
A semantics for λ
{}
str: a calculus with

overloading and late-binding

Thomas Studer ∗

Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH–3012 Bern, Switzerland

tstuder@iam.unibe.ch

April 12, 2000

Abstract

Up to now there was no interpretation available for λ-calculi featuring
overloading and late-binding, although these are two of the main principles
of any object-oriented programming language. In this paper we provide a
new semantics for a stratified version of Castagna’s λ{}, a λ-calculus com-
bining overloading with late-binding. The model-construction is carried out
in EETJ + (Tot) + (F-IN), a system of explicit mathematics. We will prove
the soundness of our model with respect to subtyping, type-checking and re-
ductions. Furthermore, we show that our semantics yields a solution to the
problem of loss of information in the context of type dependent computations.

Keywords: Explicit mathematics, typed λ-calculus, overloading, late-binding, loss
of information.

1 Introduction

Polymorphism is one of the concepts to which the object-oriented paradigm owes
its power. The distinction is made between parametric (or universal) and “ad hoc”
polymorphism. Using parametric polymorphism a function can be defined which
takes arguments of a range of types and works uniformly on them. “Ad hoc” poly-
morphism allows the writing of functions that can take arguments of several different
types which may not exhibit a common structure. These functions may execute a
different code depending on the types of the arguments. The proof-theory and the

∗Research supported by the Swiss National Science Foundation.

1

semantics of parametric polymorphism have been investigated by many researchers,
while “ad hoc” polymorphism has had little theoretical attention.

“Ad hoc” polymorphism denotes the possibility that two objects of different classes
can respond differently to the same message. Castagna, Ghelli and Longo [6] il-
lustrate this by the following example: the code executed when sending a message
inverse to an object of type matrix will be different from the code executed when
the same message is sent to an object representing a real number. Nevertheless the
same message behaves uniformly on all objects of a certain class. This behaviour
is known as overloading, since we overload an operator (here inverse) by different
operations. We say the function consists of several branches and the selection of the
actual operation depends on the types of the operands.

The real gain of power with overloading occurs only in programming languages which
compute with types. They must be computed during the execution of the program
and this computation must possibly affect the final result of the computation. Se-
lecting the branch to be executed of an overloaded function at compile-time, does
not involve any computation on types. Postponing the resolution of an overloaded
function to run-time, would not have any effect if types cannot change during the
computation. Only if types can change, we obtain the real power of overloading.
Hence we need the concept of subtyping in order to have types that are able to
evolve during the execution of a program. In such languages an expression of a
certain type can be replaced by another one of a smaller type. Thus the type of an
expression may decrease during the computation, which can affect the final result of
a computation, if we base the selection of the branch of an overloaded function on
the types at a given moment of the execution. We talk of early-binding, if the selec-
tion of the branch is based on the types at compile-time. If we use the types of the
fully evaluated arguments to decide which branch should be executed, then we call
this discipline late-binding. The introduction of overloading with early binding does
not significantly influence the underlying language. However overloaded functions
combined with subtyping and late-binding show the real benefits of object-oriented
programming.

Usually higher order lambda calculi are used to model parametric polymorphism.
These systems allow abstraction with respect to types and applications of terms
to types. However computations in these systems do not truly depend on types,
i.e. the semantics of an expression does not depend on the types appearing in it.
This fact is nicely exposed in a forgetful interpretation of these calculi. Hence
parametricity allows us to define functions that work on many different types, but
always in the same way. Overloading on the other hand characterises the possibility
of executing different codes for different types. Thus we have two different kinds of
polymorphism.

2

The subject of higher order lambda calculus originates from the work of Girard [15]
who introduced his system F for a consistency proof of analysis. For this reason,
system F is highly impredicative. Independently, Reynolds [22] rediscovered it later
and used it for applications in programming languages. Feferman [11] gives an
interpretation of system F in a theory of explicit mathematics and he discusses in
detail the advantages of representing programs in theories of explicit mathematics.

Until now there are only a few systems available featuring “ad hoc” polymorphism.
Ghelli [14] first defined typed calculi with overloading and late-binding to model
object-oriented programming. This approach was further studied in Castagna,
Ghelli and Longo [7]. In our paper we will use λ{} presented in Castagna [4, 5].
This calculus is designed for the study of the main properties of programming lan-
guages with overloading and late-binding. It is a minimal system in which there is
a unique operation of abstraction and a unique form of application. Hence we have
only overloaded functions and consider ordinary functions as overloaded with only
one branch defined.

Castagna, Ghelli and Longo [6] present a category-theoretic semantics for λ&−early
which is a calculus with overloading and early binding. In this calculus the types of
the arguments of an overloaded function are “frozen”; the same goes for compile-time
and run-time. Furthermore the type system is stratified in order to avoid certain
problems of impredicativity in the definition of the semantics. We will present a
semantics for a stratified subsystem of λ{} which can handle not only overloading but
also late-binding. Our model-construction will be carried out in EETJ+(Tot)+(F-IN),
a predicative theory of explicit mathematics.

Systems of explicit mathematics have been introduced by Feferman [8, 9] as a frame-
work for Bishop style constructive mathematics. More recently, Feferman’s systems
were used to develop a unitary axiomatic framework for representing programs,
stating properties of programs and proving properties of programs. Important ref-
erences for the use of explicit mathematics in this context are Feferman [11, 12, 13]
and Jäger [16, 17]. In systems of explicit mathematics types are represented by
names, and those are first order values. Hence they can be used in computations
and, as we have seen above, this allows us to model overloading and late-binding.
Furthermore, we will show that our interpretation yields a solution to the problem
of loss of information in the context of type dependent computations.

This problem introduced in Cardelli [2] can be described as follows: when we apply
for example the identity function λx.x of type T → T to an argument a of type S
subtype of T , then we can only derive that (λx.x)a has type T . The information
that a was of type S, is lost, although this will not be the case in our model.
At this point we have to mention that Castagna [4] is developing a second order
calculus with overloading and late-binding in order to deal with the problem of loss

3

of information and parametric polymorphism. Our work is also a first step towards
a better understanding of that system and the integration of parametric and “ad
hoc” polymorphism.

2 The λ{}-calculus

In this section we introduce Castagna’s λ{}-calculus. This minimal system, imple-
menting overloading and late-binding, has been first presented in [4, 5]. The goal was
to use as few operators as possible. Terms are built up from variables by abstraction
and application. Types are generated from a set of basic types by a constructor for
overloaded types. Ordinary functions (λ-abstraction) are considered as overloaded
functions with just one branch.

