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Abstract

This is a survey paper on various weak systems of Feferman’s explicit
mathematics and their proof theory. The strength of the systems con-
sidered in measured in terms of their provably terminating operations
typically belonging to some natural classes of computational time or
space complexity.
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1 Introduction

In this article we survey recent results about a proof-theoretic approach to
computational complexity via theories of operations and types in the sense
of Feferman’s explicit mathematics. The latter framework was introduced
by Feferman [19, 20, 21] in the early 1970s. Beyond its original aim to
provide a basis for Bishop-style constructivism, the explicit framework has
gained considerable importance in proof theory in connection with the proof-
theoretic analysis of subsystems of second order arithmetic and set theory as
well as for studying the proof theory of abstract computations.

It is this latter focus which is most important in the present article. The op-
erational or applicative core of explicit mathematics includes forms of com-
binatory logic and hence comprises a computationally complete functional
language with the full defining power of the untyped lambda calculus. In
this sense it is more expressive than standard arithmetical systems.
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Apart from operations or rules, the second basic entity in explicit mathemat-
ics are types, which can be thought of as successively generated collections of
operations. In addition, and this is essential in the explicit approach, exten-
sional types are represented (or named) by intensional operations, uniformly
in their parameters. This interplay of operations and types on the level of
representations makes explicit mathematics extremely powerful.

As an alternative means of enhancing the first order part of explicit math-
ematics, we will also consider extensions of applicative theories by a partial
truth predicate, leading to an expressive language embodying naive set the-
ory. In this connection, we will review work done by Cantini.

Let us briefly outline the content of the paper. We omit references and credits
and refer the reader to the corresponding sections of the paper.

We start off in Section 2 by introducing the first order applicative framework
being based on the logic of partial terms. We define the basic theory of
operations and words B and introduce two bounded induction schemas on
the binary words.

In Section 3 we provide a review of function algebra characterizations of com-
plexity classes and introduce four bounded applicative systems, PT, PTLS,
PS, and LS, whose provably total functions coincide with the functions com-
putable in polynomial time, simultaneously polynomial time and linear space,
polynomial space, and linear space. We briefly address the lower and upper
bound arguments for these systems. In particular, we outline a specific com-
bination of partial cut elimination and a realizability interpretation.

Section 4 addresses higher type issues of the first-order system PT. It is
a distinguished advantage of applicative theories that they allow for a very
intrinsic and direct discussion of higher type aspects, since higher types arise
naturally in the untyped setting. It makes perfect sense to consider the class
of higher type functionals which are provably total in a given applicative
system. We will discuss the relationship between PT and the Melhorn-Cook-
Urquhart basic feasible functionals BFF.

In Section 5 we introduce a theory PET of polynomial time operations with
explicit and variable types which is formulated in the full language of explicit
mathematics and embodies a weak form of elementary type comprehension.
The provably total operations of PET are still the polynomial time com-
putable functions on binary words. We will also consider various extensions
of PET by choice, quantification, uniformity and join principles.

In Section 6 we review work by Cantini on extensions of weak applicative
theories by forms of self-referential truth with choice and uniformity, which
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has been essential in obtaining results about corresponding extensions of the
system PET.

Finally, in Section 7 we address self-applicative systems proposed by Cantini
and Calamai in the realm of so-called implicit computational complexity in
the sense of Bellantoni, Cook and Leivant. It turns out that forms of safe
induction formulated in a modal language provide very natural applicative
characterizations of the functions computable in polynomial time and poly-
nomial space.

We conclude this article by some comments on the relationship between
primitive recursion and positive induction.

2 The axiomatic framework

In this section we first describe the informal setting of applicative systems and
briefly motivate their underlying logic of partial terms. Then we outline the
basic applicative language and theory of operations and words and mention
some of its basic consequences and models. We conclude this section by
specifying two important induction principles.

2.1 The informal applicative setting

Let us assume that we are given an untyped universe of operations or rules,
which can be freely applied to each other. Self-application is meaningful,
though not necessarily total. The computational engine of these rules is
given by a partial combinatory algebra, featuring partial versions of Curry’s
combinators k and s. In addition, there is a ground “urelement” structure of
the binary words or strings with certain natural operations on them.

Let W denote the set of (finite) binary words. We will consider the following
operations on W:

• s0 and s1: binary successors on W with predecessor pW

• s`: (unary) lexicographic successor on W with predecessor p`

• ∗: word concatenation

• ×: word multiplication

Here s` denotes the successor in the ordering <` which orders words by length
and words of the same length lexicographically. Moreover, x×y signifies the
length of y fold concatenation of x with itself.
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2.2 The logic of partial terms

All our theories considered in this survey are based on the classical logic of
partial terms (LPT) due to Beeson and Feferman. It is is a modification
of first-order predicate logic taking into account partial functions, cf. Beeson
[1, 2] and Troelstra and van Dalen [52] for details. It is assumed that variables
range over defined objects only. (Composed) terms do not necessarily denote
and t↓ signifies that t has a value or t denotes. The usual quantifier axioms
of predicate logic are modified, e.g. we have

A(t) ∧ t↓ → (∃x)A(x)

Moreover, strictness axioms claim that subterms of a defined term are defined
and that terms occurring in true positive atoms are defined.

