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Abstract In this article we study several reduction principles in the context of
Simpson’s set theory ATRS

0 and Kripke-Platek set theory KP (with infinity). Since
ATRS

0 is the set-theoretic version of ATR0 there is a direct link to second order
arithmetic and the results for reductions over ATRS

0 are as expected and more or less
straightforward. However, over KP we obtain several interesting new results and are
lead to some open questions.

Dedicated to Peter Schroeder-Heister

1 Introduction

Peter Schroeder-Heister has been interested in the foundations of inference for many
decades, most prominently in connection with a program that he baptized “proof-
theoretic semantics”. Though not related to this program in the strict sense, the work
presented here is in direct connection to a talk given by the second author at the
Third Tübingen Conference on Proof-Theoretic Semantics in 2019. Proof theory is
the conceptual link between foundational questions considered under the heading of
proof-theoretic semantics and our research on subsystems of second order arithmetic
and set theory.

About terminology: Let K be a class of formulas of second order arithmetic.
What Simpson calls the K separation principle in second order arithmetic is the
collection of all
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¬∃i(ϕ[i] ∧ ψ[i]) → ∃Z∀i(ϕ[i] → i ∈ Z → ¬ψ[i]),

where ϕ[i] and ψ[i] are formulas from K. In Simpson [16] various such separation
principles have been studied. They play an interesting role in reverse mathematics
and are equivalent – over a weak base theory – to certain comprehension principles.
In particular, it is shown in [16] that ACA0 plus Σ1

1 separation (Σ
1
1-Sep) is equivalent

to the famous theory ATR0 of arithmetical transfinite recursion.
However, this form of separation must not be confused with separation in set

theory. There, K separation for a class K of formulas of set theory consists of all
assertions

∀x∃y(y = {z ∈ x : ϕ[z]})

with ϕ[z] ranging over K. In order to avoid this conflict of notation we decided to
call “reduction” what Simpson calls “separation”; see Definition 3. Thus we can use
the same terminology in second order arithmetic and set theory.

In this article we consider several reduction principles, analog to Simpson’s
separation principles, though in the context of his set theory ATRS

0 and in the context
of Kripke-Platek set theory KP (with infinity). Since ATRS

0 is the set-theoretic version
of ATR0 the results for reductions over ATRS

0 are as expected and more or less
straightforward. However, over KP we obtain several interesting results and are lead
to some open questions.

This article begins with a review of separation principles in second order arith-
metic – now, of course, under the new term “reduction principles” – and some
important equivalences to comprehension principles. Then we have a section in
which some basics about the theory ATRS

0 and its extension ATRS are presented be-
fore we address Kripke-Platek set theory KP and its relationship to ATRS

0 . Finally, we
turn to Σ1 reduction (Σ1-Red) and Π1 reduction (Π1-Red). The respective strengths
of (Σ1-Red) and (Π1-Red) over ATRS

0 and ATRS are then determined, in general by
making use of the quantifier theorem and the fact that ATRS

0 is equivalent to ATR0.
Afterwards, we change the environment and study (Σ1-Red) and (Π1-Red) in the
context of KP. We end with some general comments and open problems. This paper
is a mix of a survey article and new technical work.

2 Well-known reduction principles in second order arithmetic

Let L2 be a standard language of second order arithmetic with countably infinite
supplies of two distinct sorts of variables; we also have the constant symbols 0 and
1 and function symbols for addition and multiplication plus relation symbols for
the equality and less relation on the natural numbers. The first order variables are
called number variables and supposed to range over natural numbers. The second
order variables are known as set variables and intended to range over all sets of
natural numbers. The number terms and formulas of L2 are built up as usual. See,
for example, Simpson [16].
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We use the following categories of letters (possibly with subscripts) as metavari-
ables:

• i, j, k for first order variables;
• X,Y, Z for second order variables;
• η, θ, ϕ, ψ for formulas.

A formula ofL2 without bound set variables is called arithmetical. For 1 ≤ n ∈ N,
a formula ϕ is said to be Σ1

n or Π1
n iff it is of the form

∃X1∀X2 . . . Xnθ or ∀X1∃X2 . . . Xnθ,

respectively, where θ is arithmetical.
Throughout this paper we work in classical logic with equality for the first sort.

Equality for sets in L2 is defined by saying that two sets are identical iff they contain
the same elements.

ACA0 is the systemof second order arithmeticwhose non-logical axioms comprise
the defining axioms for all primitive recursive functions and relations, the axiom
schema of arithmetical comprehension

∃X∀i(i ∈ X ↔ ϕ[i])

for all arithmetical formulas ϕ[i], and the induction axiom

∀X(0 ∈ X ∧ ∀i(i ∈ X → i+1 ∈ X) → ∀i(i ∈ X)).

