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Abstract. Buchholz’s Ωµ+1-rules provide a major tool for the proof-
theoretic analysis of arithmetical inductive definitions. The aim of this
paper is to put this approach into the new context of modal fixed point
logic. We introduce a deductive system based on an Ω-rule tailored for
modal fixed point logic and develop the basic techniques for establishing
soundness and completeness of the corresponding system. In the con-
cluding section we prove a cut elimination and collapsing result similar
to that of Buchholz [3].
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1. Introduction

Buchholz’s Ωµ+1-rules play a prominent role in the proof-theoretic analysis
of (iterated) arithmetical inductive definitions. However, unlike the ω-rule of
arithmetic, which branches over the natural numbers, the Ωµ+1-rules branch
over certain classes of derivations. Let us cite Buchholz [3] to introduce the
Ω1-rule and give a motivation for it: ‘According to the intuitionistic interpre-
tation of implication a proof of Pn → C consists of a construction Π which
transforms any proof X of Pn into a proof ΠX of C. This may serve as a
motivation for the following inference rule: If for each direct proof X of Pn
tX is a deduction of C, then (tX)X∈Pn is a deduction of Pn → C.’ In this
statement Pn means that n belongs to the least fixed point P , and Pn is the
collection of all direct proofs of Pn.

Buchholz introduced the Ωµ+1-rules for the proof-theoretic analysis of
(iterated) inductive definitions, see [3, 5]. They soon turned out to be of fun-
damental interest in proof theory and are, among other applications, a basis
for ‘ordinal free’ consistency proofs. For important work about Buchholz’s
Ωµ+1-rules see, for example, Aehlig [1], Gordeev [6], and Towsner [11].

In the present paper we are not concerned with the analysis of fixed
points in fragments of second order arithmetic but show that a related method
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can also be applied in the area of modal fixed point logics. Such systems
occur in many different forms and in many different contexts. To give some
examples, let us mention temporal logics like LTL and CTL, epistemic logics
like the logic of common knowledge, and program logics like PDL. All these
logics are subsumed by the propositional modal µ-calculus.

The article Jäger, Kretz, and Studer [7] presents and studies an infini-
tary version of the full propositional modal µ-calculus which treats greatest
fixed points by an infinitary rule reminiscent of the ω-rule in arithmetic. Here
we develop the basic machinery for employing Buchholz’s Ω1-rule in a modal
logic context and prove soundness and completeness of the deductive system
with our Ω-rule. Therefore and in order to focus on the basic ideas, we con-
fine ourselves to the theory M1 of non-iterated least fixed points of positive
modal formulae. Extensions to systems permitting iterated and nested modal
fixed points are planned for subsequent publications.

In the following section we introduce the syntax and semantics of M1.
Then we present the corresponding deductive system M∞1 which is based on
the Ω-rule. To show this rule at work, we derive in Section 4 the usual induc-
tion rule within M∞1 . The central results of our paper are the completeness
and soundness proofs for M∞1 . We first establish completeness by a canonical
counter-model construction and then make use of the finite model property
of M1 to prove soundness of M∞1 . In the concluding section we prove a cut
elimination and collapsing result similar to that of Buchholz [3].

2. Syntax and semantics of M1

We begin this section with introducing the basic language L0 and then turn
to its extension L1, which is the language of the theory M1. Let

Prop := {X,∼X, p,∼p, q,∼q, r,∼r, . . .}
be a countable set of atomic propositions with X playing a special rôle later.
Further, let M := {1, . . . , h} be a finite set of indices.

Definition 1 (Formulae of L0). The formulae of the language L0 are induc-
tively defined as follows:

1. If P is an element of Prop, then P is a formula of L0.
2. If A and B are formulae of L0, then so are (A ∧B) and (A ∨B).
3. If A is a formula of L0 and i ∈ M, then �iA and ♦iA are also formulae

of L0.

An operator form is a formula of L0 which does not contain the negated
atomic proposition ∼X. In the following we let A range over operator forms
and associate a fresh atomic proposition PA to any operator form A.

Definition 2 (Formulae of L1). The formulae of the language L1 are induc-
tively defined as follows:

1. If P is an element of Prop, then P is an (atomic) formula of L1.
2. For each operator form A, PA and ∼PA are (atomic) formulae of L1.
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3. If A and B are formulae of L1, then so are (A ∧B) and (A ∨B).
4. If A is a formula of L1 and i ∈ M, then �iA and ♦iA are also formulae

of L1.

The positive formulae of L1 are those without occurrences of ∼PA for any
operator form A.