For an excellent survey of logics of definedness the reader is referred to Fe-
ferman [22]. Feferman distinguished between logics of existence and logics
of partial terms in the above-explained sense, whereas the former were pio-
neered by Scott [41]. On the other hand, the pseudo-applicative terms used
in Feferman [19, 21] may be considered as precursors to the logic of partial
terms.

2.3 The basic applicative language

Our basic language L is a first order language for the logic of partial terms
which includes:

• variables a, b, c, x, y, z, u, v, f, g, h, . . .

• constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW, . . .

• relation symbols = (equality), ↓ (definedness), W (binary words)

• arbitrary term application ◦
The meaning of the constants will become clear in the next paragraph.

The terms (r, s, t, . . . ) and formulas (A, B, C, . . . ) of L are defined in the
expected manner. We assume the following standard abbreviations and syn-
tactical conventions:

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W
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Finally, let us write w for the canonical closed L term denoting the binary
word w ∈ W.

2.4 The basic theory of operations and words B

The applicative base theory B has been introduced in Strahm [47, 48]. Its
logic is the classical logic of partial terms. The non-logical axioms of B
include:

• partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

• pairing p with projections p0 and p1

• defining axioms for the binary words W with ε, the successors s0, s1, s`

an the predecessor pW and and p`

• definition by cases dW on W

• initial subword relation c⊆, tally length of words lW

These axioms are fully spelled out in [47, 48].

Let us turn to the crucial consequences of the axioms about a partial com-
binatory algebra. For proofs of these standard results, the reader is referred
to Beeson [1] or Feferman [19].

Lemma 1 (Explicit definitions and fixed points)

1. For each L term t there exists an L term (λx.t) so that

B (λx.t)↓ ∧ (λx.t)x ' t

2. There is a closed L term fix so that

B fixg↓ ∧ fixgx ' g(fixg)x

Let us quickly remind the reader of two standard models of B, namely the
recursion-theoretic model PRO and the term model M(λη). For a extensive
discussion of many more models of the applicative basis, the reader is referred
to Beeson [1] and Troelstra and van Dalen [53].

Example 2 (Recursion-theoretic model PRO) Take the universe of
binary words and interpret application ◦ as partial recursive function appli-
cation in the sense of ordinary recursion theory.
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Example 3 (The open term model M(λη)) Take the universe of open
λ terms and consider the usual reduction of the extensional untyped lambda
calculus λη, augmented by suitable reduction rules for the constants other
than k and s. Interpret application as juxtaposition. Two terms are equal
if they have a common reduct and W denotes those terms that reduce to a
“standard” word w.

2.5 Natural induction principles

We have not yet specified induction principles on the binary words W; these
are of course crucial for our proof-theoretic characterizations of complexity
classes below.

We call an L formula positive if it is built from the atomic formulas by means
of disjunction, conjunction as well as existential and universal quantification
over individuals. We let Pos stand for the collection of positive formulas.
Further, an L formula is called W free, if the relation symbol W does not
occur in it.

Most important in the sequel are the so-called bounded (with respect to W)
existential formulas or Σb

W formulas of L. A formula A(f, x) belongs to the
class Σb

W if it has the form (∃y ≤ fx)B(f, x, y) for B(f, x, y) a positive and
W free formula. It is important to note here that bounded quantifiers range
over W, i.e., (∃y ≤ fx)B(f, x, y) stands for

(∃y ∈ W)[y ≤ fx ∧ B(f, x, y)].

Further observe that the matrix B of a Σb
W formula can have unrestricted

existential and universal individual quantifiers, not ranging over W, however.

Below we will distinguish usual notation induction on binary words and the
corresponding “slow” induction principle with respect to the lexicographic
successor s`.

Σb
W notation induction on W:

For each Σb
W formula A(x) ≡ (∃y ≤ fx)B(f, x, y),

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧ A(s1x))

→ (∀x ∈ W)A(x)
(Σb

W-IW)

Σb
W lexicographic induction on W:

For each Σb
W formula A(x) ≡ (∃y ≤ fx)B(f, x, y),

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s`x))

→ (∀x ∈ W)A(x)
(Σb

W-I`)
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It is now easy, by making use of the fixed point theorem and Σb
W notation

induction on W, to show the existence of a type two functional for bounded
recursion on notation, provably in B + (Σb

W-IW). This is the content of the
following lemma whose detailed proof can be found in Strahm [48].

Lemma 4 (Bounded recursion on notation) There exists a closed L
term rW so that B + (Σb

W-IW) proves

f : W → W ∧ g : W3 → W ∧ b : W2 → W →
rWfgb : W2 → W ∧
x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = rWfgb →

hxε = fx ∧ hxy = gxy(hx(pWy)) | bxy

Here t | s is t if t ≤ s and s otherwise.

Similarly, bounded lexicographic recursion is derivable in B + (Σb
W-I`), see

Strahm [48] for details.

