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Abstract

In this article we provide wellordering proofs for metapredicative
systems of explicit mathematics and admissible set theory featuring
suitable axioms about the Mahloness of the underlying universe of
discourse. In particular, it is shown that in the corresponding theo-
ries EMA of explicit mathematics and KPm0 of admissible set theory,
transfinite induction along initial segments of the ordinal ϕω00, for
ϕ being a ternary Veblen function, is derivable. This reveals that
the upper bounds given for these two systems in the paper Jäger and
Strahm [11] are indeed sharp.

1 Introduction

This paper is a companion to the article Jäger and Strahm [11], where sys-
tems of explicit mathematics and admissible set theory for metapredicative
Mahlo are introduced. Whereas the main concern of [11] was to establish
proof-theoretic upper bounds for these systems, in this article we provide
the corresponding wellordering proofs, thus showing that the upper bounds
derived in [11] are sharp.

The central systems of this article are the theories EMA and KPm0 for
metapredicative Mahlo in explicit mathematics and admissible set theory,
respectively. EMA is based on Feferman’s explicit mathematics with elemen-
tary comprehension and join (cf. Feferman [2, 3]). Crucial for its formulation
are so-called universes: these are types of representations or names which
are closed under elementary comprehension and join. The principal axiom of
EMA claims that for each operation from names of types to names of types
there exists a uniformly given universe that is closed under this operation.
We note that EMA does not include inductive generation and that induction
on the natural number is restricted to types. For more information concern-
ing EMA plus inductive generation see Jäger and Studer [12].
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The theory KPm0, on the other hand, is Rathjen’s theory KPM (cf. Rathjen
[17, 18]) with induction on the natural numbers restricted to sets and ∈
induction omitted completely. The Mahlo axiom schema in KPm0 features
Π2 reflection on admissible sets. It happens that the absence of ∈ induction
causes a dramatic collaps in proof-theoretic strength: whereas KPM is a
highly impredicative theory exceeding (∆1

2-CA)+(BI) in proof strength by
far, the strength of KPm0 is between the Feferman-Schütte ordinal Γ0 and
the Bachmann-Howard ordinal.

The theories EMA and KPm0 and their proof-theoretic analyses typically
belong to the new area of so-called metapredicative proof theory. Metapred-
icativity is concerned with the study and analysis of formal systems whose
proof-theoretic ordinal is beyond Γ0, but which can nevertheless be given
a proof-theoretic analysis that uses methods from predicative proof theory
only. Quite recently, numerous interesting metapredicative systems have
been identified, cf. e.g. [8, 10, 13, 16, 19, 22, 23].

The term metapredicative indeed also applies to the wellordering proofs for
EMA and KPm0 given in this paper. First of all, the notation system used
is based on a ternary Veblen or ϕ function ϕαβγ, which is a straightfor-
ward generalization of the well-known binary ϕ function; in particular, no
collapsing is used in this notation system. Secondly and most importantly,
the general methodology of the wellordering proofs given below is very much
in the spirit of the wellordering proofs for predicative systems due to Fe-
ferman and Schütte, cf. e.g. [4, 5, 21]. For example, instead of working in
initial segments of the ramified analytic hierarchy or the ordinary jump hi-
erarchy one considers hierarchies of universes, hyperuniverses, admissibles,
hyperinaccessibles, and so on.

The plan of this paper is as follows. In the next section we review the
system EMA introduced in [11] and we identify its crucial subsystems Sn
(n ∈ N). The principal universe generation axiom of Sn features the ex-
istence of so-called n-hyperuniverses, which can be seen as an analogue of
n-(hyper)inaccessibles. Section 3 constitutes the heart of this article: after
some ordinal-theoretic preliminaries we show that Sn derives transfinite in-
duction along all initial segments of the ordinal ϕ(n+1)00, thus establishing
ϕω00 as a lower bound of EMA. In Section 4 we indicate how the wellorder-
ing proofs given for EMA can be adapted to the framework of admissible set
theory, namely the theory KPm0. We will end our paper in Section 5 with
some remarks concerning the strength of our theories in the presence of the
full schema of complete induction on the natural numbers: it turns out that
the methods of this paper readily yield that the ordinal ϕε000 is a lower
bound of EMA and KPm0 augmented by formula induction.
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2 The theory EMA and its subsystems

In this section we recapitulate the theory EMA for metapredicative Mahlo in
explicit mathematics with universes, which has been introduced in Jäger and
Strahm [11]. Universes are types of (names of) types which are closed un-
der elementary comprehension and join (disjoint union). The principal type
existence axiom of EMA claims that each total operation on types (names)
can be (uniformly) reflected in a universe. Furthermore, we identify crucial
subsystems Sn (n ∈ N) of EMA which are suited for carrying through the
wellordering proofs in the next section.

Large parts of the first paragraph of this section are very much like in related
papers; nevertheless, we decided to include them in order to make our article
self-contained and also accessible for a reader who is not a specialist in explicit
mathematics.

2.1 Defining EMA

EMA is formulated in the second order language L for individuals and types.
It comprises individual variables a, b, c, f, g, h, u, v, w, x, y, z, . . . as well as
type variables U, V,W,X, Y, Z, . . . (both possibly with subscripts). L also
includes the individual constants k, s (combinators), p, p0, p1 (pairing and
projections), 0 (zero), sN (successor), pN (predecessor), dN (definition by nu-
merical cases) and additional individual constants, called generators, which
will be used for the uniform naming of types, namely nat (natural numbers),
id (identity), co (complement), int (intersection), dom (domain), inv (inverse
image), j (join) and m (universe generator). There is one binary function
symbol · for (partial) application of individuals to individuals. Further, L
has unary relation symbols ↓ (defined) and N (natural numbers) as well as
three binary relation symbols ∈ (membership), = (equality) and < (naming,
representation).

For a uniform definition of the notion of proof-theoretic ordinal (cf. Jäger and
Strahm [11], Definition 1) it is convenient that L also includes an anonymous
unary relation symbol Q and a corresponding generator q. The relation Q
plays the role of an anonymous predicate on the natural numbers with no
specific mathematical meaning.