Typically, we only speak of formulae if it is clear that we refer to for-
mulae of L1; also, we often omit parentheses whenever there is no danger
of confusion. Note that formulae are a priori in negation normal form. The
negation ¬A of a formula A is defined as usual by De Morgan’s laws, the
law of double negation, and the duality laws for modal operators. For any
formulae A and B and an arbitrary but fixed element p of Prop different
from X we set

A→ B := ¬A ∨B and ⊥ := p ∧ ∼p.
If P is an element of Prop, A a formula which does not contain occurrences
of ∼P , and B an arbitrary formula, then we write A[P := B] for the result
of simultaneously substituting B for each occurrence of P in A. The finite
iterations of an operator formA with respect to a given formula B are defined,
for any natural number i ≥ 1, as follows:

A1(B) := A[X := B] and Ai+1(B) := A[X := Ai(B)].

To simplify the notation, we generally write A(B) instead of A1(B).

Definition 3 (Kripke structure). A Kripke structure is a triple K = (S,R, π)
consisting of a non–empty set S, a function R from M to P(S × S), and a
function π from Prop to P(S) such that π(¬P ) = S\π(P ) for all P ∈ Prop.

If K is the Kripke structure (S,R, π), we usually write |K| for the set of
states S. The function R assigns a binary accessibility relation to each i ∈ M.
Furthermore, for a Kripke structure K = (S,R, π) and a set T ⊆ S, we define
the Kripke structure K[X := T ] as the triple (S,R, π′), where π′(X) = T ,
π′(∼X) = S \ T and π′(P ) = π(P ) for all other P ∈ Prop.

Assume that we are given a Kripke structure K and a formula A. We are
interested in the set of all states ‖A‖K which validate A. To determine this
set, we first introduce the interpretations of all formulae of L0, then interpret
the fixed point constants, and finally extend these denotations to all formulae
of L1.

Definition 4 (Denotations). Let K = (S,R, π) be a Kripke structure.

1. For any formula A of L0, the set ‖A‖K is inductively defined as follows:

‖P‖K := π(P ) for all P ∈ Prop,

‖B ∧ C‖K := ‖B‖K ∩ ‖C‖K,
‖B ∨ C‖K := ‖B‖K ∪ ‖C‖K,
‖�iB‖K := {w ∈ S : v ∈ ‖B‖K for all v such that (w, v) ∈ R(i)},
‖♦iB‖K := {w ∈ S : v ∈ ‖B‖K for some v such that (w, v) ∈ R(i)}.
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2. If A is an operator form, we first introduce the monotone operator

FK
A : P(S)→ P(S) with FK

A(T ) := ‖A‖K[X:=T ]

for all T ⊆ S. Based on this FK
A we now set

‖PA‖K :=
⋂
{T ⊆ S : FK

A(T ) ⊆ T} and ‖∼PA‖K := S \ ‖PA‖K.

3. For formulae A of L1 the denotations ‖A‖K are generated by lifting the
denotations of the atomic formulae according to the clauses in the first
part of this definition.

Clearly, by the famous Knaster-Tarski theorem, ‖PA‖K is the least fixed
point of FK

A.
A formula A is called satisfiable if there exists a Kripke structure K such

that ‖A‖K is non-empty. A formula A is said to be valid if for every Kripke
structure K we have ‖A‖K = |K|; this is denoted by |= A. Finally, we say that
a finite set Γ of formulae is valid, or |= Γ, if |=

∨
Γ for the disjunction

∨
Γ of

the elements of Γ.
Given any Kripke structure K and an operator form A, we will later also

need the approximations of the least fixed point of the monotone operator
FK
A. Thus we inductively define for all ordinals α

I<αA,K :=
⋃
β<α

IβA,K and IαA,K := FK
A(I<αA,K).

Then we set IA,K :=
⋃
α∈On I

α
A,K and recall the following classical results

which are discussed, for example, in the textbooks Moschovakis [9] and Bar-
wise [2] or follow directly from what is treated there.

Theorem 5. Let A be any operator form.

1. For every Kripke structure K we have IA,K = ‖PA‖K and, for any nat-
ural number n,

|= An(⊥)→ PA.

2. If K is a Kripke structure and |K| a set of at most k elements, then we
also have

‖PA‖K = ‖Ak(⊥)‖K.

M1 is the Hilbert-style formalization of the non-iterated propositional
modal µ-calculus. It is obtained by extending the multi-modal version of the
logic K by closure axioms for the fixed point constants and corresponding
induction rules.

Logical axioms of M1. For all propositional tautologies A, all formulae B and
C, and all i ∈ M:

A (taut)

�iB ∧ �i(B → C) → �iC (K)
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Logical rules of M1. For all formulae A and B and all i ∈ M:

A A→ B

B
(mp)

A

�iA
(nec)

Closure axioms of M1. For all operator forms A:

A(PA)→ PA (cl)

Induction rules of M1. For all operator forms A and all formulae B:

A(B)→ B

PA → B
(ind)

Provability of a formula A in M1 is defined as usual and denoted by
M1 ` A. It is an easy exercise to check that M1 is sound with respect to the
semantics introduced above.

Theorem 6 (Soundness of M1). For any formula A we have

M1 ` A =⇒ |= A.

