ(n+2)0α0, ϕ(n+2)0α1)+1. If l = k then
we are done; therefore, let us assume that l = l′+1 > k. In order to get rid of
the (n+1)-inaccessible c[S, n+1, l′] one uses standard partial cut elimination
and asymmetric interpretation in order to show

H[S ′, n, δ+] δ+

Γ,(6)
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where S ′ denotes the set of axioms of the system H[S, n+1, β+l′] and δ+ is
the least ε number greater than δ. We know by induction hypothesis that
the claim of our theorem is true for n and, hence, we can conclude from (6)

H[S ′, n, 0] ϕ(n+1)δ+δ+

Γ(7)

since Γ ⊂ L[S ′, n, 0] by hypothesis. But in fact the system H[S ′, n, 0] is
just H[S, n+1, β+l′] and, moreover, we have that ϕ(n+1)δ+δ+ < ϕ(n+2)0α.
Thus (7) immediately reveals

H[S, n+1, β+l′] <ϕ(n+2)0α Γ.(8)

Repeating this whole step l − k times enables us to get rid of finitely many
(n+ 1)-inaccessibles and we finally obtain

H[S, n+1, β+k] ϕ(n+2)0α Γ.(9)

This concludes our proof in the case ρ = 0.

(b) ρ = ρ0 + 1. Let γ < ω1+ρ0+1 and Γ be a finite and quasi closed set of
L[S, n+1, β+γ] formulas so that

H[S, n+1, β+ω1+ρ0+1] α Γ.(10)

Note that γ = ω1+ρ0 ·k+γ′ for some natural number k and some γ′ less than
ω1+ρ0 . Again the only crucial case occurs if Γ is the conclusion of a cut. Then
there exist a natural number l > k, α0, α1 < α and an L[S, n+1, β+ω1+ρ0 · l]
formula A so that

H[S, n+1, β+ω1+ρ0+1] α0 Γ, AΓ,(11)

H[S, n+1, β+ω1+ρ0+1] α1 Γ, ¬AΓ,(12)

where AΓ is defined as before. By applying the side induction hypothesis to
(11) and (12) we derive

H[S, n+1, β+ω1+ρ0 · l] ϕ1ρα0 Γ, AΓ,(13)

H[S, n+1, β+ω1+ρ0 · l] ϕ1ρα1 Γ, ¬AΓ,(14)

and, hence, we also have H[S, n+1, β+ω1+ρ0 · l] δ Γ, for δ being the ordinal
max(ϕ(n + 2)ρα0, ϕ(n + 2)ρα1) + 1. If we inductively define a sequence of
ordinals δi by δ0 := δ and δi+1 := ϕ(n + 2)ρ0δi, then by applying the main
induction hypothesis l − k times one readily obtains:

H[S, n+1, β+ω1+ρ0 · (l−1)] δ1 Γ,

...(15)

H[S, n+1, β+ω1+ρ0 · (k+1)] δl−k−1 Γ,

H[S, n+1, β+ω1+ρ0 · k+γ′] δl−k Γ.
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Here we have successively replaced β by

β + ω1+ρ0 · (l − 1), . . . , β + ω1+ρ0 · (k + 1), β + ω1+ρ0 · k

in the main induction hypothesis. Since δl−k < ϕ(n+2)ρα, we have indeed
established

H[S, n+1, β+γ] ϕ(n+2)ρα Γ(16)

as desired. This finishes the treatment of the successor case.

(c) ρ is limit. Assume that γ < ω1+ρ and Γ is a finite and quasi closed set of
L[S, n+1, β+γ] formulas so that

H[S, n+1, β+ωρ] α Γ.(17)

Again assume that Γ is the conclusion of cut. Then there exists ρ0 < ρ with
γ ≤ ω1+ρ0 , α0, α1 < α and an L[S, n+1, β+ω1+ρ0 ] formula A so that

H[S, n+1, β+ωρ] α0 Γ, AΓ and H[S, n+1, β+ωρ] α1 Γ, ¬AΓ.(18)

The side induction hypothesis applied to (18) produces

H[S, n+1, β+ω1+ρ0 ] ϕ(n+2)ρα0 Γ, AΓ,(19)

H[S, n+1, β+ω1+ρ0 ] ϕ(n+2)ρα1 Γ, ¬AΓ,(20)

and, hence, we also have H[S, n+1, β+ω1+ρ0 ] δ Γ, for δ being the ordinal
max(ϕ(n+2)ρα0, ϕ(n+2)ρα1)+1. From this, we conclude by the main induc-
tion hypothesis

H[S, n+1, β+γ] ϕ1ρ0δ Γ.(21)

Since ϕ1ρ0δ < ϕ1ρα, this is our claim. This finishes the proof of (c) and also
the verification of the theorem. 2

5.3 Bounds for the arithmetic fragment of OMA

In this subsection we focus on the arithmetic part of OMA, and it only
remains to piece together our previous results in order to establish the ap-
propriate upper bounds. In the following we simply write H[n, α] instead of
H[S, n, α] if S is the empty set. Similarly c[n, α] stands for c[S, n, α] with
empty S.
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Theorem 11 Let A be a closed L1 formula and assume OMA A. Then we

also have that H <ϕω00
0

A.