The individual terms (r, s, t, r1, s1, t1, . . . ) of L are built up from individual
variables and individual constants by means of our function symbol · for
application. In the following we often abbreviate (s · t) simply as (st), st or
sometimes also s(t); the context will always ensure that no confusion arises.
We further adopt the convention of association to the left so that s1s2 . . . sn
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stands for (. . . (s1 ·s2) . . . sn). We also set t′ := sNt. Finally, we define general
n tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

The positive literals of L are of the form N(s), s↓, s = t, U = V , s ∈ U and
<(s, U). Since we work with a logic of partial terms, it is not guaranteed
that all terms have values, and s↓ is read as s is defined. Moreover, N(s)
says that s is a natural number, and the formula <(s, U) is used to express
that the individual s represents the type U or is a name of U .

The formulas (A,B,C,A1, B1, C1, . . . ) of L are generated from the positive
literals by closing against the usual propositional connectives, as we as exis-
tential and universal quantification for individuals and types. The following
table contains a useful list of abbreviations:

s ' t := s↓ ∨ t↓ → s = t,

s ∈ N := N(s),

(∃x ∈ N)A(x) := (∃x)(x ∈ N ∧ A(x)),

(∀x ∈ N)A(x) := (∀x)(x ∈ N→ A(x)),

U ⊂ V := (∀x)(x ∈ U → x ∈ V ),

s ∈̇ t := (∃X)(<(t,X) ∧ s ∈ X),

(∃x ∈̇ s)A(x) := (∃x)(x ∈̇ s ∧ A(x)),

(∀x ∈̇ s)A(x) := (∀x)(x ∈̇ s→ A(x)),

s =̇ t := (∃X)[<(s,X) ∧ <(t,X)],

s ⊂̇ t := (∃X, Y )[<(s,X) ∧ <(t, Y ) ∧X ⊂ Y ],

<(s) := (∃X)<(s,X).

The vector notation ~U and ~s is sometimes used to denote finite sequences
of type variables U1, . . . , Um and individual terms s1, . . . , sn, respectively,
whose length is given by the context.

The logic of EMA is Beeson’s classical logic of partial terms (cf. Beeson [1]
or Troelstra and Van Dalen [24]) for the individuals and classical logic with
equality for the types. Observe that Beeson’s formalization includes the usual
strictness axioms.

Now let us first introduce the auxiliary theory EETJ, which provides a frame-
work for explicit elementary types with join. The nonlogical axioms of EETJ
can be divided into the following groups I–IV:

I. Applicative axioms. These axioms formalize that the individuals form a
partial combinatory algebra, that we have pairing and projection and the
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usual closure conditions on the natural numbers plus definition by numerical
cases.

(1) kuv = u,

(2) suv↓ ∧ suvw ' uw(vw),

(3) p0(u, v) = u ∧ p1(u, v) = v,

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x),

(7) u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x,

(8) u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y.

II. Explicit representation and extensionality. The following axioms state that
each type has a name, that there are no homonyms and that equality of types
is extensional.

(1) (∃x)<(x, U),

(2) <(u, U) ∧ <(u, V )→ U = V ,

(3) (∀x)(x ∈ U ↔ x ∈ U)→ U = V .

III. Basic type existence axioms. In the following we provide a finite axioma-
tization of uniform elementary comprehension plus join.

Natural numbers

<(nat) ∧ (∀x)(x ∈̇ nat↔ N(x)).

Representation of Q

<(q) ∧ (∀x)(x ∈̇ q↔ Q(x)) ∧ q ⊂̇ nat.

Identity

<(id) ∧ (∀x)(x ∈̇ id↔ (∃y)(x = (y, y))).

Complements

<(u) → <(co(u)) ∧ (∀x)(x ∈̇ co(u)↔ x /̇∈ u).

Intersections
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<(u) ∧ <(v) → <(int(u, v)) ∧ (∀x)(x ∈̇ int(u, v)↔ x ∈̇ u ∧ x ∈̇ v).

Domains

<(u) → <(dom(u)) ∧ (∀x)(x ∈̇ dom(u)↔ (∃y)((x, y) ∈̇ u)).

Inverse images

<(u) → <(inv(u, f)) ∧ (∀x)(x ∈̇ inv(u, f)↔ fx ∈̇ u).

Joins

<(u) ∧ (∀x ∈̇ u)<(fx) → <(j(u, f)) ∧ Σ(u, f, j(u, f)).

In this last axiom the formula Σ(u, f, v) expresses that v names the disjoint
union of f over u, i.e.

Σ(u, f, v) := (∀x)(x ∈̇ v ↔ (∃y, z)(x = (y, z) ∧ y ∈̇ u ∧ z ∈̇ fy)).

IV. Uniqueness of generators. These axioms essentially guarantee that different
generators create different names. To achieve this, we have for syntactically
different generators r0 and r1 and arbitrary generators s and t:

(1) r0 6= r1,

(2) (∀x)(sx 6= t),

(3) (∀x, y)(sx = ty → s = t ∧ x = y).

As usual, the axioms of a partial combinatory algebra allow one to define λ
abstraction and to prove a recursion or fixed point theorem. For proofs of
these standard results the reader is referred to [1, 2].

Lemma 1 (Abstraction and recursion) 1. For each L term t and all
variables x there exists an L term (λx.t) whose variables are those of
t, excluding x, so that EETJ proves

(λx.t)↓ ∧ (λx.t)x ' t.

2. There exists a closed L term rec so that EETJ proves

recf↓ ∧ recfx ' f(recf)x.

In the original formulation of explicit mathematics, elementary comprehen-
sion is not dealt with by a finite axiomatization but directly as an infinite
axiom scheme. An L formula is called elementary if it contains neither the
relation symbol < nor bound type variables. The following result of Feferman
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and Jäger [6] shows that this scheme of uniform elementary comprehension
is provable from our finite axiomatization. Join and uniqueness of generators
are not needed for this argument.

Lemma 2 (Elementary comprehension) For every elementary formula
A(u,~v,W1, . . . ,Wn) with at most the indicated free variables there exists a
closed term t of L so that EETJ proves:

1.
∧n
i=1<(wi,Wi) → <(t(~v, w1, . . . , wn)),

2.
∧n
i=1<(wi,Wi) → (∀x)(x ∈̇ t(~v, w1, . . . , wn)↔ A(x,~v,W1, . . . ,Wn)).

