

1

ε|A

(∨
)

...

(3
)

5

3¬
p
1 ,A

1 ,A
2 ,A|3

(¬
p
0∨
p
3),2

p
2 ,2

(p
0∧
p
1)

(2
)

6

2
(p

0∧
p
1),3¬

p
1 ,A

1 ,A
2 ,A|3

(¬
p
0∨
p
3),2

p
2

ε|p
0∧
p
1 ,¬
p
1

H
HHj

(2
)

7

2
p
2 ,2

(p
0∧
p
1),3¬

p
1 ,A

1 ,A
2 ,A|3

(¬
p
0∨
p
3)

ε|p
2 ,¬
p
1

ε|p
0∧
p
1 ,¬
p
1

H
HHj

� ��*

(3
)

8
Π|ε

ε|¬
p
0∨
p
3 ,p

2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(jum
p)

9
Π|ε

ε|¬
p
0∨
p
3 ,p

2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(∨
)

10
Π|ε

¬
p
0∨
p
3 |¬
p
0 ,p

3 ,p
2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(jum
p−

)

11
Π|ε

¬
p
0∨
p
3 |¬
p
0 ,p

3 ,p
2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(jum
p)

12
Π|ε

¬
p
0∨
p
3 |¬
p
0 ,p

3 ,p
2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(∧
) H

| 3Σ
| true,Γ(true)

H
| 3Σ
| P,¬P,Γ(id)

2
H
| 3Σ
| A
,B
,Γ

2
H
| 3Σ
| A
∨
B
,Γ (∨)

2
H
| 3Σ
| A
,Γ

2
H
| 3Σ
| B
,Γ

2
H
| 3Σ
| A
∧
B
,Γ

(∧)

3
A
∈

3Σ
(3
,dup)

ε | 3
A
,3Σ
| A
,Γ

2
H
| 3Σ
| 3
A
,Γ 3

A
/∈
3Σ

(3
,new)

2
A
,2Π

,2
H
| 3Σ
| A
,Σ

2
H
| 3Σ
| 2
A
,Γ

2
A
/∈
2
H

2
C
∈

Γ⇒
2
C
∈

2
A
,2Π

,2
H

no duplicate elements in
2
A
,2Π

,2
H

(2)

KA
1 . . .A

k `
B

A
1 , . . . , A

k

B

4,Dum

Dum
1

4{2(p
0 →

2
p
0)→

p
0 /p

0 }, 24, Dum, Dum{p
0 →

2
p
0 /p

0 }

T
,Dum

1

Dum
T, Dum

1

T
,Dum

Dum
2

2T, Dum

T
,Dum

2

Dum
T, 2T{p

0 →
2
p
0 /p

0 }, Dum
2

T
, 4,Dum

Dum
3

2T, 4{2(p
0 →

2
p
0)→

p
0 /p

0 }, 24, Dum, Dum{p
0 →

2
p
0 /p

0 }

T
,Dum

3

Dum
T, 2T{p

0 →
2
p
0 /p

0 }, Dum
3

Dum

Dum
4

Dum

T
,Dum

4

Dum
T, Dum

4

Grz

Grz
1

Grz{(2(p
0 →

2
p
0)→

p
0) ∧

4{2(p
0 →

2
p
0)→

p
0 /p

0 }/p
0 }, 2Grz

T
,Grz

1

Grz
T, T{Grz

1 /p
0 }, 2Grz

1

Grz

Grz
2

Grz, 2Grz

T
,Grz

2

Grz
2T{p

0 →
2
p
0 /p

0 }, T{¬
2(2(p

0 →
2
p
0)→

p
0)/p

0 }, Grz
2

Grz

Grz
3

Grz{(2(p
0 →

2
p
0)→

2
p
0) ∧

Grz

∧ 4{(2(p
0 →

2
p
0)→

2
p
0) ∧

Grz/p
0 }/p

0 },

2Grz

T
,Grz

3

Grz
T, 2T{p

0 →
2
p
0 /p

0 }, Grz
3

Grz

Grz
4

Grz, Grz{(2(p
0 →

2
p
0)→

p
0) ∧

4{2(p
0 →

2
p
0)→

p
0 /p

0 }/p
0 }

T
,Grz

4

Grz
T, Grz

4

Grz

Grz
5

Grz{(2(p
0 →

2
p
1)→

2
p
1) ∧

4{2(p
0 →

2
p
1)→

2
p
1 /p

0 }/p
0 },

Grz{(2((p
0 →

2
p
1)→

2(p
0 →

2
p
1))→

(p
0 →

2
p
1))

∧ 4{2((p
0 →

2
p
1)→

2(p
0 →

2
p
1))→

(p
0 →

2
p
1)/p

0 }/p
0 },

2Grz{p
0 →

2
p
1 /p

0 }

T
, 4,Grz

5

Grz
T{2(p

0 →
2
p
0)→

p
0 /p

0 }, 2
2T{p

0 →
2
p
0 /p

0 },

4{2(p
0 →

2
p
0)→

p
0 /p

0 }, 24,

Grz
5 {p

0 →
2
p
0 /p

1 }

Grz

T

Grz

Grz

4

Grz{p
0 ∧

4/p
0 }

Grz

M

Grz{3¬p
0 /p

0 }, Grz{3¬p
0 ∧

4{3¬p
0 /p

0 }/p
0 },

Grz{¬
2(p

0 →
2
p
0) ∧

4{¬
2(p

0 →
2
p
0)/p

0 }/p
0 },

2Grz

Grz

Dum
Grz

Grz
1

Dum
1

Grz
1

T
,M
,Dum

Grz
2T{¬p

0 /p
0 }, M

, Dum

���
�
p 1

w 0

�
��

6 ���
�
p 1

w 1

@@I���
�

w 2

@@I

�
��

���
�

w 3

p 2

���
�
p 2

w 4

3(3(2((¬
3
p
2 →
¬(p

0 ↔
p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false↔
p
5))) ∧

2(p
2 ∨

true→

(2(p
2 →

p
1)→

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3)))∨ (¬¬p

3 ∨
2¬(¬

2(p
2 ∧

false) →
(2
p
6 ↔

(true
↔

true)) ∧
((p

3 ↔
p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true∨
p
1)∧

2
3
p
3)↔

p
1)∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0)∨

2(p
1 ∨
p
4))↔

p
0 ∨
p
6 ∧ (p

5 ↔

p
4 ↔

3
p
3)))∨

p
2 ∧(p

6 ∨(3(p
0 ∧
p
2 ∧

true∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨¬p

1 ∧
3(3(2((¬

3
p
2 →

¬(p
0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3)))∨ (¬¬p

3 ∨
2¬(¬

2(p
2 ∧

false)→
(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true ∨
p
1) ∧

2
3
p
3) ↔

p
1) ∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0) ∨

2(p
1 ∨
p
4)) ↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3))) ∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true ∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨ ¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0) ∨ ¬p

5) ∨
3(p

2 ∨
p
6) ∧

2(p
6 ↔

p
3))) ∨

(¬¬p
3 ∨

2¬(¬
2(p

2 ∧
false) →

(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true ∨
p
1) ∧

2
3
p
3) ↔

p
1) ∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0) ∨

2(p
1 ∨
p
4)) ↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3))) ∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true ∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨ ¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0) ∨ ¬p

5) ∨
3(p

2 ∨
p
6) ∧

2(p
6 ↔

p
3))) ∨

(¬¬p
3 ∨

2¬(¬
2(p

2 ∧
false) →

(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true ∨
p
1) ∧

2
3
p
3) ↔

p
1) ∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0) ∨

2(p
1 ∨
p
4)) ↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3))) ∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true ∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨ ¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3)))∨(¬¬p

3 ∨
2¬(¬

2(p
2 ∧

false)→
(2
p
6 ↔

(true↔

true))∧((p
3 ↔

p
4)∧(p

0 →
p
7)))→

(¬(¬(3
p
6 ↔

true∨
p
1)∧

2
3
p
3)↔

p
1)∧

2(2((p
2 ∧

p
0 ↔

p
1 ∧
p
0)∨

2(p
1 ∨
p
4))↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3)))∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔
p
2))∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false↔
p
5)))∧

2(p
2 ∨

true→
(2(p

2 →
p
1)→

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3))) ∨

(¬¬p
3 ∨

2¬(¬
2(p

2 ∧
false) →

(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7)))→

(¬(¬(3
p
6 ↔

true∨p
1)∧

2
3
p
3)↔

p
1)∧

2(2((p
2 ∧p

0 ↔
p
1 ∧p

0)∨
2(p

1 ∨p
4))↔

p
0 ∨
p
6 ∧ (p

5 ↔
p
4 ↔

3
p
3)))∨

p
2 ∧ (p

6 ∨ (3(p
0 ∧
p
2 ∧

true∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨¬p

1∧
(p
5
v
(
(p
4
v
di
a
bo
x
fa
ls
e
<-
>
bo
x
p3

->
tr
ue
)
&
p0

->
(p
7
<-
>
di
a

(d
ia

di
a
(p
7
->

p2
)
<-
>
p7

&
(d
ia

p7
v
p2
)
)
&
p6
)
v
di
a
(
(d
ia

p1
->

di
a
p0

<-
>
(b
ox

p5
<-
>
p5
)
)
<-
>
bo
x
bo
x
(p
5
&
p7
)
->

(p
3
&
fa
ls
e
->

di
a
p4
)
)
)
->

p0
)
&
(b
ox

(
(
(
(
(p
7
<-
>
p7
)
v
p1
)
<-
>
(p
5
->

p4
)
->

(p
6
->

p3
)
->

fa
ls
e)

->
(p
4
&
(p
5
v
p7
)
&
di
a
bo
x
p5
)
<-
>
(
(p
1
v
p7
)

&
p4

v
(t
ru
e
<-
>
p3

<-
>
p2

v
p3
)
->

(b
ox

p6
&
bo
x
p1
)
)
)
&
(
(
(d
ia

tr
ue

->
(f
al
se

&
p0
)
)
&
(
(p
3
->

fa
ls
e)

<-
>
(p
2
<-
>
p7
)
)
<-
>
p4
)
v

(
(t
ru
e
<-
>
p7
)
v
(
(p
2
<-
>
p5
)
v
bo
x
fa
ls
e)

)
)
)
&
bo
x
(
(b
ox

(d
ia

(p
4
<-
>
fa
ls
e)

v
di
a
p7

&
di
a
tr
ue
)
<-
>
p5

<-
>
bo
x
(d
ia

(p
0
&
p3
)
v

(f
al
se

v
di
a
p4
)
)
v
di
a
p4

&
p4

<-
>
p7

->
di
a
(p
6
->

(f
al
se

<-
>
p2
)

->
p7

->
p4
)
)
v
(
(
(
(b
ox

(p
7
&
p5
)
->

p2
v
bo
x
fa
ls
e)

->
(d
ia

p5
v

(p
1
->

tr
ue
)
)
)
->

(p
1
->

di
a
p0

<-
>
p6

&
p1

->
tr
ue
)
)
&
(b
ox

(b
ox

p6
<-
>
(p
1
<-
>
p6
)
)
v
di
a
p4
)
)
)
)
v
(p
0
&
p1

v
p0

<-
>
p4

->
p5
)

->
(
(p
1
&
(p
1
&
p2
)
v
p2

&
p3
)
->

p4
)
v
(p
4
v
di
a
bo
x
fa
ls
e
<-
>
bo
x

p3
->

tr
ue
)
->

(p
5
v
(
(p
4
v
di
a
bo
x
fa
ls
e
<-
>
bo
x
p3

->
tr
ue
)
&
p0

->
(p
7
<-
>
di
a
(d
ia

di
a
(p
7
->

p2
)
<-
>
p7

&
(d
ia

p7
v
p2
)
)
&
p6
)
v

di
a
(
(d
ia

p1
->

di
a
p0

<-
>
(b
ox

p5
<-
>
p5
)
)
<-
>
bo
x
bo
x
(p
5
&
p7
)

->
(p
3
&
fa
ls
e
->

di
a
p4
)
)
)
->

p0
)
&
(b
ox

(
(
(
(
(p
7
<-
>
p7
)
v
p1
)

<-
>
(p
5
->

p4
)
->

(p
6
->

p3
)
->

fa
ls
e)

->
(p
4
&
(p
5
v
p7
)
&
di
a
bo
x

p5
)
<-
>
(
(p
1
v
p7
)
&
p4

v
(t
ru
e
<-
>
p3

<-
>
p2

v
p3
)
->

(b
ox

p6
&
bo
x

p1
)
)
)
&
(
(
(d
ia

tr
ue

->
(f
al
se

&
p0
)
)
&
(
(p
3
->

fa
ls
e)

<-
>
(p
2

<-
>
p7
)
)
<-
>
p4
)
v
(
(t
ru
e
<-
>
p7
)
v
(
(p
2
<-
>
p5
)
v
bo
x
fa
ls
e)

)

)
)
&
bo
x
(
(b
ox

(d
ia

(p
4
<-
>
fa
ls
e)

v
di
a
p7

&
di
a
tr
ue
)
<-
>
p5

<-
>

bo
x
(d
ia

(p
0
&
p3
)
v
(f
al
se

v
di
a
p4
)
)
v
di
a
p4

&
p4

<-
>
p7

->
di
a

(p
6
->

(f
al
se

<-
>
p2
)
->

p7
->

p4
)
)
v
(
(
(
(b
ox

(p
7
&
p5
)
->

p2
v

bo
x
fa
ls
e)

->
(d
ia

p5
v
(p
1
->

tr
ue
)
)
)
->

(p
1
->

di
a
p0

<-
>
p6

&
p1

->
tr
ue
)
)
&
(b
ox

(b
ox

p6
<-
>
(p
1
<-
>
p6
)
)
v
di
a
p4
)
)
)
)
v
(p
0
&

p1
v
p0

<-
>
p4

->
p5
)
->

(
(p
1
&
(p
1
&
p2
)
v
p2

&
p3
)
->

p4
)
v
(p
4
v

di
a
bo
x
fa
ls
e
<-
>
bo
x
p3

->
tr
ue
)
->

3(3(2((¬
3
p
2 →
¬(p

0 ↔
p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false↔
p
5))) ∧

2(p
2 ∨

true→

(2(p
2 →

p
1)→

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3)))∨ (¬¬p

3 ∨
2¬(¬

2(p
2 ∧

false) →
(2
p
6 ↔

(true
↔

true)) ∧
((p

3 ↔
p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true∨
p
1)∧

2
3
p
3)↔

p
1)∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0)∨

2(p
1 ∨
p
4))↔

p
0 ∨
p
6 ∧ (p

5 ↔

p
4 ↔

3
p
3)))∨

p
2 ∧(p

6 ∨(3(p
0 ∧
p
2 ∧

true∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨¬p

1 ∧
3(3(2((¬

3
p
2 →

¬(p
0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3)))∨ (¬¬p

3 ∨
2¬(¬

2(p
2 ∧

false)→
(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true ∨
p
1) ∧

2
3
p
3) ↔

p
1) ∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0) ∨

2(p
1 ∨
p
4)) ↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3))) ∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true ∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨ ¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0) ∨ ¬p

5) ∨
3(p

2 ∨
p
6) ∧

2(p
6 ↔

p
3))) ∨

(¬¬p
3 ∨

2¬(¬
2(p

2 ∧
false) →

(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true ∨
p
1) ∧

2
3
p
3) ↔

p
1) ∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0) ∨

2(p
1 ∨
p
4)) ↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3))) ∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true ∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨ ¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0) ∨ ¬p

5) ∨
3(p

2 ∨
p
6) ∧

2(p
6 ↔

p
3))) ∨

(¬¬p
3 ∨

2¬(¬
2(p

2 ∧
false) →

(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7))) →

(¬(¬(3
p
6 ↔

true ∨
p
1) ∧

2
3
p
3) ↔

p
1) ∧

2(2((p
2 ∧
p
0 ↔

p
1 ∧
p
0) ∨

2(p
1 ∨
p
4)) ↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3))) ∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true ∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨ ¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔

p
2)) ∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false ↔
p
5))) ∧

2(p
2 ∨

true →
(2(p

2 →
p
1) →

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3)))∨(¬¬p

3 ∨
2¬(¬

2(p
2 ∧

false)→
(2
p
6 ↔

(true↔

true))∧((p
3 ↔

p
4)∧(p

0 →
p
7)))→

(¬(¬(3
p
6 ↔

true∨
p
1)∧

2
3
p
3)↔

p
1)∧

2(2((p
2 ∧

p
0 ↔

p
1 ∧
p
0)∨

2(p
1 ∨
p
4))↔

p
0 ∨
p
6 ∧

(p
5 ↔

p
4 ↔

3
p
3)))∨

p
2 ∧

(p
6 ∨

(3(p
0 ∧
p
2 ∧

true∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨¬p

1 ∧
3(3(2((¬

3
p
2 →
¬(p

0 ↔
p
2))∧

p
6 ∨

2(p
1 ↔

2
p
6 →

(false↔
p
5)))∧

2(p
2 ∨

true→
(2(p

2 →
p
1)→

(p
7 ↔

p
0)∨¬p

5)∨
3(p

2 ∨
p
6)∧

2(p
6 ↔

p
3))) ∨

(¬¬p
3 ∨

2¬(¬
2(p

2 ∧
false) →

(2
p
6 ↔

(true ↔
true)) ∧

((p
3 ↔

p
4) ∧

(p
0 →

p
7)))→

(¬(¬(3
p
6 ↔

true∨p
1)∧

2
3
p
3)↔

p
1)∧

2(2((p
2 ∧p

0 ↔
p
1 ∧p

0)∨
2(p

1 ∨p
4))↔

p
0 ∨
p
6 ∧ (p

5 ↔
p
4 ↔

3
p
3)))∨

p
2 ∧ (p

6 ∨ (3(p
0 ∧
p
2 ∧

true∨
2¬p

1 ∨
p
2 ∧
p
2 ∨
p
0 ∨¬p

1∧

K
|=
C
∧2
C
∧ .
. .
∧2
n(
A
,T

) C
→
A

⇔
K

+
T
|=
A

whe
re

n(
A
, T

) :=

(le
ng

th
(A

) +
len

gt
h(

nn
f(¬
T
)))

· 2
le
ng

th
(A

)+
le
ng

th
(n

nf
(¬
T
))

an
d

D

2
p
0 →

3
p
0

D
2

3
true

T

2
p
0 →

p
0

4
2
p
0 →

2
2
p
0

4
M

2
p
0 ∧

3
p
1 →

3(2
p
0 ∧
p
1)

5
3
p
0 →

2
3
p
0

5
M

3
p
0 ∧

3
p
1 →

3(3
p
0 ∧
p
1)

B

p
0 →

2
3
p
0

B
M

p
0 ∧

3
p
1 →

3(3
p
0 ∧
p
1)

Sequent Calculi
for Proof Search

in Some Modal Logics

Theory – Implementation – Applications

Alain Heuerding

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

Leiter der Arbeit: Prof. Dr. G. Jäger, Universität Bern

Sequent Calculi for Proof Search in Some Modal Logics

Theory – Implementation – Applications

Alain Heuerding

Sequent Calculi

for Proof Search
in Some Modal Logics

Theory – Implementation – Applications

Alain Heuerding

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

Leiter der Arbeit:

Prof. Dr. G. Jäger, IAM, Universität Bern

If you want a copy of your own, then send a request
(with your address) to:

A. Heuerding
Cäcilienstr. 5
3007 Bern
Switzerland

If this address is no longer valid, then you can try
to send it to anybody with surname ‘Heuerding’ in
Switzerland.

~

CONTENTS

Certainly modal logic also suffers from an
over-developed formalism. The literature on
many-valued systems is ridiculously large, but
I am sure it does not match in waste of time
that on modalities.

D. Scott. Does Many-Valued Logic Have Any
Use?

Introduction 1

The subject . 1

The ideal reader . 1

Survey . 2

Related work . 3

Typesetting . 4

Thanks . 4

I THEORY 5

1 Notation 7

1.1 Meta-language . 7

1.2 Logics in general . 9

1.3 K, K + T , KT, KT + T , S4, S4 + T . 13

1.4 Kt . 14

1.5 Other logics . 16

2 Hilbert-style calculi 17

2.1 Introduction . 17

2.2 K . 19

2.3 K + T . 20

2.4 KT . 20

2.5 KT + T . 21

2.6 S4 . 22

2.7 S4 + T . 22

2.8 Kt . 23

2.9 Other logics . 25

2.10 Summary . 25

3 Possible world semantics 27

3.1 Introduction . 27

3.2 K . 28

3.3 K + T . 31

3.4 KT . 31

3.5 KT + T . 32

3.6 S4 . 33

3.7 S4 + T . 34

3.8 Kt . 35

3.9 Other logics . 36

3.10 Summary . 37

4 Graph calculi 39

4.1 Introduction . 39

4.2 K . 43

4.3 K + T . 61

4.4 KT . 68

4.5 KT + T . 70

4.6 S4 . 71

4.7 Kt . 74

4.8 Other logics . 78

4.9 Summary . 81

5 Sequent calculi 83

5.1 Introduction . 83

5.2 K . 90

5.3 K + T . 106

5.4 KT . 117

5.5 KT + T . 124

5.6 S4 . 131

5.7 Kt . 146

5.8 Other logics . 161

5.9 Summary . 163

6 Complexity 165

6.1 Introduction . 165
6.2 K . 168
6.3 K + T . 171
6.4 KT . 171
6.5 S4 . 174
6.6 Kt . 175
6.7 Other logics . 176
6.8 Summary . 176

7 Embeddings 177

7.1 Introduction . 177
7.2 K + T . 178
7.3 KT, KT + T . 181
7.4 S4 . 183
7.5 S4 + T . 186
7.6 Other logics . 187
7.7 Summary . 187

II IMPLEMENTATION 189

8 The LWB project 191

8.1 Introduction . 191
8.2 Overview . 191
8.3 Comparison with other systems . 192
8.4 Kernel . 193
8.5 Parser/interpreter . 195
8.6 Logic modules . 195
8.7 Graphical user interface . 197
8.8 LWB information system . 197
8.9 The LWB in education . 198
8.10 Access to the LWB . 199
8.11 Sample session . 199
8.12 Summary . 201

9 Tests 203

9.1 Introduction . 203
9.2 Method . 204
9.3 K . 208
9.4 KT . 215
9.5 S4 . 219
9.6 Other logics . 223
9.7 Summary . 223

10 Benchmarks 225
10.1 Introduction . 225
10.2 Postulates . 226
10.3 Benchmark method . 227
10.4 Presentation of formulas . 229
10.5 K . 229
10.6 KT . 236
10.7 S4 . 242
10.8 LWB . 248
10.9 Availability of the formulas . 249
10.10Summary . 249

III APPLICATIONS 251

11 Relations between normal modal logics 253
11.1 Introduction . 253
11.2 Theory . 254
11.3 Results . 254
11.4 LWB session . 259
11.5 Summary . 263

12 Counting formulas 265
12.1 Introduction . 265
12.2 Theory . 265
12.3 Algorithm . 267
12.4 Implementation . 268
12.5 Runs . 270
12.6 Other logics . 270
12.7 Summary . 271

13 Optimal simplification 273
13.1 Introduction . 273
13.2 Theory . 274
13.3 Algorithm . 274
13.4 Implementation . 275
13.5 Runs . 277
13.6 Summary . 279

14 Diagrams 281
14.1 Introduction . 281
14.2 Algorithm . 282
14.3 Implementation . 283
14.4 Runs . 286
14.5 Other logics . 289
14.6 Summary . 290

Conclusion 293

Bibliography 295

Index 303

~

INTRODUCTION

The White Rabbit put on his spectacles.
“Where shall I begin, please your Majesty?”
he asked. “Begin at the beginning,” the King
said gravely, “and go on till you come to the
end: then stop.”

L. Carroll. Alice’s Adventures in Wonderland.

THE SUBJECT

Modal logics have a long tradition in logic. One way to look at a modal logic is to consider it
as a definition of a set of modal formulas. The natural question that arises is whether or not a
given formula is in this set, i.e. whether or not it is valid. Checking the validity by hand is a very
tiresome and error-prone task even in the case of shorter formulas. Here automated proof search
can help with implementations of decision procedures, which are several magnitudes faster.

In this thesis we investigate proof search based on sequent calculi for some propositional modal
logics, namely for K, KT, S4 (with and without theories) and for the tense logic Kt. One advantage
of such procedures is that they are relatively easy to describe and to implement, and the LWB
(Logics Workbench) shows that implementations can be reasonably fast. Note that we do not
try to give one generic formalism for many logics at once, but deal separately with each of the
logics. This allows us to develop calculi that make use of the properties of each logic, and we can
ensure the termination of backward proof search without becoming inefficient.

Besides presenting sequent calculi for backward proof search, we have three further aims. Many
results in this thesis have been known for a long time. We hope that by using a uniform presen-
tation and notation we can make clear the interdependencies between semantics, sequent calculi,
complexity results, This could make it worthwhile to read the thesis even for an expert or for
somebody whose main interest is not sequent calculi. Secondly, we define tests and benchmarks
for proof search in these logics, which make it possible to compare theorem provers and help
to develop new ones. Finally, we show how efficient decision procedures can be used to solve
problems in modal logic with brute force methods.

2 INTRODUCTION

THE IDEAL READER

We start at the beginning and introduce all notions we shall use, often together with an example.
Nevertheless, it is helpful to have some basic knowledge of modal logic. For readers without any
foreknowledge, looking at an introduction in modal logic (for example [CZ97], [Che80], [BS86],
[Rau79]) will help to understand the motivation and intuition behind the definitions and theorems.
The situation is about the same in the case of sequent calculi and proof search. Although in that
respect, the thesis is self-contained, but a certain understanding will make reading much easier.
Ideally the reader is familiar with the usual sequent calculus for classical propositional logic, has
heard something about proof search in this calculus and has tried to find proofs for some formulas
by hand. The only chapter where we really presuppose knowledge is the one about complexity.

SURVEY

The thesis consists of three parts: ‘Theory’, ‘Implementation’ and ‘Applications’.

In the ‘Theory’ part, after having explained the notation (chapter 1), we start with Hilbert-
style calculi (chapter 2) and possible world semantics (chapter 3) for the logics K, K+T , KT,
KT + T , S4, and Kt. While the Hilbert-style calculi are introduced because they are well-known
to many people and they are helpful in one of the applications, possible world semantics will serve
as the base for the following chapters.

In order to check whether a formula is valid, we search systematically for a countermodel in the
possible world semantics; if we fail, then we know that the formula is valid. We formalise this
search with so-called graph calculi (chapter 4). The motivation for the graph calculi is exactly
the same as for tableau calculi, and the search for a model in a tableau calculus is sometimes
presented in similar ways as we present our proofs in graph calculi. The graphical presentation
of the calculi themselves, however, is rather unusual. We hope that it helps to clarify the step
from possible world semantics to sequent calculi, a step which is in fact well-known, but rarely
explained in detail. It will also become clear why there is a simple sequent calculus for the
modal logic K, but not for the corresponding tense logic Kt. In this as well as in the following
chapter, we first give a detailed presentation for K, and in the following sections, concentrate on
the differences between K and the other modal logics.

The standard sequent calculi (chapter 5) for K, KT, S4 have been known for a long time, and
there exist also tableau calculi for K+T and KT+T . One problem is that except for K, backward
proof search in these calculi does in general not terminate. We develop the sequent calculi further,
such that backward proof search always terminates. It is obvious that a loop-check is a solution.
The idea to build this loop-check into the sequent calculi seems to be new, but there are some
similarities with the algorithms in [Lad77]. Compared to the usual verbal explanation, such a
built-in loop-check has two advantages: It is formal and thus more precise, and it makes it easier
to discuss optimisations of the loop-check (which do exist). We show how to accelerate the proof
search with use-check, which has only been used for classical and intuitionistic logic until now.
Note that these are optimisations on a conceptual level, and not on the implementation level.
The development of the sequent calculus for Kt is rather complicated. However, in contrast to
other sequent calculi that have been proposed, in our calculus the size of a sequent is polynomial
with respect to the length of the formula whose validity we want to check, and not exponential.
The calculi for Kt are the result of a collaboration with H. Zimmermann.

In the next chapter we investigate the complexities (chapter 6) related to backward proof
search in the calculi defined so far. Especially between the graph and the sequent calculi, major

3

differences show up, which one does not expect at first sight. We also show that it is not
astonishing that the loop check for K + T cannot be simplified as much as the one for S4.

Finally we investigate embeddings (chapter 7) from one logic into another. As in the previous
chapter, complexities play an important role.

At the beginning of the ‘Implementation’ part we give a short introduction to the Logics Work-
bench project (chapter 8). Many people have been involved in the development of the LWB
(about fifteen man-years until 1997). The LWB contains implementations of decision procedures
for the logics discussed in the ‘Theory’ part, but it goes much further.

As soon as we had implemented these decision procedures we had to test them. It soon became
clear that the formulas one can find in the literature are not sufficient for reliable tests. We hope
that the tests we present (chapter 9) for K, KT, S4 will help others who are faced with the same
problem.

Efficiency is not the only criterion of a decision procedure, but it is certainly an important one.
But how should one compare such decision procedures? After discussions with many people we
came up with a list of seven postulates for benchmark methods in this area. The benchmarks
(chapter 10) we propose for K, KT, S4 largely satisfy these postulates.

In the ‘Applications’ part we show some applications of the decision procedures for K, KT, and
S4. First we investigate relations between propositional normal modal logics (chapter
11). These relations have been known for a long time, but we present them in a uniform way,
such that the results can be checked easily. The search for the formulas required an extensive use
of the LWB, but it would not have been possible without the modal logic experts R. Goré and
W. Heinle.

In chapter 12 we show how the LWB can be used to compute the number of formulas of a
fragment of a modal logic. Such computations have only been possible because of the relatively
fast decision procedures and since the LWB contains a programming language.

Based on these LWB programs we implement an optimal simplification (chapter 13) for for-
mulas in S4. This simplification is of no use in the case of longer formulas, but it is interesting
to see that there is for example no formula that is equivalent to 2(2(p0 → 2p0)→ p0)→ p0 (in
S4) and shorter. We are not aware of any other results of this kind.

Finally we use the LWB to compute some diagrams that correspond to fragments of K, KT, and
S4. The one of the positive formulas of S4 looks surprisingly interesting.

RELATED WORK

Of course other calculi and methods for proof search in modal logics have been proposed. We try
to give a survey. This survey is certainly incomplete, but the transitive closure of the references
will contain most of the relevant work in the area.

In [Fit83] and [Gor] sequent and tableaux calculi for a large number of modal logics are defined.
Prefixed tableaux for many logics are discussed in [Mas94] (see [CG97] for an implementation)
and [BG97]. In [Hud96] space complexity is the main concern. The influence of the search
strategy on the efficiency is investigated in [Dem95] for S4. In the area of description logic, there
exist several implementations that can be used as modal logic provers, such as Kris ([BH91]) and
FaCT ([Hor97]). See [PC96] and [MMO95] for two further tableaux-like calculi. Tableaux for
tense logics are the subject of [RU71] and [Kas94].

Instead of doing backward proof search in sequent calculi it is also possible to do forward proof
search or to use a resolution that is based on forward proof search ([Min90], [Vor92]). Another
proof search method is the connection method, proposed in [Wal90] for modal logics (see also

4 INTRODUCTION

[CM97] and [OK96]). In [OS97] embeddings in classical predicate logic are used. See [HS97] for
an implementation and a comparison with other methods, including the one in [GS96] that uses
a method related to the Davis-Putnam procedure.

A comparison of automated theorem provers for the propositional modal logics K, KT, S4 took
place at the conference Tableaux 98. Descriptions of the participating provers, including bench-
mark results, can be found in [dS98].

TYPESETTING

This thesis was typeset with LaTeX2ε, using bibtex and makeindex for the bibliography and
the index respectively. Most graphics and pictures have been drawn with the help of LaTeX
commands. There are three exceptions which were included as Postscript files: the signature
(scanned in), the snapshot of the LWB, and the title pages of the three parts (a Perl script
generated three fig files, which were then converted to Postscript). In the third part we include
many examples of computations with the LWB. The LaTeX source contains only the input lines.
With the help of LaTeX macros (written by Peter Balsiger) and Perl scripts, these input lines
are extracted while typesetting, the LWB is started to compute the results, and the output lines
are then inserted into the LaTeX file. This method makes sure that the input and output in this
thesis really corresponds to the behaviour of the LWB.

THANKS

Everybody who worked on the LWB project, and especially Gerhard Jäger who directed it, has
in some way contributed to this thesis. Also the other members of our group, our master thesis
students, our guests and many people I met at conferences helped me to understand the problems
I discuss. A typical example is the chapter about benchmarks: Only after numerous discussions
did I come up with my postulates. I do not try to give a list of all these people, since I would
certainly forget some of them; but everybody who had a conversation with me about logic or
who is cited in the bibliography can consider himself included. I confine myself to the people who
helped me to solve nonlogical problems (in alphabetic order): Peter Balsiger advised me many
times concerning LaTeX. Karoline Hunziker-Kanduth tried to improve my English. Gerhard
Jäger had the idea for the LWB project and managed to get the fundings. The Swiss National
Science Foundation paid me during my work on the LWB and on this thesis (SPP IF 5003-34279
and 21-43197.95).

1

NOTATION

“Then you should say what you mean,” the
March Hare went on.
“I do,” Alice hastily replied; “at least — at
least I mean what I say — that’s the same
thing, you know.”

L. Carroll. Alice’s Adventures in Wonderland.

1.1 META-LANGUAGE

1.1.1 DEFINITION meta-logic

In the meta-logic, we use⇒ and⇐ for implication,⇔ for equivalence, and ∀ and ∃ as quantifiers.

1.1.2 DEFINITION sets

In this thesis sets are always enumerable. A set is given either with an enumeration of its elements
(for example {1, 3, 5 . . .}) or using a condition (for example {x ∈ N | x is odd}).
Now let S1, S2 be two sets.

• ∅ is the empty set.

• card(S) is the number of elements in S.

• x ∈ S1 means that x is an element of S1.

• S1 = S2 means that the two sets S1 and S2 are equal.

• S1 ∪ S2 is the union of S1 and S2.

• S1 ⊆ S2 means that S1 is a subset of S2 (perhaps S1 = S2).

• S1 × S2 is the Cartesian product of S1 and S2, i.e. S1 × S2 = {〈x, y〉 | x ∈ S1, y ∈ S2}.

8 CHAPTER 1. NOTATION

Example

We set S1 := {1, 2, 3} and S2 := {1, 4, 5}. Then we have: 2 ∈ S1, 2 /∈ S2, S1 ∪ S2 = {1, 2, 3, 4, 5},
{1, 3, 2, 3} = S1, ∅ ⊆ S1, {1, 3} ⊆ S1, S1 ⊆ S1, S1 × S2 = {〈1, 1〉, 〈1, 4〉, 〈1, 5〉, 〈2, 1〉, 〈2, 4〉, 〈2, 5〉,
〈3, 1〉, 〈3, 4〉, 〈3, 5〉}, and card(S2) = 3.

1.1.3 DEFINITION natural numbers

N is the set of the natural numbers, i.e. N = {0, 1, 2, . . .}. We use m and n as meta-variables for
natural numbers.

Now let m,n be two natural numbers.

• m = n means that m and n are equal.

• We use m < n, m ≤ n, m > n, m ≥ n as usual.

• We use + and
∑

for sums, and − for subtraction.
∑

i∈∅(ni) = 0.

• We use · (sometimes omitted) and
∏

for products. mn stands for
∏n
i=1(m).

• m|n means that m divides n.

• m
n is the fraction of m and n.

• n! stands for 1 · 2 · . . . · n.
(
n
m

)
, where n ≥ m, stands for n!

m!(n−m)! .

• max({n1, . . . , nm}), where m > 0, is the maximum of the natural numbers n1, . . . , nm.

• min({n1, . . . , nm}), where m > 0, is the minimum of the natural numbers n1, . . . , nm.

• gcd(n1, n2), where n1 6= 0 and n2 6= 0, is the greatest common divisor of the two natural
numbers n1, n2.

Example

6|30, but not 7|30, 4
2 = 2, 5

2 /∈ N, max({2, 5, 3, 2}) = 5, min({2, 5, 3, 2}) = 2, gcd(20, 12) = 4.

1.1.4 DEFINITION functions

We write f : S1 → S2 for a function with arguments in the set S1 and values in the set S2. Such a
function is in general neither surjective nor injective, i.e. in general ∃y ∈ S2 : ∀x ∈ S1 : f(x) 6= y
and ∃x1, x2 ∈ S1 : (x1 6= x2 and f(x1) = f(x2)).

1.1.5 DEFINITION multisets

We use Γ,∆,Σ,Π,Λ as meta-variables for multisets of formulas, and H (‘history’) as a meta-
variable for multisets of formulas or multisets of multisets of formulas.

Now let Γ and ∆ be two multisets.

• ε is the empty multiset.

• card(Γ) is the number of elements in Γ.

• x ∈ Γ means that x is an element of Γ.

• Γ = ∆ means that Γ and ∆ are equal multisets. This implies that card(Γ) = card(∆).

• Γ,∆ is the multiset union of Γ and ∆.

• x,Γ is the multiset union of the multiset that consists of x and Γ. Γ, x analogous.

• x1, . . . , xn is the multiset that consists of the elements x1, . . . , xn.

• Γ ⊆ ∆ means Γ is a multiset-subset of ∆. This implies that card(Γ) ≤ card(∆).

1.2. LOGICS IN GENERAL 9

In general the context will make clear whether a comma stands for multiset union or whether it
is just used in an enumeration. Otherwise we write [Γ,∆], [x,Γ], and [x1, . . . , xn] to make clear
which comma we mean.

Example

We set Γ := 1, 2, 4 and ∆ := 2, 3, 5. Then 2 ∈ Γ. Note that Γ = 1, 4, 2, but Γ 6= 1, 2, 2, 4. Γ,∆
is the multiset 1, 2, 2, 3, 4, 5 and 5,∆ is the multiset 2, 3, 5, 5. A special case is Γ, ε = Γ. We have
1, 2 ⊆ Γ and 1, 1 6⊆ Γ. Finally card(Γ) = 3, but card(1, 2, 2, 2, 4) = 5.

1.1.6 DEFINITION tuples

〈x1, . . . , xn〉 is the tuple of the elements x1, . . . , xn. Let x be a tuple with m and y be a tuple
with n elements.

• x = y means that the tuples x and y are equal. This implies that m = n and that
eli(x) = eli(y) for all 1 ≤ i ≤ n.

• If x is a tuple with n elements and 1 ≤ i ≤ n, then eli(x) is the ith element of x.

Example

Let x be the tuple 〈2, 1, 3〉. Then x 6= 〈1, 3, 2〉 and x 6= 〈2, 1, 3, 3〉. We have el1(x) = 2 and
el3(x) = 3.

1.2 LOGICS IN GENERAL

1.2.1 REMARK logics

L stands for one of the following logics: K, K +T , KT, KT +T , S4, S4 +T , Kt, Kn, Kn +T , KTn,
KTn + T , S4n, S4n + T , S5, CPC, IPC, PLTL, and CTL. In some places we also mention linear
logic, but with L we never mean linear logic.

1.2.2 REMARK language

The language of a logic L is defined by three sets:

• The set of constants {true, false}.
• A set of unary connectives, including ¬.

• A set of binary connectives, including ∧,∨,→,↔.

We use
∧

and
∨

for iterated ∧ and ∨, respectively. We always write parentheses around the
argument in order to avoid ambiguities. We define

∧
i∈∅(Ai) as true and

∨
i∈∅(Ai) as false.

Example

If k = 3, then (
∧
i∈{1,...,k}(pi → pi+1) ∨ (¬p2)) is ((((p1 → p2) ∧ (p2 → p3)) ∧ (p3 → p4)) ∨ (¬p2))

and if k = 0, then (
∧
i∈{1,...,k}(pi → pi+1) ∨ (¬p2)) is (true ∨ (¬p2)).

1.2.3 DEFINITION variables

For all logics L the set Var = {p0, p1, p2, . . .} is the set of variables. We use P , Q, R as meta-
variables for variables.

1.2.4 DEFINITION formulas

For all logics L we define inductively the set of formulas FmlL:

10 CHAPTER 1. NOTATION

• P ∈ Var ⇒ P ∈ FmlL

• c constant of L ⇒ c ∈ FmlL

• ? unary connective of L and A ∈ FmlL ⇒ (?A) ∈ FmlL

• ◦ binary connective of L and A,B ∈ FmlL ⇒ (A ◦B) ∈ FmlL

We use A, B, C, D, E as meta-variables for formulas, i.e. for elements of FmlL. The context will
make clear which logic L we mean.

In the following we will often make statements like ‘A is a ∧ formula’. This means that A is a
formula of the form B ∧ C. We will use analogous statements for the other unary and binary
connectives.

Example

true and ¬p0 → 2(3p2 ∨ p0) are formulas of FmlK.

1.2.5 DEFINITION omitting parentheses in formulas

In order to make formulas more readable we use the following conventions:

• We omit the outermost parentheses.

• ∧, ∨, ↔ are left-associative, and → is right-associative.

• The unary connectives have a higher priority than the binary ones.

• Sometimes we use also the following order of priorities: ∧ higher than ∨ higher than →
higher than ↔.

Example

In K, p0 ∨ p1 ∨ p2 stands for the formula ((p0 ∨ p1) ∨ p2), p0 → p1 → p2 stands for the formula
(p0 → (p1 → p2)), and (2p1 ∧ ¬3p2 → p0) ∨ p0 stands for the formula ((((2p1) ∧ (¬(3p2))) →
p0) ∨ p0).

1.2.6 DEFINITION equality of formulas

A ≡ B means that the formulas A and B are syntactically equal.

Example

2p0 ∧ p1, p1 ∧2p0 are formulas of K, and 2p0 ∧ p1 6≡ p1 ∧2p0.

1.2.7 DEFINITION substitution, instances of formulas

If P0, . . . , Pn are different variables and A is a formula with vars(A) ⊆ {P0, . . . , Pn}, then
A{C0/P0, . . . , Cn/Pn} is the formula A with C0 substituted for P0, . . . , Cn substituted for Pn (all
substitutions in parallel). We then call A{C0/P0, . . . , Cn/Pn} an instance of the formula A.

Example

If A ≡ 2(p0 → p1 ∧ p2) ∨ ¬p0, then A{p3 ∨ p1/p0} ≡ 2(p3 ∨ p1 → p1 ∧ p2) ∨ ¬(p3 ∨ p1) and
A{p3 ∨ p1/p0, p4/p1} ≡ 2(p3 ∨ p1 → p4 ∧ p2) ∨ ¬(p3 ∨ p1).

1.2.8 DEFINITION formula schemes

Formula schemes are defined in the same way as formulas, but with the letters z0, z1, . . . instead
of p0, p1, To obtain the formula scheme that corresponds to a formula, we replace pi by zi
for all i ∈ N. The notation with z0, z1, . . . is tiresome and unusual. Therefore we will write the

1.2. LOGICS IN GENERAL 11

letters A,B,C,D (sometimes with subscripts) instead of z0, z1, If it is not clear from the
context that we mean a formula scheme and not a formula, then we will explicitly say so.

Example

p0 ∧ 2(p0 → p1) → p1 is a formula, and z0 ∧ 2(z0 → z1) → z1 is the corresponding formula
scheme. In the following we will write A ∧2(A→ B)→ B instead.

1.2.9 DEFINITION schemes of multisets of formulas

A formula scheme stands for a certain class of formulas. Analogously, a scheme of a multiset of
formulas stands for a certain class of multisets. Sometimes we also use schemes of multisets of
multisets of formulas.

This definition is rather informal, since we think that a formalisation would be more confusing
than helpful.

Example

A∧B,Γ is a scheme of a multiset of formulas of K. The multiset 2p0 ∧ p1,3(true∨ p1), p3 → ¬p0

is an instance of this scheme. For this instance we have Γ = 3(true ∨ p1), p3 → ¬p0.

2A,3∆,Γ is another scheme of a multiset of formulas of K. An instance of this scheme is for
example the multiset 2¬p1,3p0,3(p1 ↔ 2p2),2p3, false. Another instance is the multiset 2true,
where both ∆ and Γ are empty.

1.2.10 DEFINITION theories

A theory is a finite multiset of formulas. ThL is the set of all theories of the logic L.

We use T as a meta-variable for theories.

1.2.11 DEFINITION vars

For each logic L we define inductively the function vars(A) : FmlL → Var:

• P ∈ Var ⇒ vars(P) := {P}

• c constant of L ⇒ vars(c) := ∅

• ? unary connective of L, A ∈ FmlL ⇒ vars(?A) := vars(A)

• ◦ binary connective of L and A,B ∈ FmlL ⇒ vars(A ◦B) := vars(A) ∪ vars(B)

vars(A) is the set of variables that occur in the formula A.

Example

In K we have vars(2(true→ p3 ∧ (p1 ↔ p3))) = {p1, p3}.

1.2.12 DEFINITION subfmls

For each logic L we define inductively the function subfmls(A) : FmlL → ThL:

• P ∈ Var ⇒ subfmls(P) := {P}

• c constant of L ⇒ subfmls(c) := {c}

• ? unary connective of L, A ∈ FmlL ⇒ subfmls(?A) := {?A} ∪ subfmls(A)

• ◦ binary connective of L and A,B ∈ FmlL
⇒ subfmls(A ◦B) := {A ◦B} ∪ subfmls(A) ∪ subfmls(B)

12 CHAPTER 1. NOTATION

subfmls(A) is the set of the subformulas of the formula A.

Example

In K we have subfmls(2(true→ p3 ∧ p3)) = {true, p3, p3 ∧ p3, true→ p3 ∧ p3,2(true→ p3 ∧ p3)}.

1.2.13 DEFINITION length

For each logic L we define inductively the function length(A) : FmlL → N:

• P ∈ Var ⇒ length(P) := 1

• c constant of L ⇒ length(c) := 1

• ? unary connective of L, A ∈ FmlL ⇒ length(?A) := 1 + length(A)

• ◦ binary connective of L and A,B ∈ FmlL
⇒ length(A ◦B) := 1 + length(A) + length(B)

length(A) is the length of the formula A.

If T is the multiset of formulas A1, . . . , An, then length(T) :=
∑n

i=1(length(Ai)).

Example

In K we have length(2(true→ p3 ∧ p3)) = 6, and length(2p1, p2 → ¬p0, true) = 7.

1.2.14 DEFINITION depth

For each logic L we define inductively the function depth(A) : FmlL → N:

• P ∈ Var ⇒ depth(P) := 0

• c constant of L ⇒ depth(c) := 0

• ? unary connective of L, A ∈ FmlL ⇒ depth(?A) := 1 + depth(A)

• ◦ binary connective of L and A,B ∈ FmlL
⇒ depth(A ◦B) := 1 + max({depth(A),depth(B)})

depth(A) is the depth of the formula A.

Example

In K we have depth(2(true→ p3 ∧ p3)) = 3.

1.2.15 DEFINITION modaldepth

For each logic L ∈ {K,K + T,KT,KT + T,S4,S4 + T,Kt} we define inductively the function
modaldepth(A) : FmlL → N:

• P ∈ Var ⇒ modaldepth(P) := 0

• c constant of L ⇒ modaldepth(c) := 0

• ? unary connective of L, ? 6= ¬, and A ∈ FmlL
⇒ modaldepth(?A) := 1 + modaldepth(A)

• A ∈ FmlL ⇒ modaldepth(¬A) := modaldepth(A)

• ◦ binary connective of L and A,B ∈ FmlL
⇒ modaldepth(A ◦B) := max({modaldepth(A),modaldepth(B)})

1.3. K, K + T , KT, KT + T , S4, S4 + T 13

modaldepth(A) is the modal depth of the formula A.

Example

In K we have modaldepth(2(3true→ p3 ∧2p3)) = 2.

1.3 K, K + T , KT, KT + T , S4, S4 + T

1.3.1 DEFINITION language

set of constants: {true, false}
set of unary connectives: {2,3,¬}
set of binary connectives: {∧,∨,→,↔}

1.3.2 DEFINITION 2Γ, 3Γ

If Γ = A1, . . . , An, then 2Γ is the multiset 2A1, . . . ,2An and 3Γ is the multiset 3A1, . . . ,3An.
Especially 2ε is the multiset ε and 3ε is the multiset ε.

1.3.3 DEFINITION 2nA, 3nA

We use the following notation for iterated 2 and 3:

• 20A :≡ A, 2n+1A :≡ 22nA

• 30A :≡ A, 3n+1A :≡ 33nA

1.3.4 DEFINITION nnf

For each logic L ∈ {K,K + T,KT,KT + T,S4,S4 + T} we define inductively the function nnf(A) :
FmlL → FmlL:

• P ∈ Var ⇒ nnf(P) :≡ P , nnf(¬P) :≡ ¬P
• nnf(true) :≡ true, nnf(false) :≡ true, nnf(¬true) :≡ false, nnf(¬false) :≡ true

• A ∈ FmlL ⇒ nnf(2A) :≡ 2nnf(A), nnf(3A) :≡ 3nnf(A), nnf(¬2A) :≡ 3nnf(¬A),
nnf(¬3A) :≡ 2nnf(¬A)

• A ∈ FmlL ⇒ nnf(¬¬A) :≡ nnf(A)

• A,B ∈ FmlL ⇒ nnf(A ∧ B) :≡ nnf(A) ∧ nnf(B), nnf(A ∨ B) :≡ nnf(A) ∨ nnf(B),
nnf(¬(A ∧B)) :≡ nnf(¬A ∨ ¬B), nnf(¬(A ∨B)) :≡ nnf(¬A ∧ ¬B)

• A,B ∈ FmlL ⇒ nnf(A→ B) :≡ nnf(¬A ∨B), nnf(¬(A→ B)) :≡ nnf(A ∧ ¬B)

• A,B ∈ FmlL ⇒ nnf(A↔ B) :≡ nnf((A→ B)∧(B → A)), nnf(¬(A↔ B)) :≡ nnf(¬((A→
B) ∧ (B → A)))

If T is the multiset B1, . . . , Bn, then nnf(¬T) is an abbreviation for the multiset nnf(¬B1), . . .,
nnf(¬Bn).

A formula is in negation normal form if it contains neither→ nor↔ and if ¬ occurs only in front
of variables. Note that nnf(A) is in negation normal form.

14 CHAPTER 1. NOTATION

Example

In K, nnf(p0 → 23¬(p1 ∧¬¬2p2)) ≡ ¬p0 ∨23(¬p1 ∨3¬p2) and nnf(¬¬p0 → false,¬2p0) is the
multiset ¬p0 ∨ false,3¬p0.

1.3.5 DEFINITION standard formulas

In figure 1.a we introduce abbreviations for formulas in FmlK. The literature contains many
variants of the formulas. See chapter 11 for more information.

1.4 Kt

1.4.1 DEFINITION language

set of constants: {true, false}
set of unary connectives: {2,3, ■, ◆,¬}
set of binary connectives: {∧,∨,→,↔}

1.4.2 DEFINITION 2Γ, ■Γ, 3Γ, ◆Γ

If Γ = A1, . . . , An, then 2Γ is the multiset 2A1, . . . ,2An and ■Γ is the multiset ■A1, . . . , ■An.
Analogously 3Γ is the multiset 3A1, . . . ,3An and ◆Γ is the multiset ◆A1, . . . , ◆An. Especially
2ε = ■ε = 3ε = ◆ε = ε.

1.4.3 DEFINITION nnf

We define inductively the function nnf(A) : FmlKt → FmlKt :

• P ∈ Var ⇒ nnf(P) :≡ P , nnf(¬P) :≡ ¬P
• nnf(true) :≡ true, nnf(false) :≡ false, nnf(¬true) :≡ false,

• nnf(¬false) :≡ true

• A ∈ FmlL ⇒ nnf(2A) :≡ 2nnf(A), nnf(3A) :≡ 3nnf(A), nnf(■A) :≡ ■nnf(A),
nnf(◆A) :≡ ◆nnf(A) nnf(¬2A) :≡ 3nnf(¬A), nnf(¬3A) :≡ 2nnf(¬A), nnf(¬■A) :≡
◆nnf(¬A), nnf(¬◆A) :≡ ■nnf(¬A)

• A ∈ FmlL ⇒ nnf(¬¬A) :≡ nnf(A)

• A,B ∈ FmlL ⇒ nnf(A ∧ B) :≡ nnf(A) ∧ nnf(B), nnf(A ∨ B) :≡ nnf(A) ∨ nnf(B),
nnf(¬(A ∧B)) :≡ nnf(¬A ∨ ¬B), nnf(¬(A ∨B)) :≡ nnf(¬A ∧ ¬B)

• A,B ∈ FmlL ⇒ nnf(A→ B) :≡ nnf(¬A ∨B), nnf(¬(A→ B)) :≡ nnf(A ∧ ¬B)

• A,B ∈ FmlL ⇒ nnf(A↔ B) :≡ nnf((A→ B)∧(B → A)), nnf(¬(A↔ B)) :≡ nnf(¬((A→
B) ∧ (B → A)))

A formula is in negation normal form if it contains neither→ nor↔ and if ¬ occurs only in front
of variables. The formula nnf(A) is in negation normal form. We will call nnf(A) the negation
normal form of the formula A.

1.4. Kt 15

name formula
D 2p0 → 3p0

D2 3true

T 2p0 → p0

4 2p0 → 22p0

4M 2p0 ∧3p1 → 3(2p0 ∧ p1)
5 3p0 → 23p0

5M 3p0 ∧3p1 → 3(3p0 ∧ p1)
B p0 → 23p0

BM p0 ∧3p1 → 3(3p0 ∧ p1)
G 32p0 → 23p0

G0 3(p0 ∧2p1)→ 2(p0 ∨3p1)
H 2(p0 ∨ p1) ∧2(2p0 ∨ p1) ∧2(p0 ∨2p1)→ 2p0 ∨2p1

H+ 2(2p0 ∨ p1) ∧2(p0 ∨2p1)→ 2p0 ∨2p1

L 2(p0 ∧2p0 → p1) ∨2(p1 ∧2p1 → p0)
L+ 2(2p0 → p1) ∨2(2p1 → p0)

L++ 2(2p0 → 2p1) ∨2(2p1 → 2p0)
M 23p0 → 32p0

M2 32(p0 → 2p0)
M3 23p0 ∧23p1 → 3(p0 ∧ p1)
Pt 2(p0 ∨3p0)→ 3(p0 ∧2p0)
W 2(2p0 → p0)→ 2p0

W0 23true→ 2false

Z 2(2p0 → p0)→ (32p0 → 2p0)
Dum 2(2(p0 → 2p0)→ p0)→ (32p0 → p0)
Dum1 2(2(p0 → 2p0)→ p0)→ (32p0 → 2p0)
Dum2 2(2(p0 → 2p0)→ 2p0)→ (32p0 → p0)
Dum3 2(2(p0 → 2p0)→ 2p0)→ (32p0 → 2p0)
Dum4 2(2(p0 → 2p0)→ p0)→ (32p0 → p0 ∨2p0)
Grz 2(2(p0 → 2p0)→ p0)→ p0

Grz1 2(2(p0 → 2p0)→ p0)→ 2p0

Grz2 2(2(p0 → 2p0)→ 2p0)→ p0

Grz3 2(2(p0 → 2p0)→ 2p0)→ 2p0

Grz4 2(2(p0 → 2p0)→ p0)→ p0 ∨2p0

Grz5 2(2(p0 → 2p1)→ 2p1) ∧2(2(¬p0 → 2p1)→ 2p1)→ 2p1

F (32p0 → p1) ∨2(2p1 → p0)
Hs p0 → 2(3p0 → p0)
P 323p0 → (p0 → 2p0)
R 32p0 → (p0 → 2p0)
X 22p0 → 2p0

Zem 232p0 → (p0 → 2p0)

Figure 1.a: Standard formulas.

16 CHAPTER 1. NOTATION

1.5 OTHER LOGICS

1.5.1 DEFINITION language of S5

Same language as for K.

1.5.2 DEFINITION language of Kn, Kn + T , KTn, KTn + T , S4n, S4n + T

Same language as K, but with 2 and 3 replaced by the (infinitely many) connectives 20, 30, 21,
31,

1.5.3 DEFINITION language of CPC

Language of K without 2 and 3.

1.5.4 DEFINITION language of IPC

Language of K without 2 and 3.

1.5.5 DEFINITION language of PLTL

constants: {true, false}
unary connectives: {¬,2,3,X}
binary connectives: {∧,∨,→,↔,B,U}
U is the strong until, and B is the weak before.

1.5.6 DEFINITION language of CTL

constants: {true, false}
unary connectives: {¬,AF,AG,AX,EF,EG,EX}
binary connectives: {∧,∨,→,↔,AU,AB,EU,EB}

2

HILBERT-STYLE CALCULI

Hil·bert (h́ılb ert), David (1862–1943). Ger-
man mathematician whose principal re-
searches were on the theory of numbers, foun-
dations of geometry and integral equations.
He belonged to the formalist school of scien-
tific logic

Webster Encyclopedic Dictionary.

2.1 INTRODUCTION

2.1.1 REMARK why Hilbert-style calculi?

In this chapter we define the Hilbert-style calculi for the logics we investigate in the following.
Since Hilbert-style calculi are fairly well-known, we hope this helps the reader to understand
which logics we denote with the names K, K + T , KT, KT + T , S4, S4 + T , Kt.

We do not search for proofs in these calculi. Because of the missing subformula property (see
remark 2.1.6), we do not believe that such an attempt could be more successful — for the
logics we investigate — than the proof search based on sequent calculi. Things look different
if no ‘reasonable’ sequent calculus is known for a logic (see [Mor76]). (Strictly speaking, not in
every calculus without subformula property is backward proof search inefficient, see for example
[SS92].)

2.1.2 DEFINITION Hilbert-style calculus

A Hilbert-style calculus for the logic L consists of:

• An enumerable set of axioms.

An axiom has the form A , where A is a formula scheme of L.

• An enumerable set of rules, including modus ponens.

A rule has the form A
C or A B

C , where A,B,C are formula schemes of L. Modus ponens is
the rule A A→B

B .

18 CHAPTER 2. HILBERT-STYLE CALCULI

• A finite (perhaps empty) multiset of formulas of L (called ‘additional assumptions’ in the
following).

Example

2A→A , where 2A → A is a formula scheme, is an axiom of the Hilbert-style calculus KTH.

2p0→p0
,

2¬¬p1→¬¬p1
,

2(p3∧3p2)→(p3∧3p2) are instances of this axiom.

A A→B
B is a rule of the Hilbert-style calculus KTH. p3 p3→p0

p0
and p3 p3→3(p3∧p2)

3(p3∧p2) are instances
of this rule.
The calculus KTH defined in definition 2.4.2 is a Hilbert-style calculus without additional as-
sumptions. The calculus (KT + T)H defined in definition 2.5.1 is the corresponding Hilbert-style
calculus with additional assumptions.

2.1.3 DEFINITION LH ` C
Let LH be a Hilbert-style calculus for L. We define inductively LH ` C for C ∈ FmlL:

• If C is an instance of an axiom of LH, then LH ` C.

• If C is one of the additional assumptions of LH, then LH ` C.

• If A
C is an instance of a rule of LH and LH ` A, then LH ` C.

• There A B
C is an instance of a rule of LH and LH ` A, LH ` B, then LH ` C.

If LH ` C, then we say that C is provable in LH.

Example

See the example in definition 2.2.1 for a proof in a Hilbert-style calculus without additional
assumptions, and the example in definition 2.3.1 for a proof in a Hilbert-style calculus with
additional assumptions.

2.1.4 REMARK additional assumptions vs. axioms

Note that an additional assumption is just a formula, whereas the set of all instances of an axiom
is in general infinite. Therefore it can be sensible to add p0 as an additional assumption (see for
example the example in 2.3.1). However, if we add the formula scheme A as an axiom, then all
formulas become provable, since every formula is an instance of the axiom A.

2.1.5 THEOREM forward proof search

Let LH be a Hilbert-style calculus for the logic L. We can enumerate all formulas that are
provable in LH. In this way we obtain a semi-decision procedure. This procedure returns the
value ‘provable’ if its input is a provable formula, and it does not terminate otherwise.

Proof

There exists an enumeration of the formulas of L. Since the axioms are enumerable and there are
only finitely many additional assumptions, we can also enumerate the formulas that are provable
in one step in LH (say C0, C1, . . .). Since the rules are enumerable, too, we can enumerate the
formulas that have proofs in LH where the leaves of the proof tree are in {C0, C1, . . . , Cn} and
the proof tree has at most depth n.

2.1.6 REMARK backward proof search

Assume that we have to decide whether a given formula A ∈ FmlL is provable in a Hilbert-style
calculus LH for L.

2.2. K 19

If LH ` A, then there must exist a proof for A, i.e. A is either an instance of an axiom (decidable
in the Hilbert-style calculi we are considering), or it was obtained by the application of a rule.

If the last step was an application of (mp), then the set of possible pairs of premises is infinite,
namely 〈B,B → A〉 for all B ∈ FmlL. This problem occurs because the rule (mp) does not satisfy
the subformula property: The formula B occurs in the premises but not in the conclusion.

Thus we have an infinite branching degree at every step when doing backward proof search. A
depth-first search is hopeless. With breadth-first search, we obtain a semi-decision procedure
(if a formula is provable, then the search stops, otherwise it does not stop), but not a decision
procedure.

2.1.7 REMARK rule (2) vs. axiom A→2A

Note that the rule (2) introduced in the next section and the axiom A→2A are not ‘equivalent’.
For L ∈ {K, KT, S4, Kt} we have LH 0 p0 → 2p0, although (2) is a rule of LH. If we replaced
for example in KTH the rule (2) by the axiom A→2A , then we could even show KTH ` A↔ 2A,
i.e. the connective 2 would become meaningless.

2.2 K

2.2.1 DEFINITION Hilbert-style calculus KH

axioms:

If A ∈ FmlCPC A is valid in classical propositional logic, and B is the formula scheme
of K that corresponds to A, then

B
(cpc) is an axiom.

2A↔ ¬3¬A
(321)

2¬A↔ ¬3A
(322)

2(A→ B)→ (2A→ 2B)
(k)

rules:
A A→ B

B
(mp)

A

2A
(2)

Example

KH ` 2p0 → 2(p0 ∨3p1), as the following proof shows.

(cpc)
p0 → p0 ∨3p1 (2)
2(p0 → p0 ∨3p1) 2(p0 → p0 ∨3p1)→ (2p0 → 2(p0 ∨3p1))

(mp)
2p0 → 2(p0 ∨3p1)

The formula p6 → (p6 ∨ p7) is an element of FmlCPC and valid in classical propositional logic.
Therefore the formula scheme A→ (A ∨ B) is an axiom of KH. The formula p0 → (p0 ∨3p1) is
an instance of this axiom, and thus KH ` p0 → (p0 ∨3p1).

20 CHAPTER 2. HILBERT-STYLE CALCULI

...
A

...
A→ B

(mp)
B (2)

2B

;

...
A

(2)
2A

...
A→ B

(2)
2(A→ B)

(k)
2(A→ B)→ (2A→ 2B)

(mp)
2A→ 2B

(mp)
2B

Figure 2.a: The transformations used in the proof of theorem 2.3.2. to
move (2) applications upwards.

2.3 K + T

2.3.1 DEFINITION Hilbert-style calculus (K + T)H

(K + T)H is the calculus KH plus the elements of T as additional assumptions.

Example

(K + [p0, p0 → 2¬p1])H ` 2¬3p1, as the following proof shows.

p0 p0 → 2¬p1 (mp)
2¬p1

(322)
2¬p1 ↔ ¬3p1

(cpc)
(2¬p1 ↔ ¬3p1)→ (2¬p1 → ¬3p1)

(mp)
2¬p1 → ¬3p1 (mp)

¬3p1 (2)
2¬3p1

Note that (K + [p0])H ` p0, but (K + [p0])H 0 p2, i.e. substitution is not an admissible rule.

