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Abstract

We study the proof theoretic relationship between several deduc-
tive systems for the modal mu-calculus. This results in a completeness
proof for a system that is suitable for deciding the validity problem of
the mu-calculus. Moreover, this provides a new proof theoretic proof
for the finite model property of the mu-calculus.

1 Introduction

The propositional modal µ-calculus has been introduced by Kozen [10]. It is
the extension of (multi-)modal logic by least and greatest fixed point opera-
tors. The µ-calculus has a very expressive language which allows for arbitrary
nestings of (possibly interleaved) fixed points. Still it has good computational
properties: the model checking problem is in NP ∩ co-NP and the validity
problem is in EXPTIME.

The µ-calculus is important in many logic approaches to computer sci-
ence, mainly because its language is suitable for stating properties about the
behavior of processes. For a first overview and as a guide to the literature
see for instance Bradfield and Stirling [3]. There are also many connections
to neighboring areas in mathematics and theoretical computer science such
as automata theory, game theory, universal algebra, and lattice theory.

Let us mention some articles dealing with the proof theory of the µ-
calculus. In his initial study, Kozen [10] proposes an axiomatization for
the µ-calculus which he shows to be sound and complete for the so-called
aconjunctive fragment. Furthermore, Kozen [11] establishes the finite model
property of the µ-calculus by relating it to the theory of well-quasi-orders.
This allows him to introduce an infinitary deduction rule and to claim sound-
ness and completeness for for a system with this rule, however, making crucial
use of a cut rule. Completeness of finitary axiomatizations with respect to
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the full language of the µ-calculus is addressed in Walukiewicz [17, 18]. How-
ever, automata- rather than proof-theoretic methods are at the core of his
approach.

Jäger, Kretz and Studer [7] introduce a cut-free infinitary system Tω
µ+

for the µ-calculus. They also make use of an infinitary deduction rule which
derives the validity of a greatest fixed point from the validity of all its (in-
finitely many) finite approximations. To show soundness of this rule, the
finite model property is employed. Completeness of Tω

µ+ is established by a
canonical counter-model construction.

The finite model property of the µ-calculus is readdressed by Streett
and Emerson [16] who show that if a formula A is satisfiable, then it is
already satisfiable in a finite Kripke structure whose number of worlds is
exponentially bounded in the length of A. Making use of this result and
of an idea from [8, 9, 13], it becomes possible to finitize Tω

µ+. This leads
to a finitary, sound and complete, cut-free deductive system for the modal
µ-calculus [7].

An interesting direction of proof theoretic research on the subject is also
represented by Miclan [14] who studies natural deduction style translations
of Kozen’s system and their implementation in interactive theorem provers.
More remotely, the approach taken by Andersen, Stirling and Winskel [1] as
well as the follow-up work by Berezin and Gurov [2] also studies proof systems
for the µ-calculus. However, the purpose of their systems is to derive local
satisfaction statements of the form A holds for process p and not the global
validity of a given formula.

Dax, Hofmann, and Lange [4] present an infinitary proof system for the
linear time µ-calculus which is suitable for deciding the validity problem of
the linear time µ-calculus. They also mention a related system for the full
modal µ-calculus which we call Tpre

µ . A proof in Tpre
µ is a finitely branching

tree which may have branches of infinite length. These infinite branches must
satisfy a global criterion saying (roughly) that there must be an outermost
greatest fixed point unfolded infinitely many often in this branch.

The main contribution of the present paper is to show that if a formula
A of the µ-calculus is derivable in Tω

µ+, then it is also derivable in Tpre
µ . This

provides

1. completeness of Tpre
µ (since Tω

µ+ is complete),

2. a soundness proof for Tω
µ+ that does not refer to the finite model prop-

erty (since Tpre
µ is sound),

3. a proof-theoretic proof of the finite model property of the µ-calculus
(since our observations make it possible to adapt the canonical counter-
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model construction presented in [7] such that the constructed model is
finite).

Sprenger and Dam [15] also compare two proof systems for the µ-calculus
each using a different type of induction. However, their systems include a
cut-rule which allows for a straightforward translation from local to global
induction. We study cut-free systems which makes the construction more
involved.

Let us illustrate our approach by an example. Consider the Tω
µ+ proof

of the Lµ formula (µX)2X, (νY)3Y shown below. Starting from this given
proof, we can construct a Tpre

µ proof for as follows.

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (ν1Y)3Y

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (ν1Y)3Y

2((µX)2X), 3((ν1Y)3Y)

(µX)2X, 3((ν1Y)3Y)

(µX)2X, (ν2Y)3Y · · ·
(µX)2X, (νY)3Y

We take the branch through the premise (ν2Y)3Y of the infinitary great-
est fixed point rule. In this branch, we drop all the iteration numbers. That
is we replace all subexpressions of the form (νkX)C by (νX)C. This gives us
the following.