Let us now introduce the concept of a universe into explicit mathematics.
To put it very simply, a universe is supposed to be a type which consists of
names only and reflects the theory EETJ. For the detailed definition of a
universe we introduce some auxiliary notation and let C(W,u) be the closure
condition which is the disjunction of the following L formulas:

(1) u = nat ∨ u = q ∨ u = id,

(2) (∃x)(u = co(x) ∧ x ∈ W ),

(3) (∃x, y)(u = int(x, y) ∧ x ∈ W ∧ y ∈ W ),

(4) (∃x)(u = dom(x) ∧ x ∈ W ),

(5) (∃x, f)(u = inv(x, f) ∧ x ∈ W ),

(6) (∃x, f)[u = j(x, f) ∧ x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W )].

Thus, the formula (∀x)(C(W,x)→ x ∈ W ) states that W is a type which is
closed under the type constructions of EETJ, i.e. elementary comprehension
and join. If, in addition, all elements of W are names, we call W a universe,
in symbols, U(W ). Moreover, we write U(u) to express that the individual u
is the name of a universe.

U(W ) := (∀x)(C(W,x)→ x ∈ W ) ∧ (∀x ∈ W )<(x),

U(u) := (∃X)(<(u,X) ∧ U(X)).

Based on (names of) universes we can now introduce the Mahlo axiom for
explicit mathematics. Given a name x and an operation f from names to
names one simply claims that there exists (a name of) a universe m(x, f)
which contains x and reflects f . The following shorthand notations are useful
for obtaining a compact form of our Mahlo axiom:

(f : < → <) := (∀x)(<(x)→ <(fx)),

(f : s→ s) := (∀x ∈̇ s)(fx ∈̇ s).
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Mahloness in explicit mathematics is now expressed by the axioms

<(x) ∧ (f : < → <) → U(m(x, f)) ∧ x ∈̇ m(x, f),(M.1)

<(x) ∧ (f : < → <) → (f : m(x, f)→ m(x, f)).(M.2)

It is interesting to examine what kind of ordering principles for universes can
be consistently added to the previous axioms. This question is discussed at
full length in Jäger, Kahle and Studer [9], and it is shown there that one
must not be too liberal. As a consequence of these considerations we do
not claim linearity and connectivity for arbitrary universes, but only for so-
called normal universes, i.e. universes which are named by means of the type
generator m,

Um(u) := (∃x, f)[u = m(x, f) ∧ U(u)].

Linearity and connectivity of normal universes are then given by the following
two axioms:

(∀x, y)[Um(x) ∧ Um(y) → x ∈̇ y ∨ x =̇ y ∨ y ∈̇ x],(Um-Lin)

(∀x, y)[Um(x) ∧ Um(y) → x ⊂̇ y ∨ y ⊂̇ x].(Um-Con)

It is shown in [9] that connectivity of normal universes also implies transitiv-
ity of normal universes in its most general form. For the reader’s convenience
we briefly sketch the relevant argument.

Lemma 3 (Strong transitivity) We have that EETJ + (Um-Con) proves

Um(u) ∧ Um(v) ∧ w =̇ u ∧ w ∈̇ v → u ⊂̇ v.

Proof. Assume the premise of the implication to be proved. Then w is also a
name of the universe named by u. Since universes never contain their names
(cf. e.g. Marzetta [14]) we have w /̇∈ u, thus v 6⊂̇ u. But now connectivity of
normal universes (Um-Con) yields u ⊂̇ v as desired. 2

The last principle present in EMA is complete induction on the natural num-
bers for types. Accordingly, type induction (T-IN) is the axiom

(∀X)(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).(T-IN)

To sum up, the theory EMA of explicit mathematics, whose universe is Mahlo,
comprises the theory EETJ plus the Mahlo axioms (M.1) and (M.2), the
ordering principles (Um-Lin) and (Um-Con) as well as type induction (T-IN).
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2.2 The subsystems Sn of EMA

The crucial type existence axiom of Sn claims the existence of n-hyperuni-
verses, which can be seen as an analogue of n-(hyper)inaccessible sets. We
will see that the existence of n-hyperuniverses for each natural number n is
an immediate consequence of the Mahlo axioms (M.1) and (M.2). Moreover,
the wellordering proofs in the next section will reveal that the proof-theoretic
strength of EMA is already exhausted by its subsystems Sn for each n ∈ N.

For the formulation of Sn we augment our language L by a generator constant
un for each natural number n. Below we define the notion of a type W being
an n-hyperuniverse, n-U(W ); accordingly, n-U(u) expresses that u is the
name of an n-hyperuniverse,

0-U(W ) := U(W ),

(n+1)-U(W ) := U(W ) ∧ (∀x ∈ W )(un(x) ∈ W ),

n-U(u) := (∃X)(<(u,X) ∧ n-U(X)).

The defining axiom for the constant un claims for each name x that un(x) is
the name of an n-hyperuniverse containing x,

<(x) → n-U(un(x)) ∧ x ∈̇ un(x).

The theory Sn now extends elementary explicit type theory with join EETJ
by (i) the defining axioms for the constants um (m ≤ n), (ii) linearity and
connectivity axioms for universes which are normal with respect to the gen-
erators um (m ≤ n), and (iii) type induction (T-IN) on the natural numbers.

We observe that due to the presence of the linearity and connectivity axioms
for normal universes in Sn, we also have strong transitivity for such universes
according to (the proof of) Lemma 3 above.

Lemma 4 (n-hyperuniverses in EMA) We have that Sn is contained in
EMA for each natural number n.

Proof. The type generators un can be defined in EMA by means of m,

u0 = λx.m(x, λy.y), un+1 = λx.m(x, un).

One readily shows by induction on n and by making use of the Mahlo axioms
(M.1) and (M.2) that the so-defined un’s satisfy their defining axioms in Sn.
In the case n = 0 we have that u0(x) is a universe containing x for each name
x, since trivially (λy.y) is a total operation from < to <. For the induction
step we assume that the defining axiom for un has been derived in EMA; in
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particular, this yields that un : < → < and, hence, by the Mahlo axioms
we have for each name x that (i) un+1(x) is a universe containing x and (ii)
un+1(x) is closed under un, thus showing that indeed (n+1)-U(un+1(x)). This
concludes our inductive argument.

