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I. Introduction

The following typescript notes serve a double purpose. First of all, they
substantiate in detail assertions that I made in several publications, including Feferman
(1985, 1988, 1992, and 2005) that most of classical analysis and substantial portions of
modern analysis can be developed on the basis of a system conservative over Peano
Arithmetic (PA). The informal development along these lines was initiated by Hermann
Weyl in his groundbreaking monograph Das Kontinuum (1918), and is called predicative
analysis.  Roughly speaking, predicative mathematics in general is that part of
mathematics that is implicit in accepting the natural numbers as the only completed
infinite totality. As explained in the survey paper Feferman (2005), the philosophical
ideas for that go back to Henri Poincaré and Bertrand Russell in the early 20" century.
The word ‘predicative’ has also been applied to other developments, so the present
approach is sometimes distinguished as predicativity, given the natural numbers.
According to the logical analysis of that notion in general by Feferman (1964) and
(independently) by Schiitte (1965), its limits go far beyond PA in strength (see the end of
this introduction for some metatheoretical and mathematical descriptions of that).
Nevertheless, there is special interest in seeing how much can be done in arithmetic as the
initial predicative system because of a conjecture that I made at the end of Feferman
(1987), namely that all scientifically applicable mathematics can be formalized in a
theory conservative over PA. A verification of that conjecture would thus show that
scientifically applicable mathematics does not require the assumption of impredicative set
theory or any uncountable cardinals for its eventual justification. See Feferman (1992,

2005) for further discussion of the philosophical significance of this conjecture.

The second purpose of these notes is to solve an expository problem that has
arisen in the work in progress on a book, Foundations of Explicit Mathematics, which is
being written in collaboration with Gerhard Jager and Thomas Strahm with the assistance

of Ulrik Buchholtz. As explained in my draft introduction to that work:

Explicit Mathematics is a flexible unified framework for the systematic logical
study of those parts of higher mathematics in which proofs of existence guarantee

the computability or definability by specified means of what is thereby
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demonstrated to exist. ... [T]he main parts of mathematics covered by the Explicit
Mathematics framework are referred to as constructive, predicative, and
descriptive ...; each was originally pursued on philosophical grounds
that—whatever their merits—have been thought too confining to support
mathematical practice and its scientific applications. To the contrary, what the
present work shows through the logical analysis provided by our framework is
that in gaining the uniform explicitness of solutions little is lost in terms of both
the workability and applicability of these approaches, despite their philosophical

and methodological restrictions.

The initial formulation of systems of explicit mathematics was made in Feferman (1975)
and was continued a few years later in Feferman (1979). The subsequent development of
the subject has been considerable and has proved to be adaptable to a variety of other
contexts than the ones just indicated, ranging from theories of feasible computation and
finitist mathematics to large cardinals in set theory. The aim of the book in progress is to
provide a substantial introduction to the subject including a full presentation of the main
formal systems involved, their models, and the evaluation of their proof-theoretic

strengths.

It is also intended to devote a part of the book on explicit mathematics to
explaining via basic notions and some typical arguments how one goes about formalizing
various parts of constructive, predicative and descriptive mathematics in appropriate ones
of these systems. In the case of modern (non-Brouwerian) constructive analysis, the task
is made easy by direct reference to the work of Bishop (1967). And in the case of
descriptive set theory, there are a number of sources in the literature that can easily be
followed, such as Moschovakis (1980). However, in the case of predicative analysis
(beyond that treated by Weyl) there are only three possible references, namely
Grzegorczyk (1955), Lorenzen (1965) and Simpson (1998), none of which succeeds in
directly meeting the present purposes (as will be explained below) though Simpson’s
work comes by far the closest. Part II of these notes do meet the present purposes in full
and will serve as the needed reference for the planned chapter on predicative analysis in

the book on explicit mathematics.
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First, some background. These notes were prepared in the period 1977-1981, but
never published. They were taken from a group of notes originally consisting of five
parts 1-V; the notes following this introduction constitute Part II. The notes I-V as a
whole formed a draft for a book that was intended to elaborate the material of the article,
“Theories of finite type related to mathematical practice” (Feferman 1977) in the
Handbook of Mathematical Logic (Barwise 1977)." The aim of that article was to
provide a theoretical framework for the natural development of constructive, predicative
and descriptive analysis that could be treated proof-theoretically to extract information as
to strength, explicit definability and conservation results. It was noted there that the bulk
of those parts of practice can be carried out within the finite type structure over the set N
of natural numbers, and indeed within type level three, counting N as being at type level
0, N and the real numbers at type level 1, functions of real numbers at type level 2, and
functional operators at type level 3. As it happened, though, the proof theory employed
in the 1977 article works for all finite types via Godel’s method of functional
interpretation and some of its extensions. The finite type structure in question can be
conceived to consist of the types (aka classes) S, T,... generated from N by closure under
Cartesian product S x T and Cartesian power T, written alternatively as (S — T), though
product can be replaced by power via “Currying.” By contrast, the bulk of the literature
on the proof theory of analysis has been devoted to the study of subsystems of second-
order arithmetic, with the variables of type level 1 taken to range over the subsets of N, in
which the real numbers can be directly represented, but where the needed functions and
functionals of such are represented only indirectly by certain kinds of coding. At the
same time, even the finite type structure is an oversimplification as a framework for the
direct representation of practice. First of all, the types should not be treated as fixed
objects, but rather as variable objects in order to talk about arbitrary spaces (e.g. metric,
linear, Hilbert, Banach, etc.) of the sort ubiquitous in modern analysis. Moreover, for
the natural representation of those spaces one must also have closure under subtypes of

the form {x €S |¢(x)} for ¢ a formula. What was done in Part I of the original notes (I-V)

! There is a kind of circularity here: In fn 2 of Feferman (1977), it is said that the plan for
that article is derived from a book by me entitled Explicit Content of Actual Mathematical
Analysis slated to appear in 1978, a promissory note that was not fulfilled.
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was to provide a formal framework for a system meeting these requirements. Instead of
reproducing that rather long part here, it is sufficient for our purposes as background to
Part II to sketch its setup in the following; an alternative source for more details is the

article, “A theory of variable types” (Feferman 1985).

In that article, VT abbreviates “Variable Types”, while in the notes below I have
instead used VFT for “Variable Finite Types”, to emphasize the relation with the theory
of fixed finite types over N described above. We start with a base system VFT, whose
language is given by the simultaneous inductive generation of individual terms, type

terms, and formulas, as well as the relation, t is of type T, as follows:
1. Individual terms (s, t, u,...)

a) With each type term T is associated an infinite list of individual variables x", y",

z', ... of type T.
b) Ifsisoftype S and tis of type T, then (s, t) is of type S x T.
c) Ifuisoftype S x T then p;(u) is of type S and p,(u) is of type T.
d) Ifsisoftype S andtisoftype S — T then ts [or t(s)] is of type T.
e) Iftisof type T, then Ax>.t is of type S — T.
2. Type terms (S, T,...)
a) Each type variable X, Y, Z, ... is a type term.

b) If S, T are type terms and ¢ is a formula, then S x T, S — T, and {x° |9} are type

terms.

% A scan of that article is available on my home page at
http://math.stanford.edu/~feferman/papers/TheoryVarTypes.pdf;
unfortunately it is not fully readable, but the essentials can be gleaned. The material of
that article itself was presented at the Fifth Latin American Symposium on Mathematical
Logic, held in Bogota, Colombia in July 1981, the proceedings of which did not appear
until 1985.
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3. Formulas (¢, p,...)

a) Each equation t; = t, between individual terms of arbitrary type [not necessarily the

same!] is a formula.
b) If ¢, ¢ are formulas then so also are —=¢ and ¢ — .
¢) If ¢ is a formula and S is a type term, then Vx° ¢ is a formula.

The logic of VFT), is that of the many-sorted classical predicate calculus. The operations
on formulas given by ¢ A Y, ¢ v ¢, & <> 1 and Ix° ¢ are then defined classically as usual.
Also we write t €T for 3x' (t = x) (‘x’ not in t), and then S C T is defined in the standard
way; S = T is defined to hold when S € T and T € S. We do not assume extensionality

for either functions or types.

VFTj has three general axioms, I-III. Axiom I is for typed A conversion as usual.
Axiom II is for pairing and projections, i.e. it tells us that for each X, Yandx in X, yin Y,
pi(x,y) = x and pa2(x,y) =y, and that for each z in X x Y, z = (p1(2), p2(z)). Finally, Axiom
III is the Separation Axiom, according to which for each X, {x €X |¢(x,...} € X and for

each y in X,

y E{x €X|¢(x,...)} <= o(y,...).

The system VFT is an extension of VFT, by a language and axioms for the
natural numbers. We adjoin the constant type symbol N, individual constants 0 and sc of
type N and N — N, resp., and individual recursion terms rr of type (N x T—T) x T) —
(N — T) for each type T. We use the letters ‘n’, ‘m’, ‘p’,... to range as variables over N
and ‘f°, ‘g’, ‘h’,... to range as variables over various function types S — T. VFT adds the
following Axioms IV-VI. Axiom IV is the usual one for 0 and sc; we also write n’ for

sc(n). Axiom V is Induction, in the form
0EXAVn(nEX —-n'EX) > NCX.

Finally, Axiom VI is for Recursion on N into an arbitrary type T. This tells us that if f'is
of type N x T—=T and a €T and g = ry(f, a) then
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g(0) =a A Vn[g(n') = f(n, g(n))].

The system VFT has a model in which the types are all the arithmetically definable
subsets of the natural numbers N. In particular, S — T for any two such types S and T is
interpreted to be the set of all indices e of partial recursive functions whose domain
includes S and which map S into T. VFT also has a classical model in the cumulative
hierarchy up to level w over N considered as a set of urelements. It is remarked several
times in Part II of the notes below that VFT suffices for the formalization of constructive
analysis in the sense of Bishop (1967) [and, thus, equally well in Bishop and Bridges
(1985)].

Theorem 1. VFT is a conservative extension of PA.

This may be established by a quick model-theoretic proof as follows. Let M be any
model of PA; then M can be expanded to a model M* of VFT by taking the types to
range over all first-order definable subsets of M. Let S, T be any types of M*. Using
standard pairing and projection operations in M, S x T is defined as usual, and S — T is
defined to consist of all indices z in M such that for each x in S, {z}(x) is in T. Finally,
each formula ¢ is equivalent to a formula that is first-order definable over M, so
{x €S |p(x)} is also a type in M*. (The theorem can also be established by a proof-

theoretic argument.)

We now turn to a system obtained from VFT—in part by an expansion and in part
by a restriction—that is suitable for the formalization of predicative analysis and that is
also conservative over PA. The expansion is given by adjunction of a constant u for the
unbounded minimum operator on N; it is of type (N — N) — N and comes with the

following additional axiom:
(w) fEWN —= N) A f(n)=0 — f(uf) =0 A uf<n.

It may be seen that the system VFT + (u) is stronger than PA since we can prove by the
induction axiom of VFT transfinite induction up through ¢, (at least) for elementary
arithmetical properties with function parameters. To cut down its strength to PA, we now

restrict the axioms of induction and recursion in VFT as follows. By a subset x of N, we
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mean a subtype of N that has a characteristic function. We can simply identify such x
with an element of (N — N) and write n €x for x(n) = 0. Then the Set Induction Axiom

tells us that for each subset x of N,
0 €x A Vn[n €x — n' €x] — Vn(n ).
This is equivalent to the statement:
f, g EN — N A f(0) = g(0) A Vn[f(n) = g(n) — f(n’) = g(n")] — Vn[f(n) = g(n)].

The second restriction made is to take ry as the only recursion operator. By Res-VFT is
meant the system obtained from VFT by replacing the Induction Axiom by the Set
Induction Axiom and the Recursion Axiom VI by its special case for ry. (NB: In the

notes below, Res-VFT is also written as VFT followed by the restriction sign.)
Theorem 2. Res-VFT + () is a conservative extension of PA.

A proof of this is sketched in Feferman (1985). A proof of a stronger result is given in
terms of certain systems of explicit mathematics in Feferman and Jéger (1996) whose
language and axioms are simpler than those given by the VFT systems. In particular, it
has a universal type V and all individual variables range over V; the reader is referred to
that article for all details of language and axioms. A base system for our work is called
Elementary Explicit Type Theory and is denoted by EET. The Axiom of Induction of
VFT is called Type Induction when added to EET, and is denoted there by (T-Iy).
Similarly the Set Induction Axiom is denoted by (S-Iy). Finally, the addition of the ()
axiom to EET is denoted by EET(u). The first of the following theorems connecting the

two approaches is quite direct.
Theorem 3.
(1) VFT is interpretable in EET + (T-Ix).

(i1) Res-VFT + () is interpretable in EET(w) + (S-In).
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Theorem 4. (Feferman and Jéger 1996)

(1) EET + (T-In) i1s proof-theoretically equivalent to PA and is a conservative

extension of it.

(i) EET(n) + (S-Iy) is proof-theoretically equivalent to PA and is a conservative

extension of it.

Thus these results serve to supersede the arguments of Feferman (1985). Like VFT, the
system EET + (T-Iy) has both a recursion theoretic model and a classical model. It will
be shown in the forthcoming book on explicit mathematics how to carry out within it
typical notions and arguments of Bishop style constructive analysis as given in Bishop
and Bridges (1985).> What Part II of these notes provide is to show in detail how all of
19" ¢. classical analysis and much of 20" c. analysis can be carried out in a generally

straightforward way within Res-VFT + (u), hence in EET(w) + (S-Iy).

More specifically, in the case of 19" c. analysis, systematic use is made of
Cauchy completeness rather than the impredicative l.u.b. principle, and sequential
compactness is used in place of the Heine-Borel theorem. Then for 20™ c. analysis,
Lebesgue measurable sets and functions are treated directly without first going through
the impredicative operation of outer measure; the existence of non-measurable sets
cannot be proved in our system. Moving on to functional analysis, again the “positive”
theory can be developed, at least for separable Banach and Hilbert spaces, and can be
applied to various L, spaces as principal examples. Among the general results that are
obtained are usable forms of the Riesz Representation Theorem, the Hahn-Banach
Theorem, the Uniform Boundedness Theorem, and the Open Mapping Theorem. The
notes conclude with the spectral theory for compact self-adjoint operators on a separable
Hilbert space. It is in this way that the assertions in the publications referred to at the

beginning are hereby substantiated.

3 Variant designations for the systems of Explicit Mathematics involved will be used
there.
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We can now say something about how this work compares with the developments
of predicative analysis in Grzegorczyk (1955), Lorenzen (1965) and Simpson (1988).
Grzegorczyk’s aim was to give a precise model for Weyl (1918) in terms of the notions
of elementarily (i.e. arithmetically) definable real numbers, real functions and sets of real
numbers. It does not go beyond 19" c. analysis and no attention is paid to proof-
theoretical strength. Lorenzen, in his book, also conceives of his work as an extension of
Weyl (1918), but only to differential geometry. Moreover, though his work begins with a
sketch of a foundational approach, there are no proof-theoretic results. Simpson’s work
on the other hand is quite different from both of these. It is an exposition of the work in
the Reverse Mathematics program initiated by Harvey Friedman that centers on five
subsystems of second order analysis: RCAo, WKLo, ACA,, ATR, and IT';-CA,. Each of
these beyond the first is given by a single second-order axiom, in addition to the
Induction Axiom as in Axiom V of VFT. In contrast to our work, which permits the free
representation of practice in the full variable finite type structure over N, all mathematical
notions considered by Simpson are represented in the second-order language by means of
considerable coding. The main aim of the Reverse Mathematics program is to show that
for a substantial part of practice, if a mathematical theorem follows from a suitable one of
the basic axioms then it is equivalent to it, i.e. the implication can be reversed. For
comparison with our work, much of predicative analysis falls under these kinds of results
obtained for WKL, and ACA,, that are of proof-theoretical strength PRA and PA
respectively. Thus, on the one hand Simpson’s results are proof-theoretically stronger
than ours, since the strength of various individual theorems of analysis is sharply
determined. On the other hand, the exposition for the work in WKL, and ACA, is not
easily read as a systematic development of predicative analysis, as it is in our notes. Still,
the Simpson book is recommended as a rich resource of other interesting results that

could be incorporated into our development.

In conclusion, something must be said about the outer limits of predicativity both
from a metatheoretical and from a mathematical point of view. The reference Feferman
(2005) gives a general account of both, and the articles Friedman (2002) and Simpson
(2002) concern specific results dealing with the latter. The reader is directed to these for

further references not given below. Initially, in the 1950s, predicativity was studied as a
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part of the theory of definable sets of natural numbers, where quantification over N is
accepted to be the basic definite logical operation. With this in mind, Kleene introduced
the collection HYP of hyperarithmetical sets in terms of what one obtains by iterating the
numerical quantification (“jump”) operation through the constructive ordinals, i.e.
through those ordinals with a recursive order type. Write w,"™ for the least non-
recursive ordinal. Using H. to denote the set obtained at the ath level in that way (taking
effective joins at limit ordinals), Kleene defined HYP to be the collection of all sets

(rec)

recursive in some H, for o < ;" . An alternative description of HYP may be obtained
using the ramified hierarchy R, of sets of natural numbers. That is defined for a < ;™
by taking R, to consist of the sets given by definitions in the ramified language of 2™
order arithmetic in which the 2™ order variables are each restricted to range over some R,
for some [ < a.. This corresponds to the requirement of predicative definability that one
only deals with those classes of sets defined in terms of previously accepted classes;

Kleene showed that the union of the R, for o < ;™

equals HYP. Finally, Spector
showed that bootstrapping through the predicatively definable ordinals does not take one
beyond HYP, since every HYP definable well-ordering of N is of the same order type as
a recursive well-ordering. If HYP is accepted as an upper bound for the predicatively
definable sets, that can be used to show that certain theorems of analysis are
impredicative. One example is the existence of non-Lebesgue measurable sets of reals,
since every HYP set of reals is measurable. Also, Kreisel showed that the Cantor-

Bendixson theorem, according to which every closed set is the union of a perfect set and

a countable (scattered) set fails in HYP.

Moving on, Kreisel proposed that for a proper analysis of predicativity—that is,
of what notions and principles concerning them one ought to accept if one has accepted
the natural numbers—it would be more appropriate to deal with predicative provability
rather than predicative definability. Kreisel’s suggestion was that this should be done in
terms of an autonomous transfinite progression of systems RA. of ramified analysis
where the autonomy (or boot-strap) restriction is that one ascends only to those levels o
for which some recursive relation of order type o has been proved to be a well-ordering

in RA, for some 3 < a. It was independently established in Feferman (1964) and Schiitte
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(1965) that the least impredicative ordinal, 1.e. the limit of the predicatively provable
ordinals in this sense, is the least fixed point a of %.(0) = a, where the . form the first
Veblen hierarchy of critical functions of ordinals for all ordinals a. The Ieast

@) Thus, even if a

impredicative ordinal is denoted I'y and we have Iy < w
mathematical statement holds in HYP it will be impredicative if, for example, it proves
the consistency of the union of the RA, for o < I'y. The first such example was provided
by Friedman who obtained a finite combinatorial form of Kruskal’s Theorem of this kind;
Kruskal’s Theorem itself—an infinitary statement—implies the well-foundedness of the

standard ordering of order type I'y (cf. Friedman (2002) for the back references).

The investigation via formal theories of which parts of analysis are predicatively
justified is best pursued via unramified systems T, since ramification is an artificial
restriction on the language of analysis in practice. Feferman (1964) initiated the study of
predicatively reducible unramified systems, i.e. those systems T that are proof-
theoretically reducible to some RA. for a < I'y. Of course the system ACA,, which is
another form of the lowest level in the hierarchy of ramified theories, is trivially
predicatively reducible. At the opposite end, there are a number of interesting systems to
mention that are of the same proof-theoretical strength as the union of the RA, for a < T'y.
First of all, we have the system X} -DC + BR; the proof-theoretical equivalence in this
case was first established in Feferman (1978) and later as a special case of a more general
statement in Feferman and Jager (1983). In the latter publication, another system of this
type is formulated as the autonomous iteration of the T comprehension axiom. Finally,
Friedman, McAloon and Simpson (1982) showed that the system ATRyis also of the
same proof-theoretical strength as full predicative analysis. Since that is given by a
single axiom over RCA,, it follows that results in analysis and other parts of mathematics
that are provably equivalent to ATR, are impredicative. Simpson (2002, 2010) gives a
number of examples of theorems from descriptive set theory that are equivalent to ATR,
such as that every uncountable closed (or analytic) set contains a perfect subset. Also,
ATRy is equivalent to comparability of countable well-orderings. In addition, Friedman,
McAloon and Simpson (1982) give a mathematically natural finite combinatorial theorem

that is equivalent to the (1-) consistency of ATR,, and hence not provable from it.
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To conclude, something should be said about the brief final section 5 of Part I of
these notes. That section concerns some uses of the axiom Proj; of type I projection in an
extension of the VFT framework. Proj; is an axiom for quantification over N — N that
gives a system of strength full 2"® order analysis in the presence of the (u) axiom. The
sentence Proj; says that if b is any subset of N x (N — N) then there is a subset a of N

such that
Vn[ n €a < AN "N)(n, f) Eb].

With just one application this implies IT; -CA, and thus goes well beyond predicative

mathematics. It is shown in section 5 how to derive the l.u.b. axiom from Proj;.

NB. Part II of the notes begin with page II-4. Pages II-1 to II-3 are superseded by the

preceding Introduction.

The following gives all references used in this introduction and in the notes below.
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1. Developments in VFT ! set theory and the number systems.

We begin with general structural nctions. The structures to be dealt with
consist of a class A together with specified relations, functions and in-
dividuals in A and an "equality" relation =, on A, l.e. (in the
technical algebraic sense) a congruence relation with respect to'the given
data. Appropriate notions of homomorphism and isomorphism are explained
for such structures. Cardinal equivalence is then treated as the relation
~of isomorphism between structures (4, 7A>' For these we have natural
cperations of sum, product and exponentiation, and a natural ordering re-
lat}on (Aq =A2 < (B, 58). We are then able to prove the appropriate form-
of Cantor's Theorem m < 27 . Beyond that the subject of cardinals is
studied only for countable classes, since otherwise Wé would have to make
neavy use of the axiom of choice. We next move to the construction of the
integer and rational number systems 2 and @ . Following that we shall
take the reals TR to be Cauchy sequences of rationals, identified in the
usual way. This can be shown to satisfy usual elementary aslgebraic properties
in VFTP , but additional axioms will be needed to prove the completeness
of IR ~in §2. On the other hand, the bulk of constructive analysis can
be carried out in VFTF . To do that one starts instead with a refined
notion of real number, namely as a pair congisting of a Cauchy sequence.and
a rate-of- convergence fumction. Most of §l is taken up with basic definiticns
and facts having routine verifications, but the latter part deais with

general considerations on the kind of additional data or refinements needed

to carry out mathematics in week theories.
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1.1 Btructures on classes. All single-sorted structures to be considered

have The form
(1) Q= {4, E, Ryye- R fl,...,fn,al,...,ap)

waere (for the similarity type <<k1’ .. .,km) , (ﬂl,. . .,ﬂn), o)) we are given

clagses A, E, Rl""’Rm’ functions £ "fn and objects a .a 4

L 1700 fy

satisfying:

. 2
(2) (l) E E A,
ky
(i1) R, S A (1<i<m),
%
(111) fiea ™ 54 (22j<n),

(iv) a;¢d (<1 <p)
and where

(3) (i) E is an equivalence relation on A4,

(i1) if (XJ.,YJ.) ¢E for 1<j <k  and Ri(xl""’xk.) then Ri(yl,...,yk ),
: i : i
and

(iii) if (Xj,yj)eE for 1 <J <4, then (fi(xl,---,xgi),fi(yl,'---,yﬂi)) ¢E.

