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Abstract

This article is about fixed point axioms and related principles in Kripke-Platek
environments. We begin with surveying some principles and results of [5] and turn to
more recent developments afterwards.

1 Introduction
The Humboldt-Kolleg Proof Theory as Mathesis Universalis (Villa Vigoni, July 24-28,
2017) was dedicated to modern approaches stemming from or being related to a sort of
hypothetical universal science modelled on mathematics as envisaged by Descartes and
Leibniz. A point of view that may be discussed is that set theory or – if one wants to
be more modest – predicate logic provide a universal framework for mathematics and
computer science that shares some of such universal characteristics.

However, recent developments made it very clear that there are interesting alternatives
to systems like Zermelo-Fraenkel set theory and related approaches. Let us give you some
examples:

• There is Martin-Löf type theory that provides a powerful framework for constructive
mathematics and there are many other type-theoretic approaches.

• In recent years proof assistants and proof development systems such as Coq, Agda,
Nuprl (to mention only a few) have started to play an increasingly important role
for (formalized) mathematics.

• And there is the operational approach to mathematics and set theory propagated
by Feferman in, for example, his survey article [3]. The three main representatives
of this approach are explicit mathematics, operational set theory, and unfolding of
theories. However, for extending the present systems of explicit mathematics and
operational set theory, new forms of operational reflection are required, and these
new reflections require new inductive model constructions of operational theories.

One of our motivations for pursuing the research that we will survey below was the
desire to classify and characterize the strengths of these new and more powerful systems
of explicit mathematics and operational set theory in terms of subsystems of set theory.
It turned out that fixed point constructions play a major role in this enterprise.

Let us point out that we work in the context of classical logic and the models we have
in mind are models of explicit mathematics and of operational set theory, both based on
classical logic. It is an interesting question to find out whether the results of this paper can
also find use in studying the intuitionistic systems of explicit mathematics and operational
set theory. We also want to remark that this paper does not address the relationship
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between our fixed points and the inductive definitions and fixed point constructions in the
recent type-theoretic approaches to constructive mathematics.

In addition – and that is the second main motivation for our approach – fixed point
constructions and inductive definitions belong to the most general and universal principles
in mathematics and computer science. Hence they may also be considered from the point
of view of Mathesis Universalis.

If A[R+, x] is an R-positive arithmetic formula, then the theories ID1 and KP provide
simple environments for introducing and studying the least fixed point of the operator ΓA

that maps a set S of natural numbers to the set

ΓA(S) := {n ∈ ω : A[S, n]}.

See, for example Buchholz, Feferman, Pohlers, and Sieg [2] and Jäger [4]. But what
happens if we go up in the logical complexity of the operator forms and allow them to be
∆1 definable? We may even replace positivity by a monotonicity condition.

Let a monotone ∆1 operator be an operator that is defined by a pair consisting of a
Σ1 formula C[x, u] and a Π1 formula D[x, u] such that

(i) ∀x(∀u ∈ a)(C[x, u]↔ D[x, u]),

(ii) ∀x, y(∀u ∈ a)(C[x, u] ∧ x ⊆ y → C[y, u]).

The we define
Γ(C,D)(x) := {u ∈ a : C[x, u]}.

for all x ⊆ a. The fixed point axioms claim that or any pair (C,D) that satisfies (i) and
(ii) above and any set a we we have

(fixed point) (∃b ⊆ a)(∀u ∈ a)(u ∈ b ↔ C[b, u])

and analogously for the least fixed point.
It is more convenient to work with what we call set-bounded Σ1 operators. Take a

monotone ∆1 operator given by the pair (C,D) and define A[x, y] to be the formula

y = {u ∈ a : C[x, u]}.

Then A[x, y] is equivalent to a Σ1 formula and we have

(iii) ∀x∃!yA[x, y] ∧ ∀x, y(A[x, y] → y ⊆ a),

(iv) ∀x0, x1, y0, y1(A[x0, y0] ∧ A[x1, y1] ∧ x0 ⊆ x1 → y0 ⊆ y1),

Clearly, the (least) fixed points of A are the (least) fixed points of the operator defined by
(C,D).

