
The defining power of stratified and hierarchical
logic programs

Gerhard Jäger and Robert F. Stärk

Abstract

We investigate the defining power of stratified and hierarchical logic programs.
As an example for the treatment of negative information in the context of these
structured programs we also introduce a stratified and hierarchical closed-world
assumption. Our analysis tries to relate the defining power of stratified and hi-
erarchical programs (with and without an appropriate closed-world assumption)
very precisely to notions and hierarchies in classical definability theory.

Stratified and hierarchical logic programs are two well-known and typical candidates

of what one may more generally denote as structured programs. In both cases we

have to deal with normal logic programs which satisfy certain syntactic conditions

with respect to the occurrence of negative literals. Recently they have gained a

lot of importance in connection with the search for nice declarative semantics for

logic programs and the treatment of negative information in logic programming (e.g.,

Lloyd [10]).

Stratified programs were introduced into logic programming by Apt, Blair, and

Walker [2] and van Gelder [17] not long ago. In mathematical logic, however, theories

of this kind have been studied for more than 20 years under the general theme of

iterated inductive definability. Indeed, stratified programs can be understood as

systems for (finitely) iterated inductive definitions where the definition clauses are

of very low logical complexity. The notion of hierarchical program (e.g., Clark [6],

Shepherdson [15]), on the other hand, is motivated by database theory and tries to

reflect the idea of iterated explicit definability by simple principles.

From a conceptual point of view we are interested in the relationship between

logic programming, inductive definability and equational definability. By making use

of these connections we obtain a uniform and perspicuous approach to a series of

interesting questions in this area.

Address correspondence to Gerhard Jäger or Robert F. Stärk, Institut für Informatik und ange-
wandte Mathematik, Länggassstrasse 51, CH-3012 Bern, Switzerland.
Email: 〈jaeger@iam.unibe.ch〉 or 〈staerk@iam.unibe.ch〉

Appeared in: J.of Logic Programming, 15 (1&2): 55–77, 1993.

2 GERHARD JÄGER AND ROBERT F. STÄRK

The plan of this paper is as follows: Section 1 introduces some basic notions.

Sections 2 and 3 present the relevant concepts from classical definability theory and

are concerned with various forms of definability over Herbrand universes of first-order

languages. In Section 4 we characterize the defining power of stratified programs.

Among other things we prove that the arithmetically definable subsets of the non-

negative integers comprise the defining power of suitable stratified programs with the

stratified closed-world assumption. Section 5 is then devoted to the study of hierar-

chical programs. It is shown that definite hierarchical programs pin down exactly the

so-called term-definable relations. This is in sharp contrast to the defining power of

arbitrary hierarchical logic programs which is shown to be equivalent to that of def-

inite programs. Finally the hierarchical programs with the hierarchical closed-world

assumption represent a class of intermediate strength. We will see that they exactly

define the equationally definable relations.

1 Basic notions

First we have to introduce some basic terminology and definitions. We will try to

follow the standard terminology of logic programming as far as possible and use Lloyd

[10] as standard reference for unexplained notions and results.

We start out from countable first-order languages L with equality which satisfy

the following conditions with respect to their function and relation symbols:

(1) L contains a finite number of function symbols;

(2) L contains at least one 0-ary function symbol;

(3) L contains countably many relation symbols P,Q,R, P1, Q1, R1, . . . of every fi-

nite arity.

First-order languages of this kind are called finite languages by Shepherdson [16].

In the context of logic programming the restriction to finitely many function symbols

seems justified since every logic program only involves a finite number of function

symbols. Observe, however, that logic programming is very sensitive with respect to

the function symbols of the underlying language. In general the meaning m(T, L) of

a logic program T with respect to the language L is different from m(T, Lf) if Lf
is the extension of L by a new function symbol f . On the other hand extensions

of languages by additional relation symbols are completely unproblematic, and we

have m(T, L) = m(T, LR) for all extensions LR of L by a new relation symbol R.

Therefore, we are free to assume that the underlying language contains an arbitrary

number of relation symbols.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 3

The terms s, t, s1, t1, . . . and formulas ϕ, ψ, χ, θ, ϕ1, ψ1, χ1, θ1, . . . of L are defined

as usual; terms and formulas without free variables are called ground, 0-ary function

symbols are called constants. Hence condition (2) guarantees the existence of a ground

L term. The literals F,G, F1, G1, . . . of L are the atomic formulas and negated atomic

formulas of L. Relation symbols different from the equality symbol are denoted as

proper relation symbols; proper literals (proper atomic formulas) are literals (atomic

formulas) which do not contain the equality symbol.

As usual, the Herbrand universe UL denotes the collection of all ground terms of

L and the Herbrand base BL the collection of all ground atomic formulas of L. An

L theory is a (possibly infinite) collection of L formulas. By T ` ϕ, we express that

the formula ϕ can be deduced from the theory T by the usual axioms and rules of

predicate logic with equality. Finally, a normal clause in L is an L formula ϕ of the

form

F1 ∧ . . . ∧ Fn → G

with n ≥ 0, where G is a proper atomic formula and F1, . . . , Fn are proper literals; ϕ

is called definite if also the F1, . . . , Fn are atomic. A normal program in L is a finite

set of normal clauses in L, and a definite program in L is a finite collection of definite

clauses in L.

The vector notation ~V is used as shorthand for a finite string V1, . . . , Vn whose

length will be specified by the context. We write ϕ[~R, ~x] to indicate that all proper

relation symbols of the formula ϕ come from the list ~R and all free variables of ϕ

from the list ~x; analogously, t[~x] stands for a term with no variables different from ~x.

The formula ϕ(~R, ~x) and the term t(~x) may contain other relation symbols and free

variables besides ~R and ~x. In addition, if ~A = A1, . . . , An, then the notation ~A ⊂ UL
is supposed to express that A1, . . . , An are (arbitrary) relations on UL; it does not

imply, however, that A1, . . . , An are subsets of UL.

Now choose an L formula ϕ[~R, ~x], relations ~A ⊂ UL and elements ~a ∈ UL. Then

by UL |= ϕ[~A,~a], we mean that ϕ is valid in the Herbrand structure with universe

UL, provided that the relation symbols ~R are interpreted by the relations ~A and the

free variables ~x by the elements ~a.

We write ∼A for the complement {〈~a〉 ∈ Un
L : 〈~a〉 /∈ A} of an n-ary relation A on

UL. If A is a subset of Um+1
L , then each subset of Um

L of the form

{〈a1, . . . , ai−1, ai+1, . . . , am+1〉 ∈ Um
L : 〈a1, . . . , ai−1, b, ai+1, . . . , am+1〉 ∈ A}

for some b ∈ UL is called a section of A. If f is an n-ary function symbol of L, then

the graph Gr(f) of f is the (n+ 1)-ary relation on UL defined as

Gr(f) := {〈~a, f(~a)〉 : ~a ∈ UL}.

4 GERHARD JÄGER AND ROBERT F. STÄRK

If C is a collection of L formulas, K a collection of relations on UL and B ⊂ Un
L ,

then B is called C definable in L with parameters from K if there exists a formula

ϕ[~R, ~x] in C and a sequence ~A of elements of K of appropriate arities such that

〈~a〉 ∈ B ⇐⇒ UL |= ϕ[~A,~a]

for all ~a ∈ UL. The class of all relations which are C definable in L with parameters

from K is denoted by C(K, L). B is called C definable in L if it belongs to C(∅, L).

An n-ary relation A on UL is called definable by the L theory T if there exists an

n-ary relation symbol R of L so that we have

〈~a〉 ∈ A ⇐⇒ T ` R(~a)

for all ~a ∈ UL. The collection of all T definable relations on UL is then denoted by

DefL(T).