" In other words, E 1is a congruence relation for Q.

A is called the domain of ( and one often loosely writes "the
structure A" to refer to G when given a specification (1). E 1is called

an squality relation om A and one writes x=,y for (x,y) ¢ BE. Strictly

speaking This should be written X=c¥ since there are many E satisfying
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(3) for any given A and additional data Rl;...,ap . In particular,
we shall have occasion to deal with two such relations E, E' side-by-side

with ES E' , i.e. where E is a refinement of E' (or E' is a

coarsening of E). To avoid confusion in such cases we write =y f& for
E,E', resp.
Often it is convenient to drop the subscript 'A' from = altogether,

This can cause confusion with the literal identity relaticn which we consider

next, but the intended relation is usually clear from the context.

G 1is called a discrete structure if (x,y) ¢ E = XLYyeA AN Xx=y. In

thig case we may write = for =5 By a discrete class we mean A regarded

as a structure (4, ).

We have to deal occasionally with many-sorted structures given by

more than one basic domain Ai, each having an eguality relation =, op it.
i

This is explained by a suitable generalization of (1)-(3), which we won't

detail here.

Remerk. In set theory, given a structure G as specified by (1)-(3), we can
form the collection A/E of equivalence classes (x]={y:(x,y) ¢ B} and

then the induced structure

(VE=(ME,%/R.H,ﬁ/E.“,a/E.N)

where for each i

([Xl:,:"',v[xki]) G(Ri/E) it (Xl;”';in) € Ri

(fi/E)(Fxl],---,[xkiJ) = [fi(xl,---,xki)]



and

aﬂ/E = [a,] .

G/E can be considered as & discrete structure since {xl={y] » (x,y) ¢ E.

Waen E C E' we have the natural homomorphism of G/E ontc G/E' by

[x]; + [zl -

The basgic property of equivalence classeg is that they are identical

or disjoint. However, this requires extensionality which we do not assume

in this chapter, for the reasons explained in the introduction. Carrying the
equality relation along as part of every structure serves the same purposes

without this prianciple.

1.2 Meppings and relations between structures. Suppose given classes A,
A' with equality relations =, =' resp. A function he(A —>A') is

called a mapping from A to A' if

(1) X =X = h(xl) =’h(x2)

We write

(2) h: {4, =) = {a", =")

in this case, or more loosely hi: A — A' when =, ="' have been specified.
Suppose now given structures G = (A, =,...) and G'={A', ="',...).

A mapping h from A to A' 1is said to be a homomorphism from & into G'

if it satisfies the usual algebraic conditions for homomorphism of structures
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(A,E,...) into (A",E',...). h is said to be a homomorphism of G onto

G' (or surjection) if

(3) Vye A' 3x ¢ A (h(x) =" y).

h is said to be an embedding of G in G' (or injection) if
(%) n(z) ="' h(x,) = X = x2‘.

By an isomorghismfgf C with Q' we mean a pair (h,h') such that h is

a homomorphism of G into G' and h' is a homomorphism of G' into G with
(5) Vxe Alh"(a(x)) = x] and ¥ye &'[(n'(y))="¥y].

In that case each of h, h' 1is both a surjection and an injection. We usually
write (h, h'l) for such pairs, though h™ is not uniquely determined by 1
(it is only determined up to equality). When this holds we write

..]_)

(6) (b, B™7): G = G

1

or Gz2G by (h,h 7).

G is said to be a substructure of G' if it is such in the usual

algebraic sense of the word or equivalently if A S A" and the identity map

= from A to A' 1is an embedding of ¢ in GQ'.
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1.3 QOperations on classes with equality. Consider classes A,B with

equality relations =y =g. Tresp. We define an eguality relation on
AXB by
(l) ‘ (Xl) yl) = (X2 s y2 ) i X1=AX2 A yl =By2 .

The class of all meppings from A to B is denoted both by AB and BA, l.e.”

(2) PBalflten »BAVE, x ¢ A(xy =, x, = £(x)) =f(x,))).

Then we define an equality relation on AB by

(3) f=g® Ve AlT(x)=5e(x)],

which is equivalent to Vxl,. %, € A[xl = Xy = f(xl) =Bg(x2)}.

Now suppoge that I 1s a discrete class and that Bm(Bi)ieI is a

sequence of subclasses of a class ¢ (i.e. BSIXC and x B, (i,x)eB),

and’ E:(Ei)i is a sequence of subclasses of 02 such that each Ei is

el
an equality relation on Bi . We write =3 for Ei - As explained in
I.2.12, we just use Zie:I Bi a3 ancther notation for the sequence B. For
this class zieIBi we define the equality relation
(&) (1,%) = (3,¥) ®i=3 Ax=y.

Next consider the class I as defined in I.2.12. The following equality

ieI Bi

relation 1s naturally defined feor it:



II~-10

(5) =g = 7¥icI(f(i) = a(i)).

Thus I X B may be treated as the special case Zi eIB and BE as the

special case HieI B.

We shall always treat 2 and I as discrete classes. Thus for any
A, the class QA consists of all functions from A into (0,1} which pre-

serve = two such functions f,g are identified if Vx eA(f(x) =g(x)),

A;
i;e. if f,g are extensionally equal. Similarly for ZINA and any IA with

I discrete.

Since I is discrete, countable sums and products Zne]I\IBn and

0, emwB, Tall under (k) and (5).

Now for the operations (J B, nic-:IBi we shall only consider the
1eT

simple case that each <Bi’ =i) is a substructure of (¢, :C} S0 we can take
the equality relation on the unicn or intersection to be simply the restriction

to that class of =a

Remark. To generalize AX B to Ea eABa and AB %o HaeABa for non-

discrete A we have to consider sequences of classes <Ba’ =é') with homo-

morphisms h . from B, to B such that (hab’ h‘ba) 1B ;_Bb and such

—

that the maps hab compcse appropriately.

Fxercise. Give this generalization in detail.

1.k Cardinal equivalence. Two classes (with equality) A4, &' are said to

be cardinally equivelent if (A4, =)= (A", ='). We write AzA' in this case.
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Then we put A < A' if there is an embedding of (A, =) into {a',=") ,
and A<A' if A<A' but A £ A'. A is said to be countable if A
is empty or there exists a surjection of W on A (i.e. on (4,=)). A

structure is called countable if its domain is countable.

Using an isomorphism of WX I with I it is easily proved that
if A, B are countable then so is A X B. Thus we obtain for each
(particular) n a surjection kR of I on A" . Next if I 1is discrete
and countable and <hi>ie]: ig a given sequence of surjections hi of W

on B, then I, _B. is countable. Finally, the same holds for U B, (where
1 iel'l jeT *

applicable), since Zie:IBi is mapped onto U:'LeIBi by h(i,x)=x.

The class EIN is uncountable; the proof is by contradiction, by
means of the usual Cantor diagonal argument. It follows that N < EJN 5

similarly W < . More generally A < A for any A.

Remark. VFT is too weak to prove that every countable class is eguivalent
to an initial segment of I¥ (why?); this will be provéd in VETM +{u).
Also we must walt to prove there that every subset of a countable clasg is

counteble (though not necessarily every subclass).

Exercises (In VET} ).

(i) Prove &< .

<
(i) The ciass A ® of finite sequences from A was defined in I.5.8 as

{(n,g)lg e » A A Vm>n g(m)=g(n)}. Show that if A is countable

<
so alsc 1is A @
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1.5 Ordered structures and algebraic structures. A structure (A, =, < )

is sald to be partially ordered if (i} x =y e x<y Ay <x, and {(ii) <

is transitive. It is said to be linearly ordered if further (iii) x <y Vv y <x

for each X, ye A. We write x<y for x<yAx{£y.

: -1
By a group we mean a structure (G, =,o0, ,e; such that
(1) V%,7,z2eG(x0¥)o2 = %o (yoz)], (ii)¥xe¢ G (xoe=eox=x),

(1ii) x e G [ (%o x-l) = (xmlo X)=el]. We define similarly the notions of ring,

integral domain, field, ordered domain and ordered field. In the last it is

assumed we have an operation ( )"l such that for each x £ 0, xo =1,

By a vector space we mean a two-sorted structure consisting of a

group (X, =@, 0) (the vectors) and a field (X, =g T 0, 1o, 1)
together with a binary mapping m: KX X - X (scalar multiplication), satis-
fying the usual vector space laws. X is then said to form a vector space

over K.

1.6 The integers % . We take Z to be INx I with the equality relation

L (nyom) =p(my,m) @y tmy = my+my

Then % forms an ordered integral domain using the following structure:

@) (1) (m,m)+ (my,m) = (n+n,,m +m)
(ij-) '(nl) ml) = (ml’ nl )

(1ii1) (nl, ml) o (ng, m, y o= (nln2 tmm, s nam, + mlng)

(iv) 0z = (0,0)
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(v) 15 = (1,0)

(vi) (nl’ml) < (ny,my) = ni+n::2 <m +n, .

Further we have an embedding of W in 2 by themap n n_ = (n,0).
Z 1s generated by the image of W wunder this injection, since

(n,m)::z(n,0)+ (-(m,0)). We shall identify n with n, and N with its

2
image under this map, i.e. treat I as a subelass of % . Thus for each
XeZ elther xe¢e N or {-x)eN. Furthermore, TN forms a substructure

of % under {2)(1),(iii)-(vi). Note that x=(m,n)=(m-n) is in the image

of W Just in case m > n. We now drop the subscript 'Z' from =g

1.7 The rationals . We take @ tobe Z x (W-{0)) with the equality

relation
(1) (xl, nl) =a (XE’ n2) ® X0, = X0, .

Then @& forms an ordered field using the following structure:

() (1) (epm) ¢ (aymy) = (xym,fnpx,, nn)
(31) - (xn) = (=x,1)
(iil) (Xl’nl) ) (X‘Eine) = (X:LXE ’ n]_ng)

(I’l,X) if x>0
Gv)  (xn)™ = { (0,1) if x=0

(-n, =x) if x <0 .

(v) (x,m) < (xm,) @ xn, < xny .
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(Note that (O,n)_l is just given a conventional value; for x £ O,
(x,n)-(x,n)"* =g(1:1).) Now we have sn injection of Z in @ by

X X, = (x,l)._ We identify x with x, and Z with its image under

Q q

this map, i.e. treat Z as a subclass of @. Z then forms a substructure

of ® with respect to (2)(i)-{iii) and (v). (x,n) 1is in % just in

case nlx. @ 1is generated by % with (x,n) =y (x,l)-(n,l)_l . The sub-
script '®' is now dropped from =g We usually use r,s,... GC range
over §. For r,se® with s£0, z/s-= % = rs™T. The absolute value

Irf is defined as usual.

1.8 The reals TR as Cauchy sequences of rationals. We use (rn)n ¢
or simply (rn> to denote a sequence of rationals. The class of all such
sequences 1s- @,IN . IR is defined to be the sub-class of Q]N consisting

of all (rn') such that

(1) Vm>0 T ¥k ,k, >n [|-rk -1

I < =)
1 % m

The equality relation assigned to IR is
1
}

(2) (r? = pls )} ®™m>0@mVE>n (Ir-s.] <z

2

which 18 easily verified to be an egquivalence relation on IR . The alge-

bralc operations on IR and its ordering are then defined by:
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(3) (1) r) + {s) = (rn-+sn)
(ii) -(rn) = (-rn)
n

(1i1) <I’n> . (Sn) = (rn,' s )

. -1 -1
(iv) (rn) :(rn )

1
(v) (I‘n> < (Sn)ﬁﬁm>OE[n k> n {(s-r) > 1.
We have an injection of @ in R by r v rp = <r>neIEN’ i.e. the
sequence with constant value r. We shall identify r with »r and @

R
with its image under this map. (R, =g Tsms s 0,1) is easily verified

to form a commutative ring with unity. To show that it forms a field with
.'the inverse operation, one argues as follcws. Suppose (rn) 74 0; it is to
be showm that (rn)_l e R and (rn) . (rn)"-l = 1. First we claim that

0 < (rn} or {r ) <0. For if not then for each m > 0, n we have

Bir B

I < } and 131{2 >n {- Ty < %} . Applying the Cauchy property

Mk >nlr
1= 1 2

(1) it follows that for each m there exists p with ¥k > p{-% < r, < f—ﬂ}
and hence (rn) = 0. To show that (rn) “Le R when 0< (rn) , use
r,-r
-1 -1 1 1 2 "k 2 1
Ea | = l—~-=] = | | <M -dr,-r | when = < r_,r,;
k. £ . T, T, - £ "k M- "k %

similarly (rn)‘l ¢ R follows from (rn) < 0. It is easily checked that
(rn) ’ (rn)_l = 1 in either case. Using this line of reasoning we are able

to establish that IR forms an ordered field under the structure (2),(3), and
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that @ i3 & subfield of TR under the identification described above.

Furthermore, IR may be verified to have the Archimedean property

(W) VXeIR[x>O==Em>O(%<x)}
which is equivalent to the density of @ in IR:

(5) Ve,ye Rix<y 2dreg(x<r<y)}.

Remark. A Cauchy seguence of reals is an element (xn) of IRIN satisfying
1
- <=7, is i
¥m> 0 & Vk, k, > 1 { f:x‘_Kl ngl —). Here each x_  is itself a sequence
(

rn,k>1{ cW To prove the completeness of TR we need a function f£(n,m)

which associates with each m > 0 and n & number p=fFf(n,m) satisfying
1
- < = .
Irn,kl rn,kel o forall k,,k, >p. The existence of such f camnot
be proved in VFTP , but is easily established in VFTF + (u}; this will be

gubsumed in §2 under the proof of local sequentisl compactness of IR.

Exercise. Carry out in detail the proof in VFT] that (IR, =go Tt

<, 0, 1} is an Archimedean ordered field containing € as substructure.

-

1.9 The constructive treatment of ITR. There are several approaches to

constructive mathematics, most notably those of Brouwer, Markov and Bishop;
cf'. Trcelstra 197?-. The one closest to ordinary mathematical practice is

that of Bishop 1967’,‘ and it is that to which we shall refer in contrast o
the non-constructive work done here. Constructive mathematics requires all

existential statements to be justified by explicit effective constructions

* Revised and extended in Bishop and Bridges 1985.
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and rejects the use of the law of excluded middle. Almost all of Bishop
1967 can be carried out in VFTH using only intuitionistic logic. The

verification of this would take us ftoo far afield.

The proof just sketched in 1.8 that if xe R and x ;éjRO then
0<x or x<0 i)roceeds by contradiction and hence reguires classical
logic. Thus in constructive mathematics, one uses another definition of

IR, which we shall label here 1R . The elements of 1R are the pairs

((rn),c) where ¢: N - N and

| <2
(1) V>0 ¥k, K, ? c(m){|rkl-rk2| <=3,

¢ 1is called a rate (or modulus) of convergence function for (rn) . The
same (rn) will of course have an infinity of such ¢ 1if it has any at

~

all. Two members of IR are identified by
(2) . ((rn> s cl) =ﬂ§(<sn)’02) © (rn> =IR<Sn) .

It follows from (2) that there iz a function ¢ such that

¥m > 0 Vk > c(m){|r | < %} . Actually the definition of reals in Bishop

x %%

1967 is a special case of (1); he considers only sequences (rn) for which

(1) Vk.,k, >0 {|]r_ -r
17 "2 kl 5 1

for these we can take c{m) = 2m to satisfy (1L). Conversely any (rn>

satisfying (1) with suitable ¢ contains a subsequence (rr’l) satisfying
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{1)' such that (rr'l). With either apprcach to IE we can define

(rn) R

suitable cperations +, -, - and prove that (Iﬁ, =_ ,+t,~-,",0, 1) is
IR

a commitative ring. The property of inverse is established constructively
only for those reals x which are separated from O, i.e. for which (by
definition) 0 < x or x < 0. {(Without the law of excluded middle this is

not equivalent to x+# 0.)

The algebra of R can be given in {intuitionistic) VFT+r following
Bishop 1967 pp.15-25. But now also the completeness of IE can be proved
in this theory (loc. cit. p.27). With reference to the definition (1), the
reagon 1s that now a sequence <Xn> of reals 1s given by a sequence of
pairs (<rn,k>k e’ cn) where each <, is a rate of convergence functicn
for X, - Using this one may cbtain constructively the existence of a limit

x for the seguence (xn> .

Cne additiomnal feature of the constructive development of analysis
should be mentioned before we pass on to the next section. Suppose given
a,be R with & <b; let [a,b]={xeR|a < x<D>). A function

fi:[a,p] =R 1is said to be uniformly continuous if there is a function

Wl Q+ - Q+ such that

(3) Yo > 0 Vx,y ela,b]{|x-y| <w(e) = |£(x)-£(y)] < ¢} .

w is called a modulus of (uniform ) continuity function for f£ .. When

carrying out operations on continuous functions such as integrating

b
f f(x)dx we need to use the information w as well as f; thus strictly
a
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b
speaking [ f(x)dx is a function I(f,w) (for given a,b). For this

a’ — ~
reason, the class C{[a,b], R) of uniformly continuous function from
[a,b] to R is defined by Bishop to consist of all pairs (f,w) satis-

fying (3)

1.10 Explicit presentation of mathematical objects. By a presentation of

a class A we mean a pair (A',n) where h: A' A is a surjection: when

a=h{a') we say that a is labeled (or presented) by a'. The terminology

comes from algebra (e.g. finitely presented groups) and topology {(e.g. surfaces
presented by complexes). . A familiar and typical example is a manifold A

with atlas (A', h) which supplies (possibly) overlapping co-ordinate

systems which cover A . In such algebraic or geometric examples of presen-
tations we may think of a labeling h(a') ~a as an explicit description of
how a is generated or located. More generally, in explicit reformulations
of classical mathematics we must often work with explicit information a'
which tells us how a=h{(a') '"comes to be" an element of A. For simplicity
we can always take this labeling in the form a'=(a,w) where w 1is the

witnessing or side-information which wverifies (in & suitable sense) that

&¢ A, s0 that h 1is simply the firsi projection function Py - We have

seen two examples of this in commection with constructive mathematics in the
previous section, namely the presentation of TR by 112 and of ¢([a,bl, R)
by E([a,b], I'E'{) In both cases the definition of A calls for an existential
requirement to be met, which is provided by the witnessing information. As

we shall see, for the mathematics carried ocut in VPTP+ (u), this type of

presentaiion is not needed in the initial part of classical analysis, but will
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be needed when we pass to topology (where an open set will be presented
as & countable union of basic open sets ) and measure theory (where a
measurable set will be presented with its complement as a limit {up to

measure 0) of open sets).

1.1l Classes with countably presented members. When we have a Surjection

h ;Eﬂlﬁ - A, the elements of A are said to be countably presented, since

each member of A can be described by a countable amount of information,
“namely an T eIJIq such that h(f) =a. We shall meet many examples of
such, e.g.: (i) the class TR of real numbers, as already defined in 1.9,
(ii) the class of continuous functions on 1] 1to IR (each of which is
determined by its values at the rationals), (iiil) the class of sequences

(an) of real numbers, (iv) the class of analytic funetions (given by power

. [=2]
series &

n—l.anlgﬂ)’ (v) the class of Lebesgue measurable functioms,

(vi) the class of continuous linear operators on a Hilbert space of countable

] -
dgmension, etc.

The ubiquity of such classes (and their associated structures) ex-
plaing informally why so much of analysis can be reduced to 2nd order terms,
even though the objects considered are of prima-facie higher order (the
functions between classes of type n forming a class of type nt+l). ﬁowever,
attempts to formalize analysis in 2nd order terms have usually been rather
forced. Instead we formalize the mathematics directly in finite-type

theories such as VIFTU and its extensions and then use general logical

methods to reduce these to second-order theories.
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2, Developments in VFT + (w): set theory and topological spaces.

The axiom ({u) which provides for unbounded minimalization is now
adjoined; this allows us to decide statements bullt up by numerical Quanti—
fication. The use of the new axiom in set theory is distinctively illu-
strated by proofs of Kbnig's tree theorem and the Cantor-SchrBder-Bernstein

theoremn.

The‘main work of this secticn has tc do with topological spaces
with countable basis (and, among these, principally Hausdorff and separable
spaces). These are closed under formation of subspaces, products and
countable powers so that starting with the spaces 2, N and R we ob-
tain in particular Cantor space Egﬁ, Baire space Iﬂﬂq and the Fuclidean
gpaces. R . Topologically the complex numbers ¢ appear as :BE.
Compactness is first studied in sequential form; it ig shown to be pre-

served under products and powers. (Compactness in terms of open coverings

requires more careful considerations and is not taken up until later.)

We next move to the topology of IR and from there to metric séaces
generally. The completeness of R"  follows from the sequential compact-
ness of closed bounded subspaces. In particular for IR we obtain the
existence of least upper bounds (and greatest lower bounds) for bounded
sequences. On the other hand the least upper bound property for sets cannot
be derived in VFT + (u) and needs the essential new axiom (Projy),

which will be considered in §5.
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Two results of interest for complete metric spaces are the Baire
category theorem and the contraction mapping theorem. Both are established
here under the additional hypothesis of separabllity, which is met in all
the spaces ¢f concern tc us. From a logical point of view it is of interest
that the standard proof of the contraction mapping theorem can be given
directly in VFT but must be modified carefully in order to obtain it in

VPTP +(w).

At the end of the section we return tc the subject of compactness
as defined in terms of oren coverings. It is shown that sequential
compactness 1s equivalent to a strong form of compactness for countable
open covers when a certain additional property ("cover-witness") of the
space i1s met. This property holds.for 2 and closed intervels in IR and
is closed under products and countable powers. On the other hand, we do

not obtain compactness for arbitrary open covers without assuming (PTojl).

2.1 Subsets of countable classes. Suppese A with the equality relation

= 18 countable and non-empty, i.e. that there is a surjection { in A]N .

Then any a ¢8(A) 1is also countable. For, if a is non-empty, we can

define a seguence (kﬂ) of natural numbers by recursion (£ as follows,

-

in such a way that the function g(n) =f(kn) erumerates a :

(1) (1) k¥ =0

pm{m >k, A f(n) ea) if &m > kn(f(m) e a)

——
|
[N

pa—

SW
...I..
H

|

kn otherwise.
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On the other hand it cannot be proved that any subclass Al of A is

countable.

i

2.2 The XBnig tree theorem. This concerns finitely branching trees;

each such 1s isomorphic to one labelled in W, so we consider only sub-
trees of I . Here we use the notionsg and nofation of I.5.7. In addition,
lef b s represent the tree below s in b, i.e. the set of t with
s % bteb. Given any s it is decidable (using (u) whether bPs is

infinite or not, i.e. whether or not ¥n > 1hk(s)Zt eb(s ©t A Ih(t)=n).

We suppose b is an infinite finitely branching tree in W, so
that for each s e¢b there are at most finitely many m with = % (m) ¢ b.
We shall define a function £ representing an infinite branch through b

by recursion (;_':[N) as follows:

(1) (1) £(0) = pm(pr{m) is infinite)

(ii) f(ntl) =pm(bMF(n) % {m}) is infinite).
t is proved by induction on n that
(2) bMf(n) is infinite.