2.3.2 THEOREM normal form of proofs in (K + T)H

If (K +T)H ` A for some theory T , then there is a proof P of A in (K +T)H such that (2) is only
applied on formulas of the form 2mC, where C is an instance of an axiom or C is an additional
assumption of (K + T)H.

Proof

With the transformation in figure 2.a we can move the application of (2) upwards. Finally we
obtain a proof of the desired form.

2.4 KT

2.4.1 REMARK from KH to KTH

Compared with KH, the calculus KTH contains an additional axiom, namely
2A→A .

In terms of the possible world semantics, the axiom says: If A holds in all successor worlds,
then it also holds in the current world, i.e. the current world belongs to the successor worlds.

2.5. KT + T 21

Consequently for each world there exists at least one successor world, namely the world itself.
Thus the axiom corresponds to the reflexivity of the accessibility relation in the possible world
semantics for KT (cp. section 3.4).

2.4.2 DEFINITION Hilbert-style calculus KTH

axioms:

If A ∈ FmlCPC A is valid in classical propositional logic, and B is the formula scheme
of KT that corresponds to A, then

B
(cpc) is an axiom.

2A↔ ¬3¬A
(321)

2¬A↔ ¬3A
(322)

2(A→ B)→ (2A→ 2B)
(k)

2A→ A
(t)

rules:
A A→ B

B
(mp)

A

2A
(2)

Example

KTH ` 22(p1 ∧ p0)→ 2(p0 ∧ p1), as the following proof shows.

(t)
2(p1∧p0)
→ p1∧p0

(cpc)
(2(p1 ∧ p0)→ p1 ∧ p0)
→ (2(p1∧p0)→ p0∧p1)

(mp)
2(p1 ∧ p0)→ p0 ∧ p1 (2)

2(2(p1 ∧ p0)→ p0 ∧ p1)

(k)
2(2(p1 ∧ p0)→ p0 ∧ p1)
→ (22(p1 ∧ p0)→ 2(p0 ∧ p1))

(mp)
22(p1 ∧ p0)→ 2(p0 ∧ p1)

2.5 KT + T

2.5.1 DEFINITION Hilbert-style calculus (KT + T)H

(KT + T)H is the calculus KTH plus the elements of T as additional assumptions.

Example

(KT + [p0,2p1])H ` 2(p0 ∧ p1), as the following proof shows.

2p1

(t)
2p1 → p1 (mp)
p1

p0

(cpc)
p0 → (p1 → (p0 ∧ p1))

(mp)
p1 → (p0 ∧ p1)

(mp)
p0 ∧ p1 (2)

2(p0 ∧ p1)

22 CHAPTER 2. HILBERT-STYLE CALCULI

2.6 S4

2.6.1 REMARK from KTH to S4H

Compared with KTH, the calculus S4H contains an additional axiom, namely
2A→22A . Instead

of
2A→22A we could also add

33A→3A .

In terms of the possible world semantics, the axiom says: If a world is accessible in two steps,
then it is accessible in one step. Thus the axiom corresponds to the transitivity of the accessibility
relation in the possible world semantics for S4 (cp. section 3.6).

2.6.2 DEFINITION Hilbert-style calculus S4H

axioms:

If A ∈ FmlCPC A is valid in classical propositional logic, and B is the formula scheme
that corresponds to A, then

B
(cpc) is an axiom.

2A↔ ¬3¬A
(321)

2¬A↔ ¬3A
(322)

2(A→ B)→ (2A→ 2B)
(k)

2A→ A
(t)

2A→ 22A
(4)

rules:
A A→ B

B
(mp)

A

2A
(2)

Example

S4H ` 2(¬22¬p1 → ¬2¬p1), as the following proof shows.

(4)
2¬p1 → 22¬p1

(cpc)
(2¬p1 → 22¬p1)→ (¬22¬p1 → ¬2¬p1)

(mp)
¬22¬p1 → ¬2¬p1 (2)

2(¬22¬p1 → ¬2¬p1)

2.7 S4 + T

2.7.1 DEFINITION Hilbert-style calculus (S4 + T)H

(S4 + T)H is the calculus S4H plus the elements of T as additional assumptions.

2.7.2 THEOREM embedding of (S4 + T)H in S4H

(S4 + [B1, . . . , Bn])H ` A ⇔ S4H ` 2B1 → . . .→ 2Bn → A

2.8. Kt 23

Proof

We show (S4 + T ′)H ` A ⇔ (S4 + T)H ` 2Bm+1 → A, where T = [B1, . . . , Bm] and T ′ =
[B1, . . . , Bm, Bm+1]. Then the theorem follows with an induction on the number of elements in
the theory and applications of (cpc) and (mp). Note that we do not add instances of the axiom
(t) in our transformation.

‘⇐’:

Obviously (S4+T ′)H ` Bm+1 and thus (S4+T ′)H ` 2Bm+1. Since T ⊆ T ′ we know (S4+T ′)H `
2Bm+1 → A. With an application of (mp) follows (S4 + T ′)H ` A.

‘⇒’:

Let P be a proof of A in (S4 + T ′)H. We replace each formula C in P by 2Bm+1 → C. The
resulting P ′ is not a proof. However, using the transformations from figure 2.b we can convert
P ′ into a proof of 2Bm+1 → A in (S4 + T)H.

2.8 Kt

2.8.1 REMARK from KH to KHt

KHt contains two copies of KH, one with 2, 3 and one with ■, ◆. The additional axioms
◆2A→ A and 3■A→ A link the connectives 2, 3 with the connectives ■, ◆. See section 3.8
for their meaning in possible world semantics.

2.8.2 DEFINITION Hilbert-style calculus KHt

axioms:

If A ∈ FmlCPC and CPC ` A, and B is the formula scheme of Kt that corresponds
to A, then

B
(cpc) is an axiom.

2A↔ ¬3¬A
(321)

2¬A↔ ¬3A
(322)

■A↔ ¬◆¬A
(◆ ■1)

■¬A↔ ¬◆A
(◆ ■2)

2(A→ B)→ (2A→ 2B)
(k)

■(A→ B)→ (■A→ ■B)
(k■)

◆2A→ A
(◆2)

3■A→ A
(3■)

rules:
A A→ B

B
(mp)

A

2A
(2)

A

■A
(■)

24 CHAPTER 2. HILBERT-STYLE CALCULI

...
2
B
m

+
1
→
C

...
2
B
m

+
1
→

(C
→
D

)
2
B
m

+
1
→
D

;

...
2
B
m

+
1
→
C

...
2
B
m

+
1
→

(C
→
D

)

(cpc)
(2
B
m

+
1
→

(C
→
D

))
→

((2
B
m

+
1
→
C

)→
(2
B
m

+
1
→
D

))
(m

p)
(2
B
m

+
1
→
C

)→
(2
B
m

+
1
→
D

)
(m

p)
2
B
m

+
1
→
D

...
2
B
m

+
1
→
C

2
B
m

+
1
→

2
C

;

...
2
B
m

+
1
→
C

(2
)

2
(2
B
m

+
1
→
C

)

(k)
2

(2
B
m

+
1
→
C

)
→

(2
2
B
m

+
1
→

2
C

)
(m

p)
2

2
B
m

+
1
→

2
C

(4)
2
B
m

+
1

→
2

2
B
m

+
1

(cpc)
(2
B
m

+
1
→

2
2
B
m

+
1)

→
((2

2
B
m

+
1
→

2
C

)
→

(2
B
m

+
1
→

2
C

))
(m

p)
(2

2
B
m

+
1
→

2
C

)→
(2
B
m

+
1
→

2
C

)
(m

p)
2
B
m

+
1
→

2
C

F
igure

2.b:
T

he
transform

ations
used

in
the

proof
of

theorem
2.7.2.

2.9. OTHER LOGICS 25

2.9 OTHER LOGICS

2.9.1 REMARK other modal logics

See chapter 11 for Hilbert-style calculi for many other propositional normal modal logics.

2.9.2 REMARK S5

We obtain a Hilbert-style calculus for S5 by adding the axiom ¬2A→2¬2A to S4H.

2.9.3 REMARK Kn, Kn + T , KTn, KTn + T , S4n, S4n + T

See [FHMV96] or [HM92] for Hilbert-style calculi for these multimodal logics.

2.9.4 REMARK other multimodal logics

In [FHMV96] and [HM92] Hilbert-style calculi for many other multimodal logics are defined.

2.9.5 REMARK CPC, IPC

See for example [TvD88] for a Hilbert-style calculus for IPC. If we add the axiom A∨¬A to this
calculus, then we obtain a Hilbert-style calculus for CPC.

2.9.6 REMARK PLTL

In [Eme90] a Hilbert-style calculus for PLTL is defined.

2.9.7 REMARK linear logic

In [Tro92] a Hilbert-style calculus for linear logic is defined.

2.10 SUMMARY

We have defined the usual Hilbert-style calculi for the logics K, K + T , KT, KT + T , S4, S4 + T ,
Kt. In addition, we have proved constructively a normal form theorem for proofs in (K + T)H

and an embedding of S4 + T in S4.

3

POSSIBLE WORLD
SEMANTICS

When George is hanged Harris will be the
worst packer in this world; and I looked at
the piles of plates and cups, and kettles, and
bottles, and jars, and pies, and stoves, and
cakes, and tomatoes, etc., and felt that the
thing would soon become exciting.
It did. They started by breaking a cup. That
was the first thing they did. They did that
just to show you what they could do, and to
get you interested.

J.K. Jerome. Three Men in a Boat.

3.1 INTRODUCTION

3.1.1 REMARK from CPC to modal logics

In the usual semantics of classical propositional logic, a valuation assigns 0 or 1 to each variable.
For a given valuation we can compute the value (0 or 1) of a formula of FmlCPC.
In the possible world semantics, we have not just one valuation, but several valuations. Each
valuation corresponds to a so-called world. These worlds are linked by a so-called accessibility
relation. The value of 2A is 1 in a world w if the value of A is 1 in each world that is accessible
from w (i.e. in all successor worlds). The value of 3A is 1 in a world w if the value of A is 1 in
at least one world that is accessible from w. In the case of Kt, we also have connectives ■ and ◆

that say the same for the predecessor worlds.
The only difference between the possible world semantics for K, KT, S4 are the conditions that
are imposed on the accessibility relation.

3.1.2 REMARK additional assumptions

Later on we will define when a formula is valid in K, KT, and S4. In the definition of the validity
of a formula in K +T , KT +T , S4 +T , we take the possible world semantics of the corresponding

28 CHAPTER 3. POSSIBLE WORLD SEMANTICS

logic without theory and demand in addition that for each formula A ∈ T , the value of the
formula A must be 1 in each world.

3.1.3 REMARK number of models

Note that in the case of CPC, there is only a finite number of different ‘relevant’ valuations,
whereas in the case of possible world semantics we have an infinite number of models, even if we
restrict ourselves to a finite number of valuations. As a further restriction we can try to limit the
number of worlds in the models; this is possible, but much more difficult.

3.1.4 DEFINITION satisfiable

A formula A is satisfiable in a logic L if ¬A is not valid in L.

3.1.5 CONVENTION meta-variable for models

We use M as a meta-variable for models.

3.2 K

3.2.1 DEFINITION K frame

A K frame is a pair 〈W,R〉, where:

• W is a non-empty set.

• R ⊆W ×W .

3.2.2 DEFINITION K model

A K model is a triple 〈W,R, v〉, where:

• 〈W,R〉 is a K frame.

• v : W ×Var→ {0, 1}.

We call the elements of W the worlds, R the accessibility relation, and v the valuation of the K
model.

Example

Assume that:

• W = {w0, w1, w2}.
• w0Rw1, w0Rw2, w1Rw1.

• v(w0, p0) = 1, v(w0, p2) = 1, v(w1, p0) = 1, 0 otherwise.

Then 〈W,R, v〉 is a K model.

3.2.3 REMARK represent K models

In order to represent finite K models we use circles for the worlds and arrows for the accessibility
relation. In the circles we list those variables that are true in this world. Sometimes we will also
write negated variables inside circles in order to stress that they are false.

3.2. K 29

&%
'$

p0
p2

w0

&%
'$

p0

@
@
@@I

�	�w1 &%
'$

�
�
���

w2

Figure 3.a: The K model of the example in definition 3.2.2.

Example

See figure 3.a for the representation of the K model defined in the example in definition 3.2.2.

3.2.4 DEFINITION diameter of a K model

Assume that M = 〈W,R, v〉 is a K model. The tuple 〈w0, . . . , wn〉 ∈Wn is a path in M iff:

• w0Rw1, w1Rw2, . . . , wn−1Rwn
• ∀i, j ∈ {0, . . . , n} : (i 6= j ⇒ wi 6= wj)

For all w,w′ ∈ W such that there exists a path from w to w′ in M we define |w,w′|, the length
of the shortest path from w to w′.

|w,w′| := min{n+ 1 | 〈w0, . . . , wn〉 path in M, w0 = w,wn = w′}

Now we can define diam(M), the diameter of M. If R = ∅, then diam(M) := 0. Otherwise we
set:

diam(M) := max{|w,w′| | w,w′ ∈W}

Example

Let M be the K model represented in figure 3.b. Then the following tuples are the paths in M:

• 〈w0〉, 〈w0, w1〉, 〈w0, w1, w2〉, 〈w0, w2〉, 〈w0, w3〉
• 〈w1〉, 〈w1, w2〉
• 〈w2〉
• 〈w3〉, 〈w3, w0〉, 〈w3, w0, w1〉, 〈w3, w0, w1, w2〉, 〈w3, w0, w2〉

Note that for example 〈w0, w3, w0〉 is not a path. Now we compute the diameter ofM. We have:

• |w0, w0| = 1, |w0, w1| = 2, |w0, w2| = 2, |w0, w3| = 2

• |w1, w1| = 1, |w1, w2| = 2

• |w2, w2| = 1

• |w3, w3| = 1, |w3, w0| = 2, |w3, w1| = 3, |w3, w2| = 3

Thus diam(M) = max({1, 2, 2, 2, 1, 2, 1, 1, 2, 3, 3}) = 3.

3.2.5 DEFINITION K,M |= A

Let 〈W,R, v〉 be a K model. We extend the valuation v to a function W × FmlK → {0, 1}.

30 CHAPTER 3. POSSIBLE WORLD SEMANTICS

&%
'$

w1 p0

�
�
���

&%
'$

w0

6

@
@
@@I

-
�

&%
'$

w2
p0
p1

�	�

&%
'$

w3p2

Figure 3.b: A K model with diameter 3.

1. v(w, true) := 1

2. v(w, false) := 0

3. v(w,2A) :=
{

1 ∀w′ ∈W : (wRw′ ⇒ v(w′, A) = 1)
0 otherwise

4. v(w,3A) :=
{

1 ∃w′ ∈W : (wRw′ and v(w′, A) = 1)
0 otherwise

5. v(w,¬A) := 1− v(w,A)

6. v(w,A ∧B) := min(v(w,A), v(w,B))

7. v(w,A ∨B) := max(v(w,A), v(w,B))

8. v(w,A→ B) := v(w,¬A ∨B)

9. v(w,A↔ B) :=
{

1 v(w,A) = v(w,B)
0 otherwise

If 〈W,R, v〉 is a K model, then:

K, 〈W,R, v〉 |= A :⇔ ∀w ∈W : v(w,A) = 1

Example

In the K model M represented in figure 3.a we have:

• v(w0, p0) = 1, v(w0, p2) = 1, v(w0, p0 ∧ p2) = 1

• v(w1, p0) = 1, v(w1, p2) = 0, v(w1, p0 ∧ p2) = 0

• v(w0,2p0) = 0, v(w0,22p0) = 1

• v(w0,3p0) = 1, v(w0,33p0) = 1, v(w0,3p2) = 0

Moreover, K,M 6|= p0 ∨3p0, but K,M |= p2 ∨3p0.

3.2.6 DEFINITION K |= A

K |= A :⇔ for all K models M : K,M |= A

3.3. K + T 31

If K |= A, then we say that A is valid in K.

Example

Since the accessibility relation in K models is in general not reflexive, we have K 6|= 3(p0 ∨ ¬p0).
Proof: If M = 〈{w0}, ∅, v〉, then K,M 6|= 3(p0 ∨ ¬p0) for all valuations v.

However, K |= 3(p0 ∨ ¬p0) ∨2p1. Proof: Let w be a world in an arbitrary K model 〈W,R, v〉. If
there is a world w′ with wRw′, then v(w′, p0 ∨ ¬p0) = 1, thus v(w,3(p0 ∨ ¬p0)) = 1. If there is
no such world, then v(w,2p1) = 1.

3.3 K + T

3.3.1 DEFINITION K + T model

M is a K + T model iff:

• M is a K model

• ∀B ∈ T : K,M |= B

3.3.2 DEFINITION K + T |= A

K + T |= A :⇔ for all K + T models M : K,M |= A

If K + T |= A, then we say that A is valid in K + T .

3.4 KT

3.4.1 DEFINITION KT frame

A KT frame is a pair 〈W,R〉, where:

• W is a non-empty set.

• R ⊆W ×W and R is reflexive (i.e. ∀w ∈W : wRw).

3.4.2 DEFINITION KT model

We just replace ‘K frame’ by ‘KT frame’ in the definition 3.2.2 of K models.

Example

Assume that:

• W = {w0, w1, w2}

• w0Rw1, w0Rw2, w2Rw0, ∀w ∈W : wRw

• v(w0, p0) = 1, v(w1, p0) = 1, v(w1, p2) = 1, 0 otherwise

Then 〈W,R, v〉 is a KT model. 〈W,R′, v〉, where w0R′w1, w0R′w2, w0R′w0, w2R′w2, is not a KT
model, since the relation R′ is not reflexive.

32 CHAPTER 3. POSSIBLE WORLD SEMANTICS

&%
'$

p0w0

&%
'$

p0
p2

@
@
@@I

w1 &%
'$

�
�
����
�

��	

w2

Figure 3.c: The KT model of the example in definition 3.4.2.

3.4.3 REMARK represent KT models

We represent finite KT models as we represent finite K models, but we omit the arrows from a
world to itself.

Example

See figure 3.c for the representation of the KT model of the example in definition 3.4.2.

3.4.4 DEFINITION KT |= A

We just replace ‘K’ by ‘KT’ in the definitions of K,M |= A and of K |= A. If KT |= A, then we
say that A is valid in KT.

Example

For the KT model defined in the example in definition 3.4.2 we have:

• v(w0,2p0) = 0, v(w0,22p0) = 0

• v(w1,3p2) = 1

• v(w2,3p2) = 0

• v(w0,3(3p2 ∨ p4)) = 1

and KT, 〈W,R, v〉 |= 33p2.

In contrast to K models, the accessibility relation in KT models is reflexive. Therefore we have
KT |= 3(p0 ∨ ¬p0).

Since the accessibility relation is not transitive, KT 6|= 2¬p2 → 22¬p2. Proof: In the KT
model of the example in definition 3.4.2 (see also figure 3.c) we have v(w2,2¬p2) = 1, but
v(w2,22¬p2) = 0.

3.5 KT + T

3.5.1 DEFINITION KT + T model

M is a KT + T model iff:

• M is a KT model.

• ∀B ∈ T : KT,M |= B.

3.6. S4 33

3.5.2 DEFINITION KT + T |= A

KT + T |= A :⇔ for all KT + T models M : KT,M |= A

If KT + T |= A, then we say that A is valid in KT + T .

3.6 S4

3.6.1 DEFINITION S4 frame

An S4 frame is a pair 〈W,R〉, where:

• W is a non-empty set.

• R ⊆W ×W , and R is reflexive (i.e. ∀w ∈W : wRw) and transitive (i.e. ∀w1, w2, w3 ∈W :
(w1Rw2 and w2Rw3 ⇒ w1Rw3)).

3.6.2 DEFINITION S4 model

We just replace ‘K frame’ by ‘S4 frame’ in the definition 3.2.2 of K models.

Example

Assume that:

• W = {w0, w1, w2}

• w0Rw1, w0Rw2, w1Rw2, ∀w ∈W : wRw

• v(w0, p0) = 1, v(w1, p0) = 1, v(w1, p3) = 1, 0 otherwise

Then 〈W,R, v〉 is a S4 model. 〈W,R′, v〉, where w0R′w1, w1R′w2, ∀w ∈ W : wR′w, is not a S4
model, since the relation R′ is not transitive.

3.6.3 REMARK represent S4 models

We represent finite S4 models as we represent finite K models, but we omit the arrows that follow
from the other arrows because of the reflexivity and transitivity of the accessibility relation.

Example

See figure 3.d for the representation of the S4 model of the example in definition 3.6.2.

3.6.4 DEFINITION S4 |= A

We just replace ‘K’ by ‘S4’ in the definitions of K,M |= A and of K |= A. If S4 |= A, then we say
that A is valid in S4.

Example

For the S4 model represented in figure 3.d we have:

• v(w0,3p0) = 1, v(w0,3¬p0) = 1

• v(w2,3p0) = 0, v(w1,3¬p0) = 1

34 CHAPTER 3. POSSIBLE WORLD SEMANTICS

&%
'$

p0

6

w0

&%
'$

p0
p3

6

w1

&%
'$

w2

Figure 3.d: The S4 model of the example in definition 3.6.2.

Since the accessibility relation is transitive, we have S4 |= 2p1 → 22p1. Proof: Let w be a world
in a S4 model 〈W,R, v〉. If v(w,2p1) = 1, then also v(w,22p1) = 1, since every world that is
accessible from w is accessible in one step.

3.7 S4 + T

3.7.1 DEFINITION S4 + T model

M is a S4 + T model iff:

• M is a S4 model.

• ∀B ∈ T : S4,M |= B

3.7.2 DEFINITION S4 + T |= A

S4 + T |= A :⇔ for all S4 + T models M : S4,M |= A

If S4 + T |= A, then we say that A is valid in S4 + T .

3.7.3 THEOREM embedding of S4 + T in S4

S4 + [B1, . . . , Bn] |= A ⇔ S4 |= 2B1 ∧ . . . ∧2Bn → A

Proof

‘⇐’:

LetM = 〈W,R, v〉 be an S4 + [B1, . . . , Bn] model. Then ∀i ∈ {1, . . . , n} : ∀w ∈W : v(w,2Bi) =
1. Since S4 |= 2B1 ∧ . . . ∧2Bn → A we also know that ∀w ∈W : v(2B1 ∧ . . . ∧2Bn → A) = 1.

3.8. Kt 35

Thus ∀w ∈ W : v(w,A) = 1, i.e. M |= A. Since M is an arbitrary S4 + [B1, . . . , Bn] model it
follows S4 + [B1, . . . , Bn] |= A.

‘⇒’:

Let M = 〈W,R, v〉 be an S4 model and w ∈ W . If v(w,2B1 ∧ . . . ∧ 2Bn) = 0, then v(w,2B1 ∧
. . .∧2Bn → A) = 1. OtherwiseM restricted to the worlds accessible from w is a S4+[B1, . . . , Bn]
model and therefore v(w,A) = 1. Since M is an arbitrary S4 model it follows S4 |= 2B1 ∧ . . . ∧
2Bn → A.

3.8 Kt

3.8.1 DEFINITION Kt frame, Kt model

A Kt frame is a K frame, and Kt model is a K model.

3.8.2 REMARK represent Kt models

We represent finite Kt models in the same way as finite K models.

3.8.3 DEFINITION Kt,M |= A

Let 〈W,R, v〉 is a Kt model. We extend the valuation v to a function W × FmlKt → {0, 1}.

1. v(w, true) := 1

2. v(w, false) := 0

3. v(w,2A) :=
{

1 ∀w′ ∈W : (wRw′ ⇒ v(w′, A) = 1)
0 otherwise

4. v(w,3A) :=
{

1 ∃w′ ∈W : (wRw′ and v(w′, A) = 1)
0 otherwise

5. v(w, ■A) :=
{

1 ∀w′ ∈W : (w′Rw ⇒ v(w′, A) = 1)
0 otherwise

6. v(w, ◆A) :=
{

1 ∃w′ ∈W : (w′Rw and v(w′, A) = 1)
0 otherwise

7. v(w,¬A) := 1− v(w,A)

8. v(w,A ∧B) := min(v(w,A), v(w,B))

9. v(w,A ∨B) := max(v(w,A), v(w,B))

10. v(w,A→ B) := v(w,¬A ∨B)

11. v(w,A↔ B) :=
{

1 v(w,A) = v(w,B)
0 otherwise

If 〈W,R, v〉 is a Kt model, then:

Kt, 〈W,R, v〉 |= A :⇔ ∀w ∈W : v(w,A) = 1

36 CHAPTER 3. POSSIBLE WORLD SEMANTICS

&%
'$

p1w0

�
���

&%
'$

p1w1

@
@@I

&%
'$

w2

@
@@I

�
���

&%
'$

w3 p2 &%
'$

p2w4

Figure 3.e: The Kt model used in the example in definition 3.8.3.

Example

In the model represented in figure 3.e we have:

• v(w2,3p2) = 1, v(w2,2p2) = 1

• v(w2, ■p1) = 1, v(w4, ■p1) = 0, v(w4, ■ ■p1) = 1

• v(w3, ◆ ◆(¬p3 ∧2(¬p2 ∨ p3))) = 1

3.8.4 REMARK past and future

We can interpret the accessibility relation as a time relation. Then 2A means ‘in all moments in
the future we will have A’, and 3A means ‘there is a moment in the future where we will have
A’. ■A and ◆A have analogous meanings for the past: ■A means ‘in all moments in the past we
had A’, and ◆A means ‘there was a moment in the past where we had A’. The ‘moments’ must
be accessible in exactly one step.

3.8.5 DEFINITION Kt |= A

Kt |= A :⇔ for all Kt models M : Kt,M |= A

If Kt |= A, then we say that A is valid in Kt.

Example

The formula ◆2p0 → p0 means: If there is a world in the past of w (accessible in exactly one
step) where in each world in the future (accessible in exactly one step) p0 holds, then p0 holds in
w. This is true in every world in every Kt model. Thus Kt |= ◆2p0 → p0.

3.9 OTHER LOGICS

3.9.1 REMARK S5

In contrast to S4, the accessibility relation is also symmetric, i.e. ∀w1, w2 ∈W : w1Rw2.

3.10. SUMMARY 37

3.9.2 REMARK Kn, Kn + T , KTn, KTn + T , S4n, S4n + T

Instead of one accessibility relation R we have accessibility relations Ri for each i ∈ N. The
accessibility relation Ri corresponds to the connectives 2i and 3i. Each accessibility relation Ri
has to satisfy the same conditions as the accessibility relation R in the corresponding monomodal
case, for example in the case of KTn we have ∀i ∈ N : ∀w ∈W : wRiw. See for example [HM92].

3.9.3 REMARK IPC

An IPC frame is an S4 frame. An IPC model is an S4 model if v(w,P) = 1 and wRw′ imply
v(w′, P) = 1 for all worlds w, w′ and all variables P . In the definition of v and IPC,M |= A we use
the same definition for true, false, ∧, ∨ as in the case of modal logics. However, v(w,A→ B) = 1
iff v(w′, A) = 0 or v(w′, B) = 1 for all worlds w′ with wRw′. Then v(w,¬A) := v(w,A → false)
and v(w,A↔ B) := v(w, (A→ B) ∧ (B → A)). See for example [TvD88].

3.9.4 REMARK PLTL

For PLTL there exists a possible world semantics. The frame is essentially N together with the
usual ≤ relation. See for example [Eme90] for details. Note that our U is the strong until,
i.e. AUC implies that there is a state where C is true.

3.9.5 REMARK CTL

See for example [Eme90].

3.10 SUMMARY

We have defined the usual possible world semantics for K, K + T , KT, KT + T , S4, S4 + T , Kt.
The difference between the semantics of K and K + T (KT and KT + T , S4 and S4 + T) is that
we consider only those models where T is satisfied in all worlds. Note that there is an infinite
number of different models for these logics. Therefore we cannot decide the validity of a formula
simply by enumerating all models.

In addition, we have shown how to embed S4 + T in S4, and we have defined the notion of the
diameter of a model.

4

GRAPH CALCULI

Formally, a graph G consists of two sets, a
set O of objects and a set A of arrows, and
two functions d 0, d 1 : A → O. Thus a graph
is a ”category without composition” and we
will use some of the same terminology as for
categories: O is the set of objects (or some-
times nodes) and A is the set of arrows of
the graph; if f is an arrow, d 0(f) is the source
of f and d 1(f) is the target of f .

M. Barr, C. Wells. Toposes, Triples and The-
ories.

4.1 INTRODUCTION

4.1.1 REMARK from possible world semantics to decision procedures

Let L be one of the logics K, K + T , KT, KT + T , S4, and Kt. Starting from the possible world
semantics for L, we try to find decision procedures, i.e. procedures that decide whether or not
L |= A for A ∈ FmlL.

We first develop so-called graph calculi. In the following chapter we will see that it is possible to
obtain sequent calculi from these graph calculi.

For simplicity we consider only formulas in negation normal form in this chapter. Also most
questions concerning the efficiency or termination of backward proof search are not discussed,
but postponed to chapter 5, since in most cases it is easier to show the idea in the case of sequent
calculi. Complexity questions are dealt with in chapter 6.

4.1.2 REMARK construct a graph calculus

For a given formula A and a logic L ∈ {K,K + T,KT,KT + T,S4,Kt}, we try to construct a
countermodel, i.e. an L model 〈W,R, v〉 with v(w,A) = 0 for some w ∈ W . If we find such a
model, then obviously L 6|=A. If we fail after trying all possibilities, then we know that L |= A.

40 CHAPTER 4. GRAPH CALCULI

Since there is an infinite number of L models, we cannot check L,M |= ¬A for all L models M.
This is different for CPC, since there we have to check ‘only’ 2card(vars(A)) valuations for a given
formula A.

Therefore we use a different procedure. We start with an Lmodel 〈W,R, v〉 and assume v(w0, A) =
0 for a world w0 ∈W . Depending on the form of A we obtain restrictions of our model.

• If A ≡ pi, then v(w0, pi) = 0.

• If A ≡ ¬pi, then v(w0, pi) = 1.

• If A ≡ B ∨ C, then v(w0, B) = 0 and v(w0, C) = 0.

• If A ≡ B ∧ C, then v(w0, B) = 0 or v(w0, C) = 0, i.e. we have to try two possibilities.

• If A ≡ 2B, then there must exist a w1 ∈W such that w0Rw1 and v(w1, B) = 0.

• If A ≡ 3B, then for all w1 ∈W with w0Rw1 we have v(w1, B) = 0.

If A is a variable or a negated variable, then we can stop. Otherwise we have conditions about
its subformulas, i.e. about B and perhaps C. We reason in the same way about these formulas.
If we come to a contradiction, i.e. a situation where both v(w, pi) = 0 and v(w, pi) = 1 for some
world w and some variable pi, then the search has failed.

Assume for example that A ≡ ¬p2 ∨ 2p1. From v(w0, A) = 0 follows v(w0,¬p2) = 0 and
v(w0,2p1) = 0. v(w0,¬p2) = 0 implies v(w0, p2) = 1. v(w0,2p1) = 0 implies the existence of a
world w1 ∈W with w0Rw1 and v(w1, p1) = 0. Thus we end up with the three non-contradictory
conditions v(w0, p2) = 1, w0Rw1, and v(w1, p1) = 0.

Now assume that A ≡ ¬3p2 ∧ 2p2. We obtain the conditions w0Rw1, v(w1, p2) = 0 and
v(w1, p2) = 1, which are contradictory.

This idea is realised in the following in graph calculi. An L graph can be considered as a set of
conditions imposed on an L model, and a rule of a graph calculus as a rewriting rule for such
conditions.

4.1.3 DEFINITION L graph

An L graph is a finite, connected graph with a pair of multisets of formulas of L in its vertices.
Sometimes we add formulas as labels to the edges of the graph. One vertex is marked.

In the following we sometimes say ‘world’ if we mean a vertex of an L graph.

4.1.4 DEFINITION L graph scheme

An L graph scheme consists of the following parts:

• A finite, connected graph.

• A pair of schemes of multisets of formulas of L in each vertex.

• Conditions about the number of predecessors and successors of the vertices.

• A marked node (the current vertex).

An instance of an L graph scheme is an L graph that ‘matches’ the L graph scheme.

Example

See the premises and conclusions of the rules of the calculus KG defined in 4.2.1 for examples of L
graph schemes, and the proof in figure 4.c for instances of those L graph schemes. The L graph
schemes are represented according to the conventions of remark 4.1.5.

4.1. INTRODUCTION 41

4.1.5 REMARK representation of L graph schemes

Vertices are represented as boxes, and edges as arrows between the edges. The current vertex is
marked with a double frame.

• p p p - on the left hand side of a vertex means that this vertex has exactly one predecessor
(besides the predecessors shown explicitly).

• p p p -∗ on the left hand side of a vertex means that this vertex has an arbitrary number of
predecessors (besides the predecessors shown explicitly).

• - p p p on the right hand side of a vertex means that this vertex has exactly one successor
(besides the successors shown explicitly).

• - p p p∗ on the right hand side of a vertex means that this vertex has an arbitrary number of
successors (besides the successors shown explicitly).

4.1.6 DEFINITION graph calculus

A graph calculus for the logic L consists of the following parts:

• A finite set of axioms.

An axiom has the form G , where G is a graph scheme of L.

• A finite set of rules.

A rule has the form G1
G or G1 G2

G , where G1, G2, G are graph schemes of L. Sometimes
there is an additional condition.

Instances of axioms and rules are defined ‘as usual’.

4.1.7 DEFINITION LG ` G

Let LG be a graph calculus for L. We inductively define LG ` G for L graphs G:

• If G is an instance of an axiom of LG , then LG ` G.

• If G1
G is an instance of a rule of LG and LG ` G1, then LG ` G

• If G1 G2
G is an instance of a rule of LG and LG ` G1, LG ` G2, then LG ` G.

If LG ` G, then we say that G is provable in LG .

4.1.8 DEFINITION depth of a proof

Let P be a proof of the graph G in the graph calculus LG . If P is an instance of an axiom, then
the depth of P is 0. If the last step in P is G1

G , then the depth of P is the depth of the proof of
G1 plus one. If the last step in P is G1 G2

G , and d1 resp. d2 are the depths of the proofs of G1

and G2, then the depth of P is 1 + max({d1, d2}).

4.1.9 REMARK backward proof search

We start with ε | A , i.e. a graph with one vertex that contains just the formula A on the right
hand side.

If ε | A is an instance of an axiom of LG , then ε | A is the whole proof. Otherwise, if LG `
ε | A , then ε | A must be the conclusion of an instance of a rule of LG . We check for which

rules this is possible. If this is not possible for any of the rules of LG , then we know that LG 0

42 CHAPTER 4. GRAPH CALCULI

ε | A . Otherwise we compute the corresponding premises and continue with backward proof

search for these premises. These premises will no longer be of the form ε | A , and after some
steps they may consist of several vertices. The idea of the backward proof search, however, is still
the same: We first check whether it is an instance of an axiom, and if it is not such an instance,
then it must be the conclusion of an instance of a rule.

4.1.10 DEFINITION (strongly) invertible rule

A rule with one premise of a graph calculus LG is invertible iff for all instances G1
G of this rule:

LG ` G1 ⇔ LG ` G

The rule is strongly invertible if we have in addition: If there exists a proof of G with depth d,
then there exists a proof of G1 whose depth is at most d.

A rule with two premises of a graph calculus LG is invertible iff for all instances G1 G2
G of this

rule:

LG ` G1 and LG ` G2 ⇔ LG ` G

The rule is strongly invertible if we have in addition: If there exists a proof of G with depth d,
then there exist proofs of G1 and G2 whose depth is at most d.

Note that since G1
G and G1 G2

G are instances of rules, we already know that the left hand side
implies the right hand side.

4.1.11 REMARK invertible rules and efficiency

Assume that we do backward proof search in a graph calculus LG and G is the L graph we have
obtained so far. Assume further that G is not an instance of an axiom of LG . If G′

G is an instance
of an invertible rule of LG , then LG ` G ⇔ LG ` G′. Consequently it cannot be a mistake to
apply this rule backwards. It is crucial for the efficiency of backward proof search to make use of
the invertibility of rules. We use this invertibility already in this chapter since otherwise it would
be almost impossible to present non-trivial examples (cp. remark 4.2.7).

However note that it is not always desirable to have a calculus with as many invertible rules
as possible. For example KS (see definition 5.2.2) is better suited for backward proof search
than KG , although KS contains non-invertible rules and KG does not. See also the corresponding
complexities in chapter 6.

4.1.12 REMARK representation of search trees

If we do backward proof search in a graph calculus, then we obtain a search tree. We use the
following conventions when drawing such search trees.

• We write fail near a leaf if from now on only (jump) and (jump−) are applicable back-
wards.(These two rules are defined later on.)

• Let N be a node in the search tree with several children. If the search must be successful
for all these children in order to obtain a proof for the the L graph in N , then there is a
horizontal line above N .

• Let N be a node in the search tree with several children. If it is sufficient that the search
is successful for one of these children in order to obtain a proof for the the L graph in N ,
then there is no horizontal line above N .

4.2. K 43

Example

The node 12 of the search tree in figure 4.b is marked with a horizontal line. There is no such
line above the node 8 of the search tree in figure 4.j.

4.1.13 REMARK graph calculi vs. prefixed tableaux

Prefixed tableaux (see for example [Fit93]) can be seen as a notational variant of our graph
calculi.

Prefixed tableaux have several advantages over graph calculi:

• It is definitely easier to define and handle prefixed tableaux. Especially no ‘· · ·’ and ‘∗’ are
required in the definitions of the calculi. In fact, a precise formal definition of the graph
calculi would probably result in some sort of prefixed tableaux.

• An obvious data structure for a prefixed tableau could be some sort of trees, i.e. the same
as for graph calculi. However, more efficient implementations seem to be possible if one
uses variables in the prefixes (see for example [BG97]).

In spite of these advantages of prefixed tableaux, we use graph calculi in this chapter for the
following reasons:

• Graph calculi are more intuitive. For example, we really see that we add a world to the
current graph during the application of the (2) rule during backward proof search.

• In our view, it is easier to motivate the development of sequent calculi from graph calculi
than from prefixed tableaux.

4.2 K

4.2.1 DEFINITION graph calculus KG

axioms:

p p p -∗ ∆ | true,Γ - p p p∗
(true)

p p p -∗ ∆ | P,¬P,Γ - p p p∗
(id)

rules:

p p p -∗ A ∨B,∆ | A,B,Γ - p p p∗

(∨)p p p -∗ ∆ | A ∨B,Γ - p p p∗

p p p -∗ A ∧B,∆ | A,Γ - p p p∗ p p p -∗ A ∧B,∆ | B,Γ - p p p∗

(∧)p p p -∗ ∆ | A ∧B,Γ - p p p∗

44 CHAPTER 4. GRAPH CALCULI

p p p -∗ 2A,3Σ,∆ | Γ - p p p∗�
��1

ε | A,Σ

no 3 fmls in ∆ (2)p p p -∗ 3Σ,∆ | 2A,Γ - p p p∗

p p p -∗ 3A,∆ | Γ ��
�1
p p p -∗

∆1 | A,Γ1
-∗ p p p

ppp pppPPPqp p p -∗ ∆n | A,Γn -∗ p p p
(3)

p p p -∗ ∆ | 3A,Γ ��
�1
p p p -∗

∆1 | Γ1
-∗ p p p

ppp pppPPPqp p p -∗ ∆n | Γn -∗ p p p

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

(jump)

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

(jump−)

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 2A in (2), 3A in
(3), none in (jump) and (jump−)

Example

The K graph

3p1 ∨ p2, p2 ∨ p1 | p3 ∧ ¬p1

2(p2 ∨ p3) | ε

��
�1

PPPq

��
�1

p4 ∧ p1 | p2, p0, p0 ∧2p1,¬p2

ε | ¬p3
- 3p1,3¬p2 | ¬p3

is an instance of the axiom (id).

See figure 4.c for an example of a proof in the calculus KG (and thus for instances of axioms and
rules of KG).

In order to motivate the (2) rule, we assume that we start with the vertex 3p0,3¬p3 | 2p2, p4

and want to make all formulas in it false. Using the notation from remark 4.1.2 we thus want
v(w0,3p0) = 0, v(w0,3¬p3) = 0, and v(w0,2p2) = 0. v(w0,2p2) = 0 implies that there exists a
world w1 with w0Rw1 such that v(w1, p2) = 0. Thus we add a vertex and obtain

4.2. K 45

3p0,3¬p3,2p2 | p4
��
�1

ε | p2

From v(w0,3p0) = 0 follows v(w, p0) = 0 for all worlds w accessible from w0. Consequently
v(w1, p0) = 0, i.e. we put p0 into the new vertex. For the same reason we also add ¬p3 and obtain

3p0,3¬p3,2p2 | p4
��
�1

ε | p2, p0,¬p3

Appending a vertex and putting p2, p0, p3 in it is exactly what we would have done if we had
applied the (2) rule of the calculus KG backwards on the vertex we started with, since

3p0,3¬p3,2p2 | p4
��
�1

ε | p2, p0,¬p3

3p0,3¬p3 | 2p2, p4

is an instance of this rule. The formulas on the left hand side are then those formulas we already
dealt with.

4.2.2 THEOREM KG: invertible rules

All rules of KG are invertible.

Proof

We proceed as in the proof of theorem 5.2.4 and use the notation from 5.1.10. We begin with the
rules (jump) and (jump−), which are special cases. If

...
r

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

is a proof in KG , where r is an arbitrary axiom or rule of KG , then also
...

r

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

(jump−)

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

(jump)

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

is a proof. Thus (jump) is invertible. In the same way we prove the invertibility of (jump−).

Let now r be one of the rules (∨), (∧), (2), (3) of KG . We can easily check:

1. (true) ; r(true)

46 CHAPTER 4. GRAPH CALCULI

2. (id) ; r(id)

3. (∨)r ; r(∨), (∧)r ; r(∧), (2)r ; r(2), (3)r ; r(3)

We only show two typical cases. Assume that

(id)p p p -∗ ∆ | P,¬P,A ∨B,Γ - p p p∗

is a proof in KG . Then also

(id)p p p -∗ A ∨B,∆ | P,¬P,A,B,Γ - p p p∗

(∨)p p p -∗ ∆ | P,¬P,A ∨B,Γ - p p p∗

is a proof in KG . Thus (id) ; (∨)(id). Now assume that

...
r

p p p -∗ 2A,B ∨ C,3Σ,∆ | B,C,Γ - p p p∗�
��1

ε | A,Σ

(2)p p p -∗ B ∨ C,3Σ,∆ | 2A,B,C,Γ - p p p∗

(∨)p p p -∗ 3Σ,∆ | 2A,B ∨ C,Γ - p p p∗

is a proof in KG . Then also ...
r

p p p -∗ 2A,B ∨ C,3Σ,∆ | B,C,Γ - p p p∗�
��1

ε | A,Σ

(∨)

p p p -∗ 2A,3Σ,∆ | B ∨ C,Γ - p p p∗�
��1

ε | A,Σ

(2)p p p -∗ 3Σ,∆ | 2A,B ∨ C,Γ - p p p∗

is a proof in KG . Thus (∨)(2) · · ·; (2)(∨) · · · . Finally we obtain (3)(2) · · ·; (2)(3) · · · with
the transformation in figure 4.a.
Assume that we have a proof P of a K graph G with an application of (jump) or (jump−) as its
last step. The rule r, which is one of (∧), (2), (3), is applicable backwards on G (in world w and
with main formula A). For each branch in this proof we assume that if we go from G upwards,
then r (in world w and with main formula A) is applied backwards as soon as possible. If r (in
world w and with main formula A) is not applied on a branch, then we add such an application
plus the necessary applications of (jump) and (jump−). Afterwards we can convert this proof
into a proof of G where the last step is this application of r.
From 1., 2., 3. and the transformation described above we obtain the invertibility of the rules
(∧), (2), (3).

4.2.3 REMARK termination of backward proof search

In general backward proof search in KG does not terminate since the rules (jump) and (jump−)
are always applicable. In the following theorem we show how this can be remedied.

4.2. K 47

ppp

ppp-∗
2
A
,3
B
,3

Σ
,∆
|Γ
@@

-
ε
|A

,B
,Σ

�
�
�1ppp-∗

∆
1
|B

,Γ
1
-∗
ppp

ppp
ppp

P
P
Pq ppp-∗

∆
n
|B

,Γ
n
-∗
ppp (2

)

ppp-∗
3
B
,3

Σ
,∆
|2

A
,Γ

�
�
�1ppp-∗

∆
1
|B

,Γ
1
-∗
ppp

ppp
ppp

P
P
Pq ppp-∗

∆
n
|B

,Γ
n
-∗
ppp (3

)

ppp-∗
3

Σ
,∆
|2

A
,3
B
,Γ

�
�
�1ppp-∗

∆
1
|Γ

1
-∗
ppp

ppp
ppp

P
P
Pq ppp-∗

∆
n
|Γ

n
-∗
ppp

;

ppp

ppp-∗
3
B
,2
A
,3

Σ
,∆
|Γ
@@

-
ε
|A

,B
,Σ

�
�
�1ppp-∗

∆
1
|B

,Γ
1
-∗
ppp

ppp
ppp

P
P
Pq ppp-∗

∆
n
|B

,Γ
n
-∗
ppp (3

)

ppp-∗
2
A
,3

Σ
,∆
|3

B
,Γ
@@

-
ε
|A

,Σ

�
�
�1ppp-∗

∆
1
|Γ

1
-∗
ppp

ppp
ppp

P
P
Pq ppp-∗

∆
n
|Γ

n
-∗
ppp (2

)

ppp-∗
3

Σ
,∆
|2

A
,3
B
,Γ

�
�
�1ppp-∗

∆
1
|Γ

1
-∗
ppp

ppp
ppp

P
P
Pq ppp-∗

∆
n
|Γ

n
-∗
ppp

F
ig

ur
e

4.
a:

T
he

tr
an

sf
or

m
at

io
n

(3
)(

2
)·
··

;
(2

)(
3

)·
··

us
ed

in
th

e
pr

oo
f

of
th

eo
re

m
4.

2.
2.

48 CHAPTER 4. GRAPH CALCULI

4.2.4 THEOREM KG: termination

Backward proof search in KG terminates if we add the following two restrictions:

• (jump) is only applied backwards if, perhaps after further backward applications of (jump),
a rule different from (jump) and (jump−) is applicable backwards.

• (jump−) is never applied backwards right after (jump).

These restrictions do not change the set of provable K graphs ε | A and all rules remain invert-
ible.

Proof

The two restrictions only forbid proofs where an application of (jump−) is followed immediately

by an application of (jump). Therefore we can still prove the same K graphs ε | A . From the
point of view of termination the first restriction is superfluous, but without this restriction the
(jump) rule would not be invertible.

Let subfmls′ be the multiset variant of the function subfmls. Thus for example subfmls′(2p0 →
2p0∨p1) = 2p0 → 2p0∨p1,2p0, p0,2p0∨p1,2p0, p0, p1, in contrast to subfmls(2p0 → 2p0∨p1) =
{2p0 → 2p0 ∨ p1,2p0, p0,2p0 ∨ p1, p1}.
When doing backward proof search in KG , we can only obtain trees and not arbitrary graphs.

Let G be such a tree. If ∆ | Γ is a vertex of G and ∆1 | Γ1 is one of its children, then
subfmls′(∆1,Γ1) ⊆ subfmls′(∆,Γ). Moreover, max{length(A) | A ∈ ∆1,Γ1} < max{length(A) |
A ∈ ∆,Γ}. (This is not longer true for example for K + T and S4.) Since a vertex can add
formulas only to its children, we can prove with an induction that the length of the branches in G
is at most length(A), and that the branching degree is at most length(A). Thus there is an upper
limit (that depends only on A) for the number of formulas in G. Every backward application
of one of the rules (∨), (∧), (2), (3) moves a formula from the right to the left hand side of a
vertex. Hence we can apply these rules backwards only a finite number of times.

It remains to show that it is not possible to apply (jump) and (jump−) infinitely often. This
follows immediately from the second restriction, since we know that G is a finite tree.

4.2.5 THEOREM equivalence of provability and validity

If A is in negation normal form, then:

KG ` ε | A ⇔ K |= A

Proof

‘⇐’:

We assume that KG 0 ε | A and prove that there exists a K model 〈W,R, v〉 such that
v(w0, A) = 0 for some w0 ∈W .

If KG 0 ε | A , and if we do backward proof search according to theorem 4.2.4, then there
exists a branch in the search tree that fails. Let G be the K graph at the end of such a branch.

If ∆ | Γ is a vertex of G, then Γ contains only variables and negated variables, and there is no
variable P such that both P ∈ Γ and ¬P ∈ Γ.

We build a K model 〈W,R, v〉 with the same structure as G. Thus W and R are determined, and

we now have to define v. If ∆ | Γ is a vertex of G, then we write w(∆ | Γ) for the corresponding
world in the K model. For all worlds w ∈W and all variables P , we set

4.2. K 49

v(w(∆ | Γ), P) :=
{

1 P /∈ Γ
0 P ∈ Γ

Using this construction, we obtain the model in figure 4.e from the K graph in node 13 in figure
4.d.

We now prove with an induction on length(B) that for all vertices ∆ | Γ in G:

B ∈ Γ,∆ ⇒ v(w(∆ | Γ), B) = 0

Then v(w0, A) = 0 follows immediately for the root w0 of the K model, since A is an element of
the multiset on the left hand side of the root.

• B ≡ P or B ≡ ¬P :
v(w(∆ | Γ), B) = 0 follows from the definition of v.

• B ≡ C ∨D:
From B ∈ Γ,∆ follows C ∈ Γ,∆ and D ∈ Γ,∆ (cp. the (∨) rule). With the induction
hypothesis we obtain v(w(∆ | Γ), C) = 0 and v(w(∆ | Γ), D) = 0. Thus v(w(∆ | Γ), C ∨
D) = 0.

• B ≡ C ∧D:
Analogous to the case B ≡ C ∨D.

• B ≡ 2C:
Since 2C ∈ Γ,∆ we know that there is a successor vertex ∆′ | Γ′ of ∆ | Γ in G such
that C ∈ Γ′,∆′ (cp. the rule (2)). With the induction hypothesis follows v(w(∆′ | Γ′), C) =
0. Because w(∆ | Γ)Rw(∆′ | Γ′) we obtain v(w(∆ | Γ),2C) = 0.

• B ≡ 3C:
Since 3C ∈ Γ,∆ we know that in all successor vertices ∆′ | Γ′ of ∆ | Γ in G we have
C ∈ Γ′,∆′ (cp. the rules (3) and (2)). With the induction hypothesis follows v(w(∆′ |
Γ′), C) = 0 for all these successor vertices. Thus v(w(∆ | Γ),3C) = 0.

‘⇒’:

Let P be a proof of ε | A in KG . Note that all K graphs that can occur in P are trees. First
we define a translation f of K graphs that are trees into conditions about a K model 〈W,R, v〉.

If G consists of a root ∆ | Γ and n children G1, . . . , Gn, then f(G,w〈l1,...,lm〉) is the condition

∀B ∈ Γ,∆ : v(w〈l1,...,lm〉, B) = 0
and ∃w〈l1,...,lm,1〉 ∈W : (w〈l1,...,lm〉Rw〈l1,...,lm,1〉 and f(G1, w〈l1,...,lm,1〉))
and . . .
and ∃w〈l1,...,lm,n〉 ∈W : (w〈l1,...,lm〉Rw〈l1,...,lm,n〉 and f(Gn, w〈l1,...,lm,n〉))

and f(G) is the condition ∃〈W,R, v〉 : ∃w〈0〉 ∈W : f(G,w〈0〉) (see also the example below).

If G is an instance of a (true) axiom of KG , then the condition f(G) is contradictory (in the
meta-logic), since v(w, true) = 1 for all w. f(G) is also contradictory if G is an instance of an
(id) axiom, since either v(w,P) = 1 or v(w,¬P) = 1.

If G1
G3

is an instance of one of the rules (∨), (3) and f(G1) is contradictory, then f(G3) is
contradictory too. If G1 G2

G3
is an instance of the rule (∧) and both f(G1) and f(G2) are

contradictory, then f(G3) is contradictory too. Applying (jump) or (jump−) does not change the
condition.

We only show the case of the (2) rule in more detail. We assume that G1
G3

is an instance of the
(2) rule and that f(G1) is contradictory. Thus G1 is a K graph of the form

50 CHAPTER 4. GRAPH CALCULI

p p p -∗ 2A,3Σ,∆ | Γ - p p p∗�
��1

ε | A,Σ

and the K graph G3 is of the form

p p p -∗ 3Σ,∆ | 2A,Γ - p p p∗
Thus the condition f(G1) is of the form

. . .
and ∀B ∈ 2A,3Σ,∆,Γ : v(w〈l1,...,lm〉, B) = 0
and . . .
and ∃w〈l1,...,lm,k〉 ∈W : (w〈l1,...,lm〉Rw〈l1,...,lm,k〉

and ∀B ∈ A,Σ : v(w〈l1,...,lm,k〉, B) = 0)
and . . .

and the condition f(G3) is of the form
. . .
and ∀B ∈ 2A,3Σ,∆,Γ : v(w〈l1,...,lm〉, B) = 0
and . . .

The parts of the conditions abbreviated with ‘. . . ’ are both times the same and concern the
vertices that are abbreviated with ‘. . . ’ in G1 and G3.
We assume v(w〈l1,...,lm〉,2A) = 0 and v(w〈l1,...,lm〉,3Σ) = 0. This implies that there exists a
w〈l1,...,lm,k〉 with w〈l1,...,lm〉Rw〈l1,...,lm,k〉, v(w〈l1,...,lm,k〉, A) = 0, and v(w〈l1,...,lm,k〉,Σ) = 0. Therefore
also G3 is contradictory.

Thus we know that f(ε | A) must be contradictory. However, f(ε | A) is the condition
∃〈W,R, v〉 : ∃w0 ∈W : v(w0, A) = 0. Thus K |= A.

Example

If G is the K graph

2p2 | p1 PPPq

��
�1

ε | p4,¬p6

ε | 3p3
- ε | p5

then f(G) is the condition

∃〈W,R, v〉 : ∃w〈0〉 ∈W :
(v(w〈0〉,2p2) = 0 and v(w〈0〉, p1) = 0

and ∃w〈0,1〉 ∈W : (w〈0〉Rw〈0,1〉 and v(w〈0,1〉,3p3) = 0
and ∃w〈0,1,1〉 ∈W : (w〈0,1〉Rw〈0,1,1〉 and v(w〈0,1,1〉, p5) = 0))

and ∃w〈0,2〉 ∈W : (w〈0〉Rw〈0,2〉 and v(w〈0,2〉, p4) = 0 and v(w〈0,2〉,¬p6) = 0))

4.2.6 REMARK KG: backward proof search

Assume that we do backward proof search for ε | A . Since all rules are invertible, no back-
tracking is required during backward proof search (cp. remark 4.1.11). We use the two restrictions
from theorem 4.2.4 to make sure that the search terminates (still no backtracking is required).
If the search stops and one of the leaves of the search tree is not an instance of an axiom, then

KG 0 ε | A .

4.2. K 51

s1 (∨)
s2 (∨)
s3 (∨)
s4 (3)
s5 (2)
s6 (2)
s7 (3)
s8 (jump)
s9 (∨)
s10
(jump−)
s11
(jump)
s12@

@
�
�(∧)
s13
(∨)
s14 (id)

s15 (id)
The search starts at node 1 with three
(∨) backward applications (node 4). Then
two successor worlds are created and the
3 formulas are handled (node 8). Now
we can choose between two jumps. We
jump into the ‘lower’ world and apply (∨)
backwards. No other rule is applicable in
this world, so we have to jump into the
other leaf. There we apply (∧) and then
on one branch (∨) backwards and find two
instances of axioms (nodes 14 and 15).

Thus ε | A is provable in KG .
The thick lines are the parts of the search
tree that belong to the proof (i.e. the
search tree and the proof coincide).
The search tree (and thus the correspond-
ing proof) would be smaller if we had
jumped into the other world right after
node 8.

Figure 4.b: The search tree in KG of the first example in remark 4.2.6.
See figure 4.c for the corresponding proof.

Example

We check whether KG ` ε | A , where A ≡ (3(¬p0 ∨ p3) ∨3¬p1) ∨ (2p2 ∨2(p0 ∧ p1)).

We use the following abbreviations:

• A1 :≡ 3(¬p0 ∨ p3) ∨3¬p1

• A2 :≡ 2p2 ∨2(p0 ∧ p1)

• Π := 3(¬p0 ∨ p3),3¬p1,2p2,2(p0 ∧ p1), A1, A2, A

Thus A ≡ A1∨A2. See figure 4.b for the resulting search tree and figure 4.c for the corresponding
proof.

Now we do backward proof search for ε | B , where B ≡ (3p3∨3¬p1)∨(2(p2∨p0)∨2(p0∧p1)).
We use the abbreviation Π = B,3p3∨3¬p1,2(p2∨p0)∨2(p0∧p1),3p3,3¬p1,2(p2∨p0),2(p0∧
p1). The proof search fails. See figure 4.d for the resulting search tree and figure 4.f for the
corresponding non-proof.

In order to construct a countermodel M, we just take the K graph 13 from figure 4.f, remove
the left hand side in each node, and negate the literals (see figure 4.e). Indeed M, w0 |= 2¬p3 ∧
2p1 ∧3(¬p2 ∧ ¬p0) ∧3(¬p0 ∨ ¬p1), i.e. M, w0 |= ¬B.

4.2.7 REMARK effect of invertibility

If we did not know that all the rules are invertible, the search tree would become much larger:
At every node we would have to try all possible ways to apply rules backwards. For example in

52 CHAPTER 4. GRAPH CALCULI

1 ε | A
(∨)

...

(3)

5 3¬p1, A1, A2, A | 3(¬p0 ∨ p3),2p2,2(p0 ∧ p1)

(2)

6 2(p0 ∧ p1),3¬p1, A1, A2, A | 3(¬p0 ∨ p3),2p2

ε | p0 ∧ p1,¬p1

HHHj

(2)

7 2p2,2(p0 ∧ p1),3¬p1, A1, A2, A | 3(¬p0 ∨ p3)

ε | p2,¬p1

ε | p0 ∧ p1,¬p1

HHHj

��
�*

(3)

8 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump)

9 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

H
HHj

�
��*

(∨)

10 Π | ε
¬p0 ∨ p3 | ¬p0, p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

H
HHj

�
��*

(jump−)

11 Π | ε
¬p0 ∨ p3 | ¬p0, p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump)

12 Π | ε
¬p0 ∨ p3 | ¬p0, p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

HHHj

��
�*

(∧)

13 Π | ε
¬p0 ∨ p3 | ¬p0, p3, p2,¬p1

p0 ∧ p1 | ¬p0 ∨ p3, p0,¬p1

HHHj

��
�*

(∨)

14 Π | ε
¬p0 ∨ p3 | ¬p0, p3, p2,¬p1

¬p0 ∨ p3, p0 ∧ p1 | ¬p0, p3, p0,¬p1

HHHj

��
�*

(id)

15 Π | ε
¬p0 ∨ p3 | ¬p0, p3, p2,¬p1

p0 ∧ p1 | ¬p0 ∨ p3, p1,¬p1

HHHj

��
�*

(id)

Figure 4.c: Proof in KG of the first example in remark 4.2.6.

4.2. K 53

s1 (∨)
s2 (∨)
s3 (∨)
s4 (3)
s5 (2)
s6 (2)
s7 (3)
s8 (jump)
s9 (∨)
s10
(jump−)
s11
(jump)
s12@

@
�
�(∧)
s13

fail r14 (id) The search starts at node 1 with three
(∨) backward applications (node 4). Then
two successor worlds are created, and the
3 formulas are handled (node 8). Now we
have to choose between two jumps. We
jump into one world, and there we can
apply (∨) backwards. We cannot do any-
thing else in this world, so we jump back
to the root and from there into the other
leaf. Only one of the two graphs obtained
after a backwards application of (∧) is an
instance of an axiom (node 14). The other
one (node 13) is not an instance of an ax-
iom, but a leaf of the search tree. Thus
ε | B is not provable in KG .

The thick lines are the parts of the search
tree that are used for the countermodel.

Figure 4.d: Search tree in KG of the second example in remark 4.2.6. See
figure 4.f for the corresponding non-proof and figure 4.e for the resulting
countermodel.

&%
'$

@
@
@@R

�
�
���

w0

&%
'$
¬p0 p1
¬p3

w1

&%
'$
¬p0 p1
¬p2 ¬p3

w2

Figure 4.e: Countermodel of B of the example in remark 4.2.6. See figure
4.f for the corresponding non-proof.

54 CHAPTER 4. GRAPH CALCULI

ε | (3p3 ∨3¬p1) ∨ (2(p2 ∨ p0) ∨ 2(p0 ∧ p1))1

(∨)

...

(3)

Π | ε8

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump)

Π | ε9

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(∨)

Π | ε10

p2 ∨ p0 | p3, p2, p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump−)

Π | ε11

p2 ∨ p0 | p3, p2, p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump)

Π | ε12

p2 ∨ p0 | p3, p2, p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(∧)

Π | ε13

p2 ∨ p0 | p3, p2, p0,¬p1

p0 ∧ p1 | p3, p0,¬p1

H
HHj

�
��*

Π | ε14

p2 ∨ p0 | p3, p2, p0,¬p1

p0 ∧ p1 | p3, p1,¬p1

H
HHj

�
��*

(id)

Figure 4.f: Non-proof of KG of the second example in remark 4.2.6. See
figure 4.d for the corresponding search tree and figure 4.e for the resulting
countermodel.

4.2. K 55

node 5 in the search tree in figure 4.b we have three possibilities: we can apply (2) backwards in
two different ways, and we can apply (3) backwards.
If do not make use of the invertibility, then already for the relatively short formula (3(¬p0∨p3)∨
3¬p1) ∨ (2p2 ∨2(p0 ∧ p1)) of the example in remark 4.2.6, the search tree becomes too large to
draw it completely. Figure 4.g shows the first six levels of this search tree. The thick lines and
the numbers correspond to the thick lines and numbers in the search tree in figure 4.b.

4.2.8 REMARK from KG to KG,2

It is possible to simplify the calculus KG .

• Only trees can occur during backward proof search. Consequently we can omit many ‘∗’
and ‘−→’.

• It is sufficient to put 3 formulas on the left hand side of the sequents.

• We can do without the rule (jump−).

In this way we obtain the graph calculus KG,2 defined below.