Later we will also make some remarks about definability over the non-negative

integers IIN. To fit this concept into our present framework, we fix a finite first-order

language LN with exactly one constant 0 and one unary function symbol Su. This

function symbol represents a successor function, and the Herbrand universe ULN of

LN , which we simply denote as UN , may be regarded as an isomorphic copy of IIN,

where the LN term Snu (0) corresponds to the natural number n,

UN = {0, Su(0), Su(Su(0)), . . .}.

2 Term and equationally definable relations

In this and the next section we introduce the tools from definability theory which will

be used later in order to characterize the defining power of stratified and hierarchical

programs with and without suitable forms of the closed-world assumption. We focus

on three definition principles: (1) term definability, i.e., explicit definability by means

of terms of the language; (2) explicit definability by equational formulas; and (3)

inductive definability by positive Σ formulas.

Definition 2.1. Let A be a subset of Un
L .

(1) A is called locally term-definable in L if there exist terms t1[~x], . . . , tn[~x] so

that

A = {〈t1[~a], . . . , tn[~a]〉 : ~a ∈ UL}.

(2) A is called term-definable in L if A is a finite union of locally term-definable

relations.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 5

From this definition we immediately obtain that the empty set ∅ is term-definable

and that the finite union of term-definable sets is term-definable. The closure of

term-definable relations under intersection requires some (easy) arguments.

Lemma 2.1. The intersection of finitely many term-definable subsets of Un
L is term-

definable.

Proof. It is sufficient to show that the intersection of two locally term-definable sets

is term-definable. Hence let

A := {〈s1[~a], . . . , sn[~a]〉 : ~a ∈ UL} and B := {〈t1[~a], . . . , tn[~a]〉 : ~a ∈ UL}

be two locally term-definable subsets of Un
L . We may assume that the variables of

s1, . . . , sn do not occur in t1, . . . , tn. If A ∩ B = ∅, then A ∩ B is term-definable;

otherwise, there exists a most general unifier σ of 〈s1, . . . , sn〉 and 〈t1, . . . , tn〉, and

obviously A ∩B = {〈s1σ[~a], . . . , snσ[~a]〉 : ~a ∈ UL}. �

Lemma 2.2. If A ⊂ Un
L is term-definable, then for every 1 ≤ i ≤ n,

{〈a1, . . . , ai−1, ai+1, . . . , an〉 : (∃b ∈ UL)(〈a1, . . . , ai−1, b, ai+1, . . . , an〉 ∈ A)}

is a term-definable subset of Un−1
L . Hence the collection of term-definable relations

in L is closed under projections.

Example 2.1.

(1) The unary relations on UN which are term-definable in LN are exactly the

A ⊂ UN so that A or ∼A is finite.

(2) The set B := {〈a, a〉 : a ∈ UN} is term-definable, but ∼ B is not term-

definable.

Term-definable relations will be important for describing the defining power of

definite logic programs and are closely related to the parameter-free Σ+
1 relations

introduced below (cf. Lemma 2.7). Now we turn to a more general notion and call an

L formula an equational formula of L if it does not contain proper relation symbols.

It follows from the previous definitions that every relation A on UL which is term-

definable in L is also equationally definable in L. The converse is not correct, as

one can easily see by the following example: the relation {〈a, b〉 ∈ U2
N : a 6= b} is

equationally definable but not term-definable.

Shepherdson’s article [16] is devoted to the equality theory in the context of logic

programming. Besides many other results it proves the following reduction property,

which will help us later in comparing the strength of hierarchical programs with and

without the hierarchical closed-world assumption.

6 GERHARD JÄGER AND ROBERT F. STÄRK

Lemma 2.3. (Reduction property of equational formulas). For every equational L

formula ϕ[~x] there exist finitely many strictly simple equality formulas ψ1[~x], . . .,

ψn[~x] of L, so that we have for all ~a ∈ UL:

UL |= ϕ[~a]↔ ψ1[~a] ∨ . . . ∨ ψn[~a].

Here, an L formula is called strictly simple if it is of the form

(∃~y)
(∧∧

i∈I

xi = ri[~x, ~y] ∧
∧∧
j∈J

xσ(j) 6= sj[~x, ~y] ∧
∧∧
k∈K

yτ(k) 6= tk[~x, ~y]
)
,

where ~x = x1, . . . , xm and ~y = y1, . . . , yl and

• I ⊂ {1, . . . ,m};
• {σ(j) : j ∈ J} ⊂ {1, . . . ,m} \ I and {τ(k) : k ∈ K} ⊂ {1, . . . , l};
• each xi for i ∈ I does not occur anywhere in the formula except on the left-

hand side of xi = ri[~x, ~y];

• each yj of ~y occurs in one of the terms ri[~x, ~y] for some i ∈ I.

Applied to the special case L = LN , this lemma has the consequence that a

subset A ⊂ UN is equationally definable if and only if A or ∼ A is finite. Hence

term definability in LN is equivalent to equational definability in LN as far as unary

relations are concerned. However, as we have seen above, this equivalence cannot be

extended to, for example, binary relations.

The class Σ+ of positive existential L formulas is inductively defined as follows:

(1) If s and t are terms, then (s = t) belongs to Σ+.

(2) If R is an n-ary relation symbol of L and and t1, . . . , tn are terms, then the

formula R(t1, . . . , tn) belongs to Σ+.

(3) If ϕ and ψ belong to Σ+, then so do (ϕ ∨ ψ) and (ϕ ∧ ψ).

(4) If ϕ(x) belongs to Σ+, then so does (∃x)ϕ(x).

A formula ϕ is a Σ+
1 formula of L if it is a Σ+ formula of the form

(∃x1) . . . (∃xk)ψ(x1, . . . , xk),

where ψ does not contain quantifiers. The class rΣ+
1 of the relational Σ+

1 formulas of

L consists of all Σ+
1 formulas of L without function symbols.

It is obvious that every Σ+ formula of L is equivalent to a Σ+
1 formula of L with

the same relation and function symbols and the same free variables. A reduction of

the Σ+ to the rΣ+
1 is possible and described in the following lemma. Its proof is based

on the usual representation of functions by their graphs and will be omitted.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 7

Lemma 2.4. Let ϕ[~R, ~x] be a Σ+ formula of L with no function symbols different

from f1, . . . , fm. Then, there exists a rΣ+
1 formula ψ[~Q, ~R, ~x] of L so that we have

for all ~A ⊂ UL and ~a ∈ UL:

UL |= ϕ[~A,~a] ⇐⇒ UL |= ψ[Gr(f1), . . . , Gr(fm), ~A,~a].

Σ+ formulas have very simple normal forms with respect to the equality symbol

and the other relation symbols which they contain. These normal forms also will

provide a convenient tool for reducing Σ+ inductively definable sets to suitable logic

programs.

Definition 2.2. An L formula ϕ[~R, x1, . . . , xm] is called molecular if it is of the form

(∃~y)(x1 = t1[~y] ∧ . . . ∧ xm = tm[~y] ∧ F1[~y] ∧ . . . ∧ Fn[~y]),

where the variables x1, . . . , xm and ~y are pairwise different and the Fi[~y] are posi-

tive literals but no equations.1

Lemma 2.5. (Normal form of Σ+ formulas). Let ϕ[~R, ~x] be a Σ+ formula of L. Then,

there exist finitely many molecular L formulas ψ1[~R, ~x], . . . , ψn[~R, ~x], so that we

have for all ~A ⊂ UL and all ~a ∈ UL:

UL |= ϕ[~A,~a] ↔ ψ1[~A,~a] ∨ . . . ∨ ψn[~A,~a].