This property defines a get so we are using only the principle IJN of
set-induction.  To carry out the induction step, if b P%(n) is infinite
there is at least ome m such that b (F(n) x (m)) infinite since by

assumption ¥k Vm{f(n) ¥ {m) e b = m < k. In particular from (2) we have

(3) Va[£(n) e b 1,



I1-24
i,e., f is an infinite branch through b. It should be noted that the
construction (1) is uniform in b, i.e. that f is associated with b

by a function f£=F(b).

2.5 The Cantor-SchrBder-Bernstein theorem. Given two non-empty classes

(with equality) A,B, their direct sum A+B mnay be defined as a sub-
class of A X B x 23 for this purpose, fix any a_ch,b eB, and

take
(1) A+ B ={(a,b,i) e AXBX 2|a=a0/\i=lVb=bO/\i=O}
then we put

) %
{2) A< Be® for some C,A +C = B.

The form of the Cantor-Schrbder-Bernstein theorem which we shall prove

here is:

* * ~
(3} A< BAB< A= AZB.

B cannot be proved in VIT+ (W) as will

i

(The form A<BAB<A=A
be shown later.) It is seen that under the hypotheses A SaeB,'B E%GA,
there exist AO S A, BO € B, functions a, eiEA, bo 325 , and

- A B
functions fl,ge ¢ed and fe,gl e.g such that
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(1) (i) for =x ¢ A, ao(x) =0 ® xeh
(11) for yeB, b {y) = 0 =y eB A

(iii) fl, f2 determine an isomorphism

of A with B-Bo

(iv) 8,8, determine en isomorphism

of B with A—AO .

We write f for f, and £t for f,, g for g

5 8
A
and g“l for g, -

(8)(i) says that (on A) membership in A, is decided; similerly for

b, BO . Now we shall define functions a,b and classes An, B

n>1 %o fill in the picture at the right:
(5) (1) &(0,%) =a(x) b(0,y)=b_(y)
(11) a(mlx) = (-a (x) +o(ne (x) P

b(mt1,y) = (1-b (7)) + 2 (n,27 " (y))

(111) xe A ®a(nx)=0, yeB *b(ny)=0.

Thus membership in the An‘

n

&L

s. and Bn's is uniformly decided.

for

g
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* o *
The functions a ,b  take values in I and are produced simultaneously
by Iy - It is seen that for xe A, ye B

(6) (1) xeh g @xd & A g(x) e B end

-1
(ii) yeBn_l_lﬁyﬂ B, N T (v) ch

The An‘s do not necessarily exhaust A ; similarly for the Bn's and. B.

We take

(7) A =UA , B = U B , A =AA, B' = B-B .
Using (u) we have that membership in these classes is decided by:
8)  xe4, =@la(mx) =0], yeB, = mb(ny) =0l .

To complete the proocf, the desired isomorphism h with inverse h_l will
ve defined as follows, so as to match A, <« By, , A & B, A, © 3B,

A5 < By and A' <« B' :

' f{x) if =xe A' or xeA2n for some n
(9) (i) n(x) =

S—l(X) if xe for some n.

A2n+l ‘

g(y) if ye B' or yaBEn for some n

. . -1
(ii) r ~{y) =
f-l(y) if ve B2I1+l for some n.
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Tt may be seen that h, bt meke 4 2 B.

This result has been included to illustrate the kind of work
which may be done in set theory beycend 1.4 when we adjoin (). Tt is

not needed below.

2.4 Topological spaces with countable basis. The structures used here

are of the form G = (&, =, <Bﬂ>nelﬁ> where = is an equality relation
on A and each B C A. The sequence B = (Bn) is considered to be
given as a swoclass of WX A, with B = {xe A|(n,x) e B}, In this

sense We are dealing with a two-sorted structure over A and . The

structure on A is called a (topological) space if it satisfies the

following conditions:

(1) (1) B is a set, i.e. the relation xeB, is @ecidable,
. -
(11) AclUB , and

(iii) for each n , n
0

and xeB N B we can find n with
1 n n

o 1

xgB €©B NB
n —"n n
) 1

The Bn's form a basis for a topology on A and are called the basic

cpen gets in A. Thus only spaces with'couﬁtable basis are considered

here. An open sgt is defined to be a union of basic open sets. By a
presentation of an open set we mean any subset g of IN; the open set

presented by g 1is
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(2) | ¢= U B ,

which is denoted U(g). Thus the open sets are the U(g)'s for

g c¢S(W).

By the basic closed sets of A we mean the sets Cn:A-Bn .

By a presentation of a closed set we mean any subset £ of I : the

closed set F represented by £ 1is given by

(3) F= [ C_,

which is also dencted U'(f). The closed sets of A are the U'(f)'s
for f ¢&(I). Thus any subset a of I serves to represent both an
open and a closed set by Uf{a) and U'(a), resp.; the relation is obviously

U'(a) = A-U(a).

The open sets are closed under countable unions in the following

gense! given a sequence (gn> of presentations of open sets th=U(gn),

we cbtain a presentation g of U Gn simpiy by g=U g, ; for,
n n

u{g= U B =U U B =UG - Similarly the closed sets are closed
neg n nmeg n & .
under countable intersections. It is easily seen from (1)(3ii) that the

open {closed) sets are closed under finite intersections (unions).

‘Remark. In set-thecretical topology we also have closure of the open gsets

under arbitrary unions. Formulated in terms of presentations, this is the

assertion thet if a € 8(I) then G = U U(g) is open. To prove this
geca
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one simply takes g, = J g so GEU(gl). But this cannot be carried
gea

out in VFT + {w), since in effect ne g, ofze8S(M)lgeaAneg] requires

quantification over 8&(IN ). The statement does foliow simply from the

additional axiom Proj, as will be discussed in §5.

Exercise. Prove that the open sets are closed under finite intersections.

2.5 Hausdorff spaces; limits. The space A 1is said tc be Hausdorff if

it satisfies

(1) for each =%,y with x £y there exists n,m with

xeBn, yeBm and BﬂﬂBm empty.

From now on all spaces are assumed to be Hausdorff. Note that by our
general regquirements on structureé with equality, the relation = is

supposed to be a congruence relation for B = (Bn) , i.e.

(2) _ x=y=(xaBn=‘yeBn).
Conversely in a Hausdorff space we have

(3) Vn(x eB, = yeB,) = x=y ,

which is a kind of extensiconality principle. Given x Ce X

meA, let

l’.‘
[Xl, ...,xm} = {y eA|y=Xl VooV y:Xm}. Kach (x} is closed since

{x} =U"(a) for a={n|x eCﬂ} . Hence each {xl,...,xm} is also closed.
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A is said to be a discrete space if each {x} is open. W is

always considered as a discrete space, and any countable A with de-

cidable equality may be treated as a discrete space.

Given any space A and sequence (xm> from A we put

(k) l;‘le ¥, =x ®Vm[xeB, = &n Vk2 n(x, ¢ B )]

(xn) is called convergent if Hx(lim xn=x). Note that the relation (&) is
" n

decidable. The Hausdorff property insures uniqueness of iimits:

(5) limx_ =x Alimx_ =7y = x=y .
n a n n

Suppose X © A; we say that x is a limit point of X if

(6) vn[xeB, = Ty(y eX MBI,

and that x 1is a strong limit point of X if we have a function f such

that

(7) falxe B = £{n) eX N B I.

et }_{()-((S)) be the class of (strong) limit points of X. Obviously
z(s)

X & K(S) c X , but we cannot prove X <X in general without the
axiom of choice. When X is countable AC 1is dispensable and we have

X = £(8) in that case. Tt rmay be seen that for any X,
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(8) xe}_((s) o S(Kn> {Vn(xneX)/\linm xn—_-x} .

¥ is said to. be closed under limits if }—{(S) C X. Each closed seb

F=U'(£f) is closed under limi%s. For suppose lim ¥, =% where each
L= e 7
— A_ . . L X . .
0 mef( B) If x ¢ F. then for some mef we have X eB 3
but then some x e B, , vhich is a contradiction. However, 1t cannot be
proved in VFT + (u) that each X which is closed under limits is clesed

in the sense of 2.4, though that is set-theoretically true. {(Where does the

usual proof break down in VFT + (u)?)

X is-said to be dense (strongly demse) in A if ACX(AC i(s)).

A is sald to be a separable space if it has a countable dense subset

X = {q'n}ne}l\r ; then X is also strongly dense in A .

Exercise Prove (8).

2.6 Subspaces, products and powers. Suppose giv_en a space A with basic

open sets (Bn> , and that AO C A. The topology of A may be relativized
to AO by taking the ccllection (Bnﬂ AO) &s the basic open sets of AO .

In this sense any subclass ocf A determines a subspeace.

Given spaces A, A' with basic open sets (B ), (B)), resp., we

form a structure on A X A' as follows. The equality relation is TR

and the basic open sets are given by the sequence (Bn X 31;1)( of

n,m)e -

basic "rectangles" which is reduced to a countable sequence by an enumeration

of o, Obviously the relation (x,y) e B % B, is decidable and
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Axatc U (Bn X B];’l)- To verify the intersection property 2.5(1)(iii)

(n,m)
in the definition of a space we use

(1) (B. xB' )N(B xB )=(B NB )x (B NB )
n L g oy n, ny m n

for any n_,ny,m ,m; . Glven (x,¥) in the left-hand intersection, we
find n,m with xeB_SB_ MNB_ , and yeB <B' NB  to obtain
n-—"n_ n, m o= mg L

_ 1 1 1 :
(%,v) € (an Bm) < (Bno X Bmo) N (Bnlx Bml). Th_u.s AXA' is a space.

It ig also easily seen from (1) that AX A" inherits the property of

being Hausdorff from that for each of A,A' . By inducticn one obtains for

any 1 a Hausdorff space A% = Ax ... oxA .
n

Next we consider the power (or exponential) spaces A]N . As a

structure this is given by the class of all sequences (an) from A, with

equality of seguences (an) = (ar'l) @ ¥nf anzal',i]. Let s range over the

<w -
class W of finite sequences of natural numbers &= (SO, ‘s "S;Zh(s)-l>'

]

' #
Associated with each of these is a set B, in A defined by:

(2) (e.n> e:B: e Vi <Eh(s)(aieBs ).
i

% ,
The relaticn (an) e B, 1is obviously decidable, and the sequence of ail B:

is countable by an enumeration of ]N<w . Again it is easy to check the
basic intersection property for this structure, so that A]N is verified

to form a space. Finally, to show that being Heusdorff is inherited, given
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' . . ot - ]
(a ) # (an> , ‘there exists n with a;=a; for 1i<n and a, {al .

* *
Separating 2 s a£ in A can then be used to form disjoint BS, Bs'

. * 1 *
with (an) ¢ B, and (an> ¢ By -

of particular interest to us are Baire space ]N]N with the basic

sets

(3) [s] = {fe Y| 2(en(s)) = s)

and its subspace Cantor space EFH

2.7 Sequenfial compactness. Compactness is one of the most lmportant

properties of a space (or suitable subspaces) used in theoretical analysis,
so we shall go into it in some detail., Notlons which are classically
equivalent have to be reinvestigated in our weaker theories. In this
section we shall treat sequential compactness, which is straightforward to
desl with. In 2.15 below we shall take up compactness as formulated in
terms of open coverings and which turns out to require more consideraiion

~ of what axioms are assumed.

The space A 1is sald to be sequentially compact if we can

-

agsoclate with every sequence {Xn> in A]DI a convergent gsubsequence.
< < . o0 < < e ! imd i & .
(xnk> (no n, n, . ) and & limit x of this subsequence

This association is supposed to be given by a pair of functions f: AJX —#GN

f((xn>) = (xnk) and g AN , g((xn)) = 113;_m x .

T
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The discrete space 2 = {0,1} is seq. compact, by the following
argument. Given a sequence (xn) of 0's and 1's we can decide whether
(i} Envm > n(xm=0) or (ii) Vn Hm > n(xmzl). In the first case we

take {x_ ) = (xn) , with limit 0. In the second case we let (Xnk> be

the subseguence of (xm) consisting of all the 1's, 1i.e. n, '=p.n(xn—_-l) 5

nk+l=u.n(n> a, A xn=l). This proof is in VFT M+ (B} .

We shall show in 2.10 below that for each a,be R With &< b,
the subspace [a,b] = {x] a <x<%B} of TR 1is seq. compact, again in
VET M+ (u). Together with 2 these provide the basic examples of seq.

compact spaces. We next consider closure of these spaces under products

and powers.

2.8 - Sequential compactness for products and powers. The situation with

products is very simple:

(1) If A and B are seg. compact then so also is A XB.

For, given- ((Xn,yn)) in AX B, first choose a convergent subsegquence

(x. ) of (xn) with limit x and then & convergent subseguence (y_ )
) ) i
of (y with 1imit y so that ((x. ,y. )) converges with limit
% m * Yoy
(x,y). This proof is obviously given in VFT{+ (). It follows by in-

duction outside of this theory that for each m we can prove

(2) if A is seq. compact then so also is A",

Consider the statement S(A) — ¥me W(S{A™)) where S(4) expresses that

A is seg. compact. The property (of m) that S(Am) holds is not decidable
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and hence the proof of S(A) ﬁavm.sIN(S(Am)) requires full induction.

Thus

(3 in VFT + if A is seq. compact then so alsc is AT for all n.
e ] =L ol e

Next we turn to countable powers.

(&) EJN ig seg. compact.

Here we shall use K¥nig's tree theorem for the argument. Suppose given a
sequence (fn> of elements of EJN . Let b be the tree consisting of all
sequences s of O's and 1's such that Vn Em > n[fm(ﬁh(s))==s], i.e.
such that infinitely many terms of the sequence (fn> extend s. If s 1is
in b then either 54(0) ¢b or sx(l)eb. For if sx{(0) £ b, there must
be infinitely many fn extending sx(1). By the tree theorem we can

agsociate with b an infinite branch g through b. To complete the

argument ; n < ny < ... < n < ... are defined as follows:

n =0 and m ., =pn(n>mn  and 'f';(k)=é(k)); then l}i;m fnk=g.

This proof is given in VFTM +{u). However, Tor the following stronger

gtatement we again need stronger hypotheses.

(5) (In VFT+ (w)) if A is seq. compact then so also is AT

For the proof (which is related to that for (1)) suppose given (fn)

) . . .
where f _<a‘n,m>m e TN ¢ A™ . Using the hypothesis on A we associate a
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gseguence n((}O) < n:EO) < ... < n.f{o) <. such that (a(o) , 0} converges
in A, =say to a, - Next associate a subseguence nél) < n](_l) < Lle < nl(sl} <...

1 in A. Proceeding re-

. X i) ' .
cursively (from sequences in I to new such seguences) we obtain for

(a(m)

" of (nl(tO))ke]N with (ax(uj;) , 1) convergent to an a

each m & seguence (nl(;m)>kéjl\l go that ,m) is convergent to some

(mt+1 (m)> .

a, and (nk )) is a subsequence of (nk Then the sequence

(fnk(k)) convergences in AEN 0o (ak)

Exercise. Prove this last claim,

Remark. Note that it is esseantial for the proof of (5) toc use L o with
TR

]N;ﬁ (m T’JN')’ which is why VF'TI‘ +(p) does not suffice.

2.9 Topology of the real rumbers. We continue with the real structure as

defined in 1.8. Fach real is a Cauchy sequence of rationals and the
relation < in reals is decidable by 1.8(3)(v), using quantification over
. W, as is the relation =. For 'a,beR we put [a,b]={xecRla <x<bl,
[a,b)={xeRla<x<b}, (a,bl={xeR|a<x<Db} and (a,b} =

{xeR|a < x < b}. Fach of these intervals is a set. R 1is given the

structure of a space by taking as basic open sebts the rational open

intervals (i.e. (a,b) with a,be @ and a <5b) under a suitable enume-
ration. IR is Hausdorff because if x;ly then x <y or y<x. Say

¥ <y holds; then we can find », r',r" ¢ @ with r <x <z»' <y <"
P) » ¥



I1-37

and so xelr,r'), ye(zr',r") where (r,r'),(r',r") are disjoint.
Again using density of @ in IR we obtain that TR 1is separable.
Kote that the intersection of any two ratiomal open intervals is again

such.

The first main result concerning IR 1is that

(1) each closed interval I =[a,b] is sequentially compact.

For the proof we use an argument by successive bisection which is

m™

essentially the same as that for seg. compactness off 2 by KBnig's

theorem. This is done first for the case that a,b are rational with
a <b. Suppose given a sequence of reals Xy, el ;s each X, is a Cauchy

sequence of rationals xn:<rn,m>ms]l\1 . With each finite sequence =

of 0's and 1's, s:(so, - ) is associated a subinterval [as,bs]

.y sk—l

of T with b -a_ = - (b-a). For k=0 take a_=a, b_=b. For
s 8 21: 8 8

s' =sx(0) = (s 0) we take a1 =8 and bs|=-21-(a +'bS), i.e.

T S L 5
.[as, 5 bs.} is the left-most interval in the bisection of [as,bs].
Similarly for s'=sx{l} we take a1 = %(as+bs) and b, =b_.

Next define a tree consisting of those s for which there are infinitely
many n Wwith X e[as,bs]. This tree is infinite since if s 4is in the
tree, at least ome of s%{0), s¥(1) is in it. Thus we can find an in-

finite branch g through the tree; g has the property that there are

for each k an infinity of n with x_ in [a , b }. Define
n - -
g(x) &gk

n =0 and = pn(n>n_Ax_efa_ , b 1); thus for all n >k,
° T T ) R
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x' =(b )

x ¢la ;b 1. Finally, let x={a_ ) o e
(k)

BT k) (k) 5 (k) KT’

Fach of x, x is a Cauchy sequence of raticnals and by construction

x=x'. Any basic open neighborhood Bm of x contains [a_ » b ]
g(k) g(k)
for all sufficiently large Xk and hence contains x for all
sufficiently large k. Thus lim x_ =x , and we have assoclated with
k

(xn) both a convergent subsequence and the limit of that sequence. - Now
in general if =2,b are not rational, we can find rational a',bd' with
a' <a<b<b'. Given any (Xn) in [a,b], *the preceding argument

associates a convergent {x_ /) with limit x in [a',b']. Since [a,b]

is closed it follows also that x efa,bl.
Ag a corollary we have that for each nm,

(2) each subspace of IRm - of the form Ix...xI with Ij =[aj,bj}

is seqg. compact.

Exercise. Show that if }-{(S) C X (i.e. X is closed under limits) and

XS A where A 1s seq. compact then also X 1s seq. compact.

2.10 Metric spaces. By a metric space we mean a set (A, = together

with amap 4: A2 —- 1R such that

(1) (1) a(xy)

1Y

0, d(x,y) =C®x=y,

(11) a(x,y) = dly,x), end

(iii) 4a(x,z)

A

a{x,y) + 4y, z2).
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In any metric space, the open spheres are defined to be the sets

{(2) s(xsa) = {y e Ald(x,y) < a} for each xeA and ac¢IR (witk a > 0).

A separsble metric space is one for which we have a countable sequence ('qn>

which is dense in A, i.e. such that
(3) for each xe¢ A and m> 0 we can find n with d(x,qn) < %

Only separable metric spaces will be considered in the sequel. Fix an
enumeration (rn) of the rational numbers and an emumeration n jw= (no,nl)

of 11\12 , 8o that

(&) B =S(qn ;rn)

gives an enumeration of open spheres with center 4y and rational radius.
It will be shown that A forms a topclogical space with countable basis
in the sense of 2.4. Obviously the relation =xe Bn is decidable. We use

the following facts to prove 2.4(1):

(5) (i) Givenr xe A and a¢R, a> 0, we can find n with X eB & S(x:a).

(ii) If ye S(xj;a) and d=a-d(x,y) then S(yid) € s(x;a).

(iii) Given X15%, € A and 4 elR with a, >0, a_ >0 and

128 1 2

Ve S(X}_ H al) Ns(x.sa.)we can find n with veB S S(Kl;a.:l_)ﬁs(x2 5a2).

238.2)

. . . . l _a 1
=g = [
For the proofs, first in (i) choose m > 0 with 5 and q_noe: S(x;=);

then we can take Bn=S(qn ;% Y. (ii) is immediate by the triangle in-
o}
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equality {1)(iii). For (iii), let d:min(al-d(xl,y), a,- d(xe,y)). Then
yesS(y:d) & S(xl;al) ﬂs(xe;ag) by (ii), and we can find n such that
y eB, £ 8(y3d) Doy (i). The basic intersection property 2.4 (1) (ii1) of
(Bn) is a special case of (L)(iii), while the covering property A C U B,
- n
of 2.4{1)(ii) follows immediately from (4)(i). In addition A is Hausdorft,
because if x # y, then d=d(x,y) > 0, so S(x;%) N S(y;%) is empty.
. . & L4
By (i) we can cheoose n,m with x ¢B < 8(x,5) and y €B, € S(‘V’E) S0

'Bnﬂ Bm 1s empty.

Each IR© forms a metric space with %he usual metric d(x,y) =

J(xl—yl)2+...+(xm—ym)2 for x=(x,...,xm), y:(yl,...,ym). (The

existence of the square-?root function for IR follows from what has already
been established in 2.9, as will be shown in §3.) For n=1 the metric

reduces simply to d(x,y) = |x-yi.

By a Cauchy sequence (xn) in a metric space A we mean one for

which

1
(6) ¥m > 0 % ¥n, , n, > k(& (an’xng) <zl

A is said to be complete if every Cauchy sequence converges and We can

f£ind its limit. Note that
7) limx -z ®¥n> 0 T ¥n >k {d(x ,x) < =} .
n n — Il m

Every Cauchy seguence is bounded since &k Vn., n. > k{d{x_ ,x_ ) <1}.
—_— 1 72 = n,’ o,



IT-41
Let

(8) S(x3a) = {yeald(y,x) < a}

for each x¢h, &> 0. It is seen from (4)(i) that each §(x:a) is

closed, so these are called closed spheres (or balls). Completeness of

A follows from seq. compactness of each é(x;a).' For, givez_l Cauchy (xn) 3
since it is bounded we can find a > 0 such that each x e S(xo ;a) .

Then if {x_ ) is a convergent subsequence and lim x_ =x we alsc have
k

lim X =X. In particular, we may use this observation to prove:
n

(2) cach R™ is complete.

For, each §(x0; a) is contained in a closed "cube" ™ for I ={al,bl] s
with suitable al,bl . IH:l was shown to be seq. compact in the preceding

section. (Of course, R is separable with 4, = (I‘n PERRPE ) -under an
1 m

. m
enumeration n - (nl,...,nm) of M .

In a general separable metric space A we obtain the following

simple description of the closure of open sets in A. Given G= U Bn
- neg
where g ¢S(I7), suppose x e G, i.e. that for each m > O there

existe neg with B 0 S(x;i—'l) non-empty. By {(4)(iii) there exists non-

empty BP with BP € B, N s(x; %ﬂ) . Thus we have (i) of the following.

(10) (i) If xe G where G is open then for each m > 0 we can find
1

k with 4 eC and d(qk, x) <£

(i2) &=a'%) .
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The second part follows directly from (i), since we can find 9, 8s a

function of x and nm.

Exercise. Show that S5(x;a)= S(x;a) and hence that each §(xja) is

closed.