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (ν1Y)3Y

2((µX)2X), 3((ν1Y)3Y)

(µX)2X, 3((ν1Y)3Y)

(µX)2X, (ν2Y)3Y

(µX)2X, (νY)3Y

=⇒

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (νY)3Y

2((µX)2X), 3((νY)3Y)

(µX)2X, 3((νY)3Y)

(µX)2X, (νY)3Y

(µX)2X, (νY)3Y

We note that droping the iteration numbers in the sequents

(µX)2X, (ν2Y)3Y and (µX)2X, (ν1Y)3Y

makes them identical. Therefore we can loop between these two sequents
and get the following infinitary Tpre

µ proof.
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...
(µX)2X, (νY)3Y

2((µX)2X), 3((νY)3Y)

(µX)2X, 3((νY)3Y)

(µX)2X, (νY)3Y

In this example, we could choose the branch through the second premise
of the (ν.ω) rule in order to find two identical sequents. To show that this
approach works in general, we have to guarantee that if we derive Γ, (νX)A
by a (ν.ω) rule, then there is a branch providing two identical sequents to
build a loop.

The following argument shows that this indeed is the case. Let n be the
cardinality of the Fischer-Ladner closure of Γ, (νX)A. Droping the iteration
numbers in a sequent of the Tω

µ+ proof of Γ, (νX)A, gives us a sequent which
belongs to the Fischer-Lander closure of Γ, (νX)A. Note that there are only
2n − 1 non-empty subset of this Fischer-Ladner closure. Therefore, we can
chose the branch through the premise Γ, (ν2n

X)A. This branch must contain
two sequents that are identical if the iteration numbers are dropped. Thus we
can build the corresponding Tpre

µ proof tree from that branch. An additional
observation concerning threads in Tω

µ+ proofs shows that the global criterion
on Tpre

µ proof branches is also satisfied.
The paper is organized as follows. Sections 2 and 3 introduce the language

and semantics of the modal µ-calculus. We recall the definition of the system
Tω

µ+ in Section 4. The deductive system Tpre
µ is presented in Section 5. Section

6 proves some lemmata about threads which are needed in the completeness
proof. They guarantee that the Tpre

µ proof tree we construct satisfies the
global criterion on infinite branches. We establish completeness of Tpre

µ in
Section 7 where we show how to construct the Tpre

µ proof from a given Tω
µ+

proof. Section 8 deals with soundness issues. It is shown that soundness
of Tpre

µ makes it possible to finitize Tω
µ+ which results in a finitary cut-free

system Tµ+. All three systems Tω
µ+, Tµ+, and Tpre

µ are sound and complete.
In Section 9, we present some applications of our construction. The main
result is a new proof theoretic proof for the finite model property of the
µ-calculus. Section 10 concludes the paper.

2 Language

We will introduce the language Lµ of the modal µ-calculus. In addition, we
will need an extension L+

µ of Lµ that contains formulae to explicitly represent
the finite approximations (νkX)A of a greatest fixed point νXA.
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Definition 1 (Language Lµ, free variables). Let

Φ = {p,∼p, q,∼q, r,∼r, . . .}

be a countable set of atomic propositions,

V = {X,∼X, Y,∼Y, Z,∼Z, . . .}

a set containing countably many variables and their negations, T = {>,⊥} a
set containing symbols for truth and falsehood and M a set of indices. Define
the formulae of the language Lµ as well as the set fv of free variables of each
formula inductively as follows:

1. If P is an element of Φ∪V∪T, then P is a formula of Lµ. Furthermore,
if P = X or P = ∼X for some X or ∼X from V, then fv(P ) := {X},
otherwise fv(P ) := ∅.

2. If A and B are formulae of Lµ, then so are (A ∧ B) and (A ∨ B).
Furthermore, we define fv((A ∧B)) := fv((A ∨B)) := fv(A) ∪ fv(B).

3. If A is a formula of Lµ and i ∈ M, then 2iA and 3iA are also formulae
of Lµ. Furthermore, let fv(2iA) := fv(3iA) := fv(A).

4. If A is a formula of Lµ and the negated variable ∼X does not occur in
A, then (µX)A and (νX)A are also formulae of Lµ. Furthermore, we
define fv((µX)A) := fv((νX)A) := fv(A) \ {X}.