Proof. First we replace ϕ[~R, ~x] by a logically equivalent formula

χ1[~R, ~x] ∨ . . . ∨ χr[~R, ~x],

where every χi[~R, ~x] is of the form

(∃~y)(r1[~x, ~y] = s1[~x, ~y] ∧ . . . ∧ rm[~x, ~y] = sm[~x, ~y] ∧ F1[~x, ~y] ∧ . . . ∧ Fl[~x, ~y]),

~x = x1, . . . , xg and ~y = y1, . . . , yh. Each χi[~R, ~x] will now be transformed into a

molecular formula, so that every transformation step is valid in UL. To achieve this,

we put

r1[~x, ~y] = s1[~x, ~y] ∧ . . . ∧ rm[~x, ~y] = sm[~x, ~y]

by a version of the unification algorithm into the solved form∧∧
i∈I

xi = ti[~x, ~y] ∧
∧∧
j∈J

yj = t∗j [~x, ~y].

1Hence a molecular formula of this form contains no free variables different from x1, . . . , xm.

8 GERHARD JÄGER AND ROBERT F. STÄRK

In this expression I is a subset of {1, . . . , g}, J a subset of {1, . . . , h} and the variables

xi for i ∈ I and yj for j ∈ J do not occur in any of the terms on the right-hand side

of the equations. Now we define

χ′i[~R, ~x] := (∃~y)
(∧∧

i∈I

xi = ti[~x, ~y] ∧ F ′1[~x, ~y] ∧ . . . ∧ F ′l [~x, ~y]
)

with F ′k[~x, ~y] denoting the atomic formula which results from Fk[~x, ~y] by replacing xi
by ti[~x, ~y] for i ∈ I and yj by t∗j [~x, ~y] for j ∈ J . Observe that the variables xi for i ∈ I
and yj for j ∈ J do not occur in F ′1[~x, ~y] ∧ . . . ∧ F ′l [~x, ~y]. Now define

ψi[~R, ~x] := (∃~v)(∃~y)
(∧∧

i∈I

xi = ti[~x, ~y] ∧
∧∧
k∈K

xk = vk ∧ F ′1[~v, ~y] ∧ . . . ∧ F ′l [~v, ~y]
)

for ~v = v1, . . . , vg and K := {1, . . . , g} \ I. The formula ψi[~R, ~x] is the desired

transformation of χi[~R, ~x] in molecular form. �

If K is a collection of relations on UL, then Σ+
1 (K, L) has been defined to be the

class of all relations on UL that are Σ+
1 definable in L with parameters from K. Some

of the closure properties of this class are listed in the following lemma.

Lemma 2.6. Let K be a collection of relations on UL.

(1) Σ+
1 (K, L) is closed under finite unions, finite intersections and sections.

(2) Σ+
1 (Σ+

1 (K, L), L) = Σ+
1 (K, L).

The proofs of these assertions are immediate from the definition of Σ+
1 definability.

The class Σ+
1 (∅, L) is of special interest since it corresponds to the collection of term-

definable relations in L.

Lemma 2.7. The class Σ+
1 (∅, L) consists exactly of the relations on UL which are

term-definable in L.

Proof. It is obvious that every relation A on UL which is locally term-definable in L

belongs to Σ+
1 (∅, L). In view of the previous lemma, one can therefore conclude that

Σ+
1 (∅, L) contains the term-definable relations on UL. Now suppose that the relation

A ⊂ Un
L is defined by the Σ+

1 formula ϕ[x1, . . . , xn]. By Lemma 2.5 the normal form

of ϕ[x1, . . . , xn] is

m∨∨
i=1

(∃~y)(x1 = ti,1[~y] ∧ . . . ∧ xn = ti,n[~y]),

so that A =
⋃m
i=1{〈ti,1[~a], . . . , ti,n[~a]〉 : ~a ∈ UL}. Hence, A is term-definable in L. �

The following lemma will be used in Section 4. Its proof is straightforward by

induction on the complexity of the Σ+ formula involved.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 9

Lemma 2.8. Let T by an arbitrary L theory, ϕ[R1, . . . , Rm, ~x] a Σ+ formula of L

and ~A = A1, . . . , Am a sequence of relations on UL which satisfy

〈~a〉 ∈ Ai =⇒ T ` Ri(~a)

for all 1 ≤ i ≤ m and all ~a ∈ UL. Then we have for all ~b ∈ UL:

UL |= ϕ[~A,~b] =⇒ T ` ϕ[~R,~b].

3 Inductively definable relations

In order to characterize the defining power of stratified logic programs, we will make

use of some concepts from the theory of inductive definitions as it is developed for

example in the textbooks by Barwise [5], Hinman [8] and Moschovakis [13]. Hence,

suppose that ~R = R1, . . . , Rk, ~x = x1, . . . , xm and that ϕ[Q, ~R, ~x] is a Σ+ formula

of L. In addition we assume that ~A = A1, . . . , Ak is a sequence of relations on UL.

Then we define by recursion on the ordinals the following subsets of Um
L :

I<αϕ (~A) :=
⋃
ξ<α

Iξϕ(~A) ,

Iαϕ(~A) := {〈~a〉 ∈ Um
L : UL |= ϕ[I<αϕ (~A), ~A,~a]}

Iϕ(~A) :=
⋃
ξ∈On

Iξϕ(~A) .

Inductive definitions are studied at full length in the literature. In our special case

we can conclude, for example, that (with the assumptions mentioned above)

(1) there exists an ordinal α ≤ ω so that

I<αϕ (~A) = Iαϕ(~A) = Iϕ(~A);

(2) Iϕ(~A) is the least fixed point of the operator Γϕ, ~A which is defined for allX ⊂ Um
L

by

Γϕ, ~A(X) := {〈~a〉 ∈ Um
L : UL |= ϕ[X, ~A,~a]}.

In the following, we will be interested in relations on UL which can be defined induc-

tively over the Herbrand universe UL.

10 GERHARD JÄGER AND ROBERT F. STÄRK

Definition 3.1. Let K be a collection of relations on UL.

(1) The class Σ+-FP(K, L) of the Σ+ fixed points with parameters from K consists

of all relations on UL of the form Iϕ(~A) such that ~A ∈ K and ϕ[Q, ~R, ~x] is a

Σ+ formula of L of the appropriate arities.

(2) The class Σ+-IND(K, L) of the Σ+ inductively defined sets with parameters

from K is the least collection of relations on UL which contains Σ+-FP(K, L)

and is closed under sections.

Moschovakis [13] contains a series of results concerning the closure properties of

classes of inductively defined sets, for example, the simultaneous induction lemma,

the combination lemma and the transitivity theorem. Applied to our context, we have

the following basic properties of the classes Σ+-IND(K, L).

Remark 3.1. Let K be a collection of relations on UL.

(1) Σ+
1 (K, L) ⊂ Σ+-IND(K, L).

(2) Σ+-IND(Σ+-IND(K,), L) = Σ+-IND(K, L).

(3) In general, the classes Σ+-IND(K, L) will not be closed under complements.

Motivated by this observation, we now introduce the hierarchy 〈EIn(L) : n < ω〉
of iterated existential inductive relations on UL. If K is a class of relations on UL,

then we write K for the collection of their complements, i.e.,

K := {∼A : A ∈ K}.

Definition 3.2. By induction on the natural numbers n, we define the classes EIn(L)

of relations on UL:

EI0(L) = Σ+-IND(∅, L),

EIn+1(L) = Σ+-IND(EIn(L) ∪ EIn(L), L).

For notational simplicity, we will write EIn(N) instead of EIn(LN). The following

observation is obvious.

Lemma 3.1.

(1) EIn(L) ⊂ EIn+1(L) for all natural numbers n.

(2) The graph Gr(f) of a function symbol f of L is an element of EI0(L).

