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Abstract

The importance of logics with approximate conditional probabilities is reflected by the fact that

they can model non-monotonic reasoning. We introduce a new logic of this kind, CPJ, which extends

justification logic and supports non-monotonic reasoning with and about evidences.

1 Introduction

Justification logic [1] is a variant of modal logic that ‘unfolds’ the 2-modality into justification
terms, i.e., justification logics replace modal formulas 2α with formulas of the form t:α that
mean t is a justification for the agent’s belief (or knowledge) in α. This interpretation of
justification logic has many applications and has been successfully employed to analyze many
different epistemic situations including certain forms of defeasible knowledge [2, 3, 4, 5, 12].

In a general setting, justifications need not to be certain. Milnikel [14] was the first to
approach this problem with his logic of uncertain justifications. Kokkinis et al. [8, 9, 10] study
probabilistic justification logic, which provides a very general framework for uncertain reasoning
with justifications that subsumes Milnikel’s system.

In the present paper we extend probabilistic justification logic with operators for approxi-
mate conditional probabilities. Formally, we introduce formulas CP≈r(α, β) meaning the proba-
bility of α under the condition β is approximately r. This makes it possible to express defeasible
inferences for justification logic. For instance, we can express

if x justifies that Tweety is a bird, then usually t(x) justifies that Tweety flies

as CP≈1(t(x):flies, x:bird).
Our paper builds on previous work on probabilistic logics and non-monotonic reasoning.

Logics with probability operators are important in artificial intelligence and computer science
in general [6, 15]. They are interpreted over Kripke-style models with probability measures over
possible worlds. Ognjanović and Rašković [16] develop probability logics with infinitary rules
to obtain strong completeness results. The recent [17] provides an overview over the topic of
probability logics.

Kraus et al. [11] propose a hierarchy of non-monotonic reasoning systems. In particular,
they introduce a core system P for default reasoning and establish that P is sound and complete
with respect to preferential models. Lehmann and Magidor [13] propose a family of non-
standard (∗R) probabilistic models. A default α � β holds in a model of this kind if either
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the probability of α is 0 or the conditional probability of β given α is infinitesimally close to 1.
Using this interpretation, they show that system P is also sound and complete with respect
to ∗R-probabilistic models. Rašković et al. [18] present a logic with approximate conditional
probabilities, LPPS, whose models are a subclass of non-standard ∗R-probabilistic models. They
prove the following: for any finite default base ∆ and for any default α� β

∆ `P α� β iff ∆ `LPPS α� β.

We will introduce operators for approximate conditional probabilities to justification logic.
This makes it possible to formalize non-monotonic reasoning with and about evidences.

2 Basic Justification Logic J

Let C be a countable set of constants, V a countable set of variables, and Prop a countable set
of atomic propositions. Justification terms and formulas are given as follows:

t ::= c | x | (t · t) | (t+ t) | !t and α ::= p | ¬α | α ∧ α | t : α

where c ∈ C, x ∈ V , and p ∈ Prop. We denote the set of all justification formulas by FmlJ.
Other classical Boolean connectives, ∨, →, ↔, as well as ⊥ and >, are defined as usual.

The axioms of the logic J are following:

all propositional tautologies u : (α→ β)→ (v : α→ u · v : β)

u : α→ u+ v : α v : α→ u+ v : α

A set CS ⊆ {(c, α) | c ∈ C,α is an instance of any axiom of J} is called constant specifica-
tion. For a given constant specification CS, we define the Hilbert-style deductive system JCS by
adding the following two rules to the axioms of J:

1. For (c, α) ∈ CS, n ∈ N, infer !nc :!n−1c : · · · :!c : c : α

2. From α and α→ β infer β

A basic evaluation for JCS, where CS is any constant specification, is a function ∗ such that
∗ : Prop → {true, false} and ∗ : Term → P(FmlJ), and for u, v ∈ Term, any constant c and
α ∈ FmlJ we have:

1. if there is β ∈ v∗ with β → α ∈ u∗, then α ∈ (u · v)∗

2. u∗ ∪ v∗ ⊆ (u+ v)∗

3. if (c, α) ∈ CS, then α ∈ c∗ and for each n ∈ N, !nc :!n−1c : · · · :!c : c : α ∈ (!n+1c)∗.