Pretypes: First we define the set of pretypes. Later we will select the types from
among the pretypes, meaning, a pretype will be a type, if it satisfies certain con-
ditions on good type formation. We start with a set of atomic types Ai. Now the
pretypes are inductively defined by:

1. Every atomic type is a pretype.

2. If S1, T1, . . . , Sn, Tn are pretypes, then the finite set {S1 → T1, . . . , Sn → Tn}
is a pretype.

Subtyping: we define a subtyping relation ≤ on the pretypes. This relation will be
used to define the types. We start with a predefined partial order ≤ on the atomic
(pre)types and extend it to a preorder on all pretypes by the following subtyping
rule:

∀i ∈ I.∃j ∈ J.(Ui ≤ Sj and Tj ≤ Vi)

{Sj → Tj}j∈J ≤ {Ui → Vi}i∈I
If the subtyping relation ≤ is decidable on the atomic types, then it is decidable
on all pretypes. Note that ≤ is just a preorder and not an order. For instance,
U ≤ V and V ≤ U do not imply U = V . As an example, assume S ′ ≤ S, then we
have {S → T} ≤ {S ′ → T}, and thus both {S → T} ≤ {S → T, S ′ → T} and
{S → T, S ′ → T} ≤ {S → T} hold.

Types: although the selection of the branch is based on run-time types, the static
typing must ensure that no type-errors will occur during a computation. We define
the set of types as follows: we call a pretype S minimal element of a set U of
pretypes, if S is an element of U and if there does not exist a pretype T 6= S in
U such that T ≤ S. The set of λ{} types contains all atomic types of λ{} as well
as all pretypes of the form {Si → Ti}i∈I that satisfy the following three consistency
conditions concerning good type formation:

4

1. Si, Ti are types for all i, j ∈ I,

2. Si ≤ Sj implies Ti ≤ Tj for all i, j ∈ I and

3. if there exists i ∈ I and a pretype S such that S ≤ Si, then there exists a
unique z ∈ I such that Sz is a minimal element of {Sj | S ≤ Sj ∧ j ∈ I}.

The first condition simply states that every overloaded type is built up by making
use of other types. The second condition is a consistency condition which ensures
that a type may only decrease during a computation. If we have an overloaded
function f of type {U1 → V1, U2 → V2} with U1 ≤ U2 and we apply it to an
argument n with type U2 at compile-time, then the expression f(n) will have type
V2 at compile-time; but if the run-time type of n is U1, then the run-time type of
f(n) will be V1. Therefore V1 ≤ V2 must hold. The third condition concerns the
selection of the correct branch. It assures the existence and uniqueness of a branch
to be executed. If, for example, we apply a function of type {Si → Ti}i∈I to a term
of type U , then condition (3) states that there exists a unique z ∈ I such that Sz
is a minimal element of the set {Si | U ≤ Si}, i.e. Sz best approximates U and the
zth branch will be chosen. Hence, this condition deals with the problem of multiple
inheritance. It assures that there will be no ambiguity in the selection of the branch.

Terms: terms are built up from variables by an operator of abstraction and one of
application:

M ::= x | λx(M1 : S1 ⇒ T1, . . . ,Mn : Sn ⇒ Tn) | M1M2,

where n ≥ 1 and S1, T1, . . . , Sn, Tn are types. Variables are not indexed by types,
because in a term for an overloaded function such as

λx(M1 : S1 ⇒ T1, . . . ,Mn : Sn ⇒ Tn),

the variable x should be indexed by different types. Thus indexing is avoided and in
the typing rules typing contexts are introduced. A context Γ is a finite set of typing
assumptions x1 : T1, . . . , xn : Tn with no variable appearing twice.

Type system: the following rules define the typing-relation between terms and
types.

Γ, x : T ` x : T

Γ, x : S1 `M1 : U1 · · · Γ, x : Sn `Mn : Un
Γ ` λx(Mi : Si ⇒ Ti)i∈{1,...,n} : {Si → Ti}i∈{1,...,n}

where Ui ≤ Ti holds for all i ∈ {1, . . . , n}, and

5

Γ `M : {Si → Ti}i∈I Γ ` N : S

Γ `MN : Tj

where Sj = mini∈I{Si | S ≤ Si} holds.

Reduction: when we apply an overloaded function to an argument, the argument
type selects the branch of the overloaded function which will be executed. This has
to be formally expressed by the reduction rules of the system. Since the argument
of an application may be an open term, reduction will depend on a typing context
Γ. With induction on the term structure we simultaneously define the notion of
reduction and the terms in normal form.

1. We have the following notion of reduction:
(ζ) Let Γ ` λx(Mi : Si ⇒ Ti)i∈{1,...,n} : {Si → Ti}i∈{1,...,n} and Γ ` N : S,
where Sj = mini∈I{Si | S ≤ Si}. If N is in closed normal form with respect to
Γ or {Si | i ∈ I, Si ≤ Sj} = {Sj}, then

λx(Mi : Si ⇒ Ti)i∈IN .Γ Mj[x := N],

where Mj[x := N] denotes the substitution of x in Mj by N . Then there are
rules for the context closure: let Γ `M : {Si → Ti}i∈I , Γ ` N : S and if there
exists an i ∈ I with S ≤ Si, then

M .Γ M
′

MN .Γ M
′N

N .Γ N
′

MN .Γ MN ′

Let Γ ` λx(Mi : Si ⇒ Ti)i∈I : {Si → Ti}i∈I , then

Mi .Γ,x:Si M
′
i

λx(· · ·Mi : Si ⇒ Ti · · ·) .Γ λx(· · ·M ′
i : Si ⇒ Ti · · ·)

2. A term M is in normal form with respect to Γ, if there does not exist a term
N such that M .Γ N .

In the sequel, we will consider only the stratified subsystem λ
{}
str of λ{}. This calculus

emerges from λ{} by restricting the subtype relation on the types. First, we introduce
the function rankλ on the pretypes by:

1. rankλ(Ai) = 0,

2. rankλ({Si → Ti}i∈I) = max{rankλ(Si) + 1, rankλ(Ti) | i ∈ I}.
With this function we define a new subtyping relation ≤− by adding the condition
rankλ({Sj → Tj}j∈J) ≤ rankλ({Ui → Vi}i∈I) to the subtyping rule. We call S a

strict subtype of T if S ≤− T holds. Now, λ
{}
str is defined by replacing ≤ with ≤−

in the typing and reduction rules of λ{}. Furthermore, in the consistency conditions
for good type formation we have to add

(2’) Si ≤− Sj implies Ti ≤− Tj for all i, j ∈ I.

6

3 Semantics

According to Castagna [5] the construction of a model for λ{} poses the following
problems: preorder, type dependent computation, late binding and impredicativity.

• Preorder: as we have seen, the subtyping relation of λ{} is a preorder but not
an order relation. If S ′ ≤ S holds, then we have {S → T} ≤ {S → T, S ′ → T}
as well as {S → T, S ′ → T} ≤ {S → T}. These two types are completely
interchangeable from a semantic point of view. Therefore, both types should
have the same interpretation, and the subtyping relation has to be modeled
by an order relation on the interpretations of the types.

