
Data Privacy for ALC Knowledge Bases

Ph. Stouppa, Th. Studer

Technischer Bericht IAM-08-002 vom 29. August 2008

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch

Data Privacy for ALC Knowledge Bases

Phiniki Stouppa, Thomas Studer

Technischer Bericht IAM-08-002 vom 29. August 2008

CR Categories and Subject Descriptors:
I.2.4 [Knowledge Representation Formalisms and Methods]: Miscella-
neous; H.2.7 [Database Administration]: Security, integrity, and protection;
F.4.1 [Mathematical Logic]: Proof theory

General Terms:
Theory, security

Additional Key Words:
Data privacy, description logic

Institut für Informatik und angewandte Mathematik, Universität Bern

Abstract
Information systems support data privacy by granting access only to cer-
tain (public) views. The data privacy problem is to decide whether hidden
(private) information may be inferred from the public views and some ad-
ditional general background knowledge. We study this problem in the con-
text of ALC knowledge bases. First we show that the ALC privacy prob-
lem wrt. concept retrieval and subsumption queries is ExpTime-complete.
Then we provide a sufficient (but not necessary) condition for data privacy
that can be checked in PTime. This second approach is directly applicable
to modular ontologies.

Contents
1 Introduction 1

2 Preliminaries 4

3 Data privacy on view definitions 9

4 The labelled deductive system 13

5 Proving privacy 15

6 Conclusions 24

References 25

Introduction 1

1 Introduction

In information systems, the problem of data privacy is to verify whether
the confidential information that is stored in a system is not provided to
unauthorized users and therefore, personal and other sensitive data re-
main private. Data privacy issues are particularly critical in environments
where sharing and reuse of information are constantly applied. Let us cite
the OWL Language Guide [1]: ‘...the capability to merge data from multiple
sources, combined with the inferential power of OWL, does have potential
for abuse. Users of OWL should be alert to the potential privacy implica-
tions.’
A definition of data privacy that applies both on database and knowledge
base systems has been presented in [2, 3]. There, the problem of prov-
able data privacy on views was introduced as follows. Assume that all
information about a system is provided to a user through a view and some
background knowledge that is publicly available. The privacy problem un-
der this setting is to decide that the user cannot infer - from the view and
the background knowledge - any answer to a given query q. That one
cannot infer any answer to q is formalized as the set of certain answers
to q is empty. If the problem is answered positively, we say that privacy
is preserved for q. The notion of certain answer originates from the study
of incomplete databases [4] and is now a key notion in data integration
[5, 6, 7] and data exchange [8, 9]. Provable data privacy was studied in [2]
from the perspective of relational databases. We then extended the notion
of provable data privacy in order to make it applicable also to knowledge
base systems, see [3]. There we showed that this privacy problem on a
view reduces to the retrieval or entailment problem.
In the present paper, we will use the notion of provable privacy to study
a more general problem: the problem of (deciding) data privacy on view
definitions. The new problem is now the following: given only a view defini-
tion instead of a complete view, decide whether privacy is preserved on all
possible views of that view definition. We investigate the new problem for
the case of ALC knowledge bases with GCIs. In such a knowledge base
the domain is only partially known (incomplete), background knowledge
is formalized as a part of the knowledge base, and for the view and the
privacy condition we allow for concept retrieval and subsumption queries.
We present a total and a partial solution to the problem. The total solution
shows that the problem is decidable and can be computed by considering
only a finite number of possible views. As a corollary we obtain that the
problem is ExpTime-complete.

2 IAM-08-002

The partial solution detects only some of the privacy preserving cases and
is based on a syntactic criterion on the view definition, the general knowl-
edge base and the privacy condition. More specifically, it makes use of
the observation that quantifiers restrict the amount of information one can
access through a concept. For example, given that all R-assertions are
hidden, the validity of the concept ∀R.A does not reveal any information
(i.e. validity or specific individuals) about the concept A. We show that this
syntactic condition is sufficient (but not necessary) for data privacy and that
it can be checked in PTime. Moreover, this criterion may be also applied
to certain modular and E-connected ALC ontologies [10, 11].1 Consider
for instance the scenario where a public ontology O1 consists of concepts
in which concepts of a second, distinct ontology O2 might appear only be-
hind some quantified roles Ei.2 If there is no public role assertion (x, y) : Ei

for any Ei that is universally bound in O1, then privacy is preserved for all
(non-trivial) concepts of O2 under any view of O1.
Our notion of privacy is based on the concept of certain answers. Another
very important privacy notion is that of perfect privacy which assures that
no information at all about the answers to a given query is exhibited by the
public data. If, for example, a view reveals something about the number
of answers to q, then q is considered insecure. Perfect privacy has been
introduced in [12] and generalized in [13]. Recently, a connection between
perfect privacy and query containment has been established [14] which
allows to identify subclasses of conjunctive queries for which enforcing
perfect privacy is tractable.
An active research area in the field of data privacy is also the development
and evaluation of privacy preserving query answering methodologies for
relational databases. The question of how much information a view re-
veals and whether it leaks private data is addressed in [15] for a variety
of confidentiality policies. There it is argued that, in overcoming a pri-
vacy violation, a refusal (i.e. deny to answer a query) should be in general
preferable rather than a lie (i.e. give a false answer). In [16] a generalized
answer is proposed whereas in [17, 18] it is proposed to return a partial an-
swer. In the latter case, the problem consists in inferring a maximal subset
of the answer to a query so that no secrets are violated.
The rest of the paper is organized as follows: we first present the syntax
and the semantics of the language ALC, explain how a query is answered
on an ALC knowledge base and introduce the problem of data privacy on

1This can be obtained by appropriately adapting the definition of the privacy condition
as well as the tableaux methods used in proving the results.

2Note that role inverses are ruled out.

Introduction 3

a view. Then, in Section 3 we define data privacy on a view definition
and show both the complete and partial solutions to the problem. The
complexities of the problems are also discussed here. In Section 4, we
continue with a deductive system for ALC which will be used in the proofs
of the two solutions; these are presented in Section 5. Finally, in Section 6
we summarize our results and give some directions for further work.

4 IAM-08-002

2 Preliminaries
The language of ALC consists of a countable set of individuals Ind, a
countable set of atomic concepts AConc, a countable set of roles Rol and
the concepts built on AConc and Rol as follows:

C,D := A | ¬A | C uD | C tD | ∀R.C | ∃R.C
where A ∈ AConc, R ∈ Rol, and C and D are concepts. We use a, b, c, . . . to
denote individuals, A,A1, A2, . . . to denote atomic concepts, R,R1, R2, . . .
to denote roles and C,C1, C2, . . . , D,D1, D2, . . . to denote concepts.
Note that the language includes only concepts in negation normal form.
The complement of a concept ¬(C) is inductively defined, as usual, by
using the law of double negation, de Morgan’s laws and the dualities for
quantifiers. When the scope of the negation is unambiguous, we also write
¬C instead of ¬(C). Moreover, the constants > and ⊥ abbreviate A t ¬A
and A u ¬A, respectively, for some A ∈ AConc.
We also introduce the (non-standard) notion of subterms of a given con-
cept. The set of subterms s(C) of a concept C is inductively defined by:

s(A) :={A} s(¬A) := {¬A}
s(C ? D) :={C ? D} ∪ s(C) ∪ s(D) s(QR.C) := {QR.C} ∪ s(C)

where ? is either t or u and Q is either ∀ or ∃. Note that the complements
of atomic concepts are not decomposable. For instance, the subterms of
A1 t ∃R.¬A2 are A1,¬A2,∃R.¬A2 and A1 t ∃R.¬A2.