4.2.9 DEFINITION graph calculus KG,2

axioms:
(true)p p p - 3Σ | true,Γ - p p p∗

(id)p p p - 3Σ | P,¬P,Γ - p p p∗

rules: p p p - 3Σ | A,B,Γ - p p p∗

(∨)p p p - 3Σ | A ∨B,Γ - p p p∗

p p p - 3Σ | A,Γ - p p p∗ p p p - 3Σ | B,Γ - p p p∗

(∧)p p p - 3Σ | A ∧B,Γ - p p p∗

p p p - 3Σ | Γ - p p p∗�
��1

ε | A,Σ

(2)p p p - 3Σ | 2A,Γ - p p p∗

p p p - 3A,3Σ | Γ ��
�1

ε | A,Γ1ppppppPPPq
ε | A,Γn

(3)

p p p - 3Σ | 3A,Γ ��
�1

ε | Γ1ppppppPPPq
ε | Γn

56 CHAPTER 4. GRAPH CALCULI

s1
(∨

)

s2 X X
X

X
X
X
X

X
X
X

X
X

X
X
X

X
X

(∨
)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(∨
)

rH H
H
H
H
H

H
H H

(∨
)

(3
)

�
�
�
�
�
�
�
� �

(3
)

s3 H
H

H
H

H
H
H

H H

(∨
)

(2
)

�
�
�
�
�
�
�
� �

(2
)

r@ @
@

@ @

A A
A
A A

rA A A A
A

� � �
� �

rA A A A
A

� � �
� �

s4 @ @
@
@ @

A
A A
A A

rC C C C C� � � � �

rA A A A
A

� �
� � �

�
�
�
� �

rB B B B BE E E E
E

� � � � �rE E E E E� � � � �rE E E E E� � � � �

rB B B B BE E E E
E

� � � � �

� � � � �

rE E E E E
rE E E E E� � � � �

� � � � �r� � � � �
rE E E E E� � � � �rE E E E E
rB B B B BE E E E
E

� � � � �

rB B B B BE E E
E E

� � � � �s5 E E E E E� � � � �rE E E E E� � � � �

rB B B B BE E E E
E

� � � � �

� � � � �

rE E E E E� � � � �rE E E E E� � � � �

rB B B B BE E E E
E

� � � � �rE E E E E� � � � �rE E E E E
rE E E E E

rrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrr

rrrrrr 6srrrrrrrr
rrrrrr
rrrrrrrrrrr

F
igure

4.g:
T

he
first

six
levels

ofthe
com

plete
search

tree
from

rem
ark

4.2.7.
T

he
thick

branch
and

the
num

bers
correspond

to
the

search
tree

in
figure

4.b.

4.2. K 57

p p p - 3Σ1 | Γ1 - p p p∗�
��1

ε | Γ2

(jump)

p p p - 3Σ1 | Γ1 - p p p∗�
��1

ε | Γ2

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 2A in (2), 3A in
(3), none in (jump) and (jump−)

4.2.10 THEOREM KG,2: invertible rules

The rule (jump) of KG,2 is not invertible. All the other rules are strongly invertible.

Proof

Let r be one of the rules (∨), (∧), (2), (3). We can easily check (cp. theorem 4.2.2) the following
assertions:

• (true) ; r(true)

• (id) ; r(id)

• (∨)r ; r(∨), (∧)r ; r(∧), (2)r ; r(2), (3)r ; r(3)

• (jump) ; r(jump)

Thus (∨), (∧), (2), (3) are invertible.
Since for example the K graph

2((p0 ∨ p1) ∨ p0),2p2 | ε PPPq
��
�1

ε | p2

ε | (p0 ∨ p1) ∨ ¬p0

is provable in KG,2, but

2((p0 ∨ p1) ∨ p0),2p2 | ε PPPq
��
�1

ε | p2

ε | (p0 ∨ p1) ∨ ¬p0

is not provable in KG,2, the rule (jump) is not invertible.

4.2.11 THEOREM equivalence of KG and KG,2

KG ` ε | A ⇔ KG,2 ` ε | A

Proof

‘⇐’:

Since KG,2 is essentially a restriction of KG , we can use the ‘same’ proof in KG .

‘⇒’:

Let P be the proof of ε | A in KG .

58 CHAPTER 4. GRAPH CALCULI

In order to obtain a proof in KG,2, we have to eliminate the (jump−) applications. The proof in
figure 4.h (left hand side of vertices abbreviated by ‘. . . ’) shows that the part of a proof between a
(jump−) and a (jump) application is not always superfluous. These parts can only be eliminated
without further changes of the proof if no (∧) applications occur in it.

In the following we show how P can be converted into a proof without (jump−) applications.
Therefore we assume that there is such an application in P.

First we assume that this application of (jump−) is followed by an application of (∨), (2), or
(3). Let X be the current world of this application. As a first step we remove this application
after (jump−). Then we look at each branch b in the subproof above the (jump−) application. If
on the branch b the world X is never the current world, then we do nothing. Otherwise we insert
the deleted application where X is the current world for the first time (seen from the (jump−)

application). Let P ′ be the result. P ′ can be adapted such that we again obtain a proof of ε | A
in KG . Note that the depth of the proof is not changed. If (jump−) is followed by (∧), then the
procedure is a bit more complicated, but the idea remains the same.

It is crucial for this transformation that there is no rule that changes worlds that are nearer to
the root than the current world. This is not the case for KGt , and therefore we cannot prove an
analogous theorem for this calculus.

The proof in figure 4.h is constructed from the one in figure 4.i using this transformation.

We know that the root of the proof is a K graph with one node. Using this transformation we
therefore finally obtain a proof where the (jump−) application is followed by an application of
(jump). Since the K graph is a tree, we can simply remove these two applications as they cancel
each other out.

4.2.12 REMARK KG,2: backward proof search

Since KG,2 contains a non-invertible rule (cp. theorem 4.2.10), backtracking is required during
backward proof search. If a leaf of the search tree is not an instance of an axiom, then we
backtrack until we come to a graph where we could also jump into another world.

If a formula is provable, then the proof is a subtree of the search tree with the following properties:

• The root of the search tree is the root of the proof.

• If a node of the search tree is in the proof, and this node has exactly one child, then its
child is also in the proof.

• Both children of a node at a branching that is marked with a horizontal line are in the
proof.

• Exactly one child of a node at a branching that is not marked with a horizontal line is in
the proof.

If a formula is not provable, then we can extract a countermodel from the search tree. With
respect to the search tree, a countermodel is dual to a proof: For a countermodel we take both
children of branchings with horizontal lines, but only one branch of branchings without horizontal
lines.

Example

We check whether KG,2 ` ε | A , where A ≡ (3(¬p0∨p3)∨3¬p1)∨(2p2∨2(p0∧p1)). Compare
the resulting search tree in figure 4.j with the search tree in figure 4.b.

On the left branch of the search tree we obtain the non-proof displayed in figure 4.k. The K
graph at node 10 is not an instance of (id). See figure 4.l for the proof we finally obtain after
backtracking (with Π = 3(¬p0 ∨ p3),3¬p1).

4.2. K 59

ε | 33p0 ∧3p1,22¬p0,2¬p1

(2)

. . . | 33p0 ∧3p1,2¬p1
���1 ε | 2¬p0

(jump)

. . . | 33p0 ∧3p1,2¬p1
���1 ε | 2¬p0

(2)

. . . | 33p0 ∧3p1,2¬p1
���1 . . . | ε - ε | ¬p0

(jump−)

. . . | 33p0 ∧3p1,2¬p1
���1 . . . | ε - ε | ¬p0

(2)

. . . | 33p0 ∧3p1
���1 . . . | ε - ε | ¬p0

PPPq ε | ¬p1

(∧)

. . . | 33p0
���1 . . . | ε - ε | ¬p0

PPPq ε | ¬p1

(3)

. . . | ε ���1 . . . | 3p0
- ε | ¬p0

PPPq ε | 3p0,¬p1

(jump)

. . . | ε ���1 . . . | 3p0
- ε | ¬p0

PPPq ε | 3p0,¬p1

(3)

. . . | ε ���1 . . . | ε - ε | p0,¬p0

PPPq ε | 3p0,¬p1

(jump)

. . . | ε ���1 . . . | ε - ε | p0,¬p0

PPPq ε | 3p0,¬p1

(id)

. . . | 3p1
���1 . . . | ε - ε | ¬p0

PPPq ε | ¬p1

(3)

. . . | ε �
��1 . . . | p1

- ε | ¬p0

PPPq ε | p1,¬p1

(jump)

. . . | ε �
��1 . . . | p1

- ε | ¬p0

PPPq ε | p1,¬p1

(id)

Figure 4.h: A proof in KG that contains a (jump−) application. See also
the proof of theorem 4.2.11.

60 CHAPTER 4. GRAPH CALCULI

ε | 33p0 ∧3p1,22¬p0,2¬p1

(2)

. . . | 33p0 ∧3p1,2¬p1
���1 ε | 2¬p0

(jump)

. . . | 33p0 ∧3p1,2¬p1
���1 ε | 2¬p0

(jump−)

. . . | 33p0 ∧3p1,2¬p1
���1 ε | 2¬p0

(2)

. . . | 33p0 ∧3p1
���1 ε | 2¬p0

PPPq ε | ¬p1

(∧)

. . . | 33p0
���1 ε | 2¬p0

PPPq ε | ¬p1

(3)

. . . | ε ���1 ε | 3p0,2¬p0

PPPq ε | 3p0,¬p1

(jump)

. . . | ε ���1 ε | 3p0,2¬p0

PPPq ε | 3p0,¬p1

(2)

. . . | ε ���1 . . . | 3p0
- ε | ¬p0

PPPq ε | 3p0,¬p1

(3)

. . . | ε ���1 . . . | ε - ε | p0,¬p0

PPPq ε | 3p0,¬p1

(jump)

. . . | ε ���1 . . . | ε - ε | p0,¬p0

PPPq ε | 3p0,¬p1

(id)

. . . | 3p1
���1 ε | 2¬p0

PPPq ε | ¬p1

(3)

. . . | ε �
��1 ε | p1,2¬p0

PPPq ε | p1,¬p1

(jump)

. . . | ε �
��1 ε | p1,2¬p0

PPPq ε | p1,¬p1

(id)

Figure 4.i: The proof of figure 4.h with the (2) application between
(jump−) and (jump) moved upwards. See also the proof of theorem
4.2.11.

4.3. K + T 61

s1 (∨)
s2 (∨)
s3 (∨)
s4 (3)
s5 (2)
s6 (2)
s7 (3)
s8 (jump)
Q
Q
Q
r9 (∨)
r10

fail

�
�
�
s11@

@
�
�

(∧)

s12
(∨)

s13 (id)

s14 (id)

The search starts at node 1 with three
(∨) backward applications (node 4). Then
two successor worlds are created, and the
3 formulas are handled (node 8). Now we
have to choose between two jumps. One
jump ends with a fail (node 10). We back-
track and try the other jump. (Note that
in the search tree in figure 4.b we could
apply (jump−) backwards in this situa-
tion.) This branch has another branching
because of the (∧) rule and ends in two
instances of the (id) axiom (nodes 13 and

14). Thus ε | A is provable in KG,2.
The thick lines are the parts of the search
tree that belong to the proof.

Figure 4.j: Search tree in KG,2 of the first example in remark 4.2.12. See
figure 4.k for the corresponding proof.

Now we check whether KG,2 ` ε | B , where B ≡ (3p3 ∨ 3¬p1) ∨ (2(p2 ∨ p0) ∨ 2(p0 ∧ p1)).
Compare the resulting search tree in figure 4.m with the search tree in figure 4.d.

We set Π = 3p3,2(p2 ∨ p0),2(p0 ∧ p1),3¬p1. The incomplete proof that ends in node 9 is
displayed in 4.n. The incomplete proof that ends in the nodes 11 and 12 is displayed in figure
4.o.

The corresponding countermodel M has three worlds (see figure 4.p). We put the negations of
the literals in the current world of node 8 into w0, the negations of the literals in the current
world of node 10 into w1, and the negations of the literals in the current world of node 12 into
w2. IndeedM, w0 |= 2¬p3 ∧2p1 ∧3(¬p2 ∧¬p0)∧3(¬p0 ∨¬p1), i.e.M, w0 |= ¬((3p3 ∨3¬p1)∨
(2(p2 ∨ p0)∨2(p0 ∧ p1))). See chapter 5 for more examples for the extraction of a countermodel
from a failed backward proof search.

4.3 K + T

4.3.1 REMARK from KG to (K + T)G

In K + T models, all formulas of T must be true in all worlds, i.e. their negations must be false
everywhere. Therefore we have to make sure that the negations are put in all vertices during
backward proof search in (K +T)G . The (2) rule does it whenever a new vertex is appended, and
in addition we have to do add nnf(¬T) right at the beginning (cp. theorem 4.3.4).

4.3.2 DEFINITION graph calculus (K + T)G

(K + T)G is the calculus KG with the (2) rule replaced by the rule

62 CHAPTER 4. GRAPH CALCULI

1 ε | (3(¬p0 ∨ p3) ∨3¬p1) ∨ (2p2 ∨2(p0 ∧ p1))

(∨)

2 ε | 3(¬p0 ∨ p3) ∨3¬p1,2p2 ∨2(p0 ∧ p1)

(∨)

3 ε | 3(¬p0 ∨ p3),3¬p1,2p2 ∨2(p0 ∧ p1)

(∨)

4 ε | 3(¬p0 ∨ p3),3¬p1,2p2,2(p0 ∧ p1)

(3)

5 3¬p1 | 3(¬p0 ∨ p3),2p2,2(p0 ∧ p1)

(2)

6 3¬p1 | 3(¬p0 ∨ p3),2p2

ε | p0 ∧ p1,¬p1

H
HHj

(2)

7 3¬p1 | 3(¬p0 ∨ p3)

ε | p2,¬p1

ε | p0 ∧ p1,¬p1

HHHj

��
�*

(3)

8 3(¬p0 ∨ p3),3¬p1 | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump)

9 3(¬p0 ∨ p3),3¬p1 | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

H
HHj

�
��*

(∨)

10 3(¬p0 ∨ p3),3¬p1 | ε
ε | ¬p0, p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

HHHj

��
�*

Figure 4.k: Non-proof in KG,2 of the first example in remark 4.2.12. See
figure 4.j for the corresponding search tree.

4.3. K + T 63

1 ε | (3(¬p0 ∨ p3) ∨3¬p1) ∨ (2p2 ∨ 2(p0 ∧ p1))

(∨)

2 ε | 3(¬p0 ∨ p3) ∨3¬p1,2p2 ∨ 2(p0 ∧ p1)

(∨)

3 ε | 3(¬p0 ∨ p3),3¬p1,2p2 ∨ 2(p0 ∧ p1)

(∨)

4 ε | 3(¬p0 ∨ p3),3¬p1,2p2,2(p0 ∧ p1)

(3)

5 3¬p1 | 3(¬p0 ∨ p3),2p2,2(p0 ∧ p1)

(2)

6 3¬p1 | 3(¬p0 ∨ p3),2p2

ε | p0 ∧ p1,¬p1

HHHj

(2)

7 3¬p1 | 3(¬p0 ∨ p3)

ε | p2,¬p1

ε | p0 ∧ p1,¬p1

HHHj

��
�*

(3)

8 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

H
HHj

�
��*

(jump)

11 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0 ∧ p1,¬p1

H
HHj

�
��*

(∧)

12 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p0,¬p1

HHHj

��
�*

(∨)

13 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0, p3, p0,¬p1

HHHj

��
�*

(id)

14 Π | ε
ε | ¬p0 ∨ p3, p2,¬p1

ε | ¬p0 ∨ p3, p1,¬p1

HHHj

��
�*

(id)

Figure 4.l: Proof in KG,2 of the first example in remark 4.2.12. See figure
4.j for the corresponding search tree.

64 CHAPTER 4. GRAPH CALCULI

s1 (∨)
s2 (∨)
s3 (∨)
s4 (3)
s5 (2)
s6 (2)
s7 (3)
s8 (jump)
Q
Q
Q
s9
s10

fail

�
�
�
s11@

@
�
�(∧)

s12
fail r13 (id)

The search starts at node 1 with three
(∨) backward applications (node 4). Then
two successor worlds are created, and the
3 formulas are handled (node 8). Now we
have to choose between two jumps. One
jump ends with a fail (node 9). We back-
track and try the other jump. This branch
has another branching because of the (∧)
rule and ends in node 11 and 12 . Since
only node 12 is an instance of axiom we
backtrack again. There remains no other

possibility we could try. Thus ε | A is
not provable in KG,2.
The thick lines are the parts of the search
tree that are used for the countermodel.

Figure 4.m: Search tree in KG,2 of the second example in remark 4.2.12.
See figure 4.n for the corresponding proof.

ε | (3p3 ∨3¬p1) ∨ (2(p2 ∨ p0) ∨2(p0 ∧ p1))1

(∨)

...
(3)

Π | ε8

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0 ∧ p1,¬p1

H
HHj

��
�*

(jump)

Π | ε9

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

�
��*

(∨)

Π | ε10

ε | p3, p2, p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

Figure 4.n: First non-proof in KG,2 of the second example in remark
4.2.12. See figure 4.m for the corresponding search tree.

4.3. K + T 65

ε | (3p3 ∨3¬p1) ∨ (2(p2 ∨ p0) ∨2(p0 ∧ p1))1

(∨)

...
(3)

Π | ε8

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(jump)

Π | ε11

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0 ∧ p1,¬p1

HHHj

��
�*

(∧)

Π | ε12

ε | p3, p2 ∨ p0,¬p1

ε | p3, p0,¬p1

H
HHj

��
�*

Π | ε13

ε | p3, p2 ∨ p0,¬p1

ε | p3, p1,¬p1

H
HHj

��
�*

(id)

Figure 4.o: Second non-proof in KG,2 of the second example in remark
4.2.12. See figure 4.j for the corresponding search tree.

&%
'$

@
@
@@R

�
�
���

w0

&%
'$
¬p0 p1
¬p3

w1

&%
'$
¬p0 p1
¬p2 ¬p3

w2

Figure 4.p: Countermodel of the second example in remark 4.2.12. See
the figures 4.n and 4.o for the two corresponding non-proofs.

66 CHAPTER 4. GRAPH CALCULI

p p p -∗ 2A,3Σ,∆ | Γ - p p p∗�
��1

ε | A,nnf(¬T),Σ

no 3 fmls in ∆ (2)p p p -∗ 3Σ,∆ | 2A,Γ - p p p∗

4.3.3 THEOREM (K + T)G: invertible rules

All rules of (K + T)G are invertible.

Proof

Analogous to the proof for KG in theorem 4.2.2. The different (2) rule makes no difference.

4.3.4 THEOREM equivalence of provability and validity

If A is in negation normal form, then:

(K + T)G ` ε | A,nnf(¬T) ⇔ K + T |= A

Proof

‘⇐’:

We assume that (K +T)G ` ε | A,nnf(¬T) . As in the case of KG we can only obtain trees when
doing backward proof search, but proof search in (K + T)G does in general not terminate. The
restriction of the (jump) and (jump−) rules we used for KG is not sufficient.
We restrict backward proof search as follows:

• (jump) is only applied backwards if no other rule is applicable.

• (jump) is not applied backwards if the current world already occurs on the branch between
the root of the K graph and the current world (loop-check).

Assume for example that during backward proof search we have obtained a K of the form

∆ | Γ -∗ p p p- p p p - ∆ | Γ

Now we are not allowed to apply (jump) backwards because of the second restriction.
The two restrictions make sure that backward proof search always terminates. In order to
prove this, we use the function subfmls′ defined in the proof of theorem 4.2.4. Let G be

a tree we have obtained during backward proof search. If ∆ | Γ is a vertex of G, then
subfmls′(∆,Γ) ⊆ subfmls′(A,nnf(¬T)). Hence there are only finitely many different vertices,
and thus the restriction makes infinite branches impossible.
We take the K graph G at the end of a branch that does not end in an axiom. If in all ver-

tices ∆ | Γ of G there are only variables and negated variables in Γ, then we can construct a
countermodel as in the proof for KG in theorem 4.2.5.
Otherwise there are branches of the form

∆1 | Γ1
- p p p - ∆n | Γn - ∆ | Γ

4.3. K + T 67

where Γ contains a formula which is neither a variable nor a negated variable. This is only
possible if the second restriction was applicable on this branch. Thus Γ = Γm and ∆ = ∆m for
some 1 ≤ m ≤ n. We transform these branches into branches with a loop:

∆1 | Γ1
- p p p - ∆m | Γm - p p p - ∆n | Γn

��
?

We convert the resulting K graph into a K model 〈W,R, v〉 as in the proof for KG in theorem
4.2.5 and prove in the same way that v(w0, A) = 0 for the ‘root’ w0 of this model. The fact that
〈W,R, v〉 is not a tree does not matter.
It remains to show that the constructed K model is also a K + T model, i.e. that ∀w ∈ W :
∀C ∈ T : v(w,nnf(¬C)) = 0. Let C be an element of the theory T . When proving v(w0, A) = 0,

we proved that if ∆ | Γ is a vertex in G and B ∈ Γ,∆, then v(w(∆ | Γ), B) = 0. Since we
add nnf(¬T) to each vertex generated by (2) and also to the root (see the formulation of this
theorem), we know that ∀w ∈W : v(w,nnf(¬C)) = 0.
‘⇒’:

We can proceed as in the proof for KG in theorem 4.2.5. Let P be a proof of ε | A in KG . (Note
that all K graphs that can occur in P are trees.) We use the same function f as in the proof of
theorem 4.2.5 to compute a condition from a K graph.
If G is an instance of an axiom of (K + T)G , then the condition f(G) is contradictory. If G1

G3
is

an instance of one of the rules (∨), (3) and f(G1) is contradictory, then f(G3) is contradictory
too. If G1 G2

G3
is an instance of the rule (∧) and both f(G1) and f(G2) are contradictory, then

f(G3) is contradictory, too. Applying (jump) or (jump−) does not change the condition. So far
nothing has changed compared to the corresponding proof for KG .
The (2) rule is the only rule of (K + T)G that is different from the corresponding rule of KG . We
assume that G1

G3
is an instance of the (2) rule and that f(G1) is contradictory. Thus G1 is of the

form

p p p -∗ 2A,3Σ,∆ | Γ - p p p∗�
��1

ε | A,nnf(¬T),Σ

and hence G3 is

p p p -∗ 3Σ,∆ | 2A,Γ - p p p∗
Thus f(G1) is of the form

. . .
and ∀B ∈ 2A,3Σ,∆,Γ : v(w〈l1,...,lm〉, B) = 0
and . . .
and ∃w〈l1,...,lm,k〉 ∈W : (w〈l1,...,lm〉Rw〈l1,...,lm,k〉

and ∀B ∈ A,nnf(¬T),Σ : v(w〈l1,...,lm,k〉, B) = 0)
and . . .

and f(G3) then is
. . .
and ∀B ∈ 2A,3Σ,∆,Γ : v(w〈l1,...,lm〉, B) = 0
and . . .

The parts abbreviated with ‘. . . ’ are both times the same and concern the vertices that are
abbreviated with ‘. . . ’ in G1 and G3.

68 CHAPTER 4. GRAPH CALCULI

We assume v(w〈l1,...,lm〉,2A) = 0 and v(w〈l1,...,lm〉,3Σ) = 0. This implies that there exists a
w〈l1,...,lm,k〉 with w〈l1,...,lm〉Rw〈l1,...,lm,k〉, v(w〈l1,...,lm,k〉, A) = 0, v(w〈l1,...,lm,k〉,Σ) = 0, and ∀B ∈ T :
v(w〈l1,...,lm,k〉,nnf(¬B)) = 0. Therefore also G3 is contradictory.

4.3.5 DEFINITION graph calculus (K + T)G,2

(K + T)G,2 is the calculus KG,2 with the (2) rule replaced by the rule

p p p -∗ 3Σ | Γ - p p p∗�
��1

ε | A,nnf(¬T),Σ

(2)p p p -∗ 3Σ | 2A,Γ - p p p∗

4.3.6 THEOREM (K + T)G,2: invertible rules

The rule (jump) of (K + T)G,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the proof for KG in theorem 4.2.2.

4.3.7 THEOREM equivalence of (K + T)G and (K + T)G,2

(K + T)G ` ε | A,nnf(¬T) ⇔ (K + T)G,2 ` ε | A,nnf(¬T)

Proof

Analogous to the proof for KG and KG,2 in theorem 4.2.11.

4.4 KT

4.4.1 REMARK from KG to KTG

The only difference between the possible world semantics for K and KT is the reflexivity of the
accessibility relation. We only have to change the (3) rule of KG to obtain a graph calculus for
KTG , since now 3A says something about the current world and not just about the ‘successor’
worlds.

4.4.2 DEFINITION graph calculus KTG

The calculus KTG is the calculus KG with the (3) rule replaced by the following rule:

p p p -∗ 3A,∆ | A,Γ ��
�1
p p p -∗

∆1 | A,Γ1
-∗ p p p

ppppppPPPqp p p -∗ ∆n | A,Γn -∗ p p p
(3)

p p p -∗ ∆ | 3A,Γ ��
�1
p p p -∗

∆1 | Γ1
-∗ p p p

ppppppPPPqp p p -∗ ∆n | Γn -∗ p p p

4.4. KT 69

(id)

3¬p0,3¬p0 ∨ p0 | ¬p0, p0

(3)

3¬p0 ∨ p0 | 3¬p0, p0

(∨)

ε | 3¬p0 ∨ p0

Figure 4.q: The proof from the example in definition 4.4.2.

Example

The axiom 2A → A is the only difference between the two Hilbert-style calculi KH and KTH.

The proof in figure 4.q shows that KTG ` ε | nnf(2p0 → p0) . It is not a proof in KG because
of the different (3) rule, which does not put ¬p0 into the current world.

4.4.3 THEOREM KTG: invertible rules

All rules of KTG are invertible.

Proof

Analogous to the proof for KG in theorem 4.2.2. The difference in the (3) rule causes no prob-
lems.

4.4.4 THEOREM KTG: termination

In general, backward proof search in KTG does not terminate since the rules (jump) and (jump−)
are always applicable.

However, backward proof search in KTG terminates if we add the following two restrictions:

• (jump) is only applied backwards if, perhaps after further backward applications of (jump),
a rule different from (jump) and (jump−) is applicable backwards.

• (jump−) is never applied backwards right after (jump).

These restrictions do not change the set of provable vertices ε | A . Note that still no back-
tracking is required.

Proof

We can use the same proof as for theorem 4.2.4.

4.4.5 THEOREM equivalence of provability and validity

If A is in negation normal form, then:

KTG ` ε | A ⇔ KT |= A

Proof

Analogous to the proof for KG in theorem 4.2.5. The different (3) rule corresponds to the
reflexivity of the accessibility relation.

70 CHAPTER 4. GRAPH CALCULI

4.4.6 REMARK from KTG to KTG,2

It is possible to simplify the calculus KTG in the same way that we simplified the calculus KG .

4.4.7 DEFINITION graph calculus KTG,2

The calculus KTG,2 is the calculus KG,2 with the (3) rule replaced by the following rule:

p p p - 3A,3Σ | A,Γ ��
�1

ε | A,Γ1ppppppPPPq
ε | A,Γn

(3)

p p p - 3Σ | 3A,Γ ��
�1

ε | Γ1ppppppPPPq
ε | Γn

4.4.8 THEOREM KTG,2: invertible rules

The rule (jump) of KTG,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the proof for KG in theorem 4.2.10.

4.4.9 THEOREM equivalence of KTG and KTG,2

KTG ` ε | A ⇔ KTG,2 ` ε | A

Proof

Analogous to the proof for KG and KG,2 in theorem 4.2.11.

4.5 KT + T

4.5.1 DEFINITION graph calculus (KT + T)G

(KT + T)G is the calculus KTG with the (2) rule replaced by the rule

p p p -∗ 2A,3Σ,∆ | Γ - p p p∗�
��1

ε | A,nnf(¬T),Σ

no 3 fmls in ∆ (2)p p p -∗ 3Σ,∆ | 2A,Γ - p p p∗

4.5.2 THEOREM (KT + T)G: invertible rules

All rules of (KT + T)G are invertible.

4.6. S4 71

Proof

Analogous to the proof for KG in theorem 4.2.2.

4.5.3 THEOREM equivalence of provability and validity

If A is in negation normal form, then:

(KT + T)G ` ε | A,nnf(¬T) ⇔ KT + T |= A

Proof

Analogous to the proof for (K + T)G in theorem 4.3.4.

4.5.4 DEFINITION graph calculus (KT + T)G,2

(KT + T)G,2 is the calculus KTG,2 with the (2) rule replaced by the rule

p p p -∗ 3Σ | Γ - p p p∗�
��1

ε | A,nnf(¬T),Σ

(2)p p p -∗ 3Σ | 2A,Γ - p p p∗

4.5.5 THEOREM (KT + T)G,2: invertible rules

The rule (jump) of (KT + T)G,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the proof for KTG in theorem 4.2.2.

4.5.6 THEOREM equivalence of (KT + T)G and (KT + T)G,2

(KT + T)G ` ε | A,nnf(¬T) ⇔ (KT + T)G,2 ` ε | A,nnf(¬T)

Proof

Analogous to the proof for KTG,2 in theorem 4.2.11.

4.6 S4

4.6.1 REMARK from KTG to S4G

The difference between the possible world semantics for KT and S4 is the transitivity of the
accessibility relation. Therefore in the graph calculus the 3 is still present in the successor of the
current world.

72 CHAPTER 4. GRAPH CALCULI

(id)

22p0,3¬p0,3¬p0 ∨22p0 | ¬p0
- 2p0,3¬p0 | ¬p0

- ε | p0,¬p0

(jump)

22p0,3¬p0,3¬p0 ∨22p0 | ¬p0
- 2p0,3¬p0 | ¬p0

- ε | p0,¬p0

(2)

22p0,3¬p0,3¬p0 ∨22p0 | ¬p0
- 3¬p0 | 2p0,¬p0

(3)

22p0,3¬p0,3¬p0 ∨22p0 | ¬p0
- ε | 2p0,3¬p0

(jump)

22p0,3¬p0,3¬p0 ∨22p0 | ¬p0
- ε | 2p0,3¬p0

(2)

3¬p0,3¬p0 ∨22p0 | ¬p0,22p0

(3)

3¬p0 ∨22p0 | 3¬p0,22p0

(∨)

ε | 3¬p0 ∨22p0

Figure 4.r: The proof from the example in definition 4.6.2.

4.6.2 DEFINITION graph calculus S4G

The calculus S4G is the calculus KTG with the (3) rule replaced by the following rule:

p p p -∗ 3A,∆ | A,Γ ��
�1
p p p -∗

∆n | 3A,Γ1
-∗ p p p

ppppppPPPqp p p -∗ ∆n | 3A,Γn -∗ p p p
(3)

p p p -∗ ∆ | 3A,Γ ��
�1
p p p -∗

∆n | Γ1
-∗ p p p

ppppppPPPqp p p -∗ ∆n | Γn -∗ p p p
Example

The axiom 2A→ 22A is the only difference between the two Hilbert-style calculi KTH and S4H.

The proof in figure 4.r shows that S4G ` ε | nnf(2p0 → 22p0) . If we used KTG instead, then
we would have ¬p0 instead of 3¬p0 in the second world because of the different (2) rule, and
thus no ¬p0 in the third world.

4.6.3 THEOREM S4G: invertible rules

All rules of S4G are invertible.

Proof

Analogous to the proof for KG in theorem 4.2.2. The difference in the (3) rule causes no prob-
lems.

4.6. S4 73

4.6.4 THEOREM equivalence of provability and validity

If A is in negation normal form, then:

S4G ` ε | A ⇔ S4 |= A

Proof

Backward proof search in S4G does in general not terminate. Therefore we have to proceed as in
the proof for (K + T)G in theorem 4.3.4.

4.6.5 REMARK from S4G to S4G,2

It is possible to simplify the calculus S4G in the same way that we simplified the calculi KG and
KTG .

4.6.6 DEFINITION graph calculus S4G,2

The calculus S4G,2 is the calculus KTG,2 with the (3) rule replaced by the following rule:

p p p - 3A,3Σ | A,Γ ��
�1

ε | 3A,Γ1ppppppPPPq
ε | 3A,Γn

(3)

p p p - 3Σ | 3A,Γ ��
�1

ε | Γ1ppppppPPPq
ε | Γn

4.6.7 THEOREM S4G,2: invertible rules

The rule (jump) is of S4G,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the proof for KG,2in theorem 4.2.10.

4.6.8 THEOREM equivalence of S4G and S4G,2

S4G ` ε | A ⇔ S4G,2 ` ε | A

Proof

Analogous to the proof for KG and KG,2 in theorem 4.2.11.

74 CHAPTER 4. GRAPH CALCULI

4.7 Kt

4.7.1 DEFINITION KGt

axioms:
(true)p p p -∗ ∆ | true,Γ - p p p∗

(id)p p p -∗ ∆ | P,¬P,Γ - p p p∗

rules: p p p -∗ A ∨B,∆ | A,B,Γ - p p p∗

(∨)p p p -∗ ∆ | A ∨B,Γ - p p p∗

p p p -∗ A ∧B,∆ | A,Γ - p p p∗ p p p -∗ A ∧B,∆ | B,Γ - p p p∗

(∧)p p p -∗ ∆ | A ∧B,Γ - p p p∗

p p p -∗ 2A,3Σ,∆ | Γ - p p p∗�
��1

ε | A,Σ

no 3 fmls in ∆ (2)p p p -∗ 3Σ,∆ | 2A,Γ - p p p∗

ε | A,Σ
PPPqp p p -∗ ■A,◆Σ,∆ | Γ - p p p∗

no ◆ fmls in ∆ (■)p p p -∗ ◆Σ,∆ | ■A,Γ - p p p∗

p p p -∗ 3A,∆ | Γ ��
�1
p p p -∗

∆1 | A,Γ1
-∗ p p p

ppp pppPPPqp p p -∗ ∆n | A,Γn -∗ p p p
(3)

p p p -∗ ∆ | 3A,Γ ��
�1
p p p -∗

∆1 | Γ1
-∗ p p p

ppp pppPPPqp p p -∗ ∆n | Γn -∗ p p p
p p p -∗ ∆1 | A,Γ1

-∗ p p p
ppp pppp p p -∗ ∆n | A,Γn -∗ p p p

PPPq

��
�1

◆A,∆ | Γ -∗ p p p
(◆)p p p -∗ ∆1 | Γ1

-∗ p p p
ppp pppp p p -∗ ∆n | Γn -∗ p p p

PPPq

��
�1

∆ | ◆A,Γ -∗ p p p

4.7. Kt 75

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

(jump)

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

(jump−)

p p p -∗ ∆1 | Γ1 - p p p∗�
��1
p p p -∗

∆2 | Γ2
-∗ p p p

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 2A in (2), ■A in
(■), 3A in (3) ◆A in (◆), none in (jump) and (jump−)

4.7.2 THEOREM KGt : invertible rules

All rules of KGt are invertible.

Proof

Analogous to the proof for KG in theorem 4.2.2.

4.7.3 REMARK KGt : termination

In general, backward proof search in KGt does not terminate, even if we restrict the usage of the
rules (jump) and (jump−) such that ‘useless’ jumps are no longer possible. If we added the
condition 2A /∈ Σ resp. ■A /∈ Σ to the rules (2) resp. (■), then the backward proof search would
always terminate. This has been observed in [Zim94].

Example

Backward proof search for ε | 2p0 ∨3◆2p0 in KGt does not terminate (see figure 4.s).

If we put the 2 formulas on the left hand side when applying (2) backwards and add the condition
2A /∈ Σ to the rule (2) of KGt , then the search terminates (see figure 4.t). Both times we use the
abbreviation B ≡ 2p0 ∨3◆2p0.

4.7.4 THEOREM equivalence of provability and validity

If A is in negation normal form, then:

KGt ` ε | A ⇔ Kt |= A

Proof

Analogous to the proof for KG in theorem 4.2.5. The fact that backward proof search in KGt does
in general not terminate causes no problem, since we can easily restrict the calculus to ensure
termination while still obtaining a countermodel in the case of a failure. See remark 4.7.3 for
details.

76 CHAPTER 4. GRAPH CALCULI

ε | 2p0 ∨3◆2p0

(∨)

B | 2p0,3◆2p0

(2)

2p0, B | 3◆2p0
��
�1 ε | p0

(3)

3◆2p0,2p0, B | ε
��
�1 ε | p0, ◆2p0

(jump)

3◆2p0,2p0, B | ε
��
�1 ε | p0, ◆2p0

(◆)

3◆2p0,2p0, B | 2p0
��
�1 ◆2p0 | p0

(jump−)

3◆2p0,2p0, B | 2p0
��
�1 ◆2p0 | p0

(2)

2p0,3◆2p0,2p0, B | ε
��
�1 ◆2p0 | p0

PPPq
ε | p0, ◆2p0

(jump)

2p0,3◆2p0,2p0, B | ε
��
�1 ◆2p0 | p0

PPPq
ε | p0, ◆2p0

(◆)

...

Figure 4.s: The non-terminating backward proof search in KGt of the
example in remark 4.7.3.

4.7. Kt 77

ε | 2p0 ∨3◆2p0

(∨)

B | 2p0,3◆2p0

(2)

2p0, B | 3◆2p0
��
�1 ε | p0

(3)

3◆2p0,2p0, B | ε
��
�1 ε | p0, ◆2p0

(jump)

3◆2p0,2p0, B | ε
��
�1 ε | p0, ◆2p0

(◆)

3◆2p0,2p0, B | 2p0
��
�1 ◆2p0 | p0

(jump−)

3◆2p0,2p0, B | 2p0
��
�1 ◆2p0 | p0

Figure 4.t: The terminating backward proof search in a modified version
of KGt of the example in remark 4.7.3.

78 CHAPTER 4. GRAPH CALCULI

s1 (∨)
s2 (2)
s3 (jump)
s4 (◆)
s5 (jump−)
s6 (id) The search starts at node 1. After ap-

plying (∨) backwards we generate a new
world with (2) and jump into this world
(node 4). There we can apply (3) back-
wards and find an instance of an (id)
axiom after jumping back.

Therefore ε | 2◆¬p0 ∨ p0 is provable
in KGt .

Figure 4.u: The search tree in KGt of the first example in remark 4.7.5.
See figure 4.v for the corresponding proof.

4.7.5 REMARK KGt : backward proof search

Except for the non-termination problem discussed in remark 4.7.3, backward proof search in KGt
is similar to backward proof search in KG . Since all rules are invertible, we know that if one
branch fails, then the formula is not provable.

Example

First we do proof search for ε | 2◆¬p0 ∨ p0 . The formula 2◆¬p0 ∨ p0 is the negation
normal form of the formula 3■p0 → p0. See figure 4.u for the search tree and figure 4.v for the
corresponding proof. We use the abbreviation A ≡ 2◆¬p0 ∨ p0.

Now we check whether ε | 2(◆¬p0 ∧ ■3¬p1) ∨ p0 ∨ p1 is provable in KG . The search fails. We
obtain the search tree in figure 4.w and the non-proof in figure 4.x. We abbreviate the formulas
on the left hand side of the vertices by ‘. . . ’ if they are neither 3 nor ◆ formulas.

To obtain a countermodel M, we take the Kt graph in node 12 in figure 4.w, remove the left
hand side in each rule and negate the literals (see figure 4.y). Indeed M, w1 |= ◆2p1, thus
M, w0 |= 3(■p0 ∨ ◆2p1) ∧ ¬p0 ∧ ¬p1, i.e. M, w0 |= ¬(2(◆¬p0 ∧ ■3¬p1) ∨ p0 ∨ p1).

4.7.6 REMARK simplifying KGt

It is not possible to simplify KGt in the same way as KG , as we can eliminate neither (jump−) nor
(jump). Therefore we cannot omit arrows as we could for example in the (∨) rule of KG,2.

Example

In the proof of ε | 2◆¬p0 ∨ p0 in KG,2t in the first example of remark 4.7.5 we need both
(jump) and (jump−).

4.8 OTHER LOGICS

4.8.1 REMARK S5

If we develop a graph calculus for S5, then we obtain a notational variant of the hypersequent
calculus. A similar check as for Kt is needed to ensure termination.

4.8. OTHER LOGICS 79

1 ε | 2◆¬p0 ∨ p0

(∨)
2 A | 2◆¬p0, p0

(2)

3 2◆¬p0, A | p0
��
�1 ε | ◆¬p0

(jump)

4 2◆¬p0, A | p0
��
�1 ε | ◆¬p0

(◆)

5 2◆¬p0, A | p0,¬p0
��
�1 ◆¬p0 | ε

(jump−)

6 2◆¬p0, A | p0,¬p0
��
�1 ◆¬p0 | ε

(id)

Figure 4.v: The proof in KGt from the first example in 4.7.5. See 4.u for
the corresponding search tree.

s1 (∨)
s2 (∨)
s3 (2)
s4 (jump)
s5HHHH ��
��(∧)

r6 (◆)
r7 (jump−)
r8 (id)

s9 (■)
s10
(jump−)
s11
(3)
s12

fail
The search starts at node 1. After two
backward applications of (∨) and cre-
ating a new world we jump into this
new world (node 5). Then we apply (∧)
backwards. One branch ends in an in-
stance of an axiom (node 8), since a ¬p0

is written back into the root. The other
branch fails.
Therefore the Kt graph
ε | 2(◆¬p0 ∧ ■3¬p1) ∨ p0 ∨ p1 is not

provable in KGt .

Figure 4.w: The search tree in KGt of the second example in remark 4.7.5.
See figure 4.x for the corresponding non-proof and 4.y for the resulting
countermodel.

80 CHAPTER 4. GRAPH CALCULI

1 ε | 2(◆¬p0 ∧ ■3¬p1) ∨ p0 ∨ p1

(∨)

2 . . . | 2(◆¬p0 ∧ ■3¬p1) ∨ p0, p1

(∨)

3 . . . | 2(◆¬p0 ∧ ■3¬p1), p0, p1

(2)

4
. . . | p0, p1

���1
ε | ◆¬p0 ∧ ■3¬p1

(jump)

5
. . . | p0, p1

���1
ε | ◆¬p0 ∧ ■3¬p1

(∧)

6
. . . | p0, p1

���1
. . . | ◆¬p0

(◆)

7
. . . | ¬p0, p0, p1

���1
◆¬p0, . . . | ε

(jump−)

8
. . . | ¬p0, p0, p1

���1
◆¬p0, . . . | ε

(id)

9
. . . | p0, p1

���1
. . . | ■3¬p1

(■)

10

. . . | p0, p1
���1

. . . | ε
PPPq

ε | 3¬p1

(jump−)

11

. . . | p0, p1
���1

. . . | ε
PPPq

ε | 3¬p1

(3)

12

. . . | p0, p1
���1

. . . | ¬p1

PPPq
3¬p1 | ε

Figure 4.x: The non-proof in KGt of the second example in remark 4.7.5.
See figure 4.w for the corresponding search tree and figure 4.y for the
resulting countermodel.

4.9. SUMMARY 81

&%
'$

w0
¬p0
¬p1

�
�
���

&%
'$

w1

@
@
@@R

&%
'$

w2p1

Figure 4.y: The countermodel of the example in remark 4.7.5. See figure
4.x for the corresponding non-proof.

4.8.2 REMARK PLTL

In [Gou89] and [Wol85] tableau calculi for PLTL are presented. These tableau calculi are similar
to our graph calculi. Note that it consists of two phases: First a graph is generated, and then
we have to check whether the so-called eventualities are satisfied. This is an important difference
between PLTL and the modal logics we consider. The (2) rules in our graph calculi make sure
that if 2A occurs in a world, then A will occur in a successor world.

4.8.3 REMARK CTL

See [Eme90] for a tableau calculus for CTL.

4.8.4 REMARK other logics

See section 5.8 for sequent and tableaux calculi for other logics. In many cases it is obvious how
to obtain the corresponding graph calculus.

4.9 SUMMARY

We have defined graph calculi for the logics K, K + T , KT, KT + T , S4, Kt. A proof search in
these calculi can be seen as a search for a countermodel, and we have proved the equivalence with
the possible world semantics in this way.

For all these logics there is a graph calculus where all rules are invertible, and thus no backtracking
is required during backward proof search in these calculi. If the search fails, then a countermodel
can be read off immediately from a failing branch.

With the exception of Kt, we have defined a second graph calculus for each logic which contains
a non-invertible rule. We thus have to use backtracking during backward proof search. These
calculi will be used in the next chapter to obtain sequent calculi in a perspicuous way.

5

SEQUENT CALCULI

Before him stood a wide dark arch opening
into three passages: all led in the same general
direction, eastwards; but the left-hand passage
plunged down, while the right-hand climbed
up, and the middle way seemed to run on,
smooth and level but very narrow.
‘I have no memory of this place at all!’ said
Gandalf, standing uncertainly under the arch.

J.R.R. Tolkien. The Lord of the Rings.

5.1 INTRODUCTION

5.1.1 REMARK from graph calculi to sequent calculi

When doing backward proof search in a graph calculus, we have a graph at each node of the search
tree. An implementation of such a proof search has two disadvantages: The data structures are
complicated and the space complexity is large (cp. chapter 6).

In this chapter we convert the graph calculi from the previous chapter into sequent calculi. A
sequent consists of two multisets of formulas, i.e. it is a much simpler structure than a graph.
Moreover, we will see in chapter 6 that the space complexity is also improved.

5.1.2 DEFINITION sequent, sequent scheme

We consider sequents with and without histories. An L sequent without a history is a pair of
multisets of formulas of L, whereas an L sequent with a history has an additional history. A
history is either a multiset of formulas or a multiset of multisets of formulas. Analogously, we
define sequent schemes, using multiset schemes instead of multisets.

84 CHAPTER 5. SEQUENT CALCULI

5.1.3 DEFINITION sequent calculus

A sequent calculus for the logic L consists of the following parts:

• A finite set of axioms.

An axiom has the form S , where S is a sequent scheme of L.

• A finite set of rules.

A rule has the form S1
S or S1 S2

S , where S1, S2, S are sequent schemes of L. Sometimes
there is an additional condition.

All sequent schemes in a sequent calculus must have the same structure. Instances of axioms and
rules are defined ‘as usual’.

Example

See 5.2.2 for examples of axioms and rules. The proof in the example of 5.2.2 consists of instances
of axioms and rules. Each sequent of this calculus consists of two multisets of formulas.

5.1.4 DEFINITION LS ` S
Let LS be a sequent calculus for the logic L. We inductively define LS ` S for sequents S:

• If S1
is an instance of an axiom of LS , then LS ` S1.

• If S1
S instance of a rule of LS and LS ` S1, then LS ` S.

• If S1 S2
S instance of a rule of LS and LS ` S1, LS ` S2, then LS ` S.

If LS ` S, then we say that S is provable in LS .

5.1.5 DEFINITION depth of a proof

Let P be a proof of the sequent S in the sequent calculus LS . If P is an instance of an axiom,
then the depth of P is 0. If the last step in P is S1

S , then the depth of P is the depth of the proof
of S1 plus one. If the last step in P is S1 S2

S , and d1 resp. d2 are the depths of the proofs of S1

and S2, then the depth of P is 1 + max({d1, d2}).

5.1.6 REMARK two-sided versus one-sided

We discuss only one-sided sequent calculi in this chapter. This facilitates the discussion and
makes it easier to point out the important issues.

The transformation from one-sided to two-sided calculi is the same for all the logics we consider.
Also, all optimisations work both in the one-sided and in the two-sided case.

One difference that concerns backward proof search is the (id) axiom. The (id) axiom of the
calculus KS , which is defined later on, is 3Σ | P,¬P,Γ. In the two-sided case we could use the
axiom 2Π | A,∆ ⊃ 3Σ | A,Γ, which is applicable more often. For example, take the sequent
ε | 2p0 ⊃ ε | 2Π,2p0. This is an instance of the two-sided axiom, i.e. backward proof search
immediately succeeds. The corresponding one-sided sequent ε | 3¬p0,2Π,2p0 is not an axiom
of KS , and a lot of time can be lost during backward proof search until the (2) rule is applied
backwards on 2p0. Such situations occur for example when checking the instances of figure 11.3.9.
This is not a real problem as for example theorem 5.2.16 shows.

Another advantage of two-sided calculi is the possibility of special rules for equivalences. This
means that during backward proof, search equivalences are split up on the fly and not at the
beginning as in the case of our one-sided sequent calculi.

5.1. INTRODUCTION 85

5.1.7 REMARK weakening rules

Assume that P is a proof of a sequent S in the usual sequent calculus for classical propositional
logic. If we add a formula A to every sequent in the proof, then we obtain a proof of the sequent
S plus A.

In the case of modal logic, the situation is a bit more complicated. In the one-sided sequent
calculus KS , which is defined in the following section, we can replace the axiom 3Σ | P,¬P,Γ by
the axiom 3Σ | P,¬P , the axiom 3Σ | true,Γ by the axiom 3Σ | true, and the rule

ε|A,Σ
3Σ|2A,Γ(2) by ε|A,Σ

3Σ|2A(2′)

if we add the rule

3Σ | Γ
3Σ | A,Γ

(weak)

to the calculus. Note that now (2′) is an invertible rule (the definition of ‘invertible rule’ follows
below), but (weak) is not. The same method can be applied to the other sequent calculi. In this
thesis we do not use this variant because we want to use the calculi for backward proof search.
However, we will prove the admissibility of weakening for most of our sequent calculi.

5.1.8 DEFINITION (strongly) invertible rule

A rule with one premise of a sequent calculus LS is invertible iff for all instances S1
S of this rule:

LS ` S1 ⇔ LS ` S

The rule is strongly invertible if we have in addition: If there exists a proof of S with depth d,
then there exists a proof of S1 whose depth is at most d.

A rule with two premises of a sequent calculus LS is invertible iff for all instances S1 S2
S of this

rule:

LS ` S1 and LS ` S2 ⇔ LS ` S

The rule is strongly invertible if we have in addition: If there exists a proof of S with depth d,
then there exist proofs of S1 and S2 whose depth is at most d.

5.1.9 REMARK invertible rules

The invertibility of rules is very important for backward proof search in sequent calculi: As long
as we apply invertible rules backwards, we do not have to backtrack. See also remark 4.2.7.

5.1.10 DEFINITION permutation of rules

Let LS be a sequent calculus. We assume that x is an axiom of this sequent calculus, r1, s1 are
two rules of LS with one premise, and r2, s2 are two rules of LS with two premises.

• Meaning of x ; s1x:
For all sequents S: For all variables P : For all formulas C: For all proofs P in LS : If P
is of the form Sx with main formulas P , ¬P and the rule s1 is applicable backwards on S
with main formula C, then there exists a proof of the form

x
S′ s1
S

86 CHAPTER 5. SEQUENT CALCULI

such that the main formulas in the instance of the axiom x are P , ¬P and the main formula
in the application of s1 is C.

• Meaning of x ; s2x:
For all sequents S: For all variables P : For all formulas C: For all proofs P in LS : If P
is of the form Sx with main formulas P , ¬P and the rule s2 is applicable backwards on S
with main formula C, then there exists a proof of the form

x
S′1

x
S′2 s2

S

such that the main formulas in the two instances of x are P , ¬P and the main formula in
the application of s2 is C.

• Meaning of r1 · · · ; s1r1 · · · : For all sequents S: For all formulas B, C: For all proofs P

in LS : If P is of the form
...
S r1 where the main formula in the r1 application is B and the

rule s1 is applicable backwards on S with main formula C, then there exists a proof of the
form

... r1
S′ s1
S

such that the main formula in the application of r1 is B, the main formula in the application
of s1 is C, and the depth of the new proof is the depth of the original proof plus one.

• Meaning of r1 · · · ; s2r1 · · · : For all sequents S: For all formulas B, C: For all proofs P

in LS : If P is of the form
...
S r1 where the main formula in the r1 application is B and the

rule s2 is applicable backwards on S with main formula C, then there exists a proof of the
form

... r1
S′1

... r1
S′2 s2

S

such that the main formula in the two applications of r1 is B, the main formula in the
application of s2 is C, and the depth of the new proof is the depth of the original proof plus
one.

• Meaning of r2s2 · · ·; s2r2 · · · : For all sequents S: For all formulas B, C: For all proofs P
in LS : If P is of the form

...
... s2

S′1

...
... s2

S′2 r2
S

where the main formula in the r2 application is B and the main formula in the two s2

applications is C, then there exists a proof of the form
...

... r2
S′′1

...
... r2

S′′2 s2
S

such that the main formula in the two applications of r2 is B, the main formula in the
application of s2 is C, and the new proof is not deeper than the original one. Moreover,

5.1. INTRODUCTION 87

if S′1 S′2
S is an instance of r2 and s2 is applicable backwards on S with main formula C,

then s2 is applicable backwards both on S′1 and S′2 with main formula C (provided that the
instance of r2 is not an application of s2 with main formula C).

• Meaning of r1s2 · · ·; s2r1 · · · : Analogous to r2s2 · · ·; s2r2 · · ·, with the following trans-
formation:

... s2
S′ r1
S

;

... r1
S′′1

... r1
S′′2 s2

S

• Meaning of r2s1 · · ·; s1r2 · · · : Analogous to r2s2 · · ·; s2r2 · · ·, with the following trans-
formation:

... s1
S′1

... s1
S′2 r2

S

;

...
... r2

S′′ s1
S

• Meaning of r1s1 · · ·; s1r1 · · · : Analogous to r2s2 · · ·; s2r2 · · ·, with the following trans-
formation:

... s1
S′ r1
S

;

... r1
S′′ s1
S

5.1.11 THEOREM strongly invertible rule

In order to prove the strong invertibility of a rule r in a sequent calculus LS it is sufficient to
show:

• for all axioms x of LS : x ; rx

• for all rules s of LS : sr · · ·; rs · · · or s · · ·; rs · · ·

Proof

Let r be a rule of LS that satisfies the two conditions above and P a proof of a sequent S. We
assume that the rule r is applicable backwards on S with main formula C. With an induction on
proof depth, we prove that there exists a proof P ′ of S in LS that ends with an application of r
with main formula C and whose depth is at most the depth of P plus one.

First we assume that r is a rule with one premise.

1. P is of the form Sx, i.e. x is an axiom:
Since we have x ; rx we know that there exists a proof of the form

x
S′ r
S

where the main formula of the r application is C. This proof has depth one, i.e. the depth
of P plus one.

2. P is of the form
...
S s, d the depth of P, and s · · ·; rs · · · :

From s · · ·; rs · · · follows immediately the existence of a proof with depth ≤ d+ 1 and an
application of r with main formula C as its last step.

88 CHAPTER 5. SEQUENT CALCULI

3. P is of the form

...
S′
S s, d the depth of P, and sr · · ·; rs · · · :

Since sr · · · ; rs · · · we know that r is applicable backwards on S′ with main formula C.
Thus there exists a proof of S′ with depth ≤ d and an application of r with main formula
C as its last step because of the induction hypothesis. We append the application of s and
obtain a proof with depth ≤ d+ 1. With sr · · ·; rs · · · follows the existence of a proof of
S with depth ≤ d+ 1 and an application of r with main formula C as its last step.

4. P is of the form

...
S′1

...
S′2

S s, d the depth of P, and sr · · ·; rs · · · :
Since sr · · ·; rs · · · we know that r is applicable backwards both on S′1 and S′2 with main
formula C. Thus there exist proofs of S′1 and S′2 with depth ≤ d and an application of r
with main formula C as their last step because of the induction hypothesis. We append the
application of s and obtain a proof of S with depth ≤ d + 1. With sr · · · ; rs · · · follows
the existence of a proof with depth ≤ d + 1 and an application of r with main formula C
as its last step.

The strong invertibility of r follows immediately. The cases where the rule r has two premises
are analogous.

See remark 5.2.5 for an example.

5.1.12 REMARK construct Hilbert-style proofs

We show how to construct Hilbert-style calculus proofs from proofs in the usual sequent calculus.
Note that the resulting proofs are by no means short or elegant.

5.1.13 THEOREM subformula property

Let A be a formula in negation normal form. If P is a proof of a formula A in one of the following
one-sided sequent calculi without theories defined in this chapter, A is in negation normal form,
and B is a formula in a sequent of this proof P, then B ∈ subfmls(A).

If a theory T is involved, then B ∈ subfmls(A) or B ∈ subfmls(nnf(¬C)) for some C ∈ T .

5.1.14 REMARK termination

For some of our sequent calculi, backward proof search terminates automatically. For the other
calculi, we will show that they satisfy the subformula property and we can always eliminate
duplicate formulas. Then only a finite number of ‘different’ sequents can occur during backward
proof search. Consequently we can always ensure the termination of backward proof search with
a loop-check. If a sequent occurred already before on the same branch, then we stop. We will
show that in the case of our sequent calculi, it is correct to return ‘fail’ when a loop is detected.
This is different for example for PLTL, where a loop does not always mean that a countermodel
has been found.

5.1.15 REMARK termination and search strategy

Assume that only a finite number of ‘different’ sequents can occur during backward proof search.
If we use a depth-first search, then it is possible that the search does not terminate even in the
case of provable formulas. With a breadth-first search, we always find a proof if there is one.
However, if the formula is not provable, then — independent of the search strategy — we cannot
be sure that the search terminates.

5.1. INTRODUCTION 89

5.1.16 REMARK adding a loop-check to a sequent calculus

Assume that backward proof search in a sequent calculus LS does not terminate, that the calculus
satisfies the subformula property, and that we can eliminate duplicate formulas.
We add a so-called history H as a third multiset to the sequents. This history contains the
required information about the previous worlds.
In the simplest solution, the history contains all the sequents that occurred on this branch in the
past. If we take the calculus (K+T)S defined later on, then the new (∨) rule for example becomes
H,[3Σ,A∨B,Γ]|3Σ|A,B,Γ

H|3Σ|A∨B,Γ with the condition [3Σ, A ∨ B,Γ] /∈ H. Thus [p0∨2p1,p3],[p0∨2p1]|ε|p0,2p1,p3

[p0∨2p1]|ε|p0∨2p1,p3
is

an instance of the (∨) rule, but [p0∨2p1,p3],[p0∨2p1,p3]|ε|p0,2p1,p3

[p0∨2p1,p3]|ε|p0∨2p1,p3
is not. Clearly, backward proof

search in this new calculus terminates provided that we always eliminate duplicate formulas
immediately. However, with this method one obtains rather large histories and thus an inefficient
loop-check. Often it is possible to put only some sequents into the history without losing the
termination property.

5.1.17 REMARK extend the identity axiom

The identity axioms in our sequent calculi without a history are of the form 3Σ | P,¬P,Γ.
We will show that the restriction to variables is not necessary, i.e. that all sequents of the form
3Σ | A,¬A,Γ are provable (cp. remark 5.1.6).

5.1.18 REMARK contraction, duplicate formulas

In the sequent calculus KS,2 the contraction rule 3Σ|A,A,Γ
3Σ|A,Γ is admissible, but not necessary. This

rule allows us to remove duplicate formulas from sequents during backward proof search in KS,2.
Analogous results can be stated for all our sequent calculi. The situation is different for example
in linear logic, where for example (p0 ⊗ p0),¬p0,¬p0 is provable, but (p0 ⊗ p0),¬p0 is not.

5.1.19 THEOREM use-check in CPC

Let CPCS be the usual one-sided sequent calculus for classical propositional logic, i.e. the calculus
with the two axioms P,¬P,Γ (id) and true,Γ (true), and the two rules A,B,Γ

A∨B,Γ (∨) and A,Γ B,Γ
A∧B,Γ (∧).

The main formulas are P and ¬P in (id), true in (true), A ∨ B in (∨), and A ∧ B in (∧). The
side formulas both of (∨) and (∧) are A and B.
Let P ′ be a proof of a sequent S in CPCS . P ′ is a marked proof if:

• The main formulas of all instances of axioms are marked.

• If in an instance of a rule, a side formula is marked, then the main formula is also marked.

• If in the premise of an instance of a rule, a formula in Γ is marked, then the corresponding
formula in the multiset Γ in the conclusion is marked.

Let P be a marked proof of the sequent A,Γ in the calculus CPCS . If this occurrence of A is not
marked, then CPC ` Γ. With weakening, we obtain CPC ` A ∧B,Γ.

Example

In figure 5.a, the subproofs of the sequents p3, p0, p0,¬p0∧p1,¬p0∧¬p1 and p3, p1, p0∧¬p1,¬p0∧
p1,¬p0 ∧ ¬p1 are marked proofs.

5.1.20 REMARK use-check to prune the search tree

During backward proof search, use-check can help to prune the search tree. At each branching
in the search tree caused by the (∧) rule, we check after having proved one branch, whether we
can cut off the second branch.

90 CHAPTER 5. SEQUENT CALCULI

Example

We check with backward proof search in the usual one-sided sequent calculus for CPC whether
A ≡ (p3 ∧ p4) ∨ (p0 ∧ p1) ∨ (p0 ∧ ¬p1) ∨ (¬p0 ∧ p1) ∨ (¬p0 ∧ ¬p1) is valid. We do a depth-first
search, doing the left premise first. We use a bold font for the ‘used’ formulas, and branches we
did not consider due to use-check are marked with cut off (see figure 5.a).

Since the second p0 is not used in the first branch of the proof of p3, p0, p0∧¬p1,¬p0∧p1,¬p0∧¬p1,
we can cut off the second branch above this sequent. Here use-check is applicable because we
applied (∧) on the ‘wrong’ conjunction of the sequent. Use-check can help to recognise such
wrong choices after having done the first branch. Note that p0 ∧¬p1 is not superfluous in A, but
just in this part of the search tree.

We cannot cut off the second branch in the proof of p3, p0∧p1, p0∧¬p1,¬p0∧p1,¬p0∧¬p1, since
the first p0 was used in the first branch.

However, we can again cut off a branch right at the beginning, since that occurrence of p3 was
not used on the left hand side. Here, the conjunction p3 ∧ p4 is really superfluous.

The power of use-check becomes fully visible in the case of longer formulas. An extreme example
is (as usual) the pigeonhole formulas.

5.1.21 REMARK more about use-check

The term ‘use-check’ was used in [SFH92] for backward proof search in sequent calculi for IPC.
Proof condensation, defined in [OS88] for CPC, is just another term for the same method.

There are several other methods that have similar effects as use-check:

• For CPC and propositional many-valued logics, the so-called lemma generation was proposed
(see [d’A92], [Häh93]). There the usual (∧) rule is replaced by A,Γ ¬A,B,Γ

A∧B,Γ (∧′). Lemma
generation and use-check seem to have similar effects in the case of CPC; however, lemma
generation is much easier to implement and describe. In the case of modal logics there
seems to be a considerable difference (see the remarks 6.3.3 and 6.5.6).

• In [Gou89] a variant of lemma generation was used for tableaux for PLTL.

• Also the connection method (see for example [BE93], [Wal90]) can be seen as a method
to avoid ‘useless’ branchings. The advantage of the connection method is that we do not
have to start at the top level connectives as when doing backward proof search in a sequent
calculus, but wherever we want. In this way unnecessary branchings can be avoided.

5.2 K

5.2.1 REMARK from KG,2 to KS

In the graph calculus KG,2 no rule influences a node that is nearer to the root than the actual
node; especially there is no (jump−) rule. Thus we can forget everything about the worlds ‘below’
the actual world.