2.11 The least upper bound property of IR. Let X be a non-empty sub-

set of TR; a is said to be a supremum (sup) of X if for each x¢ X,

'XSaAVb[VxeX(XSb)=°aEb]. If such a exists for X then it is

unique, so it is dencted sup ¥ or sup x . Similarly for infimum of X,
' XeX
inf ¥ and inf x . When X is the set {xn} of terms of a sequence,
xek ‘
i.e. is countable, we write " sup X, inf X for these when they exist.
n n

We know set-theoretically that the least ﬁpper bound property for

R holds, i.e. 1f X is any non-empty set of reals which is bounded above
then sup ¥ exists. As we ghall see in Ch.VI, this property cammot be
established in VFT + {u) . The difficulty is that if we can prove existence

of a= sup x (for X Ybounded above), then we can obtain existence of a

XeX
set b of raticnais r > a. This set 1s characterized by
(W) reb oereqQ ATxeRxeX=>x< rl.

In the defining property for b we use guantification over IR in an

easential way and thus inmplicitly over IN]N . While in general sets de-
finable in this way cannct be proved to exist in VFT + (u) their existence

follows directly from the further axiom Projl .
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Onn the other hand we shall now show that

(5) if (xn) is a bounded seguence then -sup x exists and can be
n

found from (xn> (and similarly for inf xn) .
‘ n

For the proof define a monotone increasing subsequence {(x 7} of (xn)
: = = < . i
as follows: n_ =0 and n . =un(n>n_ and xnk < %,). This
subsequence is finite if for a certain mos Xy <x for all n > By s
in which case sup X = x_ . Otherwise we have x < x < ... <x <
n B : BT BT T o7

In that case The result reduces to the following for monotonic sequences:

(6) if x <x <...8x <...<a then limx  and sup x
= fog =7 = =y = = - Tnon = " “n

exigt and are equal.

For, by seguential compactness of [xo,a] there is a convergent subse-

quence of (xn) . Its' limit is easily seen to be a limit for the whole

sequence and egqual to sup X - (A similar result holds for bounded monotone
n

decreasing sequences. )

Set-theoretically the least upper bound property characterizes IR
(emong ordered fields) and is the basic property of TR which is con-
stantly used 1n analysis. It must thus be shown in the pursuit of analysis

in VFTb+ (|_1.) that all such uses can be replaced by least upper bound for

sequences Sup X, (or greatest lower bound inf X ). This will be
—s 2L n

examined in §§3 and 4.
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We use (5) immediately for the description of open sets in IRR.
Fix an enumeration rn(n e W) of the raticnals and an enumeration
B_={r_ ,r ) of rational open intervals with r < r_ . Each open
n n’n n = "n

ol 1 o) 1
set G is presented as U B for some ge&(W). If G is non-empty

neg
we can drop empty intervals. From this we obtain a representation of G

as & disjoint unicn of open intervals as follows. Put n Elm if

with D, =1

B, N B, 1is non-empty and n = m -if there exist Dyse 5P

k
D =m and P, El Ty El - 'Elpk . This is an equivalence relation, and its
equivalence ¢lasses [n] are sets. For each n let Jn = U Bn , and
meln]
a = inf (rm ), b = sup (r ). We use these inf's and sup's in
me{n] "o B meln]

the extended sense in RU {+ @1, e.g. if {rmiIme{n]} iz not bounded
abo{fe, then b =@ . Thus J = (aﬁ’bn) and for any n,m, either
JnEJm cr Jnﬂ Jm is empty. By choosing inequivalent members of zll
the equivalence clagses n_,..«,T,--- (of which there may only be a
finite number), and taking ékza b =bnk , wWe obtain:

el K

(7) with each non-empty open set G =U{g} _Qf_ reals 1s associated a

seguence (ak,bk> such that each a <b_ and for k # 4,

(ék,‘ak) N{a,,b,) is empty and GEng (ék,‘Bk).
This representation is obvicusly unique up to order.

2.12 The complex numbers. € is defined to consist of 811 pairs (a,b)

of real numbers (where it is intended that (=,b) shall represent a+bi,

i=7-1 ). The equality =p 1% simply defined to'be = . , i.e.
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(l) (a'l}bl) :ﬁ: (ag;bg) i al=a.2 N bl:b2

where on the r.h.s. we are using = in the sense of IR . The

algebraic operaticons on € are defined as follows:

(2) (1) (a'l’bl) + (a-g:be) = (al+a2 :bl+b2)
(i1) -(a,b) =(-a,-Db)
(iii) (a‘l’bl)'(ag’be) = (aj_‘;ig - byb, , a9b, +a2bl)

a b . 2,.2
, - ) if a"+b" £ 0
&:,2+b2 a%+0°

(___.._.

(iv) (a,b)™* =
(0,0) if a~+b" =0

It is a matter of routine verification to show that ¢ is a field. We

have an injection of R in € by a ag = (2,0). Zet i=(0,1). We
shall identify 2 with am and TR with its image under this map. Then
R (without its ordering relation) is a subfield of €, and € is

generated from R U {i} simply by (a,b)={a,0)+ (0,b)=(a,0)+ (b,0) + (0,1) =a+bi.

Wext define

(3) (i) lewbi| = Va2 +1° and

(11) d(zy,2,) = |Zl -_22|

Then € forms & metric space under & which is topologically the same as

B . Thus € is complete and each bounded disc (z e€| |z < a} is compact.
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2.13 The Baire category theorem. We assume throughout this section

that A is a separable metric space with dense subsel <qn)' A set X
is s2id to be dense in A if X ='A. We shall consider in particular

dense open sets in A, and use the following fact:

(1) 1 6= U B, 1is dense in A then for each x in A eand
neg ‘
r>0 we can find neg and k with Bk non-empty and

B, S B, N8(x5r).

For by the proof of (9) in 2.10, we can find non-empty BP - Bnﬂ S{x; i)

where -l-<r; take B
m - k

Note for the following that it is decidable whether ék <. Bnﬂ S(x; r).

around the certer of BP and with smaller radins.

The Baire category theorem can be established here in the following

form.

(2) Suppose A. is complete and that (gm) is a sequence of subsets of

W such that each & = U(gm) is dense in A. Then NG is non-
m — = wom ==

emptys in fact it is alsc dense in A,

To prove this, given any X and ro > 0 . we shall define a sequence

- C 'F. 4 -
(km) such that By S B, N B, for some n in g , and with the
: m+1 m m
, - - . .
radius of Bkm < 1/m. Begin with X e Bko_ B(xo,ro). By (1), given k.
. . = c . . .
we can find n eg and k with B C Bnm N Bkm > then k .. 1s chosen

as the least such k for which the radius of Bk is < 1/m . (Note that

only restricted recursion is involved here.) Let X be the center of
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Bk Since X ¢ Bk for all m' > m, the seguence (xm) is Cauchy.
m in
Let 1im ¥ =x. Then x¢e B for each m so xeG_ for each m.
m  ® ko m

(This uses only set-induction.) Given any X and L > 0 we have found

xeS(xo;rO) with XGQG’m, so QGm is dense in A.

2.14 The contracticn mapping theorem. This is an interesting example of

a Ttheorem which has a direct constructive proof in VFT but must be

carefully modified in order to get a proof in VFTM+ (u). (The theorem
itself permits one to cbtain in a simple form some basic existence and
uniqueness theorems for differential and integral equations.) Let A be

a metric space. A functicen f:A - A is sald to be a contraction mapping

if for some r with O <r <1l we have

(1) a(£(x),f(y)) <r-d(x,y) for all x,y e 4.

The contraction mepping theorem is:

(2) If A 1is complete and £ is a contraction mapping on A

then £ has a unigue fixed point.

Tke proof in VFT runs as follows. Given any x OeA , define a sequence

of points (xn> by the recursion

(3}

X = £(x,).

. 2
It is seen that for any n > 1, d(xn,xm+l) <r d(xn ) <r°a(x

-1 %n n-E’Xn-l)’

ete., so
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n
(1) A, x,,) < 7 alx,x).
Hence
(5) d(xn’xn+k) < i(xn’xn+l) * d(xn+l’xn+2) Tl T d(X.'r1+k—l’ ek )
< (Pt e L R N x)
- o’ "L
n k-1
= r (4T + ... + T )d(xo,xl)
rnrk rn
T 1-r Cl(Xo’xl) s l-r d‘(Xo’xil..)'
It follows {hat
(6) (xn) is a Cauchy sequence, and
(7) for x = lim x we have fx) =x.

n

The latter holds because d(f(x),xn+l) = 4(f(x), f(xn)) < r'-d(x,xn) s

so lim dA(f(x),x ) =0 and f(x) = limx_ = x. Also
n n n A

(8) if y is a fixed point of f then x=y ,
since d{x,y) = d(f(x), £(y)) <r d(x,y) which is not possible if x # y.

The preceding proof makes essential use of the general process of

recursion r, in VFT fEd-l—Axiom AIE as well as induction om

properties involving inequalities between reals; these properties do not

define gets in VFT. To get a correspeonding result using only restricted
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recursicn ) and set-induction (IZII\T) we pass to VETF + (). The

(rq
result to be proved is the same as (2) with the additional hypothesis that

A is now assumed to be separable. Let (q_n) be dense in A . Thus:
(9) With each x e A and rational e > O may be associated k such
(e)

that a(x, qk) < ¢; this is dencted x

e

Let r be as in (1) and fix r; and s with:

(10) r<r, <1 and s =

We need the following lemma.

(11) For each X,y ¢ A Wwith x £ y and rational € > 0 we can

. 1
associate rational ' < ¢ such that 0 < ¢g' < s-d(x(e ),y).

To prove (11), choose O < ¢' < min(e, j-j—s- a(x,y)). Then e'+e's < sd(x,y)
I 1
and e' < s[d{x,y)-e']l < s-d(x(e ),y), since d4(x,y) < d(x,x(e )) +

ax'*") g <o+ ale) .

Next in analogy to {3) define a sequence x, as follows:

(12) (1) =, =g, (o)
‘s el . .
{ii) Xn+l=f(xn) where, if f(xn) 7£Xn , the rational e

and

[
is chosen by (11) to satisfy 0 < g < —2t

n= " 2
(e )

€, <s d(f(Xn) ; Xn)
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By (9), each X = Y (n) for suitable h which is defined by the recursion

process g along with the function ?\.n-en from W into @§. If at

N
any stage in (12) we get f(xn) =% = We may stop, since this gives the
desired conclusion. Hence we assume now that f(xn) £ x ~for all n.

if n_>_.‘1. we have

(1) (s,)

n
d(Xn’Kn'*'l) = d(f(Xn_l) 2 f(Xn) )

(e o) (e.)
<ale(e, ) M, a0 ) ra(e(e, ), £x) Fa(e(x ), 2(x ) )
< e . * r-_d(xn_l,xn) toe

fn-1
i <
Now e < €p-1/2 % certainly e ,+e, <e s, _; <2s d(f(xn_l) 5 Xn—l)’

ie. g qte < (rl-r)d(xn,xn_l). it follows that
(13) d(xn’xn+l) < rld(xn_l,xn).

We are thus able te conclude that (xn) is a Cauchy sequence just as in
(4)-(6). In this proof we still use inductive arguments on statements in-
volving inequalities between reals. But such inequalities are decidable

under the hypothesis (p) and hence fall under set-induction.

To complete the argument, let x=1im x . The proof that fx)=x
n

is only siightly different from that for (7). Namely,

(e,) (e )
a(£(x),x ) =a(f(x),f(x) — ) S L), 0(x ) +al{flx), Tlx ) )

<
<r d(x,xn) * e,
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: - i < . i =
We have lﬁm. L, =0 since e ., < en/e Hence lém d(f(x),xn) 0

and f(x) = lim x_ = x.
w o n

Remark. The funetion () was used in the second argument only to re-

place the induction scheme by I Otherwise this argument is still con-

"

gtructive.

2.15 Countable and full compactness. To complete the work of this

section we see what can be said in VFT + (u) and its immediate extensions

about compactness as formulated in terms of open coverings. We consider

nere any (Husdorff) topological spaée A with countable basis B . By a

countable open cover of A We mean a sequence (gm) of subsets of W

for which AC U G where G ==U(gm); this is said to reduce to a finite

subcover if for some k we have A< U Gm . By a full open cover of
m<k
A we mean a set a € §(W)} for which A S U U(g); this is said to re-
gea

duce to a finite subcover if for some g ,...,g ¢a We have AC U U(gm).
m <k

A is said to be countably (fully) compact if every countable (full) open

cover of A reduces o a Tinite subcover.  Thers are dual formulations of
these notions in terms of intersections and closed sets. For example, in
the countable cage it 1s that if (fn) is any sequence of presentations of

closed sets Fn==U'(fn) such that every finite sub-intersection is non-

empty then Q‘Fn is non-empty. We shall say that A 1is strongly countably

compact if we can associate with each sequence (fn> satisf'ying the hypothesis
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an element x e[ Fn . This Is eguivalent tc countable compactness if
n

we assume the axiom of choice.

In studying the relations between these notions and seq. compactness
we have to make use of a new property of spaces which is trivial if the
axiom of choice is assumed. However, we shall show in 2.16 (next) that
this property is held by all the concrete spaces which interest us. We

say that A has the cover witness (c.w.) property if

(1) for each n_,...,n Ve can associate x¢ A such that if

A¢ B U...UB_  then x4 B U...UB .
z %o Pk e P

Thus by examining whether or not the associated x -belongs to

n

B U...UBn_K , we can decide whether or not AEBn U...UB3B
o e

(2) If A has the c.w. property and is seq. compact then A is

strongly countably compact.

For the proof of (2), suppose given a sequence (fn> such that for

F_= {1 C , each F N...NF_ is non-empty. Let f= U £ so
n m o n

mef mef

n n
that N F, = N C, - Emmerate f as {mo,...,mk, ...} 3 then also each
n mef
Cm N...Nn¢ is rnon-empty since it includes a finite intersection of
o]

the Fi‘s - Hence A % Bm Uoo . UB for each k. By the cover witness
0

property we can associate an X, € A—(Bm J...u Bmk) Then by seq.
o}
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compactness we associale a convergent subsequence <Xk }  of the xk's
i

and an x such that I1im x = X. We have X, € Cm N...N0¢ whenever
L i 1 o]
k., > k. Since each Cm Nn...Nc is closed it is also closed under
O .
limits and we have x eCm N...NC . Hence x eQ Fn .
]

(3) If A is strongly countably compact then A is seq. compact.

(Note that this does not require the c.w. property). For the proof, fix
. 2 ]
an enumeration m |— (mo,ml) of W~ . Given amy Sequence X ,...,X,--- ;

we define

Cmo if Vk zml(xkecmo)

A otherwise

Thus X ¢ Fo® [xe Cﬁavmc > mj_(xK eBmo)] e [x eBmO = gk > ml(yﬁ{ g Bmo ) 1.

Each F ... ﬂFm is non-empty since it contains X for sufficiently

large k. Hence we can find x ¢ @ﬂFm . Then Vn,m[x ¢B = o > m(xk e;Bn)].

To get a subsequence of the X, which approaches x, enumerate all Bn

containing x, say Bn y e .,Bn y o+se « Then by the basic intersection
0 i

property obtain a sequence Bn' 2 ...2B =2 ... with x eBn. B .

- I, I,
o 1 1 1

Finally define ko =0, k,

141 = uk (k> ki A Xkean); then lim x_kizx.

hS

Remark. Consider the set-theoretical statement: countable compactness

implies full compactness., This has the Tollowing simple set-theoretical

proof. Given any set a & §(I1 ) which may be regarded as a set of open
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L1}

* .
presentations, let g = U g. Then U U(g) U U B, = U B, -
geca gea gca neg ne g*

Hence if A< U U(g), then Ac U *Bn , S0 by countable compactness
g£¢a neg

*
= . v . < I
AC BnO U.. UBnk for same n_,...,n_ €8 Then also A S U(g )U UU{gk)

for some go, . .,gk ¢ &. This proof cannot be carried out in VFT + (W)
*
because existerice of g - requires definition by quantification over S(IV).

However, it will be shown in §5 to follow very simply from the axiom (Projl}.

2.16 Verification of the cover witness property. The c.w. prcperty is

trivial for the space 2. To verify it for closed intervals I=[a,b] in

R, consider any finite number of ratlonal open intervals (r_,s_),...,(xr), Sn)’
with T < 8; - The union of these is the same as that of a finite number

of disjoint raticnal intervals, so0 we may assume such a representation from
the beginning, placed in order with Si < Tigp o If n >0 then this

obvicusly does not cover [a,b] and we can take x=8_ . If n=0C then

we take X=r if r > a and otherwise take x= S,

Next we prove:

(1) If A, A' both have the c.w. property then so alsc does A X A'

Here we use the basic open sets Bn ><BI‘n and the fact

(2) (Bno X B'mo) N (Bnl X B'ml) = (Bno anl) X (Bmo xBB'll)
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already mentioned in 2.6. Thus each basic open set of A X A' can be

represented in the form

1 = 1 ]
(3) (anBm) = (an A') N (axB),
and consequently

(4) (AXA") - (anBI;) = [-(BnXA')]U[-(A XBI;l)]E(CﬂXA')U (Axcr'n) .

- 1 '
Consider any sequence Bn X .'Bm s ..,Bnk XB .  We have
o 0
AxA' € (B xB' JU...U(B_, xB' ) Jjust in case
O Ty e Pk
f _ 1 s - . . . :
[ (Bn X B Yin...nf (Bnk_x Bmk)} is non-empty, i.e. just in case
o o

(5) {(Cno Xx A')U (& XCI'QO)} N... ﬂ{(anX A'YU (AXCD'jk)] is non-empty.

By the distributive law, (5) is equivalent to the assertion:

(6) for some finite sequence By eres Sy of 0's and 1's we have

N (cn XxA") N N (Axcm);éA.

i<k, s, =0 ™ 1<k, 5,=1 1
But the intersection in (6) is the same as [/ N ¢, X A" ] N[ AX N c' L
i<k,s. =0 i i<k,s,=1 %
— i - 1
Thus {6) is equivalent to the assertion that for some binary sequence

S,o+--,8, Ve have N Cifé A and N C! #A. By the cover-
i<k, s, =0 i<k,s, =1 ©
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witness property for A,A' resp. we can find for each such s a pair

X ,y. such that x ¢ N ¢, if it is non-empty and
s’ ¥s s .
lSk,Si:O

v_ e N ¢! if it is non-empty. Thus (x_,y_.) belongs to the
s i 5’9
lfk, Si =1

intersection in (6) if it is non-empty. Finally define (x,y) as follows:
in an enumeration of all binary S==(So""’sk) take the first (x_,y,)
which belongs to the intersection in (6) if any, otherwise fizx (x,y)

arbitrarily. This proves (1).

Tt follows by induction that

(7) if A has the c.w. property then so does A® for each m.

Finally, for the power spaces we have

(8) if A has the c.w. property then so does A

To establish this, consider any finite number of basis sets

* * i
B (0) 7 " B (k) where each s(l) is a finite sequence of elements
S

s

(1) _ (1) *
of A, say of length nm . Let n=maxm . Then B (i) acts
m-m, * s
like B (1) X ... XB (1) X A 1 oin Am and we can chbtain the
8 8
e} mi-l

appropriate cover-witness by the method for Am .

As a corcllary to the resulis of 2.9, 2.10, the preceding section

and this section, we have:
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(9) Fach [al,bl] X ve. X [am,bm}( [= R™) is strongly countably

compact; the same holds for QEI

3, Developments in VFTM+ {(p): Classical analysis. Throughout this
section, A is assumed to be a separable metric space with dense basis
(qn}. We fix an epnumeration Bn==S(an;zEll) of the basic open spheres
in A ag in 2.10. Additional hypotheses which may be placed omn A are:
completeness, countable compactness and sequential compactness. Basic
notions of continuocus and of uniformly continuous function f : A - A’

are examined in thls general setting {where A' 1is also separable
metric, with basis (q%) and basic opens Bﬁ::S(qéo ;rnl)).‘ The
egsential point is -to strengthen the usual definition so that we are

provided with a modulus-of-continuity function &=26(e). As is to be

expected, continuity implies uniform continuity on suitably compact A
also maxima and minima are sttained. The intermediate value theorem for
£ in C(A,R) 1is established for ccmnected A, where C(4, R) is the

class of all contimwus f:A - 1R.

The next general topic concerns convergence and uniform convergence
of sequences and series in C(A,IR). When A is seq. compact the norm
i£-g|l = sup |£(x)-g{x)| is defined, with respect to which C(4,IR) forms

Xel

a metric space. The Stone-Welerstrass theorem is proved for countably

generated algebras; when we have such, the space C(A,IR) is separable.
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(The classical Weierstrass approximation theorem is a coroliary. )

After this general work we shift to a sketch of the differential
and integral calculus on IR, the latter via Riemann integration. Sets
of measure O are introduced to characterize the Riemann integrable
functions. Power series are used to éb‘tain a large stock of classiecal
functions. We conclude with a brief tour of the topics of existence
theorems for differential equations, Fourier series representation, and

complex analysis.

3.1 Continuity. For simplicity, throughout ¢, 8§ range over Q+
(the set of positive rational mumbers). A function f:A - A" is said
to be contiruous on A S A if we have a function §=68(x,e) (on AX Q+)

such that

(1) xelA Ave 8{x; 8{x,¢e)) = f(y)e S(..f(x)—; e).

If this holds with Aoz[x} we say f 1is continuous at x, and when
A =A we simply say that it is continuous. C(A,A') denotes the class

of all £ which are continucus. It is easily seen that
(2) if f 3is contimicus at x and x=1im x  then f(x)=1im f(xn).
- — T I n - n

The converse cannct be derived without the axiom of choice.

There is another familiar definition of contimuity (on A) in

terms of inverse images of open sets. Given X S A, Y S A' write
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f[x] = (F(x)[xeX} and et

(Y] = {xe a|f(x)eY)}. We say that f is
O-continuous if the f-inverse image of =ach open set in A' is an open
set in A, in the strong sense that for each ge¢ $(IN) we can find

g ¢8(M) such that

(3) f U Bl= U

~
mseg neg

In the remainder of this section we prove the equivalence of O-continuity

with continuity.

First of all suppose [ 1s O-continuocus . To show that it is
contimious, consider any xelA and e > 0; a number &=6{x3e) wilil be
defined to satisfy (1). Represent the open set S(£f{x); e¢) in A' as

J B' ; g is the set of n such that S(q_r'1 ;T ) S 8(f(x)s¢), i.e. the
neg = o M~

set of n such that a(f(x), a, )+:r'rl < ¢ (which is decidable). By
0 1L
O-continuity, we can find g satisfying f‘l[s(f{x);e)] = U B, -
meZ

Since x belongs to this set we can find meZ such that x ¢ B, We

may then determine & such that S(x38) E B, » a8 desired.

For the converse, suppose I 1z contimuous. First note that we
can decide whether or not f[S(qm; §)] < §(q_}1; ¢} (the closure of S{q_l[l ie)).

Namely, this is equivalent by (2) to f(q;) e § (qp,3¢) for each g e 5(q,36) .

Now given any g rewrite U S(qr‘1 ir_ ) as U E(Q;l 5 (1=
n
nesg o} 1 neg, kel e}

2
and let g be the set of n such thas f[S(qm sr )l ¢ §.(q_r':L ; (1- = r )
o "1 o} 2 L
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for some k,n. This choice satisfies (3). For, ff U~Bm]'_C_ U B!
me g neg

by construction, so U~Bm < f"l[ U 31:1 J. To prove the reverse,

me g neg

guppose X ef-l[ U B]:l], so f{x)e ij1 for some =n. Then we can find
neg

k so that f£(x)e S(q) ; (i "1%7{ )z, ) and from that a & so that
0 2 i3
F[8{x;6)] € S(q_r'1 ; (1- k];l )‘rn ). The proof is completed by choosing m.
(o] 2 1

such that xeB C S{x 36).