Concepts are interpreted in the usual way:

Definition An interpretation I consists of a non-empty domain ∆I and a
mapping ()I that assigns

• to each individual a ∈ Ind an element (a)I ∈ ∆I

• to each atomic concept A ∈ AConc a set (A)I ⊆ ∆I

• to each role R ∈ Rol a relation (R)I ⊆ ∆I ×∆I

The elements of a domain are denoted by d, d1, d2, The interpretation
I extends then on concepts as follows:

(¬A)I = ∆I \ (A)I

(C uD)I = (C)I ∩ (D)I

(C tD)I = (C)I ∪ (D)I

(∀R.C)I = {d1 ∈ ∆I | ∀d2 ((d1, d2) ∈ (R)I ⇒ d2 ∈ (C)I)}
(∃R.C)I = {d1 ∈ ∆I | ∃d2 ((d1, d2) ∈ (R)I & d2 ∈ (C)I)}

Preliminaries 5

We can now define the notion of a knowledge base and its models. An
ALC knowledge base O is the union of

1. a finite terminological set (TBox) of inclusion axioms that have the
form > v C,3 where C is called inclusion concept, and

2. a finite assertional set (ABox) of assertions of the form a : C (concept
assertion) or (a, b) : R (role assertion) where R is called assertional
role and C is called assertional concept.

We denote the set of individuals that appear in O by Ind(O). An interpre-
tation I is a model of

• an inclusion axiom > v C (I |= > v C) if (C)I = ∆I ,

• a concept assertion a : C (I |= a : C) if (a)I ∈ (C)I ,

• a role assertion (a, b) : R (I |= (a, b) : R) if ((a)I , (b)I) ∈ (R)I .

Let O be the ALC-knowledge base of a TBox T and an ABox A. An
interpretation I is a model of O if I |= φ, for every φ ∈ T ∪A. A knowledge
base O is consistent if it has a model. Moreover, for ψ an inclusion axiom
or an assertion, we say that O |= ψ (in words, O entails ψ) if for every
model I of O, I |= ψ also holds.
Deciding the consistency of an ALC knowledge base is an ExpTime-
complete problem, see for instance [19]4. The entailment problem is re-
ducible to the consistency problem as follows:

Theorem 2.1. Let O be a knowledge base and new ∈ Ind \ Ind(O). Then,

• O |= > v C iff O ∪ {new : ¬C} is inconsistent and

• O |= a : C iff O ∪ {a : ¬C} is inconsistent.

Theorem 2.1 shows that an entailment can be decided in ExpTime. More-
over, the inconsistency problem is reducible to the entailment problem and
so, deciding an entailment is an ExpTime-complete problem, too.
The reasoning tasks on an ALC knowledge base are formulated below as
queries. For the time being we consider only subsumption and retrieval
queries.

3This form does not restrict a knowledge base since an arbitrary inclusion C1 v C2

can be linearly transformed to its equivalent > v ¬C1 t C2.
4More details are available from the DL complexity navigator at

http://www.cs.man.ac.uk/∼ezolin/dl/.

6 IAM-08-002

Definition An ALC query q is either a concept of ALC (called retrieval
query) or an inclusion axiom (called boolean query). The answer to a
query q with respect to a knowledge base O (ans(q,O)) is given as follows
where tt is a special constant denoting ‘true’.

ans(> v C,O) := {tt} , if O |= > v C,
ans(> v C,O) := ∅ , if O 6|= > v C,

ans(C,O) := {a ∈ Ind(O) | O |= a : C} .

A view definition V is a finite set of ALC queries.

A view of a given view definition is a function that maps each query of the
view definition to an answer. Formally, we define it as follows.

Definition A view VI of a view definition V is a set of tuples 〈qi, ri〉 such
that

1. for every q ∈ V there exists r with 〈q, r〉 ∈ VI ,

2. {〈q, r〉, 〈q, r′〉} ⊆ VI implies r = r′, and

3. if 〈q, r〉 ∈ VI , then

(a) q ∈ V ,

(b) r ⊆ Ind and finite if q is a retrieval query,

(c) r ⊆ {tt} if q is a boolean query.

A knowledge base O entails a view VI (O |= VI) if r = ans(q,O), for each
〈q, r〉 ∈ VI .

We turn now to the problem of provable data privacy wrt. views. This
problem has been examined for arbitrary data and knowledge bases in [2,
3]. Here we present the problem from the point of view of ALC knowledge
bases and queries; we additionally admit that the underlying knowledge
base is always consistent.
The problem assumes that a user is granted access to a specific view VI

and to some general (background) knowledge of such a knowledge base.
In our case we assume that all information about the knowledge base is
stated explicitly in it and, therefore, the background knowledge coincides
with a part of the knowledge base. We call this knowledge base Obg. Note
that in our setting Obg is not reducible to VI since role assertions are not
expressible in views.

Preliminaries 7

Informally, we say that data privacy is preserved for a query q with respect
to 〈Obg, VI〉 if there are no answers to q that follow with certainty from the
information of VI and Obg. This can be made precise by the notion of
certain answer. The function certain(q, 〈Obg, VI〉) returns the answers to q
that hold in every knowledge base that - according to the user’s knowledge
- could be the actual one (a so-called possible knowledge base).

Definition A knowledge base P is possible with respect to 〈Obg, VI〉 if P is
consistent, Obg ⊆ P, and P |= VI . By Poss〈Obg ,VI〉, we denote the set of all
possible knowledge bases with respect to 〈Obg, VI〉.

In the sequel we consider only 〈Obg, VI〉 tuples with Poss〈Obg ,VI〉 6= ∅.

Definition The certain answers to a query q with respect to 〈Obg, VI〉 are
defined by

certain(q, 〈Obg, VI〉) :=
⋂

P∈Poss〈Obg,VI 〉

ans(q,P).

Definition Given a knowledge base Obg, a view VI and a query q, data
privacy is preserved for q with respect to 〈Obg, VI〉 if

certain(q, 〈Obg, VI〉) = ∅.

Whether data privacy is preserved can be decided by constructing a
canonical knowledge base that contains precisely the information con-
tained in Obg and VI , and querying q on it.

Definition Given a knowledge base Obg and a view VI , the canonical
knowledge base C〈Obg ,VI〉 is defined as

C〈Obg ,VI〉 := Obg ∪
{> v C | 〈> v C, {tt}〉 ∈ VI} ∪
{a : C | there is a set In with 〈C, In〉 ∈ VI and a ∈ In}.