The completeness of M1 is a more delicate matter. In general it is rather
challenging to show the completeness of Hilbert style deductive systems for
modal fixed point logics. Walukiewicz’s completeness proof of the modal µ-
calculus in [12] is very technical and employs automata-theoretic reductions.
Santocanale and Venema [10], on the other hand, present an algebraic com-
pleteness proof for so-called flat modal fixed point logics. They show that a
Hilbert style system with induction rules and closure axioms is complete if
only fixed points over aconjunctive or disjunctive formulae are considered.
However, to treat arbitrary operator forms they need more general axioms
and rules.

3. The infinitary system M∞
1

In this section we introduce the infinitary system M∞1 . Basically, it is ob-
tained from a Tait-style reformulation of the modal logic K by adding a
closure rule for all fixed point constants and a variant of Buchholz’s Ω1-rule,
tailored for our modal context. However, before turning to M∞1 we introduce
a rank function to measure the complexities of our formulae.

Definition 7 (Rank of a formula).

1. rk(PA) := rk(∼PA) := 0 for each operator form A,
2. rk(P ) := 1 for each P ∈ Prop,
3. rk(A∧B) := rk(A∨B) := max(rk(A), rk(B)) + 1 for all formulae A and
B,

4. rk(�iA) := rk(♦iA) := rk(A) + 1 for all i ∈ M and all formulae A.
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Sequents are finite sets of formulae, and we use the capital Greek letters
Γ, ∆, Π, and Σ to denote sequents. Often we write (for example) Γ,∆, A,B
for the union Γ ∪∆ ∪ {A,B}. A sequent is called positive if all its elements
are positive, cf. Definition 2. For a sequent ∆ = {A1, . . . , An}, we define
♦i∆ := {♦iA1, . . . ,♦iAn}.

The infinitary system M∞1 is formulated as a Tait-style system which
derives sequents rather than individual formulae. It comprises some basic
axioms, rules for the propositional connectives and modal operators, closure
rules for fixed point constants and cuts. When defining derivability in M∞1 ,
also the Ω-rule comes into play.

Axioms of M∞1 . For all sequents Γ and all P in Prop:

Γ, P,¬P (ax)

Propositional rules of M∞1 . For all sequents Γ and all formulae A,B:

Γ, A,B

Γ, A ∨B
(∨)

Γ, A Γ, B

Γ, A ∧B
(∧)

Modal rules of M∞1 . For all sequents Γ,Σ, all formulae A, and all i ∈ M:

Γ, A

♦iΓ,�iA,Σ
(�)

Closure rules of M∞1 . For all sequents Γ and operator forms A:

Γ,A(PA)

Γ, PA
(clo)

Cut rules of M∞1 . For all sequents Γ and all formulae A:

Γ, A Γ,¬A
Γ

(cut)

Here the formulae A and ¬A are called the cut formulae of the cut. The
rank of a cut is the rank of its cut formulae.

Definition 8 (Derivability in M∞1 ). We define M∞1
α

k Γ for all sequents Γ,
ordinals α, and natural numbers k by induction on α.

1. If Γ is an axiom of M∞1 , then we have M∞1
α

k Γ for all ordinals α and
natural numbers k.

2. If M∞1
αi
k Γi and αi < α for all premises Γi of a propositional rule, a

modal rule, a closure rule, or a cut of rank less than k, then we have
M∞1

α

k Γ for the conclusion Γ of this rule.
3. (Ω-rules) Let A be an operator form. If for all positive sequents ∆ and

for all natural numbers n there exists a βn < α such that

M∞1
n

0 ∆, PA =⇒ M∞1
βn
k ∆, Γ,

then M∞1
α

k Γ, ∼PA.
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To simplify the notation, we generally drop M∞1 and simply write
α

k Γ

instead of M∞1
α

k Γ. Hence
α

0 Γ means that there exists a cut-free proof
of Γ in M∞1 whose depth is bounded by α. Furthermore, 6 0 Γ is used as a

shorthand for saying that there is no α such that
α

0 Γ; it thus states that

there is no cut-free proof of Γ in M∞1 . Finally,
<α

k Γ abbreviates that there

exists an ordinal β < α for which
β

k Γ.
More compactly, the Ω-rule can now be stated as: For all ordinals α and

natural numbers k, if for all positive sequents ∆

<ω

0 ∆, PA =⇒ <α

k ∆, Γ,

then
α

k Γ, ∼PA.

We conclude this section with the observation that any formula which
has a finite proof in M∞1 which does not employ the Ω-rule can be proved in
M1. This property plays a rôle later.

4. Embedding of M1 into M∞
1

The main purpose of this section is to show how the formal finite theory
M1 can be embedded into the infinitary system M∞1 . But in doing this, the
reader will also acquire some skill in working with the Ω-rule and gain a
better understanding of its proof-theoretic power.

We begin with stating standard weakening and inversion properties of
M∞1 . Both assertions of the following lemma are proved by induction on the
depths of the respective derivations; details are left to the reader.