ACA0 is known to be a conservative extension of Peano arithmetic PA. The theory
ACA is obtained from ACA0 by adding the schema of induction

ϕ[0] ∧ ∀i(ϕ[i] → ϕ[i+1]) → ∀iϕ[i]

for all L2 formulas ϕ[i]. Below we will make use of several further axiom schemas:

• (Σ1
1-AC) is the schema

∀i∃Xϕ[i, X] → ∃Y∀iϕ[i, (Y )i]

for arbitrary Σ1
1 formulas ϕ[i, X];

• (∆1
2-CA) is the schema

∀i(ϕ[i] ↔ ψ[i]) → ∃X∀i(i ∈ X ↔ ϕ[i])

for all Σ1
2 formulas ϕ[i] and Π1

2 formulas ψ[i];
• (Π1

2-CA) is the schema
∃X∀i(i ∈ X ↔ ϕ[i])

for all Π1
2 formulas ϕ[i].

To simplify the notation we write∆1
2-CA0 for the theory ACA0+(∆

1
2-CA) andΠ1

2-CA0
for ACA0 + (Π

1
2-CA).
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Additional notation is necessary to formulate the principles of arithmetical trans-
finite recursion (ATR) and bar induction (BI), and to this end we follow [16] as
closely as possible.

Working in ACA0, we code binary relations on the natural numbers N as subsets
of N via the pairing function

(i, j) := (i + j)2 + i.

A set X of natural numbers is said to be reflexive iff

∀i, j((i, j) ∈ X → ((i, i) ∈ X ∧ ( j, j) ∈ X)).

If X is reflexive, then Field[X] is defined to be the set {i : (i, i) ∈ X}, and we write

i ≤X j := (i, j) ∈ X,

i <X j := (i, j) ∈ X ∧ ( j, i) < X .

Furthermore, if X is reflexive we say that X is well-founded iff every non-empty
subset of Field[X] has an X-minimal element.1 We say that X is a linear ordering if
it is a reflexive linear ordering of its field, i.e.,

∀i, j, k(i ≤X j ∧ j ≤X k → i ≤X k),

∀i, j(i ≤X j ∧ j ≤X i → i = j),

(∀i, j ∈ Field[X])(i ≤X j ∨ j ≤X i).

We say that X is a well-ordering iff it is both well-founded and a linear ordering. Let
WF[X], LO[X], and WO[X] be formulas saying that X is, respectively, well-founded,
a linear ordering, and a well-ordering.

Definition 1 Given an L2 formula ϕ[i], let TI[X, ϕ] be the formula

∀ j((∀i <X j)ϕ[i] → ϕ[ j]) → ∀ jϕ[ j].

The schema (BI) of bar induction consists of all formulas

∀X(WF[X] → TI[X, ϕ]),

where ϕ ranges over all L2 formulas.

Now let ϕ[i,Y ] be any formula with distinguished free number variable i and
distinguished free set variable Y . DefineHϕ[X,Y ] to be the formula

LO[X] ∧ Y = {(i, j) : j ∈ Field[X] ∧ ϕ[i,Y j]},

1 This is equivalent over ACA0 to the definition given in [16].
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where Y j := {(i, k) ∈ Y : k <X j}. Intuitively, Hϕ[X,Y ] says that X is a linear
ordering and Y is the result of iterating ϕ along X .

Definition 2 The schema (ATR) of arithmetical transfinite recursion comprises

∀X(WO[X] → ∃YHϕ[X,Y ])

for all arithmetical formulas ϕ[i,Y ]. Accordingly, we set

ATR0 := ACA0 + (ATR) and ATR := ACA + (ATR).

ACA0 and ATR0 belong to the “big five” in the Friedman-Simpson program of
reverse mathematics:

RCA0 ( WKL0 ( ACA0 ( ATR0 ( Π
1
1-CA0.

For more about these theories and the program of reverse mathematics in general we
refer to Simpson [16].

It is also known that the proof-theoretic ordinals of ATR0 and ATR are the ordinals
Γ0 and Γε0 , respectively. For these results cf., for example, Friedman, McAloon and
Simpson [4] and Jäger [7, 9].

In the following the theory ATR0 will play a major role. Arithmetical transfinite
recursion is relevant here because of its remarkable equivalence toΠ1

1 reduction over
ACA0. This and related reduction principles are introduced now.

Definition 3 Let n be a natural number greater than 0.

1. Σ1
n reduction (Σ1

n-Red) is the schema consisting of all formulas

∀i(ϕ[i] → ψ[i]) → ∃X∀i(ϕ[i] → i ∈ X → ψ[i]),

where ϕ[i] is a Π1
n and ψ[i] a Σ1

n formula.
2. Π1

n reduction (Π1
n-Red) is the schema consisting of all formulas

∀i(ϕ[i] → ψ[i]) → ∃X∀i(ϕ[i] → i ∈ X → ψ[i]),

where ϕ[i] is a Σ1
n and ψ[i] a Π1

n formula.

As mentioned in the introduction, what we call Σ1
n reduction [Π1

n reduction] has
been called Π1

n separation [Σ1
n separation] by Simpson. Modulo this renaming the

following characterizations are known.