On the other hand, assume that A[x, y] is a Σ1 formula such that (iii) and (iv) hold.
Now we define

C[x, u] := ∃y(A[x, y] ∧ u ∈ y),

D[x, u] := ∀y(A[x, y] → u ∈ y).

Then (C,D) defines a monotone ∆1 operator with the same (least) fixed points as A.
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In this article we do not discuss the new models of explicit mathematics and operational
set theory. Instead, we will concentrate on fixed point axioms and related principles over
Kripke-Platek set theory. We believe that these concepts are interesting in their own and
worth to be analyzed further.

This survey article begins with a sketch of the standard constructions of least fixed
points of monotone operators a la Knaster and Tarski. Then we introduce a class version
KPc of Kripke-Platek set theory as the framework for our further discussions. Afterwards
we turn to the axioms and principles that form the core of this survey and discuss their
mutual relationships.

2 Traditional approaches to least fixed points
A lattice (L,≤L) is a collection equipped with a partial order in which every two elements
have a unique supremum and a unique infimum. A lattice is complete if all its subcol-
lections have both a supremum and an infimum. Assume that we are given a complete
lattice L and a monotone function F on it. According to Knaster and Tarski [7, 13], there
exists the least fixed point, where an element x of L is a fixed point of F if F (x) =L x. In
the following we sketch two standard arguments to show the existence of the least fixed
point for monotone functions.

The first argument exploits the fact that the least fixed point is the infimum of the
collection of all elements of L which are closed under F , where we say that an element x
is closed under F if F (x) ≤L x. Indeed, define

z :=
∧
L
{x ∈ L : F (x) ≤L x}

and show as usual that z is closed under F . By definition of z we thus have z ≤L F (z),
which yields that z is the least fixed point of F .

The second argument provides a construction of the least fixed point by using the
property that the least fixed point is the supremum of a special chain of elements of L.
Let 0L be the infimum of L. Then define a chain c of elements of L as follows:

0L ≤L F (0L) ≤L F (F (0L)) ≤L . . .

Note that it is a ≤L-increasing chain by both monotonicity of F and 0L ≤L F (0L), as 0L
is the infimum of L. Then define z to be the supremum of this chain: i.e., z =

∨
L c. A

straightforward cardinality argument shows that c cannot provide new arguments forever.
And so that z belongs to c and F (z) =L z. Leastness follows from the fact that we can
prove by induction that every element of the chain is L-smaller than every closed set.

In this paper we are interested in the particular case that the given lattice is the
collection1 of the subsets of some set a, denoted as (P(a),⊆). Observe that if we work
in strong set theories as ZFC, then P(a) is a set and (P(a),⊆) is a complete lattice.
This guarantees that the first argument can be performed. A cardinality argument on a
provides also the success of the second approach over ZFC. If we work over weaker set
theories which do not comprise the axiom of powerset, the situation is completely different.

In this article our general framework is a class version of Kripke-Platek set theory
KP with infinity. Kripke-Platek is a truely interesting subsystem of Zermelo-Fraenkel
set theory that plays an important role in the interaction between set theory, recursion
theory, model theory, and proof theory. For more on Kripke-Platek set theory consult,
e.g., Barwise [1].

1It is on purpose that we do not assume it to be a set.
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3 A class version of Kripke-Platek set theory
KPc is a conservative class extension of KP in which, for example, P(a) is a class for any set
a. Our main reason for moving to this extension is that it provides a natural framework
for speaking about (monotone) operators from P(a) to itself. Here we provide a brief
description of KPc, for more details see [5].

