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Relativizing operational set theory
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Abstract

We introduce a way of relativizing operational set theory that also
takes care of application. After presenting the basic approach and
proving some essential properties of this new form of relativization we
turn to the notion of relativized regularity and to the system OST(LR)
that extends OST by a limit axiom claiming that any set is element
of a relativized regular set. Finally we show that OST(LR) is proof-
theoretically equivalent to the well-known theory KPi for a recursively
inaccessible universe.
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1 Introduction

Feferman’s original motivation for operational set theory was to provide a
setting for the operational formulation of large cardinal statements directly
over set theory in a way that seemed to him to be more natural mathematically
than the metamathematical formulations using reflection and indescribability
principles, etc. He saw operational set theory as a natural extension of the
von Neumann approach to axiomatizing set theory.

The system OST has been introduced in Feferman |7] and further studied
in Feferman [8] and Jager [12, 13, 14, 15, 17, 18|. For a first discussion of
operational set theory and some general motivation we refer to these articles,
in particular to [8]. In addition, Cantini and Crosilla [4, 5| and Cantini [3]
study the interplay between some constructive variants of operational set
theory and constructive set theory.

A further principal motivation of Feferman [7, 8] was to relate formulations
of classical large cardinal statements to their analogues in admissible set
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theory. However, in view of Jager and Zumbrunnen [17] this aim of OST
has to be analyzed further. It is shown in [17] that a direct relativization of
operational reflection leads to theories that are significantly stronger than
theories formalizing the admissible analogues of classical large cardinal axioms.
The main reason is that simply restricting quantifiers to specific sets and
operations to operations from and to specific sets does not affect the global
application relation and thus substantial strength may be imported — so to
say — through the back door.

In this paper we take care of this problem by introducing a new way of
relativizing operational set theory such that also application is relativized.
We first present the basic approach and prove some essential properties of
this new form of relativization. Then we turn to relativized regularity and to
the system OST(LR) that extends OST by a limit axiom claiming that any
set is element of a relativized regular set. Finally we show that OST(LR) is
proof-theoretically equivalent to the well-known theory KPi for a recursively
inaccessible universe. This solves a problem that has been open for many
years.

Acknowledgement. I thank Timotej Rosebrock for carefully reading earlier
versions of this article and for providing useful comments.

2 The theory OST

Now we introduce the theory OST, though not in its original form but in a
slightly modified but essentially equivalent way similar to that in Zumbrunnen
[22]. In presenting the syntax of OST we follow Jéger and Zumbrunnen [18].
To begin with, let £ be a typical language of first order set theory with the
binary symbols € and = as its only relation symbols, with countably many
set variables a,b,c,d, e, f, g,u,v,w,z,y, z,... (possibly with subscripts), as
well as with the logical symbols —, V, and 4. We further assume that £ has a
constant w for the collection of all finite von Neumann ordinals. The formulas
of L are defined as usual.

The language L° of operational set theory extends £ by the binary func-
tion symbol o for partial term application, the unary relation symbol | for
definedness, the binary relation symbol Reg, and a series of constants: (i) the
combinators k and s, (ii) T, L, el, reg, non, dis, and e for logical operations,
(iii) D, U, S, R, and C for set-theoretic operations. The meaning of these
symbols will be specified by the axioms below.

The terms (r,s,t,r1,81,t1,...) of L° are built up from the variables and
constants by means of our function symbol o for application to form expressions
(ros). In the following (r o s) is often written as (rs) or (if no confusion



arises) simply as rs. We adopt the convention of association to the left so
that ryry ... 1, stands for (... (ri7r2)...7,). In addition, we frequently write
r(s1,...,8,) for rsy...s, if this seems more intuitive. Self-application is
possible but not necessarily total, and there may be terms which do not
denote an object. We make use of the definedness predicate | to single out
those which do, and (r]) is read “r is defined” or “r has a value”.

The formulas (A, B,C, D, Ay, B1,Cy, Dy, ...) of L° are inductively gener-

ated as follows:

1. All expressions of the form (r € s), (r = s), (r)), and Reg(r,s) are
formulas of L£°, the so-called atomic formulas.

2. If A and B are formulas of £° , then so are =A and (A V B).

3. If Ais a formula of £° and if r is a term of £° which does not contain
x, then (Jz € r)A and 3z A are formulas of L£°.

We shall write (A A B) for =(—AV =B), (A — B) for (~AV B), (A <> B) for
(A= B)A(B— A)), (Vz € t)A for =(Jz € t)-A, and Vz A for ~-Fz—-A. We
often omit parentheses and brackets whenever there is no danger of confusion

and make use of the vector notation 7 as shorthand for a finite string r1,...,r,
of L£° terms whose length is either not important or evident from the context.
If 4 is the sequence of pairwise different variables uy,...,u, and ¥ =1r1...,7,,

then A[r"/u] is the formula of £° that is obtained from A by simultaneously
replacing all free occurrences of the variables « by the £° terms 7} in order to
avoid collision of variables, a renaming of bound variables may be necessary.
In case the £° formula A is written as B[u], we often simply write B[]
instead of B[r/#]. Further variants of this notation will be obvious.

The Ag formulas of £° are those £° formulas that do not contain the
function symbol o, the relation symbol | or unbounded quantifiers. Starting
off from the Ay formulas of £°, the ¢, I, X, and II formulas of £° are
defined as usual.!

To increase readability we freely use standard set-theoretic terminology;
for example, a C b, {a1,a2} = b, Ua = b, (a1,...,a,) = b, a® = b, Tranlal,
Ordla], and Limit|a] express that a is a subset of b, b is the unordered pair of
a; and ag, b is the union of a, b is the (Kuratowski) n-tuple formed from the
sets aq, ..., ay, bis the n-times Cartesian product of a, a is transitive, a is an
ordinal, and a is a limit ordinal, respectively. All these predicates have A

'Hence the Ag, X1, II;, ¥, and II formulas of £° are the usual Ay, X1, II1, ¥, and
II formulas of £ extended by the relation symbol Reg, possibly containing additional
constants.



definitions; see, e.g., Barwise [1|. Furthermore, we let the lower case Greek
letters a, 3,7, . .. (possibly with subscripts) range over the ordinals.

