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Abstract. We present a probabilistic justification logic, PPJ, to study
rational belief, degrees of belief and justifications. We establish soundness
and completeness for PPJ and show that its satisfiability problem is
decidable. In the last part we use PPJ to provide a solution to the lottery
paradox.

1 Introduction

In epistemic modal logic, we use formulas of the form �A to express
that A is believed. Justification logic unfolds the �-modality into a
family of so-called justification terms to represent evidence for an
agent’s belief. That is in justification logic we use t : A to state that
A is believed for reason t.

Originally, Artemov developed the first justification logic, the
Logic of Proofs, to give a classical provability semantics for intu-
itionistic logic [1, 2, 15]. Later, Fitting [7] introduced epistemic mod-
els for justification logic. As it turned out this interpretation pro-
vides a very successful approach to study many epistemic puzzles
and problems [3, 5, 14].

In this paper, we extend justification logic with probability op-
erators in order to accommodate the idea that

different kinds of evidence for A

lead to different degrees of belief in A. (1)

In [10] we have introduced a first probabilistic justification logic PJ,
which features formulas of the form P≥s(t : A) to state that the
probability of t : A is greater than or equal to s. The language of PJ,
however, does neither include justification statements over probabil-
ities (i.e. t : (P≥sA)) nor iterated probabilities (i.e. P≥r(P≥sA)).



In the present paper, we remedy these shortcomings and present
the logic PPJ, which supports formulas of the form t : (P≥sA) as well
as P≥r(P≥sA). This explains the name PPJ: the two P s refer to iter-
ated P -operators. We introduce syntax and semantics for PPJ and
establish soundness and completeness. We also show that satisfiabil-
ity for PPJ is decidable. In the final part we present an application
of PPJ to the lottery paradox.

Related work. The design of PPJ follows that of LPP1, which is
a probability logic over classical propositional logic [21]. The proofs
that we present for PPJ are extensions of the corresponding proofs
for LPP1. Note, however, that these extensions are non-trivial due to
the presence of formulas of the form t : (P≥sA).

Milnikel [19] proposes a logic with uncertain justifications. We
thoroughly study the relationship between Milnikel’s logic and our
approach in [10] where we show that three of his four axioms are
theorems in our logic and that the fourth axiom holds under an
additional independence assumption.

In the preprint [9], Ghari presents fuzzy variants of justification
logic, in which an agent can have a justification for a statement with
certainty between 0 and 1. He introduces fuzzy Fitting models and
establishes a graded completeness theorem. Ghari also shows that
Milnikel’s principles are valid in his fuzzy setting.

Recently, Fan and Liau [6] introduced a possibilistic justification
logic, which is an explicit version of a graded modal logic. Their logic
includes formulas t :r A to express that according to evidence t, A is
believed with certainty at least r. However, the following principle
holds in their logic:

s :r A ∧ t :q A→ s :max(r,q) A.

Hence all justifications for a belief yield the same (strongest) cer-
tainty, which is not in accordance with our guiding idea (1).

2 The Probabilistic Justification Logic PPJ

Justification terms are built from countably many constants and
countably many variables according to the following grammar:

t ::= c | x | (t · t) | (t+ t) | !t



where c is a constant and x is a variable. Tm denotes the set of all
terms and Con denotes the sets of all constants. For any term t and
natural number n we define !0t := t and !n+1t := ! (!nt).

Let Prop be a countable set of atomic propositions. We denote
the set of rational numbers by Q. Further we set S := Q∩ [0, 1]. The
set of formulas L is defined by the following grammar:

A ::= p | P≥sA | ¬A | A ∧ A | t : A

where t ∈ Tm, s ∈ S and p ∈ Prop. We employ the standard abbre-
viations for classical connectives. Additionally, we set

P<sA ≡ ¬P≥sA P≤sA ≡ P≥1−s¬A
P>sA ≡ ¬P≤sA P=sA ≡ P≥sA ∧ P≤sA

The axioms of PPJ are presented in Figure 1.