Theorem 1 (Buchholz-Schütte, Simpson)

(i) The theory ACA0 + (Σ
1
1-AC) proves (Σ1

1-Red).
(ii) ACA0 + (Π

1
1-Red) is equivalent to ATR0.

(iii) ACA0 + (Σ
1
2-Red) is equivalent to ∆1

2-CA0.
(iv) ACA0 + (Π

1
2-Red) is equivalent to Π1

2-CA0.
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Assertion (i) is an easy observation; (ii) is a fairly complicated and technically
demanding result presented in Simpson [16]; (iii) has been proved in Buchholz and
Schütte [3]; (iv) is mentioned in [16] as an exercise. The following theorem is an
immediate consequence of [16], Corollary VII.2.19.

Theorem 2 (Simpson) The theory ACA0 + (BI) proves all instances of (ATR).

3 Basic set theory BS0 and Simpson’s ATRS
0

After these introductory remarks we now turn to the two set theories that are in the
center of this work: Simpson’s ATRS

0 and Kripke-Platek set theory KP (with infinity).
The set-theoretic languageL∈ is a one-sorted first order language with two binary

relation symbols ∈ and =, countably many set variables, and the usual connectives
and quantifiers of first order logic. Terms and formulas of L∈ are as usual.

We shall make use of the common set-theoretic terminology and employ the
standard notational conventions. In addition, we use as metavariables (possibly with
subscripts):

• a, b, c, f , i, j, k, r, u, v,w, x, y, z for set-theoretic variables,
• η, θ, ϕ, ψ for formulas.

We also follow the general conventions in defining the ∆0, Σ,Π, Σn, and Πn formulas
of L∈ (1 ≤ n ∈ N).

Basic set theory BS0 is a theory in the language L∈ – based on classical first
order logic with equality – whose non-logical axioms are the universal closures of
the following formulas:

• Extensionality: ∀x(x ∈ a ↔ x ∈ b) → a = b.
• Regularity: a , � → (∃x ∈ a)(∀y ∈ x)(y < a).
• Infinity: ∃a(� ∈ a ∧ (∀x, y ∈ a)(x ∪ {y} ∈ a)).
• Rudimentary closure: We have axioms that formalize that the universe is closed

under a series of rudimentary set-theoretic operations; cf. Simpson [16], Defini-
tion VII.3.3. We also claim that every set is a subset of a transitive set.

It is set-theoretic folklore and mentioned, for example, in Simpson [16] that BS0
proves ∆0 separation.

Lemma 1 BS0 proves for all ∆0 formulas ϕ[x] and all sets a that

∃y∀x(x ∈ y ↔ x ∈ a ∧ ϕ[x]). (∆0-Sep)

The theory BS is the extension of BS0 resulting from extending regularity from
sets to arbitrary formulas ϕ[x],

∃xϕ[x] → ∃x(ϕ[x] ∧ (∀y ∈ x)¬ϕ[y]).

Thus ∈-induction is available in BS for arbitray L∈ formulas.
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Lemma 2 BS proves, for any L∈ formula ϕ[x],

∀x((∀y ∈ x)ϕ[y] → ϕ[x]) → ∀xϕ[x]. (L∈-I∈)

Proof Aiming at the contrapositive, assume¬ϕ[a] for some a and let b be a transitive
set such that {a} ⊆ b. Now set

ψ[x] := x ∈ b ∧ ¬ϕ[x].

Clearly, ∃xψ[x] and, therefore, the schema of regularity for formulas gives us an x
satisfying

ψ[x] ∧ (∀y ∈ x)¬ψ[y],

i.e.,
x ∈ b ∧ ¬ϕ[x] ∧ (∀y ∈ x)(y < b ∨ ϕ[y]).

Since b is transitive, this can be simplified to

¬ϕ[x] ∧ (∀y ∈ x)ϕ[y],

and we have the desired statement. �

Moreover, we shall employ the common set-theoretic terminology and the stan-
dard notational conventions, for example:

Tran[a] := (∀x ∈ a)(∀y ∈ x)(y ∈ a),

Ord[a] := Tran[a] ∧ (∀x ∈ a)Tran[x],

Succ[a] := Ord[a] ∧ (∃x ∈ a)(a = x ∪ {x}),

FinOrd[a] :=

{
Ord[a] ∧ (a = � ∨ Succ[a]) ∧

(∀x ∈ a)(x = � ∨ Succ[x]).

In addition, we let ω be the collection of all finite ordinals and observe that it forms
a set in BS0.

There is a natural translation of L2 into L∈: The number variables of L2 are
interpreted in L∈ as ranging over ω and the set variables of L2 are interpreted in L∈
as ranging over the subsets of ω. This means that

• first order quantifiers ∃i and ∀i of L2 translate into (∃i ∈ ω) and (∀i ∈ ω),
• second order quantifiers ∃X and ∀X of L2 translate into (∃x ⊆ ω) and (∀x ⊆ ω).