In case there is no danger of confusion, we will omit parentheses in formulae.
If the negated variable ∼X does not occur in a formula A of Lµ, we say that
A is X–positive or alternatively positive in X. Formulae which are positive
in a certain variable determined by the context will henceforth be denoted
by letters A,B, C, . . .. Furthermore, we will call a formula A of Lµ closed, if
fv(A) = ∅.

Definition 2 (Language L+
µ ). The formulae of the extended language L+

µ

(and their free variables) are defined by adding the following clause to the
induction of Definition 1

5. If A is a formula of L+
µ and the negated variable ∼X does not occur

in A, then for every natural number k > 0 (νkX)A is also a formula of
L+

µ . Furthermore, we define fv((νkX)A) := fv(A) \ {X}.

We define X–positive and closed formulae of L+
µ analogously to those of Lµ.

Given a formula B of L+
µ we define B− as the formula obtained from B

by first replacing all subexpressions of the form (νkX)C by (νX)C and then
all free variables by >. Clearly B− is a formula of Lµ. For a set Γ of L+

µ

formulae, we define Γ− as
⋃

B∈Γ B−.
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We use (σX)A to denote formulae of the form (µX)A, (νX)A, and (νkX)A
for all k. Moreover, we write B ∈ sub(A) if B is a subformula of A.

3 Semantics of L+
µ

We make use of the standard Kripke semantics for multi-modal fixed point
logics to give meaning to L+

µ formulae.

Definition 3 (Kripke structure). A Kripke structure for L+
µ is a triple

K = (S, R, π), where S is a non–empty set, R : M → P(S × S) and π :
(Φ ∪ V) → P(S) is a function such that π(∼X) = S \ π(X) for all ∼X ∈ V
and π(∼p) = S \π(p) for all ∼p ∈ Φ. The function R assigns an accessibility
relation to each i ∈ M where we write Ri for the relation R(i). Furthermore,
given a set T ⊂ S and a variable X ∈ V we define the Kripke structure
K[X := T ] as the triple (S, R, π′), where π′(X) = T , π′(∼X) = S \ T and
π′(P ) = π(P ) for all other P ∈ Φ ∪ V.

We are now ready to assign a meaning to the formulae of L+
µ in terms

of Kripke structures. This is achieved in a straightforward way by induction
on the structure of formulae, with a side induction on all natural numbers
greater than 0 to treat finite greatest fixed point approximations.

Definition 4 (Denotation). Let K = (S, R, π) be a Kripke structure. For
every A ∈ L+

µ we define the set ‖A‖K ⊂ S inductively as follows:

‖P‖K := π(P ) for all P ∈ Φ ∪ V, ‖>‖K := S, ‖⊥‖K := ∅,
‖B ∧ C‖K := ‖B‖K ∩ ‖C‖K, ‖B ∨ C‖K := ‖B‖K ∪ ‖C‖K,

‖2iB‖K := {w ∈ S : v ∈ ‖B‖K for all v such that wRiv},
‖3iB‖K := {w ∈ S : v ∈ ‖B‖K for some v such that wRiv}.

For every formula (µX)A and (νX)A we define

‖(µX)A‖K :=
⋂
{T ⊂ S : T ⊃ FK

A,X(T )} and

‖(νX)A‖K :=
⋃
{T ⊂ S : T ⊂ FK

A,X(T )}

where FK
A,X is the operator on S given by FK

A,X(T ) := ‖A‖K[X:=T ] for every
subset T of S. Furthermore, if A is an X–positive formula, then we define
‖(νkX)A‖K for every k > 0 by induction on k as follows:

‖(ν1X)A‖K := ‖A[>/X]‖K

‖(νn+1X)A‖K := ‖A[(νnX)A]‖K.
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We write K, s |= A for s ∈ ‖A‖K. We call a L+
µ formula A satisfiable if there

is a Kripke structure K such that ‖A‖K is non-empty. We say A is satisfiable
by a finite Kripke structure if there is a Kripke structure K = (S, R, π) with
S finite such that ‖A‖K is non-empty. The formula A is called valid if for
every Kripke structure K = (S, R, π) we have ‖A‖K = S.

Let us illustrate the semantics of L+
µ formulae by an example. First, we

need the following definition.

Definition 5. Let K = (S, R, π) be a Kripke structure and let j ∈ M. A
j-path in K is a (possibly infinite) sequence (s0, . . . , sn) of elements of S such
that for every 0 ≤ i < n we have (si, si+1) ∈ Rj. Note that we may have
sm = sn for m 6= n. We say the path (s0, . . . , sn) has length n.