Let L be the standard language of set theory containing ∈ as the only non-logical
symbol besides = and countably many set variables a, b, c, , . . . (possibly with subscripts).
The language Lc is the extension of L by countably many class variables F,G,U, V . . .
(possibly with subscripts). The atomic formulas of Lc comprise the atomic formulas of
L and all expressions of the form (a ∈ U). The formulas of Lc are built up from these
atomic formulas by use of the propositional connectives and quantification over sets and
classes. Equality of classes is defined by

(U = V ) := ∀x(x ∈ U ↔ x ∈ V )

and not treated as an atomic formula.
We say that an Lc formula is elementary iff it contains no class quantifiers. The ∆c

0,
Σc, Πc, Σc

n and Πc
n formulas of Lc are defined according to the usual Levy hierarchy but

now permitting subformulas of the form (a ∈ U).
The theory KPc is formulated in the language Lc and based on classical logic for sets

and classes. Its non-logical axioms are:

• Extensionality, pair, union and infinity for sets as defined in KP.

• ∆c
0 separation (∆c

0-Sep): for every ∆c
0 formula A in which x is not free and for any

set a,
∃x(x = {y ∈ a : A[y]}).

• ∆c
0 collection (∆c

0-Col): for every ∆c
0 formula A and any set a,

∀x ∈ a∃yA[x, y]→ ∃b∀x ∈ a∃y ∈ bA[x, y].

• ∆c
1 comprehension (∆c

1-CA): for every Σc
1 formula A and every Πc

1-formula B,

∀x(A[x]↔ B[x])→ ∃X∀x(x ∈ X ↔ A[x]).

• Elementary ∈-induction (El-I∈): for every elementary formula A,

∀x((∀y ∈ xA[y])→ A[x])→ ∀xA[x].

It is straightforward to check that core properties of KP can be carried over to KPc;
among others, the proof that every Σc-formula (resp. Πc-formula) is equivalent to a Σc

1-
formula (resp. Πc

1-formula), Σc-reflection and Σc-recursion. Moreover KPc is a conservative
extension of KP. For the proof we refer to [5, Theorem 1].

Theorem 1. Every L sentence provable in KPc is already provable in KP.

We follow the standard set theoretic terminology and the notation introduced in [5].
In particular, we use lower case Greek letters to range over ordinals and write On for the
class of all ordinals. Also, Fun[f, a] is a short for saying that f is a function whose domain
is the set a.
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4 Operators and fixed point statements
Note that (∆c

1-CA) yields that the collection of all subsets of a given set a,

P(a) := {x : x ⊆ a} ,

is a class. However, keep in mind that in general it is a class and not a set. It is routine
work to show that (P(a),⊆) is a lattice, though it might not be complete in KPc, since
our theory lacks of Σ1-separation.

Following the notation of [5], we call a class U an operator if all its elements are ordered
pairs and it is right-unique (i.e., functional). Formally:

Op[U ] := ∀x ∈ U∃y, z(x = 〈y, z〉) ∧ ∀y, z0, z1(〈y, z0〉 ∈ U ∧ 〈y, z1〉 ∈ U → z0 = z1).

In this paper we use F , G and H to denote operators. We define the domain of the
operator F as the collection of all sets a for which there exists a set x such that 〈a, x〉 ∈ F .
If a belongs to the domain of the operator F , then F (a) is the unique set x such that
〈a, x〉 ∈ F .

If F is an operator, x and y are sets, U is a class and x belongs to the domain of F
all the following abbreviations correspond to ∆c

1 formulae: F (x) = y, F (x) ∈ y, y ∈ F (x),
F (x) ⊆ y, y ⊆ F (x), F (x) = F (y), F (x) ⊆ F (y), F (x) ∈ U . When introducing new
operators later, we will freely make use of the following remark.

Remark 2. For every Σc
1 formula A and class U such that ∀x ∈ U∃!yA[x, y], (∆c

1-CA)
tells us that there exists an operator F such that ∀x, y(F (x) = y ↔ x ∈ U ∧A[x, y]). For
details see [5].

Let us now consider total operators which are monotone and which map sets to subsets
of a given set a:

Mon[F, a] := ∀x(F (x) ⊆ a) ∧ ∀x, y(x ⊆ y → F (x) ⊆ F (y)).