Further, the linearity and connectivity axioms (Um-Lin) and (Um-Con) of EMA
entail the corresponding axioms of Sn. We have established that Sn is a
subsystem of EMA for each natural number n. 2

3 The wellordering proof for EMA

In this section we will show that Sn proves transfinite induction with respect
to all types along each initial segment of the ordinal ϕ(n+1)00. This will
immediately yield the desired lower bound ϕω00 for EMA. We assume that
the reader is familiar with wellordering proofs below the Feferman-Schütte
ordinal Γ0 as they are presented, for example, in Feferman [4, 5] or Schütte
[21]. Moreover, we presuppose the recent wellordering proofs in the context
of metapredicativity in the two papers Jäger, Kahle, Setzer and Strahm [8]
as well as Strahm [23].

3.1 Ordinal-theoretic preliminaries

The ordinals which are relevant in the wellordering proofs below are most
easily expressed by making use of a ternary Veblen or ϕ function which
we are going to define now. The usual Veblen hierarchy generated by the
binary function ϕ, starting off with the function ϕ0β = ωβ is well known
from the literature, cf. Pohlers [15] or Schütte [21]. The ternary ϕ function
is obtained as a straightforward generalization of the binary case by defining
ϕαβγ inductively as follows:

(i) ϕ0βγ is just ϕβγ;

(ii) if α > 0, then ϕα0γ denotes the γth ordinal which is strongly critical
with respect to all functions λξ, η.ϕδξη for δ < α.

(iii) if α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of
the functions λξ.ϕαδξ for δ < β.

For example, ϕ10α is Γα, and more generally, ϕ1αβ denotes a Veblen hier-
archy over λα.Γα. It is straightforward how to extend these ideas in order to
obtain ϕ functions of all finite arities, and even further to Schütte’s Klam-
mersymbole [20].

10



We let Λ3 denote the least ordinal greater than 0 which is closed under
the ternary ϕ function. In the following we confine ourselves to the standard
notation system which is based on this function. Since the exact definition of
such a system is a straightforward generalization of the notation system for Γ0

(cf. [15, 21]), we do not go into details here. We write ≺ for the corresponding
primitive recursive wellordering of order type Λ3 and assume without loss of
generality that 0 is the least element with respect to ≺. Further, we let
Lim denote the primitive recursive set of limit notations and we presuppose a
primitive recursively given fundamental sequence (`[n] : n ∈ N) for each limit
notation `; we will assume that `[0] > 0. As the definition of fundamental
sequences is easy in the setting of ϕ functions we do not give it here and refer
the reader to the relevant proofs in the next paragraph.

There exist primitive recursive functions acting on the codes of our notation
system which correspond to the usual operations on ordinals. In the sequel it
is often convenient in order to simplify notation to use ordinals and ordinal
operations instead of their codes and primitive recursive analogues. Then
(for example) ω and ω + ω stand for the natural numbers whose order type
with respect to ≺ are ω and ω + ω.

By making use of the recursion theorem and a little amount of complete
induction on the natural numbers one can easily represent all the above
primitive recursive notions in EMA and each of its subsystems Sn. When
working in the systems Sn in this section, we let a, b, c, d, e, . . . range over
the field of ≺ and ` denote limit notations. Finally, let us put as usual for
each L formula A(x):

Prog(A) := (∀a)[(∀b ≺ a)A(b)→ A(a)],

TI(A, a) := Prog(A)→ (∀b ≺ a)A(b).

If we want to stress the relevant induction variable of a formula A, we
sometimes write Prog(λx.A(x)) and TI(λx.A(x), a) instead of Prog(A) and
TI(A, a), respectively. Moreover, we let Prog(U) and Prog(u) stand for
Prog(λx.x ∈ U) and Prog(λx.x ∈̇ u), respectively; TI(U, a) and TI(u, a) are
understood analogously.

3.2 Deriving transfinite inductions in Sn

In this paragraph we will establish that Sn proves (∀X)TI(X,α) for each
ordinal α less than ϕ(n+1)00. This shows in particular that ϕω00 is a lower
bound for the proof-theoretic ordinal of EMA. The key lemma to be proved
in the sequel says that if x is a name and we know that transfinite induction
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holds below a with respect to all types (names) in un(un(x)) (i.e. a universe
containing a universe that contains x), then transfinite induction holds even
below ϕna0 for all types (names) in un(x).

Main Lemma 5 We have for all natural numbers n that Sn proves:

<(x) ∧ (∀y ∈̇ un(un(x)))TI(y, a) → (∀y ∈̇ un(x))TI(y, ϕna0).(1)

The proof of the main lemma is by (meta) induction on n. The case n = 0
is immediate from the work of Feferman and Schütte on wellordering proofs
below Γ0, cf. e.g. Feferman [4, 5] and Schütte [21]. The key steps are as
follows: given a name x and assuming (∀y ∈̇ u0(u0(x)))TI(y, a), we also
have (∀y ∈̇ u0(u0(x)))TI(y, ωa+1), due to the fact that universes are closed
under elementary (and hence arithmetical) comprehension. Further, given an
arbitrary name y in u0(x) we can now set up the ordinary (arithmetical) jump
hierarchy starting with y below ωa+1 in u0(x); this hierarchy can be described
by making use of the recursion theorem and using join at limit stages. The
fact that the hierarchy is total or well-defined in u0(x) is shown by induction
up to ωa+1 and indeed this is possible since the relevant statement to be
established defines a type in u0(u0(x)), a universe above u0(x), cf. Lemma
6 below for a similar argument. But the existence of the jump hierarchy
starting from y below ωa+1 immediately entails TI(y, ϕa0), for example by
Lemma 5.3.1 in Feferman [5] or Lemma 10 on p. 187 in Schütte [21]. This
ends our brief sketch of the (well-known) assertion of our main lemma in the
case n = 0.

Let us turn to the induction step. For that purpose we fix a natural number
n and assume that (1) is true for n, aiming at a proof of the assertion of our
main lemma for n+1. I.e. we want to show in Sn+1 that for all names x,

(∀y ∈̇ un+1(un+1(x)))TI(y, a) → (∀y ∈̇ un+1(x))TI(y, ϕ(n+1)a0).(2)

A crucial ingredient in the proof of (2) are (uniform) transfinite hierarchies
of n-hyperuniverses within an (n+1)-hyperuniverse. Such hierarchies are
introduced via the recursion or fixed point theorem. In particular, we let hn
be a closed term of L so that we have provably in EETJ:

hnx0 ' un(x),

hnx(a+1) ' un(hnxa),

hnx` ' un(j({a : a ≺ `}, hnx)).