(P) finitely many schemes in the language of L
axiomatizing classical propositional logic

(J) ` u : (A→ B)→ (v : A→ u · v : B)

(+) ` u : A ∨ v : A→ u + v : A

(PI) ` P≥0A

(WE) ` P≤rA→ P<sA, where s > r

(LE) ` P<sA→ P≤sA

(DIS) ` P≥rA ∧ P≥sB ∧ P≥1¬(A ∧B)→ P≥min(1,r+s)(A ∨B)

(UN) ` P≤rA ∧ P<sB → P<r+s(A ∨B), where r + s ≤ 1

Fig. 1. Axioms of PPJ

A constant specification is any set CS that satisfies

CS ⊆ {(c, A) | c is a constant and

A is an instance of some axiom of PPJ}.

A constant specification CS is called:

axiomatically appropriate: if for every axiom instance A of PPJ,
there exists a constant c such that (c, A) ∈ CS;

schematic: if for every constant c, the set {A
∣∣ (c, A) ∈ CS} consists

of all instances of several (possibly zero) axiom schemes;



finite: if CS is a finite set;
almost schematic: if CS = CS1 ∪CS2 where CS1 ∩CS2 = ∅, CS1 is

schematic and CS2 is finite.

Let CS be any constant specification. The deductive system PPJCS
is the Hilbert system obtained by adding to the axioms of PPJ the
rules (MP), (CE), (ST) and (AN!) as given in Figure 2.

axioms of PPJ

+

(AN!) ` !nc : !n−1c : · · · : !c : c : A, where (c, A) ∈ CS and n ∈ N
(MP) if T ` A and T ` A→ B then T ` B

(CE) if ` A then ` P≥1A

(ST) if T ` A→ P≥s− 1
k
B for every integer k ≥ 1

s
and s > 0

then T ` A→ P≥sB

Fig. 2. System PPJCS

Note that (ST) is an infinitary rule, which we need to obtain
strong completeness. Observe also the difference in the definitions
of rules (MP), (ST) and (CE) in Figure 2. Rule (CE) can only be
applied to theorems of PPJ (i.e. formulas that are deducible from
the empty set), whereas (MP) and (ST) can always be applied.

To introduce semantics for PPJCS, we begin with the notion of a
basic evaluation, which is the cornerstone for many interpretations
of justification logic [4, 13]. In the following we use P(X) to denote
the power set of a set X.

Definition 1 (Basic Evaluation). Let CS be a constant specifi-
cation. A basic evaluation for CS, or a basic CS-evaluation, is a
function ∗ that maps atomic propositions to truth values and maps
justification terms to subsets of L, i.e.

∗ : Prop→ {T,F} and ∗ : Tm→ P(L),

such that for u, v ∈ Tm, for c ∈ Con and A,B ∈ L we have:

1.
(
A→ B ∈ u∗ and A ∈ v∗

)
=⇒ B ∈ (u · v)∗

2. u∗ ∪ v∗ ⊆ (u+ v)∗



3. if (c, A) ∈ CS then for all n ∈ N we have3:

!n−1c : !n−2c : · · · :!c : c : A ∈ (!nc)∗

We usually write t∗ and p∗ instead of ∗(t) and ∗(p), respectively.

Definition 2 (Algebra over a Set). Let W be a non-empty set
and let H be a non-empty subset of P(W ). We call H an algebra
over W iff the following hold:
– W ∈ H
– U, V ∈ H =⇒ U ∪ V ∈ H
– U ∈ H =⇒ W \ U ∈ H

Definition 3 (Finitely Additive Measure). Let H be an algebra
over W and µ : H → [0, 1]. We call µ a finitely additive measure iff
the following hold:

1. µ(W ) = 1
2. for all U, V ∈ H:

U ∩ V = ∅ =⇒ µ(U ∪ V ) = µ(U) + µ(V )

Definition 4 (Probability Space). A probability space is a triple
Prob = 〈W,H, µ〉, where:
– W is a non-empty set
– H is an algebra over W
– µ : H → [0, 1] is a finitely additive measure

Definition 5 (Model). Let CS be a constant specification. A PPJCS-
model is a quintuple M = 〈U,W,H, µ, ∗〉 where:

1. U is a non-empty set of objects called worlds
2. W,H, µ and ∗ are functions, which have U as their domain, such

that for every w ∈ U :
– 〈W (w), H(w), µ(w)〉 is a probability space with W (w) ⊆ U
– ∗w is a basic CS-evaluation4

The ternary satisfaction relation |= is defined between models,
worlds, and formulas.