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 11

In view of the reduction property of equational formulas we know that all equa-

tionally definable (in L) relations are contained in EI0(L) ∩ EI0(L). In general,

however, there will be elements of EI0(L) which are not equationally definable in L.

A typical example is the subset {s2n
u (0) : n ∈ IIN} of UN which is inductively but not

equationally definable.

The next theorem summarizes some basic properties of inductive definability over

the natural numbers IIN in terms of the classes EIn(N). For the proof of this theorem

we refer to the respective section in Hinman [8].

Theorem 3.1. We have the following for all natural numbers n:

(1) EI0(N) is the class of the recursively enumerable subsets of the natural num-

bers IIN, i.e., the class of the Σ1 subsets of IIN.

(2) If K is a collection of relations on UN which contains EI0(N) and is closed

under complements, then we have: Σ+-IND(K, LN) = Σ+
1 (K, LN).

(3) EIn+1(N) = Σ+
1 (EIn(N)∪ EIn(N), LN), hence EIn+1(N) is the class of the

Σn+2 subsets of the natural numbers IIN.

Next, we turn to the relationship between definability over UL and UN . Similar

observations have been made by various authors, such as Andreka and Nemeti [1] and

Apt [3]. However, the approach presented here is more closely tied to the notion of

inductive definability.

In a first step, we reduce fixed points of Σ+ formulas to those of rΣ+
1 formulas.

As a consequence of Lemma 2.4, we obtain:

Corollary 3.1. Let ϕ[P, ~Q, ~x] be a Σ+ formula of L with no function symbols different

from f1, . . . , fm. Then, there exists a rΣ+
1 formula ψ[P, ~Q, ~R, ~x] of L so that we

have for all ~A ⊂ UL:

Iϕ(~A) = Iψ(~A,Gr(f1), . . . , Gr(fm)).

Until the end of this section, we assume that L is a language with finitely many

function symbols and that at least one of this function symbols has an arity greater

than 0. Then, there exists a mapping β from UL to UN ,

β:UL → UN ,

which is one to one and onto. If A is a subset of Un
L , then we define

β(A) := {〈β(a1), . . . , β(an)〉 : 〈a1, . . . , an〉 ∈ A}

and write β(~b) and β(~B) instead of β(b1), . . . , β(bm) and β(B1), . . . , β(Bn) for all
~b = b1, . . . , bm ∈ UL and ~B = B1, . . . , Bn ⊂ UL, respectively.

12 GERHARD JÄGER AND ROBERT F. STÄRK

An obvious induction on the length of the rΣ+
1 formulas ϕ[~R, ~x] of L then yields

UL |= ϕ[~A,~a] ⇐⇒ UN |= ϕ[β(~A), β(~a)]

for all ~a ∈ UL and ~A ⊂ UL. Using this observation, it is easy to show that we have

for all ordinals α, ~a ∈ UL, ~A ⊂ UL and all rΣ+
1 formulas ϕ[Q, ~R, ~x]

〈~a〉 ∈ Iαϕ(~A) ⇐⇒ 〈β(~a)〉 ∈ Iαϕ(β(~A)),

where the sets Iαϕ(~A) are defined over UL and the sets Iαϕ(β(~A)) over UN . As a

consequence, we obtain the following isomorphism between the sets Iϕ(~A) defined

over UL and the sets Iϕ(β(~A)) defined over UN :

β(Iϕ(~A)) = Iϕ(β(~A)),

provided that ϕ[Q, ~R, ~x] is a rΣ+
1 formula of L.

It is straightforward but tedious to show that we can choose the bijection β so

that the following two conditions are satisfied:

(β.1) If f is a function symbol of L, then β(Gr(f)) ∈ EI0(N).

(β.2) There exist D0, D1 ∈ EI0(L) so that β(D0) = Gr(0) and β(D1) = Gr(Su).

This correspondence plays an important role in the proof of the following theorem.

Theorem 3.2. Let L and β be described as above. Then we have for all natural

numbers n:

(1) If A ∈ EIn(L), then β(A) ∈ EIn(N).

(2) If B ∈ EIn(N), then there exists an A ∈ EIn(L), so that B = β(A).

Proof. We prove both assertions simultaneously by complete induction on n.

I. n = 0. It is sufficient for the first assertion to show that β(A) ∈ EI0(N) for all

A ∈ Σ+-FP(∅, L). So assume that we have a Σ+ formula ϕ[P, ~x] of L with no function

symbols different from f1, . . . , fm such that A = Iϕ(−). By Corollary 3.1, there exists

an rΣ+
1 formula ψ[P, ~Q, ~x] with the property

A = Iψ(Gr(f1), . . . , Gr(fm)).

Our previous considerations then imply that

β(A) = Iψ(β(Gr(f1)), . . . , β(Gr(fm))).

By (β.1) and Remark 3.1, we can conclude that β(A) ∈ EI0(N).

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 13

For the proof of the second assertion we confine ourselves again to the case of fixed

points. So assume that we have a Σ+ formula χ[P, ~x] of LN such that B = Iχ(−).

Then, there exists an rΣ+
1 formula θ[P,R1, R2, ~x] of LN with the property

B = Iθ(Gr(0), Gr(Su)).

Now we define

A := Iθ(D0, D1)

and obtain

β(A) = Iθ(β(D0), β(D1)) = Iθ(Gr(0), Gr(Su)) = B.

In addition, A is an element of EI0(L) because of (β.2) and Remark 3.1.

II. n→ n+1. Using the same strategy, the assertions for n+1 follow immediately

from the induction hypothesis. �

Using the same ideas, one can also prove that β(Σ+
1 (K, L)) = Σ+

1 (β(K), N) if the

class K contains EI0(L).

Corollary 3.2. EIn+1(L) = Σ+
1 (EIn(L) ∪ EIn(L), L).

Proof. If UL is finite, then the assertion is trivial; otherwise, it follows from Theo-

rem 3.1 and Theorem 3.2. �

4 Stratified programs

Now the ground is prepared for an easy characterization of the defining power of

stratified programs with and without the stratified closed-world assumption SCWA.

Related results have been obtained by Apt and Blair [4] who study the logical com-

plexity of the supported models MT of stratified programs T .

Stratified programs can be considered as special theories for iterated inductive

definitions where the definition clauses are of very restricted form. We briefly review

some basic notions and refer for more details to Apt, Blair, and Walker [2] and

Lloyd [10]. A level mapping for L is a function α from the set RelL of the relation

symbols of L to the natural numbers IIN,

α:RelL → IIN.

If R is an n-ary relation symbol of L and ~t = t1, . . . , tn a sequence of L terms, then

α(R(~t)) and α(¬R(~t)) are defined to be the number α(R).

14 GERHARD JÄGER AND ROBERT F. STÄRK

Definition 4.1. Let T be a normal program in L and α a level mapping for L.

(1) α is called stratified with respect to T if we have for all elements

F1 ∧ . . . ∧ Fn → G

of T and all 1 ≤ i ≤ n:

• α(Fi) ≤ α(G),

• α(Fi) < α(G) provided that Fi is a negative literal.

(2) T is called stratified if there exists a level mapping for L which is stratified

with respect to T .

(3) STL denotes the set of all level mappings for L which are stratified with respect

to T .

Example 4.1. The program consisting of the following four clauses

P (0), Q(0), Q(x)→ Q(f(x)), Q(x) ∧ ¬P (x)→ R(g(x))

is stratified but not definite.

On the other hand, it is obvious that every definite program is stratified. The

defining power of stratified programs therefore comprises that of the definite programs

and is limited by the following well-known property of general recursively enumerable

theories.

Remark 4.1. Let pϕq be the Gödel number of the L formula ϕ. If T is an arbitrary

L theory, then there exists a subset A of the natural numbers which is recursively

enumerable in {pϕq : ϕ ∈ T} such that we have for all ψ ∈ BL:

T ` ψ ⇐⇒ pψq ∈ A.