Example 6. Assume we are given a Kripke structure K = (S, R, π). The
following holds (see [12] for details):

1. If ‖3j>‖K is non-empty, then K contains a j-path of length 1.

2. If ‖(νlX)3jX‖K is non-empty, then K contains a j-path of length l.

3. If ‖(νX)3jX‖K is non-empty, then K contains a j-path of infinite length.

4. If ‖(µX)2jX‖K = S, then K does not contain a j-path of infinite length.

4 The system Tω
µ+

The infinitary calculus Tω
µ+ is introduced in [7]. This deductive system pro-

vides a cut-free, sound and complete axiomatization for the modal µ-calculus.
Tω

µ+ is formulated as Tait-style system which derives finite sets Γ, ∆, Σ, . . .
of L+

µ formulae which we call sequents. These sequents are interpreted dis-
junctively. In general, we write Γ, A for Γ ∪ {A}. Moreover, if Γ is the set
{A1, . . . , An} of L+

µ formulae, then 3iΓ := {3iA1, . . . ,3iAn}.

Definition 7 (The system Tω
µ+). The system Tω

µ+ is defined by the follow-
ing inference rules:

Axioms: For all sequents Γ of L+
µ , all p in Φ, and all X in V

Γ, p,∼p
(ID1),

Γ, X,∼X
(ID2),

Γ,>
(ID3).

Propositional rules: For all sequents Γ and formulae A and B of L+
µ

Γ, A,B

Γ, A ∨B
(∨)

Γ, A Γ, B

Γ, A ∧B
(∧)
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Modal rules: For all sequents Γ and Σ and formulae A of L+
µ and all indices

i from M
Γ, A

3iΓ, 2iA, Σ
(2)

Approximation rules: For all sequents Γ and X–positive formulae A of L+
µ

and all natural numbers k > 0

Γ,A[>/X]

Γ, (ν1X)A
(ν.1)

Γ,A[(νkX)A]

Γ, (νk+1X)A
(ν.k + 1)

Fixed point rules: For all sequents Γ and X–positive formulae A of L+
µ

Γ,A[(µX)A]

Γ, (µX)A
(µ)

Γ, (νkX)A for all k ∈ ω

Γ, (νX)A
(ν.ω)

The distinguished formula of a rule is the formula that is explicitly displayed
in the conclusion of the rule. The active formulae of a rule are those formulae
that are explicitly displayed in the rule. The formulae in Γ and Σ are called
side formulae of a rule.

Definition 8 (Provability). Assume Γ is a sequent of L+
µ and α an ordinal.

We define the provability of Γ in Tω
µ+ in α many steps, denoted by Tω

µ+
α

Γ,
by induction as follows:

1. If Γ is obtained by one of the axioms of Tω
µ+, then Tω

µ+
β

Γ holds for
all ordinals β.

2. If Γ is obtained by one of the propositional, modal, approximation
or fixed point rules where Γi are the premises of the respective rule,

Tω
µ+

βi Γi holds for all of these premises, and β is an ordinal such that

βi < β for all βi, then Tω
µ+

β
Γ.

We say a sequent Γ is provable and write Tω
µ+ Γ if there exists an ordinal

β such that Γ is provable in β many steps.

Jäger, Kretz and Studer [7] present a canonical counter model construc-
tion for Tω

µ+ which shows its completeness. Soundness of Tω
µ+ is shown in [7]

by making use of the finite model property of the µ-calculus.

Theorem 9. The system Tω
µ+ is sound and complete for Lµ formulae.
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5 The system Tpre
µ

Dax, Hofmann, and Lange [4] present an infinitary proof system for the lin-
ear time µ-calculus. A proof in their system is an infinite tree in which each
branch satisfies an additional global condition concerning the existence of
so-called threads. This condition can be checked by finite automata. Hence,
they obtain a decision procedure for the validity problem. Note that this
characterization of valid proof branches is closely related to Streett and Emer-
son’s [16] notions of premodels and models.

In the section ’Further Work’ of [4], it is mentioned how a corresponding
infinitary system for the modal µ-calculus can be formulated. In this section,
we present such a deductive system which we call Tpre

µ .

Definition 10. A preproof for a sequent Γ of Lµ formulae is a possibly
infinite tree whose root is labeled with Γ and which is built according to the
following rules.

Axioms: For all sequents Γ of Lµ, all p in Φ, and all X in V

Γ, p,∼p
(ID1),

Γ, X,∼X
(ID2),

Γ,>
(ID3).

Propositional rules: For all sequents Γ and formulae A and B of Lµ

Γ, A,B

Γ, A ∨B
(∨)

Γ, A Γ, B

Γ, A ∧B
(∧)

Modal rules: For all sequents Γ and Σ and formulae A of Lµ and all indices
i from M

Γ, A

3iΓ, 2iA, Σ
(2)

Fixed point rules: For all sequents Γ and X–positive formulae A of Lµ

Γ,A[(µX)A]

Γ, (µX)A
(µ)

Γ,A[(νX)A]

Γ, (νX)A
(ν)

In the sequel, we use the term proof tree not only for Tpre
µ preproofs, but

also for proofs in the system Tω
µ+.

