
Having a look again at some theories of
proof-theoretic strengths around Γ0

Michael Bärtschi and Gerhard Jäger

Abstract

In the first part of this article we introduce generalizations of ATR0

and FP0: arithmetical properties are replaced by ∆1
1 properties, and

the positivity requirement of the definition clauses of FP0 is liberalized
to monotonicity. Afterwards we turn to systems of admissible sets
above the natural numbers as urelements. In this context we look, in
particular, at principles of Σ and Π reduction.
Keywords: Subsystems of second order arithmetic and set theory,
proof-theoretic strength
2010 MSC: 03E30, 03F15, 03F35

1 Introduction

One of the big challenges in proof theory of the sixties of the previous century
was the determination of the precise ordinal bound for predicative mathe-
matics. This problem was solved independently by Feferman [5] and Schütte
[15, 16]. Feferman and Schütte showed that the least non-predicatively prov-
able ordinal is the ordinal Γ0 that can be characterized in terms of the Veblen
functions (ϕα : α ∈ On) as the least α such that ϕα(0) = α. For establishing
this ordinal bound, Feferman and Schütte made use of an intricate interplay
between systems of ramified analysis, well-ordering proofs, cut elimination
and a bootstrapping process. See the original articles mentioned above or
Schütte’s text book [17] for further details.

In parallel to the formal characterization of predicative mathematics an
issue to be dealt with was the question of how much mathematics could
be developed predicatively. This was pursued theoretically by identifying
equivalent formal systems and alternative approaches to predicativity and
by means of detailed case studies.

Fresh blood was brought into the whole discussion in connection with
the Friedman-Simpson program of reverse mathematics. In this program five
subsystems of second order arithmetic play a prominent role, and the fourth
of these Big Five is the theory ATR0 of arithmetical transfinite recursion. The
proof-theoretic ordinal of ATR0 is the Feferman-Schütte ordinal Γ0, and ATR0

1

is equivalent, for example, to the fixed point theory FP0 and Σ1
1 separation

Σ1
1-Sep0; cf. Avigad [1] an Simpson [18].
The first part of this article introduces generalizations of ATR0 and FP0:

arithmetical properties are replaced by ∆1
1 properties, and the positivity

requirement of the definition clauses of FP0 is liberalized to monotonicity. We
show that the corresponding theories are equivalent to ATR0, thus answering
a question of Feferman. The proof of these equivalences goes via a system
for weak transfinite dependent choice, which is interesting on its own.

Afterwards we turn to systems of admissible sets above the natural num-
bers as urelements. In this context we look, in particular, at principles of
Σ and Π reduction. For establishing their upper proof-theoretic bounds we
make us of an adaptation of Simpson’s suitable trees. For dealing with the
system BS0 of basic set theory without ∈-induction and complete induc-
tion restricted to sets, we need a preparatory step consisting of partial cut
elimination and asymmetric interpretations.

2 Subsystems of second order arithmetic

As mentioned in the introduction, the subsystems of second order arithmetic
that interest us most in this article are variants of the theory ATR0 of arith-
metical transfinite recursion and of the fixed point theory FP0. We begin this
section with describing the general context of these systems. Afterwards we
introduce the principles (∆1

1-TR), (M∆1
1-FP), and (weak-Σ1

1-TDC) and prove
their equivalence over ACA0.

2.1 The general context

Let L1 be a standard first order language with (i) a countably infinite sup-
ply of first order variables, (ii) a numeral n for every natural number n, (iii)
function and relation symbols for all primitive recursive functions and rela-
tions. All theories considered in this section are formulated in the second
order language L2 that extends L1 by adding countably many second order
variables and the relation symbol ∈ for elementhood between first and sec-
ond order objects. In L2 the first order objects are, of course, supposed to
range over natural numbers and the second order objects to range over sets
of natural numbers. The number terms and formulas of L2 are built up as
usual; in general, we simply write n for the numeral n.

We use the following categories of letters (possibly with subscripts) as
metavariables:

• a, b, c, u, v, w, x, y, z for first order variables;

• R,S, T, U, V,W,X, Y, Z for second order variables;

• r, s, t for number terms;

• A,B,C for formulas.

2

A formula without bound set variables is called arithmetical. The Σ1
1 and

Π1
1 formulas are those of the form ∃XA and ∀XA, respectively, where A is

arithmetical. A formula is a Σ1 formula iff its negation normal form does not
contain a universal set quantifier, and a Π1 formula iff its negation normal
form does not contain an existential set quantifier.

Equality is only taken as basic symbol between numbers. The subset
relation on sets and equality of sets are defined by

S ⊆ T := ∀x(x ∈ S → x ∈ T),

S = T := S ⊆ T ∧ T ⊆ S.

In the following, we will make use of the standard primitive recursive coding
machinery in L2: (a, b) stands for the primitive recursively formed ordered
pair of a, b. For the corresponding projection functions we write (.)0 and (.)1
such that a = ((a)0, (a)1) iff a codes an ordered pair.

Sets of natural numbers can be considered as codes of binary relations
via this pairing function. For every set R we write

a �R b := (a, b) ∈ R,

a ≺R b := (a, b) ∈ R ∧ (b, a) /∈ R.

We say that a belongs to the field of R – in symbols Fd [R, a] – iff there
exists a b such that a �R b or b �R a, and we write LO [R] to express that
R is a linear ordering of its field, i.e., R is a set of ordered pairs satisfying

(LO.1) a �R b ∧ b �R c → a �R c,

(LO.2) a �R b ∧ b �R a → a = b,

(LO.3) a �R b ∨ b �R a

for all a, b, c from the field of R. We also make use of the following auxiliary
notations:

b ∈ (S)a := (a, b) ∈ S,

b ∈ (S)Ra := b = ((b)0, (b)1) ∧ (b)0 ≺R a ∧ b ∈ S,

WO [R] := LO [R] ∧ ∀X(X 6= ∅ → (∃x ∈ X)∀y(y ≺R x → y /∈ X)),

HA[R,S] := LO [R] ∧ ∀x(Fd [R, x] → ∀y(y ∈ (S)x ↔ A[(S)Rx, y])).

where A[X, y] is an arithmetical formula with distinguished free variables
X and y; it may contain other free variables than those displayed. The
formula HA[R,S] says that S describes the hierarchy obtained by iterating
comprehension with respect to A[X, y] along R.

If Th is a theory (i.e. a collection of formulas) then Th ` A means that A
can be derived from Th in classical logic with equality. Given two theories

3

Th1 and Th2, we write Th1 ⊆ Th2 iff the theorems of Th1 are also provable
in Th2. The theories Th1 and Th2 are called proof-theoretically equivalent
– in symbols Th1 ≡ Th2 – iff they prove the same arithmetical sentences.
The proof-theoretic ordinal of the theory Th is denoted by |Th| and clearly
Th1 ≡ Th2 implies |Th1| = |Th2|.

Our basic system is the theory ACA0 that comprises the defining ax-
ioms for all primitive recursive functions and relations, the axiom schema of
arithmetical comprehension

∃Y ∀x(x ∈ Y ↔ A[x])

for all arithmetical formulas A[x], and the induction axiom

0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X) → ∀x(x ∈ X).

In ACA0 we thus can prove the schema of complete induction

(*) A[0] ∧ ∀x(A[x] → A[x+ 1]) → ∀xA[x]

for all arithmetical formulas A[x]. ACA is the extension of ACA0 obtained
by adding (*) for arbitrary formulas of L2.

Now we introduce a series of axiom schemas. Given such a schema (Sch)
we shall write Sch0 for the theory ACA0 + (Sch) and Sch for ACA + (Sch).
All formulas in the following schemas may contain other free variables than
those displayed.

∆1
1 comprehension. For all Σ1

1 formulas A[x] and Π1
1 formulas B[x]:

(∆1
1-CA) ∀x(A[x]↔ B[x]) → ∃Y ∀x(x ∈ Y ↔ A[x]).

Σ1
1 axiom of choice. For all Σ1

1 formulas A[x, Y]:

(Σ1
1-AC) ∀x∃Y A[x, Y] → ∃Y ∀xA[x, (Y)x].

Fixed points of positive arithmetical clauses. For all X-positive arith-
metical formulas A[X, y]:

(FP) ∃X∀y(y ∈ X ↔ A[X, y]).