Given an L° formula Alu], we write {z : Alz|} to denote the collection
of all sets z satisfying A[z], and v € {x : Az]} means Afu]. The collection
{z : A[z]} may be (extensionally equal to) a set, but this is not necessarily
so. Special cases are

Vi ={z:zl}, ={r:x#z}, B={zx:z=TVae=1}

so that V denotes the collection of all sets (it is not a set itself), () stands for
the empty collection, and B for the unordered pair consisting of the truth
values T and L (it will turn out that () and B are sets in OST). The following
shorthand notation, for n an arbitrary natural number greater than 0,

(f:a"—=0b) = Vai,...,2, € a)(f(x1,...,2,) €ED)

expresses that f is an n-ary operation from a to b. It does not say, however,
that f is an n-ary function from a to b in the set-theoretic sense. In this
definition the set variables a and b may be replaced by V and B. So, for
example, (f : a — V) means that f is total on a, (f : V — b) means that f
is an operation assigning an element of b to any set, and (f : « — B) means
that f is an operation assigning a truth value to any element of a.

The logic of OST is the classical logic of partial terms (cf. Beeson [2] or
Troestra and van Dalen [21]), including the common equality axioms. Partial
equality of terms is introduced by

(r~s) = (rfVsl - r=s)

and says that if either r or s denotes anything, then they both denote the
same object.

The non-logical axioms of OST are divided into four groups and state
that the universe is a partial combinatory algebra, formulate some basic set-
theoretic properties, allow the representation of elementary logical connectives
as operations, and provide for some operational set existence.

I. Applicative axioms.
(A1) kzy = =z,
(A2) szyl A szyz ~ (x2)(yz).

I1. Basic set-theoretic axioms. They comprise: (i) the usual extensionality
axiom; (ii) the infinity axiom

(Inf) Limitjw] N (V€ € w)—Limit[¢];
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(iii) €-induction for arbitrary formulas Afu] of L£°,

Ve ((Vy € 2)Aly] — Alz]) — VaAlz].
II11. Logical operations axioms.
TAL,
el : V2 = B) A Vavy(el(z,y) =T + x €y),
reg: V2 — B) A VaVy(reg(z,y) = T «+ Reg(z,y)),

(

(re

(non:B — B) A (Vze€B)(non(z) =T < z= 1),

(dis: B2 - B) A (Vz,y € B)(dis(z,y) =T < (x=T Vy=T)),
(

fra—=B) — (e(f,a) eB A (e(f,a)=T < (Fx€a)(fr=T))).

IV. Set-theoretic operations axioms.

(S1) Unordered pair:

D(a,b)l A Vz(z € D(a,b) <> x=a V x=0).

(S2) Union:
U(a)l A Vz(xeU(a) < (Jy € a)(z €y)).

(S3) Separation for definite operations:

(f:a—B) = (S(f,a)l A Va(z €S(f,a) & (x€a A fr=T)).
(S4) Replacement:

(fa—=V) = (R(f,a)l A Va(z €R(f,a) & (Ty € a)(z = [y))).

(S5) Choice:
Jz(fr=T) = (CfL A f(Cf)=T).

This finishes our description of the system OST. Because of the applicative
axioms the universe is a partial combinatory algebra, and thus we have \-
abstraction: For each £° term ¢ we can introduce an £° term (Ax.t) whose
variables are those of ¢ other than x and is such that

(Az.t)d N (Ax.t)y ~ tly/x].
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Clearly, A-abstraction can be generalized to several arguments by simply
iterating abstraction for one argument, and we set for all £° terms ¢ and all
variables x1, ..., x,,

(Azy..oxpt) = (Mg (oo (Azpet) . .0)).

Often the term (Azy...z,.t) is simply written as A\z; ... z,.t. Furthermore,
there exists a closed L° term fix — a so-called fixed point operator — with

fix(F)L A (fix(f) = g = gz = f(g,2)).

Because of the logical operations axioms OST provides a term representa-
tion for every Ay formula of £° in the sense of the following lemma.

Lemma 1. Let u be the sequence of variables uq,...,u,. For every Ay
formula A[d] of L° with at most the variables @ free there exists a closed L°
term t such that OST proves

th A (t: V"= B) AVEA[Z] < t(Z)=T).
For a proof of this lemma see Feferman |7, 8]. For later purposes we need

the following extension of this result.

Theorem 2. Let u be the sequence of variables uq,...,u,. For every pair
of ¥y formulas Ali] and 11y formulas B[u@] with at most the variables U free
there exists a closed L° term t such that OST proves

VZ(A[Z] & B[T]) — (t) A (t: V" = B) A YEA[Z] & (&) = T)).

Proof. By assumption, A[i] is of the form JzC[u, z] and B[] of the form
Vo D[i, x|, where C[u,v] and DJi,v] are Ay. Now we work in OST and know
that

TO\L A (TO : Vn+1 — B) A Vf,y(O[_}, y} ~ To(f, y) = T)v
rid A (r: VP = B) A VE y((C[Z,y] vV —DI[Z,y]) < m(Z,y)=T)

for closed L° terms rg and r; chosen according to the previous lemma. Thus,
if £ abbreviates VZ(A[Z] <> B[Z]), we have

E — VZ3y(ri(z,y) =T).

Now we set s := AZ.C(A\y.ri(Z,y)) and ¢ := AZ.ro(Z, s(Z)). Then E implies
that s and t are defined and that s is an operation from V™ to V and ¢ one
from V" to B. In addition, it is easy to check that

E — VZ(AZ] < t(X)=T).