3 we agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : A represents
the formula A for n = 0

4 we will usually write ∗w instead of ∗(w)



Definition 6 (Truth in a PPJCS-model). Let CS be a constant
specification and let M = 〈U,W,H, µ, ∗〉 be a PPJCS-model. We de-
fine what it means for an L-formula to hold in M at a world w ∈ U
inductively as follows:

M,w |= p :⇐⇒ p∗w = T for p ∈ Prop

M,w |= P≥sB :⇐⇒
(

[B]M,w ∈ H(w) and µ(w)
(
[B]M,w

)
≥ s
)

where [B]M,w = {x ∈ W (w) | M,x |= B}
M,w |= ¬B :⇐⇒ M,w 6|= B

M,w |= B ∧ C :⇐⇒
(
M,w |= B and M,w |= C

)
M,w |= t : B :⇐⇒ B ∈ t∗w

Definition 7 (Measurable Model). Let CS be a constant speci-
fication and let M = 〈U,W,H, µ, ∗〉 be a PPJCS-model. M is called
measurable iff for every w ∈ U and for every A ∈ L:

[A]M,w ∈ H(w)

PPJCS,Meas denotes the class of PPJCS-measurable models.

For a model M = 〈U,W,H, µ, ∗〉, M |= A means that M,w |= A
for all w ∈ U . Let T ⊆ L. Then M |= T means that M |= A for all
A ∈ T . Further T |= A means that for all M ∈ PPJCS,Meas, M |= T
implies M |= A.

To be precise we should write T `CS A and T |=CS A instead of
T ` A and T |= A, respectively, since these two notions depend on
a given constant specification CS. However, CS will always be clear
from the context and we thus omit it.

Definition 8 (Satisfiability). We say a formula A of L is satis-
fiable if there exists a PPJCS-measurable model M = 〈U,W,H, µ, ∗〉
and w ∈ U with M,w |= A.

We established the Deduction Theorem for PJ in [10]. Now we
present the version for PPJ, which can be proved in the same way.

Theorem 1 (Deduction Theorem). Let T ⊆ L and A,B ∈ L.
For any constant specification CS we have:

T,A ` B ⇐⇒ T ` A→ B



3 Soundness and Completeness

As usual, we can establish soundness by induction on the depth of
the derivation of a formula A.

Theorem 2 (Soundness). Let CS be any constant specification.
PPJCS is sound with respect to the class of PPJCS,Meas-models. I.e. for
any A ∈ L and T ⊆ L we have:

T ` A =⇒ T |= A.

The completeness proof for PPJCS is a combination of the com-
pleteness proof for LPP1 [21] and the completeness proof for PJ [10].
For lack of space, however, we cannot give a detailed completeness
proof here. We will only present a series of definitions and lemmas
(without proofs) that leads to the completeness result. First we need
the notion of a PPJCS-consistent set.

Definition 9 (PPJCS-consistent Set). Let CS be a constant spec-
ification and let T be a set of L-formulas.
– T is said to be PPJCS-consistent iff T 0 ⊥. Otherwise T is said

to be PPJCS-inconsistent.
– T is said to be maximal iff for every A ∈ L either A ∈ T or
¬A ∈ T .

– T is said to be maximal PPJCS-consistent iff it is maximal and
PPJCS-consistent.

The next lemma is shown for PJ in [10]. The proof for PPJCS is
similar.

Lemma 1 (Lindenbaum). Let CS be a constant specification. For
every PPJCS-consistent set T , there exists a maximal PPJCS-consistent
set T such that T ⊆ T .

Definition 10 (Canonical Model). Let CS be a constant speci-
fication. The canonical model for PPJCS is given by the quintuple
M = 〈U,W,H, µ, ∗〉, defined as follows:
– U =

{
w
∣∣ w is a maximal PPJCS-consistent set of L-formulas

}
– for every w ∈ U the probability space 〈W (w), H(w), µ(w)〉 is de-

fined as follows:
1. W (w) = U



2. H(w) =
{

(A)M
∣∣ A ∈ L} where (A)M =

{
x
∣∣ x ∈ U,A ∈ x}

3. for all A ∈ L, µ(w)
(
(A)M

)
= sups {P≥sA ∈ w}

– for every w ∈ W the basic CS-evaluation ∗w is defined as follows:

1. for all p ∈ Prop:

p∗w =

{
T if p ∈ w
F if ¬p ∈ w

2. for all t ∈ Tm:

t∗w =
{
A
∣∣ t : A ∈ w

}
Lemma 2. Let CS be a constant specification. The canonical model
for PPJCS is a PPJCS-model.