Arithmetical transfinite recursion. For all arithmetical formulasA[X, y]:

(ATR) WO [R] → ∃XHA[R,X].

Π1
1 and Σ1

1 reduction. For all Σ1
1 formulas A[x] and Π1

1 formulas B[x]:

∀x(A[x] → B[x]) →
∃Y (∀x(A[x] → x ∈ Y) ∧ ∀x(x ∈ Y → B[x])).

(Π1
1-Red)

∀x(B[x] → A[x]) →
∃Y (∀x(B[x] → x ∈ Y) ∧ ∀x(x ∈ Y → A[x])).

(Σ1
1-Red)

4

These forms (Π1
1-Red) and (Σ1

1-Red) of Π1
1 reduction and Σ1

1 reduction
are simply reformulations of the respective schemas of Σ1

1 separation and Π1
1

separation in Simpson [18]. We prefer our terminology in order to avoid any
confusion with the separation principles used in the context of set theory in
the next section.

The following theorem recalls some well-known results, and we refer to
Simpson [18] and Avigad [1] for all details.

Theorem 1.

1. (ATR), (FP), and (Π1
1-Red) are equivalent over ACA0.

2. ATR0 proves all instances of (∆1
1-CA) and (Σ1

1-AC).

3. Σ1
1-AC0 proves all instances of (Σ1

1-Red).

4. For any Σ1
1 formula A[X], ACA0 proves

¬∀X(A[X] ↔ WO [X]).

It will have some technical advantages later to work with the following
extensions of (Π1

1-Red) and (Σ1
1-Red) to Π1 and Σ1 formulas.

Π1 and Σ1 reduction. For all Σ1 formulas A[x] and Π1 formulas B[x]:

∀x(A[x] → B[x]) →
∃Y (∀x(A[x] → x ∈ Y) ∧ ∀x(x ∈ Y → B[x])).

(Π1-Red)

∀x(B[x] → A[x]) →
∃Y (∀x(B[x] → x ∈ Y) ∧ ∀x(x ∈ Y → A[x])).

(Σ1-Red)

However, as stated in the following corollary, Π1 and Σ1 reduction are
equivalent to Π1

1 and Σ1
1 reduction in all interesting cases.

Corollary 2. In Σ1
1-AC0 and therefore also in ATR0, every Σ1 formula is

provably equivalent to a Σ1
1 formula and every Π1 formula to a Π1

1 formula.
In particular, we have the following equivalences:

1. (Π1-Red) is equivalent to (Π1
1-Red) over ACA0.

2. (Σ1-Red) is equivalent to (Σ1
1-Red) over Σ1

1-AC0.

We conclude this subsection with a further remark summarizing some
obvious facts that will play a role later.

Remark 3. Let A[X, y] be an arithmetical formula with the displayed free
variables and possibly further parameters and set

H◦A[a, S] := (∀x < a)∀y(y ∈ (S)x ↔ A[
⋃
z<x

(S)z, y]).

Then we have:

5

1. ACA0 ` ∃XH◦A[n,X] for all natural numbers n.

2. ACA ` ∀x∃XH◦A[x,X].

3. ATR0 ` ∀x∃XH◦A[x,X].

The first assertion is easily obtained by complete induction from outside,
whereas the second follows by complete induction inside ACA for the Σ1

1

formula ∃XH◦A[x,X]. To see why the third assertion is true, we work in ATR0

and introduce the set R := {(x, y) : x ≤ y} by arithmetical comprehension.
Then the induction axiom implies WO [R], and with the schema (ATR) we
obtain what we want.

2.2 ∆1
1 transfinite recursion and its relatives

The schemas (ATR) and (FP) are formulated for arithmetical formulas. Now
we generalize these two schemas to ∆1

1 formulas and, in the case of the fixed
point axioms, only ask for monotonicity instead of positivity.

∆1
1 transfinite recursion. For all Σ1

1 formulas A[X, y] and Π1
1 formulas

B[X, y]:

(∆1
1-TR) ∀X∀y(A[X, y]↔ B[X, y]) ∧WO [R] → ∃XHA[R,X].

Fixed points of monotone ∆1
1 clauses. For all Σ1

1 formulas A[X, y] and
Π1

1 formulas B[X, y]:

(M∆1
1-FP) CA,B → ∃X∀y(y ∈ X ↔ A[X, y]),

where CA,B stands for the formula

∀X∀y(A[X, y]↔ B[X, y]) ∧ ∀X,Y (X ⊆ Y → ∀z(A[X, z] → A[Y, z]))

that states that A[X, y] is ∆1
1 and monotone in X.

The following remark tells us that in M∆1
1-FP0 all monotone Σ1

1 definable
functions have fixed points. We leave it to the reader to check that also the
converse is true: From the existence of fixed points of monotone Σ1

1 definable
functions, the principle (M∆1

1-FP) can be derived.

Remark 4. Let A[X,Y] be a Σ1
1 formula. Then M∆1

1-FP0 proves that from

(1) ∀X∃!Y A[X,Y],

(2) ∀X0, X1, Y0, Y1(A[X0, Y0] ∧ A[X1, Y1] ∧ X0 ⊆ X1 → Y0 ⊆ Y1)

we obtain that ∃XA[X,X].

6

Proof. Indeed, assume (1) and (2) and define

B0[Z, z] := ∃X(A[Z,X] ∧ z ∈ X),

B1[Z, z] := ∀X(A[Z,X] → z ∈ X).

Then B0[Z, z] is equivalent to a Σ1
1 formula, B1[Z, z] to a Π1

1 formula. We
also have ∀X∀y(B0[X, y]↔ B1[X, y]) and

∀X,Y (X ⊆ Y → ∀z(B0[X, z] → B0[Y, z])).

Hence (M∆1
1-FP) provides a set S such that ∀x(x ∈ S ↔ B0[S, x]). But

this implies A[S, S].

Now we make use of a straightforward extension of the proof in Simpson
[18] that Π1

1-Red0 – Σ1
1-Sep0 in Simpson’s terminology – proves all instances

of (ATR) in order to show that Π1
1-Red0 even proves all instances of (∆1

1-TR).
For this end we define for any formula A[X, y] with the distinguished free
variables X and y (possibly containing further parameters) the following
auxiliary formulas:

HA[a,R, S] := LO [R] ∧ (∀x ≺R a)∀y(y ∈ (S)x ↔ A[(S)Rx, y]),

H+
A[a,R, S] := LO [R] ∧ (∀x �R a)∀y(y ∈ (S)x ↔ A[(S)Rx, y]).

Then it is obvious that HA[R,S] is equivalent to ∀aH+
A[a,R, S]. Moreover,

these hierarchies satisfy the following uniqueness property.

Lemma 5. For any formula A[X, y] we can prove in ACA0 that

WO [R] ∧ HA[a,R, S] ∧ HA[a,R, T] → (∀b ≺R a)((S)b = (T)b).

Indeed, it is straightforward that from the given assumptions the arith-
metical assertion

C[z] := z ≺R a → (S)z = (T)z

can be proved by induction on ≺.

Theorem 6. ∆1
1-TR0 ⊆ Π1

1-Red0.

Proof. Let A[X, y] be a Σ1
1 formula and B[X, y] a Π1

1 formula. Working in
Π1

1-Red0 we assume

∀X∀y(A[X, y]↔ B[X, y]) ∧ WO [R].(1)

Depending on A[Z, z] and R we now set

C0[z] := ∃b, x∃Y (Fd [R, b] ∧ z = (b, x) ∧ HA[b, R, (Y)Rb] ∧ A[(Y)Rb, x]),

C1[z] := ∀b, x∀Y (Fd [R, b] ∧ z = (b, x) ∧ HA[b, R, (Y)Rb] → A[(Y)Rb, x]).

7

In view of (1) it is easy to see that C0[z] is equivalent to a Σ1 formula and
C1[z] to a Π1 formula, provable in Π1

1-Red0. Furthermore, from Lemma 5 we
deduce that

∀z(C0[z] → C1[z]).