Then there are two obvious fixed point principles which come with such an operator.
The first stating the existence of a fixed point, the second claiming the existence of a least
fixed point:

(FPc) Mon[F, a]→ ∃x(F (x) = x),

(LFPc) Mon[F, a]→ ∃x(F (x) = x ∧ ∀y(F (y) = y → x ⊆ y)).

5 Two principles to prove the existence of least fixed points
To perform the two standard arguments of the Knaster-Tarski theorem it is enough to
require that given a set a, the (class)lattice (P(a),⊆) is class-complete.2 In fact, both
the collection of all sets which are closed under F and the collection of the elements of
the increasing chain provided by the second argument are subclasses of P(a), as they are
∆c

1-definable. To conclude the second proof we just need Σ-Reflection, which is valid in
KPc. Class-completeness is a direct consequence of the well-known separation principle
(Σc

1-Sep):

(Σc
1-Sep) ∃y∀x(x ∈ y ↔ x ∈ a ∧A[x])
2We call (P(a),⊆) class-complete if for every subclass X ⊆ P(a) the union of X is a subset of a.
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for arbitrary Σc
1 formulae A[u]. In fact, given a subclass X ⊆ P(a), (Σc

1-Sep) yields the
existence of the set ⋃

X = {x ∈ a : ∃y(y ∈ X ∧ x ∈ y)} .

So a first very natural question which arises is: does (LFPc) imply (Σc
1-Sep) over KPc?

The results in [5] provide a negative answer to this question. Hence we may wonder
whether there are theories weaker (in term of consistency strength or proof-theoretically)
than KPc + (Σc

1-Sep) in which the two standard constructions of the least fixed point go
through. To this aim we consider two principles which generalize the two constructions.

5.1 An ingredient to perform the first argument.

The first argument to prove the Knaster-Tarski theorem characterizes the least fixed point
as the infimum of the collection of all closed sets. Since our lattice is the powerclass of
some set a, this yields that the least fixed point is the intersections of all subsets x of a
which are closed under F , i.e., F (x) ⊆ x. Therefore it requires that the following collection
is a set:

{y ∈ a : ∀x ⊆ a(F (x) ⊆ x→ y ∈ x)} .

This is a special case of the new principle of subset-bounded separation that was intro-
duced in [5]:

(SBSc) ∃z∀x(x ∈ z ↔ x ∈ a ∧ (∀y ⊆ b)A[x, y])

for arbitrary ∆c
0 formulae A[u, v]. Do not underestimate the strength of (SBSc), by

(∆c
1-CA) it is straightforward to show that (SBSc) yields:

∀x, y(A[x, y]↔ B[x, y])→ ∃z∀x(x ∈ z ↔ x ∈ a ∧ (∀y ⊆ b)A[x, y])

for arbitrary Σc
1 formulae A[u, v] and Πc

1 formulae B[u, v]. Therefore, given an operator F ,
our principle (SBSc) guarantees the existence of the intersection of all sets closed under F .
The proof that this is the least fixed point works over KPc as in the standard argument.
Furthermore, it is straightforward to show that (SBSc) follows from (Σc

1-Sep).
There is also an interesting largeness property that follows from (SBSc), namely bounded

proper injection.3 It guarantees that the universe is so large that it cannot be injected
into a set,

(BPIc) ∀x(F (x) ∈ a)→ ∃x, y(x 6= y ∧ F (x) = F (y)).

Indeed, given F an injective operator from the universe to any set a, (SBSc) allows us to
define the range of F restricted to P(a). The fact that this is a set is enough to show that
P(a) is a set. By applying a usual Cantor-style argument, the existence of an injection
from the P(a) to a provides a contradiction. See [5] for details.

There is even an important strengthening of (BPIc) which claims that the class of all
ordinals cannot be injected into any set,

(BPIcOn) ∀α(F (α) ∈ a)→ ∃α, β(α 6= β ∧ F (α) = F (β)).