Then one has to verify that BS0 proves the existence of set-theoretic functions on
ω that correspond to the number-theoretic addition and multiplication. The number-
theoretic less and equality relation go over into < and = on ω.

Clearly, each axiom of ACA0 becomes a theorem of BS0 under this translation.
When working in L∈ we shall from now on identify L2 formulas with their transla-
tions into L∈.
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Simpson’s ATRS
0 is obtained from BS0 by adding the axiom of countability (C)

and the axiom (Beta). In the definition below we write Tran[a] to express that the
set a is transitive and Inj[ f , a, ω] to state that f is an injective function from a to ω.

Definition 4 Aset a is called hereditarily countable iff there exist a transitive superset
x of a and an injection from x to ω,

HC[a] := ∃x, f (a ⊆ x ∧ Tran[x] ∧ Inj[ f , x, ω]).

The axiom of countability (C) claims that all sets are hereditarily countable,

(C) := ∀xHC[x].

In the formulation of the axiom (Beta) we write Dom[ f , a] to express that f is a
function with domain a. We write 〈x, y〉 for the ordered pair of x and y and a × b
for the Cartesian product of a and b. Also, r ⊆ a × a is called well-founded on a iff
every non-empty subset of a has an r-minimal element,

Wf [a, r] := (∀b ⊆ a)(b , � → (∃x ∈ b)(∀y ∈ b)(〈y, x〉 < r)).

Definition 5 The axiom (Beta) is the universal closure of the formula

Wf [a, r] →

∃ f (Dom[ f , a] ∧ (∀x ∈ a)( f (x) = { f (y) : y ∈ a ∧ 〈y, x〉 ∈ r})).

This function f is said to be the collapsing function for r on a.

The axiom (Beta) has the effect of making theΠ1 predicateWf [a, r] a∆1 predicate
since the existence of a collapsing function for r on a obviously implies the well-
foundedness of r on a.

With these definitions the stage is set to introduce the theory ATRS
0 and its

extension ATRS:

ATRS
0 := BS0 + (Beta) + (C) and ATRS := BS + (Beta) + (C).

Below we write ATRS
0 \(C) for the subsystem of ATRS

0 without the axiom of count-
ability and ATRS\(C) for ATRS without (C).

As we have mentioned above, there is a natural translation of L2 into L∈. The
converse direction, i.e., the translation of L∈ into L2, is more complicated. In a
nutshell: The sets of L∈ are represented by so-called suitable trees. Any suitable
tree T is a well-founded subset of N<N, and if 〈n〉 ∈ T then T 〈n〉 is the subtree
{σ : 〈n〉 ∗ σ ∈ T} of T , with σ ranging over (the codes of) finite sequences.
Elementhood is then coded by defining

S ∈∗ T := ∃n(〈n〉 ∈ T ∧ S ' T 〈n〉),
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where S ' T 〈n〉 says that there exists a specific tree isomorphism between S and
T 〈n〉 . For all details concerning this representation we refer to Simpson [16]. There
it is also described how to each formula ϕ of L∈ we associate a formula |ϕ| of L2.

The following two results of Simpson [16] make it clear that ATRS
0 is the set-

theoretic variant of ATR0.

Theorem 3 (Simpson)

(i) Every axiom of ATR0 is a theorem of ATRS
0 .

(ii) If ϕ is an axiom of ATRS
0 , then |ϕ| is a theorem of ATR0.

This theorem can be easily extended to ATRS . On the side of second order arith-
metic, arithmetical transfinite recursion simply has to be replaced by bar induction.

Theorem 4 (i) Every axiom of ACA0 + (BI) is a theorem of ATRS\(C).
(ii) If ϕ is an axiom of ATRS , then |ϕ| is a theorem of ACA0 + (BI).

Proof It is a classic result that all instances of (BI) can be proved by means of (Beta)
and ∈-induction (L∈-I∈); see, for example, Jäger [10]. For (ii) we refer to Simpson
[16], Theorem VII.3.34 and Exercise VII.3.38. �

Corollary 1 If we write |T | for the proof-theoretic ordinal of the theory T , then we
have:

(i) |ATR0 | = |ATRS
0 | = Γ0.

(ii) |ATR| = Γε0 .
(iii) |ATRS | = Ψ(εΩ+1) (Bachmann-Howard ordinal).

We end this introductory section by stating the so-called quantifier theoremwhich
relates formulas ofL2 with formulas ofL∈. The formulation below is from Simpson
[16]. Its first part also follows from corresponding results in Jäger [6, 10].

Theorem 5 (Quantifier theorem / Jäger, Simpson) Let n be any natural number.

(i) Each Σ1
n+2 formula of L2 is equivalent – provably in ATRS

0 \(C) – to a Σn+1
formula of L∈.

(ii) If ϕ is a Σn formula of L∈, then |ϕ| is equivalent – provably in ATR0 – to a Σ1
n+1

formula of L2.