• Type dependent computation: the types of the terms determine the result of
a computation. For this reason the interpretation of an overloaded function
must not only take the interpretation of the value of its argument as input
but also the interpretation of its argument type. Therefore the semantics of
an overloaded function type must take into account the interpretations of the
argument types of the functions it consists of. Because we work in a calculus
with subtyping, equally all the interpretations of subtypes of the argument
types have to be regarded.

• Late binding: the choice of the branch to be executed of an overloaded func-
tion depends on the run-time types of its arguments and not on the types at
compile time. Hence the branch to be executed cannot be chosen at compile
time, meaning in the translation of the terms. To determine the value of an
overloaded application, first the interpretation of its argument needs to be
evaluated in order to know its run-time type.

• Impredicativity: the type system of λ{} is not stratified. This can be seen in
the following example: we know that {{T → T} → T, T → T} is a subtype
of {T → T}, but {T → T} is a strict occurrence of {{T → T} → T, T → T}.
Hence a term M of the type {{T → T} → T, T → T} may be applied
to any term which is of a subtype of {T → T}; and therefore M may be
applied to itself, as M is of a subtype of {T → T}. The consequence is that
it is not possible to give a semantics for the types by induction on the type-
structure, as, in order to give the interpretation of an overloaded type, we need
to know the interpretations of the subtypes of its argument types. Therefore
the interpretation of the type {{T → T} → T, T → T} refers to itself.

In Castagna [4] and Castagna, Ghelli and Longo [6] the calculus λ&−early is intro-
duced. It is a λ-calculus with overloading and subtyping, but without late-binding.

7

For stratified subsystems of this calculus a category-theoretical semantics is pre-
sented which focuses on the problems stemming from the preorder on the types and
the type depended computation.
The problem of the preorder on the types is solved by a syntactic construction
called type completion. Intuitively, the completion of an overloaded type is formed
by adding all subsumed types. Hence two equivalent types will be transformed by
completion to essentially the same type. For example the completion of {S → T}
will be something like {S → T, S1 → T, S2 → T, . . .}, where S1, S2, . . . are all
(infinitely many) subtypes of S.
The problem of type depended computation is handled by interpreting overloaded
types as product types. If A is a type and for every x ∈ A we know that Bx is a type,
then the product type Πx∈ABx consists of all functions f which map an element x of
A to an element f(x) of Bx. Now semantic codes for types are introduced to define
the interpretation of an overloaded type as indexed product. The interpretation of
the type {S1 → T1, S2 → T2} will be the product type consisting of functions f
mapping a code d for a subtype U of S1 or S2 to a function f(d) : Sn → Tn, if
U selects the n-th branch of {S1 → T1, S2 → T2}. Hence an overloaded function
λx(M1 : S1 ⇒ T1,M2 : S2 ⇒ T2) of type {S1 → T1, S2 → T2} will be interpreted by
a function f which is defined for every code d for a type U subtype of S1 or S2 in
the following way:

f(d) =

{
λx.[[M1]] if U selects the first branch,
λx.[[M2]] if U selects the second branch.

In λ&−early an overloaded application demands an explicit coercion of its arguments.
Hence the types of the arguments of overloaded functions are “frozen”, and the
same goes for compile-time and run-time. Therefore, the problems of late-binding
are avoided. Since only stratified subsystems of λ&−early are modeled, there is
no problem of impredicativity, either. No type occurs strictly in itself, hence the
definition of the semantics of a type is not self-referential; and the interpretation of
the types can be defined by induction on the type structure.

In the sequel we will present a model construction for λ
{}
str. Our model is not based

on category-theory; but the construction is performed in a theory of explicit mathe-
matics. Such systems have first been presented by Feferman in [8] and [9]. Systems
of explicit mathematics deal with functions and classes where functions are given
by rules for mechanical computing and classes or types are successively defined or
generated from previous ones. To handle late-binding, it is essential that there are
first-order values acting for types. It is one of the main features of explicit mathe-
matics that types are represented by names. These are first-order values and hence,
we can apply functions to them. In this sense, computing with types is possible in
such systems and therefore they are an adequate framework to deal with overloading
and late-binding.

8

In our model we also define semantic codes for types, i.e. every type T of λ
{}
str is

represented by a natural number T ∗ in our theory of types and names. T ∗ is called
symbol for the type T . In the language of explicit mathematics, we find a term sub
deciding the subtype relation on the type symbols. Using these constructions we
can solve the problems mentioned by Castagna in the following way:

• Castagna [4] indicates that the key to model late-binding probably consists
of interpreting terms as pairs (interpretation of the computation, symbol for
the type). Then the computational part of the interpretation [[MN]] of an
application would be something of the form

(ΛX.(p0[[M]])[[X]])(p1[[N]])(p0[[N]]). (1)

This remark is the starting point for our construction. We show that inter-
preting terms as pairs really give a semantics for late-binding. When a term,
interpreted as such a pair, is used as an argument in an application, its type is
explicitly shown and can be used to compute the final result. Hence this rep-
resentation enables us to manage late-binding. We investigate how something
of the form of (1) can be expressed in theories for types and names in order
to model overloaded functions. As types are represented by names in explicit
mathematics, we do not need a second order quantifier as in (1) and we can
directly employ the symbol p1[[N]] for the type of the argument to select the
best matching branch.

• In our model, types will be interpreted as classes. Using join types (disjoint
unions) we can perform a kind of completion process on the types, so that the
subtype relation can be interpreted by the standard subclass relation. Since
classes in explicit mathematics are extensional in the usual set theoretic sense,
this relation is really an order and not just a preorder.

• An overloaded function type is interpreted as the class of functions that map
an element of the domain of a branch into the range of that branch, for every
branch of the overloaded function type. As the subtype relation is decidable
and since an overloaded function consist only of finitely many branches, there
exists a function typap such that for two types {Si → Ti}i∈I and S of λ

{}
str

with Sj = mini∈I{Si | S ≤− Si} we have

typap({Si → Ti}∗i∈I , S∗) = 〈S∗j , T ∗j 〉.

This means that typap yields symbols for the domain and the range of the
branch to be selected. With this term we define the computational part f of
the interpretation of a λ

{}
str function M := λx(M1 : S1 ⇒ T1,M2 : S2 ⇒ T2)

9

such that:

f([[N]]) =

{
[[M1[x := N]]] if typap(p1[[M]],p1[[N]]) = 〈S∗1 , T ∗1 〉,
[[M2[x := N]]] if typap(p1[[M]],p1[[N]]) = 〈S∗2 , T ∗2 〉.