In addition, for every relation symbol R of L, there exists a relation BR which is

recursively enumerable in {pϕq : ϕ ∈ T} such that we have for all ~a ∈ UL:

T ` R(~a) ⇐⇒ 〈β(~a)〉 ∈ BR.

In view of Theorem 3.1 and Theorem 3.2, this remark implies that all T -definable

relations on UL belong to EI0(L). Not surprisingly, we therefore obtain a first theorem

which characterizes the defining power of stratified programs.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 15

Theorem 4.1. (Defining power of stratified programs).

(1) If T is a stratified program in L, then DefL(T) is a subset of EI0(L).

(2) For every A ∈ EI0(L), there exists a stratified — even definite — program

T in L so that A ∈ DefL(T).

Proof. The first assertion follows from the observation above. For the second, let A

be an element of Σ+-IND(∅, L). For notational simplicity we assume that there exists

a binary relation B ∈ Σ+-FP(∅, L) and a term b0 ∈ UL so that

a ∈ A ⇐⇒ 〈a, b0〉 ∈ B

for all a ∈ UL. The extension of our argument to the general case is straightforward.

The relation B is the least fixed point of a Σ+ formula ϕ[Q, x, y] of L, i. e., B = Iϕ(−).

By Lemma 2.5, this formula has a normal form

(∃~z)(x = s1[~z] ∧ y = t1[~z] ∧ ψ1[Q,~z]) ∨ . . .
∨(∃~z)(x = sn[~z] ∧ y = tn[~z] ∧ ψn[Q,~z]),

where every ψi[Q,~z] is a conjunction of atoms of the form Q(. . .). Now, define T to

be the definite program

{ψi[Q,~z]→ Q(si[~z], ti[~z]) : i = 1, . . . , n} ∪ {Q(x, b)→ R(x)}.

By some basic results on definite programs, it follows that

(1) T ` Q(a, b) ⇐⇒ 〈a, b〉 ∈ B,

(2) T ` R(a) ⇐⇒ a ∈ A,

for all a, b ∈ UL. �

A normal program T in L is stratified if and only if STL 6= ∅. In this case, we define

for all relation symbols R of L:

σTL(R) := min{α(R) : α ∈ STL},

σL(T) := max{σTL(R) : R occurs in L}.

σTL is a stratified level mapping for T , called the minimal stratification of T . The

number σL(T) is denoted as the stratified height of T . Hence, a stratified program T

is definite if and only if σL(T) = 0.

According to Reiter [14], the closed world CWA(T, L) of a normal program T in

L is usually defined as

CWA(T, L) := T ∪ {¬F : F ∈ BL and T 6` F}.

16 GERHARD JÄGER AND ROBERT F. STÄRK

The closed-world assumption CWA is often considered as a problematic concept,

especially since it often transforms (necessarily consistent) normal programs T into

inconsistent theories CWA(T, L). In the context of stratified programs, the situation

can be significantly improved by replacing the general closed-world assumption CWA

by the stratified closed-world assumption SCWA. An equivalent notion is introduced

in [7] and denoted as iterated closed-world assumption. We prefer the name stratified

closed-world assumption in order to distinguish it from the hierarchical closed-world

assumption (to be introduced later) which is also generated by iterating the CWA in

a suitable way.

Definition 4.2. Let T be a stratified program in L of height σL(T) = m. Then, we

define for all n ≤ m+ 1:

SCWA0(T, L) := T

SCWAn+1(T, L) :=

{
SCWAn(T, L) ∪
{¬F : F ∈ BL, σ

T
L(F) = n and SCWAn(T, L) 6` F},

SCWA(T, L) := SCWAm+1(T, L).

Example 4.2. Assume that we have the stratified program

T = {Q(0), Q(x) ∧ ¬P (0)→ Q(Su(x))}

formulated in the language LN . Then, the closed world of T ,

CWA(T, L) = T ∪ {¬F : F ∈ BLand F different from Q(0)},

is inconsistent whereas the stratified closed world of T ,

SCWA(T, L) = T ∪ {¬P (a) : a ∈ UN},

is consistent. If we replace T by the logically equivalent stratified program

T ′ = {Q(0), Q(x) ∧ ¬Q(Su(x))→ P (0)},

then the closed worlds of T and T ′ are the same whereas the stratified closed world

of T ′ is the consistent theory

SCWA(T ′, L) = T ∪ {¬Q(a) : a ∈ UN \ {0}} ∪ {¬P (a) : a ∈ UN \ {0}}.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 17

Hence, the stratified closed-world assumption SCWA is a more careful extension

of the CWA — at the price of being sensitive to logical transformations of the basic

theory. It is tailored for stratified programs in the sense that the theory SCWA(T, L)

is consistent for every stratified program T . The proof of the following lemma is

straightforward.

Lemma 4.1. Let T be a stratified program in L and define

∆L(T) := {F ∈ BL : SCWAσTL (F)(T, L) ` F}.

Then, ∆L(T) induces a Herbrand model of SCWA(T, L).

For every stratified program T of height m and all n ≤ m, we define the restriction

T � n of T as the set of all formulas of T which do not contain relation symbols R of

level σTL(R) > n. Then T and T � n have the same proof-theoretic power with respect

to relations of levels up to n, no matter whether we work with or without the SCWA.

Theorem 4.2. (Locality of stratified programs). Let T be a stratified program in L of

height m. Then, we have for all n ≤ m, all relation symbols R of level σTL(R) ≤ n

and all ~a ∈ UL:

(1) T ` R(~a) ⇐⇒ T � n ` R(~a),

(2) SCWAn(T, L) ` R(~a) ⇐⇒ SCWAn(T � n, L) ` R(~a),

(3) SCWA(T, L) ` R(~a) ⇐⇒ SCWAn(T, L) ` R(~a).

Now assume that T0 and T1 are stratified programs in L which have no relation

symbols in common.

(4) If Q is a relation symbol which occurs in T0 then we have for all ~a ∈ UL

SCWA(T0 ∪ T1, L) ` Q(~a) ⇐⇒ SCWA(T0, L) ` Q(~a).

Proof. The first and second assertion can be checked easily. The third follows from

Lemma 4.1. The fourth is proved by induction on the level σT0
L (Q) of the relation

symbol Q. �

The following theorem answers the question about the structure of the relations

on UL which can be defined by stratified programs plus the stratified closed-world

assumption. It also makes clear that the provability relation induced by the SCWA

can be of arbitrary arithmetical complexity.

18 GERHARD JÄGER AND ROBERT F. STÄRK

Theorem 4.3. (Defining power of the SCWA).

(1) If T is a stratified program in L of height m, then DefL(SCWA(T, L)) is a

subset of EIm(L).

(2) For every A ∈ EIm(L), there exists a stratified program T in L of height m

so that A ∈ DefL(SCWA(T, L)).

Proof. (1) Let T be a stratified program of height m. Then, an easy induction on

n ≤ m shows:

(i) If R is a relation symbol of level σTL(R) = n, then there exists a Σ0
n+1 relation

A on the natural numbers so that we have for all ~a ∈ UL:

SCWAn(T, L) ` R(~a) ⇐⇒ 〈β(~a)〉 ∈ A.

(ii) {pϕq : ϕ ∈ SCWAn(T, L)} is a Σ0
n+1 subset of the natural numbers.

Hence (i) and Theorem 4.2 imply that, for every relation symbolR of level σTL(R) ≤ m,

there exists a Σm+1 relation A on the natural numbers satisfying

SCWA(T, L) ` R(~a) ⇐⇒ 〈β(~a)〉 ∈ A

for all ~a ∈ UL. Together with Theorem 3.1 and Theorem 3.2, we can therefore

conclude that DefL(SCWA(T, L)) is a subset of EIm(L).