We will come back to the relationship between (BPIc) and (BPIcOn) later.
3Maybe this is a misname since this principle claims that such injections do not exist. But we decided

to follow the terminology of [5].
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5.2 An ingredient to perform the second argument.

In the second approach the least fixed point is constructed as the supremum of the ≤L-
increasing chain 0L ≤L F (0L) ≤L F (F (0L)) ≤L . . . . To guarantee the existence of such
fixed points of monotone operators over lattices (P(a),⊆) in KPc we introduced a maximal
iterations principle:

(MIc) ∀x(F (x) ⊆ a)→ ∃α, f(Hier[F, f, α] ∧ f(α) ⊆
⋃
ξ<α

f(ξ)),

where Hier[F, f, α] is the formula

Fun[f, α+ 1] ∧ ∀β ≤ α(f(β) = F (
⋃
ξ<β

f(ξ))).

Note that this principle makes sense and is formulated for arbitrary operators mapping
into a class P(a). If F is monotone, then it is trivial to see that

Hier[F, f, α] ∧ f(α) ⊆
⋃
ξ<α

f(ξ)

yields that f(α) is the least fixed point of F .
In [5, Theorem 4 and Theorem 6] it is shown that (MIc) is provable in KPc + (Σc

1-Sep).
Another well-know consequence of (Σc

1-Sep) is axiom (Beta). Informally, axiom (Beta)
states that every well-founded relation has a collapsing function. If we write WF[r, a] for

r ⊆ a× a ∧ ∀b ⊆ a(b 6= ∅ → ∃x ∈ b∀y ∈ b(〈y, x〉 /∈ r)),

then axiom (Beta) is the following implication:

(Beta) WF[r, a]→ ∃f(Fun[f, a] ∧ ∀x ∈ a(f(x) = {f(y) : 〈y, x〉 ∈ r})).

It is shown in [5, Theorem 6] that axiom (Beta) is a consequence of (MIc) by applying
(MIc) to the operator defined as

F (x) = {y ∈ a : ∀z ∈ a(〈z, y〉 ∈ r → z ∈ x)} ,

where r is the given well-founded relation on a, and then following the same argument as
in Barwise [1, Chapter I.9].

Theorem 3. KPc + (MIc) proves axiom (Beta).

From Theorem 5 of [5] we know that (BPIc) holds in KPc + (MIc). But because of
Theorem 3 we can actually do better.

Theorem 4. KPc + (MIc) proves (BPIcOn).

Proof. Assume by contradiction that there exists an injective operator F from the ordinals
to some set a. For any α we introduce the auxiliary sets

F<[α] := {〈F (η), F (ξ)〉 : η < ξ ≤ α} .

It follows immediately that F<[α] =
⋃
ξ<α F<[ξ + 1] for all ordinals α.
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Given a binary relation r on a we say that r is a well-order - in symbols WO[r, a] - if
r is an order4 on a which is well-founded. We also write Height[r, α] for the formula

∃f(Fun[f, a] ∧ ∀x ∈ a(f(x) = {f(y) : 〈y, x〉 ∈ r}) ∧ α =
⋃
x∈a

f(x)).

Please observe that Height[F<[α], α]. Axiom (Beta), which holds under (MIc), guarantees
that

∀r ⊆ a× a(WO[r, a]→ ∃α(Height[r, α]).

Indeed, since every well-order is transitive, the range of the collapsing function provided
by axiom (Beta) is some ordinal. We define a surjective operator G from P(a× a) to On
as follows:

G(x) =


0 if ¬WO[x, a],
0 if ∃α(Height[x, α] ∧ x 6= F<[α]),
α if x = F<[α].

Depending on G then define an operator H from P(a× a) to P(a× a) by:

H(x) =
{
∅ if G(x) = 0 ∧ x 6= ∅,
F<[G(x) + 1] if G(x) 6= 0 ∨ x = ∅.