3.2 Uniform continuity. f:A —»A' is defined to be uniformly continuous

if we have a function & =26(e) such that
(1) for any x in A, f[S(x; 8(e))] = s(f(x); ¢).
The main result here is that

(2} if A is countably compact and £ is continuous then it is

uniformly contimuous.

The proof is in two steps. In the first step we prove wniform continmity

on {qn}neI\I . PFixany e> 0. Let g be the set of all n such that

. . _ . € .

v'i[qi eS(q_ﬂose rnl) > f(q__.L) e 8(¢f (qno}, 5 Y]. Given any xe¢ A there
exists neg with xe B . For first we can find a § (from x,e) such

that f£[8(x:;8)] < s{f{x); E) and then choose n with x ¢ 3B C

. - . . .
S(q_no,E I'nl)__ S(x3;6). Hence if ch eS(q_nO, 2 rnl) we have
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lm

a(f(q,), £la, ) £ &lf{g), £(x) + Adf(x), £(q, ) < £+ =

It follows that A < U Bn . Hence by countable compactness there

neeg
exists finite g, Seg with AS U B . ILet 8§, Dbe the minimm of
n ego
the radii of the Bn's for ne g, We have:
3) Calg; ,ay) < 6, = alt(ay), £(a)) < e

For let qieBn=S(qn;rn) for neg s by d(q__.'_,qj)<6§ r,
- o 1 "L

we have ay € S(q_ﬁLD ; 2rnl). Then both f(q__.L), f(qj) belong to

'S(f(qn )s -2-"5) by congtruction, from which we get (3). We denote by
o

61(3') the function given by this proof to satisfy (3).

To complete the proof, let 6 =58(e¢) = % 61(-5§ ) . Suppose

d(x,y) < 8. By continuity we can find 8, = 62(}:, e), '65 = 53(3{, e) so

that  £8(x3 8,)] S s(f(x);g-) and £[8(y; 85)] < 8(£(y); £ ). These

3
mey also be chosen with &, < é, 65 < 6. Now we can find g, a5 with
< 8. < .
d(qi,x) 8, and S(qj,y) 65 Hence

Ugy,ap) < dlgy,x) + Any) + Ay, 05) <3628, (3)

and then a(f(q ), f(qj)) <§ by (3). Finally
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d(£(x), £(y)) < af(x), £{q; ) + a(£(a, ), f(qj))’fd(f(qj); t{y)) < 5(36) =e.

Thus &(e) satisfies (1) as required.

5.5 Attainment of maxima and minima. Suppose f:A oTR; £ is defined to

attain a maximum at xe A if f(x) > f(y) for all y e A {similarly for

minima). We prove:

(1) if £ is conbinuous and bounded above (below) and A is seq.

compact then f attains a meximm (minimum) on A.

First of all we know that M=sup :E'(q_n) exists by 2.11. Since T is
n

contimuous also Ff(y) <M for each y ¢ A and hence M = sup f(y). Now
yeh
for each k choose n_ s that M—f(an) < T-l{ . Then choose & convergent

subsequence of (q_nk) and let x Dbe its limit. We have f£{x) = M.

3.4 Comnected spaces and the intermediate value theorem. The space A

is sald to be connected if there is no X with X and A-X both non-
empty and open. (If there is such X then it is both open and closed).

We have the folleowing result.

(1) If £:4 - A' is coptinuous end onto and A  is conpected

then A' is connected.
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For the proof, suppose that there exists ¥ & A" such that ¥ and
A' -Y¥ are both non-empty and open. Then by 3.1, X = f_l(Y) and

A' =X =f-l(A'-Y) are both non-empty and open, contradicting the hypothesis.

To apply (1) we characterize the connected subspaces A of R .
A is called an interval if a,be & with a <b implies [a,b] €A .
‘Besides the finite intervals from 2.9 these alsc comprise the infinite

intervals {(a, @), [a, @), (~©,b) (~-@,b] and (-o, ®).

(2) Every interval A in TR is connected.

For suppose given X, & A with both X an;]. A-Xl non-enpty and open,

1 1

s0 XizAﬂX for anopen X in TR, Let ac X, be A-X and say

a <b; thus Xlﬂ [a,b] =X N [a,b]. Represent X as a union of dis-

joint intervals X = %J (an,bn); we may drop those (a'n’bn)- with b <a .

Then sup X = sup bn <b and sup X g{ X. Since [a,b]-X is supposed
n

to be open in [a,b] there must be an ¢ > O such that (sup X-e, supX)<

[a,b] -X. However, this contradicts the definition of sup.

Convérsely we have the following:

(3) if a subspace A- of R is connected then A 1is an interval.

The proof is trivial; if a,be A with a<Db and cela,b]-A then
(-m,c)NA and (c,m) NA are both non-empty, open and complementary

(relative tc A).
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We draw as a corollary from (1) and (3) the Intermediate

Value Theorem:

(L) if f:A TR is continuous and A 1is connected then

f[A] is an interval.

In particular, by (2) if A is an interval in IR +then £f[A] is also
an interval. Hence, if f is continuous on {[a,b] and y lies between
f(a) and £(b) there exists some xe¢[a,b] with f(x).zy. In fact,

a particvlar such x can always be found as follows: for each n> 0,

find & rational x e [2,b] with [y—f(xn)[ < % ; then take x +to be

lim x where (x_ ) 1is & convergent subsequence of (xn) .
k

x2 and suppose 0 <y . Take a=0

As an example, let f(x) =
and b > y° i then we can find x in [a,b] with X =y . Such ¥ is
unique apd is denoted Yy . In this way we obtain the square-root function

needed to define the metric on R© for m> 1 (28 remarked in 2.10).
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Z.5 Sequences and series. @Given a sequence of reals (xn) wa form

n . .
the sequence SII:%{:OXK of partial sums in an elementary way as
follows. Given n, S, is a Cauchy sequence of rationals whose ith

term 1s Zﬁ_oxk(i} . By this means we avoid use of the recursion

3 > - 3
operator T replacing it by roo - Now Zk:OX}: (or I.ka) is

R
said to be convergent if its sequence of partial sums (sn) is con-

vergent. The value of the series, when ccnvergent is defined by

() D0 = Hm (B g% ).
n

The Cauchy criterion for convergence of sequences immediately transfers

to series by:

(2) ka‘k converges iff for each ¢ > O we can find k such that

n
2
VnEanZkHEk=nlxkl<6}' ,

Tn particular, it is seen that if ZkKK converges then lim x, = 0.
' k

o & -
Further, by Izk=nlxk! < rk:nl Ix‘kl = |zk=l IXkH , We see that

(3) if kak converges absolutely then it converges,

where the hypothesis means that Eklxkl converges.

We next consider segquences (fn) and series ann of functions

f iR - R. Here (fn) is supposed to be given by a function
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g:WM X R >R with fn(x) = g{n,x). Convergence of (fn(x)) and
z £ (x) will vary from one value of x to another. They thus define

in the limit functions with domain a subset A of R lim fn(x) and
n

[=-]

T

n—%)fn(x)' A common problem concerns when we can extend properties

such as continuity from each fn to the limit or sum function. For
example, each of the functions fn(x) = x is continuous but the limit

function is not. A basic concept is that of uniform coavergence of

(£} to £ on A vhich is defined to hold if for each ¢> 0 we can

find k such that

(&) for all n>k and all x¢ A, ]fn(x)-f(xﬂ < g .
In other words, the choice of k is independent of =x. The series Ekf}
is called uniformly convergent on A if its sequence of partial sums has

~ this property. We have a form of Cauchy criterion for sequences of functions:

(5) (fn) converges unifermly (to some f) on A iff for each ¢ > O

T, Vo ,n, >k Vxeh {lfnl(x)-fng(;;)[ < g}

For the proof, suppose (fn) converges uniformly to £ on A. Given ¢
pick k such that ¥Vn > k ¥xe A{If‘n(x) -£(x)| < ¢/2). Then

Tn

10y 2 K VX e;&{|ﬁn (x)-—f;1 (x)] < e}. Conversely, if the condition
1 2

helds then (fn(x)) is a Cauchy sequence for each X ¢ A and hence
lim fn(x) = £(x) is defined on A. It is easily verified that (fn) con-
n

verges uniformly to £ on A. A convenient sufficient test for uniform
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convergence of series is the Welerstrass M-test:

(6) if T M, converges and [fn(x)| <M, for easch xe¢A then

Zn fn converges uniformly on A.

The proof is immediate by definition.

The main result here is that

(7) if (fn) converges uniformly on A and each £ is continuous

on A with modulus-of-continuity function énzén(x; e) then £

is continuous on A,

To prove this, given ¢ > 0, choose n so that |fn(y) -f(y)| < e for
all yeA. Given any x¢ A, take §(xje) =_6n(x; ¢/3 ). Then for

ly-x| < 8(x5¢)} we have

2() - £®)] < 12) -2, )] + [£,() -2, ()] + [£0x) - £()] < & -

It is clear from the proof that if each fn is uniformly continuous with
modulug-of-uniform continuity fumction én(e) then £ is uniformly con-

tinuous using &{g) = 6n(e/5) for n as deseribed.
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3.6 The space C(A,R). We assume here that A is strongly countably

compact, hence seq. compact by 2.15. Each f in C(A, R) is uniformly
continuous by 3.2, so there exists a function 8=48(¢) giving its uniform

modulus of continuity:

(1) nye A Adlxy) < 6(e) = |[f(x)-f(y)| < e.

When operating with members of C{A,IR) we must make use of these
associated functions. Thus we here identify C(A, R) with the class

of all pairs (f,8) satisfying (1). However for simplicity of notation
we continue to denote elements of C{A,IR) by their first terms where

there is nc ambiguity.

For f,ge C(A,IR) we obtain as usual l£|, £+g, f-g, £-g in
C(A,R); further £/g ¢ C(A,I]R) when g# 0 (i.e. VxeA(g(x) £0). We

alsc have max (f, g) and min (f,g) in C{A, R), using max (f,g) =

(f—;—g) + |f;g| and similarly for min. We also define

(2) £ = sup |2 ,
Xel
which exists by 3.3 (and, indeed, satisfies |[|f]]=]|f{a)] for some ace A).

Then it is.easily seen that

.

(33 c(A, R) forms a metric space under the function d(f,g) =|f-g

A segquence of elements (fn> of C(A, R) is actually given by a pair of
sequences, ((fn>,(6n)) where 611‘: 6n(e) is a uniform modulus of con-

tipuity function for fn . From 3.5 we obtain:
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By (i) (:E‘n> converges uniformly to f o lin ||fn-f|| = 0 ;
n

(ii) (fn) is uniformly convergent & (fn> is a Cauchy

sequence in C(A,1R).

The main new fact here is that
(5) C(A,R) is complete.

For the proof, suppose given a Cauchy sequence (fn) . with accompanying

moduli 6n . Let £ =li‘.lm fn . We must show that £ e C(A, R) by finding
a function & satisfying (1l). By hypothesis we have a function n=n{g)
such that for each ¢> 0, [m>n(e) Axe A = ffm(x) —f‘(x)| <e]. Also

for each n We have that [x,y e A A d(xy) < 6 (e} = |fn(x) -fn(z,r)[ <el.

Let m:n(ge) and 6=6m(e/3). Then

2(x) - 2(p)] < [2(@) - £ ()] + g (=) - £ ()] + 5, (0) -2

which is less than ¢ whenever d4(x,y) < &.

As the example fn(x) - x7 on [0,1] shows, ordinary convergence

does not imply uniform convergence. However, we have Dini's theorem :

(6) if (£ is a seguemce in C(A,R) and (lin £)eC(a,R) and
: n

< ..o <7

£ <f

s < ... then (fn> converges uniformly.

1 n

The proof is left to the reader.
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It follows of course from {5) that

@
{7y if (fn) is 2 sequence in C(A,R) and > Ofn converges uni-
n=

@®
formly then > £ e (4 R).
n=0

Exercise. Prove Dini's theorem. {Outliine: let f£=1im fn . Given
n
e,n,m, let (mm)eg Vg eB [ (flg)-T (g)) <el =
; - < . = .
Ty e Bn[ (f(y) fm(y)) <el Let Gn,m B, for (n,m) e g. Then the

Gy, 1 with (u,m) e g form an open cover of A. )
H

3.7 The Stone-Weierstrass Theorem. We continue to assume that A is

strongly countably compact. The Stone-Weierstragss theorem will establish
that C(A,IR) is separable when a certain hypothesis is met; this is

easily verified for the A in which we are interested. We dencte by c
the constant function Mxe A{c) for ce¢R. A family G S C{A,R) is

said to be an algebra if
(1) f,gelG=Ff+gecl, fgecG and cf ¢l for each ce @.

0 is said to separate points if for any X, %, € A with Xl;é x and any

2

aqs 8 ¢eR we can associate a functicn fe(G with

(2) £flx, ) = a, A f(xe) =a, .

l) 1

G is said to be uniformly closed if it is closed under uniformly convergent

sequences, i.e. undgr limits in the space C(4,1R). The uniform closure of
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[

The Stone-Weierstrass theorem is here stated as follows.

(3) Suppose G is a countable algebra and B8 = G(S) . _I_j 1leBB and

B separates points then B8=C(A,R).

For the proof, first of all it is easily checked that

) B is a uniformly closed algebra.

Let G = {:pn} By definition of &, we have

nell

(5) for each feB and ¢> 0 there exists p ¢G with IES "Pn” <g.

Thus §  separates points approximately, in the sense that for any XJ_;! X

2

ani a ,&, e R we can find a pne(l with

1’72
(6) |Pn(xl)—a}.{ <e A an(Xg) 'a‘2! <e.

1% is a classical lemma that the real function |x| is approximsted uni-
formly by a sequence of polynomials gn(x) with rational coefficients.

Then for each f in ®, g (f) isin ® and I£| is approximated uni-
formly by (gn(f)) ; thus slso |f]| ¢ 8. It follows by the definition of

max, min in terms of the rational operations and absolute value that:
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...,fn) e® A min(f

{(7) fl,...,fneﬁ%:»max(f l,...,fn)e@.

l)

With these preliminaries out of the way, we establish (3) by a double
use of countable compactness, as follows. Suppose given f e C{4, R).

We are to find (for each ¢ > 0) a member P, of O with ”f-‘pnﬂ <e.

First, given any X,y

(8) we can find n with ifn(x)—pn(xﬂ < e /\-Ifn(y) -pn(y)l <e.
Since f and p, are continuous, there exists Bm such that
(9) yeB, end [ze¢B = |f(z)-p (z)] <el.

Let g={(n,m)|¥z ¢ Bmlf(z) -pn(z)] < ¢); as we know g 1is a set, since
we need only test the condition at all 9, in B, - Further

AC U B, by (9). Hence there exist a finite number
(mm)eg

(nl,ml), .. .,(nt,mt) of members of g for waich A S B U...UB

1 By
On B~ We have |f(z) -p, (z)| <e, so P, (z) < f(z)+e. Also each
i i i

p. (x) > f£(x)-¢ Dby {8). Thus if we take h_=min(p .,...,p. ) we

n, - X ol n

i 1 T
have
(10) b e B and Vze A(hx(z) < f{z)+e) A hX(x) > fx)-¢ .

Approxirating hx by a Py in G (and replacing ¢ by an €y < e/ 2

throughout) we obtain:
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(11) for each x e¢A we can find k=k(x) such that

pk(x) >f(x)-e¢ ard Vze A(p (z) <f(z)+e).
- Again by continuity there exists m with
(12) xeB NVze 'Bm(pk(z) > f(z) - e.)

for k = k{x}. DNow let g'_={(k,m)|'v'z eBm-(pk(z) > £(z) - e) AVz eA(pk(z) <f(z)*e)l,

which is again a set. We have A C v B, by (11) end (12), so there
(k,m)eg'
. PR 2 t . c
exist finitely (kl,ml), cany (kr’mr) in g' with A E Bmlu eee U er

Taking h:max(_pk >eeesDy )' we have
1 r '
(13) he® and Vze A(f(z)-e¢<h(z) <f(z)+e).

This procedure is carried out uniformly in e, i.e. given ¢. we have found .

h, in 8 with Hf—hsﬂ < ¢. TFrom that follows f e E(S)E 8, qg.e.qd.

As a corollary to the theorem we cbtain:

(1) if G 1is a countable algebra containing 1 and if (O separates

points approximately then G(S) = C(A,R), so C(A,R) is separable.

The classical Weierstrass theorem for C{IR, ]R) 1is a corollary, taking G

to be the algebra of all polyncmial functions with rational coefficients.
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Remark. In the usual form of Stone-Welerstrass theorem, { is not
assumed to be countable. To prove that one must assume full compactness

of A as well as the axiom of choice.

3.8 Differentiation of resl functions. We now specialize to the c¢clasgsical

catculus of functions of one real variable, i.e. functions whose domain of
definition is an interval I in IR. To define the notion of derivative,

we must use the notion

(1) ‘ lim g(x) = L
X—>¢C

for g defined on I except possibly at c. As usual this means that

we have a function &=26(e) such that for each xe I with x# c¢, if

|x-c| <8 then |g(x)-L| <e. For f defined on I let g(x) = f(i_-;f c)

Then £ is differentiable at ¢ if 1im g(x) exists. It is easily shown
X —»C

that f 18 continmuous at ¢ in this case. £ is said to be differentisble

on I; &I if we have a function I' dJefined on I, eand a function

§=06(x,¢) such that:
() xzeIjAueIAujfxnlux|<s = ]Ei%%i§£§l-f'(x)| <eg.

We are primarily concerned with £ which are differentiable on I except

possibly at a finite (or at worst countably infinite) number of points.
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The laws of derivatives are verified in the standard way. The
same holds for the following main facts about differentiation, where
(for simplicity) f is assumed to be defined and continuous on {a,b] and

differentiable on (a,b):

(3) (1) if £ has a local maximm(minimum) at x e (2,b) then £'(x)=0;

(ii) +there exists x e(a,b) with &blzgil = £'{(x);

(131) if £'(x)20 on (ab) then a<x <x, <b= £(x;) <

(3v) if £'(x)

I A
o
o)
o

< < <
{a,b) then a ) $%, <b= :E‘(xl) > f(xe)

H

(v) if £'(x)

1
@]
o}
2

{a,b) then f is consbant on- [a,b].

The statements (iii) - (v) are immediate consequences of the Mean Value

Theorem (ii).

Exercise. Prove (3)(i),(ii).

3.9 Riemann integration. Suppose given a closed interval I=[a,b! with

a<b. A finite non-empty sget of points X= fxo,...,xn} in I is pre-

sented as a finite sequence (XO, . .,xn) together with its length n. We
cen eliminate repetitions as follows. Let d={i < n| — &j> i(xg =Xj)} ;

d is a set and we can list it as dz[io""’ik.} with i < ... <d.
Then X = [xi PERREE } has the same members as X but these are now pair-

7o k
wige distinct. Next, suppose given X:{xo,...,xn] with X, 7! xJ. for
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i<ji<n. Let r:[(i,j)|xi < XJ.} i this is also a set, which is a
linear ordering of {0,...,n}. Hence we can find a permutation = such
that X*=={xﬂ(o),...,xﬁ(n)}- has the same elements as X and

xﬂ(o) < ... < X::(n) in the ordering of IR. By a partition of [a,b]
we mean an ordered set Ps= {xo,.. e (i.e. such that X, <xp <.l <xn)
with X, =8 and xn=b. We use P, P', etec. to range over partitions

throughout. P' is said to be a refinement of P if PCS P'. Given

any P, B' we can form a refinement of both P, P' by taking (PUP' 3%

~

If P={XO,...,xn} and Q:{to,...,t } we say that q is

n-1
meshed with P if X < ti < X1 for each i < n; we write Q <P in

this case. Given any such 2, and f:[a,b] - 1R form

n-1
(l) Sf(P:Q) = Z{) f(ti)(Xi-i'l—Xi)'

When £ is fixed it is dropped as a subscript. f is said to be

Riemann-integrabie on {a,b] and we write feR[a,b] (or £eR(I)) if

there ig a nmimber L and a function ¢ — Pe which associates with each

(positive rational) ¢ a partition P_ such that
(2) PSP T <P {|s(2Q)-L] <el.
Suppose given another function ¢ — PE': and number L' satisfying (2)

for the same f. For any ¢ > 0, take a refinement P of both Pe: and

P! and let Q< P. Then |s(P,Q)-L! < ¢ and |8(P,Q)-L'| < ¢, so
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|L-L"| <2e. It follows that L=L' . When there exists L and

re. P satisfying (2), we denote the first by

b b
(3} L=[ f{x)dx = [ £ .
a a

From this definition is easily derived the basic linearity properties ot

ﬁhe Riemann integral:

(&) (3) 1If f,geR[a,b] and c;:¢; ¢ R then clf+c2geﬁ?,[a,b] and
b b b

[ (oyf(x) +epg(x))ax = oy [ f(x)ax+ec, [ glx)ax .
g . a a

{(ii) If a<b<c and feR{a,b] and £ eR[b,c] then feRia,c] and

C b c
J f(x)ax = [ f(x)ax + [ f(x)dx
a a b

There is an intrinsic n.a.s.c. for f to be integrable which is

due to Riemann, namely that we can find a functicn ¢ Pe guch that

(5) VPSP Ve <P vq <P (|8(r,e)-5(2a,)| <<l

For the proof of equivalence of this with f eRfa,b], suppose first that

(2) holds. Then for any Q1,9 < P€/2 we have fS(P,Ql) -S(P,Q,g)] <

/o Serves for (8).

Conversely, given ?\e.Pe satisfying {5}, let P(m) e P(l/m) . We first

’S(P;Ql)-L[ + IS(P,QQ)-L[ <egfz+ g2=2¢, so P/
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() (m,)

show that if Ql <P and Q‘z <P then

(m, ) (m,y)

&) I[s( ™ ,q)-s(p

,Q2)| < for m=max(m1,m2) .

(m)  (m,) (m,) (m,)
For, let P=(? T U 52\ L e refinement of B T , P 2

Say s(P(ml), Q) > S(P(mg

(m) (m,,) 3
S(P,Q) > S(P ,Ql) > s(Pp , Qe) > 8(P,Q ). To see how these are ob-

(my )

. !
tained, say P = {xo,x ..'.,Xn] , and P=[x(’3,x_j_, ""XL':’ ... } where

) -
s QQ) . We claim there are Q, § < P such that

1 1 Ty _ ' 1 1 .
{xo, Xl""’xk} =PnN [XQ,X J. Aiso Q’_L'{to’tl""’tk—l’ ...} where
T _ 1
< %! . On [xo,xl] choose 1 where f(to) = max, < k.f(ti)'
k-1
1 1 - 1 . -
Thus f(to)(xl-xo) > i%o f(ti)(xi+l xi). We may proceed similariy for

each of the intervals [X]_’XQ]’ etc., to obtain Q={1t !} with

(m ) _
S(P,Q) > S(P E , Ql) . Working symmetrically with P as a refinement of
(my ) ' ~

P and using minima with respect to the f(t‘ji), we determine q 8o

oty

(

that 8(P ")
(m, ) (m,) 1

8(p T ,Qq)-8(F 7 ,0,) £8(5Q)-8(F, §) < 7, thus proving (6).