Hence t is the required closed term. O



An L° formula A is called A; with respect to a theory T' iff there exist
a 21 formula B and a II; formula C, both with the same free variables as
A, such that T proves (A <» B) and (A <> C). If T is a theory containing
OST, then by combining the previous theorem with (the proof of) Lemma 1
it is routine work to check that the term representation can be lifted to all
formulas that are Ay in one or several A; formulas with respect to T

Corollary 3. Assume that T is a theory containing OST and let i be the
sequence of variables uy, ..., u, and A[i@] an L° formula with at most the
variables U free that is Ao in Ay with respect to T'. Then there ezists a closed
L term t such that T proves

tL A (t: V" = B) A VE(A[F] © (&) =T).

3 Relativized application

As standard in set theory we write AP for the result of replacing all unbounded
quantifiers Jx(...) and Vz(...) in A by (3= € p)(...) and (Vz € p)(...),
respectively. However, in contrast to this usual way of relativizing formulas
with respect to a given set p, we now relativize our £° formulas A with respect
to a set p and a set ¢ C p® to formulas A®9; then p is the new universe and
q takes care of application in the sense described below.

Definition 4. For all L° terms r and q we define the formula (r 0 q) by
induction on the complexity of r as follows:

1. If r is a variable or a constant of L°, then (r 0 q) = (r =r).
2. If r is the L° term riry, then
(roq) = (r19q) A (r20q) AN Jx({ry,m,z) € q)
for some variable x not appearing in 1,7, q.

Think of ¢ as a ternary relation; then (r 0 q) formalizes that the £° term
r is defined if application within r is treated according to ¢. For us only such
relations are interesting that are compatible with the real term application.
To single those out, we set

Complq] = VaVyVz((z,y,2) € ¢ = xy = 2).

Furthermore, given an £° term or a £° formula &, we write VarConglp| for
the £° formula that states that all variables and constants appearing in £
are elements of p. The following observation is a straightforward consequence
of the previous definitions and abbreviations.
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Lemma 5. OST proves for all L° terms r, p, and q:
1. (Complq] N (r0q)) — rl.

2. (VarCon,[p] A q Cp* A Complg] A (1 q)) — 7€ p.

However, observe that in general we may have Complg| and r{, but not
(r 0 q); so it is possible that term 7 has a value without being defined in the
sense of q.

In a next step this form of relativizing application via ¢ is combined with
restricting the universe of discourse to p and formulated for arbitrary formulas
of the language L£°. Given L° terms p,q and an L£° formula A, we call p,q
suttable for relativizing A iff the variables appearing somewhere in p or ¢ are
different from those appearing in A.

Definition 6. For all L° formulas A and all L° terms p,q that are suitable
for relativizing A we define the formula AP by induction on the complexity

of A.

1. For atomic formulas we set:

(r=25)P = (rdq) A(sdq) N1 =s,
(res)P? = (rdq) A(sdq) A7 €Es,
(Ti)(p,q) = (rdq) Nrenp,
Reg(r,s)P?9 == (rdq) A (s q) A Reg(r,s).

2. If A is the formula —B we set AP9 := BP9,
3. If A is the formula (BV C) we set AP9) = (BP9 v CPa)),

4. If A is the formula (3z € r)B we set

APD = (rdq) A 3z € r)BPD,

5. If A is the formula 3z B we set AP := (3x € p) BP9,

Whenever we write AP% we tacitly assume that p, ¢ are suitable for
relativizing A. This form of relativizing formulas of £° has a useful substitution

property.

Lemma 7. Let x be a variable that does not occur in the L° terms p and q.
Then OST proves for all L° terms r and s as well as for all L° formulas A:



1. (Complg] A (rdq)) — ((s[r/z] 0 q) <> (50 q)[r/z]).
2. (Complg] A (rdq)) — (Alr/z]P9) & APD[r/z]).

The proof of the first assertion is by straightforward induction on the
complexity of the term s. The second assertion is established by induction
on the complexity of A, employing the first assertion.

In general, the relativizations A? and A®% have different meanings. How-
ever, there is a special case for which they agree.

Lemma 8. If A is an L° formula that does not contain terms of the form
st, then OST proves for all L° terms p,q that

VarConalp] — (AP « AP).

Now the relation Reg comes into play. Reg(p,q) says that set p is regular
with respect to ¢ and has the following intuitive interpretation: (i) p is a
transitive set containing all constants of £° as elements, and ¢ is a ternary
relation on p compatible with the general application; (ii) if application is
interpreted in the sense of ¢, then p satisfies the axioms of OST; (iii) we claim
a linear ordering of those pairs (p, ¢) for which Reg(p, ¢) holds. To make this
precise, we add to OST additional so-called Reg-axioms. Here TranCon|p)] is

short for the £° formula stating that p is transitive and contains all constants
of L°.

V. Axioms for Reg.
(Regl) Reg(d,e) — (TranCon[d] A e Cd* A Comple]).

(Reg2) If A is an applicative axiom, logical operations axiom, or set-theoretic
operations axiom with at most the variables & free such that neither
the variables d, e appear in the list Z, then

Reg(d,e) — (VZ € d)A®).

(Reg?)) Reg(dl,el) N Reg(d2,62> — di €dy Vdi=dy V dy €d.

(Reg4) Reg(dl,el) A Reg(dg,eg) ANdi Edy — e €dy N eg Ces.

OST+(Reg) is defined to be OST + (Regl) + ...+ (Reg4). Considering the
previous lemmas and the Reg-axioms, it is easy to see the (p, ¢)-relativizations
of all axioms of the logic of partial terms and of all non-logical axioms of OST
can be proved in OST + (Reg). Therefore, the following theorem follows by
induction on the derivations in OST.



Theorem 9. Let A be an L° formula with at most ¥ free such that neither
the variables of p nor those of q appear in the list £. Then we have that

OSTH A = OST+ (Reg) - Reg(p,q) — (erp)A(p’q).

Observe that the Reg-axioms only state properties of sets satisfying
Reg(p, q); however, they do not claim that there exist p and ¢ for which
we have Reg(p, ¢). This can be achieved, for example, by the following axiom,
claiming that the universe of sets is a limit of regulars.