5.2.2 DEFINITION sequent calculus KS

axioms:

3Σ | true,Γ
(true)

3Σ | P,¬P,Γ
(id)

5.2. K 91

(i
d)

p
3
,

p
0
,p

0
,

¬p
0
,¬
p

0
∧
¬p

1

(i
d)

p
3
,

p
0
,p

0
,

p
1
,¬

p
0

(i
d)

p
3
,

p
0
,p

0
,

p
1
,¬

p
1

(∧
)

p
3
,

p
0
,p

0
,

p
1
,¬

p
0
∧
¬p

1
(∧

)
p

3
,

p
0
,p

0
,

¬p
0
∧

p
1
,¬

p
0
∧
¬p

1
cu

t
off

(∧
)

p
3
,p

0
,p

0
∧
¬p

1
,¬

p
0
∧

p
1
,¬

p
0
∧
¬p

1

(i
d)

p
3
,

p
1
,p

0
,

¬p
0
,¬
p

0
∧
¬p

1

(i
d)

p
3
,

p
1
,p

0
,

p
1
,¬

p
0

(i
d)

p
3
,

p
1
,p

0
,

p
1
,¬

p
1

(∧
)

p
3
,

p
1
,p

0
,

p
1
,¬

p
0
∧
¬p

1
(∧

)
p

3
,

p
1
,p

0
,

¬p
0
∧

p
1
,¬

p
0
∧
¬p

1

(i
d)

p
3
,

p
1
,¬

p
1
,

¬p
0
∧
p

1
,¬
p

0
∧
¬p

1
(∧

)
p

3
,p

1
,p

0
∧
¬p

1
,¬

p
0
∧

p
1
,¬

p
0
∧
¬p

1
(∧

)
p

3
,p

0
∧

p
1
,p

0
∧
¬p

1
,¬

p
0
∧

p
1
,¬

p
0
∧
¬p

1
cu

t
off

(∧
)

p
3
∧
p

4
,p

0
∧

p
1
,p

0
∧
¬p

1
,¬

p
0
∧

p
1
,¬

p
0
∧
¬p

1
(∨

)
(p

3
∧

p
4
)
∨

(p
0
∧

p
1
),

p
0
∧
¬p

1
,¬

p
0
∧

p
1
,¬

p
0
∧
¬p

1
(∨

)
(p

3
∧

p
4
)
∨

(p
0
∧

p
1
)
∨

(p
0
∧
¬p

1
),
¬p

0
∧

p
1
,¬

p
0
∧
¬p

1
(∨

)
(p

3
∧

p
4
)
∨

(p
0
∧

p
1
)
∨

(p
0
∧
¬p

1
)
∨

(¬
p

0
∧

p
1
),
¬p

0
∧
¬p

1
(∨

)
(p

3
∧

p
4
)
∨

(p
0
∧

p
1
)
∨

(p
0
∧
¬p

1
)
∨

(¬
p

0
∧

p
1
)
∨

(¬
p

0
∧
¬p

1
)

F
ig

ur
e

5.
a:

T
he

ba
ck

w
ar

d
pr

oo
f

se
ar

ch
in

C
P

C
of

th
e

ex
am

pl
e

in
5.

1.
20

.
U

se
-c

he
ck

he
lp

s
to

cu
t

off
br

an
ch

es
.

92 CHAPTER 5. SEQUENT CALCULI

rules:
3Σ | A,B,Γ

3Σ | A ∨B,Γ
(∨)

3Σ | A,Γ 3Σ | B,Γ
3Σ | A ∧B,Γ

(∧)

3A,3Σ | Γ
3Σ | 3A,Γ

(3)
ε | A,Σ

3Σ | 2A,Γ
(2)

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 3A in (3), 2A in
(2)

Example

KS ` ε | 3(p0 ∧ ¬p1) ∨ (3¬p0 ∨2p1), as the following proof shows.

(id)
ε | p1, p0,¬p0

(id)
ε | p1,¬p1,¬p0 (∧)

ε | p1, p0 ∧ ¬p1,¬p0 (2)
3(p0 ∧ ¬p1),3¬p0 | 2p1 (3)
3(p0 ∧ ¬p1) | 3¬p0,2p1 (3)
ε | 3(p0 ∧ ¬p1),3¬p0,2p1 (∨)
ε | 3(p0 ∧ ¬p1),3¬p0 ∨2p1 (∨)

ε | 3(p0 ∧ ¬p1) ∨ (3¬p0 ∨2p1)

5.2.3 THEOREM KS : weakening

If KS ` 3Σ | Γ, then KS ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of 3Σ | Γ,
then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

We make an induction on proof depth. The only interesting case is the (2) rule.

1. The last step is 3Σ|A,B,Γ
3Σ|A∨B,Γ(∨): We obtain KS ` 3∆,3Σ | Π, A,B,Γ with the induction

hypothesis. With a (∨) application follows KS ` 3∆,3Σ | Π, A ∨B,Γ.

2. The last step is 3Σ|A,Γ 3Σ|A,Γ
3Σ|A∧B,Γ (∧): We obtain KS ` 3∆,3Σ | Π, A,Γ and KS ` 3∆,3Σ |

Π, B,Γ with the induction hypothesis. With a (∧) application follows KS ` 3∆,3Σ |
Π, A ∧B,Γ.

3. The last step is 3A,3Σ|Γ
3Σ|3A,Γ(3): We obtain KS ` 3∆,3A,3Σ | Π,Γ with the induction

hypothesis. With a (3) application follows KS ` 3∆,3Σ | Π,3A,Γ.

4. The last step is ε|A,Σ
3Σ|2A,Γ(2): We obtain KS ` ε | ∆, A,Σ with the induction hypothesis.

With a (2) application follows KS ` 3∆,3Σ | Π,2A,Γ.

5.2.4 THEOREM KS : invertible rules

The (2) rule of KS is not invertible. All the other rules are strongly invertible.

Proof

We can easily check the following statements for KS :

1. (true) ; (∨)(true), (id) ; (∨)(id)

5.2. K 93

2. (true) ; (∧)(true), (id) ; (∧)(id)

3. (true) ; (3)(true), (id) ; (3)(id)

4. (∨)1(∨)2 · · ·; (∨)2(∨)1 · · · , (∧)(∨) · · ·; (∨)(∧) · · · , (3)(∨) · · ·; (∨)(3) · · · , (2) · · ·;
(∨)(2) · · ·

5. (∨)(∧) · · ·; (∧)(∨) · · · , (∧)1(∧)2 · · ·; (∧)2(∧)1 · · · , (3)(∧) · · ·; (∧)(3) · · · , (2) · · ·;
(∧)(2) · · ·

6. (∨)(3) · · ·; (3)(∨) · · · , (∧)(3) · · ·; (3)(∧) · · · , (3)1(3)2 · · ·; (3)2(3)1 · · · , (2) · · ·;
(3)(2) · · ·

We only prove some typical cases. The sequent 3Σ | P,¬P,A∨B,Γ is an instance of the axiom (id)
(with main formulas P and ¬P). Also the rule (∨) is applicable backwards on 3Σ | P,¬P,A∨B,Γ
(with main formula A ∨B). Because of

(id)
3Σ | P,¬P,A ∨B,Γ ;

(id)
3Σ | P,¬P,A,B,Γ

(∨)
3Σ | P,¬P,A ∨B,Γ

we have (id) ; (∨)(id). The transformation

...
3Σ | A,C,D,Γ

(∨)
3Σ | A,C ∨D,Γ

...
3Σ | B,C,D,Γ

(∨)
3Σ | B,C ∨D,Γ

(∧)
3Σ | A ∧B,C ∨D,Γ

;

...
3Σ | A,C,D,Γ

...
3Σ | B,C,D,Γ

(∧)
3Σ | A ∧B,C,D,Γ

(∨)
3Σ | A ∧B,C ∨D,Γ

shows that (∧)(∨) · · ·; (∨)(∧) · · · . Note that we assume that (∨) occurs on both branches with
the same main formula. With the transformation

...
3Σ | A,B,C,D,Γ

(∨)
3Σ | A,B,C ∨D,Γ

(∨)
3Σ | A ∨B,C ∨D,Γ

;

...
3Σ | A,B,C,D,Γ

(∨)
3Σ | A ∨B,C,D,Γ

(∨)
3Σ | A ∨B,C ∨D,Γ

we obtain (∨)1(∨)2 · · ·; (∨)2(∨)1 · · · . With the transformation

...
ε | A,Σ

(2)
3Σ | 2A,B ∨ C,Γ

;

...
ε | A,Σ

(2)
3Σ | 2A,B,C,Γ

(∨)
3Σ | 2A,B ∨ C,Γ

we obtain (2) · · ·; (∨)(2) · · · , and finally we obtain (2) · · ·; (3)(2) · · · with the transforma-
tion below and weakening:

ε | A,Σ
(2)

3Σ | 2A,3B,Γ
;

ε | A,B,Σ
(2)

3B,3Σ | 2A,Γ
(3)

3Σ | 2A,3B,Γ

94 CHAPTER 5. SEQUENT CALCULI

From 1. and 4. follows the strong invertibility of (∨), from 2. and 5. follows the strong invertibility
of (∧), and from 3. and 6. follows the strong invertibility of (3).

Since KS ` ε | 2(p0 ∨ ¬p0),2p1, but KS 0 ε | p1, the (2) rule is not invertible. Note that for
example we do not have (id) ; (2)(id), since ε|p0,¬p0,2p1

is a proof of the sequent ε | p0,¬p0,2p1

and there is no proof of this sequent with a (2) application as its last step.

5.2.5 REMARK invertible rules

The proof of theorem 5.2.4 shows not only the existence of a proof, but together with the proof
of theorem 5.1.11 we can in fact construct these proofs.

Example

Let P be the following proof:

(id)
ε | p0,¬p0 (2)

3¬p0 | 2p0, p2, p1, p3 (3)
ε | 2p0,3¬p0, p2, p1, p3 (∨)
ε | 2p0,3¬p0 ∨ p2, p1, p3 (∨)
ε | 2p0,3¬p0 ∨ p2, p1 ∨ p3

(id)
ε | p1,¬p1 (∨)
ε | p1 ∨ ¬p1 (2)

ε | 2(p1 ∨ ¬p1),3¬p0 ∨ p2, p1 ∨ p3 (∧)
ε | 2p0 ∧2(p1 ∨ ¬p1),3¬p0 ∨ p2, p1 ∨ p3

Since (∨) is invertible we know that there exists a proof of ε | 2p0 ∧2(p1 ∨¬p1),3¬p0, p2, p1 ∨ p3

in KS . We obtain it as follows:

P ;

(id)
ε | p0,¬p0 (2)

3¬p0 | 2p0, p2, p1, p3 (3)
ε | 2p0,3¬p0, p2, p1, p3 (∨)
ε | 2p0,3¬p0, p2, p1 ∨ p3 (∨)
ε | 2p0,3¬p0 ∨ p2, p1 ∨ p3

(id)
ε | p1,¬p1 (∨)
ε | p1 ∨ ¬p1 (2)

ε | 2(p1 ∨ ¬p1),3¬p0, p2, p1 ∨ p3 (∨)
ε | 2(p1 ∨ ¬p1),3¬p0 ∨ p2, p1 ∨ p3 (∧)

ε | 2p0 ∧2(p1 ∨ ¬p1),3¬p0 ∨ p2, p1 ∨ p3

;

(id)
ε | p0,¬p0 (2)

3¬p0 | 2p0, p2, p1, p3 (3)
ε | 2p0,3¬p0, p2, p1, p3 (∨)
ε | 2p0,3¬p0, p2, p1 ∨ p3

(id)
ε | p1,¬p1 (∨)
ε | p1 ∨ ¬p1 (2)

ε | 2(p1 ∨ ¬p1),3¬p0, p2, p1 ∨ p3 (∧)
ε | 2p0 ∧2(p1 ∨ ¬p1),3¬p0, p2, p1 ∨ p3 (∨)
ε | 2p0 ∧2(p1 ∨ ¬p1),3¬p0 ∨ p2, p1 ∨ p3

5.2.6 THEOREM KS : duplicate formulas

KS ` 3Σ | A,A,Γ ⇒ KS ` 3Σ | A,Γ
KS ` 3A,3A,3Σ | Γ ⇒ KS ` 3A,3Σ | Γ

5.2. K 95

Proof

We prove the two statements simultaneously with an induction on proof depth. We also prove
that the depth of the new proof is at most the depth of the original one. First we consider the
axioms:

1. 3Σ | A,A,Γ is an instance of the (true) axiom: Then 3Σ | A,Γ is also an instance of this
axiom.

2. 3A,3A,3Σ | Γ is an instance of the (true) axiom: Then 3A,3Σ | Γ is also an instance of
this axiom.

3. 3Σ | A,A,Γ is an instance of the (id) axiom: Then 3Σ | A,Γ is also an instance of this
axiom.

4. 3A,3A,3Σ | Γ is an instance of the (id) axiom: Then 3A,3Σ | Γ is also an instance of
this axiom.

Now we consider those cases where the duplicate formula is not the main formula in the last step
in the proof:

1. The last step is 3Σ|A,A,B,C,Γ
3Σ|A,A,B∨C,Γ(∨): With the induction hypothesis and an application of (∨)

we obtain KS ` 3Σ | A,B ∨ C,Γ.

2. The last step is 3A,3A,3Σ|B,C,Γ
3A,3A,3Σ|B∨C,Γ(∨): Analogous to case 1.

3. The last step is 3Σ|A,A,B,Γ 3Σ|A,A,C,Γ
3Σ|A,A,B∧C,Γ (∧): With the induction hypothesis and an applica-

tion of (∧) we obtain KS ` 3Σ | A,B ∧ C,Γ.

4. The last step is 3A,3A,3Σ|B,Γ 3A,3A,3Σ|C,Γ
3A,3A,3Σ|B∧C,Γ (∧): Analogous to case 3.

5. The last step is 3B,3Σ|A,A,Γ
3Σ|A,A,3B,Γ(3): With the induction hypothesis and an application of (3)

we obtain KS ` 3Σ | A,3B,Γ.

6. The last step is 3B,3A,3A,3Σ|Γ
3A,3A,3Σ|3B,Γ(3): Analogous to case 5.

7. The last step in P is ε|B,Σ
3Σ|A,A,2B,Γ(2): With an application of (2) we obtain KS ` 3Σ |

A,2B,Γ.

8. The last step in P is ε|B,A,A,Σ
3A,3A,3Σ|2B,Γ(2): With the induction hypothesis we obtain KS ` ε |

B,A,Σ, and with an application of (2) follows KS ` 3A,3Σ | 2B,Γ.

Finally we consider those cases where the duplicate formula is the main formula in the last step
in the proof:

1. The last step is 3Σ|B,C,B∨C,Γ
3Σ|B∨C,B∨C,Γ(∨): Let d be the depth of the proof of 3Σ | B ∨C,B ∨C,Γ.

Since (∨) is strongly invertible we know that KS ` 3Σ | B,C,B,C,Γ with a proof of depth
≤ d− 1. With the induction hypothesis follows KS ` 3Σ | C,B,C,Γ with a proof of depth
≤ d − 1. Again with the induction hypothesis follows KS ` 3Σ | B,C,Γ with a proof of
depth ≤ d− 1. Thus KS ` 3Σ | B ∨ C,Γ with a proof of depth ≤ d.

2. The last step is 3Σ|B,B∧C,Γ 3Σ|C,B∧C,Γ
3Σ|B∧C,B∧C,Γ (∧), where A ≡ B ∧ C: Let d be the depth of the

proof of 3Σ | B∧C,B∧C,Γ. Since (∧) is strongly invertible we know that KS ` 3Σ | B,B,Γ
and KS ` 3Σ | C,C,Γ with proofs of depth ≤ d− 1. With the induction hypothesis follows
KS ` 3Σ | B,Γ and KS ` 3Σ | C,Γ with proofs of depth ≤ d− 1. Thus KS ` 3Σ | B ∧C,Γ
with a proof of depth ≤ d.

3. The last step is 3B,3Σ|3B,Γ
3Σ|3B,3B,Γ(3), where A ≡ 3B: Let d be the depth of the proof of 3B,3Σ |

3B,Γ. Since (3) is strongly invertible we know that KS ` 3B,3B,3Σ | Γ with a proof of

96 CHAPTER 5. SEQUENT CALCULI

depth ≤ d− 1. With the induction hypothesis and an application of (3) follows KS ` 3Σ |
3B,Γ with a proof of depth ≤ d.

4. The last step in P is ε|B,Σ
3Σ|2B,2B,Γ(2), where A ≡ 2B: With an application of (2) we obtain

KS ` 3Σ | 2B,Γ.

5.2.7 THEOREM equivalence of KG,2 and KS

KG,2 ` ε | A ⇔ KS ` ε | A

Proof

‘⇒’:

We first explain the idea of the proof. During backward proof search in KG,2 we first add vertices
to the K graph (backward applications of (2)) and later on we jump into one of these vertices
(backward application of (jump)), whereas in KS we have only one rule (2) which does both at
once. Therefore we first rearrange the proof in KG,2 such that (2) applications occur only right
after a (2) or a (jump) application. Note that here we make use of the strong invertibility (and
not just of the invertibility) of the rules (∨), (∧), (3). In a second step we remove those backward
applications of (2) which add vertices to the K graph which are not used. The diagram below
illustrates these two steps. Finally we can translate the resulting proof step by step (beginning
at the root of the proof) into a proof in KS by combining successive (jump) and (2) applications
into a (2) application.

... (jump)
G4 (∨)
G3 (2)
G2 (2)
G1 (∨)
...

;

... (jump)
G′4 (2)
G′3 (2)
G′2 (∨)
G′1 (∨)
...

;

... (jump)
G′′3 (2)
G′2 (∨)
G′1 (∨)
...

First, we define a function m on proofs in KG,2. We call an application of (2) with consequence
G′ ‘early’ if one of the rules (∨), (∧), (3) is applicable backwards on G′. If P is a proof without
early applications of (2), then we set m(P) = 0. Otherwise let G1, . . . , Gk be the conclusions of
the early applications of (2) in P and for all i ∈ {1, . . . , n} let ni be the length of the longest
branch in the proof of Gi. We set m(P) = max({n1, . . . , nk}).
Second, we define a transformation on proofs in KG,2. Let P be a proof of a K graph G in KG,2

whose last step is an early application of (2). Starting with G we apply the rules (∨), (∧), (3)
backwards as long as possible. This process will terminate, and in general we end up with several
K graphs G1, . . . , Gn. Because of theorem 4.2.10 there exist proofs P1, . . . ,Pn of these K graphs.
Thus we obtain a proof P ′ of G in KG,2 that consists of P1, . . . ,Pn and applications of (∨), (∧),
(3). Because of theorem 4.2.10 we know that the depth of each of P1, . . . ,Pn is at most the
depth of P. Since none of (∨), (∧), (2) can be applicable backwards on G1, . . . , Gn, the last step
in these proofs must be (2) or (jump) application (and if it is a (2) application, then it is not
an early one). Thus m(P ′) < m(P).

Let now P be a proof of ε | A in KG,2. Let G1, . . . , Gk be the conclusions of those early
applications of (2) in P such that for all i ∈ {1, . . . , n} there is no early application of (2)
between Gi and the root of P. Let P1, . . . ,Pk be the proofs of G1, . . . , Gk. We apply the

5.2. K 97

transformation described above on these subproofs of P. This process is repeated as long as there
are early applications of (2) left. It terminates because the value computed by the function m

always decreases. The result is a proof of ε | A in KG,2 without early applications of (2).

Now we remove those backward applications of (2) that generate worlds in which we do not

jump. The result is still a proof of ε | A in KG,2.

This proof can be translated step by step (beginning at the root of the proof) into a proof of ε | A
in KS , combining (2) and (jump) into (2).

‘⇐’:

Let P be a proof of ε | A in KS . We can translate it step by step (beginning at the root) into a

proof of ε | A in KG,2, replacing (2) by (2) and (jump).

5.2.8 THEOREM proofs in KH from proofs in KS

KS ` ε | nnf(A) ⇒ KH ` A

Proof

We prove KS ` 3nnf(A1), . . . ,3nnf(Am) | nnf(B1), . . . ,nnf(Bn)⇒ KH ` 3A1∨ . . .∨3Am∨B1∨
. . . ∨Bn with an induction on proof depth.

1. 3nnf(A1), . . . ,3nnf(Am) | nnf(B1), . . . ,nnf(Bn) is an instance of the (true) axiom: Then
3A1 ∨ . . . ∨3Am ∨B1 ∨ . . . ∨Bn is an instance of the (cpc) axiom.

2. 3nnf(A1), . . . ,3nnf(Am) | nnf(B1), . . . ,nnf(Bn) is an instance of the (id) axiom: Then
3A1 ∨ . . . ∨3Am ∨B1 ∨ . . . ∨Bn is an instance of the (cpc) axiom.

3. The last step is 3nnf(A1),...,3nnf(Am)|nnf(C1),nnf(C2),nnf(B2),...,nnf(Bn)
3nnf(A1),...,3nnf(Am)|nnf(C1)∨nnf(C2),nnf(B2),...,nnf(Bn)(∨), where nnf(B1) is

nnf(C1)∨nnf(C2): With the induction hypothesis follows KH ` 3A1∨ . . .∨3Am∨C1∨C2∨
B2 ∨ . . .∨Bn, and with (cpc) and (mp) KH ` 3A1 ∨ . . .∨3Am ∨ (C1 ∨C2)∨B2 ∨ . . .∨Bn.

4. The last step is
3nnf(A1),...,3nnf(Am)|nnf(C1),nnf(B2),...,nnf(Bn) 3nnf(A1),...,3nnf(Am)|nnf(C2),nnf(B2),...,nnf(Bn)

3nnf(A1),...,3nnf(Am)|nnf(C1)∧nnf(C2),nnf(B2),...,nnf(Bn) (∧)

where nnf(B1) ≡ nnf(C1) ∧ nnf(C2): With the induction hypothesis follows KH ` 3A1 ∨
. . .∨3Am ∨C1 ∨B2 ∨ . . .∨Bn and KH ` 3A1 ∨ . . .∨3Am ∨C2 ∨B2 ∨ . . .∨Bn. With (cpc)
and (mp) we obtain KH ` 3A1 ∨ . . . ∨ 3Am ∨ (C1 ∧ C2) ∨ B2 ∨ . . . ∨ Bn, as shown in the
proof fragment below. (We use the abbreviation 3D ≡ 3A1 ∨ . . . ∨3Am).

...
3D∨C2∨B2∨ . . .∨Bn

...

3D∨C1∨B2∨ . . .∨Bn

(cpc)
(3D ∨ C1 ∨B2 ∨ . . . ∨Bn)
→ (3D ∨ C2 ∨B2 ∨ . . . ∨Bn)
→ (3D∨(C1∧C2)∨B2∨. . .∨Bn)

(mp)
(3D ∨ C2 ∨B2 ∨ . . . ∨Bn)
→ (3D∨(C1∧C2)∨B2∨. . .∨Bn)

(mp)
3D ∨ (C1 ∧ C2) ∨B2 ∨ . . . ∨Bn

5. The last step is 3nnf(C),3nnf(A1),...,3nnf(Am)|nnf(B2),...,nnf(Bn)
3nnf(A1),...,3nnf(Am)|3nnf(C),nnf(B2),...,nnf(Bn)(3), where nnf(B1) ≡ 3nnf(C):

With the induction hypothesis we obtain KH ` 3C ∨ 3A1 ∨ . . . ∨ 3Am ∨ B2 ∨ . . . ∨ Bn.
With (cpc) and (mp) follows KH ` 3A1 ∨ . . . ∨3Am ∨3C ∨B2 ∨ . . . ∨Bn.

6. The last step is ε|nnf(C),nnf(A1),...,nnf(Am)
3nnf(A1),...,3nnf(Am)|2nnf(C),nnf(B2),...,nnf(Bn)(2), where nnf(B1) ≡ 2nnf(C):

If m = 0, then KH ` B follows with the induction hypothesis, and with

98 CHAPTER 5. SEQUENT CALCULI

...
C ∨A1 ∨ . . . ∨Am

... (cpc), (mp)

¬A1 → . . .→ ¬Am → C (2)
2(¬A1 → . . .→ ¬Am → C)

... (k)
2(¬A1 → . . .→ ¬Am → C)
→ 2¬A1 → 2(¬A2 → . . .→ ¬Am → C)

(mp)
2¬A1 → 2(¬A2 → . . .→ ¬Am → C)

... (k), (cpc), (mp)

2¬A1 → . . .→ 2¬Am → 2C

... (322), (cpc), (mp)

3A1 ∨ . . . ∨3Am ∨2C

... (cpc), (mp)

3A1 ∨ . . . ∨3Am ∨2C ∨B2 ∨ . . . ∨Bn

Figure 5.b: Simulating the (2) rule of KS in KH.

...
C (2)

2C
(cpc)

2C → (2C ∨B2 ∨ . . . ∨Bn)
(mp)

2C ∨B2 ∨ . . . ∨Bn

we obtain KH ` 2C ∨ B2 ∨ . . . ∨ Bn. Otherwise m > 0. With the induction hypothesis
follows KH ` C ∨ A1 ∨ . . . ∨ Am. With the proof fragment of figure 5.b we then obtain
KH ` 3A1 ∨ . . . ∨3Am ∨2C ∨B2 ∨ . . . ∨Bn.

5.2.9 REMARK simplifying KS

The only thing we do with 3 formulas in KS is to put them on the left hand side when applying the
(3) rule backwards, and move them back on the right hand side when applying (2) backwards.
Thus we could simplify KS to the following calculus:
axioms:

true,Γ
(true)

P,¬P,Γ
(id)

rules:
A,B,Γ
A ∨B,Γ

(∨)
A,Γ B,Γ
A ∧B,Γ

(∧)

A,Σ
2A,3Σ,Γ

no 3 fmls in Γ (2)

From the point of view of backward proof search, this simplification offers no advantages. (Note
that this simplification has considerable disadvantages in the case of KT and S4; see remark 5.4.9.)
Therefore we do not consider this calculus in the following, but continue in the same way as in
the other sections in this chapter in order to obtain a more uniform presentation.

5.2. K 99

5.2.10 DEFINITION sequent calculus KS,2

axioms:

3Σ | true,Γ
(true)

3Σ | P,¬P,Γ
(id)

rules:
3Σ | A,B,Γ

3Σ | A ∨B,Γ
(∨)

3Σ | A,Γ 3Σ | B,Γ
3Σ | A ∧B,Γ

(∧)

3A,3Σ | Γ
3Σ | 3A,Γ

3A /∈ 3Σ (3,new)
3Σ | Γ

3Σ | 3A,Γ
3A ∈ 3Σ (3,dup)

ε | A,Σ
3Σ | 2A,Γ

(2)

main formulas: true in (true), P and ¬P in (id), A∨B in (∨), A∧B in (∧), 3A in (3,new) and
(3,dup), 2A in (2)

side formulas: A and B in (∨), A and B in (∧), 3A in (3,new), none in (3,dup), A in (2)

Example

KS,2 ` ε | 3(p0 ∧¬p1)∨ (3¬p0 ∨2p1), as the following proof shows (cp. the example in definition
5.2.2).

(id)
ε | p1, p0,¬p0

(id)
ε | p1,¬p1,¬p0 (∧)

ε | p1, p0 ∧ ¬p1,¬p0 (2)
3(p0 ∧ ¬p1),3¬p0 | 2p1 (3,new)
3(p0 ∧ ¬p1) | 3¬p0,2p1 (3,new)
ε | 3(p0 ∧ ¬p1),3¬p0,2p1 (∨)
ε | 3(p0 ∧ ¬p1),3¬p0 ∨2p1 (∨)

ε | 3(p0 ∧ ¬p1) ∨ (3¬p0 ∨2p1)

5.2.11 THEOREM KS,2: weakening

If KS,2 ` 3Σ | Γ, then KS,2 ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of 3Σ | Γ,
then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

Compared to the corresponding proof for KS (theorem 5.2.3), only the cases for (3,new) and
(3,dup) are different.

1. The last step is 3A,3Σ|Γ
3Σ|3A,Γ(3,new): If 3A /∈ 3∆, then KS,2 ` 3∆,3A,3Σ | Π,Γ because of

the induction hypothesis, and with a (3,new) application follows KS,2 ` 3∆,3Σ | Π,3A,Γ.
If 3A ∈ 3∆, then KS,2 ` 3∆,3Σ | Π,3A,Γ directly with the induction hypothesis.

2. The last step is 3Σ|Γ
3Σ|3A,Γ(3,dup): With the induction hypothesis we obtain KS,2 ` 3∆,3Σ |

Π,3A,Γ.

100 CHAPTER 5. SEQUENT CALCULI

5.2.12 THEOREM KS,2: invertible rules

The rule (2) of KS,2 is not invertible. All the other rules are strongly invertible.

Proof

We can proceed as in the corresponding proof for KS (theorem 5.2.4). We only discuss the cases
where (3,new) or (3,dup) is involved, as these are the only rules which are different. With the
transformations

...
3A,3Σ | B,C,Γ

(∨)
3A,3Σ | B ∨ C,Γ

(3,new)
3Σ | 3A,B ∨ C,Γ

;

...
3A,3Σ | B,C,Γ

(3,new)
3Σ | 3A,B,C,Γ

(∨)
3Σ | 3A,B ∨ C,Γ

and

...
3A,3Σ | B,C,Γ

(3,new)
3Σ | 3A,B,C,Γ

(∨)
3Σ | 3A,B ∨ C,Γ

;

...
3A,3Σ | B,C,Γ

(∨)
3A,3Σ | B ∨ C,Γ

(3,new)
3Σ | 3A,B ∨ C,Γ

follows (3,new)(∨) · · · ; (∨)(3,new) · · · and (∨)(3,new) · · · ; (3,new)(∨) · · · . In the same
way we easily obtain (3,dup)(∨) · · · ; (∨)(3,dup) · · · and (∨)(3,dup) · · · ; (3,dup)(∨) · · · .
Also (3,new)(∧) · · · ; (∧)(3,new) · · · , (∧)(3,new) · · · ; (3,new)(∧) · · · , (3,dup)(∧) · · · ;

(∧)(3,dup) · · · and (∧)(3,dup) · · · ; (3,dup)(∧) · · · cause no problems. With the transforma-
tion

ε | A,Σ
(2)

3Σ | 2A,3B,Γ
;

ε | A,B,Σ
(2)

3B,3Σ | 2A,Γ
(3,new)

3Σ | 2A,3B,Γ

and weakening we obtain (2) · · ·; (3,new)(2) · · · , and finally we use

...
ε | A,Σ

(2)
3Σ | 2A,3B,Γ

;

...
ε | A,Σ

(2)
3Σ | 2A,Γ

(3,dup)
3Σ | 2A,3B,Γ

to show (2) · · · ; (3,dup)(2) · · · . Note that we cannot switch applications of (3,dup) and
(3,new) if they have the same main formula, but this does not hamper their invertibility.

5.2.13 THEOREM KS,2: duplicate formulas

KS,2 ` 3Σ | A,A,Γ ⇒ KS,2 ` 3Σ | A,Γ

Proof

We make an induction on proof depth. Simultaneously we prove that the depth of the new proof
is at most the depth of the original one. Most cases are the same as in the corresponding proof
for KS (theorem 5.2.6).

5.2. K 101

1. 3Σ | A,A,Γ is an instance of the (true) axiom: As in the proof of theorem 5.2.6.

2. 3Σ | A,A,Γ is an instance of the (id) axiom: As in the proof of theorem 5.2.6.

3. The last step is 3Σ|A,A,B,C,Γ
3Σ|A,A,B∨C,Γ(∨): As in the proof of theorem 5.2.6.

4. The last step is 3Σ|A,A,B,Γ 3Σ|A,A,C,Γ
3Σ|A,A,B∧C,Γ (∧): As in the proof of theorem 5.2.6.

5. The last step is 3B,3Σ|A,A,Γ
3Σ|A,A,3B,Γ(3,new): With the induction hypothesis and an application of

(3,new) we obtain KS,2 ` 3Σ | A,3B,Γ.

6. The last step is 3Σ|A,A,Γ
3Σ|A,A,3B,Γ(3,dup): With the induction hypothesis and an application of

(3,dup) we obtain KS,2 ` 3Σ | A,3B,Γ.

7. The last step in P is ε|B,Σ
3Σ|A,A,2B,Γ(2): As in the proof of theorem 5.2.6.

8. The last step is 3Σ|B,C,B∨C,Γ
3Σ|B∨C,B∨C,Γ(∨), where A ≡ B ∨ C: As in the proof of theorem 5.2.6.

9. The last step is 3Σ|B,B∧C,Γ 3Σ|C,B∧C,Γ
3Σ|B∧C,B∧C,Γ (∧), where A ≡ B ∧ C: As in the proof of theorem

5.2.6.

10. The last step is 3B,3Σ|3B,Γ
3Σ|3B,3B,Γ(3,new), where A ≡ 3B: Let d be the depth of the proof of

3B,3Σ | 3B,Γ. Since (3,dup) is strongly invertible we know that KS,2 ` 3B,3Σ | Γ
with a proof of depth ≤ d− 1. With an application of (3,new) follows KS,2 ` 3Σ | 3B,Γ
with a proof of depth ≤ d.

11. The last step is 3Σ|3B,Γ
3Σ|3B,3B,Γ(3,dup), where A ≡ 3B: The premise is exactly what we want.

12. The last step in P is ε|B,Σ
3Σ|2B,2B,Γ(2), where A ≡ 2B: As in the proof of theorem 5.2.6.

5.2.14 THEOREM equivalence of KS and KS,2

KS ` ε | A ⇔ KS,2 ` ε | A

Proof

‘⇒’:

We prove KS ` 3Σ | Γ⇒ KS,2 ` 3Σ | Γ with an induction on proof depth. The only non-trivial
case is the translation of a (3) application.

1. The last step is 3A,3Σ|Γ
3Σ|3A,Γ(3): If 3A /∈ 3Σ, then we have KS,2 ` 3A,3Σ | Γ because of

the induction hypothesis, and with a (3,new) application we obtain KS,2 ` 3Σ | 3A,Γ.
If 3A ∈ 3Σ, then we have KS ` 3Σ | Γ because of theorem 5.2.6. With the induction
hypothesis we obtain KS,2 ` 3Σ | Γ, and with a (3,dup) application follows KS,2 ` 3Σ |
3A,Γ.

‘⇐’:

We prove KS,2 ` 3Σ | Γ⇒ KS ` 3Σ | Γ with an induction on proof depth. The only non-trivial
cases are (3,new) and (3,dup) applications.

1. The last step is 3A,3Σ|Γ
3Σ|3A,Γ(3,new): With the induction hypothesis we obtain KS ` 3A,3Σ |

Γ, and with a (3) application follows KS ` 3Σ | 3A,Γ.

2. The last step is 3Σ|Γ
3Σ|3A,Γ(3,dup): With the induction hypothesis we obtain KS ` 3Σ | Γ,

and with weakening follows KS ` 3Σ | 3A,Γ.

102 CHAPTER 5. SEQUENT CALCULI

5.2.15 THEOREM KS,2: termination

Backward proof search in KS,2 always terminates.

Proof

We define m(3Σ | Γ) := length(3Σ) + length(Γ)− card(3Σ). Obviously always m(3Σ | Γ) ≥ 0,
and the value computed by m decreases with each backward application of a rule of KS,2:

1. m(3Σ | A ∨B,Γ) > m(3Σ | A,B,Γ)

2. m(3Σ | A ∧B,Γ) > m(3Σ | A,Γ), m(3Σ | A ∧B,Γ) > m(3Σ | B,Γ)

3. m(3Σ | 3A,Γ) > m(3A,3Σ | Γ)

4. m(3Σ | 3A,Γ) > m(3Σ | Γ)

5. m(3Σ | 2A,Γ) > m(ε | A,Σ)

5.2.16 THEOREM KS,2: extend (id)

If A is in negation normal form, then:

KS,2 ` 3Σ | A,nnf(¬A),Γ

Proof

We make an induction on length(A).

1. A ≡ true or A ≡ false: Then 3Σ | A,nnf(¬A),Γ is an instance of the (true) axiom.

2. A is a variable or a negated variable: Then 3Σ | A,nnf(¬A),Γ is an instance of the (id)
axiom.

3. A ≡ B ∨ C: With the induction hypothesis we obtain KS,2 ` 3Σ | B,C,nnf(¬B),Γ and
KS,2 ` 3Σ | B,C,nnf(¬C),Γ. With applications of (∨) and (∧) follows KS,2 ` 3Σ |
B ∨ C,nnf(¬B) ∧ nnf(¬C),Γ.

4. A ≡ B ∨ C: Analogous to case 3.

5. A ≡ 2B: If 3nnf(¬B) /∈ 3Σ, then we obtain KS,2 ` ε | B,nnf(¬B),Σ with the induction
hypothesis, and with applications of (2) and (3,new) follows KS,2 ` 3Σ | 2B,3nnf(¬B),Γ.
If 3nnf(¬B) ∈ 3Σ, then we obtain KS,2 ` ε | B,Σ with the induction hypothesis, and with
applications of (2) and (3,dup) follows KS,2 ` 3Σ | 2B,3nnf(¬B),Γ.

6. A ≡ 3B: Analogous to case 5.

5.2.17 THEOREM KS,2: use-check

Let P be a proof in KS,2 of the sequent 3Σ | A,Γ. We mark it as follows:

1. The main formulas in the instances of axioms are marked.

2. The main formula in the instances of the (2) rule is marked.

3. If a side formula is marked, then the main formula is marked.

4. If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in Γ is marked,
then the corresponding formula in the multiset Γ in the conclusion is marked.

5. If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in 3Σ is marked,
then the corresponding formula in the multiset 3Σ in the conclusion is marked.

5.2. K 103

6. If in the premise of an instance of (2) a formula in Σ is marked, then the corresponding
formula in the multiset 3Σ in the conclusion is marked.

If the formula A in the sequent 3Σ | A,Γ is not marked, then KS,2 ` 3Σ | Γ.

Proof
We generalise the theorem: If P is a marked proof of 3∆,3Σ | Π,Γ in KS,2 and no formula in
3∆ and Π is marked, then KS,2 ` 3Σ | Γ. We make an induction on proof depth.

1. 3∆,3Σ | Π,Γ is an instance of the (true) axiom: Then 3Σ | Γ is also an instance of the
(true) axiom.

2. 3∆,3Σ | Π,Γ is an instance of the (id) axiom: Then 3Σ | Γ is also an instance of the (id)
axiom.

3. The last step is 3∆,3Σ|C,D,Π,Γ
3∆,3Σ|C∨D,Π,Γ(∨): With the induction hypothesis and an application of

(∨) we obtain KS,2 ` 3Σ | C ∨D,Γ.

4. The last step is 3∆,3Σ|C,Π,Γ 3∆,3Σ|D,Π,Γ
3∆,3Σ|C∧D,Π,Γ (∧): Analogous to case 3.

5. The last step is 3C,3∆,3Σ|Π,Γ
3∆,3Σ|3C,Π,Γ(3,new): With the induction hypothesis we obtain KS,2 `

3C,3Σ | Γ, and with an application of (3,new) follows KS,2 ` 3Σ | 3C,Γ.

6. The last step is 3∆,3Σ|Π,Γ
3∆,3Σ|3C,Π,Γ(3,dup): With the induction hypothesis we obtain KS,2 `

3Σ | Γ, and with an application of (3,dup) follows KS,2 ` 3Σ | 3C,Γ.

7. The last step is ε|C,∆,Σ
3∆,3Σ|2C,Π,Γ(2): With the induction hypothesis follows KS,2 ` ε | C,Σ,

and an application of (2) gives KS,2 ` 3Σ | 2C,Γ.

8. The last step is 3∆,3Σ|C,D,Π1,Γ
3∆,3Σ|C∨D,Π1,Γ

(∨) where Π = C ∨ D,Π1: With the induction hypothesis
follows KS,2 ` 3Σ | Γ.

9. The last step is 3∆,3Σ|C,Π1,Γ 3∆,3Σ|D,Π1,Γ
3∆,3Σ|C∧D,Π1,Γ

(∨) where Π = C ∧D,Π1: With the induction
hypothesis follows KS,2 ` 3Σ | Γ.

10. The last step is 3C,3∆,3Σ|Π1,Γ
3∆,3Σ|3C,Π1,Γ

(3,new) where Π = 3C,Π1: With the induction hypothesis
follows KS,2 ` 3Σ | Γ.

11. The last step is 3∆,3Σ|Π1,Γ
3∆,3Σ|3C,Π1,Γ

(3,dup) where Π = 3C,Π1: With the induction hypothesis
follows KS,2 ` 3Σ | Γ.

12. The last step in P is a (2) application with the main formula in Π: This is impossible
because all main formulas of (2) applications are marked.

Example

We do backward proof search in KS,2 for ε | A, where A ≡ ((p0 ∨ p1)∧2p2)∨3¬p2 ∨ (¬p0 ∧¬p1).

(id)
ε | p0, p1,3¬p2,¬p0

(id)
ε | p0,p1,3¬p2,¬p1 (∧)

ε | p0,p1,3¬p2,¬p0 ∧ ¬p1 (∨)
ε | p0 ∨ p1,3¬p2,¬p0 ∧ ¬p1

(id)
ε | p2,¬p2 (2)

3¬p2 | 2p2,¬p0 (3,new)
ε | 2p2,3¬p2,¬p0 cut off

(∧)
ε | 2p2,3¬p2,¬p0 ∧ ¬p1 (∧)

ε | (p0 ∨ p1) ∧2p2,3¬p2,¬p0 ∧ ¬p1 (∨)
ε | ((p0 ∨ p1) ∧2p2) ∨3¬p2,¬p0 ∧ ¬p1 (∨)

ε | ((p0 ∨ p1) ∧2p2) ∨3¬p2 ∨ (¬p0 ∧ ¬p1)

104 CHAPTER 5. SEQUENT CALCULI

Note that we can cut off a branch although ¬p0 ∧ ¬p1 is not a superfluous subformula of A; it
is only superfluous on the right branch. Here lemma generation (cp. remark 5.1.21) would not
help. We would obtain the following proof (using a rule (dup) to remove duplicate formulas):

... (∨)
ε | p0 ∨ p1,3¬p2,¬p0 ∧ ¬p1

(id)
ε | p2,¬p2 (2)

3¬p2 | 2p2,¬p0 (3,new)
ε | 2p2,3¬p2,¬p0

(id)
ε | p2,¬p2 (2)

3¬p2 | 2p2, p0,¬p1 (3,new)
ε | 2p2,3¬p2, p0,¬p1 (∧′)

ε | 2p2,3¬p2,¬p0 ∧ ¬p1 (dup)
ε | 2p2,3¬p2,¬p0 ∧ ¬p1,¬p0 ∧ ¬p1 (∧′)

ε | (p0 ∨ p1) ∧2p2,3¬p2,¬p0 ∧ ¬p1 (∨)
ε | ((p0 ∨ p1) ∧2p2) ∨3¬p2,¬p0 ∧ ¬p1 (∨)

ε | ((p0 ∨ p1) ∧2p2) ∨3¬p2 ∨ (¬p0 ∧ ¬p1)

5.2.18 REMARK use-check: KS,2 vs. CPC

We cannot use the same formulation as for CPC, because it is possible that a formula is not used
in an axiom, but helps to ‘go on’ with backward proof search. The ‘reason’ for this behaviour is
the non-reflexivity of the accessibility relation in the possible world semantics for K.

Example

We have KS,2 ` ε | 2p1,3(p0 ∨ ¬p0), and the only axiom of the proof is ε | p1, p0,¬p0, i.e. no
subformula of 2p1 occurs as a main formula in an axiom of the proof.

However KS,2 0 ε | 2p1∧p1,3(p0∨¬p0), because on the right branch the sequent ε | p1,3(p0∨¬p0)
is not provable (no rule is applicable backwards). Indeed with the use-check for KS,2 we are not
allowed to cut off the right branch since 2p1 has been used on the left branch.

id
ε | p1,p0,¬p0 (∨)
ε | p1,p0 ∨ ¬p0 (2)
3(p0 ∨ ¬p0) | 2p1 (3,new)
ε | 2p1,3(p0 ∨ ¬p0) ε | p1,3(p0 ∨ ¬p0)

(∧)
ε | 2p1 ∧ p1,3(p0 ∨ ¬p0)

(∨)
ε | (2p1 ∧ p1) ∨3(p0 ∨ ¬p0)

5.2.19 REMARK KS,2: backward proof search

In contrast to backward proof search in KG,2, we deal with sequents and not with trees of sequents.
In order to construct a countermodel from a failed backward proof search, we have to gather the
literals we put into the worlds of M from the corresponding sequents.

Example

We do backward proof search in KS,2 for ε | (3(¬p0 ∨ p3)∨3¬p1)∨ (2p2 ∨2(p0 ∧ p1)) (as in the
first example in 4.2.12). See figure 5.c for the search tree. The non-proof that corresponds to the
failing branch of the search tree look as follows:

5.2. K 105

ε | p2,¬p0, p3,¬p1 (∨)
ε | p2,¬p0 ∨ p3,¬p1 (2)

3(¬p0 ∨ p3),3¬p1 | 2p2,2(p0 ∧ p1)
(3,new)

3(¬p0 ∨ p3) | 3¬p1,2p2,2(p0 ∧ p1)
(3,new)

ε | 3(¬p0 ∨ p3),3¬p1,2p2,2(p0 ∧ p1)
(∨)

ε | 3(¬p0 ∨ p3),3¬p1,2p2 ∨2(p0 ∧ p1)
(∨)

ε | 3(¬p0 ∨ p3) ∨3¬p1,2p2 ∨2(p0 ∧ p1)
(∨)

ε | (3(¬p0 ∨ p3) ∨3¬p1) ∨ (2p2 ∨2(p0 ∧ p1))

The proof we find on the other branch of the search tree:

(id)
ε | p0,¬p0, p3,¬p1

(id)
ε | p1,¬p1, p3,¬p1 (∧)

ε | p0 ∧ p1,¬p0, p3,¬p1 (∨)
ε | p0 ∧ p1,¬p0 ∨ p3,¬p1 (2)

3(¬p0 ∨ p3),3¬p1 | 2p2,2(p0 ∧ p1)
(3,new)

3(¬p0 ∨ p3) | 3¬p1,2p2,2(p0 ∧ p1)
(3,new)

ε | 3(¬p0 ∨ p3),3¬p1,2p2,2(p0 ∧ p1)
(∨)

ε | 3(¬p0 ∨ p3),3¬p1,2p2 ∨2(p0 ∧ p1)
(∨)

ε | 3(¬p0 ∨ p3) ∨3¬p1,2p2 ∨2(p0 ∧ p1)
(∨)

ε | (3(¬p0 ∨ p3) ∨3¬p1) ∨ (2p2 ∨2(p0 ∧ p1))

Now we do backward proof search for ε | (3p3 ∨ 3¬p1) ∨ (2(p2 ∨ p0) ∨ 2(p0 ∧ p1)) (as in the
second example in 4.2.12). See figure 5.d for the search tree. The non-proof that corresponds to
the left branch of the search tree look as follows:

ε | p2, p0, p3,¬p1 (∨)
ε | p2 ∨ p0, p3,¬p1 (2)

3p3,3¬p1 | 2(p2 ∨ p0),2(p0 ∧ p1)
(3,new)

3p3 | 3¬p1,2(p2 ∨ p0),2(p0 ∧ p1)
(3,new)

ε | 3p3,3¬p1,2(p2 ∨ p0),2(p0 ∧ p1)
(∨)

ε | 3p3,3¬p1,2(p2 ∨ p0) ∨2(p0 ∧ p1)
(∨)

ε | 3p3 ∨3¬p1,2(p2 ∨ p0) ∨2(p0 ∧ p1)
(∨)

ε | (3p3 ∨3¬p1) ∨ (2(p2 ∨ p0) ∨2(p0 ∧ p1))

Also the second attempt fails, giving us the following non-proof:

ε | p0, p3,¬p1

(id)
ε | p1, p3,¬p1 (∧)

ε | p0 ∧ p1, p3,¬p1 (2)
3p3,3¬p1 | 2(p2 ∨ p0),2(p0 ∧ p1)

(3,new)
3p3 | 3¬p1,2(p2 ∨ p0),2(p0 ∧ p1)

(3,new)
ε | 3p3,3¬p1,2(p2 ∨ p0),2(p0 ∧ p1)

(∨)
ε | 3p3,3¬p1,2(p2 ∨ p0) ∨2(p0 ∧ p1)

(∨)
ε | 3p3 ∨3¬p1,2(p2 ∨ p0) ∨2(p0 ∧ p1)

(∨)
ε | (3p3 ∨3¬p1) ∨ (2(p2 ∨ p0) ∨2(p0 ∧ p1))

106 CHAPTER 5. SEQUENT CALCULI

s1 (∨)
s2 (∨)
s3 (∨)
s4 (3,new)
s5 (3,new)
s6 (2)
Q
Q
Q
r7 (∨)
r8fail

�
�
�
s9 (∨)
s10@

@
�
�(∧)
s11 (id) s12 (id)

The search starts at node 1. After
backward applications of (∨) and
(3,new) we have two possibilities to
apply (2) backwards (node 6). The
first fails (node 8). The second one
leads to a branching caused by (∧)
and ends in two instances of the (id)
axiom (nodes 11 and 12).
Thus KS,2 ` ε | (3(¬p0 ∨ p3) ∨
3¬p1) ∨ (2p2 ∨ 2(p0 ∧ p1)). The
thick lines correspond to the proof.

Figure 5.c: The search tree of the first example in remark 5.2.19.

s1 (∨)
s2 (∨)
s3 (∨)
s4 (3,new)
s5 (3,new)
s6 (2)
Q
Q
Q
s7 (∨)
s8fail

�
�
�
s9 (∧)
@
@
�
�
r10 (id)s11

fail The search starts at node 1. After back-
ward applications of (∨) and (3,new)
we have two possibilities to apply (2)
backwards (node 6). The first fails
(node 8). The second one leads to a
branching caused by (∧). One of these
subbranches ends in an instance of the
(id) axiom (node 11), the other one fails
(node 10).
Thus KS,2 0 ε | (3p3 ∨3¬p1) ∨ (2(p2 ∨
p0)∨2(p0 ∧ p1)). The thick lines corre-
spond to the countermodel.

Figure 5.d: The search tree of the second example in remark 5.2.19.

The countermodel we can extract is the one we already obtained when searching in KG,2 (see
figure 4.p).

5.3 K + T

5.3.1 DEFINITION sequent calculus (K + T)S

(K + T)S is the calculus KS with the (2) rule replaced by the rule

ε | A,Σ,nnf(¬T)
3Σ | 2A,Γ

(2)

The main formula of this rule is 2A.

5.3. K + T 107

5.3.2 THEOREM (K + T)S : weakening

If (K + T)S ` 3Σ | Γ, then (K + T)S ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of
3Σ | Γ, then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

We make an induction on proof depth as in the corresponding proof for KS (theorem 5.2.3). The
new (2) rule causes no problems.

5.3.3 THEOREM (K + T)S : invertible rules

The rule (2) of (K + T)S is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the corresponding proof for KS (theorem 5.2.4). The new (2) rule causes no
problems.

5.3.4 THEOREM (K + T)S : duplicate formulas

(K + T)S ` 3Σ | A,A,Γ ⇒ (K + T)S ` 3Σ | A,Γ
(K + T)S ` 3A,3A,3Σ | Γ ⇒ (K + T)S ` 3A,3Σ | Γ

Proof

The only difference between this proof and the corresponding proof for KS (theorem 5.2.6) is the
multiset nnf(¬T) in the premises of (2) application.

5.3.5 THEOREM equivalence of (K + T)G,2 and (K + T)S

(K + T)G,2 ` ε | A,nnf(¬T) ⇔ (K + T)S ` ε | A,nnf(¬T)

Proof

The only difference between this proof and the corresponding proof for KG,2 and KS (theorem
5.2.7) is the multiset nnf(¬T) in the premises of (2) applications.

5.3.6 THEOREM proofs in (K + T)H from proofs in (K + T)S

(K + T)S ` ε | nnf(A),nnf(¬T) ⇒ (K + T)H ` A

Proof

We can reuse most parts of the proof of theorem 5.2.8. In addition, we have to show that if
T = C1, . . . , Cn, then (K + T)H ` B ∨ C1 ∨ . . . ∨ Cn implies (K + T)H ` B. This follows from
(K + T)S ` Ci (for all i ∈ {1, . . . , n}) with applications of (cpc) and (mp).

5.3.7 DEFINITION sequent calculus (K + T)S,2

(K + T)S,2 is the calculus KS,2 with the (2) rule replaced by the rule

108 CHAPTER 5. SEQUENT CALCULI

ε | A,Σ,nnf(¬T)
3Σ | 2A,Γ

(2)

The main formula of this rule is 2A.

5.3.8 THEOREM (K + T)S,2: weakening

If (K + T)S,2 ` 3Σ | Γ, then (K + T)S,2 ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof
of 3Σ | Γ, then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

We make an induction on proof depth as in the corresponding proof for KS,2 (theorem 5.2.11).
The different (2) rule causes no problems.

5.3.9 THEOREM (K + T)S,2: invertible rules

The rule (2) of (K + T)S,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the corresponding proof for KS,2 (theorem 5.2.12). The different (2) rule causes no
problems.

5.3.10 THEOREM (K + T)S,2: duplicate formulas

(K + T)S,2 ` 3Σ | A,A,Γ ⇒ (K + T)S,2 ` 3Σ | A,Γ

Proof

The only difference between this proof and the corresponding proof for KS,2 (theorem 5.2.13) is
the multiset nnf(¬T) in the premises of (2) applications.

5.3.11 THEOREM equivalence of (K + T)S and (K + T)S,2

(K + T)S ` ε | A,nnf(¬T) ⇔ (K + T)S,2 ` ε | A,nnf(¬T)

Proof

The difference between (K + T)S and (K + T)S,2 is the same as between KS and KS,2. We can
use the same proof as for theorem 5.2.14.

5.3.12 REMARK (K + T)S,2: non-termination

In general, backward proof search in (K + T)S,2 does not terminate. With a depth-first strategy
the search does not even terminate for provable formulas.

Example

If T = 3p0 ∨ 3p1, then backward proof search for 3p0 ∨ p1,nnf(¬T) in (K + T])S,2 does not
terminate, whatever search strategy we use.

5.3. K + T 109

(id)
ε | ¬p0, p0,2¬p0 ∧2¬p1 (2)

3p0 | p1,2¬p0 (3,new)
ε | 3p0, p1,2¬p0

...
ε | ¬p0,2¬p0 ∧2¬p1 (2)

ε | ¬p0,2¬p0
... (∧)

ε | ¬p0,2¬p0 ∧2¬p1 (2)
ε | ¬p1, p0,2¬p0

... (2)
ε | ¬p1, p0,2¬p1 (∧)

ε | ¬p1, p0,2¬p0 ∧2¬p1 (2)
3p0 | p1,2¬p1 (3,new)
ε | 3p0, p1,2¬p1 (∧)

ε | 3p0, p1,2¬p0 ∧2¬p1 (∨)
ε | 3p0 ∨ p1,2¬p0 ∧2¬p1

5.3.13 REMARK from (K + T)S,2 to (K + T)S,3

We add a history to the sequents of (K +T)S,2. It is sufficient to do the loop-check in (2) and to
put the 2 and 3 formulas of this step into the history. The history is thus a multiset of multisets
of formulas. We forbid duplicate 3 formulas in Σ and therefore there is only a finite number
possible elements of the history during backward proof search. Thus the backward proof search
terminates (cp. theorem 5.3.16).

5.3.14 DEFINITION sequent calculus (K + T)S,3

axioms:

H | 3Σ | true,Γ
(true)

H | 3Σ | P,¬P,Γ
(id)

rules:
H | 3Σ | A,B,Γ
H | 3Σ | A ∨B,Γ

(∨)
H | 3Σ | A,Γ H | 3Σ | B,Γ

H | 3Σ | A ∧B,Γ
(∧)

H | 3A,3Σ | Γ
H | 3Σ | 3A,Γ

3A /∈ 3Σ (3,new)
H | 3Σ | Γ

H | 3Σ | 3A,Γ
3A ∈ 3Σ (3,dup)

[2A,3Σ],H | ε | A,Σ,nnf(¬T)
H | 3Σ | 2A,Γ

[2A,3Σ] /∈ H (2)

main formulas: true in (true), P and ¬P in (id), A∨B in (∨), A∧B in (∧), 3A in (3,new) and
(3,dup), 2A in (2)

side formulas: A and B in (∨), A and B in (∧), 3A in (3,new), none in (3,dup), A in (2)

5.3.15 THEOREM equivalence of (K + T)S,2 and (K + T)S,3

(K + T)S,2 ` 3Σ | Γ,nnf(¬T) ⇔ (K + T)S,3 ` ε | 3Σ | Γ,nnf(¬T)

110 CHAPTER 5. SEQUENT CALCULI

Proof

‘⇐’:

In order to obtain a proof of 3Σ | Γ in (K + T)S,2 from a proof of ε | 3Σ | Γ in (K + T)S,3 we
simply omit the history. We make an induction on proof depth. The only non-trivial case is an
application of the (2) rule.

Assume that the last step is [2A,3Σ],H|ε|A,Σ,nnf(¬T)
H|3Σ|2A,Γ (2). Then ε|A,Σ,nnf(¬T)

3Σ|2A,Γ is an instance of the
(2) rule of (K + T)S . The condition ‘[2A,3Σ] /∈ H’ of the (2) rule (K + T)S,3 has no effect.

‘⇒’:

We prove (K + T)S,2 ` 3Σ | Γ⇒ (K + T)S,3 ` ε | 3Σ | Γ. The basic idea is to take the proof in
(K + T)S,2 and to add (beginning at the root) the appropriate history. However, in general the
result is not a proof in (K +T)S,3, as the condition ‘[2A,3Σ] /∈ H’ of the (2) rule is not satisfied.
This condition is the loop-check, i.e. [2A,3Σ] ∈ H means that there is a sequent that occurs
twice on a branch. Therefore we first have to remove these superfluous parts from the proof in
(K + T)S,2 and add the history only afterwards.

We first define a transformation from proofs of a sequent 3Σ | Γ in (K + T)S,2 into proofs of
3Σ | Γ in (K + T)S,2 which reduces the number of nodes in the proof. We say that a proof in
(K + T)S,2 has repetitions if there is a branch on which the same sequent occurs twice. Let P
be a proof of Γ in (K + T)S,2 with repetitions, and let S be the sequent that occurs twice. If we
remove the part between these two S together with one occurrence of S, then we obtain a proof
of 3Σ | Γ in (K + T)S,2 with fewer nodes. See figure 5.e for an illustration of this transformation
in the important case where S is both times the premise of a (2) application.

Now we consider the proof of 3Σ | Γ in (K +T)S,2 and apply the transformation described above
as long as possible. As the number of nodes in the proof decreases, this process will terminate.
The result is still a proof of 3Σ | Γ in (K + T)S,2.

Afterwards we add histories to each sequent, beginning at the root. The result is a proof of
ε | 3Σ | Γ in (K + T)S,3.

1. The history is empty at the beginning, i.e. the root 3Σ | Γ is transformed into ε | 3Σ | Γ.

2. 3Σ|A,B,Γ
3Σ|A∨B,Γ(∨) is a step in the proof, and the sequent 3Σ | A ∨ B,Γ was transformed into
H | 3Σ | A ∨B,Γ: Then 3Σ | A,B,Γ is transformed into H | 3Σ | A,B,Γ.

3. 3Σ|A,Γ B,Γ
3Σ|A∧B,Γ (∧) is a step in the proof, and the sequent 3Σ | A ∧B,Γ was transformed into

H | 3Σ | A ∧ B,Γ: Then 3Σ | A,Γ is transformed into H | 3Σ | A,Γ and 3Σ | B,Γ is
transformed into H | 3Σ | B,Γ.

4. ε|A,Σ,nnf(¬T
3Σ|2A,Γ (2) is a step in the proof, and the sequent 3Σ | 2A,Γ was transformed into

H | 3Σ | 2A,Γ: Then ε | A,Σ,nnf(¬T) is transformed into [2A,3Σ],H | ε | A,Σ,nnf(¬T).
Because of the transformation we know that between the root of the new proof and this (2)
application there is no (2) application with a premise of the form H ′ | ε | A,Σ,nnf(¬T).
Thus [2A,3Σ] /∈ H.

5.3.16 THEOREM (K + T)S,3: termination

Backward proof search in (K + T)S,3 for a sequent of the form ε | ε | A,nnf(¬T) always termi-
nates.

Proof

Assume that we do backward proof search for ε | ε | A,nnf(¬T) in (K + T)S,3. When (∨), (∧),
(3,new), (3,dup) are applied backwards, then at least one connective is removed from the right

5.3. K + T 111

...

ε | B,Σ,nnf(¬T)
(2)

3Σ | 2B,Γ′

...

ε | B,Σ,nnf(¬T)
(2)

3Σ | 2B,Γ
...

;

...

ε | B,Σ,nnf(¬T)
(2)

3Σ | 2B,Γ
...

Figure 5.e: Removing loops from proofs in K + TS . This transformation
is used in the proof of theorem 5.3.15.

hand side of the sequent. Therefore there must be at least one backward application of (2) in a
loop. However, because of the loop check, no two premises of a (2) application on one branch of
a proof can be equal. Since Σ does not contain duplicate elements, there are only finitely many
possibilities for such premises.
This leads to the following measure: m(H | 3Σ | Γ) := (c · 2c − card(H)) · c + length(3Σ) +
length(Γ)− card(3Σ), where c := length(A) + length(nnf(¬T)).
All elements of H are multisets of the form 2B,3Σ. Because of the subformula property of
(K + T)S,3 and since 3Σ contains no duplicate elements, we know that H contains at most c · 2c
elements. Therefore always m(H | Γ) ≥ 0 during backward proof search.
The value computed by m decreases with each backward application of a rule of KS,3:

1. m(H | 3Σ | A ∨B,Γ) > m(H | 3Σ | A,B,Γ)

2. m(H | 3Σ | A ∧B,Γ) > m(H | 3Σ | A,Γ), m(H | 3Σ | A ∧B,Γ) > m(H | 3Σ | B,Γ)

3. m(H | 3A,3Σ | Γ) > m(H | 3Σ | 3A,Γ)

4. m(H | 3Σ | Γ) > m(H | 3Σ | 3A,Γ)

5. The only interesting case is the (2) rule. Assume that [2A,3Σ] /∈ H and that 3Σ contains
no duplicate elements. Then we have:

m(H | 3Σ | 2A,Γ)−m([2A,3Σ],H | ε | A,Σ,nnf(¬T))
= ((c · 2c − card(H))− (c · 2c − card([2A,3Σ],H))) · c

+ length(2A,Γ) + length(3Σ)− card(3Σ)− length(A,Σ,nnf(¬T))
= 1 · c+ 1 + length(Γ)− length(nnf(¬T))
≥ 1 + length(Γ)
> 0.

5.3.17 THEOREM proofs in (K + T)S,3

If (K +T)S,3 ` ε | ε | A,nnf(¬T), then there exists a proof of ε | ε | A,nnf(¬T) in (K +T)S,3 such
that (2) is only applied backwards if no other rule is applicable backwards.

Proof

Because of theorem 5.2.12 and theorem 5.3.15 there exists a proof of ε | A,nnf(¬T) in (K + T)S

such that (2) is only applied backwards if no other rule is applicable backwards. We now use the

112 CHAPTER 5. SEQUENT CALCULI

construction from the proof of theorem 5.3.15 to transform it into a proof of ε | ε | A,nnf(¬T) in
(K + T)S,3. It can be easily checked that this proof has the desired property.

5.3.18 THEOREM (K + T)S,3: permutation of rules

For the calculus (K + T)S,3, the following applies for all axioms x and all rules r:

• If r is not (2), then x ; rx.

• If neither r nor s is (2), then rs · · ·; sr · · · .

Proof

Analogous to the corresponding proof for (K + T)S,2, as the history has only an effect in the (2)
rule.

5.3.19 REMARK invertible rules in (K + T)S,3

Note that the rule (3,new) of (K + T)S,3 is not invertible. We have (K + T)S,3 ` [2true,3p1] |
ε | 2true,3p1, as the following proof shows:

(true)
[2true], [2true,3p1] | ε | true

(2)
[2true,3p1] | ε | 2true,3p1

However, (K + T)S,3 0 [2true,3p1] | 3p1 | 2true, since the (2) rule is not applicable backwards
on this sequent.