() () (m)
Now for P =1f{x_, ...,x
o n

» Q) > S(P,Q). The conclusion is that
m m). m
},let Q():[X(())J...,Xr(lzl},
i
and let sm=S(P(m) , Q(m)). It follows from (6) that (Sm) is a Cauchy
sequence. Take L =1im Sm . Then (2) is satisfied as follows: given
m

/m< e, and PC P(m) ; @ £P, consider FSm-S(P,Q)l. Ifs > sS(P,Q)
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then as before we obtain § on P(m) such that §(P,Q) > S(P(mj, é}.

Bl

Hence s -S(P,Q) < s(p®) | glm)y _ S(P_(m), q) < Similarly if

1
s, < 8(P,Q). It follows that - |sm -8(P,Q)] < = <e.

This argument shows that when Riemenn's condition {5) is verified

b
with an explicitly given ?\e.-Pe we can explicitly find [ £ as
&

lim S(P(m), Q(m)). As an application of the condition we have:
m

(7) if feR[a,b] and xela,b] Zhen feRfa,x] and feRix,al.

For this it is sufficient to show how to satisfy (5) on both [a,x] and
[x,2] given a function ¢ |—;Pe which satisfies it on [a,b]. We may

simply take - Ei = (Perl[a,x])u {x} and Pi = (Pefﬂ[x,a])LJ[x}. The
functions Ke.Pi R ke.ﬁi are easily used together to verify bothk f eRa,x]

and £ eR[x,b]. Note that from (7) and the preceding remark we can con-

x
sider [ £ as a function F(x)  defined on [a,b].
a

The main part of the Fundamental Theorem of Calculus may now be ob-

tained.

(8) If F is differentiable on {a,b] and F'(x)=£(x) for a<x<b

b
where f eR{a,b] then faf(x)d‘x = F(b) -F(a).

The proof is simply as follows. Suppose given Xe.P_ satisfying (2)

and let ¢ > 0. For P==P€:={Xo,...,xk} , write
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n-1 n-1
F(b)-7(a) = Zo (F(Xiﬂ)‘F(Xi)) - zo F'(ti)(xiﬂ “%5)

where x, < t., < x.
i i

41 ig chosen by the Mean Value Theorem for derivatives

(3.8(3)). Taus F(bv)-F(a) = 8(P,Q) for & Q<P and
b b
|F(b) -F(a) -fafl = 18(P,q)-f f| < ¢ . Since this is true for every e
a

we have the conclusion of (8).

Remark. In many treabtments of Riemann integration for bounded functions £

one associates with each P the mumbers M, = sup I(x),
%, < x< x,
1 T P14l
n-1

m, = inf  f£(x) and Uf(_P) = E Mi(xi+l-xi), Lf(P) =

x, <x <x, i1=0

R B
n-1

> mi(xi+l~xi). Then f 1is Riemann integrable iff there exists ke.Pe
i=0

such that U(Pe) -L(Pe) < g¢. This is simpler than the definition we have
used but requires the least upper bound axiom for ssts and hence cannct be

done without (Projl) in general. Tt is of course applicable to integraticn

of continuous functions without that axiom.

Exercise. DProve the linearity properties (4)(i),(ii).

3.10 Integrable functions. Suppose D= fdo, ""dmwl] Cfa,b] =T and
that £:I 5 1R is bounded and continuous on I -D. We shall show that f
is Riemann integrable on [a,b]. For each k > 0 we can find (aik),bik)),

0<1i< 1, such that
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(%)

5 (b(k) -_ai(“k)) <% .

5y for i<m and T, :

<t

ret ol®) b)) bi(k)) ana A% = 1-a() | gpen we denote vy

(2) A(k) is (i) seq. compact snd (ii) countably compact.

(k)

is closed.

(k)

For (i) simply use that I is séq. compact and that A

to get
5 ()

For (ii}, given any open cover of A(k) , compine it with G
an open cover of I3 this can be reduced to a finite subcover. is

obviously separable, with basis. QF]A(k). By 3.2, £ ois uniformly

continucus on A(k) so we can find for each ¢ > 0 & 6(:=6k(e)) such

that

[

£) A [t-t'| < 8= [F(t) -£(t")] < sy -

) t,t'eal

Further, given any subinterval {u,w] of I we can compute

sup f{x) and inf  f£(x) and thence sup [£(t)-£{t")].
w<x<w u<x<uw u<t,t' <w
et £ = Sup [£(t)-£(+")| +21. Now, given any ¢ > 0, choose k
a<t,t'<Db

g

such that g(G{k)) < =7 Then, for that k, choose & to satisfy (3).

Let Pe be a partition which includes D as a subset and 1s such that
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each interval in Pe has length < 6. Consider any P =2 Pe ,

P =(x ,...,xn} . For each subinterval of Pe we have either

(%)

(k) s .
SR xi] CA or (Xi+l’xi) disjoint from A .~ Given any

Q,Q" <P,

|s(p,Q)-8(?,q")| < Ei(l)!f(ti)-f(ti')l(:éi+l-xi>+Zi(2)lf(ti)-f(ti) (%1% 05

where the first sum is extended over those intervals in P contained in

Aik), and the second over the remaining intervals. Now

E§l)lf(ti)"f(ti)](xi+1'xi) < éTﬁ%ET-Zél)(xi+1"xi) < ETE%ES +(b-a) = f ’

On the second sum we have
)<L, = =

Z§2)|f(ti)-f(ti)l(xi+l_xi) < g _Ziz)(x .

M
=
MNim

14317

Hence [S(?,Q)-5(P,q')| < e. With this choice of P, We have thus

gatisfied Riemann's condition of integrability, so that we have proved:

(3) if T :fa,b] =R and £ is bounded and continuous except

possibly at finitely many points, then f eR[a,b].

We also have
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(b)  under the same hypotheses as (3),

b
(1) [ £=p(b-a) for some p with m= inf £(x)<p< sup T(x)=M, and
a, _ a<x<b a<x<b
x
(i1) for F(x)=[F we have F'(x) = f(x) for each x efa,b].
a

(1) is the Mean Value Theorem for integration; it is immediate from
m(b-a) < §(P,Q) < M(b-a) for each P and Q < P. To prove (ii), consider

11
any a<x<u<b. Then F(u)-F(x})=[ f = p(u-x) for some p Detween
X

m{x,u] = inf f£(t) and Mx,ul= sup £(t). Hence
x<t<a x<t<u
lim ELE%EELEl = F(x) and we can provide the required rate of con-
U - X

vergence to verify this.

Remark. The functions of classical interest satisfy (3). However, it is
possible to describe a much wider class of Riemann integrable functions
in terms of the theory of measure, namely (%) those which are continuous

cutside a set of measure O {and, in fact only those). The measure of an

open set G is defined to be- u(G)==2;=O(bi-ai) where G= Uﬁai’bi)

is the disjoint representation of G. A set D 1is said to be of measure
0 if we have a decreasing sequence (G(k)) containing D such that for
each ¢ > 0 we can find k with p(G(k)) < ¢ . Every countable set 1s of
. measure O. The germs of the result (¥) are already contained in the above

proof. We delay further discussion to §i.
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%3.11  Ficard's existence theorem for ordinary differential equations.

Let A, B be closed and bounded intervals in IR, and D=AX B. Suppose

f:D 1R 1is continuous; then we can find X with
(1) [£(x,7) £ K

for (x,y)e D. ZFor the theorem to be proved it is also assumed that T

satisfies a Iipschitz condition

(2) |£(x,5,) - £(5,5,)1 < M-lyy - v,

for some M and all (x,yl), (x,yé) ¢eD. (This is satisfied, for example, if

Of 35 contimuous in D.) Given (Xb’ yo) e D, to solve the differential

oy

equation with the initial wvalue condition

Ay

Gy (1) &' (x) = £(x,8(x))

It

¥

(1)  &(x) = v,

it is necessary and sufficlent that g solves the integral equation

X

() g(x) =y, + | 2(t,8(t))at.

X
Q

The Picard theorem is that, under the given hypotheses (of continuity of f

and (2)}) if y, is interior to B then

(5) we can find ¢ and g for which g unigquely satisfies (3) when

- + .
X e[xo & X e] NA
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For the procf, take b > 0 with S(;y‘o 3;b) & B. Let

(6) e<min(%,§) and I=[x0—e,xo+e]ﬂA.
Consider the space
(7) X = {geC(I, R) |z eI(lalx)-v | < D))

This is a closed subspace of C(I, R) and is complete and separable by

3.6 and 3.7. Define the mapping T on X by

X

(8) T(g) =y, + [ £(t,8(t))dt.
X0

We then have

(9) . T :X - X

X .
since |T(g)-yol < | f f£(t,g(t))at] < k- IX-XOI <K:-e<b. Also

X
o}

(10) T 1is a contraction mepping,

X
for T(g)-7(g,)] < lfxf(t,gl(t)—f(t,gg(tg))dtl SMejxx | <1

o}

By the contraction mapping theorem of 2.1k,

(13) T(g) = g has a unigue solution g in X.
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Remarks:
(1) e can be chosen independent of b, X if (2) is satisfied on AXR.
Then by a finite number of shifts to the right and left we car further ob-

tain a solution orn all of A.

(ii) There are simple generalizations of the theorem to simultaneocus
equations gi(x) = fi(x,go(x),...,gn(x)) (0 <i<n) and thence to higher

order equations g(n)(x) = f(x,g(x),...,g(n"l)(x)).

3.12 BSeriss of functiéns. In this and the remaining secticns of §3 we

set down various results without proof which can be drawn as consequences in
VETH + (p) of the preceding general material in a standard way. For details

13¢
of proofs see such references as Rudin 1839 or Heffman 1975.

We work here in C(4, R) where A is a closed and bounded interval
A=Ta,b]. Uniformly convergent sequences (and hence series) of funciions

have the following good properties:

(1) 1I£ (fn) converges uniformly on [a,b]l to f then

b b
[ f(x)ax = 1im [ £, (x)dx.
a n-mw &

(2) If the seguence of derivatives (fr'l) is defined on [a,b] and

converges uniformly to g and if (fn) converges to f then £'=g.

‘The Weierstrass M-test is a simple sufficient test for uniform convergence:
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(3) if [fn(x)l'f M_ forall n and xe[ab] andif I _ M

converges then E;—O fn converges uniformly on [a,b].

This is applied in particular to power series by comparison with the geometric

series 'Z.z_o r™  which converges to ﬁ when [r] <1 and diverges when

|r] > 1. Given a sequence (a_) , the formal series 5o a (x-x )" is
- n n=0 n o]

called a power series aboulb X -

a.
(¥) If r=1lim |¢ =
n—saea ntl

. . e n
| exists or ig + ® then =T a_ (x-x ) con-
ettt S o P etiad n=0 n [e} uthdny

verges for each x with IX—X.OI < r and diverges For fx—-xol >r.

Furthermore, for fn(x) = an(x—xo)n , the convergence of 5. f is

n=0"n

uniform on [:_:O~h, x t h] for each h < r.

Such r is called the radius of convergence of the power serlies. A better

. n-
result is usually formulated with r= ;s: where g = lim sup v 8 .
n—a

However, (4) serves our present purposes.) The series obtained by formally

integrating T D berm by term is T . & D e
integrating IT__, an(x-xo) em by term is L, a.n(x-xo). ere & =0,
: a,
*
&1 = 5—_% 3 that obtained by formally differentiating fterm by term is
- a
5 a' (x-x )n ‘where a' =na . If r=lim | L | exists or is + ®
n=0 n o] n nt+l
. % n— @ ntl
% 2
then also lim |[——| = r = lim Ia' | . Thus we conclude that the series
n-® a .. n-so ntl

£x) = o ( Bl e® e(x) i i Porml % h interval
¥) =L 8, X-XD) =Z, 5 nx) is uniformly convergent on each interv

B b
. (==}
[Xo‘h’ xo+h] with h <r and faf(X)dX = Zn=o faf

n(x)dx for
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x -h<a<b<x +h, and that further £'(x) = £ . f'(x) for each
(o} —_ —_ - "0 n=0 "n

Xeg [XO-h, xo4—h]. By successive differentiation we thus obtain

f(n) (xo) f(n) (%)

(5) 8, = ——— and I{x) = 5 — (wao)n in (Xo—r, xo-kr).

i} n! n=0 .

3.13 The classical transcendental functicns. Using the expected laws of

differentiation for the functions E(x)=e*, C(x)=cos x, 5(x)=sin X,

we may define these by the power series

v - @) EE=

Il
L

(11) c(x)

2 (=2 2 op
n=0 (2n)! =~

g (17 oned
n=C (2n+1}!

For each of these the radius of convergence is found %o be r=+w , so the

(111) S(x)

gseries converge uniformly and are integrable and differentiable term-by-term
on each bounded interval. Then one can deduce the familiar and characteristic

facts concerning these functions such as:

(2) (1) E'(x) = BE{x)
(i1) E(x) is striectly increasing
(iii) E{x+ty) = E(x)-E({V)
(iv) E{x) = & where e=E(1).

(v) E(x)>o0.
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For {ii), one needs a result about multiplication of absolutely convergent

geries, so as to write

n=0 27 Tme0 mT = Tne0 S0 RET(ooE)T = 'n=0 T Tk=0'k) X ¥ = Iy pri®y
For (iv) it is first shown that Mmd=(Emnn and E%)—(Hxnyn s0

E(q) = el for each rational gq. Then E(x) = € by conmtiruity. Since
B(x) E(-x)=E(0)=1, we have E(-x)=1/E(x); but for x> 0, E(x) > 0 so

also E(-x) > O.
Similarly we obtain

) @) ¢

- 8(x), 8'(x) = C(x)

(31)  c(-x)

¢(x), S(-x) = = 8(x)

(iii) ¢(0) =1, 8(0) =0

(iv)  C(xry) =C(x) Cly) - 8(x) s(¥)
s(xty) = 8(x) C(y) + ¢(x) s(y)

(v)  ?(x) + £2(x) = 1.

It may be shown that there is a least 'positi{re number xq with C(xl) = 03

denoting this by /2 we get

() (&) c@fey=1, 8(x/2)=0
(ii) C{n) = -1, S{x) = C

(ii1) c¢(en) = 1, s(2r) = 0



II-g0

Finally, these functions are pericdic of periocd 2= ,
(5) c(x+2x) = C(x) , S(x+2x) = 8(x).

The usual techniques of integration of trigonometric functions can be

applied to give for any integers n, m:

2n ' Q ndm
(6) (1) [ cos(nx) cos(mx)dx =
0 b1 n=m
25 0 nfmn
(i1) [  sin(nx) sin(mx)dx =
0 1t n=um
2%
(iii) [  cos(nx)sin{mx)x = 0, =all n,n.
9]

3.14 TFourier series. Assume throughout this section that

(1) (1) £ 4is piecewise continuous on [0, 2x] and

(ii) £ is periodic of periocd 2x.

The hypothesis (i) means that f(x+) = 1im f(x+h) and f£{x }= lim f(x-h)
h -0 h 0"

exist for each x and that f(x+) # £(x ) for at must a finite number of x
in [0,2x]. If f(x+) = £(x") there is at most a "removable" discontinuity
of £ at x, otherwise a "jump" discontinuity. In seeking an expansion of

the form
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(2) fl(x) =c_ + 2;1(% cos(nx)+bn sin{nx))

o}

one is led to multiplying by cos(mx) or sin(mx) and integrating term

by term. Formally applying 3.13(6) brings us to take:

1 2x
(3) (1) a == fo f(x) cos(nx)dx (n=0, 1,2,... )
1 25
(ii) b, == % f(x) sin(nx) dx (n=1,2,... )
and
Cfsss % 1 2
(lll) CO = —2— = "2"'1'1? fo f(X)d.X. -

The series on the r.h.s. of {2) with coefficients defined by (3) is called

the Fourier series of f. There are a vast number of results about con-

vergence of Fourier series, both in the usual and in cther senses. The easiest

to obtain are the Following:

(W) (3) IL£ £ 4is differentiable at =x then the Fourier series of f

converges to f at x.

(i1) If £  1is plecewlse differentiable then the Fourier series converges

+ -
to f(x )+ f(x ) for each x.

We also have Fejer's theorem:

+ -
(5) Hm o (x) = i(x);-—f(xl where cn(x)'=%2§=o sj(x)

N - @

a
o n : .
= * Lo (a.k cos kx + by sin kx).

and sn(x)
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These results can be used to cbtain existence and uniqueness theorems for
familiar partial differential equations given by physical problems. For

a bagic treatment ef. Berg and McGregor 1966.

3.15 Complex analysis. The fundamental notions of analysis for functions

f:8 -8 are now definable and treatable in any one of the standard ways.
These comprise the notion of differentiable function and the cperation of
differentiation, integration along a (piecewise smooth) path, analytic
functions, independence of path for integration of analytic functions,
Cauéhy's integral formilas, and expansion of analytic functions in power
series. The results for the latter are just as for real power series 3.12.
Then the transcendental functions e » cos z, sin z  can be defined by
power series for z e € and the properties of 3.13 extended 4o complex
nmumbers. Examples of further results which are easily established in

VETP +(u) are the maximum modulus theorem, Liouville's theorem and the
Fundamental Theorem of Algebra. In fact one may expect from Bishop's 1967
Constructive treatment of Complex analysis which reaches the Riemann mapping
theorem that this development can be pushed somewhat further. The conclusion of '
§ 3 1is thus that the body if not all of classical analysis through the 19th

century can be carried out in the restricted theoretical framework VFTH +(p).
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4, Developments in VFTH + (u): modern analysis. In this section we

describe how two basic parts of modern analysis are to be dealt with in

VFTP + (p). The first is Lebesgue's theory of messure and integration,
here dealt with only for the concrete spaces ]Rk . It is frequent in

*
modern treatments to start with the notion of outer measure u (X), from

which the notion of measurable set is derived. This cannot be done in our
restricted theory because the definition of p*(X) requires the inf
operation on sets of reals in an essential way. It is however possible to
define measurable sets X and their meaéure w(X} directly. Instead of
taking that route to the theofy of integration we follow Riesz' approach,

and. Qurariel,
which is nicely presented in ShiloY«l96£i This uses only the concept of set
of measure O +to proceed directly tc the Lebesgue inbegral. Every integrable
function is represented as a difference of two monctone sequences of stap

functions; it is a second essential point of our development that we operate

only with such presentations of integrable functions. The theory of

measurablie sets is obtained as a corollary to integration theory.

The laiter half of this section takes up functicnal analysis, i.e.

the theory of linear operators on normed linear spaces,.Banach spaces and
Hilbert spaces. _The main examples of interest are various spaces cf functions,
most of which are separable; the hypothesis of separabiiity is assumed through-
out, We concentrate on fundamental theorems about linear functionals and
orerators which regquire prima-facle impredicative arguments: the Riesz re-
presentation theorem, Hahn-Banach theorem, uniform boundedness theorem and

the open mapping theorem. By relying heavily on separabllity we are able to
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see these through in our setting as well. The section concludes with
principal results of the spectral theory of compact self-adjoint operators
on a Hilberi space. A good reference for the part of functional analysis

treated is Xreyszig 1978.

4.1 Sets of measure O and preliminaries to Lebesgue integration theory.

For simplicity we shall deal with the theory on a finite bounded interval
I =[aDb] in TR of length |I| = (b-a). ILater it will be indicated how

this is to be extended to unbounded intervals as well as any E{P.

The usual approach begins with the theory of measure which in turn begins

. * *
with the notion of outer measure u , defined by u (X) = inf{|G] [X €@}

where G ranges over open sets and @] is the length of G, i.e.

|Gl = % IIn| when G = LﬁJIn is represented as & union of pairwise disjoint
intervels. However, u*(X} .cannot in general be proved to exist in

VFT + (p). It is possible, though, to explain the concept of measurable
set X and to define the measure nk(X) without passing through p* .
Namely, X is said to be measurable if we can find a pair (Gn>, (Gé) of
sequences of open sets such that for each n, XS G, [2,p]-XC Gé

and for each e¢> 0 we can find n with |Gn1 + |Gﬁf < (b-a)+e . Then
w(X) 1is taken to be iﬁflGnl . When working with infinite operations on
meagurable gets it 1s essential to operate on the associated pairs

(<Gn>’ (Gﬂ)) , Which may be called meesure-covers for X. It is easily

seen that if X is measurable then s¢ also is {a,b]-X and p([e,b]-X) =

(b-a) - u(X). Further, every subinterval J of f{a,b] is measurable, with
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w(3) = |J]. The main result is countable-additivity. If (X ) is a
gsequence of pairwise disjoint measurable sebts with sequence of measure-

covers ({G_ _) (6" ). ) for each m then UX 1is measurable and
I’Il,n " m m

n’ “mnn

M(%EXm) =—Zznu(Xm). The proof of this requires a number of steps, which

may be followed in Goldberg 1976, §11.1-11.3. (The use of p* there

is inessential, unlike some other presentations of the subject, in
particu;ar those which use Carathéodory's definition). Cne conseguence of
the theory is that every open set G is measurable and u(G) = |G|. All

of this can be carried out in VFTP + (u).

Even after the theory of measurability is developed there is still
a certain amount of work to be done in order to set up the theory of the
integral. Instead we take here an approach due to Riesz which leads

directly to the integral, using onxf the notion of sget of measure O a%

the outset. This is presented in Shilov 1965 Ch.IV, which we follow very
closely; To start with, X 1is said to be of measure O if we have a

se@uence (Gn> cof open sets such that

(1) (1) x¢ G, for each n, and

(ii) given e> 0 we can find n with |a | <e.

When operating on séts of measure O We assume given an associated
sequence (Gn) satisfying (L). If X is of measure O we write

* . *

i {X) = 0 (this does not give meaning to u more generally). The basic

result here ig that
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(2} if (Xm> is a gequence of sets of measure O then so also is LJXm .
— — = - - - — m

Implicit in the hypothesis is that we are given a double sequence (& n>
m»

such that for each m, n, Xm — Gm n and such that can be made as
2

Gy, !
small as we please by taking n sufficiently large. Thus, given m and

&

¢> 0, choose n with |Gm,nm| < —;ﬁ—l-_l , then ng ig covered by

. < < . . ] )
ILgGm’nm and |Ln'1ij;nmI "r% ]Gm,nml € This proves (2)

It is trivial that each point has measure O, so by (2) every
countable set has measure 0. The Cantor get is an example of an uncountable

set of measure Q.

X is said to be of full measure if {a,b]-X 'is of measure O,

A property P(x) of points of {a,b] is said to hold almost everywhere

(a.e.) if {x|P(x)] includes a set of full measure.

By a step~function h we mean one which is plecewise continuocus and -

which is constant between successive points of discontinuity, i.e. for
which we have a partition a =X < %, < ... < X, = b with h constant on

(Xi-l’ X, ). A function f is said to be measurable if we have a sequence

of step functions (hn) with
(3) £(x) = 1im hn(x) (a.e.),
. - ek

that is (hn(x)> converges to T(x) almost everywhere. It is easily seen

that the class § of step functions is closed under linear ccmbination,
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multipiication, division (by non-zero denominators) and absolute value.

By passage to limits the same holds for measurable functions. Further for
two step functions hy,h, we also have that max(hl,hg) and min(hl,hg)
are step functions. The measurable functions are consequently closed under
max and min. Then it follows that if £ i3 measurabie so also are

+ - . + -

f =max{f,0) and £ = max(0,-f). The relations f=f -f and

|£| = £ +f  are useful in further work.