By definition we have H(F<[α]) = F<[α+ 1] for all α and H(x) = ∅ for all x that are
not of the form F<[α] for some α. Furthermore, ∅ = F<[0], hence H(∅) = F<[1]. Given
any f and α such that Hier[H, f, α], it is easy to see that f(β) = F<[β + 1] for all β ≤ α.
Since F is injective there is no α such that

F<[α+ 1] = f(α) ⊆
⋃
ξ<α

f(ξ) =
⋃
ξ<α

F<[ξ + 1] = F<[α].

This contradicts our principle (MIc).

Note that we really need to use axiom (Beta) to define G and H. Since the direct
definition ( i.e., H(x) = F<[α+ 1] if exists α such that x = F<[α] and ∅ otherwise), would
not define an operator, as this formula is not Σc

1.
If we have the axiom of choice for sets (AC), then we can also prove that also the

opposite implication holds.

Theorem 5. KPc + (AC) + (BPIcOn) proves (MIc).

Proof. Assume by contradiction that there exists an operator F such that ∀x(F (x) ⊆ a)
and

∀α, f(Hier[F, f, α]→ f(α) *
⋃
ξ<α

f(ξ)).

Fix a well-order <a of a provided by (AC) and define the operator G as

G(α) = x↔ ∃f(Hier[F, f, α]→ (x ∈ f(α) \
⋃
ξ<α

f(ξ) ∧ ∀y <a x(y /∈ f(α) \
⋃
ξ<α

f(ξ))))

Then G(α) is an injection from the ordinals to a. Contradiction.

The axiom of choice here is used for the set a. If we restrict our principles to ω then
the use of choice can be clearly avoided and the two principles are equivalent.

4A binary relation r on a is an order if it is irreflexive, antisymmetric, and transitive
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6 Under strong hypotheses
The present situation over KPc is summarized in the following diagram:

(Σc
1-Sep)

(SBSc) (MIc)

(BPIcOn)(LFPc)

(FPc) (BPIc)(Beta)

AC

From results of Mathias [9] and Rathjen [11] we conclude that there exists a model of
KP + (Pow) + (AC) in which axiom (Beta) fails, where

(Pow) ∀a∃p∀x(x ⊆ a↔ x ∈ p).

It follows that every statement S which can be proved in KPc + (Pow) + (AC) does
not imply (Beta).5 Note that (Pow) implies (SBSc) over KPc. Moreover we know that
both (MIc) and (BPIcOn) imply axiom Beta over KPc + (AC). Therefore we have the the
following non-implication results over KPc + (AC).

(Σc
1-Sep)

(SBSc), (LFPc), (FPc), (BPIc)

(MIc) (BPIcOn)

(Beta)

Hence a natural question arises: Is it the case that (SBSc), (LFPc), (FPc) or (BPIc) are
provable over KPc? The results in this section provide a negative answer to this question.

6.1 Under the axiom of constructibility (V =L)

The axiom of constructibility states that every set belongs to some level Lα of Gödel’s
hierarchy of constructible sets:

(V=L) ∀x∃α(x ∈ Lα).

In addition, we write (a <L b) to express that a is smaller than b according to the well-
order <L of the constructible universe. It is well known that (a ∈ Lα) and (a <L b) are ∆
over KP. For more on the constructible universe see, e.g., Barwise [1] or Kunen [8].

In KPc + (V=L) it is possible to show that there exists an operator that maps all sets
one-to-one into the ordinals. Making use of this injection it is then easy to prove that in
KPc + (V=L) every instance of (BPIcOn) follows from (BPIc).

5This means, of course, that S also cannot imply (Σc
1-Sep) or (MIc).
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Theorem 6. KPc + (V=L) + (BPIc) proves (BPIcOn).

On the other hand, (BPIcOn) together with (V=L) proves every instance of (Σc
1-Sep).