Theorem 2.2 (see [3, Corollary 1]). Data privacy is preserved for a query
q wrt. a view VI and a knowledge base Obg if and only if

ans(q, C〈Obg ,VI〉) = ∅.

8 IAM-08-002

According to Definition 2, ans(q, C〈Obg ,VI〉) can be computed by a number of
entailments which is polynomial to the size of C〈Obg ,VI〉. As it has been al-
ready stated, the entailment problem is reducible to the consistency prob-
lem which is solvable in ExpTime. Moreover, C〈Obg ,VI〉 grows polynomially
wrt. Obg and VI . Therefore, Theorem 2.2 provides an ExpTime decision
procedure to the problem of data privacy on views. The problem is also
ExpTime-hard as the problem of concept satisfiability wrt. a consistent
TBox5 is polynomially reducible to the problem of data privacy as follows:

Proposition 2.3. A concept C is unsatisfiable wrt. a TBox T iff data privacy
for > v ¬C wrt. T and the empty view is not preserved.

Corollary 2.4. The problem of ALC data privacy for a query wrt. a view
and a knowledge base is ExpTime-complete.

5The proof of ExpTime-completeness [20] is not restricted to a consistent TBox. How-
ever, the TBox constructed for the hardness proof is (or can be easily modified to be)
consistent.

Data privacy on view definitions 9

3 Data privacy on view definitions
We begin with extending the previous definitions to the new problem. A
possible view is a view entailed by a possible knowledge base:

Definition A view VI is based on a tuple 〈Obg, V 〉 if it satisfies the following:
(i) VI is a view of V and (ii) Poss〈Obg ,VI〉 6= ∅.

The problem of data privacy on view definitions can be now formally stated
as follows:

Definition Data privacy is preserved for q wrt. a tuple 〈Obg, V 〉 if for every
view VI based on 〈Obg, V 〉, data privacy is preserved for q wrt. 〈Obg, VI〉.
The data privacy problem on view definitions is to decide whether data
privacy is preserved for q wrt. 〈Obg, V 〉.

The problem of data privacy on a view definition is decidable since it is
enough to consider only the views entailed by a finite set of knowledge
bases P. Given a tuple 〈Obg, V 〉 and an individual new /∈ Ind(Obg), a knowl-
edge base P is possible if

1. P ⊇ Obg and consistent,

2. if > v C ∈ P then > v C ∈ Obg ∪ V , and

3. if a : C ∈ P then a : C ∈ Obg or (a ∈ Ind(Obg) ∪ {new} and C ∈ V).

Then P is the set of all possible P wrt. 〈Obg, V 〉 and new.

Theorem 3.1. Data privacy is preserved for q wrt. a tuple 〈Obg, V 〉 if and
only if, for every view VI of V that is entailed by some P ∈ P, data privacy
is preserved for q wrt. 〈Obg, VI〉.

The theorem is proved in Section 5. A naive ExpTime decision procedure
for this problem can be constructed directly from the above theorem: first
compute P and all views entailed by its knowledge bases, and then de-
cide data privacy on each of these views. Let P+ be the knowledge base
constructed from Obg and V as follows:

P+ = {> v C ∈ V } ∪
⋃
{a : C | (a ∈ Ind(Obg) ∪ {new}) and C ∈ V }.

Then, P can be constructed by first computing all subsets of P+ and then
checking their consistency wrt. Obg. Since P+ can be constructed polyno-
mially wrt. the size of Obg and V , there are at most 2p(n) subsets of P+ of

10 IAM-08-002

maximal cardinality p(n), where n is the total size of Obg, V and q. Since
consistency is decidable in ExpTime, computing P stays in ExpTime. Now,
in order to compute the views entailed by some P ∈ P, a polynomial num-
ber of entailments on every P ∈ P is required. Therefore the computation
of all views stays also in ExpTime. Finally, Corollary 2.4 together with the
fact that VI grows polynomially wrt. the size of V and P , imply that the
total time required for checking privacy on all of the (at most) exponentially
many views is again exponential wrt. n.
The problem of data privacy on view definitions is also ExpTime-hard as
the corresponding problem on views is polynomially reducible to this prob-
lem: data privacy for q is preserved wrt. Obg and VI iff it is preserved wrt.
C〈Obg ,VI〉 and the empty view definition.

Theorem 3.2. The problem of ALC data privacy on view definitions is
ExpTime-complete.

In the sequel we present a condition on Obg, V and q which can be decided
in PTime and implies data privacy for q wrt. 〈Obg, V 〉. Thus, we have a suf-
ficient condition for data privacy that can be checked efficiently. It is based
on the syntactic structure of the concepts that constitute the background
knowledge and the view definition. We begin by excluding some ’common
sense’ queries from being potential secrets, because of their trivial (partial)
answers.

Definition A query q is trivial wrt. a tuple 〈Obg, V 〉 when

• ans(q, ∅) = {tt} (i.e. ∅ |= q), if q is a boolean query

• ans(> v q, ∅) = {tt}, if q is a retrieval query and in addition
(Ind(Obg) = ∅) ⇒ (∃C∈V Obg 6|= > v ¬C).

A retrieval query might violate privacy only if some individuals are (poten-
tially) given in public. This is the reason for the condition posed on retrieval
queries in the above definition. An ALC query qualifies as a privacy con-
dition on a tuple 〈Obg, V 〉 if it is not trivial wrt. 〈Obg, V 〉.
Next, we define the boolean function safe() that decides whether a concept
D or a role R exhibits some information about q. Given a knowledge base
Obg, a view definition V and a privacy condition q on 〈Obg, V 〉, the informa-
tion about a concept D is safe if safe(D, q) returns 1; and the information
of a role R is safe if safe(R, 〈Obg, V, q〉) returns 1.
In the sequel, we use the following conventions. Concepts and roles of a
tuple 〈Obg, V 〉 are all inclusion and assertional concepts, assertional roles

Data privacy on view definitions 11

and retrieval queries that appear inObg or V . If a concept C2 has a subterm
C1 then C2 is also written as C2[C1]. If, in addition, there is an occurrence of
C1 in C2 that is not prefixed with a quantifier, then C2 may also be written as
C2[C1]

0. Similarly, if we want to emphasize that C1 is not prefixed in C2 with
an existential quantifier, then C2 may also be written as C2[C1]

0∃. For ex-
ample, the concept A1t∀R2.¬A2 can be also written as A1t∀R2.¬A2[¬A2]
or as A1 t ∀R2.¬A2[¬A2]

0∃ but not as A1 t ∀R2.¬A2[¬A2]
0.

Now, assume we are given a query qC where C is the inclusion or asser-
tional concept of q (i.e. qC = > v C or qC = C). The function safe() is
defined on concepts and roles as follows:
For a concept D, safe(D, qC) = 1 iff there are no D1 and C1 subterms of D
and C, respectively, of the form:

a. D1 = C1 = A, or

b. D1 = C1 = ¬A, or

c. D1 = QR.D2 and C1 = QR.C2,

where A ∈ AConc, R ∈ Rol and Q ∈ {∀,∃}, and for which either

1. D[D1]
0 and C[C1]

0∃ hold, or

2. D[D1]
0, C[∃R.C ′[C1]]

0∃ and C[∀R.C ′′] hold.