By Π1
1 reduction, cf. Theorem 1 and Corollary 2, we thus obtain a set S such

that

∀z(C0[z] → z ∈ S),(2)

∀z(z ∈ S → C1[z]).(3)

Now we want to show that

∀aH+
A[a,R, S].(4)

SinceH+
A[a,R, S] is equivalent to a Σ1

1 and a Π1
1 formula, R is a well-ordering,

and Π1
1-Red0 comprises ∆1

1-CA, this can be done by transfinite induction on
R. So let us assume

(∀b ≺R a)H+
A[b, R, S].(5)

Then we clearly have

HA[a,R, S],(6)

HA[a,R, (S)Ra].(7)

Thus we have, for any x,

A[(S)Ra, x] → C0[(a, x)].

Hence, because of (2), also

A[(S)Ra, x] → x ∈ (S)a.(8)

On the other hand, from (3) we obtain

x ∈ (S)a → C1[(a, x)].

Together with HA[a,R, (S)Ra] and the uniqueness assertion of Lemma 5 we
thus have

x ∈ (S)a → A[(S)Ra, x].(9)

The assertions (6), (8), and (9) give us H+
A[a,R, S], finishing the proof of

(4). As remarked earlier, (4) immediately implies HA[R,S], and so S is a
suitable witness for our ∆1

1 transfinite recursion.

8

We will show that both schemas, (∆1
1-TR) and (M∆1

1-FP), are equivalent
to (ATR) over ACA0. For doing that, we introduce a further principle, which
is interesting on its own.

Weak Σ1
1 transfinite dependent choice. For all Σ1

1 formulas A[X,Y]:

(weak-Σ1
1-TDC)

∀X∃!Y A[X,Y] ∧WO [R] →
∃Z∀x(Fd [R, x] → A[(Z)Rx, (Z)x]).

Our next step in establishing the desired equivalences is to show that all
instances of weak Σ1

1 transfinite dependent choice are provable in the theory
∆1

1-TR0.

Theorem 7. weak-Σ1
1-TDC0 ⊆ ∆1

1-TR0.

Proof. We work in ∆1
1-TR0 and assume that

(*) ∀X∃!Y A[X,Y]

for some Σ1
1 formula A[X,Y] and that WO [R]. Now we define

B[Z, z] := ∃Y (A[Z, Y] ∧ z ∈ Y),

C[Z, z] := ∀Y (A[Z, Y] → z ∈ Y)

and observe that (*) yields

∀X∀y(B[X, y]↔ C[X, y]).

Hence we can apply (∆1
1-TR) and obtain a set S such that HB[R,S], i.e.,

∀x(Fd [R, x] → ∀y(y ∈ (S)x ↔ B[(S)Rx, y])).

In view of (*) and the definition of B[Z, z] we thus have A[(S)Rx, (S)x] for
all x from the field of R, as was required for validating (weak-Σ1

1-TDC).

A further and easy observation tells us that weak Σ1
1 transfinite depen-

dent choice proves all instances of (ATR). From this proof it is clear that
instances of (weak-Σ1

1-TDC) with arithmetical matrices A[X,Y] are suffi-
cient.

Lemma 8. ATR0 ⊆ weak-Σ1
1-TDC0.

Proof. Given an arithmetical formula A[X, y] we set

B[X,Y] := ∀z(z ∈ Y ↔ A[X, z])

and observe that ∀X∃!Y B[X,Y]. Given any R with WO [R], weak Σ1
1 trans-

finite dependent choice provides the existence of a set S such that

∀x(Fd [R, x] → B[(S)Rx, (S)x]).

9

However, this implies

∀x(Fd [R, x] → ∀y(y ∈ (S)x ↔ A[(S)Rx, y])),

yielding HA[R,S] and finishing our proof.

Remark 9. It is an immediate consequence of Theorem 1 and the previ-
ous theorem that in weak-Σ1

1-TDC0 every Σ1 formula is equivalent to a Σ1
1

formula and every Π1 formula is equivalent to a Π1
1 formula.

In order to show that every instance of (M∆1
1-FP) can be proved in

weak-Σ1
1-TDC0 we only have to adapt Avigad’s proof that FP0 is contained

in ATR0, see Avigad [1].

Lemma 10. Assume that A[X, y] is Σ1
1 and that B[X, y] is Π1

1. Working in
weak-Σ1

1-TDC0 we assume that

(1) ∀X∀y(A[X, y]↔ B[X, y]),

(2) ∀X,Y (X ⊆ Y → ∀z(A[X, z] → A[Y, z])).

Also, we let C[R,Z] be the conjunction of the following (C1) – (C4):

(C1) LO [R],

(C2) ∀a(Fd [R, a] → (Z)a = {x : A[
⋃
{(Z)b : b ≺R a}, x]}),

(C3) ∀a, b(a ≺R b → (Z)a ⊆ (Z)b),

(C4) ∀a, x(Fd [R, a] ∧ x ∈ (Z)a →
∃b(Fd [R, b] ∧ x ∈ (Z)b ∧ x /∈

⋃
{(Z)c : c ≺R b})).

Then we have for any set R that

WO [R] → ∃ZC[R,Z].

Proof. To see why this is the case, set

D[Z0, Z1] := ∃X(X = {x : ∃a((a, x) ∈ Z0)} ∧ Z1 = {x : A[Z0, x]})

and recall from Remark 9 that D[Z0, Z1] is equivalent to a Σ1
1 formula. Fur-

thermore, since ∆1
1 comprehension is available in weak-Σ1

1-TDC0 according
to Theorem 1 and Lemma 8, we see that ∀X∃!Y D[X,Y]. Given any R with
WO [R], we can, therefore, apply (weak-Σ1

1-TDC) and obtain a set S such
that

(*) ∀x(Fd [R, x] → D[(S)Rx, (S)x]).

It remains to check that C[R,S]: Condition (C1) follows from WO [R]. The
definition of D plus (*) immediately give us (C2) and – because of the mono-
tonicity of A – also (C3). Finally, (C4) is a direct consequence ofWO [R].

10

Theorem 11. M∆1
1-FP0 ⊆ weak-Σ1

1-TDC0.

Proof. As in the previous lemma we assume that A[X, y] is Σ1
1, that B[X, y]

is Π1
1, and that

(1) ∀X∀y(A[X, y]↔ B[X, y]),

(2) ∀X,Y (X ⊆ Y → ∀z(A[X, z] → A[Y, z]))

are provable in weak-Σ1
1-TDC0. According to the previous lemma we then

have, always working in weak-Σ1
1-TDC0, that

∀X(WO [X] → ∃ZC[X,Z]),

where C[X,Z] is defined as in the previous lemma. In view of (1) and
Remark 9 we know that ∃ZC[X,Z] is equivalent to a Σ1

1 formula. Hence
Theorem 1 implies that there exist a linear ordering R and a set S such that

C[R,S] ∧ ¬WO [R].

Since R is not a well-ordering, there exists a non-empty subset W of its
field with no R-minimal element; without loss of generality we may also
assume that W is upwards closed. Furthermore, define (by arithmetical
comprehension)

V := {x : (∀y ∈W)(x ≺R y)}.

We make use of arithmetical comprehension once more and introduce the
sets

T0 :=
⋂
a∈W

(S)a and T1 :=
⋃
b∈V

(S)b.

We claim that T0 = T1. Indeed, T1 ⊆ T0 is immediate from (C3). For the
converse inclusion, assume that x ∈ (S)a for all a ∈ W 6= ∅. Because of
(C4) there exists a b such that x ∈ (S)b and x /∈

⋃
{(S)c : c ≺R b}. Since W

does not have an R-minimal element, this implies b ∈ V , hence x ∈ T1, and
our claim is proved. Next we will show:

(3) ∀x(A[T0, x] → x ∈ T0),

(4) ∀x(x ∈ T1 → A[T1, x]).

In order to prove (3) assume A[T0, x] and let c be an element of W . Then
we have T0 ⊆

⋃
{(S)b : b ≺R c}, and the monotonicity of A and (C2) yield

x ∈ (S)c. Since this is true for all c ∈ W and all x we have (3). It remains
to show (4). Pick an arbitrary c ∈ V . Then

⋃
{(S)b : b ≺R c} ⊆ T1. Hence

the monotonicity of A and (C2) give us (S)c ⊆ {x : A[T1, x]}. Therefore,
also (4) is established. Together with T0 = T1 we obtain from (3) and (4)
that

∀x(x ∈ T0 ↔ A[T0, x]).