The idea of the proof is simple: Suppose for contradiction that there exist a set a and a
∆c

0 formula A[u, v] such that the collection

R := {x ∈ a : ∃yA[x, y]}

is not a set. For every ordinal α we set G(α) := {x ∈ a : ∃y ∈ LαA[x, y]} and observe that
R =

⋃
αG(α). Then we use induction on the ordinals to define an operator F from On

to R: If F has been defined for all ordinals ξ < α, then {F (ξ) : ξ < α} is a set. However,
since R is not a set there exists a least β such that

{F (ξ) ∈ a : ξ < α} $ G(β).

and we define F (α) to be the <L-least element of G(β) \ {F (ξ) : ξ < α}. This F is a
one-to-one operator from the ordinals to a, thus violating (BPIcOn).

Theorem 7. KPc + (V=L) + (BPIcOn) proves (Σc
1-Sep).

Detailed proofs of Theorem 6 and Theorem 7 are given in [5]. There you find also
the proof of the following theorem. This proof is very technical, but checking it carefully
reveals that we do not really need (V=L) but only the existence of a suitable global
well-order of the universe.

Theorem 8. KPc + (V=L) + (FPc) proves (SBSc).

This result closes the circle, and we can easily check that all our principles are equiva-
lent over KPc + (V=L).6 Since LωCK

1
is a model of KP + (V=L) in which (Σc

1-Sep) does
not hold, we conclude that all our principles are not provable in KPc + (V=L).

(Σc
1-Sep)

(SBSc) (MIc)

(BPIcOn)(LFPc)

(FPc) (BPIc)(Beta)

(AC)

(GWO)

(GWO)

(GWO)

6Keep in mind that (AC) is a consequence of (V =L)
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6.2 Under axiom (Beta)

Another property which has a significant impact on the relationship between our principles
is axiom (Beta). We already noticed that in KPc the principle (MIc) does follow from (FPc).
However, in the presence of axiom (Beta), we can modify the Stage Comparison Theorem
of Moschovakis [10] to prove that if F is a monotone operator to P(a), then there exists
an operator F ′ such that, if F ′ has a fixed point, then F has a least fixed point [6]. 7 As
a consequence we show that the least fixed point under axiom (Beta) is ∆0

1 definable, and
this can be used to prove (MIc) from (LFPc). Since the proofs are quite technical we refer
to [6] for details.

Theorem 9.

• KPc + (Beta) + (FPc) proves (LFPc)

• KPc + (Beta) + (LFPc) proves (MIc)

(Σc
1-Sep)

(SBSc) (MIc)

(BPIcOn)(LFPc)

(FPc) (BPIc)(Beta)

(Beta)

(Beta)

As indicated in the diagram above, these results do not allow us to prove that all our
principles are equivalent, as we have no implication between for instance (MIc) and (SBSc)
and from (BPIc) to any other principle.

7 Consistency strength
To conclude our survey we make a few remarks about the consistency strength of (some of)
the principles we have been discussing. To this end we introduce the subform of (Σc

1-Sep)
in which the unbounded existential quantifier ranges over the ordinals only: For all ∆c

0
formulas A[x, ξ],

(Σc
1(On)-Sep) ∃y∀x(x ∈ y ↔ x ∈ a ∧ ∃ξA[x, ξ])

A first and straightforward observation states that in KPc + (V=L) this restricted
form of Σc

1 separation implies (Σc
1-Sep).

Proposition 10. KPc + (V=L) + (Σc
1(On)-Sep) proves (Σc

1-Sep).
7A similar argument but in a completely different context has been used by Sato, cf. [12].
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Proof. Let A[x, y] be an arbitrary ∆c
0 formula. Then, working in KPc + (V=L), we clearly

have that
∃yA[x, y]↔ ∃ξ∃y ∈ LξA[x, y].

Hence {x ∈ a : ∃yA[x, y]} is a set because of (Σc
1(On)-Sep).

It is also easy to see that L is an inner model of KPc + (Σc
1(On)-Sep). In view of

[1, Theorem 5.5] and Theorem 1 of this article we only have to establish the following
observation.