By means of the remark about late-binding, we know that p1[[M]] and p1[[N]]
are symbols for the types of M , N respectively. This demonstrates how types
will affect the result of computations.

• We are not able to deal with the problem of impredicativity. For that reason
we consider only the stratified version λ

{}
str of λ{}. The stratification of the

type systems allows us to define the semantics of the types by induction on
the type structure.

4 The theory EETJ + (Tot) + (F-IN)

In this section we present the theory EETJ + (Tot) + (F-IN) of explicit mathematics
with elementary comprehension and join as basic type existence axioms. Further-
more, in this system, term application is total and we have full induction on the
natural numbers.

We will not employ Feferman’s original formalization of EETJ+(Tot)+(F-IN); but we
will treat it as a theory of types and names as developed in Jäger [16]. The language
Lt is two-sorted with individual variables a, b, c, f, g,m, x, y, z, . . . and type variables
A,B,C,X, Y, Z, Additionally, Lt includes the following individual constants:
k, s (combinators), p,p0,p1 (pairing), 0 (zero), sN (successor), pN (predecessor),
dN (definition by cases on natural numbers), for every natural number e a constant
ce (elementary comprehension) and j (join). Lt has the binary function symbol · for
term application. In Lt we have the unary relation symbol N (natural number) as
well as binary relation symbols =,∈ and < (naming).

The individual terms r, s, t, . . . of Lt are inductively defined by closing individual
variables and constants against application. We will drop · and only write (st) or
st instead of (s · t) and we usually omit parenthesis with the implicit assumption
that · associates to the left, i.e. rst stands for ((r · s) · t). We use (t0, t1) for pt0t1.
The atomic formulas of Lt are the formulas N(s), (s = t), (s ∈ A), (A = B) and
<(s, A), where N(s) says that s is a natural number and the formula <(s, A) is
used to express that the individual s represents the type A or is a name of A. The
formulas F,G,H, . . . of Lt are generated from the atomic formulas by closing under
negations, disjunctions, conjunctions and quantification in both sorts. A formula
F of Lt is called elementary, if the relation symbol < does not occur in F and F
does not contain bound type variables. The following table contains a useful list of

10

abbreviations:

t ∈ N :≡ N(t),

∃x ∈ A.F :≡ ∃x.(x ∈ A ∧ F),

∀x ∈ A.F :≡ ∀x.(x ∈ A→ F),

(f : A→ B) :≡ ∀x ∈ A.fx ∈ B,
A ⊂ B :≡ ∀x ∈ A.x ∈ B,
s ∈̇ t :≡ ∃Y.(<(t, Y) ∧ s ∈ Y),

s ⊂̇ t :≡ ∃X, Y.(<(s,X) ∧ <(t, Y) ∧X ⊂ Y),

<(s) :≡ ∃X.<(s,X).

Now we are ready to state the axioms of the theory EETJ + (Tot) + (F-IN). The
underlying logic is classical first order logic with equality. Hence, the remaining
logical connectives are defined as usual. The non-logical axioms can be divided into
the following four groups.

I. Applicative axioms. These axioms formalize that the individuals form a combina-
tory algebra, that we have pairing and projection and the usual closure conditions
on the natural numbers as well as definition by numerical cases. This first order
part corresponds to the theory TON of Jäger and Strahm [19].

Combinatory algebra

(1) kxy = x

(2) sxyz = xz(yz)

Pairing and projection

(3) p0(x, y) = x ∧ p1(x, y) = y

Natural Numbers

(4) 0 ∈ N ∧ ∀x ∈ N.sNx ∈ N

(5) ∀x ∈ N.(sNx 6= 0 ∧ pN (sNx) = x)

(6) ∀x ∈ N.(x 6= 0→ pN (sNx) ∈ N ∧ sN (pNx) = x)

Definition by cases on natural numbers

(7) u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x

(8) u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y

11

It is standard work in combinatory logic that with the axioms (1) and (2) lambda ab-
straction can be defined and a recursion theorem can be proven (cf. e.g. Barendregt
[1], Feferman [8] or Jäger [18]).

Definition 1 We define λ abstraction by:

λx.x :≡ skk,
λx.t :≡ kt, if x 6∈ FV(t),

λx.(rs) :≡ s(λx.r)(λx.s), otherwise.

This definition of λ-abstraction is compatible with substitution, but the totality of
the application is needed to make it work. In a partial setting a more complex
definition of λ abstraction would be required and it would behave very badly as far
as substitution in λ expressions is concerned (cf. Strahm [23]).

Theorem 2 (Recursion theorem) There is a closed term rec of Lt such that:

∀f.recf = f(recf).

II. Explicit representation and extensionality. The relation < acts as a naming relation
between objects and types, i.e. <(s, A) says that s is a name of the type A. While
the representation of types by their names is intensional, the types themselves are
extensional in the usual set-theoretical sense.

Extensionality

(EXT) ∀x.(x ∈ A↔ x ∈ B)→ A = B

The axioms about explicit representation state that every type has a name (E.1)
and that there are no homonyms (E.2).

Explicit representation

(E.1) ∃x.<(x,A)

(E.2) <(a,B) ∧ <(a, C)→ B = C

III. Basic type existence axioms. In order to build types, there exists the principle
of elementary comprehension. Let F [x, ~y, ~Z] be an elementary formula of Lt with
Gödelnumber e for any fixed Gödelnumbering, then we have the following axioms:

Elementary comprehension

(ECA.1) ∃X.∀x.(x ∈ X ↔ F [x,~a, ~B])

(ECA.2) <(~b, ~B) ∧ ∀x.(x ∈ A↔ F [x,~a, ~B])→ <(ce(~a,~b), A)

12

Besides elementary comprehension, we can also make use of the type building axiom
for join. Let us write A = Σ(B, f) for the statement

∀x.(x ∈ A ↔ x = (p0x,p1x) ∧ p0x ∈ B ∧ ∃X.(<(f(p0x), X) ∧ p1x ∈ X)),

i.e. A is the disjoint sum over all x ∈ B of the types named by fx. Now the
(uniform) axiom of join has the form

Join

(J) <(a,A) ∧ ∀x ∈ A.∃Y.<(fx, Y) → ∃Z.(<(j(a, f), Z) ∧ Z = Σ(A, f)).

IV. Formula induction on the natural numbers. Our theory enjoys full induction on
the natural numbers:

Formula induction on N

(F-IN) F (0) ∧ ∀x ∈ N.(F (x)→ F (sNx))→ ∀x ∈ N.F (x),

where F is an arbitrary formula of Lt.