Hence T0 is the required fixed point, and our theorem is proved.

11

Summarizing Theorem 1, Theorem 6, Theorem 7, and Theorem 11 we
obtain the following intermediate result.

Corollary 12. The theories ATR0, FP0, Π1
1-Red0, ∆1

1-TR0, M∆1
1-FP0, and

weak-Σ1
1-TDC0 prove the same L2 formulas.

3 Subsystems of set theory

In this section we consider several subsystems of set theory above the natural
numbers as urelements, related to the theories of the previous section. Since
we are interested in the relationship between subsystems of second order
arithmetic and set theory, this is a very natural choice. It has the further
advantage that we can distinguish in a natural way between two forms of
induction: complete induction on the natural numbers and ∈-induction. This
offers a further possibility to calibrate subsystems by restricting these forms
of induction separately.

3.1 Basic set theory BS

L∗ = L1(∈, N, S,Ad) is the first order language that is obtained from L1
by adding the membership symbol ∈, the constant N for the set of natural
numbers as well as the unary relation symbols S and Ad to express that an
object is a set and an admissible set, respectively. For notational simplicity,
we drop all symbols for primitive recursive functions.

The definitions of terms and formulas of L∗ are standard. L∗ and L2
diverge in the intended interpretations of the first order variables: in L∗
they are supposed to range over natural numbers and sets, not just over
natural numbers as in L2.

We extend the use of metavariables and allow r, s, t and A,B,C also to
stand for terms and formulas of L∗. It will always be clear from the context
whether we speak about L2 or L∗ terms and formulas.

The ∆0, Σn, Πn, Σ, and Π formulas of L∗ are defined as usual. Also,
we write Ar for the result of replacing all unbounded quantifiers ∃x(. . .) and
∀x(. . .) in A by (∃x ∈ r)(. . .) and (∀x ∈ r)(. . .), respectively. Equality of
objects is defined as

r = s :=

{
(r ∈ N ∧ s ∈ N ∧ r =N s) ∨
(S(r) ∧ S(s) ∧ r ⊆ s ∧ s ⊆ r),

where =N is the relation symbol for the primitive recursive equality relation
and r ⊆ s is short for (∀x ∈ r)(x ∈ s). Hence two objects are equal iff they
are primitive recursively equal natural numbers or sets which contain the
same elements.

12

We begin with fixing the theory BS of basic set theory. It is formulated in
classical first order logic (with equality axioms), and its non-logical axioms
are grouped as follows:

Number-theoretic axioms

(PA) AN for all closed axioms of Peano arithmetic PA.

Complete induction (L∗-IN) on N . For any L∗ formula A and with RS being
the relation symbol for the primitive recursive successor relation S,

A[0] ∧ (∀x, y ∈ N)(A[x] ∧ RS(x, y) → A[y]) → (∀x ∈ N)A[x].

Ontological axioms

(O.1) a = b → (A[a] → A[b]) for all atomic formulas A.

(O.2) S(a) ↔ a /∈ N .

(O.3) a ∈ N → b /∈ a.

(O.4) n ∈ N for all natural numbers n.

(O.5) RZ(a1, . . . , an) → a1, . . . , an ∈ N , if RZ is the relation symbol for
the n-ary primitive recursive relation Z.

Set-theoretic axioms

Pairing. ∃x(a ∈ x ∧ b ∈ x).

Union. ∃x(∀y ∈ a)(∀z ∈ y)(z ∈ x).

∆0 Separation (∆0-Sep). For any ∆0 formula A,

∃x(S(x) ∧ (∀y ∈ x → y ∈ a ∧ A[y]) ∧ (∀y ∈ a)(A[y] → y ∈ x)).

Full ∈-induction (L∗-I∈). For any L∗ formula A,

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].

In the following, subsystems of BS without ∈-induction will play a central
role: BS0 is obtained from BS by restricting complete induction on N to ∆0

formulas – denoted (∆0-IN) – and deleting ∈-induction, whereas BS1 simply
is BS without ∈-induction. Of course, more variations of restricting induc-
tions would be possible – for example restricting both forms of induction to
∆0 formulas – but such systems are not relevant for us later.

13

Remark 13. Please observe that all non-logical axioms of BS0 and all those
of BS1 – apart from induction – are Σ formulas.

Clearly, there is a canonical embedding of the language L2 into the lan-
guage L∗. Let u0, u1, . . . and U0, U1, . . . be enumerations of the first and
second order variables of L2, and let v0, v1, . . . be an enumeration of the
variables of L∗. Now we set ûi := v2i and Ûi := v2i+1. The translation of the
L2 formulas A into the L∗ formulas Â is then as follows: (i) Replace all first
order variables x andX of A by x̂ and X̂, respectively; (ii) replace all number
quantifiers ∃x(. . .) and ∀x(. . .) by (∃x̂ ∈ N)(. . .) and (∀x̂ ∈ N)(. . .), respec-
tively; (iii) replace all set quantifiers ∃X(. . .) and ∀X(. . .) by (∃X̂ ⊆ N)(. . .)
and (∀X̂ ⊆ N)(. . .), respectively.

It is obvious that the translation of every arithmetical L2 formula is a
∆0 formula of L∗; furthermore, if A is Σ1

1, then Â is Σ1, and if A is Σ1, then
Â is Σ; analogously for Π1

1 and Π1 formulas.
From now on we often identify L2 formulas A with their translations Â

and consider L2 as a sublanguage of L∗. With this convention in mind, the
following lemma is easily verified.

Lemma 14. ACA0 ⊆ BS0 and ACA ⊆ BS1.

3.2 Theories of admissible sets

We enter the field of admissible set theory if we strengthen basic set theory
by adding the schema of ∆0 collection, i.e., for any ∆0 formula A,

(∆0-Col) (∀x ∈ a)∃yA[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)A[x, y].

The textbook Barwise [2] provides an excellent introduction to Kripke-
Platek set theory with and without urelements. The theories for admissible
sets above the natural numbers as urelements, which play a role now, are
presented in detail in, for example, Jäger [7, 8, 9, 11, 12, 14].

Kripke-Platek set theory KPu above the natural numbers as urelements
is BS + (∆0-Col). Its canonical models are the structures L(α)N where α is
an admissible ordinal greater than ω; see Barwise [2] for further reading.

As in the case of BS we obtain natural subsystems of KPu by restricting
induction on N and eliminating ∈-induction:

KPu0 := BS0 + (∆0-Col) and KPu1 := BS1 + (∆0-Col).

Such restrictions have dramatic consequences. For example, in KPu0

we cannot prove the existence of ω. The following characterizations of the
proof-theoretic strengths of KPu and its two subsystems follow from Jäger
[7, 9, 12].

Theorem 15. We have the following proof-theoretic equivalences:

KPu0 ≡ ∆1
1-CA0, KPu1 ≡ ∆1

1-CA, KPu ≡ ID1.

14

Thus far the predicate Ad did not play a role. It will be used now to speak
about admissible sets and its meaning is given by the following Ad -axioms.

Ad-axioms

(Ad .1) Ad(d) → N ∈ d ∧ d is transitive.

(Ad .2) Ad(d) → Ad for any closed instance A of an axiom of KPu0.

(Ad .3) Ad(d1) ∧ Ad(d2) → d1 ∈ d2 ∨ d1 = d2 ∨ d2 ∈ d1.

These Ad -axioms determine closure properties of admissible sets; how-
ever, they do not provide for the existence of admissible sets. One possibility
to overcome this “problem” is to add the limit axiom

(Lim) ∀x∃y(x ∈ y ∧ Ad(y)).

This axiom pins down a universe that is a limit of admissible sets. We add
it to basic set theory, to Kripke-Platek set theory, and to their subsystems
without (∈-induction) and obtain the following theories:

KPl0 := BS0 + (Lim), KPi0 := KPu0 + (Lim),

KPl1 := BS1 + (Lim), KPi1 := KPu1 + (Lim),

KPl := BS + (Lim), KPi := KPu + (Lim).

The full systems KPl and KPi belong to a realm of proof theory that is not
relevant for what we study in this article. To see why, we simply mention a
result that characterizes their proof-theoretic strengths; for proofs see Jäger
[10, 11, 12] and Jäger and Pohlers [14].