Lemma 3. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for PPJCS.
Then we have

(∀A ∈ L)(∀w ∈ U)
[
[A]M,w = (A)M

]
.

From Lemma 3 we get the following corollary.

Corollary 1. Let CS be any constant specification. The canonical
model for PPJCS is a PPJCS,Meas-model.

Making use of the properties of maximal consistent sets, we can
establish the Truth Lemma.

Lemma 4 (Truth Lemma). Let CS be some constant specification
and let M = 〈U,W,H, µ, ∗〉 be the canonical model for PPJCS. For
every A ∈ L and any w ∈ U we have:

A ∈ w ⇐⇒ M,w |= A.

Finally, we get the completeness theorem as usual.

Theorem 3 (Strong Completeness for PPJ). Let CS be a con-
stant specification, let T ⊆ L and let A ∈ L. Then we have:

T |= A =⇒ T ` A.



4 Decidability for a fragment of L

Before we can show that satisfiability is decidable for all L-formulas,
we have to show that satisfiability is decidable for a subset Lr ⊆ L
that is given by the following grammar:

A ::= p | ¬A | A ∧ A | t : B

where t ∈ Tm, p ∈ Prop, and B ∈ L.
The key fact about Lr is that the truth of an Lr-formula A at a

world w in a PPJCS-model M = 〈U,W,H, µ, ∗〉 only depends on the
basic CS-evaluation ∗w.

Hence we can use the notation ∗ |= A if A is a formula of Lr and
∗ is a basic evaluation. We find that A is satisfiable (in the sense
of PPJCS) if and only if there exists a basic evaluation ∗ such that
∗ |= A.

Therefore, we can use an extension of the usual decision pro-
cedure for the basic justification logic J, see [11, 12, 20], to decide
satisfiability for formulas of Lr.

Theorem 4. Let CS be a decidable almost schematic constant spec-
ification. For any formula A of the restricted language Lr, it is de-
cidable whether A is satisfiable.

For lack of space, we only give a proof sketch of the above the-
orem. As in the decidability proof for J, we make use of schematic
variables so that we can represent a schematic constant specification
in a finite way. A key step in the decidability proof is then to com-
pute a most general unifier for schematic formulas. This is the step
that needs some major adaptations for our probabilistic setting.

Consider, for example, the scheme (WE) given by P≤rA→ P<sA.
It has three schematic variables: A for formulas and r, s for rational
numbers. Note that there is also a side condition, s > r, of which
the unification algorithm has to take care. Hence in addition to con-
structing a substitution, the unification algorithm also has to build
up a system of linear inequalities for the rational variables. For in-
stance, in order to unify P≥rA and P≥sB the algorithm has to unify
A and B and to equate r and s, i.e. it adds r = s to the linear sys-
tem. In the end, the constructed substitution only is a most general
unifier if the linear system is satisfiable.



Of course, one has to take care of the syntactic abbreviations
when representing axioms. That means, the scheme (WE) actually
is P≥1−r¬A → ¬P≥sA with the side condition s > 1 − r (note that
the implication again is an abbreviation).

Another complication are constraints of the form

l = min(1, r + s) (2)

that originate from the scheme (DIS). Obviously, (2) is not linear.
However, for a system C of linear inequalities, we find that

C ∪ {l = min(1, r + s)}

has a solution if and only if

C ∪ {l = r + s, r + s ≤ 1} or C ∪ {l = 1, r + s > 1}

has a solution. Thus we can reduce solving a system involving (2) to
solving several linear systems.

5 Decidability of PPJCS

Definition 11 (Subformulas). The set of subformulas subf(A) of
an L-formula A is recursively defined by:

subf(p) := {p}
subf(P≥sB) := {P≥sB} ∪ subf(B)

subf(¬B) := {¬B} ∪ subf(B)

subf(B ∧ C) := {B ∧ C} ∪ subf(B) ∪ subf(C)

subf(t : B) := {t : B} ∪ subf(B)

Definition 12. Let A ∈ L and assume that subf(A) = {A1, . . . , Ak}.
The set subfCon(A) contains all sets of the form {±A1, . . . ,±Ak},
where ±Ai is either Ai or ¬Ai.