Definition 11. Assume we are given a proof tree for some sequent. For
all rule applications r occurring in this proof tree, we define a connection
relation Con(r) on formulae as follows. (A, B) ∈ Con(r) iff A = B is a side
formula of r or A is an active formula in the conclusion and B is an active
formula in a premise of r.
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Note that if r is an instance of (2) and A ∈ Γ in this rule, then we have
(3A, A) ∈ Con(r).

Definition 12. Assume we are given a (possibly infinite) branch Γ0, Γ1, . . .
in a proof tree and let ri be the rule application that derived Γi from
Γi+1. A thread in this branch is a sequence of formulae A0, A1, . . . such that
(Ai, Ai+1) ∈ Con(ri).

Definition 13. An Lµ sequent Γ is called well-named if every variable is
bounded at most once. Note that for a bound variable X in a well-named
sequent A1, . . . , An, there exists exactly one formula B of the form (σX)A
which is a subformula of an Ai. We call B the bounding formula of X. If the
bounding formula of a variable X is of the form (νX)A, then X is called a
ν variable in Γ. Let Γ be sequent containing two bound variables X and Y .
We say X is higher that Y if the bounding formula of Y is a subformula of
the bounding formula of X.

In the sequel we consider only proofs and preproofs for well-named se-
quents. We immediately get the following fact about threads.

Lemma 14. Assume we are given an infinite branch of a preproof for an Lµ

sequent Γ. For every thread in this branch there is a unique bound variable
X such that

1. the bounding formula of X occurs infinitely often in the thread and

2. for every other formula of the form (σY)A which occurs infinitely often,
we have that X is higher than Y .

Definition 15. Assume we are given a preproof for an Lµ sequent Γ. A
thread in this proof is called ν-thread if the unique variable given by the
previous lemma is a ν variable in Γ. A Tpre

µ proof for a sequent Γ of Lµ

formulae is a preproof of Γ such that every finite branch ends in an axiom
and every infinite branch contains a ν-thread. We write Tpre

µ Γ if there
exists a Tpre

µ proof for Γ.

6 About threads

Let us study some properties of threads in Tω
µ+ proofs. These properties

will be needed later to show completeness of Tpre
µ . We start with defining

auxiliary sets of formulae satisfying certain closure conditions.

Definition 16 (Fischer–Ladner closure). Let D be a closed formula of
Lµ. The Fischer–Ladner closure FL(D) of D is defined inductively as follows:
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1. D ∈ FL(D)

2. If A∧B ∈ FL(D) or A∨B ∈ FL(D), then A ∈ FL(D) and B ∈ FL(D).

3. If 2iA ∈ FL(D) or 3iA ∈ FL(D), then A ∈ FL(D).

4. If (µX)A ∈ FL(D), then A ∈ FL(D) and A[(µX)A] ∈ FL(D).

5. If (νX)A ∈ FL(D), then A ∈ FL(D) and A[(νX)A] ∈ FL(D).

Let Γ be a sequent of closed formulae of Lµ. We define FL(Γ) as
⋃

D∈Γ FL(D).

It is standard to show that the Fischer-Ladner closure of a formula is a
finite set [6].

Lemma 17. The cardinality of FL(D) of a formula D of Lµ is linear in the
length of D, thus in particular FL(D) is a finite set.

Definition 18 (Strong closure). Let D be a closed formula of L+
µ . The

strong closure SC(D) of D is defined inductively as follows:

1. D ∈ SC(D)

2. If A∧B ∈ SC(D) or A∨B ∈ SC(D), then A ∈ SC(D) and B ∈ SC(D).

3. If 2iA ∈ SC(D) or 3iA ∈ SC(D), then A ∈ SC(D).

4. If (µX)A ∈ SC(D), then A ∈ SC(D) and A[(µX)A] ∈ SC(D).

5. If (νX)A ∈ SC(D), then A ∈ SC(D) and for every natural number
n > 0 also (νnX)A ∈ SC(D).

6. If (ν1X)A ∈ SC(D), then A[>/X] ∈ SC(D).

7. If n is a natural number greater than 0 and (νn+1X)A ∈ SC(D), then
A[(νnX)A] ∈ SC(D).

8. If A is X–positive and A ∈ SC(D), then for every variable Y also
A[Y/X] ∈ SC(D).

In the sequel, we need the following lemma from [7].