VI. Limit of regulars.

(Lim-Reg) Vz3y3dz(x € y A Reg(y, 2)).

In the following we write OST(LR) for the extension of OST by the
axioms (Regl)—(Reg4) and (Lim-Reg). As we will see later, OST(LR) is
proof-theoretically equivalent to the theory KPi, which describes a recursively
inaccessible universe.

In setting up this equivalence, the notion “d is admissible” in KPi will
be translated into “there exists an x such that (d, z) is regular” in OST(LR).
Accordingly, we define

Ad°[d] := FzReg(d,x).

However, before turning to the proof-theoretic analysis of OST(LR) in the
following sections, we consider a property of Ad°[d], which will play an
important role later.

Lemma 10. In OST(LR) we can prove that
Ad°[d] + YyVz(Reg(y,z) Nd €y — (Jx € y)Reg(d, x)).

Proof. The direction from left to right follows from (Reg4), the direction from
right to left is a consequence of (Lim-Reg). O

This lemma implies in particular that the formula Ad°[u] is A; with
respect to OST(LR). In view of Corollary 3 we thus have term representations
of all £° formulas that are Ay in Ad°.

Theorem 11. Let @ be the sequence of variables uy, ..., u, and A[d] an L°
formula with at most the variables @ free that is Ay in Ad°. Then there exists
a closed L° term t such that OST(LR) proves

tLA (£ V" = B) A VE(A[T] & H(&) = T).
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4 The theories KP, KPi, and related systems

The theory KPi is a well-known theory of iterated admissible sets that extends
Kripke-Platek set theory with infinity by the additional assertion that every
set is contained in an admissible set.? The least standard model of KPi is
L,, with ¢y being the first recursively inaccessible ordinal, and we have the
proof-theoretic equivalences

KPi = AL-CA+ (Bl) = T,

where AJ-CA + (BI) the usual system of second order arithmetic with the
axiom of Al-comprehension plus bar induction and Ty is a central system of
explicit mathematics; cf. Feferman [6], Jager [10], and Jéger and Pohlers [16].

The theory KPi can be conveniently formulated in the language £* = £(Ad)
that extends our language £ of first order set theory by a unary relation
symbol Ad for admissible sets. The terms of £* are the variables of £ plus
the constant w, and the formulas of £* are defined in the usual way, with
Ad(u) considered to be a A formula of £* as well.

The underlying logic of KPi is the classical first order logic with equality.
The non-logical axioms of KPi comprise the Kripke-Platek axioms, the Ad-
axioms, and the limit axiom for admissibles.

I. Kripke-Platek axioms. They consist of: (i) the extensionality axiom; (ii)
pairing and union; (iii) the infinity axiom (Inf); (iv) €-induction for arbitrary
L* formulas; (v) Ag separation and Ag collection, i.e. for all Ay formulas
Alu] and Blu,v] of L*,

(Ag-Sep) JaVy(y € v < y€a A Aly]),

(Ap-Col) (Vx € a)JyBlz,y] — I2(Vx € a)(3y € 2)B|x, y|.

II. Axioms for Ad.
(Ad1l) Ad(d) — Tran|d] N w € d.
(Ad2) Ad(d) — (Vz,y € d)({z,y} € d N Uz € d).

(Ad3) If A is an instance of (Ag-Sep) or (Ay-Col) with at most the variables
X free, then
Ad(d) — (V¥ € d)A“.

2The theory KPi has been introduced in Jiger [9] and is formulated there as a system
above the natural numbers as urelements. This has some advantages in studying subsystems
of KPi. However, in the presence of full €-induction, it is obviously equivalent to our
formulation below.
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(Ad4) Ad(dy) A Ad(ds) — dy €dy V dy =dy V dy € dy.

ITI. Limit of admissibles.
(Lim-Ad) Vady(x € y A Ad(y)).

Kripke-Platek set theory KP is the subsystem of KPi obtained from KPi
by deleting the axiom (Lim-Ad). Clearly, the axioms for Ad imply that every
set satisfying Ad is transitive, contains w and is closed under pairing, union,
Ay separation and A, collection. Together with the axiom (Lim-Ad) we thus
know that every model of KPi is an admissible limit of admissibles.

By KPi we denote the subsystem of KPi that is obtained from KPi by
restricting the axioms (Ad3) to formulas of £, i.e. to formulas not containing
the relation symbol Ad. It is easy to see that KPi is of the same proof-theoretic
strength as KPi. For example, the embedding of Al-CA + (BI) into KPi, as
presented in Jiger [11], also works for KPi.

Following standard terminology, we call a formula A of £* a A(KP) formula
iff there exist a ¥ formula B and a II formula C' of £*, both with the same
free variables as A, such that

KP F (A B) A (Ao C).

The constructible hierarchy provides for important examples of A(KP) for-
mulas. We cannot introduce it here but refer for all relevant details to, for
example, Barwise [1] or Kunen [19]. All we need is that (a € L,) states that
the set a is an element of the a-th level L, of the constructible hierarchy
and (a € L) is short for Ja(a € L,); besides that (a <r, b) means that a is
smaller than b according to the well-ordering <y, on the constructible universe
L. The axiom of constructibility is the statement (V = L), i.e. Vz(x € L). It
is well-known that the assertions (a € L,) and (a <g, b) are A(KP) formulas.
In addition, the theories KP 4+ (V=L) and KPi + (V=L) are of the same
consistency strength as KP and KPi, respectively.

In the following we write d = "KP™ to state that d is a transitive standard
model of KP and refer to Barwise [1] and Probst [20] for details. Then we set

Adp[d] := 3¢(Limit[¢] A d=Le) A d = TKP.

If d satisfies Adp[d], we call it an L-admissible set. Since KP proves the
equivalence of the assertion 3§(Limit[¢] A d = L¢) with

Ded A Tranld] N (Vx € d)(3§ € d)(x € Le N Le € d),

we conclude that Ady[d] is a A(KP) formula. The first assertion of the
following lemma is immediate from the definition of Ady, the second follows
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from the first and some obvious persistency arguments, and the third is by
an inner model construction; see again |1, 20].