3 Characterizing complexity classes

We now turn to the characterization of complexity classes by means of our
applicative systems. We start our discussion by reviewing some function alge-
bra characterizations of complexity classes and then propose four applicative
systems, PT, PTLS, PS, and LS, whose provably total functions coincide with
the functions computable in polynomial time, simultaneously polynomial time
and linear space, polynomial space, and linear space. We sketch lower and
upper bounds for these proof-theoretic characterizations.

3.1 Four function algebras

In this subsection we review know recursion-theoretic characterizations of
various classes of computational complexity. Our main interest in the sequel
are the functions on W which are computable on a Turing machine in poly-
nomial time, simultaneously polynomial time and linear space, polynomial
space, and linear space. In the following we let FPtime, FPtimeLinspace,
FPspace, and FLinspace denote the respective classes of functions on bi-
nary words W. For an extensive discussion of recursion-theoretic or function
algebra characterizations of complexity classes the reader is referred to the
survey article Clote [15].

In the following we use the notation of Clote [15] for a compact representation
of function algebras. Accordingly, we call (partial) mappings from functions
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on W to functions on W operators. If X is a set of functions on W and OP
is a collection of operators, then [X ; OP] is used to denote the smallest set
of functions containing X and closed under the operators in OP. We call
[X ; OP] a function algebra. Our crucial examples of operators in the sequel
are bounded recursion on notation BRN and bounded lexicographic recursion
BRL, cf. Strahm [48] for details. A further operator is the composition op-
erator COMP. Below we also use I for the usual collection of projection
functions and we simply write ε for the 0-ary function being constant to the
empty word ε.

We are now ready to state the function algebra characterizations of the four
complexity classes which are relevant in this paper. The characterization of
FPtime is due to Cobham [16]. The delineations of FPtimeLinspace and
FPspace are due to Thompson [51]. Finally, the fourth assertion of our
theorem is due to Ritchie [38]. For a uniform presentation of all these results
we urge the reader to consult Clote [15].

Theorem 5 We have the following function algebra characterizations of the
complexity classes mentioned above:

1. [ε, I, sN, s1, ∗,×; COMP, BRN] = FPtime.

2. [ε, I, sN, s1, ∗; COMP, BRN] = FPtimeLinspace.

3. [ε, I, s`, ∗,×; COMP, BRL] = FPspace.

4. [ε, I, s`, ∗; COMP, BRL] = FLinspace.

We now turn to the proof-theoretic characterization of the above four com-
plexity classes by means of suitable applicative theories.

3.2 Provably total functions

Let us first start with a formal definition of the notion of provably total
function of a given L theory.

Definition 6 A function F : Wn → W is called provably total in an L theory
T, if there exists a closed L term tF such that

(i) T tF : Wn → W and, in addition,

(ii) T tF w1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.
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The notion of a provably total word function is divided into two conditions
(i) and (ii). The first condition (i) expresses that tF is a total operation from
Wn to W, provably in the L theory T. Condition (ii), on the other hand,
claims that tF indeed represents the given function F : Wn → W, for each
fixed word w in W.

In the sequel, let τ (T) = {F : F provably total in T}.

3.3 Four applicative systems

In the following we write B(∗) for the extension of B by the obvious axioms
about word concatenation on W, namely the standard recursive defining
equations and the totality of ∗ on W. We assume that ∗ is a new constant of
our applicative language L. Similarly, B(∗,×) extends B(∗) by the standard
axioms about word multiplication. For details, see Strahm [48].

Depending on whether we include (Σb
W-IW) or (Σb

W-I`), and whether we as-
sume as given only word concatenation or both word concatenation and word
multiplication, we can now distinguish the following four applicative theories
PT, PTLS, PS, and LS:

PT := B(∗,×) + (Σb
W-IW) PTLS := B(∗) + (Σb

W-IW)

PS := B(∗,×) + (Σb
W-I`) LS := B(∗) + (Σb

W-I`)

We note that a preliminary, more restrictive version of the system PT has
previously been studied in Strahm [46] and Cantini [12].

In the sequel let us briefly sketch the lower and upper bound arguments for
our applicative systems, which are worked out in full detail in Strahm [48].

3.4 Lower bounds

The lower bounds for our four applicative systems directly follow from The-
orem 5 and the crucial Lemma 4, respectively its variant for bounded lexico-
graphic recursion.

Theorem 7 We have the following lower bounds:

1. FPtime ⊆ τ (PT).

2. FPtimeLinspace ⊆ τ (PTLS).

3. FPspace ⊆ τ (PS).

4. FLinspace ⊆ τ (LS).

9



Let us close this paragraph with the following remarks:

Remarks 8 1. Ferreira’s system PTCA+ ([24, 25]) is directly contained
in PT, where PTCA+ corresponds to Buss’ S1

2 ([5]).

2. The Melhorn-Cook-Urquhart basic feasible functionals resp. the system
PVω ([18]) are directly contained in PT (see Section 4).