This induction principle allows us to represent every primitive recursive function
and relation as a closed term of Lt. 1 stands for the term sN0 and we let < denote
the usual “less than” relation on the natural numbers. We will need to code finite
sequences of natural numbers. Let 〈x1, . . . , xn〉 be the natural number which codes
the sequence x1, . . . , xn in any fixed coding. 〈〉 is the empty sequence. There exists
a projection function π so that πi〈x1, . . . , xi, . . . , xn〉 = xi for all natural numbers
x1, . . . , xi, . . . , xn. We suppose that our coding satisfies the following property: if
a′i < ai, then 〈a1, . . . , a

′
i, . . . , an〉 < 〈a1, . . . , ai, . . . , an〉 holds.

Since the totality of the application adds nothing to the proof-theoretic strength
of our system, EETJ + (Tot) + (F-IN) is proof-theoretically equivalent to Martin-

Löf’s type theory with one universe ML1 and ÎD1, the theory of non-iterated positive
arithmetical inductive definitions where only the fixed-point property is asserted
(cf. Feferman [10]). There are simple models of EETJ + (Tot) + (F-IN). The applica-
tive part can be interpreted in a standard way by a formalized total term model of
TON (cf. Jäger and Strahm [19]). For the basic type existence axioms, codes for
classes can be inductively generated and simultaneously a membership relation can
be generated to satisfy elementary comprehension and join (actually one generates
the element relation and its complement simultaneously). Only the fixed point prop-
erty of this inductive definition is needed to establish a model, whereas minimality
is not necessary (cf. Marzetta [21]). Formalizing this procedure in ÎD1 yields a model
for EETJ + (Tot) + (F-IN). More on inductive model constructions for systems of
explicit mathematics can be found in Jäger and Studer [20].

13

5 Embedding λ
{}
str into explicit mathematics

In this section we are going to carry out the embedding of λ
{}
str into the theory

EETJ + (Tot) + (F-IN) of explicit mathematics. First, we represent each pretype T

of λ
{}
str by a natural number T ∗, which will be called symbol for the pretype T . We

presume that there exists a term asub deciding the subtype relation on the symbols
for atomic pretypes. Using this term we can define terms ptyp, sub and sub− as
such that ptyp decides whether a natural number is a symbol for a pretype and sub,
sub− model the subtype relations ≤ and ≤−, respectively, on the pretype symbols.
We define the class OTS of all symbols for types of λ

{}
str with a well-ordering ≺ on it.

Since we consider only a stratified type system, this can be done to such an extent
that if a represents the type {Si → Ti}i∈I and b is a symbol for a strict subtype of
any Si or Ti, then b ≺ a holds. Therefore, it is possible to define by recursion a term
type in such a way that applying this term to the symbol of any λ

{}
str type T yields

a name for its corresponding type in the system of explicit mathematics. This type
will contain all the computational aspects of the interpretations of λ

{}
str terms with

type T . Then we can define the semantics for a type T of λ
{}
str as the disjoint union

of all classes type(S∗) for strict subtypes S of T .

The interpretation of a λ
{}
str term M is a pair in Lt consisting of the interpretation

of the computational aspect of M and the symbol for its type. Hence, the type
information is explicitly shown and can be used to model overloading and late-
binding. To do so, we define a term typap which computes out of the symbols a, b
for types {Si → Ti}i∈I and S the term 〈S∗j , T ∗j 〉 such that Sj = mini∈I{Si |S ≤− Si}
holds. In other words typap can be employed to select the best matching branch
of an overloaded function. Hence, it allows us to give the semantics for overloaded
function terms of λ

{}
str using definition by cases on natural numbers. We prove

the soundness of our interpretation with respect to subtyping, type-checking and
reductions.

First, we introduce a translation ∗ from pretypes of λ
{}
str to Lt terms. If T is a

pretype, then its type symbol T ∗ is defined as follows: let A1, A2, . . . be any fixed
enumeration of all atomic types of λ

{}
str, then we set A∗i := 〈0, i〉 and

{S1 → T1, . . . , Sn → Tn}∗ := 〈1, 〈S∗1 , T ∗1 〉, . . . , 〈S∗n, T ∗n〉〉.

There exists a closed individual term rank of Lt, so that if T is a pretype of λ
{}
str,

then
EETJ + (Tot) + (F-IN) ` rank(T ∗) = n ⇐⇒ rankλ(T) = n.

We assume that there is a closed individual term asub available, which adequately
represents the subtype relation on the atomic type symbols, i.e.

14

1. EETJ + (Tot) + (F-IN) ` ∀x, y ∈ N.(asub(x, y) = 0 ∨ asub(x, y) = 1),

2. If S, T are pretypes of λ
{}
str, then EETJ + (Tot) + (F-IN) ` asub(S∗, T ∗) = 1 if

and only if S ≤ T and S, T are atomic,

3. EETJ + (Tot) + (F-IN) ` ∀x, y, z ∈ N.(asub(x, y) = 1 ∧ asub(y, z) = 1 →
asub(x, z) = 1).

We find a closed individual term ptyp which decides, whether a natural number n is
a symbol for a pretype. If n is of the form 〈0, i〉, then ptyp(n) is simply asub(n, n).
Otherwise ptyp(n) is evaluated using primitive recursion according to the definition
of the ∗ translation.

Using the terms asub,ptyp and rank we define by primitive recursion two closed
individual terms sub and sub−, so that these terms properly represent the subtype
relations ≤ and ≤−, respectively, on the symbols for pretypes.

Lemma 3 Let S, T be pretypes of λ
{}
str.

1. ∀x, y ∈ N.(sub(x, y) = 0 ∨ sub(x, y) = 1),

2. ∀x, y ∈ N.(sub−(x, y) = 0 ∨ sub−(x, y) = 1),

3. EETJ + (Tot) + (F-IN) ` sub(S∗, T ∗) = 1 if and only if S ≤ T is derivable in

λ
{}
str,

4. EETJ + (Tot) + (F-IN) ` sub−(S∗, T ∗) = 1 if and only if S ≤− T is derivable

in λ
{}
str.

There is an elementary Lt formula F (a) expressing the fact that the type represented
by the symbol a satisfies the consistency conditions on good type formation. Hence,
we can define a class OTS consisting of all symbols for λ

{}
str types. Since elementary

comprehension is uniform, there are closed individual Lt terms domain and range
satisfying the following property: assume {Si → Ti}i∈I is an overloaded function

type of λ
{}
str and a is its symbol. Then domain(a) is a name for the class containing

all symbols x ∈ OTS for which there is an i ∈ I such that sub−(x, S∗i) = 1 holds.
The term range(a) represents the class consisting of the symbols x ∈ OTS where x
is a symbol of a type V ≤− Ti for an i ∈ I. That is x ∈̇ domain(a) denotes a strict
subtype of an Si and x ∈̇ range(a) is a symbol for a strict subtype of a Ti for i ∈ I.
Using the rank function, we find a primitive recursive well-ordering ≺ on the type
symbols so that the next lemma holds.