Lemma 12.

1. If Ais a closed L* formula that is provable in KP, then we have that
KP also proves
Adp[d] — A%
2. If Ald] is a A(KP) formula with at most i free, then KP proves
Adp(d) A @ed — (Ald] « A%a)).

3. KPi+ (V=L) F Vz3y(x € y A Adp[y]).

Now let P be a fresh n-ary relation symbol and write £*(P) for the
extension of £* by P. We call an £*(P) formula that contains at most
Ug, - - -, Uy, free and that is A with respect to KP an n-ary A(KP) operator

form and let ([P, uy, ..., u,| range over such forms. Given another formula
Blvy, . .., v,] with distinguished variables vy, . . ., v, we write A[B[.], ro, . .., 7]
for the result of substituting Blsy, ..., s,] for each occurrence of P(sy,...,s,)
in AP, 7o, ..., 7).

For modeling OST(LR) in KPi we will later work with a specific A(KP)
operator form. But first we turn to a central recursion theorem, available for
arbitrary A(KP) operator forms.

Theorem 13. Let AP, uo, ..., u,| be an n-ary A(KP) operator form. Then
there exists a 3 formula Fylug,...,u,] of L* with at most uy,. .., u, free
such that Fylug, ..., u,] is A(KP) and KP proves

Fyla,d] <> (@ € Loyw N UA[(FE < a)FylE, ], o, d])
for all ordinals o and sets @ = aq, ..., a,.

Proof. In Jager and Zumbrunnen [17] it is shown that for every A(KP)
operator form [P, uy, ..., u,] there exists a ¥ formula Fy[uo, ..., u,] that
satisfies the equivalence stated in our theorem. It is easy to check that this
formula is A(KP). O

In view of Lemma 12 we can relativize the A(KP) formula Fyluy, ..., u,)
that comes with the A(KP) operator form [P, u, ..., u,] to all L-admissible
sets.

Corollary 14. Assume that [P, 4] is an n-ary A(KP) operator form and
that Fyli] is associated with A[P, | according to the previous theorem. Then
KP proves for all o and d = aq,...,a, that

Adpld] A a,@€d — (Fdo,d) © Fala,d).

13



5 The proof-theoretic strength of OST(LR)

In this section we establish the proof-theoretic equivalence of the theories
OST(LR) and KPi by showing that: (i) KPi can be embedded into OST(LR),
and (ii) OST(LR) is interpretable in KPi + (V=L).

The first part is easy. Given an L£* formula A, we write A° for the result
of substituting the £° formula Ad°[s] for each occurrence of Ad(s) in A, thus
translating A into an £° formula. Then we have the following embedding
result.

Theorem 15. For all L* formulas A we have that
KPi- A = OST(LR) I A°.

Proof. Because of Because of (Regl)—(Reg3), and (Lim-Reg) it is clear that the
translations of (Adl), (Ad2), (Ad4), and (Lim-Ad) are provable in OST(LR).
In addition, if A[u] is a formula of £ with at most @ free and an axiom of
KP, then we know from Feferman [8] and Jager [12] that

OST + Ald]
for all @. Therefore, by Theorem 9 we also have
OST(LR)  Reg(d,e) — (VZ € d)A49)[z]
and in view of Lemma 8 even
OST(LR) F Ad°[d] — (VZ € d)A"[Z]

for these A[u]. This implies that the translations of the axioms (Ad3) re-
stricted to £ formulas are provable in OST(LR). Of course, also the transla-
tions of €-induction for arbitrary £* formulas, pairing, union and the role of
w create no problems.

It remains to deal with Ay separation and A collection. Here we have
to keep in mind that the Ay formulas of £* may contain the relation symbol
Ad, and (sub)formulas of the form Ad(u) are translated into the ¥; formula
Ad°lu]. Thus if A is a Ay formula of £*, then A° is Ay in Ad°, and it follows
from Theorem 11 that A° can be represented by a closed term. Taking this
into account, we can validate A, separation and A, collection of KPi as in
the embedding of Kripke-Platek set theory into OST, which is presented — as
mentioned above — in Feferman |8] and Jéger [12].

So OST(LR) proves A° for all axioms of KPi. From that our assertion
follows by straightforward induction on the proof of A in KPi. O

14



For interpreting OST(LR) in KPi + (V=L) we can follow Jéger [12] and
Jager and Zumbrunnen [17] to a large part. As there, we begin with some
notational preliminaries:

e For any natural number n greater than 0 and any natural number ¢
we select Ay formulas Tup,[u] and (u); = v formalizing that u is an
ordered n-tuple and v the projection of u on its ¢-th component; hence
Tup,,({ug, . .., up—1)) and ({(ug,...,Up-1)); = u; for 0 <i <n—1.

o~ o~

e Then we fix pairwise different elements k s, T, L, el, reg, non, (TI\S e,
]D U S R and C of w, making sure that they all do not belong to the
collection of ordered pairs and triples; they will later act as the codes
of the corresponding constants of £°.

The L° terms kz, sx, sxy, ... will be coded by the ordered tuples (E, x), (s, x),
(s,z,y), ... of the corresponding form. For example, to satisfy kry = = we
interpret kz as (R z), and make sure that the translation of application is so
that “ <E, x) applied to y” yields x.

Next let P be a fresh 3-place relation symbol and extend L£* to the
language L£*(P) as above. The following definition introduces the A(KP)
operator form [P, «, u, v, w] which will afterwards lead to the interpretation
of the application relation (uv = w).