Hence, the hierarchy starts with a n-hyperuniverse containing (the name)
x, at successor stages one puts an n-hyperuniverse on top of the hierarchy
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defined so far, and at limit stages a universe above the disjoint union of the
previously defined hierarchy is taken. Of course, in general, one needs some
amount of transfinite induction in order to show that hn is well-defined in an
(n+1)-hyperuniverse y. Therefore, in order to express the well-definedness
of hn below a in y, we let Hiern(y, a) denote the conjunction of the following
three formulas:

(i) (∀x ∈̇ y)(∀b ≺ a)(hnxb ∈̇ y),

(ii) (∀x ∈̇ y)(∀b ≺ a)n-U(hnxb),

(iii) (∀x ∈̇ y)(∀b ≺ a)(∀c ≺ b)(hnxc ∈̇ hnxb).

The following lemma expresses that hn is well-defined below a in an (n+1)-
hyperuniverse un+1(x) provided that transfinite induction below a is available
with respect to all types (names) in un+1(un+1(x)).

Lemma 6 We have that Sn+1 proves:

<(x) ∧ (∀y ∈̇ un+1(un+1(x))TI(y, a) → Hiern(un+1(x), a).

Proof. Reasoning in Sn+1 we assume that x is a name and for all types
(names) y in un+1(un+1(x)) transfinite induction is available below a. We
have to show Hiern(un+1(x), a), i.e. for all z ∈̇ un+1(x),

(∀b ≺ a)(hnzb ∈̇ un+1(x)),(3)

(∀b ≺ a)n-U(hnzb),(4)

(∀b ≺ a)(∀c ≺ b)(hnzc ∈̇ hnzb).(5)

Since {b ≺ a : hnzb ∈̇ un+1(x)} defines a type in un+1(un+1(x)) by elementary
comprehension, (3) follows by a straightforward transfinite induction. More-
over, (4) is immediate from (3) by the definition of hn, the fact that universes
consist of names only, and the defining axioms for the un’s.

As to (5), we first observe that {b ≺ a : (∀c ≺ b)(hnzc ∈̇ hnzb)} defines
a type in un+1(x) (and hence in un+1(un+1(x)) by transitivity): to see this
one basically applies join to (3) and subsequently uses an obvious instance of
elementary comprehension. Given our general assumption, we can now derive
(5) by an inductive argument. To show that the above type is progressive
with respect to ≺ one proceeds straightforwardly in case b is not a limit
ordinal. If b is limit and c ≺ b, then also c+1 ≺ b and hnzc ∈̇ hnz(c+1).
On the other hand, one easily sees that there is a name of the universe
denoted by hnz(c+1) which belongs to hnzb, since we have by definition

13



j({c : c ≺ b}, hnz) ∈̇ hnzb. But then hnzc ∈̇ hnzb is immediate by strong
transitivity (Lemma 3), which also holds for normal universes in Sn+1. 2

Crucial for the wellordering proof below is the notion nIcx(a) of transfinite
induction up to a for all types (respectively names) belonging to a n-hyper-
universe hnxb for b ≺ c, which is given as follows:

nIcx(a) := (∀b ≺ c)(∀y ∈̇ hnxb)TI(y, a).

The next lemma tells us that nI`x(a) can be represented by a type in hnx`.

Lemma 7 We have that Sn+1 proves:

<(x)∧Hiern(un+1(x), a) →

(∀y ∈̇ un+1(x))(∀` ≺ a)(∃z ∈̇ hny`)(∀b)[b ∈̇ z ↔ nI`y(b)].

Proof. Working in Sn+1, let x be a name and assume Hiern(un+1(x), a). In
addition, fix a name y in un+1(x) and a limit notation ` ≺ a. By the definition
of hny` we have that j({c : c ≺ `}, hny) ∈̇ hny`. By closure of hny` under join
this readily entails that also (a name of) the type

{(c, u, v) : c ≺ ` ∧ u ∈̇ hnyc ∧ v ∈̇ u}

belongs to hny`. Therefore, by closure of hny` under elementary compre-
hension, there exists a type (name) z in hny` which satisfies the condition
claimed by the lemma. 2

The following lemma makes crucial use of our general induction hypothesis,
i.e. the claim (1) of our Main Lemma 5 for n.

Lemma 8 We have that Sn+1 proves:

<(x) ∧ Hiern(un+1(x), a) → (∀y ∈̇ un+1(x))(∀` ≺ a)Prog(λb.nI`y(ϕ(n+1)0b)).

Proof. Assuming that x is a name and Hiern(un+1(x), a), we aim at showing
that (λb.nI`y(ϕ(n+1)0b)) is progressive for arbitrary y ∈̇ un+1(x) and limit
notations ` ≺ a. This claim is immediate by an easy inductive argument
from

(∀c)[nI`y(c) → nI`y(ϕnc0)].(6)

Towards a proof of (6) assume nI`y(c) and fix a d ≺ `. We have to show
(∀z ∈̇ hnyd)TI(z, ϕnc0). Since ` is limit we also have d+1 ≺ ` and, hence,
our assumption yields

(∀z ∈̇ hny(d+1))TI(y, c).

14



Further, since hny(d+1) = un(hnyd) and hnyd = un(w) for a suitable name
w in the universe un+1(x), we are now in a position to apply our general
assumption (1) for n and obtain

(∀z ∈̇ hnyd)TI(z, ϕnc0).

Since d was an arbitrary notation less than ` we thus have shown nI`y(ϕnc0).
This ends our proof of (6).