3.5 Partial cut elimination

In order to extract computational content from proofs, we need a sequent-
style reformulation of our systems and a preparatory partial cut-elimination
result. It is employed in order to show that as far as the computational
content of our systems is concerned, we can restrict ourselves to positive
derivations, i.e., sequent style proofs using positive formulas only. Moreover,
we will establish upper bounds directly for an extension of our systems by
the axioms of totality of application and extensionality of operations:

Totality of application:

(Tot) (∀x)(∀y)(xy↓)

Extensionality of operations:

(Ext) (∀f)(∀g)[(∀x)(fx ' gx) → f = g]

Observe that in the presence of the totality axiom, the logic of partial terms
reduces to ordinary classical predicate logic. Accordingly, if T denotes one of
the systems PT, PTLS, PS, or LS, then we write T+ for the system T based
on ordinary classical logic with equality and augmented with the axiom of
extensionality.

In the following we let Γ, ∆, Λ, . . . range over finite sequences of formulas; a
sequent is a formal expression of the form Γ ⇒ ∆. As usual, the natural
interpretation of the sequent A1, . . . , An ⇒ B1, . . . , Bm is (A1 ∧ · · · ∧An) →
(B1 ∨ · · · ∨Bm).

It is now a matter of routine to spell out a sequent-style version of our
four applicative systems so that all the main formulas of axioms and rules
are positive. Hence, partial cut-elimination is applicable in order to show
that cuts can be restricted to positive formulas. In the following we write
T+

?
Γ ⇒ ∆ to express that Γ ⇒ ∆ has a proof in T+ where all cut

formulas are positive.
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3.6 Realizability

In a second crucial step we use a notion of realizability for positive formulas in
the standard open term model of our systems: quasi cut-free positive sequent
derivations of PT, PTLS, PS, and LS are suitably realized by word functions in
FPtime, FPtimeLinspace, FPspace, and FLinspace, respectively, thus
yielding the desired computational information concerning the provably total
functions of these systems.

The notion of realizability as well as the style and spirit of our realizability
theorems are related to the work of Leivant [31], Schlüter [40], and Cantini
[13], all three in the context of FPtime. However, in contrast to these papers,
we work in a bounded unramified setting. Moreover, and this is similar to
[13, 40], we are able to realize directly quasi cut-free positive derivations in
the classical sequent calculus. Finally, in order to find our realizing functions,
we can make direct use of the function algebra characterizations of FPtime,
FPtimeLinspace, FPspace, and FLinspace given in Theorem 5; hence,
direct reference to a machine model is not needed.

In fact, the above mentioned literature on realizability in an applicative con-
text, especially in the classical setting, is clearly related to and inspired by
older work on witnessing that has been used in classical fragments of arith-
metic. In particular, Buss’ witnessing technique (cf. Buss [5, 6, 7]) has been
employed with great success in a variety of contexts.

We are now ready to turn to realizability. Our realizers ρ, σ, τ, . . . are simply
elements of the set W of binary words. We presuppose a low-level pairing
operation 〈·, ·〉 on W with associated projections (·)0 and (·)1; for definiteness,
we assume that 〈·, ·〉, (·)0, and (·)1 are in FPtimeLinspace. Further, for each
natural number i let us write i2 for the binary notation of i.

Since we are only interested in realizing positive derivations, we need to define
realizability for positive formulas only.

Definition 9 The notion ρ r A (“ρ realizes A”) for ρ ∈ W and A a positive
formula, is given inductively in the following manner:

ρ r W(t) if M(λη) |= t = ρ,

ρ r (t1 = t2) if ρ = ε and M(λη) |= t1 = t2,

ρ r (A ∧B) if ρ = 〈ρ0, ρ1〉 and ρ0 r A and ρ1 r B,

ρ r (A ∨B) if ρ = 〈i, ρ0〉 and either i = 0 and ρ0 r A or

i = 1 and ρ0 r B,
ρ r (∀x)A(x) if ρ r A(u) for a fresh variable u,

ρ r (∃x)A(x) if ρ r A(t) for some term t.
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If ∆ denotes a sequence A1, . . . , An, then ρ r ∆ iff ρ = 〈i2, ρ0〉 for some
1 ≤ i ≤ n and ρ0 r Ai.

The next main lemma about the realizability of quasi-normal PT+ derivations
immediately entails that the provably total functions of PT+ are computable
in polynomial time. The lemma is proved in all detail in Strahm [48].

In the formulation of the lemma, we need the following notation. For an
L formula A we write A[~u] in order to express that all the free variables
occurring in A are contained in the list ~u. The analogous convention is used
for finite sequences of L formulas.

Lemma 10 (Realizability for PT+) Let Γ ⇒ ∆ be a sequent of formulas
in Pos with Γ = A1, . . . , An and assume that PT+

?
Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn → W in FPtime so that we have for all terms
~s and all ρ1, . . . , ρn ∈ W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Analogous realizability results hold for the systems PTLS, PS, and LS, cf. [48]
for details.

3.7 The main theorem concluded

We are now able to piece together the results of Sections 3.4, 3.5 and 3.6 and
obtain the following main theorem.

Theorem 11 We have the following characterizations:

1. τ (PT) = FPtime.