The two theorems 5.3.17 and 5.3.18 show that if we do backward proof search in (K + T)S,3 for
a sequent of the form ε | ε | A,nnf(¬T), then we can do this as if the rules (∨), (∧), (3,new),
(3,dup) were invertible: We apply these rules backwards as long as possible, and the order in
which we do this does not matter.

5.3.20 THEOREM (K + T)S,3: empty the history

(K + T)S,3 ` H | 3Σ | Γ ⇒ (K + T)S,3 ` ε | 3Σ | Γ

Proof

Let P be the proof H | 3Σ | Γ in (K+T)S,3. Let 2A′ be a formula and 3Σ′ a multiset of formulas.
With an induction on proof depth we can show that then (K + T)S,3 ` f(H) | 3Σ | Γ, where
f(H) = H if [2A′,3Σ′] /∈ H and H = f(H), [2A′,3Σ′] if [2A′,3Σ′] ∈ H. With an induction on
the number of elements in H we obtain (K + T)S,3 ` ε | 3Σ | Γ.

5.3.21 THEOREM (K + T)S,3: extend (id)

If A is in negation normal form, then:

(K + T)S,3 ` ε | 3Σ | A,nnf(¬A),Γ

Proof

With an induction on length(A) we prove (K + T)S,2 ` 3Σ | A,nnf(¬A),Γ. The only difference
between this proof and the corresponding proof for KS,2 (theorem 5.2.16) is the multiset nnf(¬T)
in the premise of (2) applications. Therefore we only show the case A ≡ 2B.

5.3. K + T 113

1. A ≡ 2B: If B /∈ Σ, then we obtain KS,2 ` ε | B,nnf(¬B),Σ,nnf(¬T) with the induction
hypothesis, and with applications of (2) and (3,new) follows KS,2 ` 3Σ | 2B,3nnf(¬B). If
B ∈ Σ, then we obtain KS,2 ` ε | B,Σ with the induction hypothesis, and with applications
of (2) and (3,dup) follows KS,2 ` 3Σ | 2B,3nnf(¬B).

Now we use theorem 5.3.15 to obtain (K + T)S,3 ` ε | 3Σ | A,nnf(¬A),Γ.

5.3.22 THEOREM (K + T)S,3: duplicate formulas

(K + T)S,3 ` H | 3Σ | A,A,Γ ⇒ (K + T)S,3 ` ε | 3Σ | A,Γ

Proof

The idea is to go to the calculus (K + T)S,2, to prove the corresponding theorem for this calculus
and then return to (K + T)S,3 with the help of theorem 5.3.15.

With theorem 5.3.20 we obtain (K + T)S,3 ` ε | 3Σ | A,A,Γ and with theorem 5.3.15 follows
(K+T)S,2 ` 3Σ | A,A,Γ. Thus (K+T)S,2 ` 3Σ | A,Γ because of theorem 5.3.10. With theorem
5.3.15 we finally obtain (K + T)S,3 ` ε | 3Σ | A,Γ.

5.3.23 THEOREM (K + T)S,3: use-check

Let P be a proof in (K + T)S,3 of the sequent H | A,Γ. We mark it as follows:

• The main formulas in the instances of axioms are marked.

• The main formula in the instances of the (2) rule is marked.

• If a side formula is marked, then the main formula is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in Γ is marked,
then the corresponding formula in the multiset Γ in the conclusion is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in 3Σ is marked,
then the corresponding formula in the multiset 3Σ in the conclusion is marked.

• If in the premise of an instance of (2) a formula in Σ is marked, then the corresponding
formula in the multiset 3Σ in the conclusion is marked.

If the formula A in the sequent H | A,Γ is not marked, then (K + T)S,3 ` ε | Γ.

Proof

The idea is the same as in the proof of the preceding theorem: We prove the corresponding
theorem for (K + T)S,2 and use theorem 5.3.15.

First we prove the theorem for the calculus (K + T)S,2, defining marked proofs in (K + T)S,2

exactly as described above for (K + T)S,3. Except for the multiset nnf(¬T) in the premises of
(2) applications this is the same proof as the one of theorem 5.2.17.

Now we take the marked proof P of H | 3Σ | A,Γ and omit all histories, but do not change
the marks (cp. the ‘⇐’ part of the proof of theorem 5.3.15). We call the result P ′. With an
induction on proof depth we can easily show that P ′ is a marked proof of 3Σ | A,Γ in (K +T)S,2.
Thus A is not marked, and therefore (K + T)S,2 ` 3Σ | Γ. With theorem 5.3.15 we obtain
(K + T)S,3 ` ε | 3Σ | Γ.

See also the remark 6.3.3 for the effects of use-check on the efficiency of backward proof search.

114 CHAPTER 5. SEQUENT CALCULI

5.3.24 THEOREM (empty) is admissible

If ε | 3Σ | Γ is provable in the calculus (K +T)S,3 plus the rule ε|3Σ|Γ
H|3Σ|Γ(empty), then (K +T)S,3 `

ε | 3Σ | Γ.

Proof

Let P be a proof of ε | 3Σ | Γ in (K+T)S,3 plus the rule (empty). If we remove the applications of
(empty) and all histories, then we obtain a proof of 3Σ | Γ in (K +T)S,2, i.e. (K +T)S,2 ` 3Σ | Γ
(induction on proof depth). With theorem 5.3.15 follows (K + T)S,3 ` ε | 3Σ | Γ.

5.3.25 REMARK using optimisations during proof search in (K + T)S,3

Note that in theorem 5.3.21 we write (K + T)S,3 ` ε | 3Σ | A,nnf(¬A),Γ and not (K + T)S,3 `
H | 3Σ | A,nnf(¬A),Γ, since for example (K + T)S,3 0 [2p1,3¬p1] | ε | 2p1,3¬p1. Also in the
theorems 5.3.22 and 5.3.23 we have empty histories. During backward proof search, however, the
history will in general not be empty, i.e. we cannot apply these theorems directly.

This problem is solved by theorem 5.3.24. If we obtain a sequent H | 3Σ | Γ during backward
proof search and we know that the sequent ε | 3Σ | Γ is provable in (K + T)S,3, then we simply
insert a backward application of the (empty) rule. If the whole search is successful, then we
obtain a proof in (K + T)S,3 plus the rule (empty). Provided that we did backward proof search
for a sequent of the form ε | ε | B, we can now apply theorem 5.3.24.

Example

We do backward proof search in (K + T)S,3 for the sequent ε | ε | 2(2p0 ∨ 3¬p0) ∨ 3p2. After
four backward applications of rules, we have the following situation:

[2(2p0 ∨3¬p0),3p2] | ε | 2p0,3¬p0, p2 (∨)
[2(2p0 ∨3¬p0),3p2] | ε | 2p0 ∨3¬p0, p2 (2)

ε | 3p2 | 2(2p0 ∨3¬p0)
(3,new)

ε | ε | 2(2p0 ∨3¬p0),3p2 (∨)
ε | ε | 2(2p0 ∨3¬p0) ∨3p2

Since the right hand side of the sequent [2(2p0 ∨ 3¬p0),3p2] | ε | 2p0,3¬p0, p2 is of the form
A,nnf(¬A),Γ, we apply (empty) backwards to obtain the sequent ε | ε | 2p0,3¬p0, p2 and then
know because of theorem 5.3.21 that this sequent is provable in (K + T)S,3. We end up with the
following proof of ε | ε | 2(2p0 ∨3¬p0) ∨3p2 in (K + T)S,3 plus the rule (empty):

P
ε | ε | 2p0,3¬p0, p2 (empty)

[2(2p0 ∨3¬p0),3p2] | ε | 2p0,3¬p0, p2 (∨)
[2(2p0 ∨3¬p0),3p2] | ε | 2p0 ∨3¬p0, p2 (2)

ε | 3p2 | 2(2p0 ∨3¬p0)
(3,new)

ε | ε | 2(2p0 ∨3¬p0),3p2 (∨)
ε | ε | 2(2p0 ∨3¬p0) ∨3p2

Note that we do not construct the proof P of the sequent ε | ε | 2p0,3¬p0 in (K + T)S,3,
but because of theorem 5.3.21 we know that such a proof exists. With theorem 5.3.24 follows
(K + T)S,3 ` ε | ε | 2(2p0 ∨3¬p0) ∨3p2.

5.3. K + T 115

s(∨)
s����HH

HH (∧)

r(3,new)
r(2)
r(id)

s(3,new)
s(2)
sHHHH ��
��(∧)

s(2)
s@@ �
�(∧)
sfail r(2)
r��AA (∧)
rfail rfail

r(2)
r@@ �
�(∧)
r(2)
rAA ��(∧)
rfail rfail

rfail
At first we apply (∨) backwards.
One branch caused by the following
backward application of (∧) ends in
an instance of the (id) axiom. The
other branch splits up in six sub-
branches, which all fail. Note that
in this example there is no possi-
bility for backtracking. Therefore
(K + T)S,3 ` 3p0 ∨ p1,nnf(¬T).
The thick lines correspond to the
leftmost model in figure 5.h.

Figure 5.f: The search tree of the example in remark 5.3.26. See figure
5.g for a part of the corresponding non-proof, and figure 5.h for the six
countermodels that correspond to the six failing branches.

5.3.26 REMARK (K + T)S,3: backward proof search

Assume that the backward proof search fails. As for K we can extract a countermodel from
the search tree. First we choose a subtree exactly as we did for example for KS,2. In contrast
to KS,2, we now have nodes marked with fail that failed because of the loop check in the (2)
rule of (K + T)S,3. If we cannot apply (2) backwards because [2A,3Σ] ∈ H, then the sequent
A,Σ,nnf(¬T) must have occurred before on this branch. Therefore we obtain a loop in the
countermodel for each such node.

Example

Backward proof search for 3p0 ∨ p1 in (K + {3p0 ∨ 3p1})S,3 terminates, in contrast to proof
search in (K + {3p0 ∨3p1})S,2 (cp. the example in remark 5.3.12). Note that in this example we
have no possibility for backtracking, since we always have at most one possible way to apply (2)
backwards. Therefore the extracted countermodels consist of just one branch.

See figure 5.f for the search tree and 5.g for a part of the corresponding non-proof. Figure 5.h
shows the six countermodels that correspond to the six failed branches of the search tree.

5.3.27 REMARK size of elements of the history

The history in the sequents in (K + T)S,3 is a multiset of multisets of formulas, whereas for S4
there is a calculus where the history is just a multiset of formulas. Why this difference? From
theorem 6.3.1 follows that in K + T branches of countermodels must sometimes have exponential
length (with respect to length(A) + length(T)). If we do backward proof search in a sequent
calculus for K + T and it is possible to extract countermodels from a failed search ‘in the usual
way’, then there are branches in the search tree with exponential length, i.e. a history can contain
exponentially many different elements. Therefore the history cannot be a multiset of subformulas
of A and T , since there are at most length(A) + length(T) different subformulas of A and T .

116 CHAPTER 5. SEQUENT CALCULI

[2
¬
p

0],Π
|
ε
|¬
p

0 ,
2
¬
p

0

[2
¬
p

1],[2
¬
p

0],Π
|
ε
|¬
p

1 ,
2
¬
p

0
[2
¬
p

1],[2
¬
p

0],Π
|
ε
|¬
p

1 ,
2
¬
p

1
(∧

)
[2
¬
p

1],[2
¬
p

0],Π
|
ε
|¬
p

1 ,A
(2

)
[2
¬
p

0],Π
|
ε
|¬
p

0 ,
2
¬
p

1
(∧

)
[2
¬
p

0],Π
|
ε
|¬
p

0 ,A
(2

)
Π
|
ε
|¬
p

1 ,p
0 ,

2
¬
p

0
...

(∧
)

Π
|
ε
|¬
p

1 ,p
0 ,A

(2
)

ε
|
3
p

0
|
p

1 ,
2
¬
p

1
(3
,new

)
ε
|
ε
|
3
p

0 ,p
1 ,

2
¬
p

1
(∧

)
ε
|
ε
|
3
p

0 ,p
1 ,A

(∨
)

ε
|
ε
|
3
p

0 ∨
p

1 ,A

(id)
[2
¬
p

0 ,
3
p

0]|
ε
|¬
p

0 ,p
0 ,A

(2
)

ε
|
3
p

0
|
p

1 ,
2
¬
p

0
(3
,new

)
ε
|
ε
|
3
p

0 ,p
1 ,

2
¬
p

0

F
igure

5.g:
A

part
of

the
nonproof

of
the

exam
ple

in
5.3.26.

W
e

use
the

abbreviations
A
≡

2
¬
p

0
∧

2
¬
p

1
and

Π
=

[2
¬
p

1 ,
3
p

0].
See

figure
5.f

for
the

corresponding
search

tree.

5.4. KT 117

��
��
¬p1

6
��
��
¬p0
p1

6
��
��
p0
���

��
��
¬p1

6
��
��
¬p0
p1

6
��
��
p0

6
��
��
p1 �

��

��
��
¬p1

6
��
��
¬p0
p1

6
��
��
p0

6
��
��
p1
���

��
��
¬p1

6
��
��
¬p0
p1

6
��
��
p1

6
��
��
p0
���

��
��
¬p1

6
��
��
¬p0
p1

6
��
��
p1

6
��
��
p0 �

��

��
��
¬p1

6
��
��
¬p0
p1

6
��
��
p1
���

Figure 5.h: The six countermodels of the example in 5.3.26. They corre-
spond to the six failing branches of the search tree in figure 5.f.

5.3.28 REMARK K + T and PLTL

The models in figure 5.h remind one of PLTL models. The calculus (K + T)S,3 is designed for
a depth-first backward proof search. In the (2) rule we check only whether the current sequent
already occurred before on the same branch. However, the same states can occur frequently on
different branches. Therefore it is possible that a search method as for PLTL as the one used in
[Gou89], [Jan90] and [Wol85], where the current state is compared with all other states computed
so far, is advantageous.

5.4 KT

5.4.1 REMARK from KTG,2 to KTS

This is the same step as the one from KG,2 to KS (cp. remark 5.2.1). Since no rule of KG,2

influences a node that is nearer to the root than the current node, we can forget everything about
the worlds ‘below’ the current world.
In contrast to the calculus for K, we have the formula A in the premise of the (3) rule.

5.4.2 DEFINITION sequent calculus KTS

axioms:

3Σ | true,Γ
(true)

3Σ | P,¬P,Γ
(id)

rules:
3Σ | A,B,Γ

3Σ | A ∨B,Γ
(∨)

3Σ | A,Γ 3Σ | B,Γ
3Σ | A ∧B,Γ

(∧)

118 CHAPTER 5. SEQUENT CALCULI

3A,3Σ | A,Γ
3Σ | 3A,Γ

(3)
ε | A,Σ

3Σ | 2A,Γ
(2)

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 3A in (3), 2A in
(2)

Example

KTS ` ε | 332(p0 ∨ 23¬p0) as the following proof shows. We use the abbreviation A ≡
2(p0 ∨23¬p0). See also theorem 6.4.4.

(id)
ε | p0,23¬p0,¬p0 (∨)
ε | p0 ∨23¬p0,¬p0 (2)

3¬p0 | ¬p0, A (3)
ε | 3¬p0, A (2)

3A | p0,23¬p0, A,A (3)
ε | p0,23¬p0, A,3A (∨)
ε | p0 ∨23¬p0, A,3A (2)

3A,33A | A
(3)

33A | 3A
(3)

ε | 33A

Note that KTS 0 ε | 32(p0 ∨23¬p0), i.e. KT |= 33A, but KT 6|= 3A.

5.4.3 THEOREM KTS : weakening

If KTS ` 3Σ | Γ, then KTS ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of 3Σ | Γ,
then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

We make an induction on proof depth. The cases where the last step is an instance of an axiom
or an application of (∨), (∧) or (2) are the same as in the corresponding proof for KS (theorem
5.2.3). We only show the case with (3).

1. The last step is 3A,3Σ|A,Γ
3Σ|3A,Γ (3): We obtain KTS ` 3∆,3A,3Σ | Π, A,Γ with the induction

hypothesis, and with an application of (3) follows KTS ` 3∆,3Σ | Π,3A,Γ.

5.4.4 THEOREM KTS : invertible rules

The rule (2) of KTS is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the corresponding proof for KS (theorem 5.2.4). The only interesting case is
(2) · · ·; (3)(2) . To prove it, we use the transformation below plus weakening.

ε | A,Σ
(2)

3Σ | 2A,3B,Γ
;

ε | A,B,Σ
(2)

3B,3Σ | 2A,B,Γ
(3)

3Σ | 2A,3B,Γ

5.4. KT 119

5.4.5 THEOREM KTS : duplicate formulas

KTS ` 3Σ | A,A,Γ ⇒ KTS ` 3Σ | A,Γ
KTS ` 3A,3A,3Σ | Γ ⇒ KTS ` 3A,3Σ | Γ

Proof

The proof is analogous to the corresponding proof for KS (theorem 5.2.6). We show only the case
where the last step is (3) application with the duplicate formula as the main formula.

1. The last step is 3B,3Σ|B,3B,Γ
3Σ|3B,3B,Γ (3), where A ≡ 3B: Let d be the depth of the proof of

3B,3Σ | B,3B,Γ. Since (3) is strongly invertible we know that KS ` 3B,3B,3Σ |
B,B,Γ with a proof of depth ≤ d − 1. Using the induction hypothesis twice we obtain
KTS ` 3B,3Σ | B,Γ with a proof of depth ≤ d− 1, and with an application of (3) follows
KTS ` 3Σ | 3B,Γ with a proof of depth ≤ d.

5.4.6 THEOREM equivalence of KTG,2 and KTS

KTG,2 ` ε | A ⇔ KTS ` ε | A

Proof

‘⇒’:

We can proceed exactly as in the corresponding proof of the equivalence of KG,2 and KS (theorem
5.2.7). We can easily check that the step by step translation at the end of the proof is still
possible.

‘⇐’:

As for K (cp. theorem 5.2.7) we can translate the proof step by step (beginning at the root).

5.4.7 THEOREM proofs in KTH from proofs in KTS

KTS ` ε | nnf(A) ⇒ KTH ` A

Proof

We can reuse most parts of the proof of 5.2.8.

In addition we have to prove that KTH ` 3C ∨ 3A1 ∨ . . . ∨ 3Am ∨ C ∨ B2 ∨ . . . ∨ Bn implies
KTH ` 3A1 ∨ . . . ∨ 3Am ∨ 3C ∨ B2 ∨ . . . ∨ Bn. This follows from the proof fragment in figure
5.i.

5.4.8 REMARK two multisets per sequent

Usually a sequent in a sequent calculus consists of only one multiset. One way to look at the
two multisets in the sequent in KTS is to consider the formulas on the left hand side as marked
formulas. This mark prevents repeated backward application of the (3) rule. In remark 5.4.9 we
will see that this is important for termination.

120 CHAPTER 5. SEQUENT CALCULI

...
3C ∨3A1 ∨ . . . ∨3Am
∨ C ∨B2 ∨ . . . ∨Bn

(t)
2¬C → ¬C

... (322), (cpc), (mp)

C → 3C

... (cpc), (mp)

C ∨3C → 3C

... (cpc), (mp)

(3C∨3A1∨ . . .∨3Am∨C∨B2∨ . . .∨Bn)
→ (3A1∨ . . .∨3Am∨3C ∨B2∨ . . .∨Bn)

(mp)
3A1 ∨ . . . ∨3Am ∨3C ∨B2 ∨ . . . ∨Bn

Figure 5.i: Simulating the (3) rule of KTS in KTH.

5.4.9 REMARK simplifying KTS

If we simplify the calculus KTS in the same way as we simplified KS in remark 5.2.9, then we
obtain the following calculus.

axioms:

true,Γ
(true)

P,¬P,Γ
(id)

rules:
A,B,Γ
A ∨B,Γ

(∨)
A,Γ B,Γ
A ∧B,Γ

(∧)

A,3A,Γ
3A,Γ

(3)
A,Γ

2A,3Γ,∆
(2)

The only difference between this calculus and the corresponding sequent calculus for K is the
additional (3) rule. This rule contains a hidden contraction, and therefore backward proof search
in the new calculus for KT does in general not terminate.

Example

Backward proof search for 3(p0 ∧ p2) ∨ ¬p0 does not terminate in the calculus defined in this
remark, although we never apply (3) backwards on a formula 3A if A already occurs in the
sequent.

(id)
p0,3(p0 ∧ p2),¬p0

(id)
p2, p0,3(p0 ∧ p2),¬p0

... (3)
p2, p2,3(p0 ∧ p2),¬p0 (∧)

p2, p0 ∧ p2,3(p0 ∧ p2),¬p0 (3)
p2,3(p0 ∧ p2),¬p0 (∧)

p0 ∧ p2,3(p0 ∧ p2),¬p0 (3)
3(p0 ∧ p2),¬p0 (∨)

3(p0 ∧ p2) ∨ ¬p0

5.4. KT 121

5.4.10 REMARK from KTS to KTS,2

The difference between KTS and KTS,2 is the same as the difference between KS and KS,2: We
avoid duplicate 3 formulas on the left hand side of the sequent. In contrast to K, this has
important consequences for backward proof search (see theorem 6.4.4).

5.4.11 DEFINITION sequent calculus KTS,2

axioms:

3Σ | true,Γ
(true)

3Σ | P,¬P,Γ
(id)

rules:
3Σ | A,B,Γ

3Σ | A ∨B,Γ
(∨)

3Σ | A,Γ 3Σ | B,Γ
3Σ | A ∧B,Γ

(∧)

3A,3Σ | A,Γ
3Σ | 3A,Γ

3A /∈ 3Σ (3,new)
3Σ | A,Γ

3Σ | 3A,Γ
3A ∈ 3Σ (3,dup)

ε | A,Σ
3Σ | 2A,Γ

(2)

main formulas: true in (true), P and ¬P in (id), A∨B in (∨), A∧B in (∧), 3A in (3,new) and
(3,dup), 2A in (2)
side formulas: A and B in (∨), A and B in (∧), 3A and A in (3,new), A in (3,dup), A in (2)

5.4.12 THEOREM KTS,2: weakening

If KTS,2 ` 3Σ | Γ, then KTS,2 ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of
3Σ | Γ, then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

Compared to the corresponding proof for KS,2 (theorem 5.2.11), only the cases for (3,new) and
(3,dup) are different.

1. The last step is 3A,3Σ|A,Γ
3Σ|3A,Γ (3,new): If 3A /∈ 3∆, then KTS,2 ` 3∆,3A,3Σ | Π, A,Γ be-

cause of the induction hypothesis, and with a (3,new) application follows KTS,2 ` 3∆,3Σ |
Π,3A,Γ. If 3A ∈ 3∆, then KTS,2 ` 3∆,3Σ | Π, A,Γ because of the induction hypothesis,
and with a (3,dup) application follows KTS,2 ` 3∆,3Σ | Π,3A,Γ.

2. The last step is 3Σ|Γ
3Σ|3A,Γ(3,dup): With the induction hypothesis we obtain KTS,2 ` 3∆,3Σ |

Π,3A,Γ.

Note that if we removed the rule (3,dup) from the calculus KTS,2, then this theorem would no
longer be true, as e.g. ε | 3(p0 ∨ ¬p0) would be provable, but not 3(p0 ∨ ¬p0) | 3(p0 ∨ ¬p0).

5.4.13 THEOREM KTS,2: invertible rules

The rule (2) of KTS,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the proof of theorem 5.2.12. The interesting cases are (2) · · ·; (3,new)(2) · · · and
(2) · · ·; (3,dup)(2) · · · . To prove them, we use the first transformation below plus weakening
and the second transformation, respectively.

122 CHAPTER 5. SEQUENT CALCULI

ε | A,Σ
(2)

3Σ | 2A,3B,Γ
;

ε | A,B,Σ
(2)

3B,3Σ | 2A,B,Γ
(3,new)

3Σ | 2A,3B,Γ

...
ε | A,Σ

(2)
3Σ | 2A,3B,Γ

;

...
ε | A,Σ

(2)
3Σ | 2A,B,Γ

(3,dup)
3Σ | 2A,3B,Γ

5.4.14 THEOREM KTS,2: duplicate formulas

KTS,2 ` 3Σ | A,A,Γ ⇒ KTS,2 ` 3Σ | A,Γ

Proof

The proof is analogous to the corresponding proof for KTS (theorem 5.4.5). We show only those
cases where the last step is a (3,new) or (3,dup) application with the duplicate formula as its
main formula.

1. The last step is 3B,3Σ|B,3B,Γ
3Σ|3B,3B,Γ (3,new), where A ≡ 3B: Let d be the depth of the proof of

3B,3Σ | B,3B,Γ. Since (3,dup) is strongly invertible we know that KTS,2 ` 3B,3Σ |
B,B,Γ with a proof of depth ≤ d − 1. Using the induction hypothesis we obtain KTS,2 `
3B,3Σ | B,Γ with a proof of depth ≤ d − 1, and with an application of (3,new) follows
KTS,2 ` 3Σ | 3B,Γ with a proof of depth ≤ d.

2. The last step is 3Σ|B,3B,Γ
3Σ|3B,3B,Γ(3,dup), where A ≡ 3B: Let d be the depth of the proof of

3Σ | B,3B,Γ. Since (3,dup) is strongly invertible we know that KTS,2 ` 3Σ | B,B,Γ
with a proof of depth ≤ d−1. Using the induction hypothesis we obtain KTS,2 ` 3Σ | B,Γ
with a proof of depth ≤ d − 1, and with an application of (3,dup) follows KTS,2 ` 3Σ |
3B,Γ with a proof of depth ≤ d.

5.4.15 THEOREM equivalence of KTS and KTS,2

KTS ` ε | A ⇔ KTS,2 ` ε | A

Proof

We can reuse the proof of the corresponding theorem for KS and KS,2.

5.4.16 THEOREM KTS,2: termination

Backward proof search in KTS,2 for a sequent of the form ε | A always terminates.

Proof

We define m(3Σ | Γ) := c2 ·n2(3Σ | Γ) + length(Γ), where c := length(A) and n2(3Σ | Γ) is the
number of 2 symbols in the sequent 3Σ | Γ (e.g. n2(32p0 | 2p1 ∨22p0,32p0,32p0) = 6).

The value computed by m decreases with every backward application of a rule of KTS,2:

1. m(3Σ | A ∨B,Γ) > m(3Σ | A,B,Γ)

5.4. KT 123

2. m(3Σ | A ∧B,Γ) > m(3Σ | A,Γ), m(3Σ | A ∧B,Γ) > m(3Σ | B,Γ).

3. m(3Σ | 3A,Γ) > m(3A,3Σ | A,Γ)

4. m(3Σ | 3A,Γ) > m(3Σ | A,Γ)

5. Only the (2) rule is interesting:

m(3Σ | 2A,Γ)−m(ε | A,Σ)
≥ c2 · 1 + length(2A,Γ)− length(A,Σ)
= c2 + 1 + length(Γ)− length(Σ)
≥ c2 + 1− length(Σ)
≥ 1.

The last inequality is correct since Σ contains only elements from subfmls(A), Σ contains
no duplicate formulas, and length(subfmls(A)) ≤ (length(A))2. Theorem 6.4.4 shows how
important it is to remove duplicate 3 formulas.

Example

Backward proof search for 3(p0∧p2)∨¬p0 in KTS,2 terminates (cp. the example in remark 5.4.9).

(id)
3(p0 ∧ p2) | p0,¬p0 3(p0 ∧ p2) | p2,¬p0 (∧)

3(p0 ∧ p2) | p0 ∧ p2,¬p0 (3,new)
ε | 3(p0 ∧ p2),¬p0 (∨)
ε | 3(p0 ∧ p2) ∨ ¬p0

5.4.17 THEOREM KTS,2: extend (id)

If A is in negation normal form, then:

KTS,2 ` 3Σ | A,nnf(¬A),Γ

Proof

We make an induction on length(A). The proof is analogous to the corresponding proof for KS,2

(theorem 5.2.16). We only show the case where A ≡ 2B.

1. If nnf(¬B) /∈ Σ, then we obtain KTS,2 ` ε | B,nnf(¬B),Σ with the induction hypothesis,
with an application of (2) follows KTS,2 ` 3nnf(¬B),3Σ | 2B,Γ, and with a application
of (3,new) finally KTS,2 ` 3Σ | 3nnf(¬B),2B,Γ.

If nnf(¬B) ∈ Σ, then we obtain KTS,2 ` ε | B,Σ with the induction hypothesis, and with
an application of (2) follows KTS,2 ` 3Σ | 2B,3nnf(¬B),Γ.

5.4.18 THEOREM KTS,2: use-check

Assume that we do backward proof search for a sequent of the form ε | D. Let 3Σ | A,Γ be a
sequent we obtain during this search, and let P be a proof in KTS,2 of this sequent. We mark it
as follows:

• The main formulas in the instances of axioms are marked.

• If a side formula is marked, then the main formula is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in Γ is marked,
then the corresponding formula in the multiset Γ in the conclusion is marked.

124 CHAPTER 5. SEQUENT CALCULI

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in 3Σ is marked,
then the corresponding formula in the multiset 3Σ in the conclusion is marked.

• If in the premise of an instance of (2) a formula in Σ is marked, then the corresponding
formula in the multiset 3Σ in the conclusion is marked.

If the formula A in the sequent 3Σ | A,Γ is not marked, then KTS,2 ` 3Σ | Γ.

Proof
In the same way as in the proof of theorem 5.2.17 we prove the following: If P is a proof of
3∆,3Σ | Π,Γ in KTS,2 and no formula in 3∆ or Π is marked, then KTS,2 ` 3Σ | Γ.

The only additional case is the case where the last step in P is ε|B,∆,Σ
3∆,3Σ|2B,Π1,Γ

where Π = 2B,Π1.

With the induction hypothesis we obtain KTS,2 ` ε | Σ.
First we consider two special cases. Assume that there is a 2 formula 2C in the multiset Γ.
With weakening we obtain KTS,2 ` ε | Σ, C, and with a (2) application follows KTS,2 ` 3Σ | Γ.
If ε | Γ is provable, then we obtain the same result directly with weakening.
Now let S1 be the sequent 3∆,3Σ | 2B,Π1,Γ. We go from S1 towards the root of P, i.e. towards
ε | D. Let S be the first sequent with an empty left hand side we find. We will always find such a
sequent since the root is of this form (cp. remark 5.4.19). Thus for every 3C ∈ 3Σ the formula
3C is the main formula of a (3,new) application between S1 and S. Consequently for every
3C ∈ 3Σ the formula C is an element of Γ or the main formula of an application of (∨), (∧),
(3,new) or (3,dup) between S1 and S. (This is not true in the case of our sequent calculi for K.)
Starting from ε | Σ we apply (∧), (∨), (3,new), (3,dup) backwards. We do it in the same way
as on the branch between S and S1 and always choose the same premise in order to continue. We
obtain a branch that begins with ε | Σ and ends in a sequent of the form 3Σ′ | Γ′, where Γ′ ⊆ Γ
and Σ′ ⊆ Σ. Since (∧), (∨), (3,new), (3,dup) are invertible and ε | Σ is provable, we know that
3Σ′ | Γ′ is provable. But then also 3Σ | Γ is provable because of weakening.

5.4.19 REMARK KTS,2: use-check

In theorem 5.4.18, we cannot omit the condition that we do backward proof search for a sequent
with an empty left hand side.

Example

In the proof of the sequent 3(p0 ∨ ¬p0) | 2p1 no subformula of 2p1 is a main formula in an
instance of an (id) axiom. Nevertheless KTS,2 0 3(p0 ∨ ¬p0) | p2, since no rule is applicable
backwards. This cannot happen during backward proof search in KTS,2 for a sequent of the form
ε | D.

5.5 KT + T

5.5.1 DEFINITION sequent calculus (KT + T)S

(KT + T)S is the calculus KTS with the (2) rule replaced by

ε | A,Σ,nnf(¬T)
3Σ | 2A,Γ

(2)

The main formula of this rule is 2A.

Example

If T = p0,2p1, then (KT + T)S ` ε | 2(p0 ∧ p1),nnf(¬T), as the following proof shows.

5.5. KT + T 125

(id)
3¬p1 | p0,¬p1,¬p0,¬p1

(id)
3¬p1 | p1,¬p1,¬p0,¬p1 (∧)

3¬p1 | p0 ∧ p1,¬p1,¬p0,¬p1 (3)
ε | p0 ∧ p1,¬p1,¬p0,3¬p1 (2)

3¬p1 | 2(p0 ∧ p1),¬p0,¬p1 (3)
ε | 2(p0 ∧ p1),¬p0,3¬p1

5.5.2 THEOREM (KT + T)S : weakening

If (KT +T)S ` 3Σ | Γ, then (KT +T)S ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof
of 3Σ | Γ, then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

Except for the multiset nnf(¬T) in the premise of (2) applications the proof is the same as the
corresponding proof for KTS (theorem 5.4.3).

5.5.3 THEOREM (KT + T)S : invertible rules

The rule (2) of (KT + T)S is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the corresponding proof for KTS (theorem 5.4.4).

5.5.4 THEOREM (KT + T)S : duplicate formulas

(KT + T)S ` 3Σ | A,A,Γ ⇒ (KT + T)S ` 3Σ | A,Γ
(KT + T)S ` 3A,3A,3Σ | Γ ⇒ (KT + T)S ` 3A,3Σ | Γ

Proof

The only difference between this proof and the corresponding proof for KTS (theorem 5.4.5) is
the multiset nnf(¬T) in the premises of (2) application.

5.5.5 THEOREM equivalence of (KT + T)G,2 and (KT + T)S

If A is in negation normal form, then:

(KT + T)G,2 ` ε | A,nnf(¬T) ⇔ (KT + T)S ` A,nnf(¬T)

Proof

The only difference between this proof and the corresponding proof for KTS (theorem 5.4.6) is
the multiset nnf(¬T) in the premises of (2) applications. Since we have nnf(¬T) both in the
(2) rule of (KT + T)G,2 and in the (2) rule of (KT + T)S , the translation at the end of the proof
causes no difficulties.

5.5.6 THEOREM proofs in (KT + T)H from proofs in (KT + T)S

(KT + T)S ` nnf(A),nnf(¬T) ⇒ (KT + T)H ` A

126 CHAPTER 5. SEQUENT CALCULI

Proof
We can reuse most parts of the corresponding proof for (KT+T)H and (KT+T)S (theorem 5.4.7).
In addition, we have to show that if T = C1, . . . , Cn, then (KT + T)H ` B ∨C1 ∨ . . .∨Cn implies
(KT + T)H ` B. This follows from (KT + T)S ` Ci (for all i ∈ {1, . . . , n}) with applications of
(cpc) and (mp).

5.5.7 DEFINITION sequent calculus (KT + T)S,2

(KT + T)S,2 is the calculus KTS,2 with the (2) rule replaced by

ε | A,Σ,nnf(¬T)
3Σ | 2A,Γ

(2)

The main formula of this rule is 2A.

5.5.8 THEOREM (KT + T)S,2: weakening

If (KT + T)S,2 ` 3Σ | Γ, then (KT + T)S,2 ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the
proof of 3Σ | Γ, then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof
Except for the multiset nnf(¬T) in the premise of (2) applications the proof is the same as the
corresponding proof for KTS,2 (theorem 5.4.12).

5.5.9 THEOREM (KT + T)S,2: invertible rules

The rule (2) of (KT + T)S,2 is not invertible. All the other rules are strongly invertible.

Proof
Analogous to the corresponding proof for KTS,2 (theorem 5.4.13).

5.5.10 THEOREM (KT + T)S,2: duplicate formulas

(KT + T)S,2 ` 3Σ | A,A,Γ ⇒ (KT + T)S,2 ` 3Σ | A,Γ

Proof
The only difference between this proof and the corresponding proof for KTS,2 (theorem 5.4.14) is
the multiset nnf(¬T) in the premises of (2) applications.

5.5.11 THEOREM equivalence of (KT + T)S and (KT + T)S,2

(KT + T)S ` ε | A,nnf(¬T) ⇔ (KT + T)S,2 ` ε | A,nnf(¬T)

Proof
Analogous to the corresponding proof for KTS and KTS,2 (theorem 5.4.6).

5.5.12 REMARK (KT + T)S,2: non-termination

Backward proof search in (KT + T)S,2 does in general not terminate.

Example

If T = p0 ∨3p1, then backward proof search for 3p0,nnf(¬T) in (KT +T)S,2 does not terminate
if we use a depth-first search on the rightmost branch.

5.5. KT + T 127

(id)
3p0 | p0,¬p0

(id)
ε | ¬p1, p0,¬p0

ε | ¬p1,¬p0

... (∧)
ε | ¬p1,¬p0 ∧2¬p1 (2)

ε | ¬p1,2¬p1 (∧)
ε | ¬p1,¬p0 ∧2¬p1 (2)
ε | ¬p1, p0,2¬p1 (∧)

ε | ¬p1, p0,¬p0 ∧2¬p1 (2)
3p0 | p0,2¬p1 (∧)

3p0 | p0,¬p0 ∧2¬p1 (3,new)
ε | 3p0,¬p0 ∧2¬p1

5.5.13 REMARK from (KT + T)S,2 to (KT + T)S,3

We use the same idea as when going from (K + T)S,2 to (K + T)S,3. We add a history to the
sequents and use a loop-check in the (2) rule to ensure termination. With the conditions in the
rules (3,new) and (3,dup) we limit the number of possible elements of the history.

5.5.14 DEFINITION sequent calculus (KT + T)S,3

axioms:

H | 3Σ | true,Γ
(true)

H | 3Σ | P,¬P,Γ
(id)

rules:
H | 3Σ | A,B,Γ
H | 3Σ | A ∨B,Γ

(∨)
H | 3Σ | A,Γ H | 3Σ | B,Γ

H | 3Σ | A ∧B,Γ
(∧)

H | 3A,3Σ | A,Γ
H | 3Σ | 3A,Γ

3A /∈ 3Σ (3,new)
H | 3Σ | A,Γ
H | 3Σ | 3A,Γ

3A ∈ 3Σ (3,dup)

[2A,3Σ],H | ε | A,Σ,nnf(¬T)
H | 3Σ | 2A,Γ

[2A,3Σ] /∈ H (2)

main formulas: true in (true), P and ¬P in (id), A∨B in (∨), A∧B in (∧), 3A in (3,new) and
(3,dup), 2A in (2)
side formulas: A and B in (∨), A and B in (∧), A and 3A in (3,new), A in (3,dup), A in (2)

5.5.15 THEOREM equivalence of (KT + T)S,2 and (KT + T)S,3

(KT + T)S,2 ` 3Σ | Γ,nnf(¬T) ⇔ (KT + T)S,3 ` ε | 3Σ | Γ,nnf(¬T)

Proof

‘⇐’:
Let P be a proof of ε | 3Σ | Γ,nnf(¬T) in (KT + T)S,3. We omit the history in P. With
an induction on proof depth we can easily prove that we obtain a proof of 3Σ | Γ,nnf(¬T) in
(KT + T)S,2.

128 CHAPTER 5. SEQUENT CALCULI

‘⇒’:

We use the same transformation as in the corresponding proof for (K + T)S,2 and (K + T)S,3

(theorem 5.3.15) in order to obtain a proof in which no sequent occurs twice on a branch.

Now we add the history (beginning at the root of the proof) to the sequents. Again we proceed
as in the proof of theorem 5.3.15. We show only the cases where one of (2), (3,new), (3,dup)
is involved.

1. ε|A,Σ,nnf(¬T)
3Σ|2A,Γ (2) is a step in the proof, and the sequent 3Σ | 2A,Γ was transformed into

H | 3Σ | 2A,Γ: Then ε | A,Σ,nnf(¬T) is transformed into [2A,3Σ],H | 3Σ | 2A,Γ.
Because of the transformation we know that between the root of the new proof and this (2)
application there is no (2) application with a premise of the form H ′ | ε | A,Σ,nnf(¬T).
Thus [2A,3Σ] /∈ H.

2. 3A,3Σ|A,Γ
3Σ|3A,Γ (3,new) is a step in the proof, and the sequent 3Σ | 3A,Γ was transformed into
H | 3Σ | 3A,Γ: Then 3A,3Σ | A,Γ is transformed into H | 3A,3Σ | A,Γ.

3. 3Σ|A,Γ
3Σ|3A,Γ(3,dup) is a step in the proof, and the sequent 3Σ | 3A,Γ was transformed into
H | 3Σ | 3A,Γ: Then 3Σ | A,Γ is transformed into H | 3Σ | A,Γ.

5.5.16 THEOREM (KT + T)S,3: termination

Backward proof search in (KT + T)S,3 for sequents of the form ε | ε | A,nnf(¬T) always termi-
nates.

Proof

Assume that we do backward proof search for ε | ε | A,nnf(¬T). We define m(H | 3Σ | Γ) :=
(c+ c2) · (2c − card(H)) + length(Γ), where c := length(A) + length(nnf(¬T)).

If we do backward proof search for ε | ε | A, then certainly m(H | 3Σ | Γ) ≥ 0 for all sequents
H | 3Σ | Γ that can occur during the search, because of the subformula property of (KT + T)S,3

and since neither H nor 3Σ contain duplicate elements.

Obviously the value computed by m decreases when one of the rules (∧), (∨), (3,new), (3,dup)
is applied backwards. Since there are no duplicate elements in 3Σ this is also the case for the
(2) rule:

m(H | 3Σ | 2A,Γ)−m(H, [2A,3Σ] | ε | A,Σ,nnf(¬T))
= (c+ c2) · (card(H, [2A,3Σ])− card(H)) + length(2A,Γ)− length(A,Σ,nnf(¬T))
= (c+ c2) + 1 + length(Γ)− length(Σ)− length(nnf(¬T))
≥ (c+ c2) + 1− length(Σ)− length(nnf(¬T))
≥ (c+ c2) + 1− c2 − c
= 1.

5.5.17 THEOREM proofs in (KT + T)S,3

If (KT+T)S,3 ` ε | 3Σ | Γ,nnf(¬T), then there exists a proof of ε | 3Σ | Γ,nnf(¬T) in (KT+T)S,3

such that (2) is only applied backwards if no other rule is applicable backwards.

Proof

Because of theorem 5.5.9 and theorem 5.5.15 there exists a proof of 3Σ | Γ,nnf(¬T) in (KT+T)S,2

such that (2) is only applied backwards if no other rule is applicable backwards. We now use the
construction from the proof of theorem 5.5.15 to transform it into a proof of ε | 3Σ | Γ,nnf(¬T)
in (KT + T)S,3 of the desired form.

5.5. KT + T 129

5.5.18 THEOREM (KT + T)S,3: permutation of rules

For the calculus (KT + T)S,3, the following applies for all axioms x and all rules r:

• If r is not the rule (2), then x ; rx.

• If neither r nor s is the rule (2), then rs · · ·; sr · · · .

Proof

Since the only difference between (KT + T)S,2 and (KT + T)S,3 is in the (2) rule, we can use the
same transformations as in the proof of theorem 5.5.9.

5.5.19 REMARK invertible rules in (KT + T)S,3

We saw in remark 5.3.19 that the rule (3,new) of (K + T)S,3 is not invertible. Also the rule
(3,new) of (KT + T)S,3 is not invertible, since

(true)
[2true], [2true,3p1] | ε | true

(2)
[2true,3p1] | ε | 2true,3p1

is a proof of [2true,3p1] | ε | 2true,3p1 in (KT + T)S,3, but (KT + T)S,3 0 [2true,3p1] | 3p1 |
2true, p1.

The two theorems 5.5.17 and 5.5.18 show that if we do backward proof search in (KT + T)S,3 for
a sequent of the form ε | ε | A,nnf(¬T), then we can do this as if the rules (∨), (∧), (3,new),
(3,dup) were invertible.

5.5.20 THEOREM (KT + T)S,3: empty the history

(KT + T)S,3 ` H | 3Σ | Γ⇒ (KT + T)S,3 ` ε | 3Σ | Γ

Proof

We proceed as in the corresponding proof for (K + T)S,3 (theorem 5.3.20).

5.5.21 THEOREM (KT + T)S,3: extend (id)

If A is in negation normal form, then:

(KT + T)S,3 ` ε | 3Σ | A,nnf(¬A),Γ

Proof

With an induction on length(A) we prove (KT + T)S,2 ` 3Σ | A,nnf(¬A),Γ. We show only the
case where A ≡ 2B.

1. A ≡ 2B: If 3nnf(¬B) /∈ 3Σ, then we have (KT + T)S,2 ` ε | B,nnf(¬B),Σ,nnf(¬T)
because of the induction hypothesis. With a (2) application we obtain (KT + T)S,2 `
3nnf(¬B),3Σ | 2B,nnf(¬B),Γ, and with a (3,new) application (KT + T)S,2 ` 3Σ |
2B,3nnf(¬B),Γ. If 3nnf(¬B) ∈ 3Σ, then we have (KT + T)S ` ε | B,Σ,nnf(¬T), thus
with a (2) application (KT + T)S,2 ` 3Σ | 2B,3nnf(¬B),Γ.

Now we use theorem 5.5.15 to obtain (KT + T)S,3 ` ε | 3Σ | A,nnf(¬A),Γ.

130 CHAPTER 5. SEQUENT CALCULI

5.5.22 THEOREM (KT + T)S,3: duplicate formulas

(KT + T)S,3 ` H | 3Σ | A,A,Γ ⇒ (KT + T)S,3 ` ε | 3Σ | A,Γ

Proof

We proceed as in the corresponding proof for (K + T)S,3 (theorem 5.3.22).
With theorem 5.5.20 we obtain (KT + T)S,3 ` ε | 3Σ | A,A,Γ and with theorem 5.5.15 follows
(KT + T)S,2 ` 3Σ | A,A,Γ. Thus (KT + T)S,2 ` 3Σ | A,Γ because of theorem 5.5.10. With
theorem 5.5.15 we finally obtain (KT + T)S,3 ` ε | 3Σ | A,Γ.

5.5.23 THEOREM (KT + T)S,3: use-check

Assume that we do backward proof search for a sequent of the form ε | ε | D. Let H | 3Σ | A,Γ
be a sequent we obtain during this search, and let P be a proof in (KT + T)S,3 of this sequent.
We mark it as follows:

• The main formulas in the instances of axioms are marked.

• If a side formula is marked, then the main formula is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in Γ is marked,
then the corresponding formula in the multiset Γ in the conclusion is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in 3Σ is marked,
then the corresponding formula in the multiset 3Σ in the conclusion is marked.

• If in the premise of an instance of (2) a formula in Σ is marked, then the corresponding
formula in the multiset 3Σ in the conclusion is marked.

If the formula A in the sequent H | 3Σ | A,Γ is not marked, then (KT + T)S,3 ` ε | 3Σ | Γ.

Proof

First we prove the theorem for the calculus (KT + T)S,2, defining marked proofs in (KT + T)S,2

exactly as described above for (KT + T)S,3. Except for the multiset nnf(¬T) in the premises of
(2) applications this is the same proof as the one of theorem 5.4.18.
Now we take the marked proof P of H | 3Σ | A,Γ and omit all histories, but do not change the
marks. We call the result P ′. With an induction on proof depth we can easily show that P ′ is a
marked proof of 3Σ | A,Γ in (KT + T)S,2. Thus A is not marked, and therefore (KT + T)S,2 `
3Σ | Γ. With theorem 5.5.15 we obtain (KT + T)S,3 ` ε | 3Σ | Γ.

5.5.24 THEOREM (empty) is admissible

If ε | 3Σ | Γ is provable in the calculus (KT+T)S,3 plus the rule ε|3ΣΓ
H|3ΣΓ(empty), then (KT+T)S,3 `

ε | 3Σ | Γ.

Proof

Let P be a proof of ε | 3Σ | Γ in (KT+T)S,3 plus the rule (empty). If we remove the applications
of (empty) and all histories, then we obtain a proof of 3Σ | Γ in (KT + T)S,2, i.e. (KT + T)S,2 `
3Σ | Γ. With theorem 5.5.15, (KT + T)S,3 ` ε | 3Σ | Γ.

5.5.25 REMARK using optimisations during proof search in (KT + T)S,3

The preceding theorem has the same purpose as the corresponding theorem for (K + T)S,3: It
makes it possible to apply the theorems 5.5.21, 5.5.22, 5.5.23 during backward proof search even

5.6. S4 131

s���Q
Q
Q

(∧)
r(3,new)
r(id)

s(3,new)
s(2)
s��@

@ (∧)
r(id) s(2)
s��@

@ (∧)
rfail sfail

Two branches of the search tree fail.
Since no backtracking is possible
in this example, we therefore have
(KT + T)S,3 ` ε | ε | 3p0,nnf(¬T).
The branch that fails because the
right hand side of the sequent con-
tains only literals corresponds to the
countermodel without a loop. The
branch (drawn in thick lines) that
fails because of the loop check con-
dition in the (2) rule corresponds to
the countermodel with the loop.

Figure 5.j: The search tree of the example in remark 5.5.26. See fig-
ure 5.k for the corresponding non-proof and figure 5.l for the resulting
countermodels.

if the history is not empty. The only condition is that we started with a sequent of the form
ε | ε | A. The idea is the same as in the case of KS,3; therefore we just refer to remark 5.3.25.

5.5.26 REMARK (KT + T)S,3: backward proof search

We can extract countermodels from a failed backward proof search in the same way as in the case
of (K + T)S,3.

Example

We take the theory [p0 ∨3p1] and the formula 3p0 as in the example in remark 5.5.12.
See figure 5.j for the search tree and 5.k for the corresponding non-proof. Figure 5.l shows the
two resulting countermodels.

5.6 S4

5.6.1 DEFINITION sequent calculus S4S

axioms:

3Σ | true,Γ
(true)

3Σ | P,¬P,Γ
(id)

rules:
3Σ | A,B,Γ

3Σ | A ∨B,Γ
(∨)

3Σ | A,Γ 3Σ | B,Γ
3Σ | A ∧B,Γ

(∧)

3A,3Σ | A,Γ
3Σ | 3A,Γ

(3)
ε | A,3Σ

3Σ | 2A,Γ
(2)

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 3A in (3), 2A in
(2)

132 CHAPTER 5. SEQUENT CALCULI

(id)
ε
|
3
p

0
|
p

0 ,¬
p

0
(3
,new

)
ε
|
ε
|
3
p

0 ,¬
p

0

(id)
[2
¬
p

1 ,
3
p

0]|
ε
|¬
p

1 ,p
0 ,¬

p
0

[2
¬
p

1],[2
¬
p

1 ,
3
p

0]|
ε
|¬
p

1 ,¬
p

0
[2
¬
p

1],[2
¬
p

1 ,
3
p

0]|
ε
|¬
p

1 ,
2
¬
p

1
(∧

)
[2
¬
p

1],[2
¬
p

1 ,
3
p

0]|
ε
|¬
p

1 ,¬
p

0 ∧
2
¬
p

1
(2

)
[2
¬
p

1 ,
3
p

0]|
ε
|¬
p

1 ,p
0 ,

2
¬
p

1
(∧

)
[2
¬
p

1 ,
3
p

0]|
ε
|¬
p

1 ,p
0 ,¬

p
0 ∧

2
¬
p

1
(2

)
ε
|
3
p

0
|
p

0 ,
2
¬
p

1
(3
,new

)
ε
|
ε
|
3
p

0 ,
2
¬
p

1
(∧

)
ε
|
ε
|
3
p

0 ,¬
p

0 ∧
2
¬
p

1

F
igure

5.k:
T

he
non-proof

of
the

exam
ple

in
rem

ark
5.5.26.

See
figure

5.j
for

the
corresponding

search
tree

and
figure

5.l
for

the
resulting

counterm
odels.

5.6. S4 133

&%
'$
¬p0

6
&%
'$
¬p0
p1

6
&%
'$

p0
p1

&%
'$
¬p0

6
&%
'$
¬p0
p1

6
&%
'$

p1
�	�

Figure 5.l: The two countermodels of the example in remark 5.5.26. See
figure 5.j for the corresponding search tree.

Example

S4S ` ε | 3¬p1 ∨22p1, as the following proof shows.

(id)
3¬p1 | p1,¬p1 (3)
ε | p1,3¬p1 (2)

3¬p1 | 2p1,¬p1 (3)
ε | 2p1,3¬p1 (2)

3¬p1 | ¬p1,22p1 (3)
ε | 3¬p1,22p1 (∨)
ε | 3¬p1 ∨22p1

In contrast to KTS , no 3 is removed when (2) is applied backwards. Therefore ε | 3¬p1 ∨22p1

is provable in S4S , but not in KTS .

5.6.2 THEOREM S4S : weakening

If S4S ` 3Σ | Γ, then S4S ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of 3Σ | Γ,
then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

The proof is analogous to the corresponding proof for KTS (theorem 5.4.3). We only show the
case with (2).

1. The last step is ε|A,3Σ
3Σ|2A,Γ : With the induction hypothesis we obtain S4S ` ε | A,3∆,3Σ,

and with an application of (2) follows S4S ` 3∆,3Σ | Π,2A,Γ.

5.6.3 THEOREM S4S : invertible rules

The rule (2) of S4S is not invertible. All the other rules are strongly invertible.

134 CHAPTER 5. SEQUENT CALCULI

Proof

Analogous to the proof of theorem 5.4.4. We only show (2) · · ·; (3)(2) · · · . There we use the
transformation below and weakening.

ε | A,3Σ
(2)

3Σ | 2A,3B,Γ
;

ε | A,3B,3Σ
(2)

3B,3Σ | 2A,B,Γ
(3)

3Σ | 2A,3B,Γ

5.6.4 THEOREM S4S : duplicate formulas

S4S ` 3Σ | A,A,Γ ⇒ S4S ` 3Σ | A,Γ
S4S ` 3A,3A,3Σ | Γ ⇒ S4S ` 3A,3Σ | Γ

Proof

The proof for S4S is analogous to the corresponding proof for KTS (theorem 5.4.5). We show
only the cases where the last step is a (2) application.

1. The last step is ε|B,3Σ
3Σ|A,A,2B,Γ(2): With an application of (2) we obtain S4S ` 3Σ | A,2B,Γ.

2. The last step is ε|B,3C,3C,3Σ
3C,3C,3Σ|2B,Γ(2), where A ≡ 3C: With the induction hypothesis we obtain

S4S ` ε | B,3C,3Σ and with an application of (2) follows S4S ` 3C,3Σ | 2B,Γ.

3. The last step is ε|B,3Σ
3Σ|2B,2B,Γ(2), where A ≡ 2B: With an application of (2) we obtain

S4S ` 3Σ | 2B,Γ.

5.6.5 THEOREM equivalence of S4G,2 and S4S

If A is in negation normal form, then:

S4G,2 ` ε | A ⇔ S4S ` ε | A

Proof

‘⇒’:

We can proceed exactly as in the corresponding proof of the equivalence of KG,2 and KS (theorem
5.2.7). We can easily check that the step by step translation at the end of the proof is still
possible.

‘⇐’:

As for KG,2 and KS (cp. theorem 5.2.7) we can translate the proof step by step (beginning at the
root).

5.6.6 THEOREM proofs in S4H from proofs in S4S

S4S ` ε | nnf(A) ⇒ S4H ` A

5.6. S4 135

...
C ∨3A1 ∨ . . . ∨3Am

... (cpc), (mp), (322)

2¬A1 → . . .→ 2¬Am → C (2)
2(2¬A1 → . . .→ 2¬Am → C)

... (k), (cpc), (mp)

22¬A1 → . . .→ 22¬Am → 2C

... (4), (cpc), (mp)

2¬A1 → . . .→ 2¬Am → 2C

... (cpc), (mp), (322)

3A1 ∨ . . . ∨3Am ∨2C ∨B1 ∨ . . . ∨Bn

Figure 5.m: Simulating the (3) rule of S4S in S4H.

Proof

We can reuse most parts of the corresponding proof for KTH and KTS . In addition we have to
prove that S4H ` C ∨ 3A1 ∨ . . . ∨ 3Am implies S4H ` 3A1 ∨ . . . ∨ 3Am ∨ 2C ∨ B1 ∨ . . . ∨ Bn.
This follows from the proof fragment in figure 5.m.

5.6.7 REMARK from S4S to S4S,2

As in the case of KS and KTS , we split the rule (3) into two rules (3,new) and (3,dup). In
addition, we no longer set the left hand side to ε when we apply (2) backwards, but leave it
unchanged. This allows us to use Σ instead of 3Σ on the right hand side of the premise of the
(2) rule.

5.6.8 DEFINITION sequent calculus S4S,2

axioms:

3Σ | true,Γ
(true)

3Σ | P,¬P,Γ
(id)

rules:
3Σ | A,B,Γ

3Σ | A ∨B,Γ
(∨)

3Σ | A,Γ 3Σ | B,Γ
3Σ | A ∧B,Γ

(∧)

3A,3Σ | A,Γ
3Σ | 3A,Γ

3A /∈ 3Σ (3,new)
3Σ | A,Γ

3Σ | 3A,Γ
3A ∈ 3Σ (3,dup)

3Σ | A,Σ
3Σ | 2A,Γ

(2)

main formulas: true in (true), P and ¬P in (id), A ∨ B in (∨), A ∧ B in (∧), 3A in (3), 2A in
(2)

136 CHAPTER 5. SEQUENT CALCULI

side formulas: A and B in (∨), A and B in (∧), 3A and A in (3,new), A in (3,dup), A in (2)

5.6.9 THEOREM S4S,2: weakening

If S4S,2 ` 3Σ | Γ, then S4S,2 ` 3∆,3Σ | Π,Γ. Moreover, if d is the depth of the proof of 3Σ | Γ,
then there exists a proof of 3∆,3Σ | Π,Γ whose depth is at most d.

Proof

The proof is analogous to the corresponding proof for KTS (theorem 5.4.3). We only show the
case with (2).

1. The last step is 3Σ|A,Σ
3Σ|2A,Γ(2): With the induction hypothesis we obtain S4S ` 3∆,3Σ |

A,∆,Σ, and with an application of (2) follows S4S ` 3∆,3Σ | Π,2A,Γ.

5.6.10 THEOREM S4S,2: invertible rules

The rule (2) of S4S,2 is not invertible. All the other rules are strongly invertible.

Proof

Analogous to the corresponding proof for KS,2 (theorem 5.4.13). We only show (2) · · · ;

(3,new)(2) · · · and (2) · · · ; (3,dup)(2) · · · . There we use the first transformation below
plus weakening and the second transformation, respectively.

3Σ | A,Σ
(2)

3Σ | 2A,3B,Γ
;

3B,3Σ | A,B,Σ
(2)

3B,3Σ | 2A,B,Γ
(3,new)

3Σ | 2A,3B,Γ

...
3Σ | A,Σ

(2)
3Σ | 2A,3B,Γ

;

...
3Σ | A,B,Σ

(2)
3Σ | 2A,B,Γ

(3,dup)
3Σ | 2A,3B,Γ

5.6.11 THEOREM S4S,2: duplicate formulas

S4S,2 ` 3Σ | A,A,Γ ⇒ S4S,2 ` 3Σ | A,Γ

Proof

The proof for S4S,2 is analogous to the corresponding proof for KTS,2 (theorem 5.4.14). We show
only the cases where the last step is a (2) application.

1. The last step is 3Σ|B,Σ
3Σ|A,A,2B,Γ(2): With an application of (2) we obtain S4S,2 ` 3Σ |

A,2B,Γ.

2. The last step is 3Σ|B,Σ
3Σ|2B,2B,Γ(2), where A ≡ 2B: With an application of (2) we obtain

S4S,2 ` 3Σ | 2B,Γ.

5.6.12 THEOREM equivalence of S4S and S4S,2

S4S ` ε | A ⇔ S4S,2 ` ε | A

5.6. S4 137

Proof

Let S4S,2− be the calculus S4S,2 with the (2) rule replaced by ε|A,3Σ
3Σ|2A,Γ . The difference between

S4S and S4S,2− is the same as the difference between KS and KS,2. We can thus proceed as in
the proof of theorem 5.2.14 in order to show S4S ` ε | A⇔ S4S,2− ` ε | A.
It remains to show S4S,2− ` ε | A⇔ S4S,2 ` ε | A.
If P is a proof in S4S,2, then we use the transformation

...
3B1, . . . ,3Bn | A,B1, . . . , Bn (2)

3B1, . . . ,3Bn | 2A,Γ
...

;

...
3B1, . . . ,3Bn | A,B1, . . . , Bn (3,new)

... (3,new)
3B1 | A,B1,3B2, . . . ,3Bn (3,new)

ε | A,3B1, . . . ,3Bn (2)
3B1, . . . ,3Bn | 2A,Γ

...

to convert it into a proof of the same sequent in S4S,2−. Thus S4S,2 ` ε | A⇒ S4S,2− ` ε | A.
Finally let P be a proof of the sequent 3Σ | Γ in S4S,2−. We can easily show that the rule (3,new)
is strongly invertible. Thus there exists a proof P ′ of 3Σ | Γ in S4S,2− with the following property:
If ε|A,3B1,...,3Bn

3B1,...,3Bn|2A,Γ(2) is a step in P ′, then this (2) application is preceded by n applications of
(3,new) with the formulas B1, . . . , Bn as main formulas. Using the inverse of the transformation
above we can then translate P ′ into a proof in S4S,2. Thus S4S,2− ` ε | A⇒ S4S,2 ` ε | A.

5.6.13 REMARK S4S,2: non-termination

In general backward proof search in S4S,2 does not terminate.

Example

The simplest example is:

... (2)
32p0 | p0,2p0 (2)
32p0 | p0,2p0 (2)

32p0 | 2p0 (3,new)
ε | 32p0

As a second example, we check whether nnf(Grz) ≡ nnf(2(2(p0 → 2p0) → p0) → p0) ≡
3(2(¬p0∨2p0)∧¬p0)∨p0 is provable in S4S,2. We use the abbreviation A ≡ 2(¬p0∨2p0)∧¬p0.
The proof search does not terminate if we always do the leftmost branch first (see figure 5.n).

5.6.14 REMARK from S4S,2 to S4S,3

Before defining the improved calculus S4S,3, we explain the motivation behind it in terms of
backward proof search in S4S,2.
A loop during backward proof search in S4S,2 must contain a (2) application, since all the other
rules remove connectives. Therefore, it is sufficient to save the sequents we obtain after applying
(2) backwards with main formula 2A. The history thus has the form [2A1,3Σ1], [2A2,3Σ2],
. . ., [2Am,3Σm], where ∀i, j ∈ {1, . . . ,m} : (i 6= j ⇒ [2Ai,3Σi] 6= [2Aj ,3Σj]) (cp. [Lad77]) and
where 3Σi contains no duplicate formulas. As an example we take the following proof in S4S,2

138 CHAPTER 5. SEQUENT CALCULI

...
... (∧)

3A | p0, A (2)
3A | ¬p0,2p0,2(¬p0 ∨2p0)

...
(∧)

3A | ¬p0,2p0, A (∨)
3A | ¬p0 ∨2p0, A (2)

3A | 2(¬p0 ∨2p0), p0

(id)
3A | ¬p0, p0 (∧)

3A | A, p0 (3,new)
ε | 3A, p0 (∨)
ε | 3A ∨ p0

Figure 5.n: The proof of the example in remark 5.6.13.