Instead of writing ∗(t) and ∗(p), we write t∗ and p∗ respectively. Now, we are ready to
define the notion of truth under a basic evaluation. The binary relation 
 is defined by:

∗ 
 p iff p∗ = true ∗ 
 ¬α iff ∗ 6
 α

∗ 
 α ∧ β iff ∗ 
 α and ∗ 
 β ∗ 
 t : α iff α ∈ t∗

3 The Logic CPJ

Consider a non-standard elementary extension ∗R of the real numbers. An element ε of ∗R is
called an infinitesimal iff |ε| < 1

n for every n ∈ N. Let S be the unit interval of the Hardy field
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Q[ε], which contains all rational functions of a fixed positive infinitesimal ε of ∗R, for details
see, e.g., [7].

The set of probabilistic formulas, denoted by FmlP, is the smallest set that contains all the
formulas of the form

CP≥s(α, β) CP≤s(α, β) CP≈r(α, β)

for α, β ∈ FmlJ, s ∈ S, and r ∈ Q∩ [0, 1] and that is closed under negation and conjunction. We
use ϕ,ψ, . . . to denote FmlP-formulas. The set of all formulas, Fml, of the logic CPJ is defined
by Fml = FmlJ ∪ FmlP. Elements of Fml will be denoted by θ, θ1, θ2, . . .. We use the following
standard abbreviations, see [18]:

CP<s(α, β) CP>s(α, β) CP=s(α, β) Pρsα with ρ ∈ {≥,≤, >,<,=,≈}.

The semantics for the logic CPJ is based on possible worlds models. Let CS be the constant
specification. A CPJCS-model (or just model) is a tuple M = 〈W,H, µ, ∗〉 where:

• W is a non-empty set of objects called worlds

• H is an algebra of subsets of W

• µ is a finitely additive probability measure on H

• ∗ is a function from W to all basic JCS-evaluations. We write ∗w for ∗(w).

Let M = 〈W,H, µ, ∗〉. We put [α]M := {w ∈ W | ∗w 
 α}. Whenever M is clear from the
context, we will write [α] instead of [α]M .

A CPJCS-model M is measurable if and only if [α]M ∈ H, for every α ∈ FmlJ. A CPJCS-
model M is neat if and only if the empty set has the zero probability and no other set has. The
class of all measurable and neat CPJCS models is denoted by CPJCS,Meas,Neat.

Let CS be any constant specification. The satisfaction relation |= ⊆ CPJCS,Meas,Neat × Fml
is defined, for any M ∈ CPJCS,Meas,Neat, as follows:

1. M |= α if for every w ∈W , ∗w 
 α,

2. M |= CP≤s(α, β) if either µ([β]) = 0 and s = 1, or µ([β]) > 0 and µ([α∧β])
µ([β]) ≤ s,

3. M |= CP≥s(α, β) if either µ([β]) = 0, or µ([β]) > 0 and µ([α∧β])
µ([β]) ≥ s,

4. M |= CP≈r(α, β) if either µ([β]) = 0 and r = 1, or µ([β]) > 0 and for each n ∈ N,
µ([α∧β])
µ([β]) ∈ [max{0, r − 1

n},min{1, r + 1
n}],

5. M |= ¬ϕ iff it is not the case that M |= ϕ,

6. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.

We assume that the conditional probability is by default 1, whenever the condition has the
probability 0, which explains the formulation of case 3 in the above definition.

We introduce the following axiom system for CPJCS, where we set f(s, t) := min{1, s + t},
r− := Q ∩ [0, r), and r+ := Q ∩ (r, 1]:

Axiom schemes

1) all JCS-provable formulas 2) all FmlP-instances of classical tautologies

3) CP≥0(α, β) 4) CP≤s(α, β)→ CP<t(α, β), t > s

5) CP<s(α, β)→ CP≤s(α, β) 6) P≥1(α↔ β)→ (P=sα→ P=sβ)

7) P≤sα↔ P≥1−s¬α 8) (P=sα ∧ P=tβ ∧ P≥1¬(α ∧ β))→ P=f(s,t)(α ∨ β)

9) P=0β → CP=1(α, β) 10) (P=tβ ∧ P=s(α ∧ β))→ CP= s
t
(α, β), t 6= 0

11) CP≈r(α, β)→ CP≥r1(α, β), r1 ∈ r− 12) CP≈r(α, β)→ CP≤r1(α, β), r1 ∈ r+.
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Inference Rules

1. From θ1 and θ1 → θ2 infer θ2.

2. From α infer P≥1α.

3. From the set of premises {ϕ→ P6=sα | s ∈ S} infer ϕ→ ⊥.

4. Let r ∈ Q ∩ [0, 1]. From the two sets of premises {ϕ→ CP≥r− 1
n

(α, β) | n ≥ 1
r , n ∈ N} and

{ϕ→ CP≤r+ 1
n

(α, β) | n ≥ 1
1−r , n ∈ N} infer ϕ→ CP≈r(α, β).