For a role R and a tuple 〈Obg, V 〉, safe(R, 〈Obg, V, qC〉) = 1 iff:

1. C is not of the form C[∃R.C ′]0 and

2. for every concept D2 for which D1[∀R.D2]
0∃ is a concept of 〈Obg, V 〉,

safe(D2, qC) = 1.

Theorem 3.3. Given a consistent ALC knowledge base Obg, a view defini-
tion V and a privacy condition q on 〈Obg, V 〉, data privacy is preserved for
q wrt. 〈Obg, V 〉 if for every concept D and role R of 〈Obg, V 〉

safe(D, q) = safe(R, 〈Obg, V, q〉) = 1.

The proof of the theorem is presented in Section 5. Given a concept D and
a query qC, safe(D, qC) can be computed as follows: find all occurrences of
positive atoms A, negated atoms ¬A, universal and existential role restric-
tions ∀R and ∃R, respectively, that appear in D and are not prefixed by a
quantifier, and check whether any of them appear also in C. If there are
such occurrences which are not prefixed by an existential quantifier in C
then safe(D, qC) = 0. Otherwise, let R′ be any of the outermost existentially

12 IAM-08-002

restricted roles that prefix some of the above occurrences in C. If R′ is
also a universal restriction in C then, again, safe(D, qC) = 0. In all other
cases safe(D, qC) = 1. Finding all the above occurrences takes linear time
wrt. the size of D since, at worst all subterms of D will be checked. Check-
ing C for a specific occurrence takes again linear time and thus, the total
computation stays in PTime wrt. the size of C and D.
Given a roleR and a tuple 〈Obg, V, qC〉, safe(R, 〈Obg, V, qC〉) can be computed
by a number of safe() computations on concepts, which are as many as
there are concepts of the form D1[∀R.D2]

0∃ that occur in 〈Obg, V 〉. Finding
these concepts takes linear time wrt. the size of 〈Obg, V 〉. Thus, the safe()
function on a role can be computed in PTime, too.
To conclude, deciding data privacy for a privacy condition q wrt. 〈Obg, V 〉
using the above functions takes polynomial time wrt. the size of q and
〈Obg, V 〉.

Theorem 3.4. Given a knowledge base Obg, a view definition V and a
privacy condition q, it can be decided in PTime whether for every concept
D and role R of 〈Obg, V 〉 we have safe(D, q) = safe(R, 〈Obg, V, q〉) = 1.

As mentioned already above, the solution proposed in Theorem 3.3 is par-
tial. It can correctly detect that data privacy is preserved, for instance, for A
wrt. 〈{R1(a, b), R2(b, c)}, {∀R1∃R2A}〉. However, it cannot detect that data
privacy is preserved for A wrt. 〈{R1(a, b), R2(c, d)}, {∀R1∀R2A}〉 or even for
A u B wrt. 〈∅, {A}〉. In the first case this is because we do not consider
individuals at all, in the second case because we do not check whether
one of the conjuncts forms a trivial query.
The remainder of the paper is concerned with the proofs of Theorems 3.1
and 3.3.

The labelled deductive system 13

4 The labelled deductive system
The consistency of an ALC knowledge base can be decided with the help
of tableaux systems [20, 21, 22]. The labelled deductive system SALC
presented below corresponds to the usual labelled tableaux system for
ALC knowledge bases. It derives sequents of the form Γ ; T̂ where Γ is
a multiset of assertions and T̂ is an optional concept. Generally speaking,
Γ corresponds to the information of an ABox while T̂ to the information
of a TBox. If such a sequent is provable in SALC, then the corresponding
knowledge base is inconsistent.
The system SALC consists of the following left-hand sided rules where the
schematic letters x, y stand for individuals, A for an atomic concept, C and
D for arbitrary concepts, and R for a role.

(ax)
x : A, x : ¬A, Γ ; T̂ ,

x : T̂ , Γ ; T̂
(GCI)

Γ ; T̂
where x appears in Γ and x : T̂ 6∈ Γ,

x : C, x : D, x : C uD, Γ ; T̂
(u)

x : C uD, Γ ; T̂
where {x : C, x : D} * Γ,

x : C, x : C tD, Γ ; T̂ x : D, x : C tD, Γ ; T̂
(t)

x : C tD, Γ ; T̂

where {x : C, x : D} ∩ Γ = ∅,

y : C, (x, y) : R, x : ∃R.C, Γ ; T̂
(∃)

x : ∃R.C, Γ ; T̂

where {(x, z) : R, z : C} * Γ for any z and y is fresh,

y : C, x : ∀R.C, (x, y) : R, Γ ; T̂
(∀)

x : ∀R.C, (x, y) : R, Γ ; T̂
where y : C 6∈ Γ.

If a : C (or (a, b) : R) is an assertion of a sequent S then C (or R) is called
entity of S and a (or (a, b)) is its label. The single concept T̂ is also an
entity of S. The entities that are explicitly stated in a rule are called active
entities. The entity T̂ is active only in (GCI).
We colour every entity of a sequent by exactly one colour.6 This is an
information that is useful in view of the privacy setting and will be used

6For the printed version, instead of colouring, entities are prefixed with a symbol, e.g.
?C or !C.

14 IAM-08-002

later on to distinguish public information from private one. If all entities
of a sequent are coloured the same, then the colour is omitted. Also, a
coloured Γ denotes that all entities of Γ are coloured the same.
It is convenient to colour also rule applications according to the colours
of their active concepts. Rule applications can be then single-coloured or
mixed. A rule application is well-coloured if every entity that appears in the
conclusion has the same colour as its duplication in the premise, and the
entity that is underlined in the conclusion (as shown in the rules above)
has the same colour as all underlined entities in the premise.
A coloured derivation ∆ is a tree of well-coloured rule applications. The
sequent that appears at the root of ∆ is its conclusion whereas the se-
quents on its leaves are its premises. Finally, a coloured SALC proof of a
sequent S is a coloured derivation in SALC with conclusion S and all of its
premises being empty. For example, the following is a bi-coloured proof:

(ax)
a1 : !∀R.C, h3 : !C, h3 : ?¬C, (a1, h3) : !R ;

(∀)
a1 : !∀R.C, h3 : ?¬C, (a1, h3) : !R ;

Definition Let O be a knowledge base with a non-empty ABox A and a
TBox T = {> v Ci | 0 ≤ i ≤ n}. Then, we say that O has a proof in SALC
if there is an SALC proof of the sequent A ; T̂ where

T̂ =
l

0≤i≤n

Ci .

The following theorem restates the well-known decision procedure result
for the consistency of an ALC ABox with respect to an ALC TBox.