Elements of subfCon(A) are interpreted conjunctively. That is for
C ∈ subfCon(A), we simply write M,w |= C instead of M,w |=

∧
C.

Hence M,w |= C means that all elements of C are true at w in M .
Accordingly, we say that C is satisfiable if the formula

∧
C is so.

We define the mapping j on sets C of L-formulas by:

j(C) := C ∩ Lr.



Before proving that PPJCS is decidable we need to establish some
auxiliary lemmata.

Lemma 5. Let M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas and let A ∈ L.
Let B ∈ subf(A), let C ∈ subfCon(A) and let w ∈ U . Assume that
M,w |= C. Then we have:

M,w |= B ⇐⇒ B ∈ C.

Proof. We prove the two directions of the lemma separately:
⇐=: From B ∈ C and M,w |= C we immediately get M,w |= B.
=⇒: Since B is a subformula of A, we have either B ∈ C or

¬B ∈ C. If ¬B ∈ C, then we would have M,w |= ¬B, i.e. M,w 6|= B,
which contradicts the fact thatM,w |= B. Thus, we conclude B ∈ C.

ut

Lemma 6. Let CS be a constant specification and let A ∈ L. Then
A is satisfiable if and only if there exists a set Y = {B1 , . . . , Bn} ⊆
subfCon(A) such that all of the following conditions holds:

1. for some i ∈ {1, . . . , n}, A ∈ Bi.
2. for every 1 ≤ i ≤ n, j(Bi) is satisfiable.
3. for every 1 ≤ i ≤ n, there are variables xij with 1 ≤ j ≤ n, such

that the following system of linear inequalities is satisfiable:

n∑
j=1

xij = 1

(∀1 ≤ j ≤ n)
[
xij ≥ 0

]
for every P≥sC ∈ Bi,

∑
{j|C∈Bj}

xij ≥ s

for every ¬P≥sC ∈ Bi,
∑

{j|C∈Bj}

xij < s

Proof. We prove the two directions of the lemma separately:
=⇒: Let M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas. Assume that A is

satisfiable in some world of M .



Let ≈ denote a binary relation over U such that for all w, x ∈ U
we have:

w ≈ x if and only if
(
∀B ∈ subf(A)

)[
M,w |= B ⇔M,x |= B

]
.

It is easy to see that ≈ is an equivalence relation. Let K1, . . . , Kn

be the equivalence classes of ≈. For every i ∈ {1, . . . , n} we choose
some wi ∈ Ki. For every i ∈ {1, . . . , n} some subformulas of A hold
in the world wi and some do not. So for every i ∈ {1, . . . , n} there
exists a Bi ∈ subfCon(A) such that M,wi |= Bi. For i 6= j we have
Bi 6= Bj since wi and wj belong to different equivalence classes. Let
Y = {B1, . . . , Bn}. It remains to show that the conditions in the
statement of the lemma hold:

1. Let w ∈ U be such that M,w |= A. The world w belongs to
some equivalence class of ≈, which is represented by wi. Thus
M,wi |= A. By Lemma 5 we find A ∈ Bi, i.e. condition 1 holds.

2. For every 1 ≤ i ≤ n we have M,wi |= Bi. Because of j(Bi) ⊆ Bi

we immediately get M,wi |= j(Bi). Hence condition 2 holds.
3. Let i ∈ {1, . . . , n}. We set

yij = µ(wi)(Kj ∩W (wi)), for every 1 ≤ j ≤ n.

Some calculations show that these values yij satisfy the linear
system in condition 3.

⇐=: Assume that there exists Y = {B1, . . . , Bn} ⊆ subfCon(A)
such that conditions 1–3 hold. For every 1 ≤ i ≤ n, let ∗i be a
basic evaluation such that ∗i |= j(Bi). We define the quintuple M =
〈U,W,H, µ, ∗〉 by:

– U = {w1, . . . , wn} for some w1, . . . , wn.
– For all 1 ≤ i ≤ n we set:

1. W (wi) = U
2. H(wi) = P(W (wi))
3. µ(wi)(V ) =

∑
{j|wj∈V } xij for every V ∈ H(wi)

4. ∗wi
= ∗i.