Lemma 9. For all sequents Γ,∆, all formulae A,B, all ordinals α, β, and all
natural numbers m,n we have:

1. α ≤ β, m ≤ n, and
α

m Γ =⇒ β

n Γ,∆.

2.
α

m Γ, A ∨B =⇒ α

m Γ, A, B.

Weakening and inversion are basic properties of our calculus M∞1 , and
typically we refrain from mentioning Lemma 9 when we use it.

Recall from the axioms of M∞1 that we have the tertium-non-datur
for all atomic propositions from the set Prop. However, for the fixed point
constants PA it is not formulated as an axiom but requires a proof.

Lemma 10. For all operator forms A we have
ω

0 Γ, ∼PA, PA.

Proof. For any positive sequent ∆ – of course the following implication holds
for arbitrary sequents as well – we trivially have

<ω

0 ∆, PA =⇒ <ω

0 ∆, Γ, PA.

Hence a direct application of the Ω-rule yields
ω

0 Γ, ∼PA, PA. �
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A finite proof of the tertium-non-datur for fixed point constants, i.e. a
proof not making use of the Ω-rule, is not possible. With the previous lemma
at hand, the tertium-non-datur for arbitrary formulae A is easily established
by induction on rk(A).

Lemma 11. For any sequent Γ and any formula A of rank n we have
ω+2n

0 Γ, ¬A, A.

Corollary 12. For any sequent Γ and any operator form A of rank n we have
ω+2n+2

0 Γ, A(PA)→ PA.

Proof. If A is an operator form of rank n, then it can be easily seen that
rk(A(PA)) ≤ n. Hence the previous lemma implies

ω+2n

0 Γ, ¬A(PA), A(PA),

and an application of (clo) yields

ω+2n+1

0 Γ, ¬A(PA), PA.

It only remains to apply (∨) in order to obtain our assertion. �

If ∆ is a positive sequent and B an arbitrary formula, then ∆[PA := B]
denotes the sequent which is obtained from the formulae in ∆ by simultane-
ously replacing all occurrences of PA by B.

Lemma 13. Let ∆,Σ be positive sequents, let A be an operator form, and let
B be an arbitrary formula. If

α

s A(B)→ B

and k = max(s, rk(A(B)) + 1), then we have, for all m < ω, that

m

0 ∆, Σ =⇒ α+m

k ∆, Σ[PA := B].

Proof. We show this assertion by induction on m and distinguish the follow-
ing cases:

1. ∆,Σ is an axiom of M∞1 . Then ∆,Σ[PA := B] is an axiom of M∞1 , too.

2. ∆,Σ is the conclusion of a propositional or modal rule of M∞1 . Then the
claim follows immediately by the induction hypothesis.

3. ∆,Σ is the conclusion of a closure rule of M∞1 whose main formula is
different from PA or an element of ∆. Then the claim also follows immediately
by the induction hypothesis.

4. ∆,Σ is the conclusion of a closure rule of M∞1 whose main formula is the
formula PA and an element of Σ. In this case we have

m0

0 ∆, Σ, A(PA)

for some m0 < m. Thus the induction hypothesis yields
α+m0

k ∆, Σ[PA := B], A(B).
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On the other hand, in view of Lemma 9, our assumptions also imply
α

s ∆, Σ[PA := B], ¬A(B), B.

With a cut we therefore may conclude that

α+m

k ∆, Σ[PA := B], B.

Because of PA ∈ Σ we have B ∈ Σ[PA := B], establishing our assertion also
in this case.

Moreover, ∆, Σ cannot be the conclusion of an Ω-rule since it is a positive
sequent. Hence we have treated all possible cases. �

Lemma 14. Let A be an operator form and B an arbitrary formula. If
α

s A(B)→ B

and k = max(s, rk(A(B)) + 1), then we also have

α+ω+1

k PA → B.

Proof. In view of our assumptions and the previous lemma we know that for
all positive sequents ∆

<ω

0 ∆, PA =⇒ <α+ω

k ∆, B.

Hence an application of the Ω-rule yields
α+ω

k ∼PA, B. From that we deduce
α+ω+1

k PA → B by (∨). �

Corollary 12 tells us that the closure axioms for fixed point constants
are provable in M∞1 , the previous lemma shows that M∞1 is closed under the
induction rules of M1. Hence it is routine to prove the following embedding
theorem by induction on the derivations in M1.

Theorem 15. Whenever a formula A is provable in M1, then there exist
natural numbers m and s such that

ω·m
s A.

5. Completeness of cut-free M∞
1

The aim of this section is to show that each valid formula has a cut-free proof
in M∞1 , implying, of course, that cut-free M∞1 is complete. We establish this
result by a canonical counter-model construction.

We first need a soundness result for the positive cut-free fragment of
M∞1 ; the soundness of full M∞1 is addressed in the next section. If we have
a cut-free proof of a positive sequent Γ, then this proof cannot employ the
Ω-rule. As a consequence of this observation, the following lemma is straight-
forward by induction on α.