Theorem 4.1 (see for instance [20]). An ALC knowledge base with a non-
empty ABox is inconsistent iff it has a proof in SALC.

Proving privacy 15

5 Proving privacy
Lemma 5.1. Let S be a sequent of the form Γx, Γ ; T̂ , where Γx is the
least multiset of assertions satisfying the following conditions:

• if x : C, (x, x′) : R or (x′, x) : R is an assertion in S, then this is in Γx,

• for every x′ that appears in Γx, if x′ : C, (x′, x′′) : R or (x′′, x′) : R is
an assertion in S then this is in Γx.

If S is provable in SALC then the sequent Γx ; T̂ or Γ ; T̂ is also provable.

Proof Let Π be a proof of S. We prove the theorem by induction on the
length l of Π.
Base case: l = 1. Then S = y : A, y : ¬A, ∆ ; T̂ . If y : A ∈ Γx then also
y : ¬A ∈ Γx and so, Γx ; T̂ is provable. Otherwise, if y : A ∈ Γ, then also
y : ¬A ∈ Γ. But then, Γ ; T̂ is provable.
Induction step. We assume that the theorem holds for proofs of length
n. By a case analysis on the rule application r of Π that concludes S, we
show that the theorem also holds for proofs of length n+ 1:

• r = GCI. Then the premise of r is S ′ = y : T̂ , Γx, Γ ; T̂ , where
y appears in S and y : T̂ /∈ S. By the definition of S, y appears in
exactly one of Γx and Γ. Adding the new assertion to the multiset
y appears in, gives a sequent that matches the preconditions of the
theorem, and S ′ takes precisely that form. Therefore, the induction
hypothesis applies to S ′. Again, we distinguish between the possible
locations of y:

– If y appears in Γx, then the induction hypothesis on S ′ results a
proof of y : T̂ , Γx ; T̂ or a proof of Γ ; T̂ . Applying GCI to the
first sequent results a proof of Γx ; T̂ . Therefore, in both cases
the theorem has been shown.

– If y appears in Γ, then the induction hypothesis on S ′ results a
proof of Γx ; T̂ or a proof of y : T̂ , Γ ; T̂ . Applying GCI to the
latter results a proof of Γx ; T̂ or a proof of Γ ; T̂ , as required.

• r = u. Then S = y : C1 u C2, ∆ ; T̂ and {y : C1, y : C2} * ∆. The
premise of r is S ′ = y : C1, y : C2, y : C1 u C2, ∆ ; T̂ . As in the
previous case, the induction hypothesis applies to S ′ when the new
assertions are added to the multiset that contains y : C1 u C2. We
distinguish between the possible locations of these assertions:

16 IAM-08-002

– If y : C1 u C2 ∈ Γx, then the induction hypothesis on S ′ yields a
proof of y : C1, y : C2, Γx ; T̂ or a proof of Γ ; T̂ . Applying
the (u)-rule to the first sequent yields a proof of Γx ; T̂ and
completes the required results.

– If y : C1 u C2 ∈ Γ, then the induction hypothesis on S ′ yields a
proof of y : C1, y : C2, Γ ; T̂ or a proof of Γx ; T̂ . Applying the
(u)-rule to the first sequent yields a proof of Γ ; T̂ , as required.

• r = t. Then S = y : C1 t C2, ∆ ; T̂ and {y : C1, y : C2} ∩ ∆ = ∅.
The premises of r are

S1 = y : C1, y : C1 t C2, ∆ ; T̂ and

S2 = y : C2, y : C1 t C2, ∆ ; T̂ .

As in the previous case, the induction hypothesis applies to both S1

and S2 when, in each of the cases, the new assertion is added to
the multiset that contains y : C1 t C2. We distinguish between the
possible locations of these assertions:

– If y : C1 t C2 ∈ Γx, then the induction hypothesis on S1 yields a
proof of y : C1, Γx ; T̂ or a proof of Γ ; T̂ . And the induction
hypothesis on S2 yields a proof of y : C2, Γx ; T̂ or a proof
of Γ ; T̂ . Thus, there is either a proof of Γ ; T̂ or there are
the proofs of y : C1, Γx ; T̂ and y : C2, Γx ; T̂ . Applying
the (t)-rule to these sequents yields a proof of Γx ; T̂ which
completes the required results.

– If y : C1 t C2 ∈ Γ, then the proof is similar to the previous case.

• r = ∃. Then S = y : ∃R.C, ∆ ; T̂ and the premise of r is

S ′ = z : C, (y, z) : R, y : ∃R.C, ∆ ; T̂ ,

where z is fresh. Since z does not appear in ∆, adding the new as-
sertions to the multiset that contains y : ∃R.C yields a sequent that
satisfies the preconditions of the theorem, and therefore the induc-
tion hypothesis applies to S ′. The case distinction is similar to that of
the previous rules.

• r = ∀. Then S = y : ∀R.C, (y, z) : R, ∆ ; T̂ and the premise of r
is S ′ = z : C, y : ∀R.C, (y, z) : R, ∆ ; T̂ . By the definition of S,
(y, z) : R is in the same multiset y : ∀R.C is in, and z does not appear
in the other multiset. This implies that S ′ satisfies the preconditions
and so the induction hypothesis applies to it. The case distinction is
similar to that of the previous rules.

Proving privacy 17

Lemma 5.2. Let P be the set of possible knowledge bases wrt. a tuple
〈Obg, V 〉. If P ∈ P and VI is the view of V entailed by P , then C〈Obg ,VI〉 and
P are logically equivalent.

Proof First, we show that every element of C〈Obg ,VI〉 is entailed by P and
therefore P is at least as strong as C〈Obg ,VI〉. Since P ⊇ Obg, the elements
of C〈Obg ,VI〉 that come from Obg are entailed by P . The rest of the elements
come from VI which, by definition, is a view entailed by P and so each of
these elements is also entailed by P .
Second, we show that C〈Obg ,VI〉 ⊇ P and therefore C〈Obg ,VI〉 is at least as
strong as P . Since Obg ⊆ C〈Obg ,VI〉, the elements of P that come from Obg

are also in C〈Obg ,VI〉. The rest of the elements come from V . Now, since
VI is a view of V entailed by P , we have that for every inclusion axiom
> v C ∈ P \ Obg there is a tuple 〈> v C, {tt}〉 ∈ VI . Similarly, for every
assertion a : C ∈ P \Obg there is a tuple 〈C, In〉 ∈ VI with a ∈ In. Therefore,
these elements are also in C〈Obg ,VI〉.

Theorem 3.1. Data privacy is preserved for q wrt. a tuple 〈Obg, V 〉 if and
only if, for every view VI of V that is entailed by some P ∈ P, data privacy
is preserved for q wrt. 〈Obg, VI〉.