Definition 16. We choose [P, a, u,v,w] to be the L*(P) formula defined
as the disjunction of the following formulas (1)—(29):

(1) u=k A w=(kv),
(2) Tup,lu] A (w)o=k A w=(u),
(3) u=3 A w=(5v),
(4) Tupy[u] A (u)o =3

(5) Tups[u] A (u)o ="
(3z,y € La)(P((w)1,v,2) A P((w)2,v,y) A P(z,y,w)),

(6) u=el A w=(el,v),

(7) Tup,[u] A (W)o=¢el A (u);€v A w=T,

(8) Tup,[u] A (W)o=¢el A (u);&v A w=_1,

(9) u=reg N w = (reg,v),

15



(10) Tupylu] N (u)g =Teg A (u); € Lay1 \ La A v € Lotw A

(W) =La A AdL[Lo] A v={(z,y,2) € (W1 :Pz,y,2)} AN w=T,
(11) Tupy[u] A (u)o=T€g A (u); € Las1 \ La A ¥ € Lot A

(w1 # Lo V ~AdL[Lo] V v # {(z,,2) € () : P(z,y,2)}) A w=1,
(12) Tupylu] A (u)o =Teg A (3§ < a)((uh € Lewa \ Le A v ¢ Lerw) A

w=_1,

(13) u=mon A v=T A w

1,
(1) u=mon A v=_1 A w=T,

(15) u=dis A w= (&i\s,w,

(25) u=S A w=(S,v),

(26) Tupyfu] A (w)o=S A (Vo € v)(P((w)1, 2, T)VP((w)y,z, 1)) A
(Vz € w)(z €v A P((uh,2,T)) A (Vo €v)(P((u)y,2,T) = = € w),

(27) u=R A w=(R,v),

(28) Tups[u] A (u)g = R A (Vo € v)(Jy € w)P((u)1,2,y) A
(Vy € w)(Bz € v)P((u), 7,y),
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(29) u=C A P(v,w,—T—) A (Vz € Ly)(x <p w — =P(v,2,T)) A
(V& € Lo)-P(C,v,z).

It is easy to see that UA[P, «, u,v,w] is a 4-ary A(KP) operator form and
deterministic in the following sense: from [P, «, u, v, w] we can conclude
that exactly one of the clauses (1)-(29) of the previous definition is satisfied
for these a, u, v, and w. Now we recall Theorem 13 and associate with the

operator form [P, a, u, v, w| a ¥ formula Fy[a, u, v, w], which is A(KP), such
that KP — and thus also KPi + (V=L) — proves

(*)  Fylaya,bc] < (a,b,c € Loy, N A[(FE < a)FylE, ], a,a,b,c])

for all ordinals o and all sets a, b, c. Definition 16 is similar to a definition in
Jager and Zumbrunnen [17], but clauses (10)-(12) are new. They entail the
following properties of the formula Fy[co, u, v, w].

Lemma 17. For all a, b, ¢, and o we can prove in KP:

-~

1. Fylo, (tég,a),b,d — (c=T Ve=1).
2. (@ € Lay1 \ La A bE Loys,) —

(Falo, (Feg, a),b, T] V Fala, (Feg, a), b, 1]).
3. Fulo, (tég,a),b, T] = (¢ € Las1 \ La A b€ Loiw).
4. Fylo, (teg,a),b, T| —

(@ =1Ly NAdL[Ly) A b={{z,y,2) € a: (3 < a)Fyl§, x,y,2]}).
5. (0 € Layi \ La A b€ Lg\ Lats) —

(FalB, (Feg, a),b, 1] A ~FEFy(¢, (Feg, a),b, T)).

Proof. Because of (*) the first four assertions follow immediately from Defini-
tion 16; observe that only the clauses (10)—(12) of this definition can apply.

If @ € Loy1 \ Lo and b € Lg \ Lotw, then o < § and Fy[f, (reg, a), b, I]
follows because of (*) and clause (12). Moreover, from the third assertion we

conclude that there exists no ¢ such that Fy[¢, (Teg, a),b, T]. Thus we also
have the fifth assertion. O

To interpret the application (uv = w) of OST(LR) we finally set

Aplu,v,w] = FEFY[E, u, v, w].

17



Clearly, an application relation has to be functional in its third argument,
but following Jéger and Zumbrunnen [17| we can easily verify that

KP vxvyVZIVZZ(Ap['T7y7ZI] A Ap[xawaQ] — 21 = 22)7

and thus this important property is satisfied in KP and KPi + (V=L). Since
Fyla, u, v, w] is a ¥ formula of £*, Ap[u, v, w] is upward persistent, and since
Fyla, u,v,w] is also A(KP), Corollary 14 implies an important property with
respect to relativization to L-admissible sets.

Lemma 18. In KP we can prove:
1. (dy Cdy AN Ap™a,b,c]) — Ap®a,b,c].
2. Ap®la,b,c] — Apla,b,c].
3. (Adpld] A a,a,b,c€d) — (Fyla,a,b,c] < Fila,a, b, cl).

In interpreting OST(LR) in KPi+ (V=L) we also have to handle assertions
Reg(d, e) stating that the set d is regular with respect to application in the
sense of e. We do this within KPi+ (V=L) by claiming d to be an admissible
set L, and by collecting in e those triples that satisfy Ap relativized to d,

Ad*[d,e] = Adp[d] A e = {{z,y,2) € d: Ap[x,y, 2]}.

The clauses (10)—(12) of Definition 16 take care of the constant reg, and the
following lemma, tells us that Ad* and reg appropriately reflect the relation
symbol Reg and the constant reg, respectively, if application is treated in the
sense of Ap.

Lemma 19. For all d, e, and o we can prove in KP + (V=L):
1. Ap[(veg,d),e, TV Ap|[(teg,d),e, ].
2. (Adp[La] A d,e € Ly) — (Ap™=[(teg,d),e, T] v Ap’=[(teg,d), e, 1]).
3. Ad*[La,e] — Fylo, (T6g, La),e, T].
/. Fyla, (teg,d),e, T] = (d= Lo A Ad*[d,€]).
5. Apl(reg,d),e, T] « Ad*[d,e].
6. (Adp[La] A d,e € Lo) — (Ap|(reg,d),e, T] <+ Ap™=[(reg,d), e, T].