Lemma 16. For all ordinals α and all positive sequents Γ we have that
α

0 Γ =⇒ |= Γ.
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The crucial notions of this section are those of pre-saturated and satu-
rated sequents. In particular, observe, for example by studying the proof of
Lemma 22, how the Ω-rule is built into the saturation process.

Definition 17. A sequent Γ is called pre-saturated if for any formulae A and
B and any operator form A the following conditions are satisfied :

(S.1) 6 0 Γ,
(S.2) if A ∨B ∈ Γ, then A ∈ Γ and B ∈ Γ,
(S.3) if A ∧B ∈ Γ, then A ∈ Γ or B ∈ Γ,
(S.4) if PA ∈ Γ, then A(PA) ∈ Γ.

Lemma 18. If Γ is a sequent such that 6 0 Γ, then there exists a pre-saturated
sequent Σ which contains Γ as a subset.

Proof. We begin with fixing an arbitrary enumeration A0, A1, A2, . . . of all
formulae. The index of a formula A is the least number i for which A is
identical to Ai. Depending on this enumeration we now define for each sequent
Π with 6 0 Π a new sequent Π+:

1. If Π is pre-saturated, then Π+ := Π.

2. If Π is not pre-saturated, then we choose the A ∈ Π with smallest
index for which one of the conditions (S.2), (S.3), or (S.4) of Definition 17 is
violated with respect to Π and determine Π+ by distinguishing between the
possible forms of A.

(a) A is the formula B ∨ C. Then we set

Π+ := Π, B, C.

(b) A is the formula B ∧ C. Since Π is not cut-free provable in M∞1 , we
know that

6 0 Π, B or 6 0 Π, C,

and we set

Π+ :=

{
Π, B if 6 0 Π, B,

Π, C if 6 0 Π, C and 0 Π, B.

(c) A is the formula PA. Then we set

Π+ := Π, A(PA).

By this construction it is guaranteed that

6 0 Π+ and Π ⊆ Π+.

Now we take the given sequent Γ which does not have a cut-free proof and
define a sequence Γ0,Γ1,Γ2, . . . of sequents by

Γ0 := Γ and Γn+1 := Γ+
n .

Accordingly, we have for all natural numbers n that

6 0 Γn and Γ ⊆ Γn.
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Write Sufo(A) for the collection of all subformulas of a given formula A and
set

ΦΓ :=
⋃
{Sufo(A) : A ∈ Γ} and ΨΓ :=

⋃
{Sufo(A(PA)) : PA ∈ ΦΓ}.

Then ΦΓ ∪ ΨΓ is finite and Γn ⊆ ΦΓ ∪ ΨΓ for all natural numbers n. Hence
we know that there has to be an m such that Γm is pre-saturated; we let Σ
be this Γm. �

Carefully reading the previous construction also reveals the following
specific variant of the extension of sequents to pre-saturated sequents which
will be employed later in the proof of Lemma 22.

Lemma 19. Let Γ be any pre-saturated and ∆ any positive sequent. If 6 0 Γ,∆,
then there exists a pre-saturated sequent Π containing Γ and ∆ such that for
any operator form A

∼PA ∈ Π =⇒ ∼PA ∈ Γ.

Definition 20. A sequent Γ is called saturated if it is pre-saturated and if for
any operator form A the following condition is satisfied:

(S.5) if ∼PA ∈ Γ, then there exists a positive ∆ ⊆ Γ such that
<ω

0 ∆, PA.

We aim at showing that any sequent without a cut-free proof in M∞1
is contained in a saturated sequent. For this proof we need a consequence of
our Ω-rule.

Lemma 21. Let A be an arbitrary operator form and Γ an arbitrary sequent.
If 6 0 Γ,∼PA, then there exist a positive sequent ∆ such that

<ω

0 ∆, PA and 6 0 ∆, Γ.

Proof. Let 6 0 Γ,∼PA and suppose, aiming at a contradiction, that for all
positive sequents ∆ it is not the case that

<ω

0 ∆, PA and 6 0 ∆, Γ.

Then for any positive sequent ∆ and natural number m there exists an ordinal
αm satisfying

m

0 ∆, PA =⇒ αm
0 Γ, ∆.

Set β := sup(αm + 1 : m < ω). Then the Ω-rule implies
β

0 Γ,∼PA, contra-
dicting the fact that 6 0 Γ,∼PA. Hence our lemma is proved. �

Lemma 22. If Γ is a sequent such that 6 0 Γ, then there exists a saturated
sequent Σ which contains Γ as a subset.