We can show that M ∈ PPJCS,Meas. However, we have to omit the
proof due to lack of space.



It remains to show M,wi |= A for some i. We first establish

(∀D ∈ subf(A))(∀1 ≤ i ≤ n)
[
D ∈ Bi ⇐⇒M,wi |= D

]
(3)

by induction on the structure of D (again we have to omit the proof).
It holds that A ∈ subf(A). Thus, by (3) we find:

(∀1 ≤ i ≤ n)
[
A ∈ Bi ⇐⇒M,wi |= A

]
.

By condition 1, there exists an i such that A ∈ Bi. Thus, there exists
an i such that M,wi |= A. Hence, A is PPJCS,Meas-satisfiable. ut

In the proof of Lemma 6 we construct a model with at most
2|subf(A)| worlds that satisfies A. Hence a corollary of Lemma 6 is
that any A ∈ L is PPJCS,Meas-satisfiable if and only if it is satisfiable
in a PPJCS,Meas-model with at most 2|subf(A)| worlds. In other words,
Lemma 6 implies a small model property for PPJCS.

Moreover, Lemma 6 dictates a procedure to decide the satisfia-
bility problem for PPJCS.

Theorem 5. Let CS be a decidable almost schematic constant spec-
ification. The PPJCS,Meas-satisfiability problem is decidable.

Proof. Let A ∈ L. The formula A is satisfiable if and only if for
some Y ⊆ subfCon(A) all conditions in the statement of Lemma 6
hold. Since subfCon(A) is finite, it suffices to show that for every
Y ⊆ subfCon(A) the conditions 1–3 in the statement of Lemma 6
can be effectively checked:

– Decidability of condition 1 is trivial.
– Decidability of condition 2 follows from Theorem 4.
– In condition 3 we have to check for the satisfiability of a set of

linear inequalities, which is a well-known decidable problem [18].

We conclude that the satisfiability problem for PPJCS is decidable.
ut

6 Application to the Lottery Paradox

Kyburg’s famous lottery paradox [16] goes as follows. Consider a fair
lottery with 1000 tickets that has exactly one winning ticket. Now



assume a proposition is believed if and only if its degree of belief is
greater than 0.99. In this setting it is rational to believe that ticket 1
does not win, it is rational to believe that ticket 2 does not win,
and so on. However, this entails that it is rational to believe that
no ticket wins because rational belief is closed under conjunction.
Hence it is rational to believe that no ticket wins and that one ticket
wins.

PPJCS makes the following analysis of the lottery paradox pos-
sible. First we need a principle to move from degrees of belief to
rational belief (this formalizes what Foley [8] calls the Lockean the-
sis): we suppose that for each term t, there exists a term pb(t) such
that

t : (P>0.99A) → pb(t) : A. (4)

Let wi be the proposition ticket i wins. For each 1 ≤ i ≤ 1000, there
is a term ti such that ti : (P= 999

1000
¬wi) holds. Hence by (4) we get

pb(ti) : ¬wi for each 1 ≤ i ≤ 1000. (5)

Now if CS is axiomatically appropriate, then

s1 : A ∧ s2 : B → con(s1, s2) : (A ∧B) (6)

is a valid principle (for a suitable term con(s1, s2)). Hence by (5) we
conclude that

there exists a term t with t : (¬w1 ∧ · · · ∧ ¬w1000), (7)

which leads to a paradoxical situation since it is also believed that
one of the tickets wins.

In PPJCS we can resolve this problem by restricting the constant
specification such that (6) is valid only if con(s1, s2) does not contain
two different subterms of the form pb(t). Then the step from (5)
to (7) is no longer possible and we can avoid the paradoxical belief.

This analysis is inspired by Leitgeb’s [17] solution to the lottery
paradox and his Stability Theory of Belief according to which it is
not permissible to apply the conjunction rule for beliefs across dif-
ferent contexts. Our proposed restriction of (6) is one way to achieve
this in a formal system. A related and very interesting question is
whether one can interpret the above justifications ti as stable sets in



Leitgeb’s sense. Of course, our discussion of the lottery paradox is
very sketchy but we think that probabilistic justification logic pro-
vides a promising approach to it that is worth further investigations.
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