Proof Assume that the L1 sentence A is provable in OMA. By Corollary
8 there exists a natural number n so OMAT n

?
A. This enables us to invoke

the reduction theorem for OMAT, i.e. Theorem 9, in order to derive

H <ω2 ¬Ian(σ), A.(1)

A substitution of the ordinal constant c[n, 0] for the ordinal variable σ fol-
lowed by a cut on the formula Ian(c[n, 0]) reveals

H[n, ω] <ω2

A.(2)

Now we apply Theorem 10 with S the empty set and β = γ = ρ = 0 and
obtain

H[n, 0] <ϕ(n+1)0ω2

A.(3)

According to our definition, the theory H[n, 0] does not contain constants
for n-inaccessibles and therefore is identical to H. Moreover, a standard
predicative cut elimination for H finally yields

H <ϕ(n+1)0ω2

0
A.(4)

Since obviously ϕ(n + 1)0ω2 < ϕω00 this is as desired and completes our
argument. 2

We end this section with some remarks concerning interesting proper sub-
systems of OMA. For this purpose we introduce the limit axiom

(∀ξ)(∃η)(ξ < η ∧ Ian(η))(n-Lim)

for n-inaccessible ordinals. (n+1)-INAC is defined to be the theory which
results from OMA if we replace ΠO2 reflection on Ad by the axiom (n-Lim).
Hence, (n+1)-INAC formalizes an (n + 1)-inaccessible universe of ordinals.
However, observe that (n+1)-INAC, as OMA, does not include induction on
the ordinals and that induction on the natural numbers is restricted to ∆O

0

formulas. We mention that theories of explicit mathematics and admissible
set theory corresponding to (n+1)-INAC can be easily defined.

A standard reduction shows that the strength of (n+1)-INAC is already ex-
hausted by finite chains of n-inaccessible ordinals. Further, by gradually un-
folding the topmost n-inaccessible into transfinitely many n−1-inaccessibles
and applying Theorem 10 one obtains the following theorem.

Theorem 12 Let A be a closed L1 formula and assume (n+1)-INAC A.

Then we also have that H <ϕ(n+1)00
0

A.
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6 Concluding remarks

Finally we turn to the proof-theoretic ordinals of KPm0, EMA, OMA and the
other systems mentioned in this paper. In principle, all work is already done
in Theorem 6, Theorem 11 and Theorem 12.

The formula TI(≺, A) has been defined in the context of the language L∗.
From now on we take the liberty to also write TI(≺, A) for the corresponding
formulas in the languages L and LO. It only remains to apply one of the
usual boundedness theorems (cf. e.g. Beckmann [1] or Schütte [17]) stating
that

H α
0

TI(≺,Q) =⇒ | ≺ | ≤ ω · α,

for all α and all primitive recursive wellorderings≺; here | ≺ | is the ordertype
of ≺ as usual. Together with the lower bound computations of [20] we thus
have the following main theorem of this article.

Theorem 13 We have the following proof-theoretic ordinals:

1. |KPm0| = |EMA| = |OMA| = ϕω00;

2. |(n+1)-INAC| = ϕ(n+1)00.

In the theories mentioned in the previous theorem, complete induction on the
natural numbers is restricted to sets, types and ∆O

0 formulas, respectively.
The methods applied before also provide bounds for theories with complete
induction on the natural numbers for arbitrary formulas.

The pattern of the argument for EMA + (L-IN) and OMA + (LO-IN) is as
follows; KPm0 + (L∗-IN) is treated accordingly: EMA + (L-IN) is interpreted
into OMA+(LO-IN) following the proof of Theorem 6. Then OMA+(LO-IN) is
embedded into OMAT plus ω rule, thus getting rid of full complete induction
in favor of infinite derivation lengths. Weak cut elimination for OMAT plus ω
rule is proved as before, but because of the infinite derivations we now have

OMA + (LO-IN) A =⇒ OMAT + (ω) <ε0
?
A

for each LO sentence A. From now on we can proceed as before, but always
with families (Iaα(σ) : α < ε0) instead of families (Ian(σ) : n < ω). Carrying
through everything in detail finally gives the following results for theories
with full induction.

Theorem 14 We have the following proof-theoretic ordinals:

1. |KPm0 + (L∗-IN)| = |EMA + (L-IN)| = |OMA + (LO-IN)| = ϕε000;

2. |(n+1)-INAC + (LO-IN)| = ϕ(n+1)ε00.
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