2. τ (PTLS) = FPtimeLinspace.

3. τ (PS) = FPspace.

4. τ (LS) = FLinspace.

In the next section we turn to some higher types aspects of the system PT.

4 Higher type issues

In the last two decades intense research efforts have been made in the area of
so-called higher type complexity theory and, in particular, feasible function-
als of higher types. This research is still ongoing and it is not yet clear what
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the right higher type analogue of the polynomial time computable functions
is. Most prominent in the previous research is the class of so-called basic
feasible functionals BFF, which has proved to be a very robust class with
various kinds of interesting characterizations.

The basic feasible functionals of type 2, BFF2, were first studied in Melhorn
[34]. More than ten years later in 1989, Cook and Urquhart [18] introduced
the basic feasible functionals at all finite types in order to provide functional
interpretations of feasibly constructive arithmetic; in particular, they defined
a typed formal system PVω and used it to establish functional and realizabil-
ity interpretations of an intuitionistic version of Buss’ theory S1

2. The basic
feasible functionals BFF are exactly those functionals which can be defined by
PVω terms. Subsequently, much work has been devoted to BFF, cf. e.g. Cook
and Kapron [17, 30], Irwin, Kapron and Royer [27], Pezzoli [37], Royer [39],
and Seth [42].

In the following let us briefly discuss the relationship of PVω with our first-
order applicative theory PT.

4.1 Higher types in the language L

The collection T of finite type symbols (α, β, γ, . . .) is inductively generated
by the usual clauses, (i) 0 ∈ T , (ii) if α, β ∈ T , then (α × β) ∈ T , and
(iii) if α, β ∈ T , then (α → β) ∈ T . Hence, we have product and function
types as usual. Observe, however, that in our setting the ground type 0
stands for the set of binary words and not for the set of natural numbers.
We use the usual convention and write α1 → α2 → · · · → αk instead of
(α1 → (α2 → · · · → (αk−1 → αk) · · · )).
The abstract intensional type structure 〈(ITα, =)〉α∈T in the applicative lan-
guage L is now given by inductively defining the formula ITα as follows:

x ∈ IT0 := x ∈ W,

x ∈ ITα×β := p0x ∈ ITα ∧ p1x ∈ ITβ ∧ p(p0x)(p1x) = x,

x ∈ ITα→β := (∀y ∈ ITα)(xy ∈ ITβ).

Equality in ITα is simply the restriction of equality in PT. Alternatively, one
can consider an extensional type structure, cf. [53, 48].

4.2 The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. PVω includes:
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• the simply typed lambda calculus over the base type of binary words

• basic operations on words, essentially the base operations of PT

• a type two functional for bounded recursion on notation

• notation induction on binary words for Σb
1 or NP formulas

For an exact definition, cf. e.g. Strahm [48]. We observe that due to Lemma 4,
we indeed have a type two functional for bounded recursion on notation which
has the correct type, provably in PT. Using the intensional type structure
〈(ITα, =)〉α∈T sketched above, it is then a matter of routine to check that
PVω can be directly interpreted in PT. This shows that the basic feasible
functionals in all finite types are provably total in PT.

The question arises whether indeed the BFFs are exactly the provably total
functionals of PT. This question has been answered in the positive for the type
two BFFs in Strahm [49] by using an extension of the realizability argument
sketched above. Moreover, it follows from the work in Cantini [14] that
this result holds with respect to arbitrary finite types if one considers an
intuitionistic version of PT. Therefore we can summarize:

Theorem 12 1. The system PVω is contained in PT; i.e., the basic fea-
sible functionals in all finite types are provably total in PT.

2. The provably total type 2 functionals of PT coincide exactly with the
basic feasible functionals of type 2.

Let us conclude this section with the following conjecture.

Conjecture 13 The classical theory PT characterizes the basic feasible func-
tionals in all finite types.

5 Adding types and names

In this section, we will describe PET, a theory of polynomial time opera-
tions with explicit types. The theory PET is an extension of the applicative
base theory B(∗,×) by means of a natural restriction of elementary compre-
hension, which is one of the crucial principles of explicit mathematics, see
Feferman [19, 21]. Below we will use the language of explicit mathematics
due to Jäger [28] which is based on a so-called naming relation <. The type
existence axioms are naturally presented by means of a finite axiomatisation
in the spirit of Feferman and Jäger [23]. The theory PET has been introduced
in Spescha and Strahm [44].
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5.1 The informal setting of types and names

Types in explicit mathematics are collections of operations and must be
thought of as being generated successively from preceding ones. In contrast
to the restricted character of operations, types can have quite complicated
defining properties. What is essential in the whole explicit mathematics
approach, however, is the fact that types are again represented by operations
or, as we will call them in this case, names. Thus each type U is named
or represented by a name u; in general, U may have many different names
or representations. It is exactly this interplay between operations and types
on the level of names which makes explicit mathematics extremely powerful
and, in fact, witnesses its explicit character.