(2) The second assertion is proved by induction on m. Hence, let A be an element

of EIm(L). To keep the notation as simple as possible, we restrict ourselves to

the discussion of the following special case (the extension of our arguments to full

generality is then obvious):

(i) A is a section of a binary B ∈ Σ+-FP(EIm−1(L) ∪ EIm−1(L), L), i.e., there

exists a b0 ∈ UL so that for all a ∈ UL

a ∈ A ⇐⇒ 〈a, b0〉 ∈ B.

(ii) B is the least fixed point generated by the Σ+ formula ϕ[P,Q,R, x, y] and the

unary C ∈ EIm−1(L) and D ∈ EIm−1(L), i.e.,

B = Iϕ(C,D).

We apply the induction hypothesis to C and E :=∼D and conclude that there are

stratified programs TC and TE of height m − 1 and relation symbols RC and RE

satisfying

SCWA(TC , L) ` RC(a) ⇐⇒ a ∈ C (1)

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 19

SCWA(TE, L) ` RE(a) ⇐⇒ a ∈ E (2)

for all a ∈ UL. Without loss of generality, we can assume that TC and TE have no

relation symbols in common. From (2), we obtain with the stratified closed-world

assumption that

SCWA(TE, L) ` ¬RE(a) ⇐⇒ a ∈ D (3)

for all a ∈ UL. By Lemma 2.5, ϕ[P,Q,R, x, y] has a normal form

n∨∨
i=1

(∃~z)(x = si[~z] ∧ y = ti[~z] ∧ ψi[P,Q,R, ~z]),

where each ψi[P,Q,R, ~z] is a conjunction of atomic formulas P (. . .), Q(. . .) and R(. . .).

Now we choose new relation symbols RD, RB and RA and define

T := TC ∪ TE ∪ {¬RE(x)→ RD(x)}
∪ {ψi[RB, RC , RD, ~z]→ RB(si[~z], ti[~z]) : i = 1, . . . , n}
∪ {RB(x, b0)→ RA(x)}.

T is a stratified program of height σL(T) ≤ m. Exploiting the locality of stratified

programs and some simple properties of inductive definitions, we obtain for all a, b ∈
UL:

SCWA(T, L) ` RD(a) ⇐⇒ a ∈ D, (4)

SCWA(T, L) ` RB(a, b) ⇐⇒ 〈a, b〉 ∈ B. (5)

The direction “=⇒” of (5) is based on the fact that B = Iϕ(C,D) is a fixed point of

ϕ[P,Q,R, x, y] and therefore,

UL |= ψi[B,C,D,~a] =⇒ 〈si[~a], ti[~a]〉 ∈ B (6)

for all ~a ∈ UL. In order to establish the converse direction of (5), we recall that

B = Iϕ(C,D) = I<ωϕ (C,D) and prove by induction on k:

〈a, b〉 ∈ Ikϕ(C,D) =⇒ SCWA(T, L) ` RB(a, b). (7)

If 〈a, b〉 ∈ Ikϕ(C,D), then there exist ~c ∈ UL and 1 ≤ i ≤ n so that a = si[~c], b = ti[~c]

and

UL |= ψi[I
k−1
ϕ (C,D), C,D,~s]. (8)

By (4), the induction hypothesis and Lemma 2.8, we obtain

SCWA(T, L) ` ψi[RB, RC , RD,~c] (9)

20 GERHARD JÄGER AND ROBERT F. STÄRK

and hence, by definition of T ,

SCWA(T, L) ` RB(a, b). (10)

This completes the proof of (7). This equivalence, the definition of T and the definition

of A finally yield

SCWA(T, L) ` RA(a) ⇐⇒ a ∈ A, (11)

for all a ∈ UL.

Hence, we have shown that the relation A is an element of DefL(SCWA(T, L)) for

some stratified program of height m. �

Remark 4.2. This theorem can also be obtained by combining results of Apt and

Blair [4] and Gelfond, Przymusinska and Przymusinski [7]. However, our approach

is conceptually different and develops the definability theory of stratified programs

from the more general point of view of inductive definability. We think that this

provides a more perspicuous approach to stratified programs and reveals the close

connections between stratified programs and inductive definitions.

5 Hierarchical programs

An alternative and important class of structured programs is provided by the class

of the so-called hierarchical programs. As the stratified programs, they are defined

by an easy-to-check syntactic condition which, however, is more restrictive than the

requirements imposed on stratified programs.

Definition 5.1. Let T be a normal program in L and α a level mapping for L.

(1) α is called hierarchical with respect to T if we have for all elements

F1 ∧ . . . ∧ Fn → G

of T and all 1 ≤ i ≤ n:

α(Fi) < α(G).

(2) T is called hierarchical if there exists a level mapping for L which is hierar-

chical with respect to T .

(3) HT
L denotes the set of all level mappings for L which are hierarchical with

respect to T .

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 21

It is obvious that every hierarchical program is stratified. The following program

T , on the other hand, is definite (and therefore stratified) but not hierarchical:

T = {R(0), R(x)→ R(Su(x))}.

If T is a hierarchical program in L, thenHT
L 6= ∅, and we define for all relation symbols

R of L:

ηTL(R) := min{α(R) : α ∈ HT
L},

ηL(T) := max{ηTL(R) : R occurs in L}.

The situation corresponds to that of stratified programs: if T is a hierarchical program

in L, then ηTL is a hierarchical level mapping for T , called the minimal hierarchical

level mapping of T ; the number ηL(T) is denoted as the hierarchical height of T .

One has to observe, however, that, although every hierarchical program is stratified,

the stratified height σL(T) of a hierarchical program T may be different from its

hierarchical height ηL(T).

Hierarchical programs which are also definite provide an interesting subclass of the

hierarchical programs and will be studied separately. Then, we turn to hierarchical

programs with negation and finally to the hierarchical closed-world assumption.

Theorem 5.1. (Defining power of definite hierarchical programs).

(1) If T is a definite hierarchical program in L, then every element of DefL(T)

is a term-definable relation in L.

(2) For every relation A on UL which is term-definable in L, there exists a definite

hierarchical program T in L of height 0 so that A ∈ DefL(T).

Proof. (1) Let T be a definite hierarchical program. The idea is to prove by

induction on ηLT (R) that, for every relation symbol R, the set

AR := {〈~a〉 ∈ Um
L : T ` R(~a)}

is term-definable. In the induction step, one has to make use of some well-known

results on definite logic programs and the observation that AR is Σ+
1 in some relations

which are term-definable by induction hypothesis. From Lemma 2.6 and Lemma 2.7

it follows that AR is term-definable.

(2) Let A be a subset of Un
L which is term-definable in L and of the form

A =
m⋃
i=1

{〈ti,1[~a], . . . , ti,n[~a]〉 : ~a ∈ UL}.

22 GERHARD JÄGER AND ROBERT F. STÄRK

Then, A is definable by the program

T := {Q(ti,1[~x], . . . , ti,n[~x]) : i = 1, . . . ,m}

which consists of atomic L formulas only. T is a definite hierarchical program in L of

height 0. �

The defining power of hierarchical programs with negation is particularly inter-

esting. At first sight, it seems that hierarchical programs do not allow recursive

definitions, since the same relation symbol must not occur on the left- and right-hand

side of an implication. However, the following lemma shows that already, hierarchi-

cal programs of height 1 possess the same defining power as definite programs. The

reason for this surprising result is the use of classical logic. If we work with a special

form of resolution, the defining power of hierarchical programs with negation may

collapse dramatically.

