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The modal µ-calculus [5] is the extension of propositional modal logic with
least and greatest fixed point operators. The µ-calculus is an important tool
for specifying and verifying properties of programs and it has been thoroughly
investigated. However, the deductive systems that are complete all contain
a cut-rule [8, 9] and it is not known how to eliminate these cuts. At present,
there is no cut-free axiomatization available. Decidability of the µ-calculus
has only been established via a reduction to SωS or via a reduction to the
emptiness problem of certain automata [7, 4].
In this paper we study the stratified modal fixed point logic FPL for which
we present a finitary cut-free axiomatic system. FPL corresponds to the first
level of the variable hierarchy of the µ-calculus [2, 3], that is the fragment
of the modal µ-calculus with only one fixed point variable. In this fragment,
it is still possible to formulate nested fixed point definitions by reusing the
single fixed point variable. Indeed, FPL captures many logics such as PDL,
CTL, and the logic of common knowledge.
FPL is a stratified fixed point logic in the following sense: Consider a for-
mula µX.A(X) where A(X) is X positive. A(X) may contain a subformula
νY.B(Y ) only if B(Y ) does not contain X free. This allows us to compute the
meaning of νY.B(Y ) and then use this result to determine the interpretation
of µX.A(X). Stratification guarantees that inner fixed points do not depend
on outer fixed points. Hence, one can easily determine the interpretation of
a formula by induction on its structure.
This is not possible if interleaving of fixed points is allowed. Consider the for-
mula µX.νY.A(X, Y ). The interpretation of the inner fixed point νY.A(X, Y )
depends on the interpretation of X which is given by the outer fixed point
µX.νY.A(X, Y ) which in turn depends on the inner fixed point νY.A(X, Y ).
Hence, interleaving of fixed points has the effect that the interpretations of
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fixed points cannot be computed one after the other. Instead, the they mu-
tually depend on each other. In order to avoid this problem, we exclude such
constructions from FPL.
We will prove soundness and completeness of our axiomatization of FPL.
Completeness is shown by means of a canonical countermodel construction
where saturated sets take the role of possible worlds. Here, stratification is
essential in order to show by induction that we indeed do have a counter-
model. The main observation to prove soundness is the following: a greatest
fixed point, say νX.A(X) is valid if already some finite iteration of A(X), that
is A(A(. . . (>) . . .)), is valid. This fact is a consequence of the finite model
property for the µ-calculus and standard results about monotone operators.
The technique used to prove soundness of a finitary rule which derives a
greatest fixed point is very general and applies also to other calculi. For
instance, it becomes possible to finitize the infinitary calculus for common
knowledge studied in [1, 6]. In that system, common knowledge is derived by
an infinitary rule which has all iterations of ‘everybody knows’ as premises.
We can cut off this rule at a certain stage and still have soundness since the
logic of common knowledge enjoys the finite model property. Completeness
of the system is not affected for the resulting rule has less premises.
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