Theorem 16. We have the following proof-theoretic equivalences:

KPl ≡ Π1
1-CA + (BI) and KPi ≡ ∆1

2-CA + (BI).

However, as soon as ∈-induction is dropped, we are in the range of pred-
icativity/metapredicativity. For a discussion of the general context and the
relationship between our theories and transfinitely iterated fixed point the-
ories we refer, for example, to Jäger [11], Jäger, Kahle, Setzer, and Strahm
[13], and Strahm [19].

Theorem 17. We have the following proof-theoretic equivalences:

1. KPl0 ≡ KPi0 ≡ ATR0, |KPl0| = |KPi0| = Γ0.

2. KPl1 ≡ ATR ≡ ÎDω, |KPl1| = Γε0.

3. KPi1 ≡ ÎD<ε0 , |KPi1| = ϕ1ε00.

In the articles mentioned above you also find all the necessary information
about the ordinal notations based on the binary and ternary Veblen functions
occurring in this theorem.

15

3.3 Σ and Π reduction

The set-theoretic siblings of Π1 and Σ1 reduction are the schemas (Π-Red)
and (Σ-Red), and it is clear that (modulo our embedding of L2 into L∗) the
instances of (Π1-Red) and (Σ1-Red) are special cases of (Π-Red) and (Σ-Red).

Π and Σ reduction. For all Σ formulas A[x] and Π formulas B[x]:

(∀x ∈ a)(A[x] → B[x]) →
∃y((∀x ∈ a)(A[x] → x ∈ y) ∧ (∀x ∈ y)(x ∈ a ∧ B[x])).

(Π-Red)

(∀x ∈ a)(B[x] → A[x]) →
∃y((∀x ∈ a)(B[x] → x ∈ y) ∧ (∀x ∈ y)(x ∈ a ∧ A[x])).

(Σ-Red)

It is also straightforward that (Π-Red) and (Σ-Red) yield ∆ separation,
i.e., for all Σ formulas A[x] and Π formulas B[x],

(∀x ∈ a)(A[x]↔ B[x]) → ∃y∀x(x ∈ y ↔ x ∈ a ∧A[x]).

From that lower bounds for (Σ-Red) over BS0 and BS1 can be read off im-
mediately.

Lemma 18. We have the following inclusions:

∆1
1-CA0 ⊆ BS0 + (Σ-Red) and ∆1

1-CA ⊆ BS1 + (Σ-Red).

In the next subsection, we will show that these bounds are sharp as far
as proof-theoretic strength is concerned. If (Π-Red) is available, we can do
more.

Lemma 19. We have the following inclusions:

ATR0 ⊆ BS0 + (Π-Red) and ATR ⊆ BS1 + (Π-Red).

This is an immediate consequence of Theorem 1 since (Π-Red) yields
(Π1

1-Red). In the next subsection we will also show that the respective the-
ories are equivalent in a strong sense.

Turning to Kripke-Platek set theory, the first observation is that (Σ-Red)
is not interesting in this context.

Theorem 20. KPu0 proves all instances of (Σ-Red).

Proof. We work in KPu0 and suppose that (∀x ∈ a)(A[x]→ B[x]) for some
Π formula A[x] and Σ formula B[x]. By applying Σ reflection we obtain a
set b such that

(?) (∀x ∈ a)(Ab[x]→ Bb[x]).

16

Now we introduce the set c := {x ∈ a : Bb[x]} by ∆0 separation. We claim
that c is a suitable witness for (Σ-Red).

Indeed, from x ∈ a and A[x] we obtain Ab[x] from the downward per-
sistence of Π formulas. Therefore, we have Bb[x] because of (?), and thus
x ∈ c. On the other hand, if x ∈ c, then x ∈ a and Bb[x]. So we also have
B[x] because of the upward persistence of Σ formulas.

The situation is different for (Π-Red). Clearly, (Π-Red) is provable in
BS0 + (Σ-Sep) and thus also in KPu0 + (Σ1-Sep). However, the exact proof-
theoretic analysis of (Π-Red) will not be given here and is postponed to a
later publication.

3.4 Reducing BS + (Σ-Red), BS0 + (Π-Red), and BS + (Π-Red)

In this subsection we provide the proof-theoretic upper bounds for the theo-
ries BS+(Σ-Red), BS0+(Π-Red), and BS+(Π-Red). This will be achieved by
reducing these set theories to the theories Σ1

1-AC, ATR0, and ATR. For these
reductions we follow the pattern of Simpson’s reduction of his theory ATRset

0

to ATR0 in Simpson [18]. Some additional considerations are necessary for
dealing with the natural numbers as urelements and for obtaining reductions
to Σ1

1-AC0 and Σ1
1-AC.

We adopt the terminology of [18], II.2, and take over Simpson’s defini-
tion of finite sequence of natural numbers. We write Seq – called the set of
sequence numbers – for the set of all codes of finite sequences of natural num-
bers. From now on we let σ, τ (possibly with indices) range over elements of
Seq .

Also, we write lh(σ) for the length of σ and use notations such as

σ = 〈s0, . . . , slh(σ)−1〉

and then (σ)x for sx if x < lh(σ). Accordingly, 〈〉 stands for the code of the
empty sequence.

We shall identify a finite sequence of natural numbers with its code when-
ever convenient. If σ is 〈s0, . . . sx−1, 〉 and τ is 〈t0, . . . , ty−1〉 we denote the
concatenation of the sequence numbers σ and τ by σ ∗ τ ,

σ ∗ τ = 〈s0, . . . sx−1, t0, . . . , ty−1〉.

Hence, lh(σ ∗ τ) = lh(σ) + lh(τ). In particular,

σ ∗ 〈s〉 = 〈(σ)0, . . . , (σ)lh(σ)−1, s〉

and lh(σ ∗ 〈s〉) = lh(σ) + 1. We write σ ⊆ τ to mean that σ is an initial
segment of τ , i.e., lh(σ) ≤ lh(τ) and (∀x < lh(σ))((σ)x = (τ)x).

A tree is a non-empty subset T of Seq such that σ ⊆ τ and τ ∈ T implies
σ ∈ T . Our next definition introduces the trees that we will use for the
interpretation of the objects, i.e., urelements and sets, of our set theories.

17

Definition 21. In ACA0 we introduce the notions of u-tree and represen-
tation tree.

1. T is a u-tree, in symbols Tree[u, T], iff

(i) T is a tree,

(ii) (∀σ ∈ T)(lh(σ) ≤ u),

(iii) (∀σ, x, y)(σ ∗ 〈2x+ 1〉 ∈ T ∧ y 6= 2x+ 1 → σ ∗ 〈y〉 /∈ T),

(iv) (∀σ, x)(σ ∗ 〈x〉 ∈ T → (∀y < lh(σ))((σ)y is even)).

2. T is a representation tree if it is a u-tree for some natural number u,

Rep[T] := ∃uTree[u, T].

3. If T is a representation tree and σ ∈ T , we put T σ := {τ : σ ∗ τ ∈ T}.

Obviously, every u-tree is well-founded. The u-trees will represent the
objects of our set theories. The basic idea is that the natural number x is
represented by the tree {〈〉, 〈2x + 1〉} and that the elements of a set repre-
sented by the tree T are the sets represented by the immediate subtrees of
T of the form T 〈2y〉 with 〈2y〉 ∈ T . However, in order to validate extension-
ality, we have to close this treatment of elementhood under isomorphisms;
see Definition 23 below.

Definition 22. If T is a u-tree for some u, we write Iso[X,T] to state that
X ⊆ T × T and, for all σ, τ ∈ T , (σ, τ) ∈ X iff each of the following four
properties is satisfied:

(i) ∀y(σ ∗ 〈2y〉 ∈ T → ∃z((σ ∗ 〈2y〉, τ ∗ 〈2z〉) ∈ X)),

(ii) ∀z(τ ∗ 〈2z〉 ∈ T → ∃y((σ ∗ 〈2y〉, τ ∗ 〈2z〉) ∈ X)),

(iii) ∀y(σ ∗ 〈2y + 1〉 ∈ T → (σ ∗ 〈2y + 1〉, τ ∗ 〈2y + 1〉) ∈ X),

(iv) ∀y(τ ∗ 〈2y + 1〉 ∈ T → (σ ∗ 〈2y + 1〉, τ ∗ 〈2y + 1〉) ∈ X).