Proof (⇒) Trivial.
(⇐) We prove the contrapositive. Assume that VI is a view based on
〈Obg, V 〉 on which q is not preserved. As a consequence of Theorem 2.2,
C〈Obg ,VI〉 |= q, if q is boolean or C〈Obg ,VI〉 |= d : q, for some d ∈ Ind(C〈Obg ,VI〉), if
q is retrieval.
Let T be the TBox of C〈Obg ,VI〉 and A its ABox. First we show that q (resp.
d : q) is entailed by a subset of C〈Obg ,VI〉 that contains at most one additional
individual (i.e. an individual that does not appear in Obg). Assume that
there are more than one such individuals appearing in VI . We distinguish
between the possible forms of q:

• q = > v C. We show that T |= > v C also holds. We have
that C〈Obg ,VI〉 |= > v C, thus C〈Obg ,VI〉 ∪ {a : ¬C} is inconsistent for
a /∈ Ind(C〈Obg ,VI〉). Therefore, there is a proof of a : ¬C, A ; T̂ where,
T̂ is the concept that represents all inclusion axioms of C〈Obg ,VI〉.
Since a does not appear in A, by Lemma 5.1 we get a proof of
a : ¬C ; T̂ or a proof of A ; T̂ . While the latter is not possible
because it implies that C〈Obg ,VI〉 is inconsistent, the first proof implies
that T ∪{a : ¬C} is inconsistent and so, by Theorem 2.1, T |= > v C.

18 IAM-08-002

• q = C. Adding d : ¬C to C〈Obg ,VI〉 would cause inconsistency and so,
there is a proof Π of C〈Obg ,VI〉∪{d : ¬C}. Let Γx be the set of assertions
of one of the additional individuals x 6= d. Note that x does not appear
in any role assertion in C〈Obg ,VI〉. Therefore, Lemma 5.1 applies to Π

with such a Γx. This gives either a proof of Γx ; T̂ , where T̂ is the
concept that represents all inclusion axioms of C〈Obg ,VI〉, or a proof
of Γ, d : ¬C ; T̂ , where Γ = A\Γx. While the first proof is not
possible since it would imply that C〈Obg ,VI〉 is inconsistent, the second
proof implies that there is a subset of C〈Obg ,VI〉 with one additional
individual less, that also entails d : q. Applying the lemma iteratively
to the above proof results a knowledge base that contains at most
one additional individual.

Let C ′ ⊆ C〈Obg ,VI〉 be the obtained knowledge base that has at most one
additional individual x. Renaming every occurrence of x in C ′ by new results
in a knowledge base, say Cr, which is equivalent to C ′ modulo individual
renaming. Therefore Cr also entails some private data, and so does Cr ∪
Obg, too. The latter is a knowledge base in P. Let V r

I be the view of V that
is entailed by Cr∪Obg. Then, Lemma 5.2 results that C〈Obg ,V r

I 〉 is equivalent
to Cr ∪ Obg and so, data privacy for q is not preserved on V r

I either.

We now present some results on coloured SALC proofs which will be used
in the proof of Theorem 3.3.

Lemma 5.3. Assume that we are given a query qC and a bi-coloured SALC
proof Π of a sequent S1 = d : ?¬C, !Γ ; !T̂ . Furthermore, assume that

(i) safe(!R, 〈Γ ∪ {> v T̂}, ∅, qC〉) = safe(!D, qC) = 1, for all entities !R and
!D, respectively, in S1.

Let S2 be a sequent in Π of the form

(ii) x : ?rd, x : !gr, ∆ ; !T̂ with

(iii) ?rd = C1[A]0 and !gr = D1[¬A]0, or
?rd = C1[¬A]0 and !gr = D1[A]0, or
?rd = C1[QR.C2]

0 and !gr = D1[¬QR.D2]
0 for Q ∈ {∀,∃}.

Then, there is a mixed-rule application in the path between S1 and S2.

Proof By induction on the length n of the path between S1 and S2. Base
case: n = 0. Then S1 = S2 and so C = ¬rd. By the definition of safe() on
concepts (first condition), safe(gr, q¬rd) = 0 for every case of (iii) and so, (i)
is contradicted. Therefore, this is not possible.

Proving privacy 19

Induction step: assume that there are n + 1 rule applications between S1

and S2 and that all of them are single-coloured. Let r be the rule application
with premise S2 and conclusion S ′2. By a case analysis on r we show
that in all possible cases, S ′2 satisfies (ii) and (iii). Thus by the induction
hypothesis there is a mixed-rule application between S1 and S2.
If both ?rd and !gr are in S ′2 then S ′2 satisfies (ii) and (iii). Otherwise, one of
the two is an active entity in S2 that does not appear in S ′2. There are the
following cases on r:

• r = (?GCI). This case is not possible.

• r = (!GCI). Then S ′2 = x : ?rd, ∆ ; !gr. Since ?rd appears in S ′2,
by the form of S1 we have that ¬rd is a subterm of C. There are two
cases on C:

– C = C[¬rd]0∃. This is not possible as - in all cases of (iii) -
it would imply that safe(!gr, qC) = 0, which contradicts (i) (!gr
appears in S1). To see this, consider for instance the case
when ?rd = C1[A]0 and !gr = D1[¬A]0. Then C is of the form
C[¬A]0

∃. Therefore, in the definition of safe() on concepts, there
are subterms of !gr and C such that b. and 1. hold and so
safe(!gr, qC) = 0. The other cases are similar.

– C is of the form C[∃R.C ′[¬rd]]0∃ and not of the form C[¬rd]0∃.
This implies that z : ?∀R.¬C ′ is an active entity on a rule be-
low r and so, since all rules below r are single-coloured, there
is an ?R entity in Π. By the form of S1, this is possible only if
there is an entity ?∃R.C ′′ in Π, which means that C is also of
the form C[∀R.¬C ′′]. This however - in all cases of (iii) - con-
tradicts safe(!gr, qC) = 1. When, for instance, ?rd = C1[A]0 and
!gr = D1[¬A]0, C takes the form C[∃R.C ′[¬A]]0

∃. Thus, in the
definition of safe() on concepts, there are subterms of !gr and
C such that b. and 2. hold and so safe(!gr, qC) = 0. The other
cases are similar.

• r ∈ {(u), (t)}. Then S ′2 = x : ?C ′[rd]0, x : !D′[gr]0, ∆′ ; !T̂ . Both
C ′ and D′ qualify as ?rd and !gr, respectively, and so S ′2 satisfies (ii)
and (iii).

• r = (∃). This cannot be the case, since the active concept that does
not appear in the conclusion has to have a fresh label. Therefore,
not both !gr and ?rd can have the same label.

20 IAM-08-002

• r = (?∀). Then S ′2 = y : ?∀R.rd, (y, x) : ?R, x : !gr, ∆′ ; !T̂ .
Since (y, x) : ?R cannot occur in S1, this assertion was created by an
(?∃)-rule below r, and therefore y : ?∃R.C ′ is an active entity in a rule
below S ′2 and x is fresh. Since all rules below r are single-coloured
and x is fresh, x : !gr can appear in S2 only in the case !T̂ is of the
form !T̂ [gr]0. Reasoning is then continued similarly to the !GCI case.