Proof. We show that for every pre-saturated sequent Γ there exists a satu-
rated sequent Σ which contains Γ. Then the claim follows immediately from
Lemma 18. So assume that Γ is a pre-saturated. We prove the following
auxiliary assertion by induction on n:

If a pre-saturated sequent Γ has at most n elements of the form ∼PA
violating (S.5) with respect to Γ, then there exists a saturated Σ
which contains Γ.
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n = 0. Then let Σ := Γ, and we are done.

n > 0. We pick a ∼PB ∈ Γ which violates (S.5) with respect to Γ. Because
of 6 0 Γ, i.e. 6 0 Γ,∼PB, and the previous lemma we know that there exists a
positive sequent ∆ such that

<ω

0 ∆, PB, (1)

6 0 ∆, Γ. (2)

From (2) and Lemma 19 we conclude that there exists a pre-saturated sequent
Π with the properties

∆, Γ ⊆ Π, (3)

∼PA ∈ Π =⇒ ∼PA ∈ Γ. (4)

for all operator forms A.

Because of (1) and (3) the formula ∼PB does not violate (S.5) with
respect to Π. Also, any ∼PA ∈ Γ which does not violate (S.5) with respect to
Γ does not violate it with respect to Π. Thus, in view of (4), the number of
formulae ∼PA ∈ Π which violate (S.5) with respect to Π is smaller than n,
so that we can apply the induction hypothesis. Hence we obtain a saturated
sequent Σ which contains Π and therefore also Γ.

This finishes the proof of our auxiliary assertion which, in turn, immediately
implies our saturation lemma. �

Our next step is to introduce the canonical counter-model K, a Kripke
structure built up from the saturated sequents. In the remainder of this sec-
tion we show that for any formula A which does not possess a cut-free proof
in M∞1 there exists a state of K not satisfying A.

Definition 23 (Canonical counter-model). Let K be the Kripke structure
(Scan, Rcan, πcan) where we define, for all i ∈ M and P ∈ Prop,

Scan := {Γ : Γ a saturated sequent},

Rcan(i) := {(Γ,∆) ∈ Scan × Scan : {B : ♦iB ∈ Γ} ⊆ ∆},

πcan(P ) := {Γ ∈ Scan : P /∈ Γ}.

Due to Lemmata 16 and 22, Scan is non-empty. The Kripke structure K
has a series of important properties which finally lead to the so-called truth
lemma. From that to the cut-free completeness of M∞1 it is a trivial step.

Lemma 24. For all saturated sequents Γ, formulae A, and i ∈ M we have:

1. If �iA ∈ Γ, then there exists a sequent ∆ such that (Γ,∆) ∈ Rcan(i)
and A ∈ ∆.

2. If ♦iA ∈ Γ, then A ∈ ∆ for all sequents ∆ which satisfy (Γ,∆) ∈
Rcan(i).
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Proof. To prove the first part of this lemma recall that, since Γ is saturated,
Γ is not cut-free provable in M∞1 . With �iA ∈ Γ we conclude

6 0 {B : ♦iB ∈ Γ}, A.
Hence Lemma 22 guarantees the existence of a saturated ∆ such that

{B : ♦iB ∈ Γ}, A ⊆ ∆.

Hence we have (Γ,∆) ∈ Rcan(i) and A ∈ ∆. The second part of this lemma
is obvious from the definition of Rcan(i). �

Lemma 25. Let A be any operator form. Then we have for all ordinals α,
all saturated sequents Γ, and all formulae B of the basic language L0 not
containing ∼X that

B[X := PA] ∈ Γ =⇒ Γ /∈ ‖B‖K[X:=I<αA,K].

Proof. We show this implication by main induction on α and side induction
on rk(B) and distinguish the following cases:

1. B ∈ Prop \ {X}. Then the assertion is obvious by the definition of πcan.

2. B is the formula C∨D. Since Γ is saturated, we know that C[X := PA] ∈ Γ
and D[X := PA] ∈ Γ. The induction hypothesis of the side induction therefore
implies Γ /∈ ‖C‖K[X:=I<αA,K] and Γ /∈ ‖D‖K[X:=I<αA,K], hence Γ /∈ ‖B‖K[X:=I<αA,K].

3. B is the formula C∧D. Since Γ is saturated, we know that C[X := PA] ∈ Γ
or D[X := PA] ∈ Γ. The induction hypothesis of the side induction therefore
implies Γ /∈ ‖C‖K[X:=I<αA,K] or Γ /∈ ‖D‖K[X:=I<αA,K], hence Γ /∈ ‖B‖K[X:=I<αA,K].

4. B is the formula ♦iC. Then Lemma 24 tells us that C[X := PA] ∈ ∆ for
all ∆ such that (Γ,∆) ∈ Rcan(i). By the induction hypothesis of the side
induction we obtain ∆ /∈ ‖C‖K[X:=I<αA,K] for those sequents ∆. This implies

Γ /∈ ‖B‖K[X:=I<αA,K].

5. B is the formula �iC. Then the previous lemma tells us that there exists a
sequent ∆ such that (Γ,∆) ∈ Rcan(i) and C[X := PA] ∈ ∆. By the induction
hypothesis of the side induction we obtain ∆ /∈ ‖C‖K[X:=I<αA,K] for this sequent

∆. This implies Γ /∈ ‖B‖K[X:=I<αA,K].