Following Simpson [18] this notion of isomorphism is now directly incor-
porated into the definitions of the equality and epsilon relations on repre-
sentation trees.

Definition 23. In ACA0 we define for all representation trees S and T :

1. S ⊕ T := {〈〉} ∪ {〈0〉 ∗ σ : σ ∈ S} ∪ {〈2〉 ∗ τ : τ ∈ T},

2. S =? T := ∃X(Iso[X,S ⊕ T] ∧ (〈0〉, 〈2〉) ∈ X),

3. S ∈? T := ∃X(Iso[X,S ⊕ T] ∧ ∃x((〈0〉, 〈2, x〉) ∈ X)).

18

These definitions of =? and ∈? are so that the following properties of
suitable trees can be proved in ACA0.

Lemma 24. The following is provable in ACA0. Let R,S, T be representation
trees and assume that Iso[X,T], Iso[Y, S ⊕ T], and σ, τ ∈ T . Then we have:

1. T σ =? T τ ↔ (σ, τ) ∈ X.

2. T σ ∈? T τ ↔ ∃x((σ, τ ∗ 〈2x〉) ∈ X).

3. S =? T ↔ ∀Z(Z ∈? S ↔ Z ∈? T).

4. S =? T ∧ S ∈? R → T ∈? R.

5. Tree[u, S] ∧ Tree[v, T] ∧ S ∈? T → u < v.

For the following interpretability results we have to translate the L∗
formulas into L2 formulas. To this end we fix enumerations v0, v1, . . . of the
variables of L∗ and V0, V1, . . . of the set variables of L2.

Definition 25. We begin with translating the terms t of L∗ into L2:

v?i := Vi for all indices i,

n? := {〈〉, 〈2n+ 1〉} for all natural numbers n,

N? := {〈〉} ∪ {σ : ∃x(σ = 〈2x〉 ∨ σ = 〈2x, 2x+ 1〉)}.

Then the atomic formulas of L∗ are dealt with as follows:

(s ∈ t)? := s? ∈? t?, S(t)? := t? 6∈? N?,

RZ(t)? := ∃x(t? = {〈〉, 〈2x+ 1〉} ∧ RZ(x))

if RZ is the relation symbol for the unary primitive recursive relation Z;
n-ary primitive recursive relations are treated accordingly. The propositional
connectives commute with ?, and for the quantifiers we set

(∃viA)? := ∃Vi(Rep[Vi] ∧A?) and (∀viA)? := ∀Vi(Rep[Vi]→ A?).

Bounded quantifiers are treated accordingly.

The following lemma shows that we have Σ1-Red on the collection of
representation trees.

Lemma 26. Assume that A[X] is a Σ1 formula of L2 and B[X] a Π1 formula
of L2. Working in Σ1

1-AC0, we assume that S is a representation tree such
that

∀x(S〈2x〉 ∈? S ∧ B[S〈2x〉] → A[S〈2x〉]).

Then there exists a representation tree T such that:

19

(i) ∀x(〈2x〉 ∈ S ∧ B[S〈2x〉] → 〈2x〉 ∈ T ∧ S〈2x〉 = T 〈2x〉),

(ii) ∀x(〈2x〉 ∈ T → 〈2x〉 ∈ S ∧ S〈2x〉 = T 〈2x〉 ∧ A[T 〈2x〉]).

Proof. Since we work in Σ1
1-AC0, all instances of (Σ1-Red) are, according to

Theorem 1 and Corollary 2, at our disposal. So we only have to apply Σ1

reduction to our assumption and are rewarded with a set Y which satisfies:

• ∀x(S〈2x〉 ∈? S ∧ B[S〈2x〉] → x ∈ Y),

• ∀x(x ∈ Y → A[S〈2x〉]).

Now it is easy to check that

T := {〈〉} ∪ {σ ∈ S : 1 ≤ lh(σ) ∧ (σ)0 ∈ Y }

is a representation tree with the required properties.

Our next task is to show that the translation ∈? of the ∈-relation does
not increase the complexity too much. To achieve this aim in the context
of all representation trees, we have to work in ACA or ATR0, and we show
that every representation tree has a unique isomorphism then. In the next
subjection we will see how to proceed in the context of Σ1

1-AC0.

Lemma 27 (Existence and uniqueness of isomorphisms). ACA and ATR0

prove that
Rep[T] → ∃!XIso[X,T].

Proof. The existence of the isomorphism X on the representation tree T is
proved by means of the hierarchy building principles mentioned in point two
and three of Remark 3. The uniqueness of X follows by complete induction
starting at the leaves of X.

The proof of this lemma requires complete induction for Σ1
1 formulas or

the principle (ATR); we see no possibility to carry it through in Σ1
1-AC0.

Lemma 32 below presents what we can do in Σ1
1-AC0.

The previous lemma is the decisive step in showing that ∈? is ∆1
1 on all

representation trees. It immediately implies the following equivalence.

Lemma 28. ACA and ATR0 prove

Rep[S] ∧ Rep[T] →
(S ∈? T ↔ ∀X(Iso[X,S ⊕ T] → ∀x((〈0〉, 〈2, x〉) ∈ X))).

From now on we will freely deal with the correspondence between the
variables of L∗ and the set variables of L2. It should always be clear from
the context what we have in mind. Besides that, if ~U is the list of variables
U0, . . . , Un we use ~U ∈ Rep as shorthand notation for

Rep[U0] ∧ · · · ∧ Rep[Un].

20

If A is a formula of L∗ with at most the variables ~u free, we first translate it
into the formula A? with ~U listing the set variables linked to ~u and then set

|A| := (~U ∈ Rep → A?).

Remark 29. From the definition of ∈? and Lemma 28 we conclude that
in Σ1

1-AC and in ATR0 the translation |A| of a ∆0 formula A is provably
equivalent to a Σ1 and a Π1 formula. In view of Corollary 2, A is even
provably equivalent in these systems to a Σ1

1 and a Π1
1 formula.

Keep in mind that this remark does not hold for the weaker system
Σ1
1-AC0. Now we are ready for our first reduction theorem.

Theorem 30. We have for all formulas A of L∗:

1. BS + (Σ-Red) ` A =⇒ Σ1
1-AC ` |A|.

2. BS0 + (Π-Red) ` A =⇒ ATR0 ` |A|.

3. BS + (Π-Red) ` A =⇒ ATR ` |A|.

Proof. We first show that Σ1
1-AC proves |A| for all axioms A of BS. This is

clear for all logical axioms, the number-theoretic axioms and the ontological
axioms (O.2) – (O.5). The proofs of the translations of the (O.1)-axioms
follow from Lemma 24. To handle pairing, let S and T be the representation
trees that translate the sets a and b. Then R := S ⊕ T is a representation
tree with S ∈? R and T ∈? R. Similarly for (Union).

Now let A[x] be a ∆0 formula. Then (∆0-Sep) claims in BS the existence
of the set b := {x ∈ a : A[x]}; for simplicity of notation we suppress all
further parameters. We represent set a by the representation tree S and use
(∆1

1-CA) to introduce the set

Z := {x : S〈2x〉 ∈? S ∧ A?[S〈2x〉]}.

This is possible since (S〈2x〉 ∈? S ∧ A?[S〈2x〉) is (provably in Σ1
1-AC) equiv-

alent to a Σ1
1 and a Π1

1 formula. Now it only remains to define the represen-
tation tree

T := {〈〉} ∪ {σ ∈ S : 0 < lh(σ) ∧ (σ)0 ∈ Z}

and to verify that it is a suitable representation of b.
Every instance of (L∗-IN) in BS clearly translates into an instance of the

schema of complete induction of Σ1
1-AC. Moreover, to see why the transla-

tions of the instances of (L∗-I∈) hold in Σ1
1-AC, recall from Lemma 24 that,

for any u-tree S and v-tree T ,

S ∈? T → u < v.

Hence the translation of any instance of (L∗-I∈) is provable in Σ1
1-AC since

complete induction is available there for arbitrary L2 formulas.

21

For completing the proof of the first assertion of our theorem, it remains
to handle (Σ-Red). But this is exactly what Lemma 26 does.