Lemma 19. Let D be a closed formula of Lµ. Then for all formulae A of
L+

µ we have
A ∈ SC(D) =⇒ A− ∈ FL(D).

The following two lemmata are corollaries from the definitions.
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Lemma 20. Let D be a well-named closed formula of Lµ and let X be a
variable occurring in D. Then for all L+

µ formulae A ∈ SC(D) we have: if
(σY)B ∈ sub(A) and X ∈ fv((σY)B), then X is higher than Y in D.

Lemma 21. Assume we are given a thread A1, A2, . . .. Let Ai, Aj be formulae
of this thread with i ≤ j. Then we have Aj ∈ SC(Ai).

Lemma 22. Assume we are given closed L+
µ formula (νk+1X)A and a for-

mula B ∈ SC((νk+1X)A) such that (νkX)A ∈ SC(B), then B has the form
B′[(νkX)A/X] for some B′ not containing (νkX)A.

Proof. This lemma is shown by induction on the build up of SC((νk+1X)A).

Lemma 23. Assume we are given a Tω
µ+ proof for an Lµ formula D. Further

assume there is a thread in this proof of the form

D, . . . , (νk+1X)A,A[(νkX)A], . . . , (µY)B,B[(µY)B], . . . , (νkX)A, . . . .

Then we have that X is higher than Y in D.

Proof. Lemmata 21 and 22 imply that (µY)B is of the form

(µY)B′[(νkX)A/X].

This is only possible if (µY)B′(X) ∈ sub((νk+1X)A). Now we find by Lemma
20 that X is higher than Y in D.

7 Completeness of Tpre
µ

We will prove completeness of Tpre
µ by showing how to construct a Tpre

µ proof
for an Lµ formula A given a Tω

µ+ proof of A.
The following lemma follows immediately from the fact that in a Tω

µ+

derivation a formula of the form (νiX)A can only be eliminated if (νi+1X)A
or (νX)A is introduced.

Lemma 24. Let Γ be an L+
µ sequent. Assume we are given a Tω

µ+ proof for
Γ, (νX)A where (νX)A. Further, assume we are given a branch in the proof
tree with a thread

. . . , (νX)A, (νkX)A, . . . , (ν1X)A,A[>/X], . . .

Then this thread contains (νiX)A for every 1 ≤ i ≤ k.

12



For our construction, we need the function f computing the number of
subsets of the Fischer-Ladner closure of Γ− for a L+

µ sequent Γ.

Definition 25. Let f the function assigning to each L+
µ sequent Γ a natural

number as follows:
f(Γ) := 2|FL(Γ−)|

where |FL(Γ−)| is the cardinality of the Fischer-Ladner closure of Γ−.

Definition 26. Assume we are given a Tω
µ+ proof for an L+

µ sequent Γ. The
pruned proof tree PPT of this given proof is a tree labeled by L+

µ sequents.
We define PPT by induction on the length of the given proof as follows
where we distinguish the different cases for the last rule applied in the proof.

1. If the given proof consists only of an axiom, the PPT consists as well
only of this axiom.

2. If the last rule was an instance of (∨), (∧), (2), (ν.1), (ν.k +1), or (µ),
then we construct the pruned proof trees of the proofs for the premises.
PPT is now given as the disjoint union of these pruned proof trees with
the addition new root node labeled by Γ.

3. If the last rule was an instance of (ν.ω), then PPT is given as the
pruned proof tree for the premise Σ, (νkX)A where k = f(Γ).

Note that PPT is a finite tree.

Lemma 27. Assume we are given a pruned proof tree PPT of a Tω
µ+ proof

of an Lµ sequent Γ. Let Γ1, . . . Γn be a branch in PPT such that Γh has
been derived from Γh+1 by an application of a (ν.1) rule for some 1 ≤ h < n.
Then there are 1 ≤ i, j ≤ n with

Γi = ∆i, (ν
lX)A and Γj = ∆j, (ν

kX)A

for some natural number k 6= l such that

(1) (νlX)A is the distinguished formula of Γi, and

(2) (νkX)A is the distinguished formula of Γj, and

(3) Γ−
i = Γ−

j , and

(4) there is a thread containing both (νlX)A and (νkX)A.

13



Proof. Assume we are given a branch of PPT in which (ν1X)A occurs as dis-
tinguished formula in the label of a node. Since Γ is an Lµ sequent, the corre-
sponding branch in the Tω

µ+ proof must contain a node labeled by ∆, (νX)A
where (νX)A is the distinguished formula of the node. Thus Lemma 24 and
the definition of pruned proof tree imply that for each h ≤ f(∆, (νX)A)
there exists a node in the branch Γ1, . . . Γn with the distinguished formula
(νhX)A. Therefore n ≥ f(∆, (νX)A). Moreover, Lemma 19 implies ∅ 6=
Γ−

i ⊆ FL(∆, (νX)A) for 1 ≤ i ≤ n. Since there are only f(∆, (νX)A) − 1
many non-empty subsets of FL(∆, (νX)A), there must exist Γi and Γj such
that (1), (2), (3), and (4) hold.