(id)
3p1,3A,3B | ¬p1, p1, A,B (2)
3p1,3A,3B | 2¬p1, p1, A,B (2)

3p1,3A,3B | p1, A,B (3,new)
3A,3B | 3p1, A,B (2)

3A,3B | A,B
(3,new), (3,new)

ε | 3A,3B

where A ≡ 23p1 and B ≡ 22¬p1. So far we would obtain the following proof if we added
histories as for example in the case of (K + T)S,2:

(id)
[2¬p1,3p1,3A,3B], [B,3p1,3A,3B], [A,3A,3B] | 3p1,3A,3B | ¬p1, p1, A,B (2)

[B,3p1,3A,3B], [A,3A,3B] | 3p1,3A,3B | 2¬p1, p1, A,B (2)
[A,3A,3B] | 3p1,3A,3B | p1, A,B (3,new)

[A,3A,3B] | 3A,3B | 3p1, A,B (2)
ε | 3A,3B | A,B

(3,new), (3,new)
ε | ε | 3A,3B

A 3-formula cannot disappear during the backward proof search, i.e. in the history [2A1,3Σ1],
[2A2,3Σ2], . . . , [2An,3Σn], we have 3Σ1 ⊇ 3Σ2 ⊇ . . . ⊇ 3Σn. Therefore we can empty
the history if a new 3 formula appears, since 3Σi 6= 3Σj implies [2Ai,3Σi] 6= [2Aj ,3Σj].
The improved history thus has the form [2B1,3Σ], [2B2,3Σ], . . . , [2Bn,3Σ], where ∀i, j ∈
{1, . . . , n− 1} : (i 6= j ⇒ 2Bi 6= 2Bj). In the example we obtain:

(id)
[2¬p1,3p1,3A,3B], [B,3p1,3A,3B] | 3p1,3A,3B | ¬p1, p1, A,B (2)

[B,3p1,3A,3B] | 3p1,3A,3B | 2¬p1, p1, A,B (2)
[A,3A,3B] | 3p1,3A,3B | p1, A,B (3,new)

[A,3A,3B] | 3A,3B | 3p1, A,B (2)
ε | 3A,3B | A,B

(3,new), (3,new)
ε | ε | 3A,3B

5.6. S4 139

But if every element of the history contains the same 3 formulas, they have no effect and thus
we can remove them. The further improved history is thus a simple list 2C1, . . . ,2Cn, where
∀i, j ∈ {1, . . . , n} : (i 6= j ⇒ 2Ci 6= 2Cj). The example simplifies to

(id)
2¬p1, B | 3p1,3A,3B | ¬p1, p1, A,B (2)
B | 3p1,3A,3B | 2¬p1, p1, A,B (2)

A | 3p1,3A,3B | p1, A,B (3,new)
A | 3A,3B | 3p1, A,B (2)
ε | 3A,3B | A,B

(3,new), (3,new)
ε | ε | 3A,3B

See remark 5.6.18 for a formula where it is essential that we empty the history when we find a
new 3 formula.

So far we have motivated the calculus S4S,3 without the multiset 2Π in the premise of (2)
(cp. definition 5.6.15). Consider for example the following proof in S4S,2:

(true)
32p1,32true | true,2p1,2true

(2)
32p1,32true | p1,2p1,2true

(2)
32p1,32true | 2p1,2true

(3,new)
32p1 | 2p1,32true

(3,new)
ε | 32p1,32true

If we add the histories as described so far we obtain

(true)
2true,2p1 | 32p1,32true | true,2p1,2true

(2)
2p1 | 32p1,32true | p1,2p1,2true

(2)
ε | 32p1,32true | 2p1,2true

(3,new)
ε | 32p1 | 2p1,32true

(3,new)
ε | ε | 32p1,32true

This proof is in fact too complicated, as the application of (2) with main formula 2p1 is super-
fluous. From the point of view of backward proof search, we could obtain the sequent with the
multiset true,2p1,2true if we chose 2true as the main formula in the first backward application
of (2). Then we would find the proof

(true)
2true | 32p1,32true | true,2p1,2true

(2)
ε | 32p1,32true | p1,2p1,2true

(3,new)
ε | 32p1 | 2p1,32true

(3,new)
ε | ε | 32p1,32true

This is a special case of a situation we encounter frequently during backward proof search. Assume
that we apply (2) backwards on the sequent 2H | 3Σ | 2A,2B,Γ and obtain the new sequent
2A,2H | 3Σ | A,Σ. Assume further that after several backwards applications of rules we obtain
the sequent 2H ′,2A,2H | 3Σ | 2B,Γ′. Then we do not have to apply (2) backwards with B as

140 CHAPTER 5. SEQUENT CALCULI

the main formula, because the resulting sequent 2B,2H ′,2A,2H | 3Σ | B,Σ (with a shorter
history) can be obtained directly from the original sequent 2H | 3Σ | 2A,2B,Γ. Therefore we
can put 2B into the history when we apply (2) with main formula 2A backwards on the original
sequence. This is the reason for the multiset 2Π in the (2) rule of S4S,3. See also theorem 6.5.5
for the effects of 2Π.

5.6.15 DEFINITION sequent calculus S4S,3

axioms:

2H | 3Σ | true,Γ
(true)

2H | 3Σ | P,¬P,Γ
(id)

rules:

2H | 3Σ | A,B,Γ
2H | 3Σ | A ∨B,Γ

(∨) 2H | 3Σ | A,Γ 2H | 3Σ | B,Γ
2H | 3Σ | A ∧B,Γ

(∧)

ε | 3A,3Σ | A,Γ
2H | 3Σ | 3A,Γ

3A /∈ 3Σ (3,new)
2H | 3Σ | A,Γ

2H | 3Σ | 3A,Γ
3A ∈ 3Σ (3,dup)

2A,2Π,2H | 3Σ | A,Σ
2H | 3Σ | 2A,Γ

2A /∈ 2H
2C ∈ Γ⇒ 2C ∈ 2A,2Π,2H
no duplicate elements in 2A,2Π,2H

(2)

main formulas: true in (true), P and ¬P in (id), A∨B in (∨), A∧B in (∧), 3A in (3,new) and
(3,dup), 2A in (2)

side formulas: A and B in (∨), A and B in (∧), A and 3A in (3,new), A in (3,dup), A in (2)

5.6.16 THEOREM equivalence of S4S,2 and S4S,3

S4S,2 ` 3Σ | Γ ⇔ S4S,3 ` ε | 3Σ | Γ

Proof

‘⇐’:

Let P be a proof of ε | 3Σ | Γ in S4S,3. We remove all histories from P. With an induction on
proof depth we can easily show that the result is a proof of 3Σ | Γ in S4S,2.

‘⇒’:

The auxiliary calculus S4S,2+ is the calculus S4S,2 with the (2) rule replaced by the rule

2A,2H | 3Σ | A,Σ
2H | 3Σ | 2A,Γ

2A /∈ 2H (2)

We prove the following:

S4S,2 ` 3Σ | Γ ⇒ S4S,2+ ` ε | 3Σ | Γ ⇒ S4S,3 ` ε | 3Σ | Γ

5.6. S4 141

1. S4S,2 ` 3Σ | Γ ⇒ S4S,2+ ` ε | 3Σ | Γ:

This step is analogous to the step from (K + T)S,2 to (K + T)S,3: We first remove the duplicate
occurrences of sequents on a branch and then translate the proof step by step.

Let P be a proof of 3Σ | Γ in S4S,2. If a sequent S occurs twice on a branch in P, then we
remove the part of the branch between the two occurrences together with one occurrence of S.
We repeat this transformation as long as possible. Let P ′ be the resulting proof of 3Σ | Γ in
S4S,2. Beginning at the root of P ′ we add histories to the sequents (cp. the proof of theorem
5.3.15). The result is a proof of 3Σ | Γ in S4S,2+.

2. S4S,2+ ` ε | 3Σ | Γ ⇒ S4S,3 ` ε | 3Σ | Γ:

Let P be a proof of ε | 3Σ | Γ in S4S,2+. We use the motivation from remark 5.6.14. If P is not
already a proof in S4S,3, then the following structure must occur in P:

2B,2A,2H ′,2H | 3Σ | B,Σ
(2)

2A,2H ′,2H | 3Σ | 2A,Γ′

...

2A,2H | 3Σ | A,Σ
(2)

2H | 3Σ | 2A,2B,Γ

}
(∗)

where 2A /∈ 2H, 2B /∈ 2H, and no (3,new) application occurs in (∗). We replace this structure
in P by

2B,2H | 3Σ | B,Σ
2H | 3Σ | 2A,2B,Γ(2)

and adapt the histories above the sequent 2B,2H | 3Σ | B,Σ. The result is still a proof in
S4S,2+.

In this way we eliminate all the (2) applications in P that are not allowed as (2) applications in
S4S,3. The result is a proof of ε | 3Σ | Γ in S4S,2+ as well as in S4S,3.

5.6.17 THEOREM S4S,3: termination

Backward proof search in S4S,3 for sequents of the form ε | ε | A always terminates.

Proof

We assume that we do backward proof search for the sequent ε | ε | A.

We define m(2H | 3Σ | Γ) := c3 · (c − card(3Σ)) + c2 · (c − card(2H)) + length(Γ), where
c := length(A).

For every sequent 2H | 3Σ | Γ that can occur during the proof search for ε | ε | A, we have
m(2H | 3Σ | Γ) ≥ 0.

The value computed by m decreases with each backward application of one of the rules of S4S,2:

1. m(2H | 3Σ | A ∨B,Γ) > m(2H | 3Σ | A,B,Γ)

2. m(2H | 3Σ | A ∧B,Γ) > m(2H | 3Σ | A,Γ),
m(2H | 3Σ | A ∧B,Γ) > m(2H | 3Σ | B,Γ)

3. m(2H | 3Σ | 3A,Γ) > m(2H | 3Σ | Γ)

4. m(2H | 3Σ | 3A,Γ)−m(ε | 3A,3Σ | A,Γ)
= c3 · 1− c2 · card(2H) + 1
≥ c3 − c3 + 1
= 1

142 CHAPTER 5. SEQUENT CALCULI

5. m(2H | 3Σ | 2A,Γ)−m(2A,2Π,2H | 3Σ | A,Σ)
= c3 · 0 + c2 · (1 + card(2Π)) + (1 + length(Γ)− length(3Σ))
≥ c2 + 1− c2

≥ 1

Example

In S4S,3, backward proof search for 32p0 fails without looping, in contrast to the example in
remark 5.6.13, since no rule is applicable on the sequent 2p0 | 32p0 | p0,2p0.

2p0 | 32p0 | p0,2p0 (2)
ε | 32p0 | 2p0 (3,new)
ε | ε | 32p0

We can extract the following countermodel:

&%
'$

-&%
'$
¬p0

��
?

5.6.18 REMARK (3,new)

The backward proof search for the formula 32(p0 ∨ 23¬p0) shows that we cannot replace ε by
H in the premise of the (3,new) rule, i.e. we have to remove the history in such situations. Note
that there are no backtracking points in this search. We use the abbreviation A ≡ 2(p0∨23¬p0).

(id)
A | 3¬p0,3A | p0,23¬p0,¬p0, A (∨)
A | 3¬p0,3A | p0 ∨23¬p0,¬p0, A (2)

ε | 3¬p0,3A | ¬p0, A (3,new)
23¬p0, A | 3A | 3¬p0, A (2)
A | 3A | p0,23¬p0, A (∨)
A | 3A | p0 ∨23¬p0, A (2)

ε | 3A | A
(3,new)

ε | ε | 3A

5.6.19 THEOREM proofs in S4S,3

If S4S,3 ` ε | 3Σ | Γ, then there exists a proof of ε | 3Σ | Γ in S4S,3 such that (2) is only applied
backwards if no other rule is applicable backwards.

Proof

Because of theorem 5.6.10 and theorem 5.6.16 there exists a proof of 3Σ | Γ in S4S,2 such that (2)
is only applied backwards if no other rule is applicable backwards. We now use the construction
from the proof of theorem 5.6.16 to transform it into a proof of ε | 3Σ | Γ in S4S,3 of the desired
form.

5.6. S4 143

5.6.20 THEOREM S4S,3: permutation of rules

For the calculus S4S,3, the following applies for all axioms x and all rules r:

• If r is not (2), then x ; rx.

• If neither r nor s is (2), then rs · · ·; sr · · · .

Proof

Since the only difference between S4S,2 and S4S,3 is in the (2) rule, we can use the same trans-
formations as in the proof of theorem 5.6.10.

5.6.21 REMARK invertible rules in S4S,3

The two theorems 5.6.19 and 5.6.20 show that if we do backward proof search in S4S,3 for a
sequent of the form ε | ε | A, then we can do this as if the rules (∨), (∧), (3,new), (3,dup) were
invertible: We apply these rules backwards as long as possible, and the order in which we do this
does not matter.

5.6.22 THEOREM S4S,3: empty the history

S4S,3 ` H | 3Σ | Γ ⇒ S4S,3 ` ε | 3Σ | Γ

Proof

Let P be the proof H | 3Σ | Γ in S4S,3. Beginning at H | 3Σ | Γ, we remove all elements of
H from the left hand side of the sequents in P. On each branch we stop as soon as we reach an
empty history. With an induction on proof depth we can easily show that the result is a proof of
ε | 3Σ | Γ in S4S,3.

5.6.23 THEOREM S4S,3: extend (id)

If A is in negation normal form, then:

S4S,3 ` ε | 3Σ | A,nnf(¬A),Γ

Proof

With an induction on length(A) we prove S4S,2 ` 3Σ | A,nnf(¬A),Γ. We only show the case
A ≡ 2B.

1. A ≡ 2B: If 3nnf(¬B) ∈ 3Σ, then S4S,2 ` 3Σ | B,Σ because of the induction hypothesis,
and with a (2) application we obtain S4S,2 ` 3Σ | 2B,3nnf(¬B),Γ. If 3nnf(¬B) /∈
3Σ, then S4S,2 ` 3Σ | B,nnf(¬B),Σ because of the induction hypothesis. With a (2)
application we obtain S4S,2 ` 3nnf(¬B),3Σ | 2B,Γ, and with a (3) application S4S,2 `
3Σ | 2B,3nnf(¬B),Γ.

Now we use use theorem 5.6.16 to obtain S4S,3 ` ε | 3Σ | A,nnf(¬A),Γ. Note that the history
must be empty, since for example S4S,3 0 2p0 | ε | 2p0,3¬p0.

5.6.24 THEOREM S4S,3: duplicate formulas

S4S,3 ` H | 3Σ | A,A,Γ ⇒ S4S,3 ` ε | 3Σ | A,Γ

144 CHAPTER 5. SEQUENT CALCULI

Proof

We proceed as in the corresponding proof for (K + T)S,3 (theorem 5.3.10).

With theorem 5.6.22 we obtain S4S,3 ` ε | 3Σ | A,A,Γ and with theorem 5.6.16 S4S,2 ` 3Σ |
A,A,Γ. Thus S4S,2 ` 3Σ | A,Γ because of theorem 5.6.11. With theorem 5.6.16 we finally obtain
S4S,3 ` ε | 3Σ | A,Γ.

5.6.25 THEOREM S4S,3: use-check

Assume that we do backward proof search for a sequent of the form ε | ε | D. Let H | 3Σ | A,Γ
be a sequent we obtain during this search, and let P be a proof in S4S,3 of this sequent. We mark
it as follows:

• The main formulas in the instances of axioms are marked.

• If a side formula is marked, then the main formula is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in Γ is marked,
then the corresponding formula in the multiset Γ in the conclusion is marked.

• If in the premise of an instance of (∨), (∧), (3,new) or (3,dup) a formula in 3Σ is marked,
then the corresponding formula in the multiset 3Σ in the conclusion is marked.

• If in the premise of an instance of (2) a formula in Σ or 3Σ is marked, then the corre-
sponding formula in the multiset 3Σ in the conclusion is marked.

If the formula A in the sequent H | 3Σ | A,Γ is not marked, then S4S,3 ` ε | 3Σ | Γ.

Proof

We prove the theorem for S4S,2, defining marked proofs in S4S,2 as described above. Now we
take the marked proof P of H | 3Σ | A,Γ and omit all histories, but do not change the marks.
We call the result P ′. With an induction on proof depth we can easily show that P ′ is a marked
proof of 3Σ | A,Γ in S4S,2. Thus A is not marked, and therefore S4S,2 ` 3Σ | Γ. With theorem
5.3.15 we obtain S4S,3 ` ε | 3Σ | Γ.

5.6.26 REMARK S4S,3: use-check

The preceding theorem is no longer true if we replace ε | 3Σ | Γ by 2H | 3Σ | Γ.

Example

We do backward proof search in S4S,3 for the sequent ε | ε | 32p0,3¬p0,3(3p1 ∧2p2) using the
abbreviation Σ = 2p0,¬p0,3p1 ∧ 2p2. See figure 5.o for the resulting proof. The left branch of
the right branch ends in an instance of the (id) axiom. Because of use-check we could thus cut off
the right branch of the right branch. However, S4S,3 0 2p2,2p0 | 3Σ | p2,2p0,¬p0,2p2 because
of the condition in the (2) rule. Note that it is nevertheless correct to cut off this branch during
proof search.

5.6.27 THEOREM (empty) is admissible

If ε | 3Σ | Γ is provable in the calculus S4S,3 plus the rule ε|3Σ|Γ
H|3Σ|Γ(empty), then S4S,3 ` ε | 3Σ |

Γ.

Proof

Let P be a proof of ε | 3Σ | Γ in S4S,3 plus the rule (empty). If we remove the applications of
(empty) and all histories, then we obtain a proof of 3Σ | Γ in S4S,2, i.e. S4S,2 ` 3Σ | Γ. With
theorem 5.6.16 S4S,3 ` ε | 3Σ | Γ.

5.6. S4 145

. . .
(2

)
ε
|3

Σ
|2

p
0
,¬
p

0
,3
p

1

(i
d)

2
p

0
|3

p
1
,3

Σ
|p

0
,2
p

0
,¬
p

0
,3
p

1
∧

2
p

2
(2

)
ε
|3

p
1
,3

Σ
|p

2
,2
p

0
,¬
p

0
,p

1
(3
,n

ew
)

2
p

2
,2
p

0
|3

Σ
|p

2
,2
p

0
,¬
p

0
,3
p

1
2
p

2
,2
p

0
|3

Σ
|p

2
,2
p

0
,¬
p

0
,2
p

2
(∧

)
2
p

2
,2
p

0
|3

Σ
|p

2
,2
p

0
,¬
p

0
,3
p

1
∧

2
p

2
(2

)
ε
|3

Σ
|2

p
0
,¬
p

0
,2
p

2
(∧

)
ε
|3

Σ
|2

p
0
,¬
p

0
,3
p

1
∧

2
p

2
(3
,n

ew
)

ε
|3

2
p

0
,3
¬p

0
|2

p
0
,¬
p

0
,3

(3
p

1
∧

2
p

2
)

(3
,n

ew
)

ε
|3

2
p

0
|2

p
0
,3
¬p

0
,3

(3
p

1
∧

2
p

2
)

(3
,n

ew
)

ε
|ε
|3

2
p

0
,3
¬p

0
,3

(3
p

1
∧

2
p

2
)

F
ig

ur
e

5.
o:

T
he

pr
oo

f
of

th
e

ex
am

pl
e

in
re

m
ar

k
5.

6.
26

.

146 CHAPTER 5. SEQUENT CALCULI

5.6.28 REMARK using optimisations during proof search in S4S,3

The preceding theorem has the same purpose: It makes it possible to apply the theorems 5.6.23,
5.6.24, 5.6.25 during backward proof search even if the history is not empty. The only condition
is that we started with a sequent of the form ε | ε | A. The idea is the same as in the case of
(K + T)S,3; therefore we just refer to remark 5.3.25.

5.6.29 REMARK S4S,3: backward proof search

If a search fails, then we choose a subtree of the search tree that is sufficient to show that the
search fails, and extract a countermodel from this subtree. If a branch of this subtree fails because
of the condition in the (2) rule, then the corresponding branch of the countermodel has a loop.

Example

We do backward proof search in S4S,3 for the sequent ε | ε | 3(2(¬p0 ∨ 2p0) ∧ ¬p0) ∨ p0. In
contrast to backward proof search in S4S,2, the search terminates (cp. the second example of
remark 5.6.13). We obtain the non-proof in figure 5.p, where A ≡ 2(¬p0 ∨2p0)∧¬p0. Note that
there is no possibility for backtracking because of the condition in the (2) rule of S4S,3.
The countermodel that can be extracted from the two failing branches is both times

&%
'$
¬p0 -&%
'$

p0

��
?

5.7 Kt

5.7.1 REMARK important preliminary remark

The work in this section is to some extent work in progress. We define several calculi and state
some theorems, but the proofs are only sketched, since writing them down in detail would make
this chapter far too long. (A technical report is planned). We hope that the motivation for the
calculi becomes nevertheless clear.

5.7.2 REMARK from KGt to KSt

Although KG,2t and KG,3t are graph calculi, we define them in this chapter since their only purpose
is to make the step from KGt to KSt easier to understand.

We prove the equivalence of KGt , KG,2t , KG,3t , KSt . The difficult step is the one from KG,2t to KG,3t .
The graph calculus KG,2t is essentially a notational variant of the graph calculus KGt , and the
sequent KSt is obtained in the same way from KG,3t as we obtained KS from KG,2.

5.7.3 CONVENTION F

F is a formula of Kt or the natural number 0.

5.7.4 REMARK from KGt to KG,2t

There are three notational differences between KGt and KG,2t :

5.7. Kt 147

2
p

0
,2

(¬
p

0
∨

2
p

0
)
|3

A
|p

0
,2

(¬
p

0
∨

2
p

0
)

(i
d)

2
p

0
,2

(¬
p

0
∨

2
p

0
)
|3

A
|p

0
,¬
p

0
(∧

)
2
p

0
,2

(¬
p

0
∨

2
p

0
)
|3

A
|p

0
,A

(2
)

2
(¬
p

0
∨

2
p

0
)
|3

A
|¬
p

0
,2
p

0
,2

(¬
p

0
∨

2
p

0
)

. . .
(∧

)
2

(¬
p

0
∨

2
p

0
)
|3

A
|¬
p

0
,2
p

0
,A

(∨
)

2
(¬
p

0
∨

2
p

0
)
|3

A
|¬
p

0
∨

2
p

0
,A

(2
)

ε
|3

A
|2

(¬
p

0
∨

2
p

0
),
p

0

(i
d)

ε
|3

A
|¬
p

0
,p

0
(∧

)
ε
|3

A
|A

,p
0

(3
,n

ew
)

ε
|ε
|3

A
,p

0
(∨

)
ε
|ε
|3

A
∨
p

0

F
ig

ur
e

5.
p:

T
he

no
n-

pr
oo

f
of

th
e

ex
am

pl
e

in
5.

6.
29

.

148 CHAPTER 5. SEQUENT CALCULI

• If we do backward proof search in KG,2t for a graph of the form ε | A , then only graphs
in the form of trees can occur.

The root is the leftmost node of the tree. In order to maintain an unambiguous notation
each arrow is labelled with the formula that created it. An arrow labelled with a 2 formula
thus corresponds to an arrow from left to right in KGt , and an arrow labelled with a ■

formula corresponds to an arrow from right to left in KGt .

• Each formula A has an index F , the ‘origin’ of A. Assume that AF is in a world w. If F
is 0 this means that A came from the left hand side, i.e. from the father of w, or from w
itself. Otherwise A came from the right hand side, i.e. from a child of w, and F is the label
of the arrow from w to this child.

• If a label of an arrow is written in parentheses, for example [D], then there is either no such
arrow or an arrow labelled with the formula D.

In addition, we add conditions to the rules such that a rule is applicable only once in a certain
world with a certain main formula.

5.7.5 DEFINITION graph calculus KG,2t

axioms:
(true)p p p -[D]

∆ | trueF ,Γ -∗ p p p
(id)p p p -[D]

∆ | PF1 , (¬P)F2 ,Γ -∗ p p p
rules: p p p -[D]

(A ∨B)F ,∆ | A0, B0,Γ - p p p∗

(∨)p p p -[D]
∆ | (A ∨B)F ,Γ -∗ p p p

where: ∀F ′ : (A ∨B)F
′
/∈ ∆

p p p -[D]
(A ∧B)F ,∆ | A0,Γ - p p p∗ p p p -[D]

(A ∧B)F ,∆ | B0,Γ -∗ p p p∗

(∧)p p p -[D]
∆ | (A ∧B)F ,Γ -∗ p p p

where: ∀F ′ : (A ∧B)F
′
/∈ ∆

p p p -[D] (2A)F , (3B1)F1 , . . . , (3Bm)Fm ,∆ | Γ - p p p∗�
��12A

ε | A0, B1
0, . . . , Bm

0

(2)p p p -[D]
(3B1)F1 , . . . , (3Bm)Fm ,∆ | (2A)F ,Γ - p p p∗

where: no 3 fmls in ∆, and ∀F ′ : (2A)F
′
/∈ ∆

p p p -[D] (■A)F , (◆B1)F1 , . . . , (◆Bm)Fm ,∆ | Γ - p p p∗�
��1■A

ε | A0, B1
0, . . . , Bm

0

(■)p p p -[D]
(◆B1)F1 , . . . , (◆Bm)Fm ,∆ | (■A)F ,Γ - p p p∗

where: no ◆ fmls in ∆, and ∀F ′ : (■A)F
′
/∈ ∆

5.7. Kt 149

p p p -[C] ∆1 | Γ′1 -D (3A)F ,∆2 | Γ2

�
�
�
���

���
��:

XXXXXz@
@
@
@@R

2
E
3,

1

∆3,1 | A0,Γ3,1
-∗ p p p

ppp
2E3,n ∆3,n | A0,Γ3,n

-∗ p p p
■E4,1 p p pppp■
E
4,m

p p p
(3)

p p p -[C] ∆1 | Γ1
-D ∆2 | (3A)F ,Γ2

�
�
�
���

���
��:

XXXXXz@
@
@
@@R

2
E
3,

1

∆3,1 | Γ3,1
-∗ p p p

ppp
2E3,n ∆3,n | Γ3,n

-∗ p p p
■E4,1 p p pppp■
E
4,m

p p p
where: ∀F ′ : (3A)F

′
/∈ ∆2, and Γ′1 =

{
Γ1 if D is a 2−formula
AD,Γ1 if D is a ■−formula

p p p -[C] ∆1 | Γ′1 -D (◆A)F ,∆2 | Γ2

�
�
�
���

���
��:

XXXXXz@
@
@
@@R

2
E
3,

1

p p p
ppp

2E3,n1 p p p
■E4,1

∆4,1 | A0,Γ4,1
-∗ p p p

ppp
■
E
4,n

2

∆4,n2 | A0,Γ4,n2
-∗ p p p

(◆)

p p p -[C] ∆1 | Γ1
-D ∆2 | (◆A)F ,Γ2

�
�
�
���

��
���:

XXXXXz@
@
@
@@R

2
E
3,

1

p p p
ppp

2E3,n1 p p p
■E4,1

∆4,1 | Γ4,1
-∗ p p p

ppp
■
E
4,n

2

∆4,n2 | Γ4,n2
-∗ p p p

where: ∀F ′ : (◆A)F
′
/∈ ∆2, and Γ′1 =

{
Γ1 if D is a ■−formula
AD,Γ1 if D is a 2−formula

p p p -[C] ∆1 | Γ1 - p p p∗�
��1D

∆2 | Γ2
-∗ p p p

(jump)

p p p -[C] ∆1 | Γ1 - p p p∗�
��1D

∆2 | Γ2
-∗ p p p

150 CHAPTER 5. SEQUENT CALCULI

s1 (∨)
s2@@ �
�(∧)
s3 (∨)
s4 (id)

s5 (2)
s6 (jump)
s7 (◆)
s8 (jump−)
s9 (id)

The search starts at node 1.
The left branch of the branching at node
2 ends in an instance of the id) axiom
(node 4).
On the right branch we apply (2) back-
wards and jump into the generated
node. The backwards application of (◆)
writes a ¬p0 into the predecessor node.
We jump back, and we find another in-
stance of the (id) axiom (node 9). Thus

ε | A0 is provable in KG,2t .

Figure 5.q: The search tree in KG,2t of the example in remark 5.7.7. See
figure 5.r for the corresponding proof.

p p p -[C] ∆1 | Γ1 - p p p∗�
��1D

∆2 | Γ2
-∗ p p p

(jump−)

p p p -[C] ∆1 | Γ1 - p p p∗�
��1D

∆2 | Γ2
-∗ p p p

5.7.6 THEOREM KG,2t : invertible rules

All rules of KG,2t are invertible.

Proof

Analogous to the proof of theorem 5.2.4. Neither the labels of the arrows, nor those of the
formulas are influenced by the order in which the rules are applied.

5.7.7 REMARK KG,2t : backward proof search

Since all rules are invertible, no backtracking is required when doing backward proof search in
KG,2t . In fact the search goes on exactly as in KGt .

Example

We check whether ε | A0 is provable in KG,2t , where A0 ≡ (((¬p0 ∨ p1) ∧ 2◆¬p0) ∨ p0)0. We
use the abbreviations A1

0 ≡ ((¬p0 ∨ p1) ∧ 2◆¬p0)0 and Π = A0, A1
0, (2◆¬p0)0. See figure 5.q

for the search tree and figure 5.r for the corresponding proof. Compare these figures with the
figures 4.u and 4.v from section 4.7.

5.7.8 THEOREM equivalence of KGt and KG,2t

KGt ` ε | A ⇔ KG,2t ` ε | A0

5.7. Kt 151

ε
|A

0

(∨
)

A
0
|(

(¬
p

0
∨
p

1
)
∧

2
◆
¬p

0
)0
,p

0
0

(∧
)

A
1
0
,A

0
|(
¬p

0
∨
p

1
)0
,p

0
0

(∨
)

(¬
p

0
∨
p

1
)0
,A

1
0
,A

0
|(
¬p

0
)0
,p

1
0
,p

0
0

(i
d)

A
1
0
,A

0
|(

2
◆
¬p

0
)0
,p

0
0

(2
)

Π
|p

0
0

-
2

◆
¬
p

0
ε
|(

◆
¬p

0
)0

(j
um

p)

Π
|p

0
0

-
2

◆
¬
p

0
ε
|(

◆
¬p

0
)0

(◆
)

Π
|(
¬p

0
)2

◆
¬
p

0
,p

0
0

-
2

◆
¬
p

0
(◆
¬p

0
)0
|ε

(j
um

p−
)

Π
|(
¬p

0
)2

◆
¬
p

0
,p

0
0

-
2

◆
¬
p

0
(◆
¬p

0
)0
|ε

(i
d)

F
ig

ur
e

5.
r:

T
he

pr
oo

f
in

K
G
,2
t

of
th

e
ex

am
pl

e
in

re
m

ar
k

5.
7.

7.
Se

e
fig

ur
e

5.
q

fo
r

th
e

co
rr

es
po

nd
in

g
se

ar
ch

tr
ee

.

152 CHAPTER 5. SEQUENT CALCULI

Proof

‘⇒’:

Let P be a proof of ε | A in KGt . With an induction on formula length we can show that we
can eliminate all steps G1

G in P where the main formula is an element of the left hand side of the
current world of G. The resulting proof can be translated step by step (beginning at the axioms)

into a proof of ε | A in KG,2t .
‘⇐’:
Step by step we can translate proofs in KG,2t into proofs in KGt (proof by induction on proof
depth).

5.7.9 REMARK from KG,2t to KG,3t

During backward proof search in KG,2t , the rules (3) and (◆) can put formulas into nodes that
are nearer to the root than the actual node (see for example the example in remark 5.7.16). In
order to apply rules backwards on these formulas we must have the possibility to jump towards
the root. Therefore we cannot delete (jump−) from KG,2t .

In KG,3t we try to foretell which formulas will be put into nodes that are nearer to the root. We
do not know exactly what will happen later on in backward proof search, but we can give a finite
number of possible sets of formulas that can be put in such a way into a certain node (function
indirect). The rule (guess) helps us to go through these possibilities.
Some of the possibilities we investigate prove to be impossible, i.e. to be an instance of the
(2clash) or (■clash) axiom of KG,3t . Others become instances of (id) axioms, and other branches
fail.

5.7.10 DEFINITION indirect

First we define inductively the function fmlat .

1. fmlat(P, 0) := {P}
fmlat(¬P, 0) := {¬P}
d 6= 0 ⇒ fmlat(P, d) := ∅, fmlat(¬P, d) := ∅

2. ◦ ∈ {∧,∨} ⇒ fmlat(A ◦B, 0) := fmlat(A, 0) ∪ fmlat(B, 0) ∪ {A ◦B}
◦ ∈ {∧,∨}, d 6= 0 ⇒ fmlat(A ◦B, d) := fmlat(A, d) ∪ fmlat(B, d)

3. ? ∈ {2, ■} ⇒ fmlat(?A, 0) := fmlat(A,−1) ∪ {?A}
? ∈ {2, ■}, d 6= 0 ⇒ fmlat(?A, d) := fmlat(A, d− 1)

4. ? ∈ {3, ◆} ⇒ fmlat(?A, 0) := fmlat(A,−1) ∪ fmlat(A, 1) ∪ {?A}
? ∈ {3, ◆}, d 6= 0 ⇒ fmlat(?A, d) := fmlat(A, d− 1) ∪ fmlat(A, d+ 1)

If Γ is the multiset A1, . . . , An, then fmlat(Γ, d) stands for the set of formulas fmlat(A1, d)∪ . . .∪
fmlat(An, d).
Now we can define the function indirect . In this definition, ∆′ is the multiset ∆ with the ‘origins’
of the formulas deleted, for example if ∆ = (p0 ∨ ¬p1)2p0 , (3p1)0, then ∆′ = p0 ∨ ¬p1,3p1.

indirect(∆) := {A2B | ◆A ∈ fmlat(∆′, 1),2B ∈ ∆′} ∪ {A■B | 3A ∈ fmlat(∆′, 1), ■B ∈ ∆′}

Example

Assume that we do backward proof search in KG,2t . If A occurs in a world w, then the set
fmlat(A,n) is a superset of the subformulas of A that can occur in a world with distance n from
w (where n > 0 means further away from the root).

5.7. Kt 153

fmlat(■(p3 ∨3(p4 ∧ ◆p1)), 1)
= fmlat(p3 ∨3(p4 ∧ ◆p1), 0)
= {p3 ∨3(p4 ∧ ◆p1)} ∪ fmlat(p3, 0) ∪ fmlat(3(p4 ∧ ◆p1), 0)
= {p3 ∨3(p4 ∧ ◆p1), p3,3(p4 ∧ ◆p1)} ∪ fmlat(p4 ∧ ◆p1,−1) ∪ fmlat(p4 ∧ ◆p1, 1)
= {p3 ∨3(p4 ∧ ◆p1), p3,3(p4 ∧ ◆p1)}
∪ fmlat(p4,−1) ∪ fmlat(◆p1,−1) ∪ fmlat(p4, 1) ∪ fmlat(◆p1, 1)

= {p3 ∨3(p4 ∧ ◆p1), p3,3(p4 ∧ ◆p1)} ∪ fmlat(p1,−2) ∪ fmlat(p1, 0) ∪ fmlat(p1, 2)
= {p3 ∨3(p4 ∧ ◆p1), p3,3(p4 ∧ ◆p1), p1}

fmlat(3333p2, 1)
= fmlat(333p2, 0) ∪ fmlat(333p2, 2)
= {333p2} ∪ fmlat(33p2,−1) ∪ fmlat(33p2, 1) ∪ fmlat(33p2, 3)
= {333p2} ∪ fmlat(3p2,−2) ∪ fmlat(3p2, 0) ∪ fmlat(3p2, 2) ∪ fmlat(3p2, 4)
= {333p2,3p2} ∪ fmlat(p2,−3) ∪ fmlat(p2,−1) ∪ fmlat(p2, 1) ∪ fmlat(p2, 3) ∪ fmlat(p2, 5)
= {333p2,3p2}

fmlat(■ ■¬p2, 1)
= fmlat(■¬p2, 0)
= {■¬p2} ∪ fmlat(¬p2,−1)
= {■¬p2}

indirect((■(p3 ∨3(p4 ∧ ◆p1)))F1 , (3333p2)F2 , (■ ■¬p2)F3)
= {(p4 ∧ ◆p1)■(p3∨3(p4∧◆p1)), (p4 ∧ ◆p1)■ ■¬p2 ,

(33p2)■(p3∨3(p4∧◆p1)), (33p2)■ ■¬p2 ,
p2

■(p3∨3(p4∧◆p1)), p2
■ ■¬p2}

5.7.11 THEOREM property of indirect

If we do backward proof search in KG,2t and the (◆) rule is applied backwards such that Γ′1 =
Γ1, A

2D, then A2D ∈ indirect(∆1). If we do backward proof search in KG,2t and the (3) rule is
applied backwards such that Γ′1 = Γ1, A

■D, then A■D ∈ indirect(∆1). (See definition 5.7.5 for
the meaning of Γ1, Γ′1, A2D, A■D, and ∆1).

Proof

We prove only the first assertion, as the proof of the second one is analogous. Obviously 2D ∈ ∆1.
Hence it is sufficient to prove ◆A ∈ fmlat(∆1, 1).

Let w1 be the world with ∆1 and Γ1, and let w2 be the world with ∆2 and (◆A)F ,Γ2 (cp. definition
5.7.5). At the beginning of backward proof search we had just one world w0 with one formula C,
and certainly A ∈ subfmls(C). There exists a ‘path’ X, starting at the root w0 and ending in w2,
that shows how the formula ◆A got from w0 to w2. This path can be seen as a tuple of pairs of
formulas and worlds, i.e. X = 〈〈C,w0〉, . . . , 〈◆A,w2〉〉.
As an example we consider the formula (¬p0)2◆¬p0 in the instance of (id) in the proof in figure
5.r. We call the root of the Kt graph w0 and the second world w2. Then the ‘path’ of the
formula (¬p0)2◆¬p0 in w0 is 〈〈A0, w0〉, 〈((¬p0∨p1)∧2◆¬p0)0, w0〉, 〈(2◆¬p0)0, w0〉, 〈(◆¬p0)0, w2〉,
〈(¬p0)2◆¬p0 , w0〉〉.
X must contain (maybe several times) the world w1, i.e.X = 〈〈C,w0〉, . . . , 〈A1, w1〉, . . . , 〈◆A,w2〉〉.
We look at that part of X from the last occurrence of w1 in X to the end of X. We call this
part Y , i.e. Y = 〈〈A1, w1〉, . . . , 〈◆A,w2〉〉 and w1 occurs only in the first element of Y . From the
definition of fmlat follows ◆A ∈ fmlat(A1, 1) (this is the only property of fmlat we need). Thus
◆A ∈ fmlat(∆1, 1).

154 CHAPTER 5. SEQUENT CALCULI

5.7.12 REMARK variants of indirect

The definition of indirect is somewhat arbitrary. We could also define indirect(∆) = {A2B |
2B ∈ ∆, ◆A ∈ subfmls(∆)}∪{A■B | ■B ∈ ∆,3A ∈ subfmls(∆)} without losing the termination
property of the calculus KG,3t defined below. The resulting calculus would still be equivalent to
KG,2t . We hope that our definition of indirect helps to motivate the calculus.

Note that indirect(∆) = {A2B | 2B ∈ ∆ and A ∈ subfmls(E)} ∪ {A■B | ■B ∈ ∆ and A ∈
subfmls(E)}, where E is the formula for which we do backward proof search, is not a suitable
alternative, since then backward proof search in KG,3t would no longer terminate.

5.7.13 DEFINITION graph calculus KG,3t

axioms:
(true)p p p -[D]

Π | ∆ | trueF ,Γ -∗ p p p
(id)p p p -[D]

Π | ∆ | PF1 , (¬P)F2 ,Γ -∗ p p p

p p p - Π | ∆ | Γ
@
@
@
@@R

■
E
m

XXXXXz
■E1

��
���:2Dn�
�
�
���

2
D
1

Π1 | ∆1 | Γ1
-∗ p p p

ppp
Πn | ∆n | Γn -∗ p p p
p p pppp p p p

(2clash)

where: no other rule is applicable backwards even after auxiliary back-
ward applications of (jump) and (jump−), and there is an i ∈ {1, . . . , n}
such that {A′ | (A′)2Di ∈ Γ,∆} 6= {B′ | ∃F ′ : (◆B′)F

′ ∈ ∆i}

p p p - Π | ∆ | Γ
@
@
@
@@R

■
E
m

XXXXXz
■E1

��
���:2Dn�
�
�
���

2
D
1

p p p
ppp p p p

Π1 | ∆1 | Γ1
-∗ p p p

ppp
Πm | ∆m | Γm -∗ p p p

(■clash)

where: no other rule is applicable backwards even after auxiliary back-
ward applications of (jump) and (jump−), and there is an i ∈ {1, . . . ,m}
such that {A′ | (A′)■Ei ∈ Γ,∆} 6= {B′ | ∃F ′ : (3B′)F

′ ∈ ∆i}

p p p -[D]
AF ,Π | ∆ | AF ,Γ - p p p∗ p p p -[D]

AF ,Π | ∆ | Γ -∗ p p p∗

(guess)p p p -[D] Π | ∆ | Γ -∗ p p p
where: AF ∈ indirect(∆) and AF /∈ Π

5.7. Kt 155

We obtain the rules (∨), (∧), (2), (■), (jump), (jump−) of KG,3t in the obvious way by adding
appropriate third components to the corresponding rules of KG,2t :

• (∨), (∧): Add Π to the actual nodes. In the same way we could construct the axioms (id)
and (true) of KG,3t from the axioms of KG,2t .

• (2), (■): Add Π to the actual nodes, and ε to the generated nodes.

• (jump), (jump−): Add Π1 to the left node and Π2 to the right node.

We obtain also the rules (3) and (◆) of KG,3t from the corresponding rules of KG,2t :

• Add Π1 to the nodes with ∆1, add Π2 to the nodes with ∆2, add Π1,1 to the nodes with
∆1,1. . . . add Π4,n2 to the nodes with ∆4,n2 .

• Replace Γ′1 by Γ1.

5.7.14 REMARK (3) and (◆)

The essential change from KG,2t to KG,3t is the replacement of Γ′1 by Γ1 in the two rules (3) and
(◆): The new rules (3) and (◆) no longer put any formulas into worlds that are nearer to the
root. Therefore it becomes possible to eliminate (jump−).

5.7.15 THEOREM KG,3t : invertible rules

All rules of KG,3t are invertible.

Proof
Analogous to the corresponding proof for KG,2t (theorem 5.2.4). Note that it is not possible
that both (2clash) and for example (∨) are applicable backwards because of the condition in
(2clash).

5.7.16 REMARK KG,3t : backward proof search

Compared to backward proof search in KG,2t , we have a new rule (guess) and we have new axioms
(2clash) and (■clash). If we reach a (2clash) or (■clash) axiom, then this means that previous
applications of (guess) have led to an inconsistent situation.

Example

We check whether ε | ε | A0 is provable in KG,3t , where A0 ≡ (((¬p0 ∨ p1) ∧ 2◆¬p0) ∨ p0)0.
We use the abbreviations A1

0 ≡ (¬p0 ∨ p1) ∧2◆¬p0, and Π = (23¬p0)0, A1
0, A0. See figure 5.s

for the search tree and figure 5.t for the corresponding proof.

5.7.17 THEOREM equivalence of KG,2t and KG,3t

KG,2t ` ε | A0 ⇔ KG,3t ` ε | ε | A0

Proof

We do backward proof search in KG,2t , starting with ε | A0 . The result is a complete KG,2t

search tree. (We restrict (jump) and (jump−) as in the case of KS in order to avoid infinite series
of backward applications of these rules.)

We simulate this proof search in KG,3t , starting with ε | ε | A0 .

First we replace applications of rules of KG,2t by applications of rules of KG,3t as follows:

156 CHAPTER 5. SEQUENT CALCULI

s1 (∨)
s

2
Q
Q
Q

�
�
�
(∧)

s3 (∨)
s4 (id)

s5 (2)
s6 (jump)
s7 (◆)
s8 (jump−)
s

9
@
@
�
�(guess)
s10 (id) s11 (2clash) The search starts at node 1. The con-

junction causes a branching at node 2.
The left branch ends in instance of an
axiom (node 4). On the right branch at
node 9 we can only apply (guess). This
leads to instances of the (id) and the
(2clash) axiom (nodes 10 and 11).

Thus ε | ε | A0 is provable in KG,3t .
Compare this search tree with the one
in figure 5.q.

Figure 5.s: The search tree in KG,3t of the example in remark 5.7.16. See
5.t for the corresponding proof.

• (id) ; (id)

• (∨) ; (∨), (∧) ; (∧)

• (2) ; (2), (■) ; (■)

• (jump) ; (jump) (we choose ‘the same’ world to jump into)

• (jump−) ; (jump−) (we choose ‘the same’ world to jump into)

• (3) ; (3) if the label D (in the rule of KG,2t) is a ■ formula

• (◆) ; (◆) if the label D (in the rule of KG,2t) is a 2 formula

There remain only two interesting cases: (3) where the label D is a 2 formula, and the analogous
case for (◆). We simulate such a (3) application as follows in KG,3t :

• Apply (3) backwards.

• Jump with (jump−) into the predecessor node.

• Apply (guess) backwards, with main formula AF . This is always possible because of theorem
5.7.11.

• On both branches of the search tree generated by the backward application of (guess) we
use (jump) to get back.

Afterwards we continue simulating the proof search in the left branch of the search tree (i.e. in the
branch where the backward application of (guess) added a formula). We simulate the correspond-
ing (◆) application analogously with (◆), (jump−), (guess), (jump). After this transformation

we have an incomplete KG,3t search tree for ε | ε | A0 .

In order to obtain a complete KG,3t search tree, we have to complete three sorts of nodes of this
tree:

1. The second premise that has been generated when translating (◆) withD being a 2 formula.

2. The second premise that has been generated when translating (3) with D being a ■ formula.

3. Leaves of the search tree in KG,2t that are not instances of an axiom have been transformed
into nodes on which (guess) is still applicable.

5.7. Kt 157

ε
|ε
|A

0

(∨
)

ε
|A

0
|p

0
0
,A

1
0

(∧
)

ε
|A

0
,A

1
0
|p

0
0
,(
¬p

0
∨
p

1
)0

ε
|A

0
,A

1
0
|p

0
0
,(

2
◆
¬p

0
)0

(∨
)

(2
)

ε
|A

0
,A

1
0
,(
¬p

0
∨
p

1
)0
|p

0
0
,(
¬p

0
)0
,p

1
0

ε
|Π
|p

0
0

-
2

◆
¬
p

0
ε
|ε
|(

◆
¬p

0
)0

(i
d)

(j
um

p)

ε
|Π
|p

0
0

-
2

◆
¬
p

0
ε
|ε
|(

◆
¬p

0
)0

(◆
)

ε
|Π
|p

0
0

-
2

◆
¬
p

0
ε
|(

◆
¬p

0
)0
|ε

(j
um

p−
)

ε
|Π
|p

0
0

-
2

◆
¬
p

0
ε
|(

◆
¬p

0
)0
|ε

(g
ue

ss
)

(¬
p

0
)2

◆
¬
p

0
|Π
|p

0
0
,(
¬p

0
)2

◆
¬
p

0
-

2
◆
¬
p

0
ε
|(

◆
¬p

0
)0
|ε

(¬
p

0
)2

◆
¬
p

0
|Π
|p

0
0

-
2

◆
¬
p

0
ε
|(

◆
¬p

0
)0
|ε

(i
d)

(2
cl

as
h)

F
ig

ur
e

5.
t:

T
he

pr
oo

f
in

K
G
,3
t

of
th

e
ex

am
pl

e
in

re
m

ar
k

5.
7.

16
.

Se
e

5.
s

fo
r

th
e

co
rr

es
po

nd
in

g
se

ar
ch

tr
ee

.

158 CHAPTER 5. SEQUENT CALCULI

We continue with backward proof search in KG,2t at all these nodes. Let N be such a node, and
T the tree with root N that was generated when completing the node N .

If N is of the form 1., then all the leaves of T become instances of the (2clash) axiom of KG,3t .
Proof: The Kt graph at the node N has the form

p p p - B2D,Π1 | 2D,∆1 | Γ1
-2D Π2 | (◆B)F ,∆2 | Γ2

-∗ p p p
-∗ p p p

where B2D /∈ Γ1. In general this is not an instance of the (2clash) axiom: It is possible that,
perhaps after suitable applications of (jump) and (jump−), other rules are applicable backwards.
Assume now that one of the leaves of T is not an instance of an axiom. Then it is also not an
instance of the (2clash) axiom. This means that during the backward proof search which starts
at N and leads to this leaf of T , the formula B2D has been added to Γ1. Thus (◆B)F

′
has been

added to ∆2. This is not possible because of the condition in the (◆) rule.

If N is of the form 2., then all the leaves of T become instances of the (■clash) axiom of KG,3t .
The proof is analogous to the case where N is of the form 1.

If N is of the form 3., then the leaf of the rightmost branch of T is not an axiom of KG,3t , since
we added formulas only to the leftmost sequent of this leaf (cp. the rule (guess)).

Thus we have:

KG,2t ` ε | A0 ⇒ KG,3t ` ε | ε | A0

KG,2t 0 ε | A0 ⇒ KG,3t 0 ε | ε | A0

5.7.18 REMARK from KG,3t to KSt

The step from KG,3t to KSt is about the same as the one from KG to KS . The rules (jump)/(jump−)
and (2) of KG,3t are combined in the rule (2) of KSt , and the rules (jump)/(jump−) and (■) of
KG,3t are combined in the rule (■) of KSt .

For convenience we still draw boxes and arrows, but obviously we could just as well write Λ | D |
Π | ∆ | Γ instead of Λ -D Π | ∆ | Γ .

Note that the rules (2) and (■) of KSt are not invertible. Thus we have to use backtracking during
the backward proof search in KSt (as for example for KS).

5.7.19 REMARK KSt : size of sequents

If we do backward proof search for ε | ε | A0 in KSt , then all sequents that occur have a size
that is polynomial in length(A), whereas the graphs of KG,3t can have exponential size. (See also
chapter 6.) Note that the sequents in the sequent calculus for Kt in [Kas94] can have exponential
size if we do backward proof search.

5.7.20 DEFINITION sequent calculus KSt

We use the following convention: Λ -D Π | ∆ | Γ means that the world Π | ∆ | Γ
can have a predecessor (with content Λ and label D on the connecting arrow), but it needs not
to. Without this convention we would have to write down two versions for all axioms and all
rules except (2clash) and (■clash).

5.7. Kt 159

axioms:

(true)
Λ -D Π | ∆ | true,Γ

(id)
Λ -D Π | ∆ | P,¬P,Γ

(2clash)
Λ -2D

Π | ∆ | Γ

where: (∨), (∧), (3), (◆), and (guess) not applicable backwards,
{A′ | (A′)2D ∈ Λ} 6= {B′ | ∃F ′ : (◆B′)F

′ ∈ ∆}

(■clash)
Λ -■D

Π | ∆ | Γ

where: (∨), (∧), (3), (◆), and (guess) not applicable backwards,
{A′ | (A′)■D ∈ Λ} 6= {B′ | ∃F ′ : (3B′)F

′ ∈ ∆}

rules:

Λ -D Π | ∆ | (A ∨B)F ,Γ
(∨)

Λ -D Π | (A ∨B)F ,∆ | A0, B0,Γ

where: ∀F ′ : (A ∨B)F
′
/∈ ∆

Λ -D Π | ∆ | (A ∧B)F ,Γ
(∧)

Λ -D Π | (A ∧B)F ,∆ | A0,Γ Λ -D Π | (A ∧B)F ,∆ | B0,Γ

where: ∀F ′ : (A ∧B)F
′
/∈ ∆

Λ -D Π | ∆ | (3A)F ,Γ
(3)

Λ -D Π | (3A)F ,∆ | Γ

where: ∀F ′ : (3A)F
′
/∈ ∆

Λ -D Π | ∆ | (◆A)F ,Γ
(◆)

Λ -D Π | (◆A)F ,∆ | Γ

where: ∀F ′ : (◆A)F
′
/∈ ∆

160 CHAPTER 5. SEQUENT CALCULI

Λ -D Π | ∆ | Γ
(guess)

Λ -D AF ,Π | ∆ | AF ,Γ Λ -D AF ,Π | ∆ | Γ

where: AF ∈ indirect(∆), AF /∈ Π

Λ -D Π | (3A1)F1 , . . . , (3Am)Fm ,∆ | (2B)F ,Γ
(2)

(3A1)F1 , . . . , (3Am)Fm ,∆, (2B)F ,Γ -2B
ε | ε | B0, A1

0, . . . , Am
0

where: no 3 formulas in ∆, and (∨), (∧), (3), (◆), (guess) not appli-
cable backwards

Λ -D Π | (◆A1)F1 , . . . , (◆Am)Fm ,∆ | (■B)F ,Γ
(■)

(◆A1)F1 , . . . , (◆Am)Fm ,∆, (■B)F ,Γ -■B
ε | ε | B0, A1

0, . . . , Am
0

where: no ◆ formulas in ∆, and (∨), (∧), (3), (◆), (guess) not appli-
cable backwards

5.7.21 THEOREM equivalence of KG,3t and KSt

KG,3t ` ε | ε | A0 ⇔ KSt ` ε | ε | A0

Proof

‘⇐’

We can translate the proofs in KSt stepwise into proofs in KG,3t . Only the rules (2clash) and
(■clash) are a bit more difficult.

‘⇐’

Since all rules of KG,3t are invertible, we can rearrange the proof in KG,3t such that it can be
translated stepwise into a proof in KSt . We used the same method in the proof of theorem 5.2.14
where we proved the equivalence of KS and KS,2.

5.7.22 THEOREM KSt : termination

Backward proof search in KSt terminates.

Proof

Assume that we do backward proof search for ε | ε | A0 .

For termination, it is essential that each formula that moves from a world to a child of this
world becomes shorter, and that card(indirect(subfmls(C))) ≤ (length(C))2. We now define

m(Λ -D Π | ∆ | Γ) := (c4 + c2) · max({length(B) | B ∈ ∆,Γ}) + c2 · (c2 − card(Π)) +
length(Γ), where c := length(A).

For all Kt graphsG that can occur during backward proof search we havem(G) ≥ 0. Obviously the
value decreases if we apply one of the rules (∧), (∨), (3), (◆), (guess) backwards. The interesting
cases are the rules (2) and (■). If G1 is the premise and G2 is the conclusion of an application of

5.8. OTHER LOGICS 161

s1 (∨)
s

2
HH

HH

��
��(∧)

s3 (∨)
s4 (id)

s5@@ �
�(guess)
s6 (id) s7 (2)
s8 (◆)
s9 (2clash)

The search starts at node
1. Since backtracking is not
necessary (nor possible), we
obtain essentially the same
search tree as in figure 5.s.
There are two differences: We
have to apply (guess) earlier,
and the (jump) rule is built-in
in the (2) rule.

Figure 5.u: The search tree in KSt of the example in remark 5.7.23. See
figure 5.v for the corresponding proof.

one of these rules, then we have: m(G1)−m(G2) > (c4+c2)·1+c2 ·((c2−c2)−(c2−0))+(0−c2) =
c4 + c2 − (c4 + c2) = 0.

5.7.23 REMARK KSt : backward proof search

In contrast to backward proof search in KG,3t we have to backtrack when a branch fails. As far as
backward proof search is concerned, the difference between KG,3t and KSt is the same as between
in KG,2 and in KS .

Example

We check whether ε | ε | A0 is provable in KSt , where A0 ≡ (((¬p0 ∨ p1) ∧ 2◆¬p0) ∨ p0)0. We
use the abbreviation A1

0 ≡ ((¬p0 ∨ p1) ∧2◆¬p0)0. See figure 5.u for the search tree and 5.v for
the corresponding proof.

5.8 OTHER LOGICS

5.8.1 REMARK other propositional modal logics

Sequent calculi for many other logics are discussed in [Fit83] and [Gor]. In addition, there are
many papers concerning tableaux and sequent calculi for modal logics (see the introduction).

5.8.2 REMARK Kn, Kn + T , KTn, KTn + T , S4n, S4n + T

Sequent calculi for Kn, Kn + T , KTn, and KTn + T follow immediately from the corresponding
sequent calculi for K, K + T , KT, and KT + T . The (2) rule for Kn then looks as follows:

A,Γ
2iA,3iΓ,Λ

(2)

i.e. the 3 formulas with the ‘wrong’ index are removed during a backward application of (2).

In contrast to S4, in S4n a 3i formula can disappear during backward proof search. Therefore
the history is not just a multiset of formulas, but a multiset of multisets of formulas of 2i and

162 CHAPTER 5. SEQUENT CALCULI

ε
|
ε
|
A

0

(∨
)

ε
|
A

0
|
p

0
0,A

1
0

(∧
)

ε
|
A

0,A
1
0
|
p

0
0,(¬

p
0 ∨

p
1)

0

(∨
)

ε
A

0,A
1
0,

(¬
p

0 ∨
p

1)
0
p

0
0,(¬

p
0)

0,
p

1
0

(id)

ε
|
A

0,A
1
0
|
p

0
0,(2

◆
¬
p

0)
0

(guess)

(¬
p

0)
2

◆
¬
p

0
A

0
0,

A
1
0

(¬
p

0)
2

◆
¬
p

0,p
0
0,

(2
◆
¬
p

0)
0

(id)

(¬
p

0)
2

◆
¬
p

0
A

0
0,

A
1
0

p
0
0,(2

◆
¬
p

0)
0

(2
)

A
0
0,A

1
0,p

0
0,

(2
◆
¬
p

0)
0

-
2

◆
¬
p

0
ε
|
ε
|(◆
¬
p

0)
0

(◆
)

A
0
0,A

1
0,p

0
0,

(2
◆
¬
p

0)
0

-
2

◆
¬
p

0
ε
|(◆
¬
p

0)
0
|
ε

(2
clash)

F
igure

5.v:
T

he
proof

in
K
St

of
the

exam
ple

in
rem

ark
5.7.23.

See
figure

5.u
for

the
corresponding

search
tree.

5.9. SUMMARY 163

3i formulas (as for K + T for example). Moreover, it is not possible to embed S4n + T in S4n as
we could embed S4 + T in S4.

The logics Kn + T , KTn + T , S4n + T can be used to solve the so-called wise men puzzle (see for
example [Fit93]).

5.8.3 REMARK CPC

The usual one-sided sequent calculus for CPC is the calculus KS,2 without the (2) rule.

5.8.4 REMARK IPC

Sequent calculi for backward proof search in IPC are discussed in [Dyc92], [SFH92], and [TS96]. In
contrast to S4, it is possible to do without a hidden contraction. Sequent calculi with loop-check
are discussed in [HSZ96], and [How97]. See also [Ott97] and [Tam96].

5.8.5 REMARK many-valued logics

Proof search in sequent calculi for many-valued logics is discussed in [Häh93].

5.8.6 REMARK linear logic

In [Tam94] backward proof search in sequent calculi for linear logic is discussed thoroughly. See
also [And92] and [dG95].

5.9 SUMMARY

Beginning with the graph calculi, we have developed sequent calculi for the logics K, K + T , KT,
KT + T , and S4. The equivalence with the graph calculi has been proved constructively, and
we have shown how to obtain Hilbert-style proofs from sequent calculus proofs. With numerous
examples we have exposed the connections between possible world semantics, graph calculi and
sequent calculi. This includes the extraction of a countermodel from a failed backward proof
search in one of our sequent calculi.

In spite of their simplicity, these sequent calculi are well suited for automated theorem proving.
A crucial property is that proof search always terminates. To ensure termination, the sequent
calculi for S4, K + T and KT + T contain a built-in loop-check. Including the loop-check in the
calculi has two advantages: It is clearer how and when we have to check for a loop, and it makes
it easier to optimise the loop-check for each logic in a perspicuous way.

During backward proof search in these sequent calculi we have to backtrack when a branch fails.
We have shown which rules are invertible and when such backtracking is necessary. For an
efficient proof search the so-called use-check is crucial. It helps to cut off branches which are
caused by unnecessary branchings, i.e. by superfluous backward applications of the (∧) rules.
Further important optimisations are the deletion of duplicated formulas and the extension of the
(id) axiom.

In the case of Kt the situation is much more complicated. Backward proof search in the standard
tableaux and sequent calculi can lead to sequents with exponential size. Also the termination
problem is, in contrast to K, not trivial. We have developed a sequent calculus such that backward
proof search terminates and requires only polynomial space. This calculus could certainly be
improved in order to make it more suitable for backward proof search.

6

COMPLEXITY

It is a fact that people habitually underesti-
mate the intricacy and complexity that can
result from a huge number of interacting units
obeying formal rules at very high speeds, rel-
ative to our time scale.

D.R. Hofstadter, D.C. Dennett. The mind’s I.

6.1 INTRODUCTION

6.1.1 REMARK complexity

In this chapter we discuss the complexities of the validity problems for the logics K, K + T , KT,
S4, and Kt (problem complexity). Here the validity problem for L is the problem of deciding
whether some formula A in negation normal form is valid. The satisfiability problem for L is
analogously the problem of deciding whether a formula A in negation normal form is satisfiable
in L. If the complexity of the validity problem for the logic L is C (where C is a complexity class),
then there exists no algorithm that ‘does better’.

We also investigate upper and lower bounds for the time and space required by proof search
algorithms from chapters 4 and 5, in order to show the differences between the underlying calculi
(algorithm complexity).

All these complexities are relative to the length of the formula whose provability we want to
check.

6.1.2 REMARK problem complexity vs. algorithm complexity

The complexity of a problem is determined by its complexity class. However, for specific algo-
rithms it is sensible to give both bounds for the required time and the required space, since there
are algorithms for the same problem that require the same amount of space, but very different
amounts of time.

166 CHAPTER 6. COMPLEXITY

6.1.3 REMARK worst vs. average case complexity

Note that all complexity results in this chapter are worst case complexities.

6.1.4 THEOREM complexity classes

We will use the following complexity classes:

• P (polynomial time)

• NP (non-deterministic polynomial time)

• coNP

• PSPACE (polynomial space)

• EXPTIME (exponential time)

The diagram of these complexity classes is shown below. A −→ B means that A is a subset of B.

P
@
@I

NP

�
��

coNP
�
��

PSPACE

@
@I

EXPTIME

6

It is neither known whether any of the subsets in the diagram are proper subsets, nor is it known
whether NP and coNP are equal. However, P 6= EXPTIME. See any book on complexity theory
for more information on complexity classes and their interrelationships.

To give bounds for the time and space required by a specific algorithm we use the notions written
in brackets behind the complexity classes. For this purpose we also use the notions of exponential
space and double exponential time.

6.1.5 THEOREM NP

Assume that for a given problem with size n:

• If there is a solution, then the solution is a member of a set S with an, at most, exponential
number (relative to n) of possible solutions.

• We can construct an arbitrary member X out of this set S in polynomial time (relative to
n).

• We can check in polynomial time (relative to n) whether this member X is a solution to
the problem.

Then the complexity of the problem is in NP (relative to n).

Example

Let A be a formula of CPC with length(A) = n.

Then card(vars(A)) ≤ n. Thus the set S of valuations of these variables contains at most 2n

elements. We can construct any of these valuations in linear time (relative to n). We can check
in linear time (relative to n) whether a valuation satisfies the formula A.

6.1. INTRODUCTION 167

Thus complexity of the satisfiability problem for classical propositional logic is in NP.

6.1.6 REMARK coNP and coPSPACE

A problem is in coNP if its complement is in NP.
A problem is in coPSPACE if its complement is in PSPACE, and coPSPACE = PSPACE.