Given a seguence (fn> we write fn\ if the sequence is monotone

decreasing, i.e. fo(x) > fl(x) > ... for all xe [2,b]l. We write

£ owf if also lim f (x)=2(x) (a.e.). Similarly for fnﬂand fnf‘f.
Syl

b
Let h be a step-function; we put [h = J h(x)dx, which is defined by
: a
. 2 - . k t L} 1
Riemann integration or simply as I; ; h(xi) (xi-xi_l) with x; e (Xi—l’xi)

and h constant on (Xi_l,xi). This is linear in h and also satisfies

the following order and limit properties:

() (i) n >h, implies [ h > /by

(ii) h > 0 implies [ h > O

(3ii) ‘h O implies: J_Ial_m fnn =03
(iv) if h >0, b\ and 1111mfhn=o then B 0.

Both (i) and (ii) are trivial. For the proof of (iii), let X, be the set

of points of disconmtimuity of h = and x=UX_ 5 let ¥ be {x|1lim h (x) 40},
n n
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and Z-XUY. Since ¥ is countable and u (¥) = O also yu (%) =0.

Let @ = g I, be an open cover of Z Wwith |G| < ¢ (where I, are
disjoint open intervals). Whén x¢§7Z we can find n such that hn(x) < g.
Thus if we take <Il|c> to be an enumeration of those open intervals on each

of which some h_ is constant and < ¢, we have [a,blcUI u UTI!.
n -'m N k k.

By compactness, we can find a finite subcover [a,b)l< UPT u U%z' .
—m=1 M k1 Ok

If I

K is an interval of constancy of h and r = max o then

1£k=gq
by monotonicity, h_< e on {J I'. On the other hand h_< h. and hence
: r . k=1 k r =1

n, is bounded by a certain constant M on U I, - Thus
m

fhr < Mee + e{b-a).

It follows that 1im- [ hn = 0.
n

For the proof of (iv), under the hypothesis, g(x) = lim hn(x) exists
n
for each x. It is to be shown that g{x)=0 (a.e.). Let

X = {x]glx) > i} for m=1,2,... so that UZX ={x|g(x) > 0}. It is
m “n 5 m

thus sufficient tc show that each Xm is of measure 0. Let Ym be the
set of points in X, @&t which all h are contimious, so X is Y plus

*
a countable set. It is thus sufficlent to show that (Ym) = 0. Each
1

hn > o oon T Let dn = IE: IIn,l«:, where hn is constant > /m on
T . Then [h_ > & .1 and nence @ <m/ [ h , so limd =0. But
n,k n-—- n mnm n— n m m

. *
(In,k>k is an open cover of ¥ so u (Y ) = 0.



IT-99

k.2 Monotone limits of step functions. Define S+ to be the class of

Tunctions for which we can find a monotone increasing sequence of step
functions approaching £ a.e. and whose integrals are uniformly bounded,

i.e. for some C

(1) (1} h AT and

(ii) fhng ¢ for all n.
Obviocusly each £ in S+' is measurable. For f in S+ we define

(2) ff:l%mfhn.

It is to be shown that [f is independent of the choice of sequence
satisfying (1). More generally, if (hn) R (kn) are sequences of step

functions with [h <C, [k < C then
(3) h AL, k Ag and £(x) < g(x) .(a..e.) implies 113;m fhn < 11':im ﬁkn.

To prove this, fix any m and form the monotonic decreasing seguence of
step functions h) =h -k . This has limit h -g whichis < (f-g) <O
(a.e.). Taking the positive parts (h;1)+ we get (hm_ knf' N9 so

. : + . :
Lin J(n, -k ) =0 by h.1(4)({ii). Now [(h -k ) >[(a -k)=/n -[k .

Taking the limit over n we conclude that O > fhm-lim k 5 d.e.
- n

Jo_ < 1lim [k . Hence lim fh < 1lim [k_ and (3) is proved.
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It is easily proved that

(W) if £ 4is contimuwous on [a,b] then fe s and [f is the
continuious e anc J the
same as the Riemann integral [ f(x)dx.
' a

We simply use the lower sums for f over any partiticn to give the

approximating step functiomns.

The following are directly verified as conseguences of the

corresponding properties for step functions.

. .
(5) Suppose f,ge S , and c > 0. Then (f+g), {ecf), max(f,g),
min(f,g) and £ ;max(f,O) ‘all belong to s* 5 furthermore

J(f+g) = f+fg and fcf=c/*.

+
A sequence (fin> of elements of 8§ is regarded as given together
with a double seguence (hmn) of step functions and a sequence of

bounds (C ) such thet for each m, b AL and [h < C . The

following shows that the property (1) defining 8" need not be iterated.

(6) Iif fmes+ for each m and fmﬁf and ffm < C then

fesST and [f= lim [f

.h

m ). This forms a monctone increasing

The proof uses h = mex(hy . ;.-

sequence with h < mex(fy,...,f ) =1 , hence fhm < ffm ¢ by

* 3 X%
(2), (3). Then if we take f =limh_ we have f ¢S and [f = lim [h_.
m ™m I
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*
< < i imi
From hkm < hm < J‘E‘m for k<m we get in the limit fk. <f <%

*
so that £ = £ (a.e.). Using the same inequalities, it also follows

*
that [£=[f =lim [ £ .
m m

As a corollary to (6) we have:

(7) if g, € S for each n and g, > 0 and the integrals of
n =]
the partial sums | T g, &re nniformly bounded then f = T &
k=O k:O k

k.3 The Lebesgue inbtegral. A function @ is called Lebesgue integrable if

(1) | o= (f-g) for T,ge¢ s

When this holds we put ¢ ¢ L . Clearly S+ € L.  The following is

easily established.

(2) (i) If ¢, 9, ¢ L then (cpl+cp2) e L3
(1) if @eL and c e IR then cop e L .
We also obtaln
(3) ¢¢l imolies |¢l, ¢ and ¢ arein L.

For if ¢ = {f-g) then |@| = max(f,g)-min(f,g); then by solving for

+ - + - + - + - .
o ,o from o=@ -¢ , o] =¢ =¢ wegetalso ¢ ,¢ eL. Finally,
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(&) ¢, 9y ¢ L implies max(e,q,) and min(eg,qy) el
+ .
by max(p ;) = (¢ +9,) - 9, 5 minlpy, 9,) = - max(-gy , -q,). The

integral is extended to L by
. +
(5) Jo=[ff-[g when o= (f-g) with f,ge¢§ .

This is independent of the representation (1) of ¢ since if f-g = ri-8
we have f+g, = g+f, and so by y.2(5), [f+ Igl = fg+ffl . In

particular operation [ (-) on I is an extension of that on g .

Now we can derive the properties of I directly from corresponding

properties for S+ .
(6) (1) f(-) 4is ldnear on L 3
(i1) if @el and 9> 0 then [¢ >0; and

(131} if ¢, p,eL and ¢ > ¢, then Fog2T o, -
The following lerma is convenient for our further work.

(7) Given ¢ ¢L and ¢>0 we can find f£,g¢ S with g=f-g ,

and g>0 and [ g<e; further if ¢ > 0 then f > 0.

- L3 g + [
To do this, suppose given ¢ = (fo - go) with fo > 8, € 8 5 take a
gequence of step functions hn A8, with [ g, = lim fhn , and choose n
n

so large that fgo - h, < e¢. Then we re-represent ¢ by
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o= (f -h )~ (g, -h)

Wow g, " hm ig in S+ because it is the 1imit of the inereasing sequence

(hn- hm)5 similarly for £. If ¢ > O then (f-hm) > (g—hm) > 0.

When dealing with sequences (cpn) or series Zn G, of elements
of I, it is assumed that we are presented with a sequence of pairs (fn) s

(g,) such that o =f -g and f_,g S ; end then, further, that

n

each fﬂ, g, has an assoclated seqguence of step functions as explained for
+
8 . The first main result is the following theorem of B. Levi , which

extends k.2(6):

(8) Suppose ¢ eL and ¢ > O for each n and that the integrals

n
of the partial sums [ T ¢, are uniformly bounded; then
k=1 '

oo

9% g o1 2 fo=5 g .

For the proof, use (7) to write each ¢ 28 @ =f -g , where

+ . 1 .
T e B ,fk_>_0, ngO and fgk<-ém . We thus have

x’ %k
n = +
Jz gy <1 . By Lk.2(6), the function g=% & belongs to § and
=O ) k=0

(o]
le =2kf g, . Furthermore the same conclusion holds for f= E f since
k=0

each fk _>_ C and

[Tt =f% [T e <
5 = [T ¢+ g, < C+1
k=0 * k=0 F k0 E
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The result (8) folleows directly.

The monctone convergence theorem for Lebesgue integration is now

a corollary:

(9) ifeach {y,eL and § A} and 'H’n is uniformly bounded then

el and [y=lim [y .
. n

For the proof simply take ¢ = §,,5-¥, in Levi's theorem. A similar
result holds for decreasing sequences. Then ag usual one derives Fatou's

lemma and finally, Lebesgue's dominated convergence theorem:

(10) if ¢ el 2nd lim g, = g(a.e.) and le [ < ¢ where eI then

pel and [o¢=1im [¢ .

In particular, it is a corollary that

(11) every bounded measurable function is in L .

Another useful result is that

(12) if gel and >0 and [ =0 3hen ¢x) =0 (a.e.).

The theory of Lebesgue measurability can be reczptured by defining:

(13) (i) A is measurable 1f its characteristic function X, A8

measurable, and

1) wa) =S x,.
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From (12) one gets that A is of measure 0 just in case [ X 4= O
‘The complete additivity of u is derivable from Lebesgue's theorem (10).

Finally, integration can be restricted to any measurable A S I by taking

(1) Sy = J@x,)-

This has the same general properties as integration over I.

To generalize the theory of integration to all of IR (and thence,
any meagurable subset of IR ) one modifies the definition of s by taking
the class § to consist of those step functions which vanish

outside of some finite interval.

For a generalization to IRP”, one replaces intervals by boxes

1

constant values on a finite number of disjoint boxes and are otherwise O.

J=I, X +4s X IP . Then step functions are defined to be those which assume

The reduction of the resuliing integral to iterated integration is
accomplished by Fubini's theorem. A1l this is carried cut by the same

limited means as used above (in VETM+ (u)).

L. Banach spaces and Hilbert spaces. We assume familiarity here with a
certain amount of introductory functional analysis. The following takes
Kreyszig 1978 as principal souree. The bagic notion is that of a normed.

vector space over a field X ;3 Throughout here X 1s IR or € . The

norm is a map x i ||x| from A into IR satiefying
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(1) (1) =l >0 and [ =0%x=0
(11)  laxfl = lal - |5
(131)  lx+yl < =l +itvll -

The equality =x=y between elements of X 1is here some equality re-
lation = not necessarily the identity relation. (The map is sometimes
called a semi-norm in these conditions.) A metric is then determined on

X by

(2) d(x,y) = ==l -

A Banach space. is a normed vector space which is complete in its metric.

The following are éxamples:

(3} (1) R™ and ¢" are Banech spaces using [x]| '=1/|x3_|2+ vou Ixﬂl2

for x-= (xl, ceE )

{it) For p> 1, the set 22 of sequences X={Xn> such that

T |xnl‘-p converges is a Banach space with the norm

Il = (2 [x |5V

(1ii) c(I, R), for I a finite interval in IR; is a Banach space

with nomn [[f]] = sup [£(x)].
Xel
A1l of these are separable Banach spaces. An example of an inseparable

space is £ ; The set of bounded sequences with norm sup anl . A very
n

-important class of examples is provided by P for any p > 1. This is
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defined to consist of all ¢ such that [ lo]® exists (as a finite

number). The norm is here defined by

(%) ol = (1 ol®)Y® .

Equality on IF¥ is defined by ¢=14 @ [lo-4] = 0. The HBlder and
Minkowski inequalities show that I.;Ip is a normed space over IR. The

Riesz~Fischer theorem tells us that I;P ig complete and hence that

(5) P is a Banach space.

The proof of completeness goes as follows. - Suppose given a seguence
( cpn) which is Cauchy in the metric of ¥ . First choose n, large

enough so that ']]cpn-cpm” <12 forall n, m > n . Having defined

. k+2
), ..., I, choose my ., >0, so large that ”cpn-(pm“ <12 for
all n, m>mn_, . Let P = cpnk . If it is shown that the subsequence

(Epk) converges to an element of IY , then the same holds for the

P ~ ~ =1 .
original sequence. Now let 1 = ]qpk+l-:pk] . Then Hq;kH < 1/2 and so
k+1 <

log+ e bl < Y2 vy

Let 6 ==Z Then "6 A and e, = (fei)l/PzﬂenH by Hblder's

n
k=0%"
inequality end so [ en is uniformly bounded by 1. By the monctone

convergence theorem, 2::_1 T exists a.e. and is integrable. Thus for

almost all x, Z;=l|~cpk+l(x) -3, (x)| exists, so the same holds for
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e 1 By (0 =3 (). But T Gy (1) = §i(x)) =G, (x)-§ (x), which

shows thet lim @ (x) = @(x) exists a.e. From this one may proceed
P o ®

to show that o(x) is the limit of the sequence %p in the metric of

It 1s to be noted that ¥ is also separable, since each of its
members is a limit of rational-valued step functions which Jump at

rational points.

An inner product space is a vector space with a binary operation

%L,y 1= (%,¥) satisfying

(6) (1) ({x,y) 4is linear in x
(ii) (xx) > 0 amd (x,%x) =0 ® x=0

(i11)  (xy) = (% .

In (iii) Z is the complex conjugate of =z . If we are dealing with
spaces over IR We can simply take (x,y) = (y,x). Every inner product

space becomes a normed space using

(T) ”X” = ‘JzX,X)

A Hilbert space is a complete inmer product space.

The following are examples:

T -

(8) (1) ®®™ and €7 are Hilbert spaces with (x,y) = Ty 1%y Ty

[
(]
(o

(11) 4° is a Hilbert spece with (x,y) =

(1ii) 2 is a Hilbert space with {<p, 2

]
—,

-G
=1
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In this last we can take L2 to consist of the complex valued

functions such that f|cp|2 exists. All of these spaces are separable.

Throughout the following, all Banach spaces and Hilbert spaces

are assumed to be separable. This hypothesis 1s not explicitly mentioned.

In a Hilbert space H we say X,y are orthogonal and write =xz1 y
if (X,:y') = 0. We write x .Y 1f xi1y for each ye Y. Then the

orthogonal complement of ¥ 'is defined by

(9) o= {x|x LY} .

A subset Y .of H is said to be convex if whenever 0 < a <1
and Vi ¥p € ¥ then &y, + (l-a)y2 ¢ ¥. Obviously every subspace of H
is convex. Y is complete if it is closed under limits of Cauchy
sequences from ¥, i.e. if ﬁ(s) € Y. It is a standard theorem that
for each complete convex subset ¥ of H and sach xe¢ H there is a
unique point y of Y which is closest to x. The proof starts by
taking d=inf{lx-yl . We can only prove here that d exists under the

additional hypothesis of separability:

(10) if Y is a complete separable convex subset of H then for each

x e H there is a unigue élement_ vy of Y with ||X-3/'” & minimum.

For the proof, let {un} be a dense denumerable subset of ¥ and let

dn= Hx-unll. Choose a subsequence (nk> such that 113;111 d.nk= d= lif dn .
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It may be shown that (unk) is Cauchy so its limit y e ¥, and

[x-yll =4 = inf ||x-ul|. Convexity is used to prove that y is unique.
ue¥

Y is called located if it satisfies the comelugion of (11}, i.e.
for any xe H We can find ye Y with [x-yl = infilx-ull. If Y is

ue¥Y
‘convex, this y is unlque.

(11) if Y 1is a convex located subset of H then for each =x¢ H,

the y in Y which is closest to x satisfies (x-y).L Y.

For otherwise we can find y,¢¥ with (z,yl> =b £ 0. Given any a we

have

”z-a, yl”2 = .(z-a.yl, z-—ayl ) = (Z, Z) - ab _a(B_a(yl)Yl) )'

i a = b = b we ge 1| Z-a 2:22-—&13 2.2
alking P get Jz-ay 7= ”yl”2<u o,

which would give Z-ay; = X-y-ayy = %Y, with Vs e Y closer than v.

Putting (10), (11) together we obtain:

(12) if Y is a complete located subspace of H then H=Y ®Y ' .

Now for any countably generated subspace Z of H, the strong closure

Z(S) is a complete subspace of H so we can apply (12).

(33) If Z is a countably generated subspace of H then 7 1is dense

in H if and only if z' consists Just of O.
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For s'uppose Z 1s dense in H. Given X g Z ' we can find a sequence
x, ¢ Z vhich approaches x. Fach X LXx 80 (xn,x) - {x,x) and thus
”x|]2 =0 and x=0. Conversely suppose 25 =(0}. Let Y=Z(S) . Then

H=-Y@Y'L; but Y'LE Z so B=Y, and Z 4is dense in H.

(14) H has an orthonormal basis.
That is, we can find a seguence (en) such that ”enll =1 and e Le

's is dense

for n 7! m and such that the subspace generated by the e,
in #. This is found by the usual Gram-Schmidt process of orthonormalii-

zation applied to any dense denumersble subset of H.

L.,5 ZLinear operators and functionals. IT A, A2 are two Banach spaces

we may consider the totality of linear operators T :Al —>A2 . Of special

interest are those T which are continuous. As usual, this is shown

equivalent to the existence of a constant M such that

(1) o=l < ]

for all xXe Al.
collection of all bounded operators from Al to A2

GS(A._L,AE). Now da(Al,Ag) is itself a vector space. To meke it into a

Thus T 1is called bounded in this case,and the

is denoted by

normed vector space we take

(2) Il = tnr HEEL - ine T .

x£o P17 a1



[T ||
This is the same as inf ” I[1| where {un} is a dense demumerable
n 1,
T

subset of A, and so T is well defined.
(3 - ﬁ(ﬂl, Ag) is a Banach space.

To. prove completeness, given a Cauchy sequence (Tn) one defines
Tx = 1im T_x and shows Te B (A ,A.) and lim ||T -T|| = 0. (Actually,
n B 1’72 n n

only A2 need be assumed complete for this.) When A1=A2 =4 we write

B(A) for B(A,A); its elements are called the bounded operators on A.

If A is a Banach space, then the linear functionals on A are the

linear operators. T:A — K where K is the field of scalars of A,
which is either I]R or €. Then the bounded linear functionals are just
the members of ®(A,K), which is called the dual space of A and is

* *
denoted A . The letters f,g,..., are used to range over A .

If H is a Hilbert space then for each z g H we obfain a linear

functional f by
L) fx) = {x,2) .

The Riesz representation theorem tells us conversely that every elemen{: '
of H‘}e can be represented in this form., If £=0C this is trivial. We
may assume f £ 0. Let W(f) = {x|f(x) = 0} be the mull space of f. 2
will be chosen perpendicular to N(f) with z # C. To do this we wish to

set a decomposition H=N(f) ® N(£)* ; then N(£)" # (0}, for otherwise
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H=N(f) anmd  £=0. To apply the preceding section, it is evident

that N(f) is complete; we have to show that it is located. Now N(f)
is not obviously separable, but for any m > O we can form Ym = |
{x] I£(z)]] < L/m} 2 N(f) which is separable, since for each x with
f(x) = 0 we can find wu_ so that ”f(un)ll < 1/m. Further Y is
easily seen. to be convex. Hence by 4.4(10) we can find a unique Yy & Yo
which is closest to x. Now let d_ = Hx—ym”. For each z e N(f) we
have 4 < [x~z] since w(£) < Y . Thus the dm's are bounded above
and d=sgp a = lg_lm 4~ exists (d.m is increasing). Now for any

z ¢ N(f) we have 4 < [[x-z[|. It cannot be that ||x-z|] < d for some

Z g N(f), for otherwise [|x-zf < 4 for sufficiently lerge m.

Take a neighborhood & of =z such that 8 < Ym . Then we can choose
u, in 8§ so close to z -that “x—un” <4~ contradicting the definition

of dm. Returning to Y the closest element of Ym to x, we now

show the sequence (ym) is Cauchy. For let z =x-y . Then ”Zm” =d,
\ (v, *v.)) ‘
. . mt Y
and |]zm+ ZP” = flex - (ym-i-y-P)H = 2fix- ____é____p__ [« If m>p then
ym+y

c5 s 2
> L. Ym because it is convex, so “zm-f- ZP” > 2 dm and ”ym-yP” =
|z -z “2 == (lz+ 2 [?) + 2(|z ||®+ |z ”2) by the parallelogram law so
m~p m “p m o
[ "Y||2<-(2~’1 )2+2(d2+d2) But as m,p - ® wWe have d._—-d
Ym o' - m m ' 2 prel )

b
says that I[v-%-w”2 + ||lv - WH2

d -»d, so the r.h.s. —0 and Hym-;y'P” - 0. (The parallelogram lLaw

It

2(+l®).) Tet y=limy, . Then

£(y) = Um £(y,) so [£()] = Limff(y ) =0. Hence £(y) =0 and
m m

ye N(f). Finally ||x-yfl = Lim||x-y || = 1im § =4, so y is the closest
m n m &
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element of N(f) to x. We have thus proved that N(f) is located.
 Returning to our argument sbove it follows that H=N(f) & N(f )'L and
that W(£)" £ {0}. The proof of Riesz's theorem is now carried out in a

standard way. Pick 2, 4 0 with zZ, L N(f), and let v=f(x)zo—f(zo)x
for any x e H. Then f£{v) =f(x)f(zo) - f(zo)f(x) =0 so veN(f}). Hence

(v, zo) = 0, which shows f(x)(z_, zo) -f(zo)(x, zo) = 0. Then

£(
fx) = -—-—-—Z—Q-;— (x,zo)
o

TN

To satisfy (4) it is thus sufficient to take =z =

(5} For each linear functional f on H there is a unique =z with

f(x) = {(x,2) for all x.

Unicity is direct: if f£(x) = {(x,z.) = (X,22> for all x +then

- = - - o oz 12 =

(x,zl ZE> =0 and so for x = (z;-z,) we have |z} Z2” = 0 and hence

zl—z2 = 0, The following is alsc easy.

(6) If £ is bounded then for the unigue z in (5), [ = |=[.
Given any operator T :H — H consider for each y ¢ HE the

funecticon

(7) Fx) = {Tx,¥) .
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This is seen to be linear and bounded. By the Riesz representation
*
theorem, there is a unique z, denoted T y , such that (Tx,y) ={x,z) ;

i.e.

(8) (Tx,y) = {x, T ¥
. for all x. It may be seen directly that

* ®p
(9) if Te®(H) then T ¢B(H) and [T =]z

* *
T is called the operator which is adjoint to T. If T=T +then T

is said to be self-adjoint (or Hermitian). A more gemeral class of

operators whose theory is well developed are the normel operators, defined
' * %

by the condition TT =T T. An operator is said to be unitary if it is
! . % -

normal and TT =I, i.e. T =T i ;. these are the same as the isometric

operators, i.e. for which (Tx, Ty) ={x,y) .

Adjoint operators camnot be defined by (8) in Banach spaces A
which are not Hilbert spaces. Instead one associates in a natural way the

* %

operator T A _;A* o the space dusl to A given by
*

(10) (7 (£))(x) = £(Tx).