Lemma 4 EETJ + (Tot) + (F-IN) proves:

1. a ∈ OTS ∧ b ∈̇ domain(a)→ b ≺ a,

15

2. a ∈ OTS ∧ b ∈̇ range(a)→ b ≺ a,

3. ∀x ∈ OTS.(∀y ∈ OTS.(y ≺ x → F (y)) → F (x)) → ∀x ∈ OTS.F (x), for
arbitrary formulas F of Lt.

Since the subtype relation on the type symbols is decidable, i.e. we have the Lt term
sub− at our disposal, we find a closed individual term typap of Lt selecting the best
matching branch in an application. Assume {Si → Ti}i∈I and S are types of λ

{}
str.

Then we have
typap({Si → Ti}∗i∈I , S∗) = 〈S∗j , T ∗j 〉,

if Sj = mini∈I{Si |S ≤− Si}. We set typap({Si → Ti}∗i∈I , S∗) = 0, if such an Sj does

not exist. Hence, typap({Si → Ti}∗i∈I , S∗) = 〈S∗j , T ∗j 〉 means, that if a λ
{}
str term M

of type {Si → Ti}i∈I is applied to a λ
{}
str term N of type S, then the jth branch of

M will be applied to N . As a result of this S is best approximated by Sj.

We assume that there is term tG which assigns to each symbol for an atomic type
of λ

{}
str the name of its corresponding type in explicit mathematics. If, for example,

we have just one atomic type in λ
{}
str consisting exactly of the natural numbers, then

its symbol is 〈0, 1〉 and its assigned type is {a |N(a)}. If t is a name for this type,
then we can choose tG := λx.t. If there are two symbols a, b with π1a = 0 and
π1b = 0 and sub(a, b) = 1 (e.g. symbols for atomic types S, T of λ

{}
str with S ≤ T),

then tG has to satisfy tG(a) ⊂̇ tG(b). This means that tG has to respect the subtype
hierarchy on the type symbols given by sub. With reference to the recursion theorem
we define a closed individual term type of Lt satisfying

type m =

{
tG m, if π1m = 0,
tO type m, if π1m = 1,

where tO type m is a name for

{f | ∀a ∈̇ domain(m).∀x ∈̇ type(a).
(p1(f(x, a)) ∈̇ range(m) ∧ p0(f(x, a)) ∈̇ p1(f(x, a)) ∧
sub−(p1(f(x, a)),π2(typap(m, a))) = 1)}.

This type depends on the terms type and m. Since in explicit mathematics the
representation of types by names is uniform in the parameters of the types, there
exists a term tO such that tO type m is a name for the above type.

Hence, if A is an atomic type, then type(A∗) is a name for its corresponding type
defined by tG. Otherwise, if we are given an overloaded type {Si → Ti}i∈I , then
type({Si → Ti}∗i∈I) contains all functions f to such an extent that for every type

S of λ
{}
str, every i ∈ I and every term x of Lt with S ≤− Si and x ∈̇ type(S∗) we

16

obtain p0(f(x, S∗)) ∈̇ p1(f(x, S∗)) and p1(f(x, S∗)) denotes a strict subtype of Tj,
where T ∗j = π2(typap({Si → Ti}∗i∈I , S∗)), i.e. Sj = mini∈I{Si | S ≤− Si}.
In this definition of type, there is a kind of type completion built in. Assume m is a
symbol for an overloaded function type {S → T} and f ∈̇ type(m). Then f(x, a) is
defined for all a ∈̇ domain(m) and for all x ∈̇ type(a). Since domain(m) contains
all symbols S∗1 , S

∗
2 , . . . for strict subtypes of S, the term type(m) represents in a

sense type {S → T, S1 → T, S2 → T, . . .}. In this way, we make use of a form of
type completion to handle the problem of the preorder on the types.

Using Lemma 4 we can prove that for every type symbol m ∈ OTS the term type(m)
is a name for a type in explicit mathematics, meaning ∀m ∈ OTS.<(type(m)).
These types satisfy the following subtype property.

Lemma 5 EETJ + (Tot) + (F-IN) proves:

a, b ∈ OTS ∧ sub−(a, b) = 1→ type(a) ⊂̇ type(b).

Now, we define a closed individual term type2 of Lt, so that for all a ∈ OTS we
have <(type2(a)) and

(f,m) ∈̇ type2(a)↔ m ∈ OTS ∧ sub−(m, a) = 1 ∧ f ∈̇ type(m).

The following lemma about subtyping is just a corollary of the definition of the Lt
term type2.

Lemma 6 EETJ + (Tot) + (F-IN) proves:

a, b ∈ OTS ∧ sub−(a, b) = 1→ type2(a) ⊂̇ type2(b).

With the Lt term type2 we define the interpretation of λ
{}
str types as follows.

Definition 7 Interpretation [[T]] of a λ
{}
str type T

If T is a type of λ
{}
str, then [[T]] is the type represented by type2(T ∗).

As an immediate consequence of this definition and the previous lemmas about
subtyping, we obtain the soundness of our interpretation with respect to subtyping.

Theorem 8 Let S, T be types of λ
{}
str with S ≤− T , then

EETJ + (Tot) + (F-IN) ` [[S]] ⊂ [[T]].

Terms of λ
{}
str will be interpreted as ordered pairs, where the first component models

the computational aspect of the term and the second component is a symbol for
the type of the term. To define the semantics for λ

{}
str terms we need an injective

17

translation ˆ from the variables of λ
{}
str to the individual variables of Lt. Then the

computational part of a λ
{}
str term λx.(Mi : Si ⇒ Ti)i∈I can be interpreted by a

function f as such that if typap({Si → Ti}∗i∈I ,p1y) = 〈S∗j , T ∗j 〉 holds, then f satisfies

f(y) = (λx̂.[[Mj]])y.

Such a function exists, because an overloaded function is composed only of finitely
many branches and we have the Lt term typap available, which selects the best
matching branch. An application of two Lt termsMN is simply modeled by applying
the function p0[[M]] to [[N]].

Definition 9 Interpretation [[M]] of a λ
{}
str term M

We define [[M]] by induction on the term structure:

1. M ≡ x: [[M]] := x̂.

2. M ≡ λx.(Mi : Si ⇒ Ti)i∈{1,...,n}: [[M]] := (f, {Si → Ti}∗i∈{1,...,n}), where f is
defined as follows:

f(y) :=


(λx̂.[[M1]])y, typap({Si → Ti}∗i∈{1,...,n},p1y) = 〈S∗1 , T ∗1 〉,
...
(λx̂.[[Mn]])y, typap({Si → Ti}∗i∈{1,...,n},p1y) = 〈S∗n, T ∗n〉.