7. (Adp[Lo] A d,e € Lo) — (Ap™e[(teg,d),e, T] + Ad*[d,e]).
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Proof. Because of (V=L) we know that there exist ordinals o and § such that
d € Lot1 \ Lo and e € Lg. Hence the first assertion follows from Lemma 17.

To prove the second assertion, assume Ady[L,| and d,e € L,. Then there
exists an ordinal 7 < « for which d € L,y \ L,, and we distinguish the
following two cases:

(i) e € Ly4,. By Lemma 17 we then have

-~

Faly, (Feg,d),e, T] V Fuly, (reg, d),e, 1]
and thus Lemma 18 yields

Fy* [y, (Feg.d).e, T v Fy°[y, (Feg.d), e, 1].
Consequently, we have

Ap*e|(reg,d),e, T] v Ap"=[(Teg,d),e, 1].

(ii) e ¢ Ly4,. Now we choose an ordinal § < « for which e € Ls. Lemma 17
now implies N
Fy[d, (reg,d), e, 1].

Hence an application of Lemma 18 gives us

~

Fge[o, (reg, d), e, 1],

and Ap™[(reg,d),e, I] is an immediate consequence.

In both cases (i) and (ii) we have what we want, and the second assertion is
proved.
To show the third assertion we assume Ad*[L,,e]. Then we have Ady[L,]
and
e ={(v,y,2) € Lo : (3¢ < Q)FE~[¢, 2,9, 2]}.

Obviously, e € L,.,,. Furthermore, by applying Lemma 18 we can conclude
that
e={{(x,y,2) € Ly : (I < a)Fy[&, z,y, 2|}
In view of clause (10) of Definition 16 and equivalence (*) above this implies
Fylo, (Teg, La), e, T).
Now we turn to the fourth assertion and assume Fyla, (reg,d),e, T].
Because of equivalence (*) this implies

A~

(reg,d), e, T € Layw A A[(FE < a)FalE, ], v, (Teg, d), e, T).
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Only clause (10) of Definition 16 applies, yielding that d = L, Ady[d], and

e={(zx,y,2) €d: (I < a)Ful¢, z,y, 2]}

As in the proof of the previous assertion we make use of Lemma 18 and
conclude that

e={(z,y,2) € d: (I < a)Fyl§, z,y, 2]}

Thus we have Ad*[d, e]. This completes the proof of the fourth assertion. The
fifth assertion is an immediate consequence of the third and the fourth.

For proving the sixth assertion we assume Adp[L,] and d,e € L,. Then
Aple|(reg, d), e, :I:] implies Ap[(reg,d), e, —T—] according to Lemma 18. For the
converse direction we make use of the fact that there exists a 3 < a such that
d € Lgi1 \ Lg. From Ap[(reg,d), e, T], the equivalence (*), and Definition 16
we thus obtain Fy[3, (reg,d), e, —/I:], hence Fiy*[3, (reg, d), e, :I:} according to
Lemma 18. This means that we also have Ap™*[(reg,d),e, :I:], finishing the
proof of assertion six. Assertions five and six imply the seventh assertion. [J

The next lemma provides further indication that Ad* is the adequate
analogue in the context of admissible sets of the OST(LR) notion of relativized
regularity.

Lemma 20. In KP we can prove:
1. Ad*[d,e] — Tranld] A e C d°.
2. Ad*[dy,e1] N Ad*[dy,es] — dy €dy V dy =dy V dy € dy.
3. Ad*[dy,e1] N Ad*[dy,es] N dy €dy — €1 €dy A eq Ces.
4. Ad*[d,e] N (a,b,c) € e — Apla,b, .

Proof. The first and the second assertion follow immediately from the prop-
erties of admissible sets. Since admissibles satisfy Ag separation and because
of Lemma 18 we have the third assertion. Lemma 18 also implies the fourth
assertion. [

Now we give the translation of the formulas of £° into formulas of £*. As
in [17] we first introduce for each £° term t an £* formula Val;[u], formalizing
that ¢ has the value w if the application of OST(LR) is interpreted by Ap. In
addition, we also consider a relativized version Val;[d,u] in order to state
that term ¢ has the value u provided that application is interpreted by Ap?;
in all relevant cases d will be admissible.
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Definition 21. For each L° term r and variables u and d not occurring in
r we introduce L* formulas Val,[u] and Val,[d,u] that are inductively defined
as follows:

1. If r is a variable or the constant w, then Val.[u] and Val,[d,u] are the
formula (r = u).

2. If r is another constant, then Val.[u| and Val.|d,u] are the formula
(T'=u).

3. If r is the term (st), then we set (for x and y chosen so that they do
not occur in r)

Val,[u] = Fa3y(Vals[z] N Vali]y] A Aplx,y,ul),
Val,[d,v] = (3z,y € d)(Val,[d,z] A Val,[d,y] N Ap[z,y,u]).
Notice that for every term r of £° its translation formula Val,[u] is a 3
formula of £*; in general, it is not A(KP). The translation formula Val,[d, u]
is the restriction of Var,[u] to d and thus a Ay formula of £*. The following
observation is proved by induction on the buildup of » and an immediate

consequence of the functionality of Ap|u, v, w] in its third argument and of
Lemma 18.

Lemma 22. KP proves for all L° terms r and all variables d:
1. VaVy(Val,[z] A Val,[y] — = =1y).
2. Yx(Val,|d, x] — Val,[z]).
3. YaVy(Val,.|d, x] A Val,|d,y] — = =y).

Clearly, the values of terms also satisfy the following substitution property.
Again, its proof is by induction on the buildup of r.

Lemma 23. If all variables of the L° term r come from the list uy, ..., u,
and if s is the L° term r[ty, ..., ty/u1, ..., uy,], then KP proves

/”\ Valy, [u;] — Ya(Val.[z] < Valg[z]).

i=1

The above treatments of the application of OST(LR) determine canonical
translations of the formulas of £° into formulas of £*.
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Definition 24. The translations of an L° formula A into the L* formula
A* and its relativized version Al are inductively defined as follows.