Now in order to establish Prog(λb.nI`y(ϕ(n+1)0b), it is clearly enough to show
the three claims,

nI`y(ϕ(n+1)00),(7)

nI`y(ϕ(n+1)0b) → nI`y(ϕ(n+1)0(b+1)),(8)

Lim(b) ∧ (∀b′ ≺ b)nI`y(ϕ(n+1)0b′) → nI`y(ϕ(n+1)0b).(9)

For (7), observe that we are given a fundamental sequence zv = ϕ(n+1)00[v]
for ϕ(n+1)00, where z0 = 1 and zv+1 = ϕnzv0. Hence, (7) follows from (6)
by ordinary (type) induction. The argument for (8) is completely analogous
by using the fundamental sequence zv = ϕ(n+1)0(b+1)[v] for ϕ(n+1)0(b+1)
with z0 = ϕ(n+1)0b+ 1 and zv+1 = ϕnzv0. Finally, for (9) just observe that
if Lim(b), then ϕ(n+1)0b is the supremum over b′ ≺ b of ϕ(n+1)0b′, so that
the claim is immediate in this case. All together this completes the proof of
our lemma. 2

An important tool in the proof of Lemma 10 below is the formula nMainxa(b).
It is the natural adaptation to our setting of similar formulas employed
in a wellordering proof below Γ0 in Feferman [5] and the metapredicative
wellordering proofs in Jäger, Kahle, Setzer and Strahm [8] as well as Strahm
[23]. Its definition makes use of the binary relation ↑ on the field of ≺,

a ↑ b := (∃c, `)(b = c+ a · `).

Here of course + and · are the primitive recursive operations corresponding to
ordinal addition and multiplication on the field of ≺. The formula nMainxa(b)
now has the following definition,

nMainxa(b) := (∀y ∈̇ x)(∀c, d)[d � a ∧ ω1+b ↑ d ∧ nIdy(c) → nIdy(ϕ(n+1)bc)]

Given a name x and assuming Hiern(un+1(x), a), the following lemma says
that the formula nMainun+1(x)

a (b) defines a type in the universe un+1(un+1(x)).
The proof of the lemma is straightforward and very similar in spirit to the
proof of Lemma 7.
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Lemma 9 We have that Sn+1 proves:

<(x)∧Hiern(un+1(x), a) →

(∃y ∈̇ un+1(un+1(x)))(∀b)[b ∈̇ y ↔ nMainun+1(x)
a (b)].

Proof. Reason in Sn+1 and assume that x is a name so that Hiern(un+1(x), a)
holds. In particular, we have for each z ∈̇ un+1(x),

(∀c ≺ a)hnzc ∈̇ un+1(x).(10)

Applying join twice to (10) allows us to conclude that (a name of) the type

{(c, u, v) : c ≺ a ∧ u ∈̇ hnzc ∧ v ∈̇ u}(11)

belongs to the universe un+1(x) (and hence also to un+1(un+1(x))). Since the
name of the type (11) is uniformly given in each z ∈̇ un+1(x) we can apply
join in the universe un+1(un+1(x)) in order to obtain a name of the type

{(z, c, u, v) : z ∈̇ un+1(x) ∧ c ≺ a ∧ u ∈̇ hnzc ∧ v ∈̇ u}(12)

in the universe un+1(un+1(x)). But now, clearly, {b : nMainun+1(x)
a (b)} is

given elementarily in the type (12) and, hence, the claim of our lemma is
established. 2

We are now ready to turn to the crucial lemma concerning nMainxa(b). It is
a natural generalization of Main Lemma I in [8] and [23]. Much of the proof
is analogous to the proof in [8] and, therefore, we only want to concentrate
on the main new points below.

Lemma 10 We have that Sn+1 proves:

<(x) ∧ Hiern(un+1(x), a) → Prog(λb.nMainun+1(x)
a (b)).

Proof. Let us work informally in Sn+1 and assume that x is a name and
Hiern(un+1(x), a). In order to show Prog(λb.nMainun+1(x)

a (b)) it is enough to
verify the following three claims (13)–(15):

nMainun+1(x)
a (0),(13)

nMainun+1(x)
a (b) → nMainun+1(x)

a (b+1),(14)

Lim(b) ∧ (∀v ∈ N)nMainun+1(x)
a (b[v]) → nMainun+1(x)

a (b).(15)

In the following we only elaborate on (13), since (14) and (15) are proved in
literally the same manner as (b) and (c) in the proof of Main Lemma I in
[8], except for using the function λb, c.ϕ(n+1)bc instead of λb, c.ϕ1bc in [8].
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Towards the proof of nMainun+1(x)
a (0) we assume that a name y in the universe

un+1(x) and a notation d � a with ω ↑ d are given. We have to show

(∀c)[nIdy(c) → nIdy(ϕ(n+1)0c)].(16)

So let us assume nIdy(c). Since ω ↑ d we know that d has the form d0 + ω · `
for a limit notation `. Hence, in order to derive nIdy(ϕ(n+1)0c) it is sufficient
to establish for each natural number v,

nId0+ω·`[v]
y (ϕ(n+1)0c).(17)

Since `[v] > 0 we have that d0 +ω · `[v] is always limit and, hence, by means
of Lemma 8, we are in a position to conclude

Prog(λb.nId0+ω·`[v]
y (ϕ(n+1)0b))(18)

for each natural number v. Furthermore, we obtain from Lemma 7 that

{b : nId0+ω·`[v]
y (ϕ(n+1)0b)}

forms a type in the universe hny(d0 + ω · `[v]) for each natural number v.
But this means in particular that we can now immediately derive assertion
(17) from our assumption nIdy(c) and (18). Hence, we have shown (16) and,
therefore, also (13). 2

This concludes our preparatory work towards a proof of (2) in Sn+1, which
is now immediate. Let x be a name and suppose

(∀y ∈̇ un+1(un+1(x)))TI(y, a).(19)

Given this assumption, it is our aim to derive

(∀y ∈̇ un+1(x))TI(y, ϕ(n+1)a0).(20)

We can assume without loss of generality that a is an ε number, since uni-
verses are closed under arithmetical comprehension. Thus, it is enough to
establish

(∀y ∈̇ un+1(x))TI(y, ϕ(n+1)b0)(21)

for each b ≺ a. We fix such a b and observe that we also have ω1+b · ω ≺ a.
Further, by our assumption (19), Lemma 6 and Lemma 10 we have

Prog(λe.nMainun+1(x)
a (e)).(22)
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But (22) together with (19), Lemma 6 and Lemma 9 immediately show that
we have nMainun+1(x)

a (b), i.e. spelled out

(∀y ∈̇ un+1(x))(∀c, d)[d � a ∧ ω1+b ↑ d ∧ nIdy(c) → nIdy(ϕ(n+1)bc)].(23)

By choosing c = 0 and d = ω1+b · ω in (23) we get

(∀y ∈̇ un+1(x))nIω
1+b·ω

y (ϕ(n+1)b0).(24)

But now one immediately realizes that (24) entails (21). Since b ≺ a was
arbitrary, we have thus shown (20). This is as desired and ends our proof
of (2), given that the assumption (1) of our main lemma holds for n. All
together this concludes our proof of Main Lemma 5.