3. M ≡M1M2: [[M]] is defined as p0[[M1]][[M2]].

Employing definition by cases on natural numbers we can combine the interpreta-
tions of the branches of a λ

{}
str term M defined by λ abstraction to one overloaded

function which serves as the interpretation of M . This definition by cases is eval-
uated using the typap function and the type information which is shown in M for
each branch.

Before we can prove two of our main results, soundness of our interpretation with
respect to type-checking and with respect to reductions, we have to mention the
following preparatory lemma.

Lemma 10 If M,N are terms of λ
{}
str and P [x := Q] denotes the substitution of x

in P by Q for both λ
{}
str terms and Lt terms, then EETJ + (Tot) + (F-IN) proves:

[[M]][x̂ := [[N]]] = [[M [x := N]]].

Proof The proof proceeds by induction on the term structure of M . The only
critical case is when M is defined by λ abstraction. There, totality in our system of
explicit mathematics is essential since it guarantees that substitution is compatible
with λ abstraction. 2

18

We define the interpretation [[Γ]] of a context x1 : T1, . . . , xn : Tn as

[[x1]] ∈ [[T1]] ∧ . . . ∧ [[xn]] ∈ [[Tn]].

Our interpretation is sound with respect to type checking.

Theorem 11 If Γ ` M : T holds in λ
{}
str, then in EETJ + (Tot) + (F-IN) one can

prove:
[[Γ]]→ [[M]] ∈ [[T]].

Proof The proof proceeds by induction on Γ `M : T .

1. M ≡ x: trivial.

2. M ≡ λx.(Mi : Si ⇒ Ti)i∈I : let f := p0[[M]]. T is of the form {Si → Ti}i∈I .
Therefore, we have to show (f, T ∗) ∈̇ type2(T ∗). That is f ∈̇ type(T ∗), i.e.

∀a ∈̇ domain(T ∗).∀y ∈̇ type(a).
(p1(f(y, a)) ∈̇ range(T ∗) ∧ p0(f(y, a)) ∈̇ p1(f(y, a)) ∧
sub−(p1(f(y, a)),π2(typap(T ∗, a))) = 1).

(2)

Choose a ∈̇ domain(T ∗), y ∈̇ type(a) and let the natural number j be such
that typap(T ∗, a) = 〈S∗j , T ∗j 〉, then we obtain f(y, a) = (λx̂.[[Mj]])(y, a) by the
definition of f . With the induction hypothesis we get

[[Γ]] ∧ [[x]] ∈ [[Sj]]→ [[Mj]] ∈ [[Vj]],

for a type Vj ≤− Tj. From Lemma 6 we infer type2(V ∗j) ⊂̇ type2(T ∗j). Our
choice of a, y and j yields (y, a) ∈ [[Sj]] and we conclude f(y, a) ∈̇ type2(T ∗j).
That is p0(f(y, a)) ∈̇ type(p1(f(y, a))) and p1(f(y, a)) ∈ OTS as well as
sub−(p1(f(y, a)), T ∗j) = 1. Therefore, we conclude that (2) holds.

3. M ≡M1M2: in this case there are types {Si → Ti}i∈I and S of λ
{}
str and j ∈ I,

such that in λ
{}
str one can derive Γ `M1 : {Si → Ti}i∈I and Γ `M2 : S, where

Sj = mini∈I{Si | S ≤− Si} and T = Tj. By the induction hypothesis we know

[[Γ]]→ [[M1]] ∈ [[{Si → Ti}i∈I]], (3)

[[Γ]]→ [[M2]] ∈ [[S]]. (4)

From (4) we infer p0[[M2]] ∈̇ type(p1[[M2]]) as well as

sub−(p1[[M2]], S∗) = 1. (5)

Let k be such that typap({Si → Ti}∗i∈I ,p1[[M2]]) = 〈S∗k , T ∗k 〉. Using (3) we get

p0(p0[[M1]][[M2]]) ∈̇ p1(p0[[M1]][[M2]])

and sub−(p1(p0[[M1]][[M2]]), T ∗k) = 1. From (5) and the consistency conditions

19

on good type formation we obtain sub−(T ∗k , T
∗
j). Therefore, we conclude by

Lemma 6 that p0[[M1]][[M2]] ∈ [[Tj]] holds.

2

In the sequel we will prove the soundness of our model construction with respect
to reductions. In contrast to the semantics for λ&−early presented in Castagna,
Ghelli and Longo [6], our interpretation of a term does not change, when the term

is reduced. We can show that if a term M reduces in λ
{}
str to a term N , then the

interpretations of M and N are equal.

Theorem 12 If P,Q are well-typed λ
{}
str terms and P .Γ Q, then the following is

provable in EETJ + (Tot) + (F-IN):

[[Γ]]→ [[P]] = [[Q]].

Proof By induction on .Γ. The critical case is:
P :≡ M · N , where we have M ≡ λx(Mi : Si ⇒ Ti)i∈I , Γ ` N : S as well as
Sj = mini∈I{Si | S ≤− Si}. Furthermore, {Si | i ∈ I, Si ≤− Sj} = {Sj} or N is in
closed normal form. Assuming that [[Γ]] holds, then we obtain in both cases

typap({Si → Ti}∗i∈I ,p1[[N]]) = 〈S∗j , T ∗j 〉.

Therefore, we conclude

[[P]] = p0[[M]][[N]] = (λx̂.[[Mj]])[[N]] = [[Mj]][x̂ := [[N]]] = [[Mj[x := N]]] = [[Q]].

2

6 Loss of information

Castagna [4] indicated a relationship between modeling late-binding and the problem
of loss of information. This is a problem in type-theoretic research on object-oriented
programming introduced in Cardelli [2]. It can be described in the following way.

We assume we are given a λ
{}
str function λx(x : T ⇒ T) of type {T → T}, i.e. the

identity function on the type T . If we apply this function to a term N of type S,
where S is a strict subtype of T , then we can only infer that λx(x : T ⇒ T)N has
type T (rather than S). Thus, in the application we have lost some information.
For this reason, we no longer know that N is of type S, after having applied the
identity function to it.

Usually, the solution to this problem is to use a second order calculus which was
originally proposed in Cardelli and Wegner [3]. The identity function is no longer

20

considered to take an argument of type smaller than or equal to T and to return a
result of type T . Instead, it is a function which takes any argument smaller than
or equal to T and returns a result of the same type as that of the argument, i.e.
it takes an argument of type X ≤− T and returns a result of type X. In a second
order calculus we can write the type of this function as

∀X ≤− T.(X → X).

Recalling Castagna’s proposal how a semantics for late-binding might work, we note
the second order quantifier in the expression (1). This shows the connection between
late-binding and the problem of loss of information. In semantics for late-binding
we have to deal with functions which take types as arguments. The same is the case
in order to solve the problem of loss of information.