Let d be a node in a pruned proof tree PPT . We denote the label of d
in PPT by label(d).

Definition 28. Assume we are given a pruned proof tree PPT of a Tω
µ+

proof for an Lµ sequent Γ. We simultaneously construct a Tpre
µ preproof

PRE for Γ and a function origin which relates nodes of PRE to nodes of
PPT .

1. Let a be the root of PRE . We define origin(a) := b where b is the root
of PPT .

2. A node a ∈ PRE is labeled by the Lµ sequent ∆− where ∆ is the label
of origin(a) in PPT .

3. A node a ∈ PRE has child nodes c1, . . . , cn if origin(a) has n child nodes
b1, . . . , bn in PPT . For 1 ≤ i ≤ n, we define

(a) origin(ci) := d if bi has an ancestor node d ∈ PPT such that

i. there is a Lµ sequent ∆, (νX)A with

(label(bi))
− = (label(d))− = ∆, (νX)A,

and

ii. (νlX)A is the distinguished formula of d, (νkX)A is the distin-
guished formula of bi, and there is a thread containing both
of these formulae.

(b) origin(ci) := bi if no such node d exists.

Definition 28 indeed constructs a Tpre
µ preproof. The only critical point

is if PPT contains a branch with an instance of (ν.1). However, Lemma 27
guarantees that such a branch is always transformed into an infinite branch
in the Tpre

µ preproof.
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Theorem 29. For all closed Lµ formulae A we have

Tω
µ+ A =⇒ Tpre

µ A.

Proof. Given the Tω
µ+ proof of A, we can construct the corresponding pruned

proof tree and from that a preproof of A according to the Definitions 26 and
28. It remains to show that every infinite path of the preproof contains a
ν-thread. Assume we are given such an infinite branch. Looking at the
construction of the preproof, we notice that such a branch can only occur
because of Condition 3a in Definition 28. Thus, there is a thread in this
branch that contains (νX)A infinitely often. Moreover, Lemma 23 guarantees
that this thread is a ν-thread.

Corollary 30. The system Tpre
µ is complete for Lµ formulae.

8 Soundness

Dax et al. [4] provide a simple soundness proof of their system for the linear
time µ-calculus. A straightforward adaption of this proof shows the sound-
ness of Tpre

µ . Simply replace the case for the ’next’-rule by an appropriate
treatment of (2).

Theorem 31. The system Tpre
µ is sound.

The only infinitary rule in Tω
µ+ is (ν.ω) which introduces greatest fixed

points. This rule can be collapsed to a finitary rule for greatest fixed points
by making use the the finite model property of the µ-calculus [7].

Our completeness proof for Tpre
µ provides a different method to obtain a

finitary version of (ν.ω). Namely, the proof of Lemma 27 shows that only
f(Γ, (νX)A)-many premises of (ν.ω) are needed to correctly infer (νX)A. This
implies that the following rule for deriving greatest fixed points is sound.

Definition 32. The definition of the system Tµ+ is analogous to that of
Tω

µ+ except that the rule (ν.ω) is replaced by the following finitary rule for
greatest fixed points:

For all sequents Γ and X–positive formulae A of L+
µ

Γ, (νkX)A for all 0 < k ≤ f(Γ, (νX)A))

Γ, (νX)A
(ν.FL).

Note that every derivation in Tω
µ+ collapses to a derivation in Tµ+. This

can easily be shown by induction on the derivations in Tω
µ+ since every ap-

plication of (ν.ω) in Tω
µ+ can be replaced by an instance of (ν.FL) in Tµ+.
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Corollary 33. Let A be an Lµ formula. We have

A is valid =⇒ Tω
µ+ A =⇒ Tµ+ A =⇒ Tpre

µ A =⇒ A is valid.

That is the systems Tpre
µ , Tµ+, and Tω

µ+ are sound and complete for Lµ

formulae.

9 Applications

As we have seen in the previous section, our construction allows us to collapse
the infinitary rule (ν) of Tω

µ+ to a finitary rule for greatest fixed points. In
this section, we make use of this observation to establish the finite model
property by purely proof theoretic means. Before doing so, let us mention
another theorem which shows how the finitary rule for greatest fixed point
can directly be used to get a theorem about the existence of certain models.