In many set theories – Kripke-Platek set theory is a typical example – we do
not have to make a big difference between ∆0 and ∆1 formulas. That this is not the
case for ATRS

0 is an immediate consequence of the quantifier theorem. Recall from
Lemma 1 that ATRS

0 proves ∆0 separation. However:

Corollary 2 There are instances of ∆1 separation that are not provable in ATRS .

Proof In view of the quantifier theorem, ATRS + (∆1-Sep) comprises the theory
∆1

2-CA0, whose proof-theoretic ordinal is much greater than the Bachmann-Howard
ordinal. Therefore, (∆1

2-CA) cannot be provable in ATRS . �
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4 Kripke-Platek set theory KP and its relationship to ATRS
0

Kripke-Platek set theory KP (with infinity) is one of the best studied subsystems of
Zermelo-Fraenkel set theory ZF. The transitive models of KP are called admissible
sets, and LωCK

1
, where ωCK

1 denotes the first non-recursive ordinal, is the least
standardmodel ofKP. Kripke-Platek set theory and admissible sets play an important
role in generalized recursion theory, definability theory and, of course, in proof
theory.

Kripke-Platek set theory KP is obtained from BS by adding the schema of ∆0
collection, i.e.,

(∀x ∈ a)∃yϕ[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)ϕ[x, y] (∆0-Col)

for all ∆0 formulas ϕ[x, y];

KP := BS + (∆0-Col).2

KP0 is the subsystem of KP where regularity is restricted to sets (as in BS0), i.e.,

KP0 := BS0 + (∆0-Col).

Thus, obviously, KP0 + (Beta) and KP+ (Beta) are the same theories as ATRS
0 \(C)+

(∆0-Col) and ATRS\(C) + (∆0-Col), respectively.
Below we list a series of known result that indicate that the relationship between

ATRS
0 and KP is quite intricate. They are mostly taken from Simpson [15, 16] and

Jäger [8, 10].

Theorem 6 (Overview)

(i) The proof-theoretic ordinal of KP is the Bachmann-Howard ordinal Ψ(εΩ+1).
KP is proof-theoretically equivalent to ATRS and to the theory of non-iterated
inductive definitions ID1.

(ii) KP0 + (Beta) is proof-theoretically equivalent to ∆1
2-CA0.

(iii) KP + (Beta) is proof-theoretically equivalent to ∆1
2-CA0 + (BI).

(iv) Any well-founded model of ATRS
0 of height ωCK

1 is not a model of KP.
(v) Any well-founded model of KP of height ωCK

1 is not a model of ATRS
0 .

From that we immediately deduce that ATRS
0 and KP are not compatible in the

sense that
KP * ATRS

0 and ATRS
0 * KP.

We even have KP0 * ATRS . Otherwise, ATRS would comprise KP + (Beta), and the
ordinal of this theory is greater than the Bachmann-Howard ordinal.

2 Traditionally,KP is defined to be the set theorywhose non-logical axioms consist of Extensionality,
Pairing, Union, Infinity, (L∈-I∈), (∆0-Sep), and (∆0-Col); but both definitions are equivalent.
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5 Reduction axioms in set theory

The next step is to add reduction principles, similar to those of second order arithmetic
in Definition 3, to our set theories.

Definition 6 1. Σ1 reduction (Σ1-Red) is the schema consisting of all formulas

(∀x ∈ a)(ϕ[x] → ψ[x]) → (∃y ⊆ a)(∀x ∈ a)(ϕ[x] → x ∈ y → ψ[x]),

where ϕ[x] is a Π1 and ψ[x] a Σ1 formula.
2. Π1 reduction (Π1-Red) is the schema consisting of all formulas

(∀x ∈ a)(ϕ[x] → ψ[x]) → (∃y ⊆ a)(∀x ∈ a)(ϕ[x] → x ∈ y → ψ[x]),

where ϕ[x] is a Σ1 and ψ[x] a Π1 formula.

Our aim is to analyze the strengths of (Σ1-Red) and (Π1-Red) in the context of
Simpsons ATRS

0 and Kripke-Platek set theory. We begin with ATRS
0 and ATRS where

the situation is clear.

5.1 ATRS
0 and ATRS plus (Σ1-Red) and (Π1-Red)

Theorem 3 and Theorem 4, in combination with the quantifier theorem, immediately
give us

ATR0 + (Σ
1
2-Red) ⊆ ATRS

0 + (Σ1-Red),

ACA0 + (BI) + (Σ1
2-Red) ⊆ ATRS + (Σ1-Red),

ATR0 + (Π
1
2-Red) ⊆ ATRS

0 + (Π1-Red),

ACA0 + (BI) + (Π1
2-Red) ⊆ ATRS + (Π1-Red).

Therefore, together with Theorem 1 we have the following lower bound results for
(Σ1-Red) and (Π1-Red).

Theorem 7 (i) ∆1
2-CA0 ⊆ ACA0 + (Σ

1
2-Red) ⊆ ATRS

0 + (Σ1-Red).
(ii) ∆1

2-CA0 + (BI) ⊆ ACA0 + (Σ
1
2-Red) + (BI) ⊆ ATRS + (Σ1-Red).