The proof of the third assertion of our theorem is practically the same,
with the only difference that the translations of the instances of (Π-Red) are
taken care of by Π1-Red, which is available in ATR in view of Theorem 1 and
Corollary 2.

The second assertion is different since there we have to embed into a
second order system that does not provide complete induction for arbitrary
formulas. But in BS0 complete induction on N is restricted to ∆0 formulas.
Therefore, according to Remark 29, each such instance of complete induc-
tion translates into a formula that is equivalent to a Σ1

1 and a Π1
1 formula.

Moreover, ATR0 proves all instances of (∆1
1-CA), as stated in Theorem 1,

and thus provides for complete induction with respect to all provably ∆1
1

predicates.

Corollary 31. We have the following proof-theoretic equivalences:

1. Σ1
1-AC ≡ BS1 + (Σ-Red) ≡ BS + (Σ-Red).

2. ATR0 ≡ BS0 + (Π-Red).

3. ATR ≡ BS1 + (Π-Red) ≡ BS + (Π-Red).

This corollary is an immediate consequence of Lemma 18, Lemma 19,
and our previous reduction theorem.

3.5 The case BS0 + (Σ-Red)

It remains to analyze the theory BS0+(Σ-Red). As mentioned earlier, the im-
portant point is that in Σ1

1-AC0 we do not have the existence of isomorphisms
for arbitrary representation trees. However, by simply replacing assertions
two and three of Remark 3 by assertion one, we obtain the following weaker
existence and uniqueness property.

Lemma 32 (Existence and uniqueness of isomorphisms on k-trees). ACA0

proves for every standard natural number k that

Tree[k, T] → ∃!XIso[X,T].

Consequently, ∈? restricted to k-trees for any fixed standard natural
number k is ∆1

1.

Lemma 33. ACA0 proves for all standard natural numbers k that

Tree[k, S] ∧ Tree[k, T] →
(S ∈? T ↔ ∀X(Iso[X,S ⊕ T] → ∀x((〈0〉, 〈2, x〉) ∈ X))).

22

What we will show now is that suitable fragments of BS0 + (Σ-Red) can
be reduced to the substructures that are provided in Σ1

1-AC0 by the k-trees
for fixed natural numbers k. This is achieved by a combination of partial cut
elimination and a technique that is often called the method of asymmetric
interpretations; cf. Cantini [4].

For partial cut elimination and the asymetric interpretations we work
with a reformulation of BS0 + (Σ-Red) as a Tait-style one sided sequent
calculus. This auxiliary system, we call it H, derives finite sets (Γ,∆, . . .)
of L∗ formulas in negation normal form. If A is such an L∗ formula then
Γ,∆, A is short for Γ ∪ ∆ ∪ {A}, and similar for expressions of the form
Γ, A,B.

The axioms of H are all the sets Γ, A where A is the negation normal form
of an axiom of BS0. To simplify the notation we assume from now on that
all L∗ formulas are in negation normal form and write A for the negation
normal form of ¬A.

The rules of H include the standard rules for the propositional connectives
and quantifiers plus the cut rules

(cut)
Γ, A Γ, A

Γ

for all Γ and A; the formulas A and A are the cut formulas of this cut. In
addition, we have rules, for all Σ formulas A and Π formulas B, of the form

(Σ-Red)r
Γ, (∀x ∈ a)(B[x] ∨ A[x])

Γ, ∃y((∀x ∈ a)(B[x] ∨ x ∈ y) ∧ (∀x ∈ y)(x ∈ a ∧ A[x]))
.

It should be clear that (Σ-Red)r is the reformulation of the schema (Σ-Red)
as a rule.

Definition 34. We recursively assign a rank rk(A) to all formulas (in nega-
tion normal form) as follows:

1. If A is a Σ or a Π formula, then rk(A) := 0,

2. If A is neither a Σ nor a Π formula, then

(a) rk(A) := max(rk(B), rk(C)) + 1 if A is of the form B ∨ C or
B ∧ C.

(b) rk(A) := rk(B) + 1 if A is of the form ∃xB, ∀xB, (∃x ∈ s)B, or
(∀x ∈ s)B.

By H `mn Γ we mean that there exists a derivation of Γ in H whose depth
is bounded by m such that all cut formulas occurring in this derivation have
rank less than n. Hence H `m1 Γ says that there is a derivation of Γ in H of
depth bounded by m whose cut formulas are Σ or Π formulas.

It is easy to check that the theory BS0 + (Σ-Red) can be embedded into
its Tait-style version H.

23

Lemma 35 (Embedding). If BS0 + (Σ-Red) proves A, then there exist nat-
ural numbers m and n such that H `mn A.

The idea now is to perform a partial cut elimination for H that only leaves
us with cuts on Σ and Π formulas. Please observe that the main formulas
of all axioms of H and the main formula of the conclusion of any instance
of (Σ-Red)r are Σ formulas. By standard proof-theoretic techniques we can
therefore prove a partial cut elimination theorem, as desired.

Lemma 36 (Partial cut elimination). Assume that H `mn Γ for some natural
numbers m and n. Then there exists a natural number k such that H `k1 Γ

The next step is to carry through an asymmetric interpretation of the
(Σ∪Π)-fragment of H into Σ1

1-AC0. To this end we formulate, for all standard
natural numbers k, translations A[k] of the formulas of L∗.

Definition 37. We translate the terms t of L∗ into terms t? of L2 as in
Definition 25. For any standard natural number k and L∗ formula A we
recursively define its translation A[k] by:

(k.1) The atomic formulas of L∗ are dealt with as follows:

(s ∈ t)[k] := s? ∈? t?, S(t)[k] := t? 6∈? N?,

RZ(t)[k] := ∃x(t? = {〈〉, 〈2x+ 1〉} ∧ RZ(x))

if RZ is the relation symbol for the unary primitive recursive relation
Z; n-ary primitive recursive relations are treated accordingly.

(k.2) The propositional connectives commute with [k], and for the quantifiers
we set

(∃viA)[k] := ∃Vi(Tree[k, Vi] ∧A[k]),

(∀viA)[k] := ∀Vi(Tree[k, Vi]→ A[k]).

Bounded quantifiers are treated accordingly.

These translations are as the translation introduced in Definition 25 with
the only difference that the sets are no longer interpreted as arbitrary rep-
resentation trees but as k-trees. Also, following the pattern of the proof of
Lemma 26, we see that Σ1-Red holds in Σ1

1-AC0 on the collections of k-trees.

Lemma 38. Assume that A[X] is a Σ1 formula of L2 and B[X] a Π1 formula
of L2. Let k be a natural number. Working in Σ1

1-AC0, we assume that S is
a k-tree such that

∀x(S〈2x〉 ∈? S ∧ B[S〈2x〉] → A[S〈2x〉]).

Then there exists a k-tree T such that:

24

(i) ∀x(〈2x〉 ∈ S ∧ B[S〈2x〉] → 〈2x〉 ∈ T ∧ S〈2x〉 = T 〈2x〉),

(ii) ∀x(〈2x〉 ∈ T → 〈2x〉 ∈ S ∧ S〈2x〉 = T 〈2x〉 ∧ A[T 〈2x〉]).

It is clear from these definitions and Lemma 33 that the k-translation
of every Σ and Π formula is provably equivalent in Σ1

1-AC0 to a Σ1
1 and Π1

1

formula, respectively. In particular, the translation A[k] of a ∆0 formula A
is ∆1

1 in Σ1
1-AC0.

The following notations are useful for the formulation and the proof of
Theorem 41.

Definition 39. Let Γ be the finite set {A1, . . . , An} of L∗ formulas in nega-
tion normal form and let k be a natural number.

1. The (≥k)-instances of Γ are all sets of L2 formulas of the form

{A[k1]
1 , . . . , A[kn]

n }

with k ≤ k1, . . . , kn.

2. The (≤k)-instances of Γ are all sets of L2 formulas of the form

{A[k1]
1 , . . . , A[kn]

n }

with k1, . . . , kn ≤ k.