A straightforward iterated application of Main Lemma 5 yields the following
crucial theorem about the proof-theoretic lower bound of the theories Sn.

Theorem 11 We have for all natural numbers n and all ordinals α less than
ϕ(n+1)00 that Sn proves (∀X)TI(X,α).

Proof. We fix a natural number n and inductively define the fundamental se-
quence (αj : j ∈ N) for ϕ(n+1)00 by α0 := 1 and αj+1 := ϕnαj0. We further

use the notation u
(j)
n (x) for the j-fold application of un to x, i.e. u

(0)
n (x) := x

and u
(j+1)
n (x) := un(u

(j)
n (x)). We have to show that Sn proves (∀X)TI(X,αk)

for each natural number k. Towards that aim one makes straightforward use
of Main Lemma 5 in order to show by induction on j ≤ k that Sn proves

<(x) → (∀y ∈̇ u(k+1−j)
n (x))TI(y, αj).(25)

If we choose j = k in assertion (25), then we obtain that Sn derives

<(x) → (∀y ∈̇ un(x))TI(y, αk).(26)

In particular, (26) entails that (∀x)(<(x)→ TI(x, αk) is provable in Sn. Since
we have an axiom saying that each type has a name, we have thus shown in
Sn the assertion (∀X)TI(X,αk). This is as desired and ends our proof. 2

Using the definition of proof-theoretic ordinal from [11] we thus obtain:

Corollary 12 We have for all natural numbers n that ϕ(n+1)00 ≤ |Sn|.

Due to Lemma 4 we have now established the desired lower bound for EMA.

Corollary 13 ϕω00 ≤ |EMA|.
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4 The wellordering proof for KPm0

In the following let us quickly indicate how the wellordering proofs given in
the previous section can be adapted to the context of admissible set theory,
namely the theory KPm0. As the procedure is very analogous to EMA we
only sketch the main new points and do not spell out the wellordering proof
for KPm0 in all details.

4.1 The theory KPm0 and its subsystems

In this paragraph we briefly review the theory KPm0, and we identify its
crucial subsystems Tn corresponding to the subsystems Sn of EMA. We refer
to Jäger and Strahm [11] for a more detailed exposition of KPm0.

Our version of KPm0 is formulated with the natural numbers as urelements.
Accordingly, we let L1 denote the usual language of arithmetic with function
and relation symbols for all primitive recursive functions and relations. We
further assume that L1 also includes the free anonymous relation symbol Q.
The theory KPm0 is now formulated in the extension L∗ = L1(∈,N, S,Ad) of
L1 by the membership relation symbol ∈, the set constant N for the set of
natural numbers and the unary relation symbols S and Ad for sets and ad-
missibles, respectively. Terms and formulas of L∗ are defined in the standard
way; in particular, ∆0, Σ, Π, Σn and Πn denote the obvious classes of L∗
formulas. Further, equality between objects is regarded as a defined notion
in the expected manner, cf. [11].

The L∗ theory KPm0 is based on classical first order logic with equality. Its
non-logical axioms comprise:

(i) the expected ontological axioms regarding the set constant N and the
unary predicates S and Ad for sets and admissibles, respectively; in
particular, it is claimed that admissibles are linearly ordered, i.e.,

Ad(x) ∧ Ad(y) → x ∈ y ∨ x = y ∨ y ∈ x.

(ii) the axioms of Peano arithmetic PA.

(iii) the Kripke Platek axioms, namely pairing, union, separation for ∆0

formulas and collection for ∆0 formulas.

(iv) the Mahlo axioms; these include for all ∆0 formulas A(x, y, ~u) whose
parameters belong to the list x, y, ~u:

(∀x)(∃y)A(x, y, ~u) → (∃z)[Ad(z) ∧ ~u ∈ z ∧ (∀x ∈ z)(∃y ∈ z)A(x, y, ~u)]
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(v) complete induction on the natural numbers for ∆0 formulas.

Let us now turn to the subsystems Tn of KPm0. In complete analogy to the
systems Sn, the principal set existence axiom of Tn claims that each set is
contained in an n-(hyper)inaccessible set. For each natural number n we use
n-Ia(z) in order to express that the set z is n-inaccessible; n-Ia(z) is a ∆0

formula of L∗ and is inductively given as follows:

0-Ia(z) := Ad(z);

(n+1)-Ia(z) := Ad(z) ∧ (∀x ∈ z)(∃y ∈ z)(x ∈ y ∧ n-Ia(y)).

For each natural number n, the L∗ theory Tn is now defined to be KPm0

without the Mahlo axioms plus the following limit axiom,

(∀x)(∃y)(x ∈ y ∧ n-Ia(y)).

Hence, Tn formalizes an (n+1)-inaccessible universe of sets (without founda-
tion). Thus T0 is exactly Jäger’s well-known set theory KPi0 (cf. [7]) and T1

is the system KPh0 considered in Strahm [22].

Lemma 14 (n-inaccessibles in KPm0) We have that Tn is contained in
KPm0 for each natural number n.

Proof. We verify the assertion of this lemma by induction on n. In the
case n = 0 we have to show that each set u is contained in an admissible
set. This is immediate by applying Π2 reflection on admissibles to the Π2

formula (∀x)(∃y)(u = u). For the induction step let us assume that KPm0

includes Tn, i.e., in particular, KPm0 proves (∀x)(∃y)(x ∈ y ∧ n-Ia(y)). But
then one makes use of pairing and the fact that admissibles are transitive to
show that we also have, provably in KPm0,

(∀x)(∃y)[x ∈ y ∧ u ∈ y ∧ n-Ia(y)].