(iii) Π1
2-CA0 ⊆ ACA0 + (Π

1
2-Red) ⊆ ATRS

0 + (Π1-Red).
(iv) Π1

2-CA0 + (BI) ⊆ ACA0 + (Π
1
2-Red) + (BI) ⊆ ATRS + (Π1-Red).

Turning to the converse directions, we first make use of the quantifier theorem
again and observe that for every (closed) instance ϕ of (Σ1-Red) and (Π1-Red) the
correspondingL2 formula |ϕ| is derivable in ATR0+(Σ

1
2-Red) and ATR0+(Π

1
2-Red),

respectively. Therefore, Theorem 3 and Theorem 4 yield for all sentences ϕ of L∈:
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ATRS
0 + (Σ1-Red) ` ϕ ⇒ ATR0 + (Σ

1
2-Red) ` |ϕ|,

ATRS + (Σ1-Red) ` ϕ ⇒ ACA0 + (Σ
1
2-Red) + (BI) ` |ϕ|,

ATRS
0 + (Π1-Red) ` ϕ ⇒ ATR0 + (Π

1
2-Red) ` |ϕ|,

ATRS + (Π1-Red) ` ϕ ⇒ ACA0 + (Π
1
2-Red) + (BI) ` |ϕ|.

The following upper bounds for (Σ1-Red) and (Π1-Red) are straightforward con-
sequences of Theorem 1.

Theorem 8 We have for every sentence ϕ of L∈:

(i) ATRS
0 + (Σ1-Red) ` ϕ ⇒ ∆1

2-CA0 ` |ϕ|.
(ii) ATRS + (Σ1-Red) ` ϕ ⇒ ∆1

2-CA0 + (BI) ` |ϕ|.
(iii) ATRS

0 + (Π1-Red) ` ϕ ⇒ Π1
2-CA0 ` |ϕ|.

(iv) ATRS + (Π1-Red) ` ϕ ⇒ Π1
2-CA0 + (BI) ` |ϕ|.

To sum up, we know that (Σ1-Red) and (Π1-Red) added to ATRS
0 and ATRS lead

to the following proof-theoretic equivalences:

ATRS
0 + (Σ1-Red) ≡ ∆1

2-CA0,

ATRS + (Σ1-Red) ≡ ∆1
2-CA0 + (BI),

ATRS
0 + (Π1-Red) ≡ Π1

2-CA0,

ATRS + (Π1-Red) ≡ Π1
2-CA0 + (BI).

So for (Σ1-Red) and (Π1-Red) the situation is clear as long as we stay in the context
of ATRS

0 and its extension ATRS . The picture is completely different when we move
to Kripke-Platek set theory.

5.2 KP0 and KP plus (Σ1-Red) and (Π1-Red)

A first observation is that (Σ1-Red) is irrelevant for Kripke-Platek set theory; it is
provable there.

Lemma 3 Every instance of (Σ1-Red) is provable in KP0.

Proof Suppose that, for some Π1 formula ϕ[x] and Σ1 formula ψ[x],

(∀x ∈ a)(ϕ[x] → ψ[x]).

By Σ reflection there exists a set b such that

(∀x ∈ a)(ϕb[x] → ψb[x]).

Then c := {n ∈ a : ψb[n]} is the set we need. �
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A further obvious observation is that an upper bound for (Π1-Red) is provided by
Σ1 separation, i.e., the schema

∃y∀x(x ∈ y ↔ x ∈ a ∧ ϕ[x]) (Σ1-Sep)

for all Σ1 formulas ϕ[x]. To see why, take a Σ1 formula ϕ[x] and a Π1 formula ψ[x]
such that

(∀x ∈ a)(ϕ[x] → ψ[x])

for some set a. By (Σ1-Sep) we can define the set b := {x ∈ a : ϕ[x]} which is an
obvious witness for (Σ1-Red). Thus we have the following upper bounds.

Theorem 9 (i) KP0 + (Π1-Red) ⊆ KP0 + (Σ1-Sep).
(ii) KP + (Π1-Red) ⊆ KP + (Σ1-Sep).

It is still an open question whether these bounds are sharp. However, we have
some partial results.

Theorem 10 We have for all formulas ϕ of L2:

(i) Π1
2-CA0 ` ϕ ⇒ KP0 + (Beta) + (Π1-Red) ` ϕ.

(ii) Π1
2-CA0 + (BI) ` ϕ ⇒ KP + (Beta) + (Π1-Red) ` ϕ.

Proof Wefirst recall from Theorem 1 thatΠ1
2-CA0 is equivalent to ACA0+(Π

1
2-Red).