Lemma 5.1. For every definite program T in L, there exists a hierarchical program

T ∗ in L of height 1 so that we have for all F ∈ BL:

T ` F ⇐⇒ T ∗ ` F.

Proof. Let R1, . . . , Rm be the enumeration of the relation symbols occurring in

T . Then, we choose new relation symbols Q1, . . . , Qm of corresponding arities and

sufficiently many new variables y1, . . . , yn to carry through the following construction.

If

ϕ→ Ri(t1, . . . , tk)

is the element ψ of T , then we write ϕ for the formula which results from ϕ by

replacing each relation symbol Rj by Qj for j = 1, . . . ,m and define ψ∗ to be the

formula

ϕ ∧ ¬Qi(t1, . . . , tk).

Finally we set

T ∗ := {ψ∗ → Rj(~y) : ψ ∈ T, j = 1, . . . ,m} ∪ {Qi(~y)→ Ri(~y) : i = 1, . . . ,m}.

T ∗ is a hierarchical program in L of height 1, and it is easily shown that T and T ∗

prove the same elements of BL. �

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 23

Example 5.1. Let L be the language with the constant a and the unary function

symbol f . Then, the definite program

T = {R0(a), R0(x)→ R1(f(x)), R1(x)→ R0(f(x)) }

proves the same ground atoms as the hierarchical program T ∗ of height 1 given

by the clauses:

¬Q0(a) → R0(y), Q0(x) ∧ ¬Q1(f(x)) → R1(y),

¬Q0(a) → R1(y), Q1(x) ∧ ¬Q0(f(x)) → R0(y),

Q0(x) ∧ ¬Q1(f(x)) → R0(y), Q1(x) ∧ ¬Q0(f(x)) → R1(y).

It is a consequence of this lemma that the class of hierarchical programs has the

defining power of the class of definite program. Since, according to Theorem 4.1, the

defining power of stratified programs is limited to EI0, we obtain the following result.

Theorem 5.2. (Defining power of hierarchical programs).

(1) If T is a hierarchical program in L, then DefL(T) is a subset of EI0(L).

(2) For every A ∈ EI0(L), there exists a hierarchical program T in L of height 1

so that A ∈ DefL(T).

Remark 5.1. It seems that any procedural approach to this form of defining power

must be based on general resolution, which is never done in any Prolog-like envi-

ronment.

Now, we adjust the definition of stratified closed-world assumption to the case

of hierarchical programs in order to obtain the corresponding notion of hierarchical

closed-world assumption. If follows the same idea as above but with the level function

σTL relaced by ηTL .

Definition 5.2. Let T be a hierarchical program in L of height η(T) = m. Then, we

define for all n ≤ m+ 1:

HCWA0(T, L) := T

HCWAn+1(T, L) :=

{
HCWAn(T, L) ∪
{¬F : F ∈ BL, η

T
L(F) = n and HCWAn(T, L) 6` F},

HCWA(T, L) := HCWAm+1(T, L).

In many aspects the hierarchical closed-world assumption is similar to the strati-

fied closed-world assumption:

24 GERHARD JÄGER AND ROBERT F. STÄRK

(1) There are hierarchical theories T such that CWA(T, L) is inconsistent;

(2) HCWA(T, L) is always consistent;

(3) the HCWA reflects a more careful closing process than the CWA and is sensitive

to logical transformations of the underlying theory;

(4) Theorem 4.2 also holds for hierarchical programs.

But there is also one big difference. Whereas the defining power of stratified pro-

grams is enormously increased by adding the stratified closed-world assumption, this

is not the case for the hierarchical closed-world assumption. Moreover, the following

theorem shows that the defining power of hierarchical programs collapses if we allow

closure under the HCWA. In order to prove it we need the following fixed point

characterization of the hierarchical closed-world assumption.

Lemma 5.2. Let T be a hierarchical program in L. Then, HCWA(T, L) ` F if and

only if there exists a clause ϕ → G in T and a ground substitution σ such that

F = Gσ and HCWA(T, L) ` ϕσ.

Proof. Define ∆ to be the collection of all atomic formulas Gσ ∈ BL so that the

following conditions are satisfied:

(1) σ is a ground substitution;

(2) HCWA(T, L) ` ϕσ for some clause ϕ→ G in T .

Our lemma is established if we can show that ∆ is the collection of elements of BL

which are provable in HCWA(T, L), i.e.,

F ∈ ∆ ⇐⇒ HCWA(T, L) ` F

for all F ∈ BL. The implication from left to right is obvious, the implication from

right to left is proved by induction on ηTL(F). Toward this end, assume ηTL(F) = n

and HCWA(T, L) ` F . By the locality principle for hierarchical programs, it follows

that HCWAn(T � n, L) ` F . Exploiting the induction hypothesis, it is then an easy

exercise to show that

∆n := {H ∈ ∆ : ηTL(H) ≤ n}

induces a Herbrand model of HCWAn(T � n, L). This implies F ∈ ∆n ⊂ ∆. �

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 25

Theorem 5.3. (Defining power of the HCWA).

(1) If T is a hierarchical program in L, then every element of DefL(HCWA(T, L))

is equationally definable in L.

(2) For every relation A on UL which is equationally definable in L, there exists

a hierarchical program T in L of height 1 so that A ∈ DefL(HCWA(T, L)).

Proof. (1) It is sufficient to show — by induction on ηTL(Q) — that, for every

relation symbol Q of L, there exists an equational formula ϕ[~x] so that

HCWA(T, L) ` Q(~a) ⇐⇒ UL |= ϕ[~a]

for all ~a ∈ UL. If Q does not occur in T , then this assertion is trivially satisfied.

Hence, let

{ψi[~R, ~x]→ Q(ti,1[~x], . . . , ti,n[~x]) : i = 1, . . . ,m}

be the definition of Q in T . Then, the hierarchical height of the relation symbols ~R =

R1, . . . , Rk is smaller then ηTL(Q), and the induction hypothesis gives us equational

formulas χ1[~x], . . . , χk[~x] which correspond to R1, . . . , Rk:

HCWA(T, L) ` Ri(~a) ⇐⇒ UL |= χi[~a]. (12)

Because of the presence of the hierarchical closed-world assumption, it is immediate

that

HCWA(T, L) ` ¬Ri(~a) ⇐⇒ UL |= ¬χi[~a]. (13)

Since each ψi[~R, ~x] is a conjunction of literals of the form Rj(. . .) and ¬Rj(. . .), we

conclude that for all 1 ≤ i ≤ m and ~a ∈ UL,

HCWA(T, L) ` ψi[~R,~a] ⇐⇒ UL |= ψi[χ1, . . . , χk,~a], (14)

where ψi[χ1, . . . , χk, ~x] indicates the result of substituting χj[~t] for every occurrence

of Rj(~t) in ψi[~R, ~x]. Now, we define

ϕ[~x] :=
m∨∨
i=1

(∃~y)(x1 = ti,1[~y] ∧ . . . ∧ xn = ti,n[~y] ∧ ψi[χ1, . . . , χk, ~y]). (15)

By Lemma 5.2, we have for all ~a ∈ UL:

HCWA(T, L) ` Q(~a) ⇐⇒ UL |= ϕ[~a]. (16)

(2) Let A be defined by the equational formula ϕ[~x], where ~x = x1, . . . , xn. Ac-

cording to Lemma 2.3, there exist strictly simple equality formulas ψ1[~x], . . . , ψm[~x]

such that

UL |= ϕ[~a]↔ ψ1[~a] ∨ . . . ∨ ψm[~a]

26 GERHARD JÄGER AND ROBERT F. STÄRK

for all ~a ∈ UL. Now, choose a binary relation symbol EQ (for equality) and an n-ary

relation symbol R. To a strictly simple equality formula θ[~x] of the form

(∃~y)
(∧∧

i∈I

xi = ri[~x, ~y] ∧
∧∧
j∈J

xσ(j) 6= sj[~x, ~y] ∧
∧∧
k∈K

yτ(k) 6= tk[~x, ~y]
)
,

we associate the normal clause θ∗[~x] defined as∧∧
i∈I

EQ(xi, ri[~x, ~y]) ∧
∧∧
j∈J

¬EQ(xσ(j), sj[~x, ~y]) ∧
∧∧
k∈K

¬EQ(yτ(k), tk[~x, ~y])→ R(~x).