Example

If we do backward proof search for the formula A in the usual sequent calculus for CPC, then in
each step, one connective is removed from the sequent. The branching factor is 1 or 2 in each
node. Thus the search tree has at most 2n leaves.
We can construct an arbitrary leaf in linear time, and we can check in linear time whether this
leaf is an axiom. If it is not an axiom, then A is not provable. Thus the complexity of the validity
problem for CPC is in coNP (cp. theorem 6.1.5).
The picture below shows the search tree for the formula (p0 ∧ p1) ∨ (p0 ∧ ¬p1) ∨ (¬p0 ∧ p1).

s1 (∨)

s2 (∨)

s
3
XX

XXX
XXX

X

��
���

���
�

(∧)

s4HHHHH �
��
��

(∧)

s5@@@ �
��(∧)

s6 (id) s7fail

s8@@@ �
��(∧)

s9 (id) s10 (id)

s11H
HH

HH

�
��
��

(∧)

s12@
@@

�
��(∧)

s13 (id) s14

fail

s15 (id)

We can construct any of the leaves in linear time by choosing the right branch at each branching.
If we choose — by chance — the branch with leaf 7, then we obtain the sequent p0, p0, p1. Since
this sequent is not provable the whole formula is not provable.

6.1.7 REMARK invertible rules

We will always assume that we make use of the invertibility of rules of a calculus during backward
proof search.

Example

Remark 4.2.7 shows what can happen if we omit this condition.

6.1.8 REMARK restricting (jump) and (jump−)

When discussing backward proof search in graph calculi, then we assume that there are no
unnecessary applications of (jump) and (jump−) in the proofs we consider, as we have done in
chapter 4.

6.1.9 REMARK use-check

Already in the case of CPC, use-check can lead to an exponential speed-up. The example below
is certainly artificial, but practice shows that use-check is crucial in many cases.
In this chapter we will only show some typical modal formula for which use-check proves to be
important. We will choose simple examples to explain the basic idea, and therefore one sees at
once how the unnecessary branchings could be avoided by simpler means than use-check.

168 CHAPTER 6. COMPLEXITY

Example

Let An be the formula (p0 ∧ p1) ∨ ¬p0 ∨ ¬p1 ∨ (p2 ∧ p3) ∨ (p4 ∧ p5) ∨ . . . ∨ (p2n ∧ p2n+1), where
n > 0. If we apply (∧) backwards on p0 ∧ p1 only if no other conjunction is left, then we obtain
a search tree with more than 2n branches. With use-check we obtain an exponential speed-up.

The reason for the speed-up are the superfluous subformulas. Lemma generation does not help
in this example, but the connection method works well since only p0 and p1 occur both positively
and negatively.

6.1.10 REMARK negation normal form

In this chapter we only consider formulas in negation normal form. Note that for example for the
formulas p0 ↔ p1 ↔ . . . ↔ pn there exists no short negation normal form, i.e. if A is a formula
in negation normal form that is equivalent to p0 ↔ p1 ↔ . . . ↔ pn, then the length of A is
exponential relative to n.

6.2 K

6.2.1 THEOREM KG

Backward proof search in KG (for formulas in negation normal form, with a depth-first strategy,
restricting the rules (jump), (jump−), using the invertibility results) can require exponential
space and double exponential time.

Proof

We define An :≡
∨
i=0,...,n(3i2p0 ∨ 3i2p1), Thus we have A0 ≡ 2p0 ∨ 2p1 and An+1 ≡ An ∨

(3n+12p0 ∨3n+12p1).

If we do backward proof search in KG for the formula An for some n ∈ N, then we finally obtain
a K graph with the shape of a complete binary tree with depth n, i.e. with 2n+2 − 1 vertices.
Thus exponential space is required for the search. Note that is does not matter in which order
we apply the rules backwards (provided (jump), (jump−) are restricted).

In the case of A1 ≡ (2p0 ∨ 2p1) ∨ (32p0 ∨ 32p1) we obtain the K graph below. The actual
vertex has been chosen arbitrarily.

A1, A0,32p0 ∨32p1,
32p0,32p1,2p0,2p1

| ε �
�
��

@
@
@R 2p0,2p1 | p0 PPPq

��
�1

2p0,2p1 | p1 PPPq

��
�1

ε | p0

ε | p1

ε | p0

ε | p1

If we do backward proof search for An ∨ 3n+1(R1 ∧ R2), where R1, R2 are new variables, then
we have to apply (∧) backwards in each leaf of these K graphs, i.e. the search tree has branches
with exponential length, and a double exponential number of nodes. However, backward proof
search stops as soon as the first leaf of the search tree is reached since it is not an axiom. In the
following we adapt this idea such that a similar search tree with a double exponential number of
nodes must be traversed completely.

6.2. K 169

We define Bn :≡ An ∨3Q1 ∨
∨
i=1,...,n+1(3i(¬p0 ∧ ¬Qi ∧3Qi+1)), where Q1, . . . , Qn+1 are new

variables, i.e. card({Q1, . . . , Qn+1, p0, p1}) = n+ 3.

With this formula we still obtain a complete binary tree as for An, but with one ‘marked’ leaf,
namely a leaf that contains a formula that no other leaf contains. To show the idea behind
these formulas we show what happens when we do backward proof search for B1 in KG . We Have
B1 ≡ A1∨3Q1∨3(¬p0∧¬Q1∧3Q2)∨33(¬p0∧¬Q2∧3Q3). First we apply all rules backwards
except (∧) and except (3) with main formula Q1. The result is the following K graph (the left
hand sides are replaced by ‘. . . ’):

. . . | 3Q1
�
�
��

@
@
@R . . . | p0,¬p0 ∧ ¬Q1 ∧3Q2 PPPq

��
�1

. . . | p1,¬p0 ∧ ¬Q1 ∧3Q2 PPPq

��
�1

ε | p0,¬p0 ∧ ¬Q2 ∧3Q3

ε | p1,¬p0 ∧ ¬Q2 ∧3Q3

ε | p0,¬p0 ∧ ¬Q2 ∧3Q3

ε | p1,¬p0 ∧ ¬Q2 ∧3Q3

Now we loosen the restriction on (∧): We apply it backwards, but only on the branch of the K
graph where each vertex (except the root) contains p0, and we still apply (id) and (3) backwards
whenever possible. Only one branch of the corresponding search tree does not end immediately
in an axiom, but in the K graph below. We show the (3) formulas that are put on the left hand
sides during these steps.

3Q1, . . . | ε
�
�
��

@
@
@R 3Q2, . . . | p0, Q1 PPPq

��
�1

. . . | p1, Q1,¬p0 ∧ ¬Q1 ∧3Q2PPPq

��
�1

3Q3, . . . | p0, Q2

ε | p1, Q2,¬p0 ∧ ¬Q2 ∧3Q3

ε | p0,¬p0 ∧ ¬Q2 ∧3Q3

ε | p1,¬p0 ∧ ¬Q2 ∧3Q3

Now we construct the complete search tree for this K graph. We always apply (id) immediately.
There exist branches in the search tree where (3) is not applied backwards and that does not
end in (id). One of these branches ends in

3Q1, . . . | ε
�
�
��

@
@
@R 3Q2, . . . | p0, Q1 PPPq

��
�1

. . . | p1, Q1,¬p0 PPPq

��
�1

3Q3, . . . | p0, Q2

. . . | p1, Q2,¬p0

. . . | p0,¬Q2

. . . | p1,¬p0

Now, exactly one world contains 3Q3, i.e. we have succeeded in marking one of the worlds. If we
do backward proof search for Cn ≡ Bn ∨3n+12¬Qn+1 ∨3n+2(R1 ∧ R2), where R1, R2 are new
variables, then we obtain for C1 the K graph

170 CHAPTER 6. COMPLEXITY

3Q1, . . . | ε
�
�
��

@
@
@R 3Q2, . . . | p0, Q1 PPPq

��
�1

. . . | p1, Q1,¬p0 PPPq

��
�1

3Q3, . . . | p0, Q2,2¬Q3,3(R1 ∧R2)

. . . | p1, Q2,¬p0,2¬Q3,3(R1 ∧R2)

. . . | p0,¬Q2,2¬Q3,3(R1 ∧R2)

. . . | p1,¬p0,2¬Q3,3(R1 ∧R2)

on this branch of the search tree. Now we can apply (∧) backwards in each world with main
formula R1 ∧ R2. Only at the end do we apply (2) with main formula 2Qn+1. Thus the search
tree for Cn has more than 22n+1

leaves, and we traverse the whole search tree. Therefore double
exponential time is required for backward proof search.

Use-check would help to solve the problem, since the (∧) applications with main formula R1∧R2

are in fact completely independent.

6.2.2 THEOREM KS,2

Backward proof search in KS,2 (for formulas in negation normal form, with a depth-first strategy,
using the invertibility results) requires at most polynomial space.

Proof

We use the function m from the proof of termination of backward proof search to show that the
length of the branches of the search tree is at most length(A).

The branching degree is at most length(A) in all nodes of the search tree: It is 1 if we apply (∨) or
(3) backwards, 2 if we apply (∧) backwards, and at most length(A) if we apply (2) backwards.

Thus the search tree has at most depth length(A), at most branching degree length(A), and for
each sequent Γ that can occur we have length(Γ) ≤ length(A), i.e. polynomial space is sufficient
for backward proof search in KS,2.

6.2.3 REMARK KG vs. KS,2

The formulas Cn from the proof of 6.2.1 cause no problems in the case of backward proof search
in KS,2, since the backward applications of (∧) with main formula R1 ∧R2 on different branches
are done independently. This effect is quite frequent and must be taken into account when
implementing a decision procedure based on labelled tableaux.

6.2.4 THEOREM validity problem

The complexity of the validity problem for K is PSPACE.

Proof

This result was proved in [Lad77]. The upper limit follows immediately from theorem 6.2.2. See
[Hud96] for tighter bounds.

6.2.5 THEOREM size of countermodel

If a formula A is satisfiable K, then:

• There exists a K model M with K,M |= A and diam(M) ≤ length(A).

• There exists a K model M with card(M) ≤ 2length(A).

6.3. K + T 171

Proof

Backward proof search in KS,2 for A gives us a model M with diam(M) ≤ length(A).

See [HM92] for a proof of the second statement. Note that the countermodels we obtain from
backward proof search with KS,2 can be larger. For example, take a variant of the formulas An
from the proof of theorem 6.2.1 where each world has three successors.

6.3 K + T

6.3.1 THEOREM size of countermodels

For all e ∈ N there exists a formula A and a theory T with K + T 6|=A such that:

(K,M |= T and K,M 6|=A) ⇒ diam(M) ≥ (length(T) + length(A))e

Proof

This theorem is an immediate consequence of the proof of theorem 7.2.9 in the following chapter.

6.3.2 REMARK validity problem

The complexity of the validity problem for the logic K +T is EXPTIME (personal communication
F. Baader).

6.3.3 REMARK use-check

Use-check is especially important if the theory contains disjunctions. They cause a branching
after every backward application of the (2) rule.

Example

Let A be the formula 2n(p0 ∨ p1 ∨ p2) and T the theory p0 ∨ p1.

If we do backward proof search for A in (K + T)S,2, then we obtain a search tree with 2n+1

branches. The branchings are caused by the theory: At the beginning and after every of the n
backward applications of (2) we add the formula ¬p0∧¬p1, and thus have to apply (∧) backwards.
With use-check we consider only two of these branches and cut off all the others, i.e. we have an
exponential speed-up.

Note that use-check is applicable although there are no superfluous subformulas involved. This
is also an example where lemma generation does not help at all.

6.4 KT

6.4.1 THEOREM KTG

Backward proof search in KTG (for formulas in negation normal form, with a depth-first strategy,
restricting the rules (jump), (jump−) and using the invertibility results) can require exponential
space and double exponential time.

172 CHAPTER 6. COMPLEXITY

Proof

We only sketch the proof. The idea is the same as in the proof of theorem 6.2.1. In contrast to
K, a 3A can now also mean the world itself and not only its successor. We put new variables as
marks into all worlds so that all worlds with the same distance from the root have the same mark.
If 3A is a formula that will occur in a formula with mark Q, then we replace it by 3(A∧¬Q) in
order to make sure that there is a proper successor with A.

6.4.2 THEOREM KTS,2

Backward proof search in KTS,2 requires at most polynomial space and exponential time.

Proof

Analogous to the proof of theorem 6.2.2, using the measure m from the proof of theorem 5.4.16.

6.4.3 THEOREM validity problem

The complexity of the validity problem for KT is PSPACE.

Proof

This result was proved in [Lad77]. The upper limit follows immediately from theorem 6.4.2. See
[Hud96] for tighter bounds.

6.4.4 THEOREM duplicate 3 formulas

Note that it is crucial for theorem 6.4.2 to avoid duplicate 3 formulas on the left hand side of
the sequents in the calculus KTS,2. The sequents we obtain during backward proof search for a
sequent of the form ε | A in KTS can have exponential length (relative to length(A)).

Proof

We do backward proof search for ε | 32np0∨2np1 in KTS . The search tree consists of n backward
applications of (2), with backward applications of (3) in between. After n2 backward applica-
tions of (2) and having applied (3) backwards as often as possible, we have a sequent with

(
2n
n2

)
copies of the variable p0. If n2 = n, we thus have

(
2n
n

)
= (2n)!

n!·n! > 2n copies of p0. This ‘explosion’
is related to the problems with the mapping of KT in K (see theorem 7.3.5).

See figure 6.a for the non-proof of ε | 36p0 ∨23p1 in KTS .

6.4.5 THEOREM size of countermodel

If a formula A is satisfiable KT, then:

• There exists a KT model M with KT,M |= A and polynomial diam(M).

• There exists a KT model M with card(M) ≤ 2length(A).

Proof

The first part follows from the proof of theorem 5.4.16. See [HM92] for a proof of the second
statement.

6.4.6 REMARK use-check

Conjunctions inside nested 3 can cause many unnecessary branchings, although the formula needs
not be superfluous.

6.4. KT 173

3
3
p

0
,3

2
p

0
,3
p

0
,3

2
p

0
,3
p

0
,3
p

0
,3

2
p

0
,3
p

0
,3
p

0
,3
p

0
,3

2
p

0
,.
..
|p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

1
(3

)
. . .

(3
)

ε
|3

3
p

0
,3

2
p

0
,3
p

0
,p

0
,3

2
p

0
,3
p

0
,p

0
,3
p

0
,p

0
,p

0
,3

2
p

0
,3
p

0
,p

0
,3
p

0
,p

0
,p

0
,3
p

0
,p

0
,p

0
,p

0
,p

1
(2

)
3

4
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,3

2
p

0
,3
p

0
,3
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,.
..
|p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,2
p

1
(3

)
. . .

(3
)

ε
|3

4
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,p

0
,3

2
p

0
,3
p

0
,p

0
,3
p

0
,p

0
,p

0
,2
p

1
(2

)
3

5
p

0
,3

4
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,3

4
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,3

2
p

0
,3
p

0
,3
p

0
|p

0
,p

0
,p

0
,p

0
,p

0
,p

0
,2

2
p

1
(3

)
. . .

(3
)

ε
|3

5
p

0
,3

4
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
,p

0
,2

2
p

1
(2

)
3

6
p

0
,3

5
p

0
,3

4
p

0
,3

3
p

0
,3

2
p

0
,3
p

0
|p

0
,2

3
p

1
(3

)
. . .

(3
)

ε
|3

6
p

0
,2

3
p

1

F
ig

ur
e

6.
a:

T
he

no
n-

pr
oo

f
in

K
T
S

of
th

e
ex

am
pl

e
in

th
eo

re
m

6.
4.

4.

174 CHAPTER 6. COMPLEXITY

Example

Let A be the formula 2n(p0 ∨ p1),3n(¬p0 ∧ ¬p1).

If we do backward proof search for A in KTS,2, then we obtain a search tree with 2n+1 branches.
At the beginning and after every of the n backward applications of (2) we unpack ¬p0 ∧ ¬p1 by
applying (3) backwards. With use-check we obtain only two branches, i.e. we have an exponential
speed-up.

Note that the subformula ¬p0 ∧ ¬p1 is not superfluous. The branching is needed in the proof,
but only once and not n+ 1 times.

6.5 S4

6.5.1 REMARK graph calculi

Backward proof search in S4G does in general not terminate. If we introduced some sort of
loop-check, then we would obtain similar results as for KG .

6.5.2 THEOREM S4S,3

Backward proof search in S4S,3 requires at most polynomial space.

Proof

Analogous to the proof of theorem 6.2.2, using the measure m from the proof of theorem 5.6.17.

6.5.3 THEOREM validity problem

The complexity of the validity problem for S4 is PSPACE.

Proof

This result was proved in [Lad77]. The upper limit follows immediately from 6.5.2. See [Hud96]
for tighter bounds.

6.5.4 THEOREM size of countermodel

If a formula A is satisfiable S4, then:

• There exists a S4 model M with S4,M |= A and polynomial diam(M).

• There exists a S4 model M with card(M) ≤ 2length(A).

Proof

The first part follows from the proof of theorem 5.6.17. See [HM92] for a proof of the second
statement.

6.5.5 THEOREM (2) of S4S,3

Let S4S,2+ be the calculus S4S,3 without the multiset 2Π in the premise of the (2) rule. Then
backward proof search in S4S,3 can be exponentially faster than backward proof search in S4S,2+.

Proof

Let A be the formula 2(32p0 ∨ . . . ∨32pn) and B the formula 2(p0 ∨ ¬p0).

6.6. Kt 175

If we do backward proof search for A∨B in S4S,3, then we first have to apply (∨) backwards and
obtain ε | ε | A,B. Now we apply (2) backwards with main formula 2(32p0 ∨ . . . ∨32pn). We
obtain the sequent A | ε | 32p0 ∨ . . .∨32pn. The search tree for this sequent has n leaves. Such
a leaf has the form 2p0, . . . ,2pn | 32p0, . . . ,32pn | 2p0, . . . ,2pn. The search stops in these
leaves, since the history already contains all the 2 formulas.

If we do backward proof search in S4S,2+ instead, then the corresponding sequents are 2pi |
32p0, . . . ,32pn | 2p0, . . . ,2pn, i.e. there are still n− 1 possible ways to apply (2) backwards.

After backtracking through this search tree, we apply (2) backwards on 2(p0 ∨ ¬p0) and obtain
an axiom. The search tree for S4S,3 has n+ 1 leaves, the one for S4S,2+ has about n! leaves.

6.5.6 REMARK use-check

Conjunctions inside a 3 can cause many unnecessary branchings, although the formula needs not
be superfluous.

Example

Let A be the formula 2n(p0 ∨ p1),3(¬p0 ∧ ¬p1).

If we do backward proof search for A in S4S,3, then we obtain a search tree with 2n+1 branches.
At the beginning and after every of the n backward application of (2) we unpack ¬p0 ∧ ¬p1 by
applying (3) backwards. With use-check we obtain only two branches, i.e. we have an exponential
speed-up.

Of course 2nA is equivalent to 2A in S4. In order to make the example less obvious we can for
example replace each subformula of the form 2A by 2A ∨Q, where Q is neither p0 nor p1.

6.6 Kt

6.6.1 THEOREM graph calculi

Backward proof search in KGt , (for formulas in negation normal form, with a depth-first strat-
egy, restricting the rules (jump), (jump−), restricting the rules (2), (■) (see 4.7.3), using the
invertibility results) can require exponential space and double exponential time.

Proof

We can reuse the proof of theorem 6.2.1.

6.6.2 THEOREM KSt

Backward proof search in KSt requires at most polynomial space.

Proof

Assume that we do backward proof search for ε | ε | A0 in KSt . From the proof of theorem 5.7.22
follows that the branches of the search tree have polynomial length (relative to length(A)). Since
the branching degree is at most length(A) and each sequent has polynomial size our assertion
follows immediately. For this proof it is important that there is only a polynomial number of
(guess) applications between two (2) applications.

6.6.3 THEOREM validity problem

The complexity of the validity problem for Kt is in PSPACE.

176 CHAPTER 6. COMPLEXITY

Proof

The lower limit follows from the corresponding result about K (see 6.2.4, [Lad77]). The upper
limit was proved in [Spa93]; it follows also immediately from 6.6.2.

6.7 OTHER LOGICS

6.7.1 THEOREM other logics

The complexity of the validity problem for other logics, together with pointers to the literature:

logic
complexity of the
validity problem literature

CPC coNP

S5 coNP [Lad77]
Kn PSPACE [HM92]

KTn PSPACE [HM92]
S4n PSPACE [HM92]
S5n PSPACE [HM92]

PLTL PSPACE [SC85]
CTL EXPTIME [Eme90]
IPC PSPACE [Sta79], [Hud93]

linear logic undecidable [Tro92]

In [FHMV96] and [HM92] the complexity of variants of the multimodal logics is investigated.
Some results concerning the relation between number of variables, modal depth and complexity
can be found in [Hal95].

6.8 SUMMARY

It is known that the complexity of the validity problem of K, KT, S4, and Kt is PSPACE (see
[Lad77], [Spa93]).

Backward proof search in our sequent calculi KS,2, KTS,2, S4S,3, KSt requires at most polynomial
space. The space required for backward proof search in our graph calculi can be much higher.

This is not by chance: All rules of the graph calculi KG , KTG , S4G , KGt are invertible. Since the
branching degree of the search tree is small, the length of the branches of the search tree must
sometimes be exponential, unless coNP = PSPACE. The branches of the search tree in the case
of the sequent calculi, on the other hand, have polynomial length. This is possible because all
these calculi contain non-invertible rules.

7

EMBEDDINGS

em·bed (imbéd) pres. part. em·bed·ding
past and past part. em·bed·ded v.t. to fix
(something) firmly into a surrounding sub-
stance.

Webster Encyclopedic Dictionary.

7.1 INTRODUCTION

7.1.1 REMARK embeddings and decision procedures

Assume that we want to know whether a formula A is valid in the logic L1. If f is an embedding
of L1 in L2, then A is valid in L1 iff f(A) is valid in L2. Thus we can decide the validity of A by
applying a decision procedure for L2 on f(A).

In practice, it is of course important that computing f(A) is not too time-consuming. Moreover,
we have to take into account that it cannot be easier to decide the validity of formulas of L2 than
the one of formulas of L1 (provided that the complexity of f is reasonably restricted). From the
point of view of efficiency, it is therefore not advisable to make use of embeddings. But there are
also advantages: If there already exists a theorem prover for L2 that was tested thoroughly, using
an embedding of L1 in L2 is an easy and reliable method. And if the existing theorem prover for
L2 deals efficiently with the required subset, the resulting procedure will be efficient, too.

7.1.2 DEFINITION embedding, mapping

Assume that L1, L2 are two logics without theories, and L3, L4 ∈ {K,KT,S4}.

• f : FmlL1 → FmlL2 is an embedding of L1 in L2

iff ∀A ∈ FmlL1 : (∗) and (L1 |= A⇔ L2 |= f(A)).

• f : FmlL3 × ThL3 → FmlL1 is an embedding of L3 plus theories in L1

iff ∀A ∈ FmlL3 : ∀T ∈ ThL3 : (∗) and (L3 + T |= A⇔ L1 |= f(A, T)).

• f : FmlL1 → FmlL3 × ThL3 is an embedding of L1 in L3 plus theories
iff ∀A ∈ FmlL3 : (∗) and (LH1 |= A⇔ L3 + el2(f(A)) |= el1(f(A)).

178 CHAPTER 7. EMBEDDINGS

• f : FmlL3 ×ThL3 → FmlL4 ×ThL4 is an embedding of L3 plus theories in L4 plus theories
iff ∀A ∈ FmlL3 : ∀T ∈ ThL3 : (∗) and (L3 + T |= A⇔ L4 + el2(f(A, T)) |= el1(f(A, T))).

where (∗) means that f(A) and f(A, T) can be computed in polynomial time relative to length(A)
and length(nnf(A)) + length(T), respectively.

If the condition (∗) about the complexity of f(A) or f(A, T) is not satisfied, then we will speak
of a mapping instead of an embedding.

7.1.3 REMARK complexity condition

The condition (∗) about the complexity of f(A) and f(A, T) in definition 7.1.2 is important. Note
that there exists a mapping of L1 in L2 for all the logics L1, L2 we consider. We simply define

f(A) :≡
{

true L1 |= A
false L1 6|=A

These are of course not the functions we are interested in.

7.1.4 THEOREM non-existence of embeddings

Assume that L1, L2 are two logics such that:

• The complexity of the validity problem for L1 is PSPACE.

• The complexity of the validity problem for L1 is coNP.

Then there exists no embedding of L1 in L2, unless coNP = PSPACE (cp. chapter 6).

Example

There exists no embedding of K in CPC.

7.2 K + T

7.2.1 THEOREM mapping of K plus theories in K

Assume that A, B1, . . . , Bn are formulas in negation normal form and that T is the multi-
set B1, . . . , Bm. We set C :≡ B1 ∧ . . . ∧ Bm and n(A, T) := (length(A) + length(nnf(¬T))) ·
2length(A)+length(nnf(¬T)). Then we have:

K + T |= A ⇔ K |= C ∧2C ∧ . . . ∧2n(A,T)C → A

Proof

We prove

(K +B1, . . . , Bm)S,2 ` ε | A ⇔ KS,2 ` D,3D, . . . ,3n(A,T)D,A

where D ≡ nnf(¬C). The theorem follows then immediately with the equivalences from chapter
4 and chapter 5.

‘⇒’:

Since (K +B1, . . . , Bn)S,2 ` ε | A, we find a proof when doing backward proof search for ε | A in
(K + B1, . . . , Bn)S,2. For each branch in this proof we count the number of (2) applications on
the branch. Let m be the maximum of these numbers.

7.2. K + T 179

Now compare backward proof search in (K+B1, . . . , Bn)S,2 for ε | A and backward proof search in
KS,2 for ε | D,3D, . . . ,3n(A,T)D,A. The only difference is that in the former we have nnf(¬T) in
the premise of each (2) application, and in the latter we have a D (and some 3iD) in each premise
of a (2) application. Since nnf(¬T) is essentially D, we obtain KS,2 ` ε | D,3D, . . . ,3mD,A.
The condition in the (2) rule of (K + B1, . . . , Bn)S,2 makes sure that m ≤ n(A, T). Therefore
KS,2 ` ε | D,3D, . . . ,3n(A,T)D,A.

‘⇐’:

We can use the same idea as in the first part of the proof, but we do not have to worry whether
n(A, T) is large enough.

7.2.2 REMARK non-existence of standard embedding

In the following we show that we cannot replace the function n in theorem 7.2.1 by a function
with values that are polynomial in length(A) + length(nnf(¬T)).

We will construct a theory T〈b1,...,bm〉 that depends on natural numbers b1, . . . , bm. Every model
which shows that K + T〈b1,...,bm〉 6|= P contains a chain of b1 · . . . · bm worlds (if b1, . . . , bm are
pairwise prime). Then we show that it is possible to choose b1, . . . , bm such that their product is
exponential relative to the length of T〈b1,...,bm〉.

7.2.3 DEFINITION T〈b1,...,bm〉

If m, b1, . . . , bm ∈ {2, 3, . . .} and P,Q1, . . . , Qm, R are different variables, then we define Ai,j :≡
2jQi ∧

∧j−1
k=1(2k¬Qi) for all i ∈ {1, . . . , n} and j ∈ N.

Then:

T〈b1,...,bm〉 := 3R,¬Q1 ∨A1,b1 , . . . ,¬Qm ∨Am,bm , P ∨ (A1,b1 ∧ . . . ∧Am,bm)

7.2.4 LEMMA K + T〈b1,...,bm〉 6|= P

If m, b1, . . . , bm ∈ {2, 3, . . .}, then K + T〈b1,...,bm〉 6|= P .

Proof

It is always possible to construct a countermodel of T〈b1,...,bm〉 and P analogous to the one in the
example below.

Example

Assume that m = 2, b1 = 3, b2 = 5.

Then T〈3,5〉 = 3R,¬Q1 ∨A1,b1 ,¬Q2 ∨A2,b2 , P ∨A1,b1 ∧A2,b2 ,
where A1,b1 ≡ 23Q1∧ (2¬Q1∧22¬Q1) and A1,b1 ≡ 25Q2∧ (2¬Q2∧22¬Q2∧23¬Q2∧24¬Q2).

Then 〈{w0, . . . , w15},R, v〉, where w0Rw1, w1Rw2, . . . , w14Rw15, w15Rw1, and where the valu-
ation v is given by the following table, is a typical countermodel of T〈3,5〉 and P . (A ‘?’ in the
table means that the value does not matter.)

I w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

P 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q1 ? 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
Q2 ? 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
R ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Because of the formula 3R there must always exist an accessible world. In a countermodel of
T〈3,5〉 and P there must be a world where P is false, called w0 in this example. The formula

180 CHAPTER 7. EMBEDDINGS

P ∨A1,3 ∧A2,5 at the beginning, and afterwards, the formulas ¬Q1 ∨A1,3 and ¬Q2 ∨A2,5 effect
that Q1 is exactly true in every third world and that Q2 is exactly true in every fifth world,
respectively. This leads to a loop of 3 ·5 different worlds. Note that we only get b1 · . . . · bm worlds
if the numbers b1, . . . , bm are pairwise prime.

7.2.5 DEFINITION G(b1, . . . , bm)

If m, b1, . . . , bm ∈ {2, 3, . . .}, then G(b1, . . . , bm) stands for

∀i, j ∈ {1, . . . ,m} : (i < j → gcd(bi, bj) = 1)

i.e. the natural numbers b1, . . . , bm are pairwise prime.

7.2.6 LEMMA size of countermodels

If m, b1, . . . , bm ∈ {2, 3, . . .} and G(b1, . . . , bm), then:

K,M |= T〈b1,...,bm〉 and K,M 6|= P ⇒ diam(M) ≥
∏m
i=1(bi)

Proof

Assume that K,M |= T〈b1,...,bm〉 (∗) and that K,M 6|= P .

(1) K,M |= T〈b1,...,bm〉
⇒ ∀w ∈W : w |= 3R
⇒ ∀w ∈W : ∃w′ ∈W : wRw′.

(2) K,M 6|= P
⇒ ∃w0 ∈W : w0 |= ¬P
(∗)⇒ ∃w0 ∈W : w0 |= ¬P ∧ (P ∨A1,b1 ∧ . . . ∧Am,bm)
⇒ ∃w0 ∈W : w0 |= A1,b1 ∧ . . . ∧Am,bm

(3) Assume w,w′ ∈ W and d1 ∈ {1, . . . , b1}, . . . , dm ∈ {1, . . . , bm} such that wRw′ and
w |= A1,d1 ∧ . . . ∧Am,dm . Then we have for all i ∈ {1, . . . ,m}:

• di > 1: w |= Ai,di ⇒ w |= 2diQi∧
∧di−1
k=1 (2k¬Qi)⇒ w′ |= 2di−1Qi∧

∧di−2
k=1 (2k¬Qi) ⇒

w′ |= Ai,di−1.

• di = 1: w |= Ai,di ⇒ w |= 2Qi ⇒ w′ |= Qi
(∗)⇒ w′ |= Qi∧(¬Qi∨Ai,bi) ⇒ w′ |= Ai,bi .

(4) Assume w ∈ W , i ∈ {1, . . . ,m} and di, d
′
i ∈ {1, . . . , bi}, di ≤ d′i such that w |= Ai,di and

w |= Ai,d′i .

If di < d′i, then w |= 2diQi and w |= 2di¬Qi. With (1) follows ∃w′ ∈ W : (w′ |=
Qi and w′ |= ¬Qi). Contradiction. Thus di = d′i.

We define c :=
∏m
i=1(bi). Because of (1), (2) there are w0, w1, . . . , wc−1 ∈ W such that w0Rw1,

w1Rw2, . . . , wc−2Rwc−1 and w0 |= A1,b1 ∧ . . . ∧Am,bm .

With (2),(3),(4) together with G(b1, . . . , bm) follows that 〈w0, . . . , wc−1〉 is a path inM and that
there are no short-cuts, i.e. |w0, wc−1| = c, thus diam(M) ≥ c.

7.2.7 LEMMA
∏m
i=1(bi)

∀e ∈ {1, 2, . . .} : ∃m, b1, . . . , bm ∈ {2, 3, . . .} with b1 < . . . < bm such that:

G(b1, . . . , bm) and
∏m
i=1(bi) > bm

4e

7.3. KT, KT + T 181

Proof

Let primei be the ith prime number (prime1 = 2) and choose m := 8e. We set a :=
∏m
i=1(primei)

and for all i ∈ {1, . . . ,m}: bi := a+ primei.
Assume that c prime, c|bi, c|bj , where i, j ∈ {1, . . . ,m} and i < j.
Then: c|((a + primej) − (a + primei)) ⇒ c|(primej − primei) ⇒ c < primej ⇒ c|a. With c|bj
follows c|primej , and since c < primej we have c = 1. Contradiction. Thus G(b1, . . . , bm) is
satisfied.
Finally

∏m
i=1(bi) > am = (a2)

m
2 > (2a)

m
2 = (2a)4e > (a+ primem)4e = bm

4e.

7.2.8 LEMMA length of T〈b1,...,bm〉

If m, b1, . . . , bm ∈ {2, 3, . . .}, b1 < . . . < bm, G(b1, . . . , bm), then length(P) + length(T〈b1,...,bm〉) <
bm

4.

Proof

If bm ≥ 5, then:
length(P) + length(T〈b1,...,bm〉)

= 1 + 3 +
∑m

i=1(2 + length(Ai,bi)) + (1 +
∑m

i=1(2 + length(Ai,bi)))
< 6 + 3m+ 2m length(Am,bm)
= 6 + 3m+ 2m(

∑bm
i=1(i+ 3)− 2)

= 6 + 3m+m(bm2 + 7bm + 10)
< 6 + 3bm + bm(bm2 + 7bm + 10)
< bm

4.
Otherwise m = 2, b1 = 2, b2 = 3, and length(P) + length(T〈b1,...,bm〉) = 51 < bm

4.

7.2.9 THEOREM non-existence of standard embedding

There exists no function g : FmlK × ThK → N such that:

• g(A, T) is polynomial in length(A) + length(T).

• If A is a formula, T a theory, and C :≡
∧
B∈T (B), then f(A, T) :≡ C∧2C∧. . .∧2g(A,T)C →

A is an embedding of K plus theories in K.

Proof

By combining the four lemmas we can conclude that ∀e ∈ N : ∃T,A with T 6|=A :

(K,M |= T and K,M 6|=A) ⇒ diam(M) ≥ (length(A) + length(T))e

Now assume that we do backward proof search for such A and T in (K + T)S,2. The search will
fail, and we can extract a countermodel. Thus there are branches in the search tree where the
(2) rule has been applied at least (length(A) + length(T))e times.

7.3 KT, KT + T

7.3.1 REMARK motivation for k

The accessibility relation of the KT models must be reflexive, thus 3A is also satisfied if A is
satisfied in the actual world. The function used in [Fit88] simulates this interpretation. We
extend it to theories.

182 CHAPTER 7. EMBEDDINGS

7.3.2 DEFINITION k

We define inductively k2 : FmlKT × {0, 1} → FmlK:

• k2(P, n) :≡ P

• k2(¬P, n) :≡ ¬P

• k2(2A, 0) :≡ 2k2(A, 0)

• k2(2A, 1) :≡ k2(A, 1) ∧2k2(A, 1)

• k2(3A, 0) :≡ k2(A, 0) ∨3k2(A, 0)

• k2(3A, 1) :≡ 3k2(A, 1)

• k2(A ∧B,n) :≡ k2(A,n) ∧ k2(B,n)

• k2(A ∨B,n) :≡ k2(A,n) ∨ k2(B,n)

• k2(A→ B,n) :≡ k2(¬A ∨B,n)

• k2(A↔ B,n) :≡ k2((A→ B) ∧ (B → A), n)

Now we define k : FmlK → FmlK as follows:

k(A) :≡ k2(A, 0)

7.3.3 DEFINITION (k + T)

(k + T)(A, [C1, . . . , Cn]) := 〈k(A), [¬k(¬C1), . . . ,¬k(¬Cn)]〉

7.3.4 THEOREM k and (k + T) are mappings

We set (k + T)(A, T) := 〈A′, T ′〉. Then k is a mapping of KT in K, and (k + T) is a mapping of
KT plus theories in K plus theories. We thus have:

KT |= A ⇔ K |= k(A)
KT + T |= A ⇔ K + T ′ |= A′

Proof

We prove with inductions on proof length that KS ` k(A) ⇔ KTS ` ε | A and (K + T ′)S ` ε |
k(A) ⇔ (KT + T)S ` ε | A and then use the appropriate equivalences from the chapters 4 and
5.

Example

Let A be the formula 3¬p0 ∨ p0. Then KTS,2 ` ε | A, but KS,2 0 ε | A.

We have k(A) ≡ (3¬p0 ∨ ¬p0) ∨ p0, and obviously KS,2 ` ε | (3¬p0 ∨ ¬p0) ∨ p0.

7.3.5 THEOREM k and (k + T) are not embeddings

k and (k + T) are not embeddings.

Proof

Of course the equivalences can cause problems. But even if we consider only formulas with-
out ↔ the functions k and (k + T) are not embeddings. To show this we define An :≡ 3np0.

7.4. S4 183

Then length(A0) = 1 and length(k(An+1)) = length(3k(An) ∨ k(An)) > 2 length(k(A)). Thus
length(k(An+1)) > 2n.

7.3.6 REMARK k, (k + T), and structure sharing

If no ↔ occur in A and T , then the computation of k(A) and (k + T)(A, T) is possible in poly-
nomial time if we use structure sharing.

7.4 S4

7.4.1 REMARK S4 in KT plus theories

First we give the standard mapping of S4 in K plus theories, where we simply take certain instances
of the formulas T and 4 defined in definition 1.a. (We will use this method again in chapter 11).
If we omit the instances of T, then we obtain a mapping of S4 in KT plus theories.
Afterwards we construct an embedding of S4 in KT plus theories. The embedding is in fact similar
to the mapping, but relies on a different motivation. If we compare backward proof search in
KTS and S4S , then we see that the (2) rules handle the 3 formulas differently. We introduce
new variables for the 3 formulas, and describe in the theory what should be done with these
variables. This embedding shows that KT plus theories is quite powerful.

7.4.2 DEFINITION (k + T)inst

Let A be a formula, and let C1, . . . , Cn be the 3 formulas in subfmls(nnf(A)). We set

D1 :≡ C1

D2 :≡ C2

D3 :≡ C1 ∨ C2

D4 :≡ C3

D5 :≡ C1 ∨ C3

...
D2n−1 :≡ C1 ∨ . . . ∨ Cn

i.e. the formulas D1, . . . , D2n−1 are all possible disjunctions formed of the formulas C1, . . . , Cn.
Finally T ′ := T{C1/p0}, . . . ,T{Cn/p0}, 4{D1/p0}, . . . , 4{D2n−1/p0}.
Then:

(k + T)inst(A) := 〈A, T ′〉

Example

Let A be the formula 3(3p1 ∨ p2)∧ p0. Then the 3 formulas in subfmls(nnf(A)) are 3(3p1 ∨ p2)
and 3p1. Thus C1 ≡ 3(3p1 ∨ p2), C2 ≡ 3p1, D1 ≡ 3(3p1 ∨ p2), D2 ≡ 3p1, and D3 ≡
3(3p1 ∨ p2) ∨3p1. We obtain:

T ′ = 23(3p1 ∨ p2)→ 3(3p1 ∨ p2),
23p1 → 3p1,

23(3p1 ∨ p2)→ 223(3p1 ∨ p2),
23p1 → 223p1,

2(3(3p1 ∨ p2) ∨3p1)→ 22(3(3p1 ∨ p2) ∨3p1)

184 CHAPTER 7. EMBEDDINGS

For a second example see remark 11.3.2.

7.4.3 THEOREM (k + T)inst is a mapping

If (k + T)inst(A) = 〈A′, T ′〉, then:

S4 |= A ⇔ K + T ′ |= A′

Proof

‘⇒’:

We take a proof P of nnf(A) in S4S and show that we can convert it into a proof P ′ of nnf(A) in
(K + nnf(T ′))S . The theorem then follows with the appropriate equivalences from the chapters 4
and 5.

We start at the root of P and move towards the leaves. The root of P ′ is the sequent nnf(A),nnf(¬T ′).
Applications of (∧) and (∨) in P are converted into the corresponding applications of (∧) and
(∨) in P ′. The following two proof fragments show how applications of (3) are simulated in
(K + nnf(T ′))S . Note that nnf(¬T{¬A/p0}) ≡ nnf(¬(2¬A→ ¬A)) ≡ 2nnf(¬A) ∧ nnf(A).

3nnf(A),3Σ | nnf(A),Γ
(3)

3Σ | 3nnf(A),Γ
;

3nnf(A),3Σ | 2nnf(¬A),Γ 3nnf(A),3Σ | nnf(A),Γ
(∧)

3nnf(A),3Σ | 2nnf(¬A) ∧ nnf(A),Γ
(3)

3Σ | 3nnf(A),2nnf(¬A) ∧ nnf(A),Γ

In a similar way we simulate (2) applications. We assume that D is the disjunction from defi-
nition 7.4.2 that corresponds to the multiset 3Σ. Note that nnf(¬4{¬D/p0}) ≡ nnf(¬(2¬D →
22¬D)) ≡ 2nnf(¬D) ∧33nnf(D).

3Σ | nnf(A),3Σ
(2)

3Σ | 2nnf(A),Γ
;

ε | nnf(¬D),Σ
(2)

3Σ | 2nnf(A),2nnf(¬D),Γ

ε | nnf(A),3nnf(D),Σ
(2)

33nnf(D),3Σ | 2nnf(A),Γ
(3)

3Σ | 2nnf(A),33nnf(D),Γ
(∧)

3Σ | 2nnf(A),2nnf(¬D) ∧33nnf(D),Γ

‘⇐’:

Obviously the formulas provable in (K + T ′)H are a subset of the formulas provable in S4H. The
theorem follows with the appropriate equivalences from the chapters 4 and 5.

7.4.4 THEOREM (k + T)inst is not an embedding

The result of (k + T)inst(A) can have exponential length (relative to length(A)).

Proof

If there are n 3 formulas in subfmls(nnf(A)), then the theory in (k + T)inst(A) contains 2n − 1
instances of the formula 4.

7.4.5 REMARK change (k + T)inst to an mapping in KT plus theories

We could easily make an mapping of S4 in KT plus theories out of the mapping (k + T)inst by
omitting the instances of the formula T. However, this would still not be an embedding, since
the instances of the formula 4 and not those of T are the reason of the problem.

7.4. S4 185

7.4.6 DEFINITION extended substitution

We extend the notation for substitution:
Let A be a formula, Q1, . . . , Qn pairwise different variables that do not occur in A, and C1, . . . , Cn
subformulas of A.
We construct a function π : {1, . . . , n} → {1, . . . , n} such that π(i) < π(j) implies length(Cπ(i)) ≥
length(Cπ(j)). First we substitute in A the variable Qπ(1) for Cπ(1), in the result we sub-
stitute the variable Qπ(2) for Cπ(2), . . . , and finally the variable Qπ(n) for Cπ(n). We write
A{Q1/C1, . . . , Qn/Cn} for the result.

Example

If A ≡ 3(p0 ∨32p1)∧32p1 and C1 ≡ 32p1, C2 ≡ 3(p0 ∨32p1), then π(1) = 2, π(2) = 1, and
A{Q1/C1, Q2/C2} ≡ Q2 ∧Q1.

7.4.7 DEFINITION (kt + T)

Assume that:

• A is a formula.

• 3C1, . . . ,3Cn are the 3 formulas in subfmls(A).

• Q1, . . . , Qn are variables that do not occur in A.

• For all i ∈ {1, . . . n} : C ′i :≡ Ci{Q1/3C1, . . . , Qn/3Cn}.
• A′ :≡ A{Q1/3C1, . . . , Qn/3Cn}
• T ′ := {Q1 ∨ ¬(3Q1 ∨3C ′1), . . . , Qn ∨ ¬(3Qn ∨3C ′n)}.

Then:

(kt + T)(A) := 〈A′, T ′〉

Example

Assume that A ≡ 3(p0 ∨23¬p0) ∧ p0.
Thus n = 2, C1 ≡ p0 ∨ 23¬p0, C2 ≡ ¬p0. We choose Q1 ≡ p1, Q2 ≡ p2. The variables Q1, Q2

are used as abbreviations for the 3 formulas C1, C2.
Then C ′1 ≡ p0∨2Q2, C ′2 ≡ ¬p0, A′ ≡ Q1∧p0, and T ′ = {Q1∨¬(3Q1∨3C ′1), Q2∨¬(3Q2∨3C ′2)}.

7.4.8 THEOREM (kt + T) is an embedding

If (kt + T)(A) = 〈A′, T ′〉, then length(A′) + length(T ′) is polynomial (relative to length(A) +
length(T)), and

S4 |= A ⇔ KT + T ′ |= A′

Proof

The first statement is obvious. In order to prove the second statement, we prove

S4S ` ε | nnf(A) ⇔ (KT + nnf(T ′))S ` ε | nnf(A′)

With the appropriate equivalences from the chapter 4 and 5 we obtain the theorem.
‘⇒′:
Let P be a proof of ε | nnf(A) in S4S . We construct a proof P ′ of nnf(A′) in (KT + nnf(T ′))S ,
starting at the root and moving towards the leaves. The root of P ′ is nnf(A′),nnf(¬T ′). An

186 CHAPTER 7. EMBEDDINGS

application of one of the rules (∨), (∧), (2) in P becomes an application of the corresponding
rule of (KT + nnf(T ′))S in P ′. The only problem is caused by the (3) rule. If this rule is applied
backwards with main formula 3Ci in P, then we only have a Qi in the place of the 3Ci in P ′.
Therefore we insert the following part in P ′ as soon as a Qi occurs in a sequent.

(id)
3Σ | Qi,¬Qi,Γ

3Qi,3Σ | Qi,3nnf(C ′i),Γ (3)
3Σ | Qi,3Qi,3nnf(C ′i),Γ (∨)
3Σ | Qi,3Qi ∨3nnf(C ′i),Γ (∧)

3Σ | Qi,¬Qi ∧ (3Qi ∨3nnf(C ′i)),Γ

The inserted part has two purposes:

• If 3nnf(Ci) occurs for the first time on a branch in P (seen from the root), then it makes
sure that 3nnf(C ′i) occurs in the corresponding sequent in P ′.

• In contrast to S4S , a backward application on (2) in (KT +T)S destroys leading 3 connec-
tives. The inserted part regenerates them by ‘replacing’ Qi by 3Qi.

Thus we know that if 3nnf(Ci) occurs in a sequent in P, then 3nnf(C ′i) occurs in the correspond-
ing sequent in P ′, i.e. we can apply (3) backwards in P ′ and continue with the construction.

‘⇐’:

Let P ′ be a proof of nnf(A′) in (KT + nnf(T ′))S . We construct a proof P of nnf(A) in S4S ,
starting at the root and moving towards the leaves. The root of P is nnf(A).

First some remarks about the proof P ′. We can assume that the (∧) rule is only applied backwards
on a formula from T ′ if the corresponding Qi occurs in the sequent (for the first time since the
last backward application of (2) on this branch). Because of the invertibility of (∨), (∧), and
(3) we can moreover assume that if (∧) is applied backwards on a formula from T ′, then (∨) and
(3) are applied backwards as in the proof fragment above.

Now the translation of P ′ into a proof P in S4S causes no problems. We simply do nothing in P
if the proof fragment from above occurs in P ′.

7.5 S4 + T

7.5.1 REMARK motivation

Since the accessibility relation in the S4 models is transitive, 2B means that B is true in the
current world and in all the worlds in the future.

7.5.2 THEOREM S4 plus theories in S4

S4 +B1, . . . , Bn |= A ⇔ S4 |= 2B1 ∧ . . . ∧2Bn → A

Proof

See the proof of theorem 3.7.3.

7.6. OTHER LOGICS 187

7.6 OTHER LOGICS

7.6.1 THEOREM K plus theories in CTL

We define inductively ctl1 for formulas in negation normal form: ctl1(P) :≡ P , ctl1(¬P) :≡ ¬P ,
◦ ∈ {∧,∨} ⇒ ctl1(B ◦ C) :≡ ctl1(B) ◦ ctl1(C), ctl1(2B) :≡ AX ctl1(B), ctl1(3B) :≡ EX ctl1(B).
If A is in negation normal form, then:

K +B1, . . . , Bn |= A ⇔ CTL |= AGB1 ∧ . . . ∧ AGBn → ctl1(A)

7.6.2 THEOREM S4 in CTL

We define inductively ctl2 for formulas in negation normal form: ctl2(P) :≡ P , ctl2(¬P) :≡ ¬P ,
◦ ∈ {∧,∨} ⇒ ctl2(B ◦ C) :≡ ctl2(B) ◦ ctl2(C), ctl2(2B) :≡ AG ctl2(B), ctl2(3B) :≡ EF ctl2(B).
If A is in negation normal form, then:

S4 |= A ⇔ CTL |= ctl2(A)

7.6.3 THEOREM S4 in S5

S4 |= A ⇔ S5 |= 32A

7.6.4 REMARK modal logics in classical predicate logic

See [Ohl91] and [OS97] for embeddings of modal logics in classical predicate logic. In [HS97] an
implementation for K is discussed.

7.6.5 REMARK IPC in S4

There exist several embeddings of IPC in S4 (see for example [TS96]). See [Dos93] for embeddings
of IPC in other modal logics, and also for embeddings of substructural logics in modal logics.

7.6.6 REMARK S4 in linear logic

There exists an embedding of S4 in linear logic (for formulas without↔). See for example [MM94]
for more information.

7.7 SUMMARY

We have first defined the notions of embedding (where the length of the output is polynomial,
relative to the length of the input) and of mapping (no such restriction). Then we have given the
obvious mappings of KT in K, KT + T in K + T , and K + T in K. Moreover we have proved that
there is no ‘standard’ embedding of K + T in K. For S4 we have discussed both a mapping in
KT+T (using instances of the formulas T, 4) and an embedding in KT+T (using abbreviations).

8

THE LWB PROJECT

1994 Range Rover LWB County
— Available for: $36,900 —

4 Door, S.U.V., Automatic Transmission,
Power ABS Brakes, Power Asst. Steering,
Heated/Leather/Power Seats, Power Win-
dows, Power Door Locks, Rear Defrost, Rear
Wiper, Tilt Steering, Cruise Control, In-
ter. Wipers, Tinted Glass, Roof Rack, Secu-
rity Alarm, Cassette, Power Mirrors. 35,862
Miles, V.I.N.# 645329.

8.1 INTRODUCTION

The Logics Workbench (LWB) is being developed at the university of Bern. The aim is to facilitate
the access to and the use of a variety of propositional logical formalisms. Considerable effort has
been made to produce a user-friendly software (graphical user interface, information system, . . .).

The LWB includes implementations of the decision procedures discussed in part I of this thesis.
Version 1.0, which is described in the following, was used for all computations in part III.

8.2 OVERVIEW

The LWB consists of five components:

• Graphical user interface.

• Parser/interpreter.

• Logic modules.

• Kernel.

• Information system.

192 CHAPTER 8. THE LWB PROJECT

The graphical user interface has been developed in order to facilitate the handling of sessions,
the navigation within the program, and the reuse of previously typed statements. However, it is
also possible to use the LWB in a shell via the ASCII interface.
The parser/interpreter obtains its input from the user interface, translates and executes it. The
basic communication with the system is done in an untyped language, which follows very closely
the philosophy of well-established computer algebra systems such as Maple and Mathematica. It
includes a full programming language.
The logic modules contain a collection of implementations of well-known algorithms of the most
important propositional logics:

• classical propositional logic (CPC)

• intuitionistic propositional logic (IPC)

• modal propositional logics (K, KT, S4, S5, G)

• multimodal propositional logics (Kn, KTn, S4n)

• tense and temporal propositional logics (Kt, PLTL)

• linear propositional logic

• nonmonotonic propositional logics (autoepistemic reasoning, circumscription, closed world
assumption, default logic)

The functions that are available for a typical monotonic logic module are grouped as follows:

• Conversions: Remove true and false, remove provable subformulas, replace → by ¬∨, sim-
plify a formula (only for CPC), . . .

• General functions: Length of a formula, list of the variables that occur in a formula, . . .

• Miscellaneous: Embeddings, random formulas, standard formulas.

• Normal forms: Compute normal forms of formulas, check whether a formula is in a certain
normal form.

• Proofs: Compute a sequent calculus proof (only for CPC).

• Provability: Check whether a formula is provable, whether a formula is derivable from a
theory, whether a theory is consistent.

Note that the user can add his own functions (implemented in the LWB programming language),
but that he cannot add ‘logics’. There is for example no generic procedure that does proof search
in a sequent calculus given by the user.
The LWB kernel provides the central data structures on which both the parser and the logic
modules rely. This includes the data structures that can be created by the user (for example
formulas, lists), and also data structures that are used internally.
A comprehensive information system gives detailed support for the usage of the different modules.
All information is available via the World Wide Web and may therefore be consulted without any
local installations.

8.3 COMPARISON WITH OTHER SYSTEMS

The system with the most similarities with the LWB is probably the Helsinki Logic Machine
(HLM) (see [NT87]). The main difference between the LWB and the HLM is probably that more
man-years have been invested in the LWB project. This allowed us to develop a user-friendly
interface. We cannot compete with the large number of decision procedures in the HLM, since

8.4. KERNEL 193

each decision procedure in the LWB has been implemented separately, while in the HLM in many
cases embeddings in dynamic logic were used. On the other hand, our solution gives us the
possibility to implement efficient decision procedures by making use of properties of the specific
logics.

The following list should help to make it clear what the LWB is not:

• The LWB is not a theorem prover.

First, we offer a large variety of functions, not just decision procedures. Second, we do not
offer possibilities to prove a formula in several steps (for example using lemmas), and there
is no way the user could guide the search.

We do not try to list existing theorem provers, since there are simply too many.

• The LWB is not a tool to learn the construction of proofs.

The proofs in the LWB are built up automatically. The user can display the proofs in
several ways, and he can go step by step through the proofs, but he cannot change them or
construct them himself.

See Jape [BS97], Mac Logic [Dyc91], or Proof Tutor [SS92] if you want to learn how to
construct proofs.

• The LWB does not rely on a logical framework.

There is a considerable number of logic modules in the LWB, and each one contains many
functions. The user can add his own functions with the LWB programming language.
However, there is no way to define a logic, for example by giving a sequent calculus, and to
use a generic decision procedure for proof search in this logic. This is certainly a restriction.
We chose this solution because it seemed to be too difficult for us to define a framework
that comprises all the logics that are contained in the LWB (think for example of linear
logic, PLTL, or the calculus S4S,2) without becoming very inefficient.

See for example Isabelle [Pau94] if you are looking for a logical framework.

8.4 KERNEL

Data structures for formulas and other expressions that are used in algorithms are represented
in the kernel of the LWB. The principles of object oriented design have been applied. Care was
taken to provide the developers of LWB modules with a clear, abstracted interface to the basic
objects. C++ allows good encapsulation, for example pointer handling becomes superfluous for
the implementation of algorithms. Moreover, we took advantage of the possibility of operator
overloading which makes dealing with expressions more intuitive and increases the readability of
functions.

Great importance has been attached to a clear design of the internal class hierarchy and high
efficiency of the basic member functions. The addition of new data types is simple; thanks to the
inheritance mechanism of classes, only those parts that really differ from the other data types need
to be implemented. Moreover, there is a close relationship to the parser: the nonterminals of the
grammar of the parser correspond to the abstract base classes, and the terminals correspond to the
derived concrete classes. Reference counting has been chosen as internal memory management.

194 CHAPTER 8. THE LWB PROJECT

Figure 8.a: The main window of the LWB (top left), the info window
(bottom left), LWBinfo (top right), proof wish (bottom right).

8.5. PARSER/INTERPRETER 195

8.5 PARSER/INTERPRETER

To set up a user-friendly parser we used the well-known development tools lex and yacc. With
lex , the lexical analyser is generated (recognition of tokens) and with yacc, the actual parser
is built. The description of the accepted language is given in Backus-Naur Form. Both tools
translate the intuitive descriptions into C programs. The parser is designed to respect the usual
conventions in the writing of expressions.

The LWB programming language gives the user the possibility to define new procedures. The
programming language offers constructs like for to do, while do, foreach do, data structures
like lists, arrays, and procedures with parameters, reference variables, local variables, and local
procedures.

8.6 LOGIC MODULES

Each logic module provides a series of functions. These functions are implemented in C++.
In order to structure the description of the logic modules, we distinguish between monotonic
propositional systems and nonmonotonic propositional systems.

8.6.1 Monotonic propositional logics

The largest group of implemented modules concerns monotonic propositional logics. The LWB
tries to cover a great variety of propositional logics (including the most important ones), but it
is not our aim to include every system which is described in the literature.

In order to facilitate queries to the LWB, we do not require that the input be in normal form.
Even a seemingly simple transformation such as the step from A ↔ B to (A → B) ∧ (B → A)
can convert a well structured formula into a completely unreadable one.

Auxiliary functions: There are auxiliary functions (such as length and depth of formulas),
standard functions for the computation of normal forms, embeddings, There is the possibility
to generate ‘random formulas’, depending on given parameters like depth or list of variables.
Of course the notion of random formula is problematic, but there are approximations that are
sufficient for our purpose (cp. chapter 9).

Decision procedures: For each logic under consideration a specifically tailored decision
procedure is used. Some of these decision procedures are explained in detail in this thesis.

We do not treat several logical calculi simultaneously by reducing them to one specific base
system. For example, there exists a straightforward embedding of the modal logic KT into K (see
chapter 7). Although the embedding is very simple, nested modal operators and equivalences can
cause an exponential increase of the length of the formula. If one uses structure sharing and if
no equivalences occur in the formula, the problem can be solved. However, proof search in K for
the embedded formula is still considerably harder than proof search for the original formula in
KT, because KT allows a much stronger form of use-check than K (cp. remark 5.2.18).

Besides pure provability, the LWB is also able to cope with provability of a formula in a logic plus
theory, i.e. in a logic plus additional nonlogical axioms. Of course this is trivial for classical and
intuitionistic logic, but requires some effort in the case of several modal logics. Two examples
are the wise-men-problem in multimodal logic and the proof of the equivalence of different modal
logics (see chapter 11).

196 CHAPTER 8. THE LWB PROJECT

Proofs: In the module for classical propositional logic, there is a function proof that generates
proofs in the standard sequent calculus. At first, the usual backward proof search is used to find
a proof, and then this proof is simplified in order to make it more readable.

Simplification of formulas: It is not difficult to give some definition of ‘simplification’
with pleasant properties. Two possibilities are the conjunctive normal form or the minimised
conjunctive normal form. In a few cases, normal forms of this kind may help, but in general
the results are far too long. Moreover, we think that the user should be able to recognise the
structure of his input formula after the simplification process – a condition that is often ignored.

Therefore, we sacrifice the requirement to obtain a ‘minimal’ solution in some theoretical sense.
Simplification of a formula can be described vaguely in our context as the transformation of a
formula to a logically equivalent form which is better readable, yet does not destroy the original
structure unnecessarily.

These requirements called for the development of a rather sophisticated algorithm. On the one
hand, it tries to find as many simplifying sequences of transformations as possible. On the other
hand, for efficiency reasons, it cannot use an exhaustive search to find these sequences, but relies
on a very directed search. In addition, the user may control (via parameters) the tradeoff between
quality and runtime of the simplification process according to his needs. See the sample session
in section 8.11 for a simple example.

Efficiency: We use several methods to increase the efficiency of the implemented algorithms.
None of the methods described below is completely new. However, it turned out that their combi-
nation considerably improves the runtime behaviour without leading to unintelligible algorithms.

Structure sharing is used on several occasions. On the one hand it is supported by the kernel of
the LWB: If the user types a := p v q & r; and afterwards b := a v p;, then the formula a
is not copied in order to store b, but simply a pointer to a is used. This method helps to save
memory and can speed up equality tests. On the other hand most decision procedures make use
of structure sharing in order to avoid the copying of the whole sequent when only the head of the
sequent changes.

Use-check (cp. [SFH92]) is a widely applicable method in the context of proof search for sequent
calculi. The basic idea is the following: Suppose we have to check whether A ∧B,Γ is provable.
First we check whether A,Γ is provable. If this is the case and if A was not ‘used’ in the proof
of A,Γ, then it is superfluous to search for a proof of B,Γ since the provability of this sequent
follows immediately from that of A,Γ. See chapter 5 for details.

Another method is the efficient loop-check for example for the modal logic S4. Because the
usual sequent calculus for S4 contains a hidden contraction, loops can occur during proof search.
Therefore we have to test for each sequent whether it already occurred on the current branch of
the search tree. Such a loop-check is in general expensive, and the implementation of an equality
test for sequents is laborious. In the case of S4 there exists a calculus where loop-checking is very
cheap (see definition 5.6.8). The main problem, namely the presence of noninvertible rules, still
remains, but this problem is related to the PSPACE property of the validity problem for S4 and
therefore, difficult to avoid.

8.6.2 Nonmonotonic propositional logics

Most of the interesting properties as well as the known problems inherent in the systems above
do already show up in the propositional case, and it is sometimes even easier in this framework to
construct examples which illustrate these problems. Therefore, at least for didactical purposes,
the restriction to the propositional case should not be too disturbing.

Following the pattern of monotonic systems, a number of functions besides decision procedures
have been implemented. A good example is the function that computes the set of extensions of a

8.7. GRAPHICAL USER INTERFACE 197

default theory. This function gives a lot more insight into default logic than the mere provability
test.

In section 8.11 we use some of these functions in a simple example.

8.7 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) has been developed under Motif. The GUI contains 3 com-
ponents (see also figure 8.3):

1. The main window: The main window consists of a menu bar and a scrollable input window,
which can be changed in size. The input window is the essential part of the GUI. It is
built up by pairs of input and output regions. By returning to previous input regions the
user can avoid repeated typing of equal or similar commands. Each input region is a little
multiline text editor, in which all needed text manipulations can be done.

2. Status window: It displays general information about the state and the activity of the LWB
and specific information about the run of algorithms, which is of interest to the user. The
amount of information can be controlled.

3. Option window: In the option window the user can change global variables like display mode
or bracket mode by mouse clicks. Likewise, he can choose his favourite colour settings.

Special emphasis has been put on the similarity to other X11-/Motif-applications. For example,
user specific adaptations are done in the usual way (resource file). Various useful features are
supported:

1. Save/load of all assigned variables, or the list of input and output regions (session).

2. Insertion and deletion of regions. Hiding the output regions. Reevaluation of all input
regions.

3. Emacs-like control sequences.

4. Connection to the information system.

The proofs generated for classical propositional logic can be graphically displayed using the proof
wish tool (see figure 8.3).

8.8 LWB INFORMATION SYSTEM

The LWB information system goes far beyond what is usually offered by other systems of computer
assisted logics and mathematics. It relies on the features provided by World Wide Web (WWW).
This approach offers several advantages:

1. Representation: The HTML format includes fonts in different shapes and sizes, but also
icons and pictures.

2. Hypertext links: The LWB information system uses the capabilities of hypertext to structure
the available information.

3. Availability: With a WWW Browser one can use the LWB information system installed in
Bern. Users from outside Bern can also install it easily at their site.

4. Flexibility: A key feature is the easy extendability. Existing parts are not affected by
changes or extensions.

198 CHAPTER 8. THE LWB PROJECT

The LWB information system also contains a large variety of information besides the standard
help texts:

1. Information about the LWB: Aims, installation instructions,

2. Sample session with the LWB, picture of a sample session with the XLWB.

3. Description of syntax and programming language.

4. Description of each function (with examples), list of the functions in a module, list of the
modules.

Moreover, it is possible to use the LWB installation in Bern via the information system. This
facility is especially useful for occasional queries, because no preceding local installation of the
LWB or of the LWB information system is required. Naturally this usage of the LWB is not very
user-friendly, and the number of simultaneous users is limited.
The function descriptions of the LWB information system are automatically generated from the
corresponding description in the reference manual, thus ensuring consistency. Moreover, all exam-
ples in the reference manual are automatically calculated by the LWB during typesetting and the
results are inserted. Therefore, the reader cannot be confused by examples that do not correspond
to the behaviour of the LWB.