From the first part of the quantifier theorem we deduce that, within KP0 + (Beta),
every Σ1

2 formula of L2 is equivalent to a Σ1 formula and every Π1
2 formula of L2

is equivalent to a Π1 formula. Therefore, every instance of (Π1
2-Red) is provable in

KP0 + (Beta) + (Π1-Red). The rest follows from Theorem 4. �

Now we recall from, for example, Rathjen [14] that KP0 + (Σ1-Sep) and KP +
(Σ1-Sep) prove the same L2 sentences as Π1

2-CA0 and Π1
2-CA0 + (BI), respectively.

Moreover, by following Barwise [2] (with some small modifications), we can also
show that KP0 + (Σ1-Sep) proves (Beta). Thus the following assertions are direct
consequences of the previous two theorems.

Corollary 3 (i) The theoriesΠ1
2-CA0,KP0+(Beta)+(Π1-Red), andKP0+(Σ1-Sep)

prove the same L2 sentences.
(ii) The theories Π1

2-CA0 + (BI), KP+ (Beta)+ (Π1-Red), and KP+ (Σ1-Sep) prove
the same L2 sentences.

Shown schematically, we therefore have the following proof-theoretic equiva-
lences:

KP0 + (Beta) + (Π1-Red) ≡ KP0 + (Σ1-Sep) ≡ Π1
2-CA0,

KP + (Beta) + (Π1-Red) ≡ KP + (Σ1-Sep) ≡ Π1
2-CA0 + (BI).
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The axiom of constructibility states that every set belongs to some level Lα of
Gödel’s hierarchy of constructible sets:

∀x∃α(x ∈ Lα). (V=L)

In addition, we write (a <L b) to express that a is smaller than b according to the
well-order <L of the constructible universe. It is well-known that (a ∈ Lα) and
(a <L b) are ∆ over KP. Moreover, (∃x <L a) and (∀x <L a) may be treated as
bounded quantifiers. (x ∈ L) is short for ∃α(x ∈ Lα). For more on the constructible
universe see, e.g., Barwise [2] or Kunen [12].

In Jäger and Steila [11] an interesting separation principle is introduced and
studied. Call a quantifier subset bounded iff it ranges over the subsets of a given set.
Then let ∃P(∆1) separation be the separation principle that, given any set a, allows
the introduction of all subsets of a defined by a subset bounded Σ1 formula over a
∆1 matrix, i.e.,

(∀x ∈ a)(∀y ⊆ a)(ϕ[x, y] ↔ ψ[x, y]) →

(∃z ⊆ a)(∀x ∈ a)(x ∈ z ↔ (∃y ⊆ a)ϕ[x, y]),
(∃P(∆1)-Sep)

for all Σ1 formulas ϕ[x, y] and Π1 formulas ψ[x, y].
The relationship between (Σ1-Sep) and (∃P(∆1)-Sep) is interesting. It is easy

to see that all instances of (∃P(∆1)-Sep) are provable in KP + (Σ1-Sep). For the
converse direction see the follwing theorem from Jäger and Steila [11].

Theorem 11 (Jäger and Steila)
All instances of (Σ1-Sep) are provable in KP + (V=L) + (∃P(∆1)-Sep).

Therefore, in order to show that the theory KP + (V=L) + (Π1-Red) contains
KP + (Σ1-Sep), it is sufficient to prove that it contains (∃P(∆1)-Sep).

Lemma 4 KP + (V=L) + (Π1-Red) proves all instances of (∃P(∆1)-Sep).

Proof Working in KP + (V=L) + (Π1-Red), let us assume that

(∀x ∈ a)(∀y ⊆ a)(ϕ[x, y] ↔ ψ[x, y])

for a Σ1 formula ϕ[x, y] and a Π1 formula ψ[x, y]. We define

ϕ̃[x, y] := ϕ[x, y] ∧ (∀z <L y)(z ⊆ a → ¬ψ[x, z]),

ψ̃[x, y] := ψ[x, y] ∧ (∀z <L y)(z ⊆ a → ¬ϕ[x, z]).

Thus ϕ̃[x, y] is a Σ formula and ψ̃[x, y] is a Π formula, and we have:

(1) (∀x ∈ a)(∀y ⊆ a)(ϕ̃[x, y] ↔ ψ̃[x, y]).
(2) ϕ̃[x, y] → ϕ[x, y].
(3) y ⊆ a ∧ ϕ[x, y] → (∃z ⊆ a)ϕ̃[x, z].
(4) (∀y, z ⊆ a)(ϕ̃[x, y] ∧ ϕ̃[x, z] → y = z).
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We also define

A[u] := (∃v,w ∈ a)(∃y ⊆ a)(u = 〈v,w〉 ∧ ϕ̃[v, y] ∧ w ∈ y),

B[u] := (∀v,w ∈ a)(∀y ⊆ a)(u = 〈v,w〉 ∧ ϕ̃[v, y] → w ∈ y).

Hence A[u] is equivalent to a Σ1 formula and B[u] to a Π1 formula. In addition,
because of (4) we have

(∀u ∈ a × a)(A[u] → B[u]).