Remark 40. For all finite sets Γ of L∗ formulas and all natural numbers
k1, k2 with k1 ≤ k2 we have:

1. If Φ is a (≥k2)-instance of Γ, then it is also a (≥k1)-instance of Γ.

2. If Φ is a (≤k1)-instance of Γ, then it is also a (≤k2)-instance of Γ.

Theorem 41 (Asymmetric interpretation). We assume:

(i) Φ1 is a finite set of Π formulas of L∗ in negation normal form.

(ii) Φ2 is a finite set of Σ formulas of L∗ in negation normal form.

(iii) At most the variables u1, . . . , un are free in Φ1,Φ2.

(iv) H `m1 Φ1, Φ2 for some natural number m.

Then we have for all natural numbers k, all (≤k)-instances Ψ1 of Φ1, and
all (≥k + 2m)-instances Ψ2 of Φ2 that

Σ1
1-AC0 `

∨
(¬Tree[k, U1], . . . , ¬Tree[k, Un], Ψ1, Ψ2).

25

Proof. We show this assertion by induction on m and distinguish the follow-
ing cases:

(C1) Φ1,Φ2 is an axiom of H. Then the assertion is easily verified.

(C2) Φ1,Φ2 is the conclusion of an inference rule for a propositional connec-
tive or a quantifier. Then the assertion follows more or less directly from the
induction hypothesis.

(C3) Φ1,Φ2 is the conclusion of a cut with cut formulas A and A. Without
loss of generality we can thus assume that A is a Σ formula and A a Π
formula. Also, there exist natural numbers m0,m1 < m such that

H `m0
1 Φ1, Φ2, A,(1)

H `m1
1 Φ1, Φ2, A.(2)

Since Ψ2 is a (≥k + 2m)-instance of Φ2, it follows that Ψ2, A
[k+2m0] is a

(≥k + 2m0)-instance of Φ2, A. Therefore, the induction hypothesis implies
that

Σ1
1-AC0 `

∨
(¬Tree[k, U1], . . . , ¬Tree[k, Un], Ψ1, Ψ2, A

[k+2m0]).(3)

Furthermore, simple calculations show that Ψ1, A
[k+2m0] is a (≤k + 2m0)-

instance of Φ, A and Ψ2 a (≥k + 2m0 + 2m1)-instance of Φ2. Hence the
induction hypothesis applied to (2) – with k replaced by k + 2m0 – yields

Σ1
1-AC0 `

∨
(¬Tree[k, U1], . . . , ¬Tree[k, Un], Ψ1, Ψ2, A

[k+2m0]
).(4)

Now the assertion follows from (3) and (4) by simple logical reasoning within
Σ1
1-AC0.

(C4) Φ1,Φ2 is the conclusion of the rule (Σ-Red)r. In this case we obtain
our assertion directly with the help of Lemma 38.

To finish this subsection we only have to collect what we have proved
so far. The embedding lemma, partial cut elimination and the asymmetric
interpretation of H yield the following theorem.

Theorem 42. If A is a Σ sentence that is provable in BS0 + (Σ-Red), then
there exists a natural number m such that Σ1

1-AC0 proves A[m].

Since ∆1
1-CA0 and Σ1

1-AC0 are proof-theoretically equivalent to Peano
arithmetic according to, for example, Barwise and Schlipf [3] and Fefer-
man and Sieg [6], and since BS0 + (Σ-Red) contains ∆1

1-CA0 according to
Lemma 18, this theorem yields the following proof-theoretic equivalences.

Corollary 43. We have the following proof-theoretic equivalences:

PA ≡ ∆1
1-CA0 ≡ Σ1

1-AC0 ≡ BS0 + (Σ-Red).

26

Bärtschi is also interested in uniform versions of the second order systems
studied in this paper. For example, the uniform version UFP0 is obtained
by adding for every X-positive arithmetical formula A[X,Y, x, y] with the
indicated free variables a fresh functional FA. Then the uniform version of
the fixed point axiom for the operator form A[X,Y, x, y] is

∀Y ∀x, y(x ∈ FA(Y, y) ↔ A[F(Y, y), Y, x, y]).

Similarly for ATR0. This leads to some interesting new relationships; it is
work in preparation and will be presented in full details elsewhere.

Acknowledgment. This publication was made possible through the sup-
port of a grant from the John Templeton Foundation. The opinions expressed
in this publication are those of the authors and do not necessarily reflect the
views of the John Templeton Foundation.

References

[1] J. Avigad, On the relationship between ATR0 and ÎD<ω, The Journal of
Symbolic Logic 61 (1996), no. 3, 768–779.

[2] K.J. Barwise, Admissible Sets and Structures, Perspectives in Mathe-
matical Logic, vol. 7, Springer, 1975.

[3] K.J. Barwise and J. Schlipf, On recursively saturated models of arith-
metic, Model Theory and Algebra : a Memorial Tribute to Abraham
Robinson (D.H. Saracino and V.B. Weispfenning, eds.), Lecture Notes
in Mathematics, vol. 498, Springer, 1975, pp. 42–55.

[4] A. Cantini, On the relation between choice and comprehension principles
in second order arithmetic, The Journal of Symbolic Logic 51 (1986),
no. 2, 360–373.

[5] S. Feferman, Systems of predicative analysis, The Journal of Symbolic
Logic 29 (1964), no. 1, 1–30.

[6] S. Feferman and W. Sieg, Proof-theoretic equivalences between classical
and constructive theories for analysis, Iterated Inductive Definitions and
Subsystems of Analysis: Recent Proof-theoretical Studies (W. Buch-
holz, S. Feferman, W. Pohlers, and W. Sieg, eds.), Lecture Notes in
Mathematics, vol. 897, Springer, 1981.

[7] G. Jäger, Beweistheorie von KPN, Archive for Mathematical Logic 20
(1980), no. 1-2, 53–63.

27

[8] , Iterating admissibility in proof theory, Proceedings of the Her-
brand Symposium, Logic Colloquium ’81 (J. Stern, ed.), Studies in Logic
and the Foundations of Mathematics, vol. 107, Elsevier, 1982, pp. 137–
146.

[9] , Zur Beweistheorie der Kripke-Platek-Mengenlehre über den
natürlichen Zahlen, Archiv für Mathematische Logik und Grundlagen-
forschung 22 (1982), 121–139.

[10] , A well-ordering proof for Feferman’s theory T0, Archiv für
Mathematische Logik und Grundlagenforschung 23 (1983), no. 1, 65–77.

[11] , The strength of admissibility without foundation, The Journal
of Symbolic Logic 49 (1984), no. 3, 867–879.

[12] , Theories for Admissible Sets: A Unifying Approach to Proof
Theory, Studies in Proof Theory, Lecture Notes, vol. 2, Bibliopolis,
1986.

[13] G. Jäger, R. Kahle, A. Setzer, and T. Strahm, The proof-theoretic anal-
ysis of transfinitely iterated fixed point theories, The Journal of Symbolic
Logic 64 (1999), no. 1, 53–67.

[14] G. Jäger and W. Pohlers, Eine beweistheoretische Untersuchung von
(∆1

2-CA) + (BI) und verwandter Systeme, Sitzungsberichte der Bayeri-
schen Akademie der Wissenschaften, Mathematisch-Naturwissenschaft-
liche Klasse 1 (1982), 1–28.

[15] K. Schütte, Eine Grenze für die Beweisbarkeit der transfiniten Induktion
in der verzweigten Typenlogik, Archiv für Mathematische Logik und
Grundlagenforschung 7 (1964), 45–60.

[16] , Predicative well-orderings, Formal Systems and Recursive
Functions (J.N Crossley and M.A.E. Dummett, eds.), Studies in Logic
and the Foundations of Mathematics, North-Holland, 1965, pp. 280–
303.

[17] , Proof Theory, Grundlehren der mathematischen Wis-
senschaften, vol. 225, Springer, 1977.

[18] S.G. Simpson, Subsystems of Second Order Arithmetic (2nd Edition),
Perspectives in Logic, Cambridge University Press, 2009.

[19] T. Strahm, Autonomous fixed point progressions and fixed point transfi-
nite recursion, Logic Colloquium ’98 (S. Buss, P. Hajek, and P. Pudlak,
eds.), ASL Lecture Notes in Logic, vol. 13, A K Peters, 2000, pp. 449–
464.

28

Address
Michael Bärtschi, Gerhard Jäger
Institut für Informatik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
{baertsch,jaeger}@inf.unibe.ch

29