Types are extensional and have (explicit) names which are intensional. The
names are generated via uniform operations and the link to the types they
are referring to is established by the naming relation <. The element relation
∈ is also a relation between an individual and a type, expressing that the
individual is a member of the type. The formalization of explicit mathematics
using a naming relation < is due to Jäger [28].

5.2 The language of types and names

The language L is a two-sorted language extending L by

• type variables U, V,W, X, Y, Z, . . .

• binary relation symbols < (naming) and ∈ (elementhood)

• new (individual) constants w (initial segment of W), id (identity), dom
(domain), un (union), int (intersection), and inv (inverse image)

The formulas (A, B, C, . . .) of L are built from the atomic formulas of L as
well as formulas of the form

(s ∈ X), <(s, X), (X = Y )

by closing under the boolean connectives and quantification in both sorts.
The formula <(s, X) reads as “the individual s is a name of (or represents)
the type X”.

We use the following abbreviations:

<(s) := (∃X)<(s, X),

s ∈̇ t := (∃X)(<(t,X) ∧ s ∈ X).
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5.3 The theory PET

The following axioms state that each type has a name, that there are no
homonyms and that equality of types is extensional.

Ontological axioms:

(∃x)<(x, X)(O1)

<(a, X) ∧ <(a, Y ) → X = Y(O2)

(∀z)(z ∈ X ↔ z ∈ Y ) → X = Y(O3)

In the sequel we let Wa(x) stand for W(x)∧x ≤ a. The following axioms pro-
vide a finite axiomatization of a restricted form of the schema of elementary
comprehension.

Type existence axioms:

a ∈ W → <(w(a)) ∧ (∀x)(x ∈̇ w(a) ↔ Wa(x))(wa)

<(id) ∧ (∀x)(x ∈̇ id ↔ (∃y)(x = (y, y)))(id)

<(a) → <(inv(f, a)) ∧ (∀x)(x ∈̇ inv(f, a) ↔ fx ∈̇ a)(inv)

<(a) ∧ <(b) → <(un(a, b)) ∧ (∀x)(x ∈̇ un(a, b) ↔ (x ∈̇ a ∨ x ∈̇ b))(un)

<(a) ∧ <(b) → <(int(a, b)) ∧ (∀x)(x ∈̇ int(a, b) ↔ (x ∈̇ a ∧ x ∈̇ b))(int)

<(a) → <(dom(a)) ∧ (∀x)(x ∈̇ dom(a) ↔ (∃y)((x, y) ∈̇ a))(dm)

In contrast to the usual formulation of elementary comprehension in explicit
mathematics (cf. e.g. Feferman and Jäger [23]), we do not claim that the
collection of binary words forms a type, but merely that for each word a, the
collection {x ∈ W : x ≤ a} forms a type, uniformly in a. In addition, there
are no complement types. The remaining type existence axioms are identical
to the ones in [23].

Finally, the principle of type induction along W reads in the expected manner.

Type induction on W:

ε ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X) → (∀x ∈ W)(x ∈ X)

The theory PET is defined to be the extension of the first-order applicative
theory B(∗,×) by

• the ontological axioms
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• the above type existence axioms

• type induction on W

In Spescha and Strahm [44] it is shown that the finite axiomatisation of type
existence in PET gives rise to a natural restriction of the well-known schema
of elementary comprehension in explicit mathematics.

5.4 The proof-theoretic strength of PET

Let PT− be PT without universal quantifiers in induction formulas. Clearly,
PT− proves the totality of the polynomial time computable functions, since
it is strong enough to represent bounded recursion on notation in the form of
a type two functional (cf. Lemma 4). Indeed, PET is a conservative extension
of PT− as is shown in Spescha and Strahm [44].

Theorem 14 We have the following proof-theoretic results:

1. PET is a conservative extension of PT−.

2. τ (PT−) = FPtime.

The lower bound uses a rather involved embedding of PT− into PET. The
interpretation uses a bootstrapping functional mapping each operation f on
W to an operation f ∗ such that f ∗x = max

y⊆x
fy.

For the proof of the upper bound one starts off from a model of PT− and
extends it to a model of PET satisfying the same first order sentences. The
construction is carried out in stages by defining the set of names and their
extensions successively. Then one can show that the so-obtained model enjoys
type induction.

For full details of these arguments, see Spescha and Strahm [44].

5.5 Extensions of PET

In addition to the principles (Tot) and (Ext) discussed above, Cantini [14]
has considered a form of positive choice in the context of PT with a partial
truth predicate (cf. Section 6) and shows that this principle does not increase
the proof-theoretic strength. Cantini’s result can be used to show that the
following form of the axiom of choice formulated in the language L does not
increase the strength of PET.

Positive axiom of choice:

(AC) (∀x ∈ W)(∃y ∈ W)A(x, y) → (∃f : W → W)(∀x ∈ W)A(x, fx)
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where A(x, y) is a positive elementary formula.

Cantini has also shown in [14] that adding a uniformity principle for positive
formulas of L yields an extension of PT whose provably total functions are
still the functions computable in polynomial time. In our context, we can
state Cantini’s principle as follows.