Theorem 34. Let A be a satisfiable Lµ formula. For every j ∈ M there exists
a Kripke structure K such that ‖A‖K is non-empty and K either contains an
infinite j-path or the length of every j-path is less than f(A) + n for a fixed
natural number n.

Proof. The formula (µX)2jX ∨ (νX)3jX is valid. Thus

A ∧ ((µX)2jX ∨ (νX)3jX)

is satisfiable and its negation

¬A, (νX)3jX ∧ (µX)2jX

is not valid. Therefore (1) ¬A, (νX)3jX is not valid or (2) ¬A, (µX)2jX is
not valid. We distinguish these two cases.

(1) The Soundness of (ν.FL) implies that ¬A, (νhX)3jX is not valid where
h := f(¬A, (νX)3jX) (note that f(A) = f(¬A)). Therefore, there exists
a Kripke structure K′ with a world s such that both K′, s |= A and
K′, s 6|= (νhX)3jX. Let K be the part of K′ that is reachable from s.
This Kripke structure satisfies our claim.

(2) There exists a Kripke structure K with a world s such that K, s |= A
and K, s 6|= (µX)2jX. Hence the claim is shown.
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Definition 35. For every natural number n, we define a deductive system
Tn

µ+ as follows. The definition of Tn
µ+ is analogous to that of Tω

µ+ except
that the rule (ν.ω) is replaced by the following finitary rule for greatest fixed
points:

For all sequents Γ and X–positive formulae A of L+
µ

Γ, (νkX)A for all 0 < k ≤ n

Γ, (νX)A
(ν.n).

Lemma 36. An Lµ formula B is valid if and only if it is derivable in Tn
µ+

where n = f(B).

Proof. Let ∆, (νX)A be as in the proof of Lemma 27. We only have to show
that f(∆, (νX)A) ≤ f(B). Assume Γ is a sequent occurring in a Tω

µ+ proof
of B. We have Γ− ⊂ FL(B). Therefore also FL(Γ−) ⊂ FL(B). Hence
f(Γ) ≤ f(B). In particular, we conclude f(∆, (νX)A) ≤ f(B).

The completeness proof presented in [7] constructs a counter-model to
any given non-provable Lµ formula A. The universe of this counter-model
consists of so-called A-saturated sets. An A-saturated set is a subset of
SC(A) which satisfies certain closure conditions.

In view of Lemma 36 we can replace Clause 5 in the definition of the
strong closure of D by

5’. If (νX)A ∈ SC(D), then A ∈ SC(D) and for every natural number
0 < n ≤ f(D) also (νnX)A ∈ SC(D).

With this new definition, the strong closure of a formula A is a finite
set. Thus there can be only finitely many A-saturated sets. Hence, the
construction in [7] gives us a finite counter-model. This results in a new
proof-theoretic proof of the finite model property of the modal µ-calculus.

Theorem 37. Every satisfiable Lµ formula is satisfiable by a finite Kripke
structure.

The deductive systems Tµ+ and Tn
µ+ can be employed to perform a sys-

tematic proof search (with a loop check for the (µ)-rule). Thus we also have a
proof-theoretic proof of the decidability of the validity problem of the modal
µ-calculus. Note, however, that this procedure is by far not optimal since
the validity problem of the µ-calculus is in EXPTIME [5].

Theorem 38. It is decidable whether an Lµ formula is valid.
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10 Conclusion

We study the proof theoretic relationship between two deductive systems for
the modal µ-calculus. The infinitary system Tω

µ+ includes an ω-rule to derive
the validity of greatest fixed points. In [7], Tω

µ+ is shown to be complete by a
canonical counter-model construction. The infinitary system Tpre

µ is designed
to decide the validity problem of the µ-calculus [4]. This system has a simple
soundness proof.

The main technical result of the present paper is the following: if an Lµ

formula A is derivable in Tω
µ+, then A is also derivable in Tpre

µ . This yields
completeness of Tpre

µ . Moreover, it provides a new soundness proof for Tω
µ+

which does not employ the finite model property.
Moreover, we introduce finitary cut-free systems Tn

µ+ such that an Lµ

formula A is valid if and only if it is derivable in Tn
µ+ where n = f(A). This

result makes it possible to adapt the completeness proof in [7] such that finite
counter-models are constructed. Hence, we obtain the finite model property
of the µ-calculus by purely proof-theoretic means.

The size of the finite models we obtain is, however, not optimal. The
crucial point is in the proof of Lemma 27 where we use a simple cardinality
argument to prune the proof tree. Maybe that argument can be replaced by
a more sophisticated one which considers the structure of Lµ formulae. Then
it might be possible to replace f by a function which is not exponential. That
would finally provide better bounds on the size of the constructed models.
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