1. If A is the atomic formula (r = s) we set:
A* = Jx(Val.[x] N Vals[z]),
Al = 3z e d)(Val,[d, 2] A Val[d,z]).
2. If A is the atomic formula (r € s) we set:
A* = Jady(Val,[z] A Valsly] A x € y),
Al = (3x,y € d)(Val,[d,z] A Val[d,y] Az €7y).
3. If A is the atomic formula (rl) we set:

A* = FzVal,[z] and A9 = 3z € d)Val,[d, z].

4. If A is the atomic formula Reg(r,s) we set:

A* = FxIy(Val.[z] A Valsly] N Ad*[z,y]),

A= (3z,y e d)(Val,[d, ] A Valy[d,y] A Ad*[z,y]).
5. If A is the formula =B we set:

A* == =B* and A4 .= -l

6. If A is the formula (BV C') we set:

A* = (A*V B, and A .= (Aldy B

7. If A is the formula (3x € r)B we set:

A* = Fy(Val.[y] N 3z € y)BY),
Al = 3y e d)(Val,[d,y] A 3z € y)BD).

8. If A is the formula dxB we set:

A* = FaB*, and A9 = 3z e d)BY.
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If d is admissible, then A4 is equivalent to the restriction of A* to d. Before
turning to the proof that this x-translation provides an embedding of OST(LR)
into KPi+ (V=L), we compile some useful properties concerning substitutions
of terms in x-translation and the relationship between x-translations and
[d]-translations.

Lemma 25. Let A be a formula of L° with at most the variables uy, ..., u,
free, let ty,...,t, be a list of L° terms, and set B = Alty, ...ty /us, ... uy).
Then KP proves that

N\ Valy,[u;] — (A" < B").
i=1
Furthermore, if A is a formula of L, then KP even proves
/\ Valy, [u;] — (A<« BY).
i=1

These assertions are established by induction on A, using Lemma 23 in the
case of atomic formulas. The following lemma is proved by straightforward
induction on the complexity of the terms r and the formulas A, respectively.
The previous lemma is useful for handling the first assertion.

Lemma 26.

1. Let r be an L° term whose variables are from the list 4 and let d, e be
variables different from . Then KP proves that

(Ad*[d,e] Nued) — ((roe) < (Jzed)Val[d, x]).

2. Let A be an L° formula with at most U free and let d,e be variables
different from @. If we set B := A®°) then KP proves that

Ad*[d,e] Nied — (B* « A).

In Jéger and Zumbrunnen [17] we have interpreted an operational set
theory into a theory of admissible sets. There we have been working with an
inductive definition for translating application very similar to Definition 16.
What is new here are the relation symbol Reg and the constant reg with
their corresponding axioms plus the axiom (Lim-Reg).
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Theorem 27. If A is an applicative axiom, a basic set-theoretic axiom, a
logical operations axiom, or a set-theoretic operations axiom of OST with
at most the variables U free, then KP + (V=L) proves for all variables d,e
different from u that

Ad*ld,e] Ndied — A,

Proof. For the treatment of the logical operations axiom (L3) see Lemma 19.
In all other cases we only have to follow [12, 17]. ]

Corollary 28. If A is any axiom (Regl)-(Reg4), then KP + (V=L) proves
its translation A*.

Proof. Clearly, for any variables d and e, Reg(d, e)* is (logically equivalent to)
the formula Ad*[d, ¢]. Hence Lemma 20 yields our assertion for the axioms
(Regl), (Reg3), and (Reg4). To prove our claim for (Reg2), let A be an
applicative axiom, a logical operations axiom or a set-theoretic operations
axiom with at most « free. In view of the previous theorem and Lemma 26
we know that KP + (V=L) proves

Ad*[d,e] Nii€ed — B

for all d, e not from , where B stands for the £° formula A(%¢). From this
it follows immediately that KP 4+ (V=L) proves A* for all instances A of
(Reg2). O

Theorem 29. If A is any aziom of OST(LR), then KPi+ (V=L) proves its

translation A*.

Proof. As in the proof of Theorem 27 we observe that with exception of the
logical operations axiom (L3) the translations of all applicative axioms, basic
set-theoretic axioms, logical operations axioms, and set-theoretic operations
axioms can be proved in KPi+ (V=L) as in [12, 17] and that the provability
of the translation of the logical operations axiom (L3) follows from Lemma 19.
For the translations of the axioms (Regl) — (Reg4) see the previous corollary.

Finally, if A is the axiom (Lim-Reg), then A* is equivalent to the formula

Vodydz(z € y A Ad*[y, 2]).

So given an arbitrary set x, Lemma 12 implies the existence of an L-admissible
d such that x € d. Furthermore, by A, separation there also exists the set

z = {{u,v,w) €d: Ap*[u, v, wl},

and thus we have Ad*[d, z]. Hence also the translation of the axiom (Lim-Reg)
is provable in KPi + (V=L). O
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From this theorem we conclude that the system OST(LR) is interpretable
in the theory KPi+ (V=L). Moreover, KPi+ (V=L) is conservative over KPi
for formulas which are absolute with respect to KP. Together with Theorem 15
we thus obtain the following final result.

Corollary 30. The two theories OST(LR) and KPi are proof-theoretically
equivalent.

In this paper a new form of relativizing operational set theory has been
introduced and, based on that, a natural operational set theory of the same
proof-theoretic strength as the theory KPi has been formulated and analyzed.
The heart of the matter in interpretating OST(LR) into KPi is giving an
inductive definition of the application relation. By restricting this application
relation to suitable sets we then can deal with relativized regularity.

This is just one specific application of this new way of relativizing oper-
ational set theory. A uniform version of the limit axiom (Lim-Reg) will be
discussed elsewhere.

In future work various large cardinal notions will be reexamined under the
perspective this new form of relativizing operational set theory, for example
by adding power set and unbounded existential quantification.
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