If we apply Π2 reflection on Ad to this last assertion, then we obtain in KPm0,

(∃z)[Ad(z) ∧ u ∈ z ∧ (∀x ∈ z)(∃y ∈ z)(x ∈ y ∧ n-Ia(y))].

This reveals that KPm0 derives (∀u)(∃z)(u ∈ z ∧ (n+1)-Ia(z)). We have thus
shown that Tn+1 is contained in KPm0. 2
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4.2 Remarks on deriving transfinite inductions in Tn

As mentioned above, the wellordering proofs given for the subsystems Sn of
EMA directly carry over to the subsystems Tn of KPm0. In the sequel we
only want to address some delicate points which are characteristic for the
set-theoretic framework, without redoing the whole wellordering proof.

We have seen in the previous section that one of the essential tools in the
wellordering proof for EMA are transfinite hierarchies of n-hyperuniverses.
Correspondingly, we have to consider transfinite hierarchies of n-inaccessibles
in the framework of admissible set theory. For the construction of such
hierarchies we need a uniform means for picking an n-inaccessible set above
any given set. More precisely, we want a Σ1 operation (·)+n of Tn such that
provably in Tn we have that for each u, the set u+n is an n-inaccessible set
containing u.

Not long ago Gerhard Jäger proved that in KPi0 there exists a Σ1 operation
picking the next admissible set above any set u, i.e., the least admissible set
containing u. It happens that Jäger’s proof readily generalizes in order to
provide the required operation (·)+n in Tn: one defines u+n to be the least
n-inaccessible set above u, i.e.

u+n :=
⋂
{x : u ∈ x ∧ n-Ia(x)}.

For completeness we give the (adaptation of the) proof of Jägers theorem. It
appears that linearity of admissibles is crucial in the argument below.

Lemma 15 1. Tn proves that u+n is a set and, in addition, n-Ia(u+n).
Moreover, the operation u 7→ u+n is Σ1 definable in Tn.

2. We have that 1. relativizes to any (n+1)-inaccessible set.

Proof. In the following we prove the first part of the lemma only; the second
part is immediate by relativization. Let us work informally in Tn. Given a
set u, the limit axiom of Tn guarantees the existence of a set y such that
n-Ia(y) and u ∈ y and, hence, we have that

u+n =
⋂
{x ∈ y ∪ {y} : u ∈ x ∧ n-Ia(x)}

by linearity of admissibles. This proves that u+n is indeed a set and one
readily sees that the operation u 7→ u+n is Σ1 definable.

It remains to show that u+n is n-inaccessible, i.e. n-Ia(u+n). For that purpose
we define u++n := (u+n)+n and first convince ourselves that

u+n 6= u++n .(27)

21



For a contradiction, assume u+n = u++n . By ∆0 separation, we have that
r := {x ∈ u+n : x /∈ x} is a set and, moreover, r ∈ z for each n-inaccessible
set z such that u+n ∈ z, i.e. r ∈ u++n by definition. But then r ∈ u+n since
we have assumed u+n = u++n . This yields a contradiction since

r ∈ r ↔ r ∈ u+n ∧ r /∈ r ↔ r /∈ r.

Using (27), there exists a set z such that n-Ia(z), u ∈ z and u+n /∈ z, and
indeed we now show that z = u+n . The inclusion u+n ⊂ z is obvious. In
order to establish that z ⊂ u+n we pick an arbitrary set x with n-Ia(x) and
u ∈ x and verify z ⊂ x. By linearity we have z ∈ x ∨ z = x ∨ x ∈ z. In
case of z ∈ x or z = x, z ⊂ z is obvious. But x ∈ z is impossible since this
would imply u+n ∈ z, a contradiction to the choice of z. All together we
have shown z = u+n , which entails n-Ia(u+n) as desired. This finishes our
argument. We observe that ∆0 collection was not used in this proof. 2

Once we have the operations (·)+n at hand we are able to build transfinite
hierarchies of n-inaccessibles within an (n+1)-inaccessible set. It is now a
matter of routine to translate the wellordering proofs given in the framework
of explicit mathematics for the systems Sn to the language of set theory
and the systems Tn. Indeed, some points which needed special attention in
explicit mathematics are even simpler in the set-theoretic framework. Hence,
we are in a position to state the following lower bound for the proof-theoretic
ordinal of the system Tn.

Theorem 16 We have for all natural numbers n that ϕ(n+1)00 ≤ |Tn|.

Lemma 14 now immediately entails the desired lower bound for KPm0.

Corollary 17 ϕω00 ≤ |KPm0|.

5 Concluding remarks

Let us summarize our results concerning the proof-theoretic ordinals of the
theories EMA, KPm0, Sn, and Tn. The lower bounds for these theories have
been established according to Corollary 12, Corollary 13, Theorem 16, and
Corollary 17. The corresponding upper bounds are proved in the paper Jäger
and Strahm [11]. Hence, we have the following main result.

Theorem 18 We have the following proof-theoretic ordinals:

1. |EMA| = |KPm0| = ϕω00;

2. |Sn| = |Tn| = ϕ(n+1)00.
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If we denote by (L-IN) and (L∗-IN) the schema of complete induction on the
natural numbers for all formulas in the language L and L∗, respectively, then
the lower bound computations given in this article can be extended in a
rather straightforward manner in order to yield ϕε000 as a proof-theoretic
lower bound of the systems EMA + (L-IN) and KPm0 + (L∗-IN). The prin-
cipal benefit of the induction schema compared to the induction axiom is
that one has available α-hyperuniverses and α-(hyper)inaccessibles for α less
than ε0 instead of n-hyperuniverses and n-(hyper)inaccessibles for n less than
ω, respectively. The so-obtained lower bounds are sharp according to [11].
Moreover, one establishes the expected ordinals for the subsystems Sn and
Tn augmented by the induction schema.

Theorem 19 We have the following proof-theoretic ordinals:

1. |EMA + (L-IN)| = |KPm0 + (L∗-IN)| = ϕε000;

2. |Sn + (L-IN)| = |Tn + (L∗-IN)| = ϕ(n+1)ε00.

We finish this article by mentioning very recent work of Christian Rüede, who
in his forthcoming PhD thesis [19] considers metapredicative subsystems of
second order arithmetic which have the same strength as EMA and KPm0.
The key principles introduced and analyzed by Rüede are forms of ω model
reflection and transfinite dependent choice.
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