Now, let T be the program

T := {EQ(x, x)} ∪ {ψ∗i [~x, ~y] : i = 1, . . . ,m}.

Obviously T is a hierarchical program of height 1. Using Lemma 5.2, it follows that

UL |= ϕ[~a] ⇐⇒ HCWA(T, L) ` R(~a)

for all ~a ∈ UL. �

Remark 5.2.

(1) Kunen [9] states a similar result for infinite languages and the negations as

failure rule instead of the HCWA.

(2) Shepherdson ([16], Theorem 4) employs a similar construction in order to

obtain related results for the completion of theories.

From work of Mal’cev [12] and Maher [11], one obtains the following decidability

result for the validity of equational sentences over the corresponding Herbrand struc-

ture. It must not be confused with the (undecidable) notion of logical provability of

an equational sentence.

Remark 5.3. Let ϕ be an equational formula of L which contains no free variables.

Then, it is decidable whether UL |= ϕ or not.

This remark is interesting in our context, since it shows that the collection of

equationally definable subsets of UL is comparatively small. In particular, every

equationally definable relation on UL is recursive. A similar observation is also made

in Apt and Blair [4], but there, it is a consequence of a different approach.

To end this paper, we consider the class of weakly hierarchical programs which is

located — according to its syntactic definition — between the classes of hierarchical

and stratified programs. With respect to its defining power, however, it corresponds

to the stratified programs.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 27

Definition 5.3. Let T be a normal program in L and α a level mapping for T .

(1) α is called weakly hierarchical with respect to T if we have for all elements

F1 ∧ . . . ∧ Fn → G

of T and all 1 ≤ i ≤ n:

• α(Fi) ≤ α(G),

• α(Fi) < α(G) provided that Fi is a negative literal or α(G) 6= 0.

(2) T is called weakly hierarchical if there exists a level mapping for L which is

weakly hierarchical with respect to T .

(3) WHT
L denotes the set of all level mappings for L which are weakly hierarchical

with respect to T .

It is obvious that every hierarchical program is weakly hierarchical and every

weakly hierarchical program is stratified. There are also weakly hierarchical programs

which are not hierarchical, and stratified programs which are not weakly hierarchi-

cal, so that we have to deal with proper inclusions. The characterization of weakly

hierarchical programs follows from Theorem 4.1 and Theorem 5.2.

Theorem 5.4. (Defining power of weakly hierarchical programs).

(1) If T is a weakly hierarchical program in L, then DefL(T) is a subset of EI0(L).

(2) For every A ∈ EI0(L), there exists a weakly hierarchical — even definite —

program T in L so that A ∈ DefL(T).

The minimal hierarchical level mapping wηTL of weakly hierarchical programs T

and their weakly hierarchical heights wηL(T) are defined according to σTL , σL(T),

ηTL and ηL(T). Based on wηTL , the weakly hierarchical closed-world assumption

W-HCWA(T, L) of a weakly hierarchical program T is introduced analogously to

Definition 4.2 and Definition 5.2. The defining power of weakly hierarchical programs

with the weakly hierarchical closed-world assumption can be determined by making

use of Corollary 3.2 and Theorem 4.3.

Theorem 5.5. (Defining power of the W-HCWA).

(1) If T is a weakly hierarchical program of height m, then DefL(W-HCWA(T, L))

is a subset of EIm(L).

(2) For every A ∈ EIm(L), there exists a weakly hierarchical program T in L of

height m so that A ∈ DefL(W-HCWA(T, L)).

Open Questions.

28 GERHARD JÄGER AND ROBERT F. STÄRK

(1) The first question refers to the choice of logic. As remarked above, many of

our results — and especially Lemma 5.1 — are correct only since we worked

with classical logic. Therefore, it could be interesting to find characterizations

of the defining power of stratified and hierarchical programs in the presence of

non-classical logics.

(2) Also the second question refers to Lemma 5.1. Our translation of definite pro-

grams into hierarchical programs does in general not provide allowed programs.

Therefore, what is the defining power of allowed hierarchical programs?

References

1. Andreka, H., and Nemeti, I., The Generalized Completeness of Horn Predicate

Logic as a Programming Language, Acta Cybernetica, 4(1):3–10 (1978).

2. Apt, K. R., Blair, H. A., and Walker, A., Towards a Theory of Declarative

Knowledge, in: J. Minker (ed.), Foundations of Deductive Databases and Logic

Programming, pages 89–148, Morgan Kaufmann, Los Altos, 1987.

3. Apt, K. R., Logic Programming, in: J. van Leeuwen (ed.), Handbook of Theo-

retical Computer Science, Volume B, chapter 10, pages 495–574, Elsevier, 1990.

4. Apt, K. R., and Blair, H. A., Arithmetic Classification of Perfect Models of

Stratified Programs, Fundamenta Informaticae, 13:1–17 (1990). Addendum in

vol. 14:339–343 (1991).

5. Barwise, J., Admissible Sets and Structures: An Approach to Definability Theory,

Springer, Berlin, 1975.

6. Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic

and Data Bases, pages 293–322, Plenum Press, New York, 1978.

7. Gelfond, M., Przymusinska, H., and Przymusinski, T., On the Relationship

between Circumscription and Negation as Failure, Artificial Intelligence, 38:75–

94 (1989).

8. Hinman, P. G., Recursion-Theoretic Hierarchies, Springer, Berlin, 1978.

9. Kunen, K., Answer Sets and Negation-as-Failure, in: J.-L. Lassez (ed.), Logic

Programming: Proceedings of the Fourth International Conference, Melbourne

University, pages 219–228, MIT Press, 1987.

10. Lloyd, J. W., Foundations of Logic Programming, Springer, Berlin, second,

extended edition, 1987.

STRATIFIED AND HIERARCHICAL LOGIC PROGRAMS 29

11. Maher, M. J., Complete Axiomatizations of the Algebras of Finite, Rational

and Infinite Trees, in: Third Annual Symposium on Logic in Computer Science

(LICS), Edinburgh, Scotland, pages 348–357, 1988.

12. Mal’cev, A. I., Axiomatizable Classes of Locally Free Algebras of Various Types,

in: The Metamathematics of Algebraic Systems, Collected Papers, chapter 23,

pages 262–281, North-Holland, Amsterdam, 1971.

13. Moschovakis, Y. N., Elementary Induction on Abstract Structures, North-

Holland, Amsterdam, 1974.

14. Reiter, R., On Closed World Data Bases, in: H. Gallaire and J. Minker (eds.),

Logic and Data Bases, pages 55–76, Plenum Press, New York, 1978.

15. Shepherdson, J. C., Negation as Failure II, Journal of Logic Programming,

2(3):185–202 (1985).

16. Shepherdson, J. C., Language and Equality Theory in Logic Programming,

Technical Report PM-88-08, University of Bristol, 1988.

17. Van Gelder, A., Negation as Failure Using Tight Derivation for General Logic

Programs, in: J. Minker (ed.), Foundations of Deductive Databases and Logic

Programming, pages 149–176, Morgan Kaufmann, Los Altos, 1987.

	Basic notions
	Term and equationally definable relations
	Inductively definable relations
	Stratified programs
	Hierarchical programs