So by (Π1-Red) there is a b ⊆ a × a such that

(∀u ∈ a × a)(A[u] → u ∈ b → B[u]).

Claim: For all v ∈ a,
(∃y ⊆ a)ϕ[v, y] ↔ ϕ̃[v, (b)v], (*)

where (b)v stands for the set {w ∈ a : 〈v,w〉 ∈ b}.
Proof of the claim. The direction from right to left is obvious. To prove the converse,
assume (∃y ⊆ a)ϕ[v, y]. Then there is a c ⊆ a with ϕ̃[v, c] according to (3), and for
this c we have c = (b)v . This can be seen as follows: For all w ∈ a,

w ∈ c → A[〈v,w〉] → 〈v,w〉 ∈ b → w ∈ (b)v,

w ∈ (b)v → 〈v,w〉 ∈ b → B[〈v,w〉] → w ∈ c.

Since c = (b)v and ϕ̃[v, c], we have ϕ̃[v, (b)v] as desired, finishing the proof of the
claim.

In view of (1) the set {v ∈ a : ϕ̃[v, (b)v]} exists by ∆ separation and is the set we
need according to (*). �

The following is an immediate consequence of Theorem 9, Theorem 11, and the
previous lemma.

Corollary 4 We have for all L∈ formulas ϕ that

KP + (V=L) + (Σ1-Sep) ` ϕ ⇔ KP + (V=L) + (Π1-Red) ` ϕ.

In order to get rid of the axiom (V=L) on the left-hand side of the previous
implication, we show that L is an inner model of KP + (Σ1-Sep).

Theorem 12 If ϕ is the universal closure of an axiom of KP+ (Σ1-Sep), we have that

KP + (Σ1-Sep) ` ϕL .

Here ϕL is the result of restricting all unbounded quantifiers in ϕ to L.
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Proof In view of Barwise [2] we only have to deal with the instances of (Σ1-Sep). So
let ϕ[x, y, z] be a∆0 formulawith all free variables indicated; we suppressmentioning
additional parameters. Given elements a, b ∈ L we have to show that

(∃z ∈ L)(∀x ∈ L)(x ∈ z ↔ x ∈ a ∧ ∃y(y ∈ L ∧ ϕ[x, y, b])).

By (Σ1-Sep) there exists the set

c = {x ∈ a : ∃y(y ∈ L ∧ ϕ[x, y, b])}

and thus we have
(∀x ∈ c)∃ξ(∃y ∈ Lξ )ϕ[x, y, b].

By Σ collection there is an α such that

(∀x ∈ c)(∃ξ < α)(∃y ∈ Lξ )ϕ[x, y, b]

and so, by the properties of the L-hierarchy,

(∀x ∈ c)(∃y ∈ Lα)ϕ[x, y, b].

This implies that c = {x ∈ a : (∃y ∈ Lα)ϕ[x, y, b]}. Hence c is the required witness
in L. �

This theorem implies that KP + (Σ1-Sep) + (V=L) is conservative over KP +
(Σ1-Sep) for formulas which are absolute w.r.t. KP + (Σ1-Sep), in particular for all
arithmetical formulas.

Corollary 5 We have for all arithmetical formulas ϕ that

KP + (Σ1-Sep) ` ϕ ⇔ KP + (V=L) + (Π1-Red) ` ϕ.

If we summarize our results, we have the following proof-theoretic equivalences:

KP + (V=L) + (Π1-Red) ≡ KP + (Σ1-Sep) ≡ Π
1
2-CA0 + (BI).

6 Comments and Questions

This article did not discuss the theoryKP0+(V=L)+(Π1-Red). There is the question of
how to deal with the constructible hierarchy in KP0 and whether there is an analogue
of Theorem 11 with KP replaced by KP0. However, we are not sure whether this
leads to something interesting.

Our real concern in the present context is the question of the strength of KP +
(Π1-Red). We know that (Π1-Red) is not provable in KP. This can be seen as follows:

(i) InKP+(Π1-Red)wecan prove (Π1
1-Red) and therefore, according toTheorem1,

KP + (Π1-Red) contains ATR0.
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(ii) In view of a result in Avigad [1] we thus know that KP + (Π1-Red) proves that
every X-positive arithmetical formula ϕ[x, X+] has a fixed point (which is a
set).

(iii) On the other hand, we also know by results due to Gregoriades [5] and Probst
[13] that there are positive arithmetical formulas that do not have hyperarith-
metical fixed points.

(iv) So we conclude that LωCK
1

is not a model of KP + (Π1-Red), implying that KP
does not prove (Π1-Red).

But is the proof-theoretic strength of KP + (Π1-Red) greater than that of KP? As
a preparatory step for the analysis of the proof-theoretic strength of KP + (Π1-Red)
it could be useful to check whether KP + (Π1-Red) proves (Π1

1-CA) or (∆1
2-CA).

A different line of research is to look at reduction principles of the form as
discussed above in theories of sets and classes. Some first results are known, but in
general this field is wide open.
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