Positive uniformity principle:

(UP) (∀x)(∃y ∈ W)A(x, y) → (∃y ∈ W)(∀x)A(x, y)

where A(x, y) is positive elementary.

The principle (UP) leads to a very natural extension of PET by adding a
type existence axiom for universal quantification; this axiom is the natural
dual analogue of the domain type present in PET.

Universal quantification:

(all) <(a) → <(all(a)) ∧ (∀x)(x ∈̇ all(a) ↔ (∀y)((x, y) ∈̇ a))

The presence of the axiom (all) makes the type existence axioms more sym-
metric, i.e. the types are generated from base types (initial segments of
W and the identity type) by closing under domains, unions, intersections,
existential quantification (inverse image) and universal quantification.

In order to see that (all) does not increase the proof-theoretic strength of
PET, one shows that any model of PT + (UP) can be extended to a a model
of PET + (all). The presence of (UP) is pivotal in the treatment of (all).
For a complete exposition of these results, see Spescha and Strahm [44].

Theorem 15 The provably total functions of PET augmented by any combi-
nation of the principles (all), (UP), (AC), (Tot), and (Ext) coincide with
the polynomial time computable functions.

The next natural step is to add the so-called Join axiom, which constructs
disjoint unions of types named by an operation; it has been widely studied
for many systems of explicit mathematics. The Join axioms are given by the
following assertions (J.1) and (J.2) (j denotes a new constant).

Join axioms:

<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f))(J.1)

<(a) ∧ (∀x ∈̇ a)<(fx) → (∀x)(x ∈̇ j(a, f) ↔ Σ(f, a, x))(J.2)

where Σ(f, a, x) is the formula

(∃y)(∃z)(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)
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In Spescha [43] and Spescha and Strahm [45] the realizability interpretation
of the first order language L is extended to the language of types and names
L. In combination with a partial cut elimination argument, it is possible
to show that the intuitionistic version of PET plus the Join axioms can be
realized using polynomial time computable functions. Currently, work is
underway in order to extend this result to classical logic.

6 Partial truth

In this section we address some interesting extensions of PT+ which have
been proposed and studied by Cantini [14]. The idea is to augment PT+ by

• a (form of) self-referential truth (à la Aczel, Feferman, Kripke, etc.),
providing a fixed point theorem for predicates

• an axiom of choice for operations and a uniformity principle, restricted
to positive conditions

These extensions do not alter the proof-theoretic strength of PT, a fact that
has been heavily used in the previous section in studying extensions of our
theory PET.

In the following let us briefly report on some of the many results obtained
in Cantini [14]. For a thorough exposition of frameworks for truth and ab-
straction based on combinatory logic, cf. Cantini [10] and Kahle [29].

6.1 The language LT

The (first order) language LT is an extension of the language L by

• a new unary predicate symbol T for truth

• new individual constants =̇, Ẇ, ∧̇, ∨̇, ∀̇, ∃̇
For each positive formula A of LT we can inductively define a term [A] whose
free variables are exactly the free variables of A:

[t = s] := (=̇ts)

[T(t)] := t

[s ∈ W] := Ẇs

[A ∧B] := ∧̇[A][B]

[A ∨B] := ∨̇[A][B]

[(∀x)A] := ∀̇(λx.[A])

[(∃x)A] := ∃̇(λx.[A])
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We have that λx.[A] can be interpreted as the propositional function defined
by the formula A. We can now interpret the language of naive set theory by
defining x ∈ a as T(ax) and understand {x : A} as λx.[A].

6.2 The truth axioms

The truth axioms for the positive fragment of LT spell out the expected
clauses according to the reductionist semantics as follows:

Truth axioms:

T(=̇xy) ↔ x = y

T(Ẇx) ↔ W(x)

T(x∧̇y) ↔ T(x) ∧ T(y)

T(x∨̇y) ↔ T(x) ∨ T(y)

T(∀̇f) ↔ (∀x)T(fx)

T(∃̇f) ↔ (∃x)T(fx)

One of the many interesting consequences of these axioms is a second recur-
sion or fixed point theorem for positive predicates, which can be obtained by
lifting the fixed point theorem for combinatory logic (cf. Lemma 1) to the
truth-theoretic language, cf. Cantini [10, 14].

6.3 Adding positive choice and uniformity

We can formulate positive choice and uniformity principles in the language
LT as follows:

Positive choice and uniformity in LT:

(∀x ∈ W)(∃y ∈ W)T(axy) → (∃f : W → W)(∀x ∈ W)T(ax(fx))(AC)

(∀x)(∃y ∈ W)T(axy) → (∃y ∈ W)(∀x)T(axy)(UP)

One of the many results obtained in Cantini [14] is stated in the following
theorem. It has been used in Spescha and Strahm [44] in order to show the
conservativity of various extensions of PET.

Theorem 16 τ (PT+ + truth axioms + AC + UP) = FPtime.