This interplay of late-binding and the loss of information also appears in our seman-
tics. Let M be the λ

{}
str term λx(x : T ⇒ T) of type {T → T} and N be a term of

type S ≤− T . Then we still can prove in EETJ + (Tot) + (F-IN) that [[MN]] ∈ [[S]].

Thus, there is no loss of information in our interpretation of λ
{}
str. After having

applied the identity function M to N , we still can prove that the interpretation of
the result is an element of the interpretation of the type S.

We have no loss of information in our semantics because the types of the terms
are explicitly shown. Hence, in an application the types of the arguments can
be employed to derive the type of the result. First, the type information of the
argument types is used to select the best matching branch. Then, in λ

{}
str, the type

of the result is fixed by the type of this branch. The information of the argument
types is lost. Whereas in our model, once the branch to be executed is chosen,
the result type depends only on the types of the arguments and the computational
aspect of the function. Accordingly, the type of the function will not be used in the
computational process except for selecting the branch to be executed. Therefore, all
the information is still available.

Of course we do not have appropriate types in our model to express that a certain
function has no loss of information. Castagna [4] presents a type system for late-
bound overloading in which this can be expressed. Our work also is a step towards
a better understanding of calculi combining parametric polymorphism and type
dependent computations

7 Conclusion

Overloading, subtyping and late-binding are important features of many object-
oriented programming languages. Still, there was no interpretation available for λ

21

calculi including these principles. In this paper we presented a semantics for λ
{}
str, a

calculus combining these three features. Castagna [4] proposed to interpret terms
as pairs (computation, type-symbol) in order to handle late-binding, but he did
not give an actual model. Our construction is based on this idea and provides an
interpretation for overloading, subtyping and late-binding.

The model construction is carried out in a system of explicit mathematics. Types are
represented by names in these theories and names are first order values. Hence, they
can be used in computations, which is the key to model overloading and late-binding.
This paper provides a first study on how this feature of explicit mathematics can be
used to investigate principles of object-oriented programming.

Our work shows that theories of types and names are well suited to examine prin-
ciples that involve computations with types such as overloading and late-binding.
We propose to develop a system of explicit mathematics which directly supports
overloading. This theory should be proof-theoretically weak, but should also have
strong expressive power, cf. Feferman [12, 13]. As noticed in the previous section,
there is a strong connection between loss of information and parametric polymor-
phism. Since we got a solution to the problem of loss of information for free in
our model, we think that explicit mathematics is also an appropriate framework to
explore parametric polymorphism in the context of late-bound overloading.

Acknowledgements. We would like to thank Giorgio Ghelli, Gerhard Jäger and
Thomas Strahm for many helpful comments on earlier versions of this paper.

References

[1] Hendrik Barendregt. The Lambda Calculus. North-Holland, revised edition,
1985.

[2] Luca Cardelli. A semantics of multiple inheritance. Information and Compu-
tation, 76(2–3):138–164, 1988.

[3] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17(4):471–522, 1985.

[4] Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation.
Birkhäuser, 1997.

[5] Giuseppe Castagna. Unifying overloading and λ-abstraction: λ{}. Theoretical
Computer Science, 176:337–345, 1997.

22

[6] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A semantics for
λ&−early: a calculus with overloading and early binding. In M. Bezem and
J. F. Groote, editors, Typed Lambda Calculi and Applications, volume 664 of
Lecture Notes in Computer Science, pages 107–123. Springer, 1993.

[7] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for over-
loaded functions with subtyping. Information and Computation, 117(1):115–
135, 1995.

[8] Solomon Feferman. A language and axioms for explicit mathematics. In J. N.
Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Mathemat-
ics, pages 87–139. Springer, Berlin, 1975.

[9] Solomon Feferman. Constructive theories of functions and classes. In M. Boffa,
D. van Dalen, and K. McAloon, editors, Logic Colloquium ’78, pages 159–224.
North Holland, 1979.

[10] Solomon Feferman. Iterated inductive fixed-point theories: Application to Han-
cock’s conjecture. In G. Metakides, editor, Patras Logic Symposion, pages 171–
196. North-Holland, 1982.

[11] Solomon Feferman. Polymorphic typed lambda-calculi in a type-free axiomatic
framework. In W. Sieg, editor, Logic and Computation, volume 106 of Contem-
porary Mathematics, pages 101–136. American Mathematical Society, 1990.

[12] Solomon Feferman. Logics for termination and correctness of functional pro-
grams. In Y. N. Moschovakis, editor, Logic from Computer Science, volume 21
of MSRI Publications, pages 95–127. Springer, 1991.

[13] Solomon Feferman. Logics for termination and correctness of functional pro-
grams II: Logics of strength PRA. In P. Aczel, H. Simmons, and S. S. Wainer,
editors, Proof Theory, pages 195–225. Cambridge University Press, 1992.

[14] Giorgio Ghelli. A static type system for late binding overloading. In A. Paepcke,
editor, Proc. of the Sixth International ACM Conference on Object-Oriented
Programming Systems and Applications, pages 129–145. Addison-Wesley, 1991.

[15] Jean-Yves Girard. Interpretation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse de doctorad d’état, Université de Paris
VII, 1972.

[16] Gerhard Jäger. Induction in the elementary theory of types and names. In
E. Börger, H. Kleine Büning, and M. M. Richter, editors, Computer Science
Logic ’87, volume 329 of Lecture Notes in Computer Science, pages 118–128.
Springer, 1988.

23

[17] Gerhard Jäger. Type theory and explicit mathematics. In H.-D. Ebbinghaus,
J. Fernandez-Prida, M. Garrido, M. Lascar, and M. Rodriguez Artalejo, editors,
Logic Colloquium ’87, pages 117–135. North-Holland, 1989.

[18] Gerhard Jäger. Applikative Theorien und explizite Mathematik. Technical
Report IAM 97-001, Universität Bern, 1997.

[19] Gerhard Jäger and Thomas Strahm. Totality in applicative theories. Annals of
Pure and Applied Logic, 74:105–120, 1995.

[20] Gerhard Jäger and Thomas Studer. Extending the system T0 of explicit math-
ematics: the limit and Mahlo axioms. Submitted.

[21] Markus Marzetta. Predicative Theories of Types and Names. PhD thesis, In-
stitut für Informatik und angewandte Mathematik, Universität Bern, 1994.

[22] John C. Reynolds. Towards a theory of type structure. In Programming Sym-
posium: Proc. of Colloque sur la Programmation, volume 19 of Lecture Notes
in Computer Science, pages 408–425. Springer, 1974.

[23] Thomas Strahm. Partial applicative theories and explicit substitutions. Journal
of Logic and Computation, 6(1):55–77, 1996.

24