Proposition 11. KPc + (Σc
1(On)-Sep) proves the L-relativization AL of every instance

A of (Σc
1(On)-Sep).

Proof. Working in KPc + (Σc
1(On)-Sep), pick a set a and a ∆c

0 formula A[x, ξ]. By
(Σc

1(On)-Sep) there exists the set

b = {x ∈ a : ∃ξA[x, ξ]} .

Now we apply ∆c
0 collection and conclude that there exists an ordinal α such that

b = {x ∈ a : ∃ξ < αA[x, ξ]} .

Hence b is an element of L and b = {x ∈ a : ∃ξ ∈ LA[x, ξ]}.

Following the pattern of the proof of Theorem 7, we can easily convince ourselves that
(Σc

1(On)-Sep) follows from (BPIcOn), provided that a little bit of choice is available.

Proposition 12. KPc + (AC) + (BPIcOn) proves (Σc
1(On)-Sep).

Proof. Now we work in KPc + (AC) + (BPIcOn), pick a set a and a ∆c
0 formula A[x, ξ].

By choice on a we first fix a well-order <a of a. Now we proceed following the idea of the
proof of Theorem 7 where G(α) is defined to be the set {x ∈ a : ∃ξ < αA[x, ξ]} and F (α)
is defined as the <a-least element of G(β) that does not belong to {F (ξ) : ξ < α}.

Consider the following restrictions of the principles (Σc
1-Sep), (Σc

1(On)-Sep) and (BPIcOn)
to ω:

∃y∀x(x ∈ y ↔ x ∈ ω ∧ ∃yA[x, y]),(ω-Σc
1-Sep)

∃y∀x(x ∈ y ↔ x ∈ ω ∧ ∃ξA[x, ξ]),(ω-Σc
1(On)-Sep)

∀α(F (α) ∈ ω)→ ∃α, β(α 6= β ∧ F (α) = F (β)),(ω-BPIcOn)

where A ranges again over all ∆c
0 formulas. Then it is clear from the previous that

Proposition 10 and Proposition 11 hold for (ω-Σc
1-Sep) and (ω-Σc

1(On)-Sep), respectively,
and that KPc + (ω-BPIcOn) proves all instances of (ω-Σc

1(On)-Sep).
It is also well-known that KPc + (Σc

1-Sep) and its subsystem with (Σc
1-Sep) restricted

to ω in the sense above are equiconsistent; both are proof-theoretically equivalent to the
theory Π1

2-CA + (BI) of second order arithmetic.
Summing up everything and recalling that (MIc) implies (BPIcOn) over KPc according

to Theorem 4, we can deduce that several of our principles have the same consistency
strength.

Theorem 13. Added to KPc, the following principles lead to theories of the same consis-
tency strength:

(BPIcOn), (MIc), (Σc
1(On)-Sep), (Σc

1-Sep).
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8 Future Work
In this paper we discussed the behaviour of the fixed point statements introduced in [5]. In
our analysis there are still open questions to be solved. The most puzzling principle from
the author’s point of view is (SBSc). Under (V=L) the principle (SBSc) implies (Σc

1-Sep)
and under axiom (Beta) it has the same consistency strength of (Σc

1-Sep). In both the
cases (SBSc) implies Π1

2-CA. Hence a first question is: Does (SBSc) imply Π1
2-CA over

KPc?
As mentioned in [5, Remark 7 and Remark 21], notions similar to our subset-bounded

formulae have already considered by Mathias [9] and Rathjen [11]. They defined the
class of ∆P

0 formulae as the collection of formulae whose quantifiers all range over sets or
powerclasses of some set. (∆P

0 -Sep) is proof theoretically stronger than (SBSc) since it
implies full arithmetical comprehension. On the other hand, it is still not clear whether
(SBSc) can be proved from (∆P

0 -Sep).
The authors are working to address these and further problems from different perspec-

tives. In particular, we want to make clear what the relationship is between our principles
over pure KPc, without the axiom of constructibility (V=L) and without axiom (Beta).
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