The proof methods used by Cantini include a subtle internal forcing seman-
tics, non-standard variants of realizability and partial cut elimination prop-
erties. The forcing interpretation is very elegant and makes direct use of the
truth predicate T.
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7 Safe induction

Apart from the world of bounded recursion schemas, bounded arithmetic and
bounded applicative theories there is the realm of so-called tiered systems
in the sense of Cook and Bellantoni (cf. e.g. [3]) and Leivant (cf. e.g. [31,
32]). Crucial for this approach to characterizing complexities is a strictly
predicative regime which distinguishes between different uses of variables in
induction and recursion schemas, thus severely restricting the definable or
provably total functions in various unbounded formalisms.

Unarguably, the tiered approach to complexity has led to numerous highly
interesting and intrinsic recursion-theoretic and also proof-theoretic char-
acterizations of complexity classes, which might lead to new subrecursive
programming paradigms. Also, higher type issues have recently been a sub-
ject of interest in this area, cf. e.g. Bellantoni, Niggl, Schwichtenberg [4],
Hofmann [26], and Leivant [33],

Finally, the tiered approach has provided neat distinctions between slow
growing and fast growing proof theories, see e.g. Wainer [54] and Ostrin
and Wainer [36].

Below let us briefly address some recent work along the lines of implicit
characterizations in the context of untyped applicative theories based on
classical logic.

7.1 Polynomial time

In our applicative setting the above-mentioned “predicativization” amounts
to distinguishing between (at least) two sorts or types of binary words W0 and
W1, say, where induction over W1 is allowed for formulas which are positive
and do not contain W1, cf. Cantini [13] for such systems.

A more elegant viewpoint of the predicative regime is to consider a modal
framework. Extend the language L by a modal operator 2 and let 2 obey
the laws of an S4 modality. Let t ∈ 2W stand for 2(t ∈ W). Then W and
2W play the role of normal and safe strings in the Bellantoni-Cook sense,
respectively. We call a formula positive safe if it is positive and does not
involve the 2 operator. Accordingly, we can formulate the following natural
induction principle.

Positive safe notation induction:

For each positive safe formula A(x),

A(ε) ∧ (∀x ∈ 2W)(A(x) → A(s0x) ∧ A(s1x)) → (∀x ∈ 2W)A(x)
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Let PRµ denote the extension of the applicative theory B based on the classi-
cal modal predicate logic S4 and the schema of positive safe notation induc-
tion. The notion of a provably total word function can be suitably adapted
for PRµ, taking into account the two sorts W and 2W, cf. [13] for details.

We are ready to state the following theorem, which is proved in Cantini
[13] by making use of cut elimination and realizability by Cook-Bellantoni
functions.

Theorem 17 τ (PRµ) = FPtime.

7.2 Polynomial space

More recently, Calamai and Cantini [9, 8] have proposed an extension of PRµ,
termed PRµ

p , where induction is strengthened to so-called positive safe tree
induction with pointers. The principle is inspired by Oitavem’s recent tiered
characterization of FPspace in [35].

Positive safe tree induction with pointers:

For each positive safe formula A(x, y),

(∀p ∈ 2W)A(ε, p)∧

(∀x ∈ 2W)(∀p ∈ 2W)(A(x, s0p) ∧ A(x, s1p) → A(s0x, p) ∧ A(s1x, p))

→ (∀x ∈ 2W)(∀p ∈ 2W)A(x, p)

The proof of the theorem below of Calamai and Cantini makes use of cut
elimination and realizability by functions in Oitavem’s function algebra with
pointers and tree recursion.

Theorem 18 τ (PRµ
p) = FPspace.

8 Conclusion

In this article we have considered a number of applicative theories (with and
without types or self-referential truth, with and without modality) whose in-
duction principles are formulated for a suitable subclass of positive formulas.

Regarding induction for arbitrary positive formulas, say in the first order
language L, one captures exactly the primitive recursive functions. For def-
initeness, let (Pos-IW) denote induction on W for formulas in Pos. Then
τ (B + (Pos-IW)) coincides with the primitive recursive functions. This result
was first established by Cantini in [11] using asymmetric interpretation and
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formalized semantics in IΣ1 and can be considered as a generalization to the
applicative context of the well-known Parsons-Mints-Takeuti theorem. The
characterization theorem can also be established by the realizability tech-
niques presented in this article (cf. Cantini [14], Strahm [48]). However, it
has to be mentioned that Cantini’s original result [11] is even a bit stronger,
since negated equations in induction formulas are allowed.

We conclude this article by mentioning that the realizability techniques of
this paper have recently been helpful in the context of abstract many sorted
algebras with non-computable equality in establishing a further generaliza-
tion of the Parsons-Mints-Takeuti theorem, cf. Strahm and Zucker [50].
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vol. 20 of Lecture Notes in Logic. Association for Symbolic Logic, 2005.

[15] Clote, P. Computation models and function algebras. In Handbook
of Computability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

[16] Cobham, A. The intrinsic computational difficulty of functions. In
Logic, Methodology and Philosophy of Science II. North Holland, Ams-
terdam, 1965, pp. 24–30.

[17] Cook, S. A., and Kapron, B. M. Characterizations of the basic
feasible functionals of finite type. In Feasible Mathematics, S. R. Buss
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