• r = (!∀). Then, S ′2 = y : !∀R.gr, (y, x) : !R, x : ?rd, ∆′ ; !T̂ . If
(y, x) : !R were created by an (!∃)-rule, then x would be a new label
and, because of the single-coloured rules below S ′2, x : ?rd would not
be possible. Therefore,

(y, x) : !R appears in S1. (1)

Furthermore, the presence of !∀R.gr implies that there is an entity of
the form !D′[∀R.gr] in S1.

– If there is such an entity of the form !D′[∀R.gr]0∃, by (1) and (i)
we have safe(!R, 〈Γ ∪ {> v T̂}, ∅, qC〉) = 1 and !D′[∀R.gr]0∃ is an
entity in Γ. So, by the definition of safe() on roles safe(gr, qC) = 1.
Therefore, by the definition of safe() on concepts and (iii), we
have that C cannot be of the form C[¬rd]0∃ (for details see the
first case of !GCI). However, by S1 we have that C[¬rd] and
thus, there is an active entity ?∀R′.C ′[rd]0 below r. Therefore, if
w is the label of this entity, we have that (w, x) : ?R′ appears in
a sequent below S ′2 (since x : ?rd is in S ′2). Again, this assertion
must have been created by an (?∃)-rule and thus x is fresh which
contradicts (1).

– Otherwise, we find that for every zi : !D′′[∀R.gr]0∃ in Π, zi is
a fresh variable. Since y is a label of such a D′′ (note that
y : !∀R.gr occurs in S ′2), y is also fresh and so (1) is contradicted.

By induction on the length of the derivation Π, we can show the following:

Lemma 5.4. Let Π be a bi-coloured proof of the sequent

!Γ, ?∆ ; !T̂

that has only single-coloured rule applications. Then, there is either a
proof of the sequent !Γ ; !T̂ or a proof of the sequent ?∆ ; .

We are now ready to prove Theorem 3.3.

Proving privacy 21

Theorem 3.3. Given a consistent ALC knowledge base Obg, a view defini-
tion V and a privacy condition q on 〈Obg, V 〉, data privacy is preserved for
q wrt. 〈Obg, V 〉 if for every concept D and role R of 〈Obg, V 〉

safe(D, q) = safe(R, 〈Obg, V, q〉) = 1.

Proof By contradiction. Let q = > v C or q = C. Assume that (a) there is
a VI on 〈Obg, V 〉 such that data privacy is not preserved for q with respect
to VI while (b) safe(D, q) = safe(R, 〈Obg, V, q〉) = 1, for all concepts and
roles D and R, respectively, of 〈Obg, V 〉 .
Applying Theorem 2.2 to assumption (a) yields ans(q, C〈Obg ,VI〉) 6= ∅. That
is, C〈Obg ,VI〉 |= > v C if q is boolean and C〈Obg ,VI〉 |= d : C for some d ∈
Ind(C〈Obg ,VI〉), if q is retrieval. Thus, the knowledge base C〈Obg ,VI〉 ∪ q is
inconsistent, where q is given as follows:

> v C := {d′ : ¬C}, for some fixed d′ ∈ Ind,

C := {d : ¬C} .

Theorem 4.1 implies that the knowledge base C〈Obg ,VI〉 ∪ q has a proof in
SALC and thus, the sequent Γ, q ; T̂ is provable in SALC, where Γ and
T̂ are the ABox and the TBox transformation of the canonical knowledge
base C〈Obg ,VI〉. We distinguish between public and private information in the
sequent by colouring the entities derived from C〈Obg ,VI〉 green (resp. !) and
the entity of q red (resp. ?). Let Π be a bi-coloured proof of

!Γ, ?q ; !T̂ . (2)

According to the colours of its rule applications (green, red or mixed), Π
has either at least one mixed rule or it has no mixed rule at all. We distin-
guish between these two cases:

1. Π has no mixed rule application. Then, Lemma 5.4 applies and yields
either a proof of !Γ ; !T̂ or a proof of ?q ; . This means that either
C〈Obg ,VI〉 or q is an inconsistent knowledge base. Since Obg is consistent,
C〈Obg ,VI〉 is also consistent and therefore the first case is not possible. In
the second case, the query q can be either boolean or retrieval. In both
cases Theorem 2.1 applied on q results ∅ |= > v C. Furthermore, in the
case q = C, d is an individual either in Obg or in VI , which means that
either Ind(Obg) 6= ∅ or that there exists a retrieval query D′ in V such that
Obg 6|= > v ¬D′. Therefore, q is a trivial query and the assumption of the
theorem is contradicted.

2. Π has at least one mixed rule. Let r be a mixed-rule for which all rules
below r are single-coloured. If we can show that Lemma 5.3 applies with

22 IAM-08-002

S1 = (2) and S2 the conclusion of r, then there is a mixed rule application
below r which contradicts the definition of r and thus the theorem is shown.

Therefore, it remains to prove that the assumptions of Lemma 5.3 hold.
First we show that for all entities !R and !D of the sequent (2)

safe(!R, 〈Γ ∪ {> v T̂}, ∅, q〉) = safe(!D, q) = 1. (3)

For D ∈ Γ, we also have D ∈ 〈Obg, V 〉. Thus safe(D, q) = 1 by the assump-
tions of the theorem.
For D = T̂ , let D1 be a subterm of T̂ as required by the cases a. - c.
in the definition of safe(). We observe that if T̂ [D1]

0 holds, then there is
some D2 ∈ 〈Obg, V 〉 of the form D2[D1]

0 and safe(D2, q) = 1. This implies
safe(D, q) = 1.
By the assumption of the theorem we have safe(R, 〈Obg, V, q〉) = 1. Accord-
ing to the definition of safe() on roles, the degree of R might change only
if there is a concept D1[∀R.D2]

0∃ in 〈Γ ∪ {> v T̂}, ∅〉 and there is no con-
cept D′

1[∀R.D2]
0∃ in 〈Obg, V 〉. However, this is not possible since, on one

hand, by the construction of C〈Obg ,VI〉 all concepts of 〈C〈Obg ,VI〉, ∅〉 are also
concepts of 〈Obg, V 〉. Thus, Γ does not introduce any new concepts. On
the other hand, T̂ is a conjunction of concepts of C〈Obg ,VI〉 and so, for every
concept D1[∀R.D2]

0∃ of 〈Γ ∪ {> v T̂}, ∅〉 there is a concept D′
1[∀R.D2]

0∃ in
〈Obg, V 〉. Therefore, we conclude that safe(R, 〈Γ ∪ {> v T̂}, ∅, q〉) = 1 and
thus (3) holds.
Next, we show that the conclusion of r has the form required for the se-
quent S2 in Lemma 5.3. The mixed rule application r must be of the form:

(ax)
x : !A, x : ?¬A, Γ′ ; !T̂ , (ax)

x : ?A, x : !¬A, Γ′ ; !T̂ ,

y : ?C ′, x : ?∀R′.C ′, (x, y) : !R′, Γ′ ; !T̂
(∀)

x : ?∀R′.C ′, (x, y) : !R′, Γ′ ; !T̂
,

or
y : !C ′, x : !∀R′.C ′, (x, y) : ?R′, Γ′ (!T̂)

(∀)
x : !∀R′.C ′, (x, y) : ?R′, Γ′ ; !T̂)

where y : C ′ does not appear in Γ′. If r = (ax) then its conclusion is
trivially of the required form. Otherwise, if r = (∀) we observe that in both
applications of (∀), the role assertion (x, y) : R′ was created by an (∃)-rule.
This can be seen as follows:

• For the first rule. Since ?∀R′.C ′ occurs in the conclusion of r, we
have either

Proving privacy 23

(i) ¬C is of the form (¬C)[∀R′.C ′]0 or

(ii) QR′′.C ′′[∀R′.C ′]0 for some quantifier Q, is an active entity in a
rule ?r′ that appears below r.