6. B is the formula X. Then B[X := PA] is the formula PA, and we obtain
A(PA) ∈ Γ by the saturation of Γ. Now we apply the induction hypothesis
of the main induction and conclude

Γ /∈ ‖A‖K[X:=I<βA,K]

for all β < α. By the definition of the approximations of least fixed points

this means that Γ /∈ IβA,K for all β < α. Consequently, Γ /∈ ‖B‖K[X:=I<αA,K],

which concludes the proof of our lemma. �

Corollary 26. For all operator forms A and all saturated sequents Γ we have
that

PA ∈ Γ =⇒ Γ /∈ ‖PA‖K.
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Proof. Assume PA ∈ Γ. Then the previous lemma implies Γ /∈ ‖X‖K[X:=I<αA,K]

for all ordinals α. Hence Γ /∈ IA,K and, by Theorem 5, Γ /∈ ‖PA‖K. �

Lemma 27. For all positive formulae B and all saturated sequents Γ we have
that

B ∈ Γ =⇒ Γ /∈ ‖B‖K.

Proof. This assertion is shown by induction on rk(B). If B is an element of
Prop, then our claim is obvious from the definition of πcan, if B is a fixed
point constant, then our claim follows from the previous corollary. In all other
cases our arguments are analogous to those in the proof of Lemma 25. �

Lemma 28. For all operator forms A and all saturated sequents Γ we have
that

∼PA ∈ Γ =⇒ Γ /∈ ‖∼PA‖K.

Proof. Since Γ is saturated, ∼PA ∈ Γ implies that there exists a positive
sequent ∆ ⊆ Γ such that

<ω

0 ∆, PA. (5)

The positivity of ∆ and the previous lemma give us

Γ /∈ ‖B‖K (6)

for all B ∈ ∆. Moreover, (5) and Lemma 16 tell us that the sequent ∆, PA
is valid. Therefore, because of (6), we have Γ ∈ ‖PA‖K, and this means that
Γ /∈ ‖∼PA‖K. �

Lemma 29 (Truth lemma). For all formulae B and all saturated sequents Γ
we have that

B ∈ Γ =⇒ Γ /∈ ‖B‖K.

Proof. Again, this is shown by induction on rk(B) and exactly as the proof
of Lemma 27 with the additional case that B is a formula of the form ∼PA.
However, this case is taken care of by the previous lemma. �

Theorem 30 (Cut-free completeness of M∞1 ). For any valid formula A there
exists an ordinal α such that

α

0 A.

Proof. We show the contraposition of this assertion. So assume 6 0 A. Accord-
ing to Lemma 22 there exists a saturated sequent Σ with A as an element. By
the previous lemma we thus have Σ /∈ ‖A‖K. Therefore A cannot be valid. �

Corollary 31 (Positive completeness).

1. For any valid and positive sequent Γ we have that
<ω

0 Γ.
2. For any positive and valid formula A we have that M1 ` A.

Proof. By induction on α we first show that for any positive sequent Γ
α

0 Γ =⇒ <ω

0 Γ.

Since Γ is positive,
α

0 Γ implies that no instance of the Ω-rule has been
used. All other inference rules have finitely many premises only, and thus no
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problems arise in the induction step. Given this auxiliary consideration about
the finitization of a cut-free proof in M∞1 , the first part of our corollary is
immediate from the cut-free completeness of M∞1 .

Turning to the second assertion, take a positive and valid formula A.

From what we have just proved, we conclude
<ω

0 A. Since A is positive,
this means that there exists a finite proof of A in M∞1 not using the Ω-
rule. According to the observation at the end of Section 3 we thus have
M1 ` A. �

6. Soundness of M∞
1

The modal µ-calculus has the finite model property, see Kozen [8]. That yields
the following theorem as a special case.

Theorem 32 (Finite model property). If a formula A is satisfiable, then there
exists a Kripke structure K such that |K| is finite and ‖A‖K 6= ∅.

The result about the positive completeness of M∞1 in the previous sec-
tion together with this finite model property of M1 give us the soundness of
M∞1 .

Theorem 33 (Soundness of M∞1 ). For all ordinals α, all natural numbers k,
and all sequents Γ we have that

α

k Γ =⇒ |= Γ.

Proof. This is shown by induction on α, and only the case that Γ is the
conclusion of an application of the Ω-rule requires special attention. So let Γ
be a sequent of the form Σ,∼PA and let the premise of the Ω-rule be satisfied.
Then

<ω

0 ∆, PA =⇒ <α

k ∆, Σ (7)

for all positive sequents ∆. Now assume that 6|= Γ, i.e. 6|= Σ,∼PA. According
to the finite model property there exists a Kripke structure K such that |K|
has finitely many elements and

‖PA ∧ ¬C‖K 6= ∅,
where C is the disjunction of the elements of Σ. With k being the cardinality
of |K|, we conclude with Theorem 5 that

‖Ak(⊥) ∧ ¬C‖K 6= ∅. (8)

On the other hand, Theorem 5 also implies the validity of ¬Ak(⊥), PA from
which we deduce by Corollary 31 or prove directly by induction on k that

<ω

0 ¬Ak(⊥), PA.