This is just ancther form of (8) when A is a Bilbert space, using the
*
Riesz representation theorem for any £ in A . Adjoints can be defined

more generally for any T e@(Al,AE).
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To return to linear functionals on any normed space, We now obtain
a form of the Hahn-Banach theorsm for thess. The usual result requires
the axiom of choice (in the form of Zorn's lemma) for its proof. However

this isg not necessary when dealing with separable spaces.

Throughout the following, A 1s assumed to be a separable normed

space and P Iis assumed to be a continuous seminorm, i.e.

(11) (1) p:A >R, p(x)>0
(i1) px+y) <o) +2(y) ,

(ii1) p(ax)=lalp(x) for any scslar a, and

(iv) p is continuous.

One first establishes the following lemma for real spaces.

(12) If X is a separsble subspace of A ‘and f is 2 lipear functional

on X satisfying |f(x)| <p(x) for all xe X, then for gach

z ¢ A-X We can Find an extension g of f to the span X+ (z)

of xU{z} with |e(y)| <p(y) Zor all yeX+(z).

For the proof, one first shows that each elament of X + (z) has a unique

representation in the form x+az where xe¢X. g is defined by

(13) g(x+az) = f(x)+ac
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for suitable choice of c¢. Now for any X, ye¢ X we have

£(x-y) =£(x)-£(y) < p(x-y) =p(xtz -y-2} < ‘p_,(x+Z) +p(-y-2), so

p(-y-z) - £(y) < p(xt+z) - £(x).

It is sufficient to show sup [p(-y-z)-f(y)] and inf[p(x+z)-£(x)]
ve X X eX

cexist, for then we can choose ¢ inbebtween; 1t is shown as usual that a.ny
such choice of ¢ in (13) gives the desired conclusion in (12). ©Now since
p is continuous and p(C)=0-p(0)=0, then £ is continuous on X
(|f(x)| < p(x) implies f(x) approaches 0 as x approaches O0). Thus
p(x+z) - f(x) is continmuous as a function of x ¢X and p(-y-z)-f(y) is
continuous as a function of y ¢ X¥. Since X 1is separable the required

sup's and inf's exist.

The Hahn-Banach theorem here takes the following form:

(14) Under the same hypotheses as in (11) and (12) we can find an

extension f of f to A satisfying |F(x)] <p(x) for all xcA.

Cne does the real case first. Fix {un} as a dense subset of X and {Wn}

as a dense subset of A. Define a sequence of linear functionals on

®k
subspaces X with ng(x)[ < p(x) as follows: g =f ~and X =X.

Given 8y » Xk and a dense basis for XK , consider the least n, if any,

with Wn,é X . (If there is none we take X _ ., =X Then

kel =Xk 0 Sl = &)

X = % * (wn) and the basis of X is expanded by w_ . Now g ., 1is

defined as an extension of g,_ to X satisfying g, .- (x)] < p(x) all
k k+1 k+1 -
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xeX

. Let g = %Jgk which is defined on X::%JXK . Since each W,

helongs to X, X is dense in A . Hence g may be extended to % on
A by continuity, and |f(x)| < p{x) also holds on A by continuity of p.

The complex case of the theorem is obtained from the real case as usual,

.6 The uniform boundedness and_open mapping theorems. These are funda-

mental results for Banach spaces and are both proved using the Baire category
theorem. Throughout this section A is any separable Barach space and
{un} is a dense denumerable subset. The usual formulation of the Baire

category theorem (for complete metric A) is thet A 1s not a counteble

union of nowhere dense sets. X 1is called nowhere dense if its closure X

contains no basic open neighborhood, i.e. if for each xe¢ X and r > 0
there exists ye A-X with ye S(xi;r). Classically, the complement of
X is an open set ¢ and this condition is the same as saying that G is

dense. The Form of Baire category theorem which was proved in 2.13 above

is that
(1) if (Gn) is a sequence of dense open sets then N G, 1is also dense.
n —_—
Hence in this case L}Fn £ 4. (1) implies the classical version assuming
n

that each closure X is the complement of an open set, but not in our
restricted theory. We thus have to examine the arguments more carefully to
see that (1) itself suffices. This is very easy for the first of the

theorems considered, but takes more work for the second.

The uniform boundedness theorem is as follows.



I7-119

(2) 1If (Tn) is a sequence of bounded operators on A (to A) and

if for each x ¢ A there exists M such that |[Tnx|| < M for all

1 then there exists M such that for all n, ”Tn” < M.

By hypothesis, A = gxk where X = {x|Vn| T, ® <Xk}, so

(3) NG = A vhere G = {x[En(l[Tnx” >x)).

We show that each Gk

Indeed, since each T is contimuous, if ”TnX” >k then for some §> 0

is open, i.e. is a countable union of open balls.

we have ”Tnx“ >k+8 end so for some ¢> 0 and all y in 8(x5e) we

have [Tyl > k+8; dut this is equivalent to o u > k+8 for all

basis elements U e S(%; ¢). From this we see that
(%) xeG, *IMm E>0HEp>0 pfx eS(uP; PN Tu e S(up; p) (]| T-numll > k+6)].

The r.h.s. gives the desired representation of Gk as an open set. Hence

(5) scme G

% is not dense in A ,

by our form of the Baire cabtegory theorem. The rest of the proef goes as

usval: some X, conbtains an open ball S(XO;r) with r > 0 so that
(6) yoed(x sr) = ¥, | <x).

. r
For any X eX with x £ 0, let y=x,+8% where &= EE Then

fy-x | <z so |zl £k for all =n. Also [T, x || <k for all k.
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Mow x=2(r-x) end lrxl = e (v-x ) < Tyl e ) < 2 el

gence [T /| < %—_}5,' which 1§ the desired uniform bound.

Next, in the open mapping theorem it is shown that if T e¢®(A) is
one-one and onto then T—l is in B8(A), too. Actually, we must also show here
that T'-l exists as an operation. First a lemma is proved about arbitrary
TeB®(A). Given amy X we write T(X) for {Tx|xeX), X+w for
{x+wlx g X} and &X for {ax|xeX). Then by linearity T(X+w) = T(X)+Tw
and T{aX) = aT{X). Let [Bk} be an emmeration of all open balls

S(uk STy ) with center in the dense basis and rational radius, and let
o "1

s = 5(05 1/2%). We first aim to show that

(7) for each m, A-Tfm.Sl) is open.
For this, we claim that

(8) the following are equivalent:
(i) B, NT() =03

(ii) By N T_(msl) =0; and

(iii) for eac@ u, mS, We have T(uP) ‘éBk .
For obviously (i) = (ii) = (iii). Also (3i) = (i) because if y e Bkﬂ Tim815
then there exists ze BN T(mSl). Thus suppose (iii); we show (ii).
Suppose contrary to (ii) that y e Bkﬂ T(mSl). Then y=Tx Where xce mSl .

Since y e¢B, We can find ¢> 0 such that S{yse) S B Then by continuity

%
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of T we can find & > 0 such that T:8(x:8) -»8(yse). Also & can be

chosen so small that S(x;8) SmS But there exists u e S(x; 8) so we

1
have found a e m§, with T(up) e 8(yse) C B, , contrary to (ii1).

Now by (8)(iii) we can decide whether Bkﬂ Timsl) = 0 and so
(9) G, = U Bk_[Bkﬂ TimSlJ = 0] is open .
To complete the proof of (7) we show that

(10) A-T@ms,) =a, .

For obviously we have =2 . Conversely, suppose ¥ { T(mSl) .  Then for some

Bk s V& Bk and Bkﬁ T(msl) = 0. But then by (8) Bk ﬂT(mSl) = 0, =0
yeGm .

We can now prove by the standard argument that

(11) if T is surjective then T(SO) contains some open ball about O.

foo]

. oo
For, first, A =U S so A=T(A) =U, 1 T(m S Hence

m=1 T°1 1)

[=~] ==]
(12) A=Y Tfmsl§ and ] 4 G =A.

m=1 )

By our form of the Baire category theorem; there exists an m such that Gm

is not dense and so there is an open ball BI)_—_S(yO 5 ro) < T(mSl) . Now
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T{ms,) = mT(Sl) :mT(Sl), s0 S(yo; %n r)<S T(s Shifting back

1)

to O we get an ¢> O such that

(13) 5(05e) & T(8,) -v,

Next it is shown that

(1) T(Sl) -y

For this, consider any 7 e TZSli =Yy i.e. y+yo € TESli'; :ca,lso_ I, € Tisli .

with [tw- (py ) < 3 ema [Tz-y | <

r

Given r» > 0, choose w, 2¢e8 B}

1

Then |[Tw-Tz -yl <r , so |[T(w-z)-yl| <r . also |w-z|| <1 so (w-z)e 8,

We have thus found u ¢ S(ysr) with Tue T(Sl). ' Since this holds for each

r>0 it follows that y e TESOS . Now ag a corollary of {13) and (14) we have

(15) 8(0; &) < 1(8(0; = )) = T(E) for n=1,2,...
o= oI n
It ie shown finally that
(16) . 5(0; ¢2) © 7(s_)-
Given y e S(0; ¢/2) we pick u_ e 8, with [ly-Tu_ || < ¢/4 vy {15).
n, 1 ny

. . k+1 .
Heving chosen ny,...,n, with ”y-ZI:.f:l TuniH < g2 we pick u +1€ Sie1
by (15) so that fy-Zy_ Tu_ -Tu_ [ < /2. 1f we put

- i +1

- i o 1 1

B = Zli{:luni we have ““ni” < 12" sofor k< 2, lz-zll <z 3= JE



IT-123

<o

It follows that (zk) is Cauchy and converges to some X=Ei—l W
i
. ® 1 .
Again |z < £, , =5 =1 so xeS . Since Tz_ -y , We have Tx=y
- "i=1l ot o] k

by continuity, completing the proef.

This proof also establishes the following.

(17) If T 4is surjsctive then for each y ¢ T(SO) we can debermine

an element X ¢ S.O such that Tx=y.

Suppose now that - T is one-one and onto; then x 1is uniqueiy determined

by ¥ and 1s denoted T-ly . The open mapping theorem says that

(18) if T is one-one and ontc then T—l_ is continuous ,

or what comes to the same thing, that if (¢ is open then T(G) isr open.
Given X eG, pick r > 0 with 8(xir) €S G, so S(0ir) S G-x. Let k= %.
Then k(G-x) contains S(031) =8, . By the lemma (1), 7(k{(G-x)) =k(TG-Tx)
contains an open ball $(0je¢) about O; going back, T{(G)-Tx also contains
the open ball S(0sre) so T(G) contains the open ball S(Txj;re). To

do this explicitly we need only have a method to choose ¢ sabtlsfying (13),
i.e. for which 8(y_3e) S T_('s"; but this is equivalent to

Vup € S(,VO ;e ){u:p g -T(S_lf]. Thus we can find a representation for T{G}

23 an open set in terms of one for G as an open set, and the theorem (18) is

proved.
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ho7 Spectral theory of compact self-adjoint operators. An operator T on

a Banach space is said to be compact (or completely contimious) if we can

asgoclate with each bounded sequence <Xn) a convergent subsequence of

(Txn). Every compact operator is bounded. The spectral theory of compact
operators goes quite far without additional assumptions. For simplicity we
restfict attention to such operators on a Hilbert space over €. The classic
Y exanples are from the theory of integral equations. Given a bounded real
“interval I =[a,b] one takes H to be C(I,t) or to be the complex-valued

functions in 1°(I) and takes

b
(1) (T£)(x) = J’a K(x,y)f(y)dy .

This is a compact operator i1f X is in C(IXI, &) or LQ(I X 1), resp.

I K(x,y) = K(y,x) then T is self-adjoint.

Agsume T 1s any compact operator on- H. An eigenvalue A of T
is a complex number such that for some x £ 0, (T-AI)x=0, i.e. Tx=ix;
any such x 18 called an eigenvector for the elgenvalue M. The space
spanned by these is just N(T-AI). By the same argument as for the Riesz

representation theorem in 4.5 we get
(2) ' H = N(2-AI) & N(T-AT)*

Now any vecbor ue¢ H has a unigque decomposition x=v+w into these two
gubspaces. If we let u -run through a dense denumerable set {un} , We
obtain a dense denumerable subset {Vn} of N(T-AI). Then by the Gram-Schmidt

process we obtain an orthonormsl basis for N(T-AI ). This basis may be
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infinite. However, we have:

(3) if T is a compact operator them N(T-AI) has a finite basis.

For suppese the orthonormal basis K sreerX ig infinite. Then for

nt "’

. _ 2 2 2 2 2 2
n£m we have []Txn --Txm” = Ax, - )\xm” = [ ”Xn —xm|| =[] (xn X, % - xm) =2|xr]%.
Then no subsequence of (Txn> can be Cauchy, contrary to compactness.

"Next we consider self-adjoint operators.

(1) If T 1is a seif-adjoint operator on H then:

(1) each eigenvalue of T is real;

(ii) eigenvectors corresponding to different eigenvalues are orthogonal,

(1i1) flzf = sup [{Tx,%)|; and
x{|=1

(iv) each eigemvalue X of T has !i| </|Tlf.

For (i), if X is an eigenvector for the value A, then

Mx,x) = (Ax,%) = (Tx, %) = (x,Tx) ={x,\x) = Mx,x) ,

so A =1 sinee (x,% = |lx|° 0. In (i1), if Tx=Ax, Ty=py with

x £0, y#0 then A,y are real and

Ax,y) = (ay) = (Tx,y) = {x, Ty) = (X,py) = p.(:gy) .

T™us if A # p then (x,y) = 0. Now to prove (iii), first given any [x|

we have [(Tx,x)| < |Txl| - [lx]| by Schwarz's inequality, so if =l = 2,
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| (tx,x) | < [iTll. Let M= ﬁu_p [{Tx,x)| . Them for any =x, |(Tx,x)]| SMHXHQ
x| =1

as seen by dividing x by [x| when x # 0. Now for the reverse inequality

consider any positive real k and any x with ||l = 1. %o show iIm|| <M

1

we may assume [[Tx]| # 0. ILet x = (kx+k-l Tx), and x,= (kx -k~ Tx) . Then

| {Tx,,%,0 ] < M[x ”2 and | (Tx.,x. 2| < Mlx [[2
0% 1 27 2

50
(o) = (s, x| < s+ Ixyl®)

The left hand side reduces by calculation to l%IIEEX”E using self-adjointness of
T. The right hand side reduces to 2M(k>||x|[° +k ZjiTx|?) by the parallelogram

- law. Thus with [lx|| =1 we have

LTl < an (2 + k72 ||1x]®).

Now the r.n.s. of the last inequality is minimized by taking k< JrxlY/2 .
Thus  4)|mx)® < WfiTx| eand {lTx]] < M, as was to be proved. Finally, to prove
(iv) suppose Tx=Ax with x+ 0. Then (T-AI)x=0 so (T-?\I)-l cannot
exist. On the other hand if A > ||T|| then the inverse of (T-AI) can be
obtained as

(T"‘?\I)—:L:' %(I—S)'l = - %[I+S+SE |

where S=3 1. We have |8 = $lT| <1 ana |zese.. .87 <aelse . ST

which shows that I+S+Sg+... converges to an operator g; by check

(1-3)8 =8(z-8) =1 .
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{5) If T is & compact self-adjoint operator then we can find an
eigenvalue A of T with n = |ITi.
For, J|Tl =  sup [{Tx,x})| so using a countable dense subset {wn] of
x| < 1

{x] x| <1}, we can choose a sequence (xn) with Han <1 and ||xn|| -1

such that [(Txn,xn>! Szl . We can further take (Xn> so that (Txn,xn)
- converges, so elther (Txn,}én) |7l or (Txn,xn) w7l . et A=% |iT|l

“according to which of these holds. MNow
: 2 2 2 2 2 2
HTxn- ax_ | =”TXn|| -zk(Txn,xn) + A= 17 < AT+ X -Ek(Txn,xn>

2
=2\ -ED\(Txn,xn) - 0.

Hence (Txn - ?\xn) — 0. By compactness of T we can choose a subgeguence

(xnk} of the Xn's for which (Txnk) converges. Then (7\xn> also converges
k

to Ax. for some x. (We may assume )\ # O, otherwise we have the trivial
case of T=0.) We conclude that Tx=Ax; further |[x[[=1 since we chose

Il - 1.

- {6) If T is a compact self-adjoint operator then we can Fing a

sequence of eigenvalues l}\o.] > I?\l| > ... >__|'hnf > ... such

that lim A = O and each eigenvalue A has I =1A | for some n.
n
I}\OI = fr}. Let X =m{(T-A I) and x; = N(T+A_I), both of which are finite-

dimensional by (3) and orthogonal %o each other by (4)(ii). We decompose H
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as. Xo @ Xo (2] Hl

is again compact and self-adjoint and HTlH < |zl . Then we have an eigen-

and consider the restriction Tl of T +to Hi . Tl

value A

, for T, with ]11[ = ”Tl”' Since A £+ A, We must have

lkl] < |AO|. Proceeding in this way we obtain the segquence ln . Let

c=im |A_|. We can find for each n an eigemvector x_ of + A with
n ' m n - "n
Han =1; for lhn| 4 |lm| we have (xn, ;m) = 0. Then
e - 2 2 2 2
{]Txn-Txmll =le gz Fax (=20 + 0 > 2c

Hence if ¢ > 0, fThe sequence (Txn> cannot converge, which is contrary to

- the compactness of T.

From here it is a direct step to the spectral representation of T.

The Fredholm theory of integral equations is then derived as a special case.
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5 Uses of the axiom Projl of type 1 projection. This is a weak
‘consequence of :(SJNF-“’ ]N) which was introduced in I.4.8. We explain
it é,gain and then draw some consequences which cannot be obtained in

VET + (i), particularly the l.u.b. axiom for sets of reals.

- First we consider statements Projlz (for each specif‘ic pair of
classes A, B) of which Projl is a s_pécial cage, These express that if
beS8( A X IB) is any relation between elements of A and. B ‘then the

projection of b along B -exists as a subset é of A:

(Pr‘oj]i) Yo ¢ 8(A X B)da eS(A)VxA[x cae Hy]B {(x,¥) ¢ b l.

Thus Projl is the same as Proj]]%q\T — W . In this case we can think of the
given b as a sequence (b ) of subsets of I and of a .as

VyeW -0

Uby[ye N — IV]. -

Recall from I.4.2 that _ ((HJB) is the axiom asserting the existence of
a function T e (8(B) - {0,1})  such that for any subset ¢ of IB,
,EI'B(C) =0 & HyIB (yec). It is immediate that (EIB)- implies (Projlz) for

each A ; howéver, the converse is not true. We -may express the difference

“by saying that in (Pro,js]‘i ), ‘the set a ‘is merely asserted to exist, given b

while from E[IB we obtain a uniformly as a function of b.

To apply Projl to get the l.u.b. axiom, it is more convenient o

consider the-representation of reals by the class D of Dedekind sections.

b
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In the following 'r' ,"'s' ‘range over ® and (rn> is a standard enumeration

of - @, I is defined as follows:

deDeded(@) ~df AaQ-dF Aa
| | ‘Vr,s[r<s.s8ed = red]

s 3rfred ~ Vs(sed = s Zor)].

 Bach Xe IR determines a Dedekind section X = (-, x)N @ = (r:r < x}.
Conversely, cach Dedekind section 4 determines x ¢ R with d= % as
'follo;m. For each ne¢ N ..con_lsidér [m/En tme Z)}. Every rationé,l lies be-
‘tween m/éﬁ and (m+1)/2" for some n. Thus there are 'm.<-m‘, with m/2" ¢d
and m'/2" £ 4. If we take the least m' with m'/2" ,{a' we have m'=m+1
Wﬁere n/2" ¢ 4. (This uses the least element principle for upper intervals

in 2 , - which reduces to-set-induction for I.) m is uniguely Vdetermineft

and we put 'rn = m/en . The sequence x = (rn> ig easily verified to be
Cauchy and d=%. 'The corresponde'nce X b= X thus ﬁlakes‘ R’ 2 D.
Wext obgerve that P:coj% follows from Pro_,jl , 1.e. E’r'o,j:m]lq\{"_):|N .

For this we use a surjection- v of W —» W on IR, e.g. (ni) is sent _

. © _

. 1 T o

onto z  + E Sg(,ni)/g , where (zk) K oy I an enumeration of 2 and
o] l:lr. : . ) ‘

sg(0) = 0, sg(n+l)=1. The real number assigned to each ge W ~» W in

this way is denoted v(g). Then if b S Wx R Wwe obtain 2 © W with

Tn[ne a @ E’:{B(n,x) eb]

from W —s T

Vn[nea « Hg (n,v(g))ebl.
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Eﬁlrtﬁérmofe Projg{ follows from Pro,j% by the enumeration of @.

If o is a non-empty set of reals which is bounded above,_ then the

© Dedekind se'gtion d of sup ¢  would be defined by
red e E_xm-('xe car<x)

' From the preceding we may thus conclude in VFEM + (p)+ ( Projl } that every
non-empty set of reals which is bounded above has a least upper bound. It
follows directly that every non-empty set of reals which is bounded below has

s g.1.b.

Another consequence of Projl is thal every set ¢ of reals i_s open
when each point of ¢ is interior, i.e. when VXI_R[XE c = Hn,m(x ¢ (rpr ) Sell
For, given ¢ the set ¢ = ((nn)|(r,r ) £}, or

N .
(n,m) e ¢ @me[rn<x<rmhxﬁc],

‘exists as a consequence of Proj% , hence of Pro_,jl . It follows that

‘(I‘

) S e e (nm) e (- ). Finally c=U (r;,r )[(mm)e (- )]

It follows immediately that thé Heine-Borel theorem holds for R, il.e.
any full open covering of [a,b] reduces to a finite subcovering - since we

already know this for countable open coverings.

Stronger consequences are obbtainable if we add a uniform versiocn.cof

L — MW

Projl ; namely the following axiom for a constant EJN _
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N s N

@ @EFT M) s (o m)) - s()
C(ii) v S(INX(J.N — MW)) ~ 2 ='3§ﬂm_.(b) =
nea ot T N (ny)en].

With this uniform version of .Projl we derive a union operaticn on

N-— W EN-,-S]N(

) @ gy

sequences b = (by) of subsets of IN: ned neby).

ye N — W
This can be used to obtain a flmction ) ﬁlm ﬁhich decides whether there are
descending sequencés in I-trees. Given b, to tell whether E{;\rjl\f'_"")]l\I Vn[¥(n)eb]

let
N if Vn[y(n)e b]

A otherwise

Thus Vn[y(n)eb] & 0eb

, and ay T N yn [§(n) eb] ©0eUblyelN— W]

W T

From the axiom for E]N

R S(W)
ghants H:[N' and 'ELJN

- *
existence of the outer-measure function i (c) for subsets ¢ of 1R.

also foliows corresponding axioms for con-

However, even.these seem insufficient Lo derive

| Classically, this is defined as inf uw(G)[G is cpen . c € G]. Here we can take
it as  inf plg)le e8(IN) ~ c C U (rn > Ty y1, where we write w(g) fTor
, neg o 1 ' '

w(U(g)). Thus

r < p,*(c) & Hg 8 (m) {'v'xm[x e c = On eg(rn <x<r )1~ r< u(gj]
. ‘ L

o}

8(m )[VXIR_(X,%) ec' Ar < p(g)); the inner

‘quantifier VxW{...) can be applied using H?(]’N ) but not with E% .

o _ %
This takes the form r <y (¢) @ Ug
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