Axiom 3, putting > instead of β, says that the probability of each formula being satisfied in
some set of worlds is at least 0, and we can easily infer (using ¬α instead of α) that the upper
bound is 1, i.e. P≤1α. Axioms 4 and 5 say that we can weaken the degree of confidence of truth,
while Axiom 6 says that equivalent formulas have the same probability. Axiom 8 corresponds
to finite addivity of a measure. Axiom 9 ensures that the conditional probability is equal to 1
whenever the condition has probability 0. Axiom 10 is the formula that states the standard
definition of the conditional probability. Finally, the Axioms 11 and 12 (together with Inference
Rule 4) give us the relationship between the conditional probability infinitesimally close to the
some rational number r ∈ [0, 1] and the standard conditional probability.

Note that there are two bottom elements in Fml, namely ⊥J ∈ FmlJ and ⊥P ∈ FmlP.
Accordingly we say that a set T of Fml-formulas is CS-consistent if T 6`CS ⊥J and T 6`CS ⊥P.

Similar to [18], we can establish an extended completeness result.

Theorem 1. Let CS be any constant specification. A set T of Fml-formulas is CS-consistent
if and only if T has a CPJCS,Meas,Neat-model, i.e., there exists a CPJCS,Meas,Neat-model M with
M |= θ for each θ ∈ T .

4 Conclusion

We extended probabilistic justification logic with operators for approximate conditional prob-
abilities, which makes it possible to express defaults in justification logic. In particular:

CP≈1(t(x):flies, x:bird) (1)

means if x justifies that Tweety is a bird, then usually t(x) justifies that Tweety flies;

CP≈1(¬t(x):flies, x:penguin) (2)

means if x justifies that Tweety is a penguin, then usually it is not the case that t(x) justifies
that Tweety flies;

CP≈1(x:bird, x:penguin) (3)

means if x justifies that Tweety is a penguin, then usually x also justifies that Tweety is a bird.
Similar to [13, 18], it is possible to show that (the corresponding translations) of the axioms

and rules of system P are sound with respect to CPJ. In particular we can apply the rule of
cautious monotonicity to (2) and (3) in order to infer

CP≈1(¬t(x):flies, x:penguin ∧ x:bird),

which is consistent with (1).
Besides the possibility of expressing defaults, CPJ also features non-monotonic versions of

classical operations on justifications. Let us consider the sum operator with its defining axiom

u : α ∨ v : α→ u+ v : α. (4)
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This axiom states that justifications are monotone: if u justifies α, then the combination of
u with v still justifies α. Often the sum operation is motivated as follows. Think of u and v
as two volumes of book collection and u + v as the set of those two volumes. Imagine that
volume u contains a justification for a proposition α, i.e., u : α is the case. Then the larger set
u+ v also contains a justification for α, i.e., u+ v : α. This idea is reflected in the provability
semantics of justification logic where the sum operation is interpreted as proof concatenation,
which, of course, is monotone.

This motivational example can also be read in another way. It is possible that the second
volume v contains a retraction of α, i.e., it withdraws the justification given for α in volume u.
To model situations of this kind, one could introduce a non-monotonic sum operation, ∼o , with

CP≈1(u∼o v:α, u:α) and CP≈1(u∼o v:α, v:α).

Using the (Or) rule of system P we get CP≈1(u ∼o v:α, u:α ∨ v:α), which is a non-monotonic
version of (4).
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[10] I. Kokkinis, Z. Ognjanović, and T. Studer. Probabilistic justification logic. In S. Artemov and
A. Nerode, editors, LFCS 2016, volume 9537 of LNCS, pages 174–186. Springer, 2016.

[11] S. Kraus, D. J. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artif. Intell., 44(1-2):167–207, 1990.

[12] R. Kuznets and T. Studer. Update as evidence: Belief expansion. In S. N. Artemov and A. Nerode,
editors, LFCS 2013, volume 7734 of LNCS, pages 266–279. Springer, 2013.

[13] D. J. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artif. Intell.,
55(1):1–60, 1992.

[14] R. S. Milnikel. The logic of uncertain justifications. APAL, 165(1):305–315, 2014.

[15] N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:7187, 1986.
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