Hence (7) yields
<α

k ¬Ak(⊥), Σ.

Now we can apply the induction hypothesis and obtain

|= ¬Ak(⊥) ∨ C,
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a contradiction to (8). Hence we have |= Γ, as desired. �

7. Cut elimination and collapsing

The proof-theoretic analysis of the theory ID1 by means of the infinitary
system ID∞1 based on Buchholz’s Ω1-rule requires an intricate combination
of cut elimination and collapsing; see Buchholz [3] for all details. In this
section we present a corresponding approach for M∞1 .

As a preparatory step, we eliminate all cuts whose cut formulae are
different from fixed point constants and their complements. This is routine
and creates no problems. Keep in mind that, according to Definition 7, fixed
point constants and their complements have rank 0 and all other atomic
formulae rank 1.

Lemma 34. For all ordinals α, all natural numbers k ≥ 1, and all sequents Γ
we have that

α

k+1 Γ =⇒ 2α

k Γ.

Now we must take care of cuts whose cut formulae are pairs of fixed
point constants and their complements. They are eliminated in the context
of positive sequents with the following lemma taking care of the critical case.
In its formulation, if Σ is a set {PA1 , . . . , PAn} of finitely many fixed point
constants, then ∼Σ denotes {∼PA1 , . . . ,∼PAn}.

Lemma 35. Let α be an ordinal, Γ and Π be positive sequents, and Σ a finite
set of fixed point constants. Under the assumptions

(A1)
<ω

0 Γ, PA for all PA ∈ Σ,

(A2)
α

1 Π, ∼Σ

we obtain that
<ω

0 Γ,Π.

Proof. We show this lemma by induction on α and distinguish the following
cases.

1. If Π,∼Σ is an axiom or the conclusion of a propositional, modal, or clo-
sure rule, then our assertion is obvious or an immediate consequence of the
induction hypothesis.

2. Π,∼Σ is the conclusion of a cut. Then there exists a fixed point constant
PB and ordinals α0, α1 < α such that

α0

1 Π, ∼Σ, PB, (9)

α0

1 Π, ∼Σ, ∼PB. (10)

By induction hypothesis, (A1) and (9) imply
<ω

0 Γ, Π, PB. (11)

Hence (A1), (11), (10) plus a further application of the induction hypothesis

yield
<ω

0 Γ,Π.
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3. Π,∼Σ is the conclusion of an application of the Ω-rule. Then we have a
PB ∈ Σ such that

<ω

0 ∆, PB =⇒ <α

1 ∆, Π, ∼Σ

for all positive sequents ∆. Making use of this implication and assumption
(A1) we obtain

<α

1 Γ, Π, ∼Σ. (12)

Therefore, the induction hypothesis applied to (A1) and (12) gives us again
<ω

0 Γ,Π. This was the last case to be considered, and thus our lemma is
established. �

Theorem 36 (Collapsing + cut elimination). For all ordinals α and all positive
sequents Γ we have that

α

1 Γ =⇒ <ω

0 Γ.

Proof. Again, we proceed by induction on α. If Γ an axiom, then our claim is
obvious; if Γ is the consequence of a inference rule different from a cut, then
simply apply the induction hypothesis. So it remains the case that the last
inference rule is a cut. Then there are α0, α1 < α and a fixed point constant
PA for which

α0

1 Γ, PA, (13)
α1

1 Γ, ∼PA. (14)

Hence the induction hypothesis applied to (13) immediately yields

<ω

0 Γ, PA. (15)

Fortunately, we can now apply the previous theorem to (14) and (15), imply-

ing that
<ω

0 Γ. This finishes the proof of our theorem. �

For the final result of this section it only remains to combine Lemma 34,
which deals with the elimination of the ‘trivial’ cuts, with the previous col-
lapsing + cut elimination lemma, eliminating fixed point constants and their
complements from positive sequents.

Corollary 37. For all ordinals α, all natural numbers k, and all positive se-
quents Γ we have that

α

k Γ =⇒ <ω

0 Γ.

The previous corollary has been established by purely syntactic meth-
ods, neither the completeness nor the soundness of M∞1 are needed. As pre-
sented, we go via the infinitary M∞1 ; however, with methods from Buch-
holz [4] it should be possible to avoid an infinitary intermediate system. An
alternative semantic proof is as follows:

(i) If
α

k Γ, then the soundness of M∞1 gives us the validity of Γ.

(ii) Hence our result about positive completeness implies
<ω

0 Γ.
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As yet, we have full syntactic cut elimination for the positive fragment
of M∞1 only. On the other hand, combing Theorem 30 and Theorem 33 gives
us a semantic proof of full cut elimination for all sequents provable in M∞1 .
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