We show that in both cases, (x, y) : !R′ cannot appear in (2). If (i)
holds we have C[∃R′.¬C ′]0.Thus by the definition of safe() on roles,
we have safe(R

′, 〈Obg, V, q〉) = 0 and so, !R does not appear in (2).

If (ii) holds, then there is an entity (z, x) : ?R′′ in the premise of r′

which, by definition of (2), cannot appear in (2). This implies that
(z, x) : ?R′′ was created by an (∃)-rule and x is fresh. Therefore,
(x, y) : R′ does not appear in (2).

• For the second rule. By the definition of q, the set q does not contain
any role assertions.

Consequently, in both cases the role assertion was created in the course
of the proof and this can happen only by means of an (∃)-rule applica-
tion. Thus, x : !∃R′.D′ or x : ?∃R′.D′ appears in the proof before the first
or the second (∀)-rule, respectively. Since nothing is thrown away while
applying rules, the existential concepts occur in Γ′ in their respective rule
application above. Therefore, the conclusion of r has the required form
and Lemma 5.3 applies to Π with S1 = (2) and S2 the conclusion of r.

24 IAM-08-002

6 Conclusions
We have studied the problem of data privacy on view definitions for ALC
knowledge bases. Our setting does not assume a completely given knowl-
edge base. We only assume that we are given a view definition and
some additional (ontological) knowledge. The goal is to verify that a given
privacy condition is preserved for all possible views of the given defini-
tion. We have presented two solutions to the problem: the first one is
ExpTime-complete whereas the second is only partial and can be decided
in PTime. The first solution is obtained by restricting the views that need
to be checked against privacy to be finitely many. The second is done
by syntactically comparing concepts and roles occurring in the public part
with the privacy condition.
From this second solution, we get for instance the following application. Let
a safe role be a role for which there are no role assertions given in public.
We can establish the privacy of concepts that are built from safe roles and
atomic concepts that appear in the public part only behind an existentially
quantified role or behind a safe universally quantified role. This pattern
applies independently of the internal structure of an ontology and therefore
it also applies to modular or E-connected ontologies.
We plan to extend our method to more expressive languages. In particular,
we would like to study how nominals, inverse and functional roles behave
under privacy. Such a study would allow us to identify a wider range of
privacy preserving ontologies.

References 25

References
[1] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL

web ontology language guide,” 2004. Available at
http://www.w3.org/TR/owl-guide/.

[2] K. Stoffel and T. Studer, “Provable data privacy,” in Database and
Expert Systems Applications DEXA 2005 (K. Viborg, J. Debenham,
and R. Wagner, eds.), vol. 3588 of LNCS, pp. 324–332, Springer,
2005.

[3] P. Stouppa and T. Studer, “A formal model of data privacy,” in Perspec-
tives of System Informatics PSI’06 (I. Virbitskaite and A. Voronkov,
eds.), vol. 4378 of LNCS, pp. 401–411, Springer, 2007.

[4] R. van der Meyden, “Logical approaches to incomplete information:
a survey,” in Logics for databases and information systems, pp. 307–
356, Kluwer Academic Publishers, 1998.

[5] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini, “Data inte-
gration under integrity constraints,” in Proc. of CAiSE 2002, vol. 2348
of LNCS, pp. 262–279, Springer, 2002.

[6] A. Y. Halevy, “Answering queries using views: A survey,” The VLDB
Journal, vol. 10, no. 4, pp. 270–294, 2001.

[7] M. Lenzerini, “Data integration: a theoretical perspective,” in ACM
PODS ’02, pp. 233–246, ACM Press, 2002.

[8] M. Arenas and L. Libkin, “XML data exchange: Consistency and
query answering,” in PODS, pp. 13–24, 2005.

[9] R. Fagin, P. G. Kolaitis, R. Miller, and L. Popa, “Data exchange:
Semantics and query answering,” Theoretical Computer Science,
vol. 336, pp. 89–124, 2005.

[10] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur, “Automated
partitioning of OWL ontologies using E-connections,” in Proceedings
of Int. Workshop on Description Logics, 2005.

[11] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev, “E-connections
of abstract description systems,” Artifical Intelligence, vol. 156, no. 1,
pp. 1–73, 2004.

26 IAM-08-002

[12] G. Miklau and D. Suciu, “A formal analysis of information disclosure
in data exchange,” in SIGMOD, 2004.

[13] A. Deutsch and Y. Papakonstantinou, “Privacy in database publish-
ing,” in ICDT, 2005.

[14] A. Machanavajjhala and J. Gehrke, “On the efficiency of checking
perfect privacy,” in PODS ’06: Proceedings of Principles of database
systems, pp. 163–172, ACM Press, 2006.

[15] J. Biskup and P. A. Bonatti, “Controlled query evaluation for enforcing
confidentiality in complete information systems,” International Journal
of Information Security, vol. 3, no. 1, pp. 14–27, 2004.

[16] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity
when disclosing information (abstract),” in PODS, p. 188, ACM Press,
1998.

[17] P. A. Bonatti, S. Kraus, and V. S. Subrahmanian, “Foundations of se-
cure deductive databases,” Transactions on Knowledge and Data En-
gineering, vol. 7, no. 3, pp. 406–422, 1995.

[18] M. Winslett, K. Smith, and X. Qian, “Formal query languages for se-
cure relational databases,” ACM Trans. Database Syst., vol. 19, no. 4,
pp. 626–662, 1994.

[19] S. Tobies, Complexity results and practical algorithms for logics in
Knowledge Representation. PhD thesis, LuFG Theoretical Computer
Science, RWTH-Aachen, Germany, 2001.

[20] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, eds., The Description Logic Handbook. Cambridge Uni-
versity Press, 2003.

[21] F. Baader and U. Sattler, “An overview of tableau algorithms for de-
scription logics,” Studia Logica, vol. 69, pp. 5–40, 2001.

[22] F. M. Donini and F. Massacci, “EXPTIME tableaux for ALC,” Artificial
Intelligence, vol. 124, no. 1, pp. 87–138, 2000.

	Introduction
	Preliminaries
	Data privacy on view definitions
	The labelled deductive system
	Proving privacy
	Conclusions
	References