8.9 THE LWB IN EDUCATION

The LWB is used at the University of Bern in connection with courses on logic and computer
science. It has turned out to be helpful in considerably reducing the time spent on tedious
calculations and transformations that do not give much insight, so that more time was left to
concentrate on essential problems.
Using the LWB, it is possible to discuss problems of realistic size which go far beyond the usual
toy examples. In this way students get a better feeling for algorithmic aspects of logic in general
and especially for the complexities (run time, length of formulas, . . .) relevant in practice. A
typical example is the computation of a conjunctive normal form of a formula A. There are
two well-known procedures: In the first one we use the distributivity law, in the second one
we introduce abbreviations for subformulas. The second one looks more complicated, and the
result is not equivalent to A (we just know that A is satisfiable iff the result is satisfiable). The
disadvantage of the first one is that the length of the result can be exponentially long relative to
the length of A. However, it is difficult to show this on a blackboard, since it becomes only fully
visible if A is not too short.
A drawback of textbooks is the often rather small number of exercises. The LWB gives the
possibility to look at variations of these examples. This often helps to better understand what
the essential point of the example is. In circumscription for example, we can try the effects of all
combinations of minimised, varied, and ‘usual’ variables.
The LWB programming language gives the students the possibility to implement standard func-
tions. Advantage (compared with other programming languages): The required data structures,
input and output, . . . are integrated in the LWB.
The following examples are typical exercises:

• Complexity:
Find a formula A such that the conjunctive normal form of A (computed using the distribu-
tivity law) is 1000 times as long as A. Check your solution with the LWB.

• Algorithms:
Implement of a function that computes the negation normal form in classical propositional

8.10. ACCESS TO THE LWB 199

logic. Especially for computer science students it is probably easier to understand such pro-
grams than pure mathematical definitions. A more demanding programming exercise is the
drawing of diagrams (cp. chapter 14). There, the main difficulty is not the implementation,
but the idea of the algorithm and the correctness of termination condition.

• Learn about non-classical logics:
Formalise a mutual exclusion solution in PLTL and check with the decision procedure
whether it really is a solution (cp. for example [Eme90]).

• Compare logics:
Formalise a certain block world situation in the three nonmonotonic logics circumscription,
closed world assumption, and default logic. Compare the advantages and disadvantages.
(See for example the sample session in section 8.11.)

8.10 ACCESS TO THE LWB

The binaries of version 1.0 is available for Sun Solaris vie the LWB home page. Forthcoming
versions will probably be available for other systems, too.

The LWB can be used via a World Wide Web Browser, i.e. without previous installation of
any part of the LWB. Just load the LWB home page (address: http:// lwbwww.unibe.ch:
8080/LWBinfo.html) and choose the item run a session. Afterwards one can type the input in
a window and submit it. A computer at the IAM in Bern calculates the results and sends them
back. The number of simultaneous users and the CPU time per job is limited.

8.11 SAMPLE SESSION

In this appendix we present two sample sessions, one based on monotonic systems and the other on
nonmonotonic systems. You can find larger sessions, especially where the programming language
is used in part III of this thesis. In contrast to all other sessions in this thesis, the one in this
section was inserted by copy-and-paste and not computed during typesetting.

LWB - The Logics Workbench 1.0
type ’help;’ for help

> a := (~(p v q) & (s <-> r) -> q v p)
> & (((d -> c) -> d) -> d);

We have a look at the properties of this ‘arbitrary’ formula in classical propositional logic (cpc).

> load(cpc);
cpc user

cpc> b := simplify(a);
b := (s <-> r) -> q v p

Now let us look at the formula a again. It is a conjunction, and the second conjunct has the form

cpc> a2 := a[2];
a2 := ((d -> c) -> d) -> d

200 CHAPTER 8. THE LWB PROJECT

Now we compare a2 with the Peirce’s formula . . .

cpc> fml("peirce");
((p1 -> p2) -> p1) -> p1

. . . and realise that they are identical modulo renaming. Thus a2 must be provable in classi-
cal, but not in intuitionistic logic (ipc).

cpc> load(ipc);
ipc cpc user

ipc> cpc::provable(a2);
true

ipc> provable(a2);
false

Now we embed a2 in the modal logic s4. The result must not be provable in s4; however,
it is provable in s5.

ipc> load(s4, s5);
s5 s4 ipc cpc user

ipc> ipc::s4(a2);
box(box(box(box d -> box c) -> box d) -> box d)

s5> s4::provable(ipc::s4(a2));
false

s5> s5::provable(ipc::s4(a2));
true

The second example shows a typical difference between closed world assumption (cwa) and default
logic (default). The theory t contains statements about the colours of a cube and a ball, namely:
The ball or the cube is red, both ball and cube are either red or blue. We want to minimise the
number of red objects. The closed world assumption theory of t restricted on red(ball) and
red(cube) is inconsistent because it contains both ~red(ball) and ~red(cube).

> t := [red(ball) v red(cube),
> red(ball) <-> ~blue(ball), red(cube) <-> ~blue(cube)];
load(cwa);

cwa user
cwa> consistent(t, [red(ball), red(cube)]);

false
cwa> cwa(t, [red(ball), red(cube)]);

[red(ball) v red(cube),
red(ball) <-> ~blue(ball), red(cube) <-> ~blue(cube),
~red(ball), ~red(cube)]

In default logic, we can express the minimality of red objects with the two rules in Delta.
The first rule [true, ~red(ball), ~red(ball)] says: If we can add ~red(ball) to the theory
without obtaining an inconsistent theory, then we add ~red(ball). The second rule states the
same for ~red(cube).

8.12. SUMMARY 201

We obtain two consistent extensions. One extension contains ~red(ball) and the other one
contains ~red(cube).

cwa> load(default);
default cwa user

default> Delta := [[true, ~red(ball), ~red(ball)],
default> [true, ~red(cube), ~red(cube)]];
default> extensions([t, Delta]);

[[red(ball) v red(cube),
red(ball) <-> ~blue(ball), red(cube) <-> ~blue(cube),
~red(ball)],
[red(ball) v red(cube),
red(ball) <-> ~blue(ball), red(cube) <-> ~blue(cube),
~red(cube)]]

8.12 SUMMARY

We have given an overview of the Logics Workbench (LWB), version 1.0 . See http://lwbwww.
unibe.ch:8080/LWBinfo.html for more information.

9

TESTS

“How do they know the load limit on bridges,
dad?” “They drive bigger and bigger trucks
over the bridge until it breaks. Then they
weigh the last truck and rebuild the bridge.”

B. Watterson. Calvin and Hobbes.

9.1 INTRODUCTION

In this chapter we define tests for decision procedures for the logics K, KT, and S4.
All these tests are black box tests: We feed the decision procedure with a formula and check
whether the output (‘valid’ resp. ‘not valid’) is correct. We assume that there is no possibility to
see what is going on during the computation. This assumption is useful if we want to apply the
tests to different sorts of decision procedures, but it is also the source of the so-called propagation
problem: It could happen that the result is correct for a certain formula although something went
wrong during the computation. Some experiments with the decision procedure for K in the LWB
showed that the chances for this happening are good: We were able to build some mistakes into
the procedure that influenced the result only very seldom. (Unfortunately the more sophisticated
an algorithm is, the more possibilities there are for this sort of mistake.)
Therefore it is important to make tests with a large number of formulas. However, not only the
number, but also the variety of these formulas matters, since otherwise the coverage can be poor.
If for example ↔ occurs in almost no formula, and the decision procedure does not convert ↔
into → and ∧, but has a special rule for ↔, then it is probable that a mistake in this part of the
procedure will not be detected.
First we collected formulas from the literature (textbooks about modal logic, but also papers on
automated theorem proving) where the correct result is known. Even testing just a few formulas
by hand is tedious. On the other hand, it is important to do these tests after changes, in order
to detect unintentional side effects (read: mistakes). Thus an automatisation is mandatory. We
did this with the help of a small program that takes the test files, applies the LWB to them,
saves the output in a file, compares it with the expected output, and reports differences. Like
this we can run all our tests with a simple command and just have to check afterwards whether
any differences have been reported.

204 CHAPTER 9. TESTS

After a while it became clear that these lists were not sufficient, and we looked for other ways
to generate test formulas. This was a time-consuming task and should not be repeated by every
author of a decision procedure for K, KT, S4. Therefore we present tests for these three logics.
Since the predominant number of formulas is generated by programs, the time-consuming and
error prone typing is reduced to a minimum.

9.2 METHOD

The tests for K, KT, S4 consist of five parts:

1. Some simple formulas.

2. Ordering of standard formulas.

3. Random formulas.

4. Valid formulas.

5. Nonvalid formulas.

We discuss these five parts in the following subsections, giving both the LWB output (since there,
no typing errors are possible) and a LaTeX table (which is more readable).

Note that the results in the parts 1., 2., 4. of our tests are the results of the LWB. We did not
compare them with the results of another prover. If your prover returns another result, first check
whether there is a typing error in the LaTeX table (by looking at the corresponding LWB session).
Then check the result by hand, using for example one of the sequent calculi of chapter 5. If you
have access to the LWB (for example via WWW, cp. chapter 8), then use set("infolevel", 5);
to see what is going on.

9.2.1 Some simple formulas

In the first part we list 10 valid and 10 nonvalid formulas.

Of course this is on no account a sufficient test. However, theses formulas can be helpful while
debugging in order to detect the obvious mistakes in a short time.

9.2.2 Ordering of standard formulas

Now we want to have a larger list of simple formulas. Let S be the set of standard formulas
defined in figure 1.a in chapter 1. We list all implications A → C with A ∈ S and C ∈ S and
L |= A→ C. Like this we obtain 1600 test formulas (some valid, some nonvalid) for K, KT, and
S4.

9.2.3 Random formulas

First we define what ‘random formula’ means in this chapter.

Below, we define the procedure rnd fml in the LWB programming language. Let rnd fml be
‘the corresponding mathematical function’. If A is the result of rnd fml(i, {p0, . . . , pn}, j), where
i ∈ N, j ∈ {1, 2, . . .}, then we know:

• vars(A) ⊆ {p0, . . . , pn}

• depth(A) ≤ i

9.2. METHOD 205

The argument j is used as a starting point for the computation or the required random numbers.
We will also make use of this function to generate the formulas in parts 4 and 5 of our tests.
The LWB function rnd fml has three arguments. i is the upper limit for the depth of the
generated random formula. If i is 0, or if a generated random number is equal to 0 modulo 8, then
a leaf (generated with rnd leaf) is returned. Otherwise this random number defines the main
connective. The subformulas are generated with recursive calls of rnd fml. The third argument
of rnd fml is a reference parameter, which is used for the generation of random numbers.

> proc : rnd_fml(i, vl, var j)

#

local j2;

#

begin

if i = 0 then return rnd_leaf(vl, j);

j2 := j;

next_rnd(j);

if j2 mod 8 = 0 then return rnd_leaf(vl, j);

if j2 mod 8 = 1 then return rnd_fml(i-1, vl, j) & rnd_fml(i-1, vl, j);

if j2 mod 8 = 2 then return rnd_fml(i-1, vl, j) v rnd_fml(i-1, vl, j);

if j2 mod 8 = 3 then return rnd_fml(i-1, vl, j) -> rnd_fml(i-1, vl, j);

if j2 mod 8 = 4 then return rnd_fml(i-1, vl, j) <-> rnd_fml(i-1, vl, j);

if j2 mod 8 = 5 then return ~ rnd_fml(i-1, vl, j);

if j2 mod 8 = 6 then return box rnd_fml(i-1, vl, j);

if j2 mod 8 = 7 then return dia rnd_fml(i-1, vl, j);

end; # rnd_fml

rnd leaf chooses a random element of the union of the list of variables v and [true, false].

> proc : rnd_leaf(vl, var j)

local j2;

begin

j2 := j;

next_rnd(j);

if j2 mod (nops(vl) + 2) = 0 then return true;

if j2 mod (nops(vl) + 2) = 1 then return false;

return vl[(j2 mod (nops(vl) + 2)) - 1];

end; # rnd_leaf

next rnd replaces the number j (an element of {1, 2, . . .}) by a new random integer in {1, 2, . . .}.

> proc : next_rnd(var j)

begin

j := (29 mult j) mod 65537;

end; # next_rnd

In order to check the quality of next rnd, we define the procedure check. check(j) returns the
number of times the procedure next rnd must be called until j has the start value again.

> proc : check(j)

local start, counter;

begin

start := j;

counter := 1;

next_rnd(j);

206 CHAPTER 9. TESTS

while (j <> start) do begin counter := counter + 1; next_rnd(j); end;

print(counter);

end; # check

The following call of check shows that all values in {1, . . . , 65536} are generated by next rnd
before a loop occurs.

> check(5234);

Here are some tests of rnd fml. If you write your own rnd fml you can use these values to check
whether you have implemented the same function.

> j :== 276;

> for i := 1 to 10 do rnd_fml(3, [p0,p1,p2,p3], j);

> j :== 12333;

> for i := 1 to 10 do rnd_fml(4, [p0,p1], j);

For each logic we choose 9 · 200 of these random formulas and list the valid ones.

9.2.4 Valid formulas

We first compute a random formula A. Then we set B :≡ A ∨ ¬A. Obviously formula B is valid
in K, KT, S4.

Using such formulas would result in a rather poor test, since many provers would immediately
‘recognise’ the structure of the formula. The LWB for example uses a two-sided sequent calculus,
i.e. after applying (r∨) and (r¬) backwards, it obtains the sequent of the form A,Γ ⊃ A,∆, which
is considered an axiom. The same problem could occur if we used the negation normal form of
¬A instead of ¬A, although it would be already harder.

With the procedure add garbage and by transforming one part of the formula into negation
normal form we try to make it harder for the prover to ‘see’ the reason why this formula is valid.

> proc : add_garbage(a)

local n, j;

We assume that a is in negation normal form.

The formula a -> add_garbage(a) is valid in K.

proc add_garbage2(a, var n, var j)

local b, c;

begin

b := a;

if (type(a) = BOX) then b := box add_garbage2(a[1],n,j);

if (type(a) = DIA) then b := dia add_garbage2(a[1],n,j);

if (type(a) = AND) then b := add_garbage2(a[1],n,j) & add_garbage2(a[2],n,j);

if (type(a) = OR) then b := add_garbage2(a[2],n,j) v add_garbage2(a[1],n,j);

n := (n + 1) mod 10;

if (n = 5) then return b v rnd_fml(2, [p0,p3,p5,p7], j); else return b;

end;

#

begin

n := 3;

j := 721;

return add_garbage2(a, n, j);

end; # add_garbage

9.2. METHOD 207

> add_garbage(box p0 & dia(~p1 v p0) v dia p1);

> add_garbage(box box box box box box box box true);

> add_garbage(false & (p0 v ~ p1) & (p1 & p2) & (p2 v p3) & p4 & p5);

> add_garbage(false & (p0 v ~ p1) & (p1 & ~ ~ ~p2) & (p2 v p3) & p4);

> add_garbage(box(p0 v p1) & box(p0 v p1) & box(p0 v p1) & box(p0 v p1)

& box(p0 v p1) & box(p0 v p1) & box(p0 v p1));

Let add garbage be ‘the corresponding mathematical functions’. We check for 3000 random
formulas A whether add garbage(nnf(¬A) ∨A) is valid.

9.2.5 Nonvalid formulas

The origin of all these formulas are nonderivability results. For example it can be proved that
KT4DumH 0 Grz. The Hilbert-style calculus KT4DumH is the calculus KH plus the formula
schemes that correspond to the formulas T, 4, Dum as axioms. Thus no formula of the form∧
j∈{1,...,n}(Dum{Aj/p0})→ Grz can be valid, whatever formulas A1, . . . , An we use to build the

instances. (See chapter 11 for a thorough discussion of these issues.)

For each logic L ∈ {K,KT,S4} we choose three such nonderivability results, i.e. three pairs of
formulas C, E such that LCH 0 E. For each pair C,E we compute 1000 tuples of random formulas
〈A1, A2, A3, A4〉 and check whether C{A1/p0} ∧C{A2/p0} ∧C{A3/p0} ∧C{A4/p0} → E is valid
in L.

208 CHAPTER 9. TESTS

9.3 K

9.3.1 Some simple formulas

valid formulas
p0 → p1 ∨ p0

2p1 ∧ p0 → p0 ∧2p1 ∧2p1

2(2p2 ∨3(¬p2 ∨ p4))
2p0 ∧2(p0 → p1)→ 2p1

2p0 ∨2p1 → 2(p0 ∨ p1)
2(p0 ∧ p1)↔ 2p0 ∧2p1

2¬p0 ∧ ¬3p1 ∨3p0 ∨3p1

3p0 ∨3p1 → 3(p0 ∨ p1)
2¬p1 ∨3(((2p2 → 3p1)→ 2p2)→ 2p2)
¬2(3p0 ∨ p1)→ 32¬p0

nonvalid formulas
p0

3true

p1 ∧2p1 ∨22¬p1

32p2 ∨32¬p2

2p0 → p0

¬2p0 → 2¬2p0

2¬p1 → 2¬3p1

3p0 ∧3p1 → 3(p0 ∧ p1)
3232p0 → 32p0

32p0 → 3232p0

> k::provable(p0 -> p1 v p0);

> k::provable(box p1 & p0 -> p0 & box p1 & box p1);

> k::provable(box(box p2 v dia(~p2 v p4)));

> k::provable(box p0 & box(p0 -> p1) -> box p1);

> k::provable(box p0 v box p1 -> box(p0 v p1));

> k::provable(box(p0 & p1) <-> box p0 & box p1);

> k::provable(box ~p0 & ~dia p1 v dia p0 v dia p1);

> k::provable(dia p0 v dia p1 -> dia(p0 v p1));

> k::provable(box ~p1 v dia(((box p2 -> dia p1) -> box p2) -> box p2));

> k::provable(~box(dia p0 v p1) -> dia box ~p0);

> k::provable(p0);

> k::provable(dia true);

> k::provable(p1 & box p1 v box box ~p1);

> k::provable(dia box p2 v dia box ~p2);

> k::provable(box p0 -> p0);

> k::provable(~box p0 -> box ~box p0);

> k::provable(box ~p1 -> box ~dia p1);

> k::provable(dia p0 & dia p1 -> dia(p0 & p1));

> k::provable(dia box dia box p0 -> dia box p0);

> k::provable(dia box p0 -> dia box dia box p0);

9.3.2 Ordering of standard formulas

For A,B ∈ S we have K |= A→ B iff there is an entry K in figure 9.a or figure 9.b on line A and
column B. Example: K |= Pt→ M, but K 6|= M→ Pt.

Obviously K |= A → A for all A ∈ S. 75 of the 1600 formulas are valid in K, 1525 are not valid
in K.

The corresponding LWB session:

> D :== box p -> dia p;

D2 :== dia true;

T :== box p -> p;

9.3. K 209

D D
2

T 4 4
M

5 5
M

B B
M

G G
0

H H
+

L L
+

L
+

+

M M
2

M
3

P
t

D K K KT S4 S4

D2 K K KT S4 S4

T KT KT K S4 S4

4 KT KT KT K K

4M KT KT KT S4 K

5 KT KT KT S4 S4 K K KT KT KT

5M KT KT KT S4 S4 K KT

B KT KT KT S4 S4 K K

BM KT KT KT S4 S4 K

G KT KT KT S4 S4 K

G0 KT KT KT S4 S4 K

H KT KT KT S4 S4 K KT

H+
KT KT KT S4 S4 K K

L KT KT KT S4 S4 K KT K KT S4

L+
KT KT KT S4 S4 K K K K S4

L++
KT KT KT S4 S4 KT KT KT KT K

M K K KT S4 S4 K S4 S4 KT

M2 K K KT S4 S4 S4 K S4 S4

M3 K K KT S4 S4 K

Pt K K KT S4 S4 K S4 S4 K

W KT KT KT S4 S4 KT KT KT KT KT KT KT KT KT KT S4 KT S4 KT KT

W0 KT

Z KT KT KT S4 S4 KT KT KT KT KT S4

Dum KT KT KT S4 S4

Dum1 KT KT KT S4 S4

Dum2 KT KT KT S4 S4

Dum3 KT KT KT S4 S4

Dum4 KT KT KT S4 S4

Grz KT KT K S4 S4

Grz1 KT KT KT S4 S4 S4 S4 S4 S4

Grz2 KT KT KT S4 S4

Grz3 KT KT KT S4 S4 S4 S4 S4 S4

Grz4 KT KT KT S4 S4

Grz5 KT KT KT S4 S4 S4

F KT KT KT S4 S4

Hs KT KT KT S4 S4

P KT KT KT S4 S4 KT KT

R KT KT KT S4 S4 KT KT

X KT KT KT S4 S4

Zem KT KT KT S4 S4

Figure 9.a: Ordering of standard formulas. Part 1.

210 CHAPTER 9. TESTS

W W
0

Z D
u
m

D
u
m

1

D
u
m

2

D
u
m

3

D
u
m

4

G
rz

G
rz

1

G
rz

2

G
rz

3

G
rz

4

G
rz

5

F H
s

P R X Z
em

D KT

D2 KT

T KT

4 KT

4M KT

5 KT

5M KT

B KT

BM KT

G KT

G0 KT

H KT

H+
KT

L KT

L+
KT

L++
KT

M KT

M2 KT

M3 KT

Pt KT

W K K KT KT KT KT KT KT KT KT KT KT KT KT KT KT KT KT KT

W0 KT K KT KT KT KT KT KT KT KT KT KT KT KT KT KT KT KT KT K

Z K KT KT KT KT KT KT KT KT KT

Dum K KT K KT

Dum1 KT K KT KT K KT

Dum2 KT K KT KT

Dum3 KT KT KT K KT K

Dum4 KT KT K KT

Grz K KT K K KT K KT

Grz1 KT K KT KT K KT K KT KT K KT

Grz2 KT K KT KT K KT KT

Grz3 KT KT KT K KT KT KT KT K KT K

Grz4 KT KT K KT KT K KT

Grz5 K KT

F K KT

Hs K KT KT

P K KT KT KT

R K KT KT

X K

Zem KT K

Figure 9.b: Ordering of standard formulas. Part 2.

9.3. K 211

A4 :== box p -> box box p;

A4m :== box p & dia q -> dia(box p & q);

A5 :== dia p -> box dia p;

A5m :== dia p & dia q -> dia(dia p & q);

B :== p -> box dia p;

Bm :== p & dia q -> dia(dia p & q);

#

G :== dia box p -> box dia p;

G0 :== dia(p & box q) -> box(p v dia q);

H :== box(p v q) & box(box p v q) & box(p v box q) -> box p v box q;

Hp :== box(box p v q) & box(p v box q) -> box p v box q;

L :== box(p & box p -> q) v box(q & box q -> p);

Lp :== box(box p -> q) v box(box q -> p);

Lpp :== box(box p -> box q) v box(box q -> box p);

#

M :== box dia p -> dia box p;

M2 :== dia box(p -> box p);

M3 :== box dia p & box dia q -> dia(p & q);

Pt :== box(p v dia p) -> dia(p & box p);

#

W :== box(box p -> p) -> box p;

W0 :== box dia true -> box false;

Z :== box(box p -> p) -> (dia box p -> box p);

#

Dum :== box(box(p -> box p) -> p) -> (dia box p -> p);

Dum1 :== box(box(p -> box p) -> p) -> (dia box p -> box p);

Dum2 :== box(box(p -> box p) -> box p) -> (dia box p -> p);

Dum3 :== box(box(p -> box p) -> box p) -> (dia box p -> box p);

Dum4 :== box(box(p -> box p) -> p) -> (dia box p -> p v box p);

Grz :== box(box(p -> box p) -> p) -> p;

Grz1 :== box(box(p -> box p) -> p) -> box p;

Grz2 :== box(box(p -> box p) -> box p) -> p;

Grz3 :== box(box(p -> box p) -> box p) -> box p;

Grz4 :== box(box(p -> box p) -> p) -> p v box p;

Grz5 :== box(box(p -> box q) -> box q) & box(box(~p -> box q) -> box q) -> box q;

#

F :== (dia box p -> q) v box(box q -> p);

Hs :== p -> box(dia p -> p);

P :== dia box dia p -> (p -> box p);

R :== dia box p -> (p -> box p);

X :== box box p -> box p;

Zem :== box dia box p -> (p -> box p);

> l :== [D, D2, T, A4, A4m, A5, A5m, B, Bm, G,

G0, H, Hp, L, Lp, Lpp, M, M2, M3, Pt,

W, W0, Z, Dum, Dum1, Dum2, Dum3, Dum4, Grz, Grz1,

Grz2, Grz3, Grz4, Grz5, F, Hs, P, R, X, Zem];

ln :== ["D", "D2", "T", "A4", "A4m", "A5", "A5m", "B", "Bm", "G",

"G0", "H", "Hp", "L", "Lp", "Lpp", "M", "M2", "M3", "Pt",

"W", "W0", "Z", "Dum", "Dum1", "Dum2", "Dum3", "Dum4", "Grz", "Grz1",

"Grz2", "Grz3", "Grz4", "Grz5", "F", "Hs", "P", "R", "X", "Zem"];

The first table:

212 CHAPTER 9. TESTS

> k_n :== 0; kt_n :== 0; s4_n :== 0;

> for i := 1 to 40 do

begin

line :== [];

for j := 1 to 20 do

begin

if k::provable(l[i] -> l[j])

then begin

k_n :== k_n + 1;

line :== concat(line, [[ln[j], "K"]]);

end;

else if kt::provable(l[i] -> l[j])

then begin

kt_n :== kt_n + 1;

line :== concat(line, [[ln[j], "KT"]]);

end;

else if s4::provable(l[i] -> l[j])

then begin

s4_n :== s4_n + 1;

line :== concat(line, [[ln[j], "S4"]]);

end;

end;

print(ln[i], ": ", line);

end;

The second table:

> for i := 1 to 40 do

begin

line :== [];

for j := 21 to 40 do

begin

if k::provable(l[i] -> l[j])

then begin

k_n :== k_n + 1;

line :== concat(line, [[ln[j], "K"]]);

end;

else if kt::provable(l[i] -> l[j])

then begin

kt_n :== kt_n + 1;

line :== concat(line, [[ln[j], "KT"]]);

end;

else if s4::provable(l[i] -> l[j])

then begin

s4_n :== s4_n + 1;

line :== concat(line, [[ln[j], "S4"]]);

end;

end;

print(ln[i], ": ", line);

end;

Finally the number of formulas valid in K, KT, and S4:

9.3. K 213

i j
2 2, 3, 8, 10, 20, 26, 32, 37, 56, 58, 69, 74, 75, 80, 81, 85, 86, 93, 98, 99,

104, 106, 110, 115, 116, 117, 122, 123, 124, 128, 130, 133, 134, 138, 140, 141,
152, 154, 170, 171, 176, 181, 186, 194, 195, 196, 200

3 2, 10, 18, 24, 27, 30, 34, 43, 48, 50, 58, 59, 61, 66, 72, 74, 77, 78, 90, 96,
101, 106, 115, 120, 122, 130, 133, 134, 144, 163, 168, 171, 173, 186, 192, 194, 198

4 2, 10, 11, 16, 18, 19, 26, 29, 40, 50, 58, 64, 66, 67, 70, 78, 86, 88, 90,
112, 114, 115, 118, 122, 133, 136, 147,
157, 158, 160, 163, 165, 170, 173, 174, 178, 179, 181, 184, 186, 187, 195, 197, 198

5 5, 6, 8, 11, 26, 29, 32, 34, 42, 56, 58, 62, 77, 80, 82, 89,
101, 104, 115, 118, 128, 152, 155, 170, 176, 181, 194, 200

6 2, 5, 19, 24, 34, 48, 49, 50, 58, 72, 74, 96,
102, 109, 120, 122, 130, 131, 138, 144, 150, 162, 168, 178, 179, 187, 192, 193

7 3, 5, 10, 14, 16, 18, 26, 28, 34, 40, 42, 43, 64, 82, 83, 86, 88,
107, 112, 115, 126, 136, 138, 141, 142, 154, 155, 160, 170, 174, 181, 184

8 8, 11, 19, 21, 26, 29, 32, 50, 56, 61, 74, 80,
104, 106, 122, 125, 128, 147, 152, 155, 158, 165, 176, 186, 187, 194, 200

9 2, 24, 34, 42, 48, 50, 72, 90, 94, 96,
114, 117, 120, 125, 144, 147, 162, 168, 192

10 10, 13, 16, 27, 34, 40, 50, 64, 66, 82, 83, 88, 91,
101, 112, 136, 138, 139, 147, 150, 154, 160, 170, 182, 184, 189, 190, 194

Figure 9.c: Random formulas valid in K.

> k_n :== 0; kt_n :== 0; s4_n :== 0;

> for i := 1 to 40 do for j := 1 to 40 do if k::provable(l[j]->l[i]) then k_n :== k_n + 1;

print(k_n);

> for i := 1 to 40 do for j := 1 to 40 do if kt::provable(l[j]->l[i]) then kt_n :== kt_n + 1;

print(kt_n);

> for i := 1 to 40 do for j := 1 to 40 do if s4::provable(l[j]->l[i]) then s4_n :== s4_n + 1;

print(s4_n);

9.3.3 Random formulas

For i ∈ {2, 3, . . . 10}, j ∈ {1, . . . , 200} we have K |= rnd fml(i, {p0, p1, p2, p3}, 200i + j) iff
there is an entry j on line i in figure 9.c. Example: K |= rnd fml(3, {p0, p1, p2, p3}, 618), K 6|=
rnd fml(3, {p0, p1, p2, p3}, 619), K |= rnd fml(3, {p0, p1, p2, p3}, 627).

290 of the 1800 formulas are valid in K, 1510 are not valid in K.

The corresponding LWB session:

> load(k);

> proc : k_random()

local i, j, j2, l, a, total;

begin

total := 0;

for i := 2 to 10 do

begin

l :== [];

for j := 1 to 200 do

begin

214 CHAPTER 9. TESTS

j2 :== (i mult 200) + j;

a :== rnd_fml(i, [p0,p1,p2,p3], j2);

if k::provable(a) then append(l, j);

end;

print(i, " : ", l);

total := total + nops(l);

end;

print("total: ", total, " valid and ", 9 mult 200 - total, " nonvalid formulas");

end; # k_random

> k_random();

9.3.4 Valid formulas

For all d ∈ {3, 5, 7} we compute 1000 random formulas A with depth d, variables in {p0, . . . , p6}
and initial value 117 for j, and check whether the formula add garbage(nnf(¬A)) ∨ A is valid in
K. For each d three formulas are printed in order to show that they are in general nontrivial.
Attention: In the following LWB session we use only 10 random formulas instead of 1000, since
otherwise the typesetting process would take too much time.

> j :== 117;

for i := 1 to 1000

do begin

a :== rnd_fml(3, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not k::provable(b v a)) then print("***** error *****");

if ((i = 17) or (i = 361) or (i = 752)) then print(b v a);

end;

print("done");

> j :== 117;

for i := 1 to 1000

do begin

a :== rnd_fml(5, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not k::provable(b v a)) then print("***** error *****");

if ((i = 17) or (i = 361) or (i = 752)) then print(b v a);

end;

print("done");

> j :== 117;

for i := 1 to 10 # Attention: Use 1000 instead of 10 for your tests.

do begin

a :== rnd_fml(7, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not k::provable(b v a)) then print("***** error *****");

if ((i = 3) or (i = 7) or (i = 8)) then print(b v a);

end;

print("done");

9.3.5 Nonvalid formulas

We choose the nonderivability results KTH 0 4, K4H 0 5, and KDumH 0 Grz. The 1000 random
formulas with depth 3, variables in {p0, p1, p2, p3, p4}, and initial value 234. See the following
LWB session for details.

9.4. KT 215

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== T{a1/p0} & T{a2/p0} & T{a3/p0} & T{a4/p0} -> A4;

if (i = 123) then print(b);

if (k::provable(b)) then print("***** error *****");

end;

print("done");

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== A4{a1/p0} & A4{a2/p0} & A4{a3/p0} & A4{a4/p0} -> A5;

if (i = 123) then print(b);

if (k::provable(b)) then print("***** error *****");

end;

print("done");

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== Dum{a1/p0} & Dum{a2/p0} & Dum{a3/p0} & Dum{a4/p0} -> Grz;

if (i = 123) then print(b);

if (k::provable(b)) then print("***** error *****");

end;

print("done");

9.4 KT

9.4.1 Some simple formulas

216 CHAPTER 9. TESTS

valid formulas
p0 → p1 ∨ p0

3(p1 ↔ p1)
2p0 → p0

2p0 ∧ ¬3p1)→ p0 ∧ ¬p1

2p1 ∧ p0 → p0 ∧2p1 ∧2p1

2(2p2 ∨3(¬p2 ∨ p4))
2(p0 ∧ p1)↔ 2p0 ∧2p1

3p0 ∨3p1 → 3(p0 ∨ p1)
3(((2p2 → 3p1)→ 2p2)→ 2p2)
¬2(3p0 ∨ p1)→ 333¬p0

nonvalid formulas
p0

32¬p0

p1 ∧2p1 ∨22¬p1

32p2 ∨32¬p2

¬2p0 → 2¬2p0

2¬p1 → 2¬3p1

3p0 ∧3p1 → 3(p0 ∧ p1)
3232p0 → 32p0

32p0 → 3232p0

2(p2 ∧ p0 ∧ p1) ∧2(p0 ∧ p1)→ 2p0 ∧2(2p1 ∧ p2)

> kt::provable(p0 -> p1 v p0);

> kt::provable(dia(p1 <-> p1));

> kt::provable(box p0 -> p0);

> kt::provable((box p0 & ~dia p1) -> p0 & ~p1);

> kt::provable(box p1 & p0 -> p0 & box p1 & box p1);

> kt::provable(box(box p2 v dia(~p2 v p4)));

> kt::provable(box(p0 & p1) <-> box p0 & box p1);

> kt::provable(dia p0 v dia p1 -> dia(p0 v p1));

> kt::provable(dia(((box p2 -> dia p1) -> box p2) -> box p2));

> kt::provable(~box(dia p0 v p1) -> dia dia dia ~p0);

> kt::provable(p0);

> kt::provable(dia box ~p0);

> kt::provable(p1 & box p1 v box box ~p1);

> kt::provable(dia box p2 v dia box ~p2);

> kt::provable(~box p0 -> box ~box p0);

> kt::provable(box ~p1 -> box ~dia p1);

> kt::provable(dia p0 & dia p1 -> dia(p0 & p1));

> kt::provable(dia box dia box p0 -> dia box p0);

> kt::provable(dia box p0 -> dia box dia box p0);

> kt::provable(box(p2 & p0 & p1) & box(p0 & p1) -> box p0 & box(box p1 & p2));

9.4.2 Ordering of standard formulas

For A,B ∈ S we have KT |= A→ B iff there is an entry K or KT in figure 9.a or figure 9.b on line A
and column B. Example: KT ` Dum1 → Dum, KT ` Dum1 → Dum1, but KT 0 Dum→ Dum1.
Obviously KT ` A→ A, KT ` A→ D, KT ` A→ D2, KT ` A→ T, KT ` A→ X, KT `W0 → A
for all A ∈ S. 350 of the 1600 formulas are valid in KT, 1250 are not valid in KT. See section
9.3.2 for the corresponding LWB session.

9.4.3 Random formulas

For i ∈ {2, 3, . . . 10}, j ∈ {1, . . . , 200} we have KT |= rnd fml(i, {p0, p1, p2, p3}, 200i+ j) iff there
is an entry j on line i in figure 9.d. Example: KT |= rnd fml(3, {p0, p1, p2, p3}, 618), KT 6|=
rnd fml(3, {p0, p1, p2, p3}, 619), KT |= rnd fml(3, {p0, p1, p2, p3}, 627).
435 of the 1800 formulas are valid in KT, 1365 are not valid in KT.
The corresponding LWB session:

> load(kt);

> proc : kt_random()

9.4. KT 217

i j
2 2, 3, 8, 10, 20, 26, 32, 37, 39, 56, 58, 69, 74, 75, 79, 80, 81, 85, 86, 87, 93, 98, 99,

104, 106, 110, 111, 115, 116, 117, 122, 123, 124, 127, 128, 130, 133, 134, 135, 138,
140, 141, 152, 154, 167, 170, 171, 176, 181, 186, 191, 194, 195, 196, 200

3 2, 10, 18, 24, 27, 30, 34, 43, 47, 48, 50,
53, 55, 58, 59, 61, 66, 72, 74, 77, 78, 82, 90, 95, 96,
101, 106, 111, 115, 120, 122, 130, 133, 134, 143, 144,
162, 163, 167, 168, 171, 173, 178, 183, 186, 191, 192, 194, 198, 199

4 2, 7, 10, 11, 16, 18, 19, 23, 26, 29, 35, 39, 40, 42, 47, 50,
55, 58, 64, 66, 67, 69, 70, 78, 86, 88, 90,
103, 112, 114, 115, 118, 119, 122, 130, 133, 136, 147, 151, 157, 158, 160,
163, 165, 167, 170, 173, 174, 178, 179, 181, 184, 186, 187, 195, 197, 198

5 1, 5, 6, 7, 8, 11, 18, 26, 29, 32, 34, 42,
56, 58, 62, 66, 74, 77, 80, 82, 87, 89, 90, 95,
101, 104, 111, 114, 115, 118, 127, 128, 130, 138, 143,
152, 155, 159, 163, 167, 170, 174, 176, 181, 183, 194, 200

6 2, 5, 14, 15, 19, 24, 31, 34, 37, 38, 48, 49, 50,
58, 62, 69, 72, 74, 75, 79, 81, 87, 90, 96, 98,
102, 103, 109, 120, 122, 130, 131, 138, 144, 150,
151, 154, 159, 162, 168, 170, 178, 179, 183, 187, 192, 193, 199

7 3, 5, 10, 14, 15, 16, 18, 23, 26, 28, 31, 34, 35, 40, 42, 43,
63, 64, 71, 75, 79, 82, 83, 86, 87, 88,
102, 107, 108, 112, 115, 126, 127, 129, 135, 136, 138, 141, 142, 146, 150,
151, 154, 155, 160, 166, 170, 174, 181, 184, 190, 191

8 7, 8, 11, 14, 19, 21, 26, 29, 32, 38, 39, 50, 53, 56, 61, 63, 74, 79, 80, 87, 91,
104, 106, 122, 125, 128, 130, 133, 147,
151, 152, 154, 155, 158, 165, 167, 173, 175, 176, 186, 187, 194, 199, 200

9 2, 7, 23, 24, 29, 30, 31, 34, 39, 42, 46, 47, 48, 50, 61, 62, 72, 74, 90, 94, 96,
106, 114, 117, 120, 125, 127, 130, 134, 135, 138, 144, 147,
162, 165, 168, 178, 191, 192

10 2, 10, 13, 16, 21, 27, 34, 40, 50, 64, 66, 79, 82, 83, 88, 90, 91, 92, 98,
101, 103, 111, 112, 118, 130, 131, 134, 136, 138, 139, 143, 147, 150,
154, 160, 170, 174, 175, 182, 184, 189, 190, 194

Figure 9.d: Random formulas valid in KT.

218 CHAPTER 9. TESTS

local i, j, j2, l, a, total;

begin

total := 0;

for i := 2 to 10 do

begin

l :== [];

for j := 1 to 200 do

begin

j2 :== (i mult 200) + j;

a :== rnd_fml(i, [p0,p1,p2,p3], j2);

if kt::provable(a) then append(l, j);

end;

print(i, " : ", l);

total := total + nops(l);

end;

print("total: ", total, " valid and ", 9 mult 200 - total, " nonvalid formulas");

end; # kt_random

> kt_random();

9.4.4 Valid formulas

For all d ∈ {3, 5, 7} we compute 1000 random formulas A with depth d, variables in {p0, . . . , p6}
and initial value 117 for j, and check whether the formula add garbage(nnf(¬A)) ∨ A is valid in
KT.

Attention: In the following LWB session we use only 10 random formulas instead of 1000, since
otherwise the typesetting process would take too much time.

> j :== 117;

for i := 1 to 1000

do begin

a :== rnd_fml(3, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not kt::provable(b v a)) then print("***** error *****");

end;

print("done");

> j :== 117;

for i := 1 to 1000

do begin

a :== rnd_fml(5, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not kt::provable(b v a)) then print("***** error *****");

end;

print("done");

> j :== 117;

for i := 1 to 10 # Attention: Use 1000 instead of 10 for your tests.

do begin

a :== rnd_fml(7, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not kt::provable(b v a)) then print("***** error *****");

end;

print("done");

9.5. S4 219

9.4.5 Nonvalid formulas

We choose the nonderivability results KT4H 0 Dum, KTBH 0 5, and KTDumH 0 Grz. The 1000
random formulas with depth 3, variables in {p0, p1, p2, p3, p4}, and initial value 234.

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== A4{a1/p0} & A4{a2/p0} & A4{a3/p0} & A4{a4/p0} -> Dum;

if (i = 123) then print(b);

if (kt::provable(b)) then print("***** error *****");

end;

print("done");

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== B{a1/p0} & B{a2/p0} & B{a3/p0} & B{a4/p0} -> A5;

if (i = 123) then print(b);

if (kt::provable(b)) then print("***** error *****");

end;

print("done");

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== Dum{a1/p0} & Dum{a2/p0} & Dum{a3/p0} & Dum{a4/p0} -> Grz;

if (i = 123) then print(b);

if (kt::provable(b)) then print("***** error *****");

end;

print("done");

9.5 S4

9.5.1 Some simple formulas

220 CHAPTER 9. TESTS

valid formulas
p0 → p1 ∨ p0

3(p1 ↔ p1)
2p0 → p0

2p0 ∧ ¬3p1)→ p0 ∧ ¬p1

2(2p2 ∨3(¬p2 ∨ p4))
2(p0 ∧ p1)↔ 2p0 ∧2p1

3p0 ∨3p1 → 3(p0 ∨ p1)
¬3(3p0 ∨ p1)→ 22¬p0

3232p0 → 32p0

32p0 → 3232p0

nonvalid formulas
p0

32¬p0

3(p1 ∧ p2) ∨33¬p1

p1 ∧2p1 ∨22¬p1

32p2 ∨32¬p2

¬2p0 → 2¬2p0

3p0 ∧3p1 → 3(p0 ∧ p1)
2(p0 ∨ p1)→ 2p0 ∨2p1

3p1 ∧2p2 → 3(p1 ∧ p3) ∨2p1

2(p0 ∨ p1)→ 2p0 ∨2p1

> s4::provable(p0 -> p1 v p0);

> s4::provable(dia(p1 <-> p1));

> s4::provable(box p0 -> p0);

> s4::provable((box p0 & ~dia p1) -> p0 & ~p1);

> s4::provable(box(box p2 v dia(~p2 v p4)));

> s4::provable(box(p0 & p1) <-> box p0 & box p1);

> s4::provable(dia p0 v dia p1 -> dia(p0 v p1));

> s4::provable(~dia(dia p0 v p1) -> box box ~p0);

> s4::provable(dia box dia box p0 -> dia box p0);

> s4::provable(dia box p0 -> dia box dia box p0);

> s4::provable(p0);

> s4::provable(dia box ~p0);

> s4::provable(dia(p1 & p2) v dia dia ~p1);

> s4::provable(p1 & box p1 v box box ~p1);

> s4::provable(dia box p2 v dia box ~p2);

> s4::provable(~box p0 -> box ~box p0);

> s4::provable(dia p0 & dia p1 -> dia(p0 & p1));

> s4::provable(box(p0 v p1) -> box p0 v box p1);

> s4::provable(dia p1 & box p2 -> dia(p1 & p3) v box p1);

> s4::provable(box(p0 v p1) -> box p0 v box p1);

9.5.2 Ordering of standard formulas

For A,B ∈ S we have S4 |= A → B iff there is an entry K or KT or S4 in figure 9.a or figure 9.b
on line A and column B. Example: S4 |= H→ 4M, S4 |= H→ T, but S4 6|= 4M → H.
Obviously S4 |= A→ A, S4 |= A→ D, S4 |= A→ D2, S4 |= A→ T, S4 |= A→ 4, S4 |= A→ 4M,
S4 |= A → X, S4 |= W0 → A for all A ∈ S. Also S4 |= W0 → A for all A ∈ S. 446 of the 1600
formulas are valid in S4, 1154 are not valid in S4.
See section 9.3.2 for the corresponding LWB session.

9.5.3 Random formulas

For i ∈ {2, 3, . . . 10}, j ∈ {1, . . . , 200} we have S4 |= rnd fml(i, {p0, p1, p2, p3}, 200i + j) iff
there is an entry j on line i in figure 9.e. Example: S4 |= rnd fml(3, {p0, p1, p2, p3}, 618),
S4 6|= rnd fml(3, {p0, p1, p2, p3}, 619), S4 6|= rnd fml(3, {p0, p1, p2, p3}, 630).
441 of the 1800 formulas are valid in S4, 1359 are not valid in S4.
The corresponding LWB session:

> load(s4);

9.5. S4 221

i j
2 2, 3, 8, 10, 20, 26, 32, 37, 39, 56, 58, 69, 74, 75, 79, 80, 81, 85, 86, 87, 93, 98, 99,

104, 106, 110, 111, 115, 116, 117, 122, 123, 124, 127, 128, 130, 133, 134, 135, 138,
140, 141, 152, 154, 167, 170, 171, 176, 181, 186, 191, 194, 195, 196, 200

3 2, 10, 18, 24, 27, 30, 34, 43, 47, 48, 50,
53, 55, 58, 59, 61, 66, 72, 74, 77, 78, 82, 90, 95, 96,
101, 106, 111, 115, 120, 122, 130, 133, 134, 143, 144,
162, 163, 167, 168, 171, 173, 178, 183, 186, 191, 192, 194, 198, 199

4 2, 7, 10, 11, 16, 18, 19, 23, 26, 29, 35, 39, 40, 42, 47, 50,
55, 58, 64, 66, 67, 69, 70, 78, 86, 88, 90,
103, 112, 114, 115, 118, 119, 122, 130, 133, 136, 147, 151, 157, 158, 160,
163, 165, 167, 170, 173, 174, 178, 179, 181, 184, 186, 187, 195, 197, 198

5 1, 5, 6, 7, 8, 11, 18, 26, 29, 32, 34, 42, 56, 58, 62, 66, 74, 77, 80, 82, 87, 89, 90, 95,
101, 104, 111, 114, 115, 118, 127, 128, 130, 138, 143,
152, 155, 159, 163, 167, 170, 174, 176, 181, 183, 194, 200

6 2, 5, 14, 15, 19, 24, 31, 34, 37, 38, 48, 49, 50,
58, 62, 69, 72, 74, 75, 79, 81, 87, 90, 96, 98,
102, 103, 109, 120, 122, 130, 131, 138, 144, 150,
151, 154, 159, 162, 168, 170, 178, 179, 183, 187, 192, 193, 199

7 3, 5, 10, 14, 15, 16, 18, 23, 26, 28, 31, 34, 35, 40, 42, 43,
63, 64, 71, 75, 79, 82, 83, 86, 87, 88, 98,
102, 107, 108, 112, 115, 126, 127, 129, 135, 136, 138, 141, 142, 146, 150,
151, 154, 155, 160, 166, 170, 174, 181, 184, 190, 191

8 2, 7, 8, 11, 14, 19, 21, 26, 29, 32, 38, 39, 50, 53, 56, 61, 63, 74, 79, 80, 87, 91,
104, 106, 122, 125, 128, 130, 133, 141, 147,
151, 152, 154, 155, 158, 165, 167, 173, 175, 176, 186, 187, 194, 199, 200

9 2, 7, 23, 24, 29, 30, 31, 34, 39, 42, 46, 47, 48, 50, 61, 62, 72, 74, 90, 94, 96,
106, 114, 117, 120, 125, 127, 130, 134, 135, 138, 144, 147,
162, 165, 168, 178, 191, 192

10 2, 10, 13, 16, 21, 27, 34, 40, 45, 50,
59, 64, 66, 79, 82, 83, 88, 90, 91, 92, 98,
101, 103, 111, 112, 118, 130, 131, 134, 136, 138, 139, 143, 147, 150,
154, 160, 170, 174, 175, 182, 184, 189, 190, 194, 197

Figure 9.e: Random formulas valid in S4.

222 CHAPTER 9. TESTS

> proc : s4_random()

local i, j, j2, l, a, total;

begin

total := 0;

for i := 2 to 10 do

begin

l :== [];

for j := 1 to 200 do

begin

j2 :== (i mult 200) + j;

a :== rnd_fml(i, [p0,p1,p2,p3], j2);

if s4::provable(a) then append(l, j);

end;

print(i, " : ", l);

total := total + nops(l);

end;

print("total: ", total, " valid and ", 9 mult 200 - total, " nonvalid formulas");

end; # s4_random

> s4_random();

9.5.4 Valid formulas

For all d ∈ {3, 5, 7} we compute 1000 random formulas A with depth d, variables in {p0, . . . , p6}
and initial value 117 for j, and check whether the formula add garbage(nnf(¬A)) ∨ A is valid in
S4. Two of the generated formulas are printed in order to show typical generated formulas.

Attention: In the following LWB session we use only 10 random formulas instead of 1000, since
otherwise the typesetting process would take too much time. Formula 654 with depth 7 proved
to be too hard for the LWB 1.0.

> j :== 117;

for i := 1 to 1000

do begin

a :== rnd_fml(3, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not s4::provable(b v a)) then print("***** error *****");

end;

print("done");

> j :== 117;

for i := 1 to 1000

do begin

a :== rnd_fml(5, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not s4::provable(b v a)) then print("***** error *****");

end;

print("done");

> j :== 117;

for i := 1 to 10 # Attention: Use 1000 instead of 10 for your tests.

do begin

a :== rnd_fml(7, [p0,p1,p2,p3,p4,p5,p6], j);

b :== add_garbage(nnf(~a));

if (not s4::provable(b v a)) then print("***** error *****");

9.6. OTHER LOGICS 223

end;

print("done");

9.5.5 Nonvalid formulas

We choose the nonderivability results KT4BH 0 5, KT4DumH 0 Grz, and KT45H 0 Dum. The
1000 random formulas with depth 3, variables in {p0, p1, p2, p3, p4}, and initial value 234.

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== A4{a1/p0} & A4{a2/p0} & A4{a3/p0} & A4{a4/p0} -> A5;

if (i = 123) then print(b);

if (s4::provable(b)) then print("***** error *****");

end;

> for i := 1 to 1000

do begin

tuple :== [];

j :== 255;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== Dum{a1/p0} & Dum{a2/p0} & Dum{a3/p0} & Dum{a4/p0} -> Grz;

if (i = 123) then print(b);

if (s4::provable(b)) then print("***** error *****");

end;

> for i := 1 to 1000

do begin

tuple :== [];

j :== 234;

a1 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a2 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a3 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

a4 :== rnd_fml(3, [p0,p1,p2,p3,p4], j);

b :== A5{a1/p0} & A5{a2/p0} & A5{a3/p0} & A5{a4/p0} -> Dum;

if (i = 123) then print(b);

if (s4::provable(b)) then print("***** error *****");

end;

9.6 OTHER LOGICS

Of course every collection of formulas can be used for tests, i.e. also sets of benchmark formulas.
However, we are not aware of large collections of formulas dedicated to tests. A good test for IPC
decision procedures is the computation of the numbers in the table in theorem 12.6.4.

224 CHAPTER 9. TESTS

9.7 SUMMARY

We have described tests for decision procedures for the logics K, KT, S4. For each of these
logics, they include several thousand formulas of various structures. Most of these formulas are
generated by procedures, which saves time and prevents typing errors.

10

BENCHMARKS

One second is the time occupied by
9’192’631’770 vibrations of the light (of
a specified wavelength) emitted by a cesium-
133 atom.

Halliday/Resnik. Fundamentals of Physics.

10.1 INTRODUCTION

In the introduction we listed some methods for proof search in the propositional modal logics K,
KT, and S4. It is difficult to compare the usefulness of these methods in practice, as in most
publications, no or only a few execution times are listed. There are some exceptions like [Cat91]
(31 formulas for K, KT, S4) and [Dem95] (38 formulas for S4). However, these formulas are
already too simple today to serve as benchmarks. For example it takes about 0.002 seconds to
solve the most difficult problem of [Cat91] for K, KT, S4 with the LWB. The formulas in [Dem95]
are considerably more difficult, but also there it takes only about 0.035 seconds to solve the most
difficult formula with the LWB (hardware as described in section 10.8).

This situation is very unsatisfactory. Therefore, we decided to collect a set of benchmark problems
for the propositional modal logics K, KT, and S4.

In classical predicate logic, the often-cited collection of Pelletier [Pel86] has been replaced by the
TPTP library [SSY94]. Although this library is quite large, it is still common to choose a dozen
of these formulas out of this library and publish the execution times for these formulas. Therefore
we decided to give not just a list of formulas, but to present a method that makes it possible
to compare different provers. (The producers of TPTP plan a so-called benchmark suite for the
next version that should allow the computation of a performance index for automated theorem
provers for classical predicate logic; cp. [SSY94].)

The selection of the hard benchmark formulas was guided by the following postulates:

1. Valid as well as nonvalid formulas.

2. Formulas of various structures.

3. Some of the benchmark formulas are hard enough for forthcoming provers.

226 CHAPTER 10. BENCHMARKS

4. For each formula, the result is already known today.

5. Simple ‘tricks’ do not help to solve the problems.

6. Execution of the benchmark test does not take too much time.

7. The results can be summarised.

These postulates lead us to the exclusive use of scalable formulas. We test for which parameters n
a certain prover can decide whether the formula A(n) is valid or not in less than 100 seconds. The
drawback of scalable formulas is their regular structure. If ‘by chance’ a prover ‘recognises’ this
structure, it can perform extremely well for a certain class of formulas, but still work very badly
for slightly different formulas. We try to overcome this problem by hiding their structure with
superfluous subformulas, and by presenting a sufficient number of different scalable formulas.
Collecting and constructing scalable formulas – always keeping the seven postulates in mind –
is a very time-consuming task. Therefore the number of scalable formulas we propose is not as
large as we would like it to be.
The number of formulas is no longer a problem in the recent approach chosen in [GS96] (see
also [HS97]). There, formulas in some sort of nested conjunctive normal form were constructed
using a random generator. It is possible to choose length, number of clauses, and modal depth
such that the resulting formulas are on the edge between being satisfiable and not satisfiable.
On the other hand, this method has two drawbacks: the formulas all have a similar structure
(cp. postulate 2), and – more serious – the correct result is not known beforehand (cp. postulate
4). In our opinion, a method relying on such formulas cannot replace our method, but could
serve as a complementary method.

10.2 POSTULATES

In this section we discuss the seven postulates mentioned in the introduction in more detail. Note
that they are widely applicable, not just for the logics for which we present benchmark formulas.

Valid as well as nonvalid formulas.
Often only valid formulas are considered as benchmark formulas. We think that not valid formulas
are as interesting as valid ones.
Moreover, algorithms like the Greedy procedure in classical propositional logic (see [KP92],
[SLM92]) can recognise many nonvalid formulas in a very short time, but they cannot show
that a formula is valid. A benchmark method must also be applicable for such semi-decision
procedures.

Formulas of various structures.
It is clear that four or five formulas are not enough to obtain representative results about the
performance of a prover. However, also a large number of formulas does not guarantee the quality
of the benchmark set. For example it is tempting to use the embedding of IPC in S4 in order
to obtain a list of benchmark formulas for S4 from a list of benchmark formulas for IPC, but all
the resulting formulas look similar. An even more dubious method it the use of just one class of
formulas, for example the pigeonhole formulas.
Things of course look different if one has a certain application in mind and develops a tuned
prover for this application, but here we want to measure the overall performance.

Some of the benchmark formulas are difficult enough for forthcoming provers.
It is not enough if the benchmark test is difficult enough for today’s provers. The test should
still be applicable for much faster computers and improved search methods in the future. Thus
the test must contain formulas that are far too difficult for existing provers.

10.3. BENCHMARK METHOD 227

For each formula, the result is already known today.

The correct result, i.e. ‘valid’ or ‘nonvalid’, must be known already today. Therefore it must be
possible to check the validity or nonvalidity of the formulas with logical methods, and not just
with theorem provers. Random formulas do not fulfill this postulate.

Simple ‘tricks’ do not help.

The addition of a simple trick to the prover should not influence the results.

Assume for example that a benchmark set for K contains formulas without 2 and without 3.
Such formulas are valid in K iff they are valid in classical propositional logic. If a prover checks
at the beginning whether modal operators occur in the formula, then he can apply a fast decision
procedure for classical propositional logic in order to solve the problem. Therefore our benchmark
test contains no such formulas. The pigeonhole formula for example, is disguised with some
‘superfluous’ 2 and 3. If a prover recognises this disguise, or if it sees that a subproblem is
purely classical during the proof search, then we no longer consider it a simple trick.

Of course it is impossible to foresee all such tricks, but at least one should consider as many as
possible.

Execution of the benchmark test does not take too much time.

Nobody wants to spend a lot of time to measure the performance of his prover. In particular, the
required time should not depend on the prover or on the computer. Therefore, some limits must
be used, for example ‘if the prover cannot solve the problem in n seconds, then stop’.

Results can be summarised.

A list of hundreds of numbers is not a satisfactory result, since it makes a comparison of several
provers almost impossible. Therefore it must be possible to summarise the results. On the other
hand, the result should still show some properties of the prover. We think that in most cases it is
sensible to give a list of numbers and not just one number in order to describe the performance
of the prover. (Remember the semi-decision procedures already mentioned above.)

10.3 BENCHMARK METHOD

10.3.1 Formulas

For each of the logics K, KT, S4 there are 9 valid and 9 nonvalid scalable formulas. The formulas
in each class are parametrised by a number in N. We call the jth formula in the ith class of valid
and nonvalid formulas Fp,i,j and Fn,i,j . Thus L |= Fp,i,j and L 6|=Fn,i,j for all i ∈ {1, . . . , 9}, j ∈ N.

Let t(C) be the time in seconds the prover takes to decide whether or not the formula C is valid,
i.e. t : FmlL → N ∪∞. We compute for each i ∈ {1, . . . , 9} the numbers np,i := max{j | ∀j′ ≤ j :
t(Fp,i,j′) < 100 seconds} and nn,i := max{j | ∀j′ ≤ j : t(Fn,i,j′) < 100 seconds}. Thus Fp,i,np,i+1

is the first formula in the ith class of valid formulas such that the prover cannot decide its validity
in less than 100 seconds (Fn,i,nn,i+1 analogously).

10.3.2 Timing

It is not possible to describe a timing procedure that is sensible for all provers (think for example
of non-deterministic and parallel provers). Therefore it is important that everybody who applies
the benchmark method describes exactly how the timing took place. (See section 10.8 for an
example.)

228 CHAPTER 10. BENCHMARKS

If possible, then observe the following conditions in order to make the comparison of different
provers easier:

• The timing starts after the start-up of the prover.

• No conversions, for example in negation normal form, before the timing starts.

• The timing includes the construction of the data structure that contains the formula. This
is especially important if you put additional information into the data structure before
starting the ‘real’ proof search.

• Make your prover accessible in some way, in order to give people the possibility to check
your results.

10.3.3 Presentation of the results

We propose the following form to present your results. With this information it should be possible
to check the obtained results. (See section 10.8 for an example of a filled in form.)

• Name of the prover. Short description of the methods used by the prover (or a reference).

• Availability of the prover.

• Short list of features your prover offers besides checking the validity of formulas (or a
reference). Examples: Is the prover tuned for a certain application? Has the correctness
of the prover been verified? Can one use one prover for many logics? Is a proof or a
counter-model generated?

• Hardware that was used for the benchmark test.

• Example of the way you timed your prover.

• Results, i.e. the numbers np,i and nn,i for all i ∈ {1, . . . , 9}.
• Discussion of the results (optional).

10.3.4 What about the postulates?

Our method largely satisfies the seven postulates:

1. We have as many classes of valid formulas as classes of nonvalid formulas.

2. The formulas have various properties (number of variables, modal depth, . . .) and origins.

3. Each class contains arbitrarily difficult formulas.

4. It is clear which formulas are valid.

5. We tried . . .

6. Applying our benchmark method is rather tiresome if one does not automate it, but it can
be done within a reasonable time.

7. For each logic the result consists of a list of 18 numbers.

The main problems are the postulate 5, and, especially for semi-decision procedures, the relatively
small number of classes.

10.4. PRESENTATION OF FORMULAS 229

10.4 PRESENTATION OF FORMULAS

For each scalable formula we list in the following section:

1. Idea: Why is the formula valid or nonvalid?

2. Hiding: How is the formula ‘hidden’ in order to make the problem more difficult to solve?

3. Characteristics: Modal depth, number of variables, . . .

4. An inductive definition of the formulas.

5. The first two formulas and the length, modal depth, variables of the first six formulas. This
information is generated by LWB procedures.

We have to make sure that there are no inconsistencies between the mathematical definition of
a formula class and the corresponding LWB procedure. Therefore we automatically convert the
mathematical definition (i.e. its LaTeX source) into LWB procedures and compare the output of
the hand-written and the generated LWB procedures.

10.5 K

10.5.1 k branch p

Idea: The branching formula is defined in [HM92] in order to prove that in K there are formulas A
such that the number of worlds of each model of A is exponential with respect to length(A). We
use these formulas plus a negation symbol in front and the additional subformula ¬2npn div 3+1

in order to make the formula valid. We assume n < 100.
Characteristics: 2n+ 3 variables, modal depth n+ 1.

k branch p(n) :≡ ¬(p100 ∧ ¬p101 ∧
∧
i=0,...,n(2i(bdepth(n) ∧ det(n) ∧ branching(n)))) ∨ ¬2npn div 3+1

bdepth(n) :≡
∧
i=1,...,n+1(p100+i → p99+i)

det(n) :≡
∧
i=0,...,n(p100+i → (pi → 2(p100+i → pi)) ∧ (¬pi → 2(p100+i → ¬pi)))

branching(n) :≡∧
i=0,...,n−1(p100+i ∧ ¬p101+i → 3(p101+i ∧ ¬p102+i ∧ pi+1) ∧3(p101+i ∧ ¬p102+i ∧ ¬pi+1))

> for i := 1 to 6 do

print(i, ": ", length(k_branch_p(i)), ", ", modaldepth(k_branch_p(i)), ", ",

vars(k_branch_p(i)));

> k_branch_p(1);

> k_branch_p(2);

10.5.2 k branch n

Idea: The branching formula as defined in [HM92] (cp. 10.5.1). We assume n < 100.
Characteristics: 2n+ 3 variables, modal depth n+ 1.

k branch n(n) :≡ ¬(p100 ∧ ¬p101 ∧
∧
i=0,...,n(2i(bdepth(n) ∧ det(n) ∧ branching(n))))

bdepth, det , branching as in 10.5.1.

> for i := 1 to 6 do

print(i, ": ", length(k_branch_n(i)), ", ", modaldepth(k_branch_n(i)), ", ",

vars(k_branch_n(i)));

> k_branch_n(1);

> k_branch_n(2);

230 CHAPTER 10. BENCHMARKS

10.5.3 k d4 p

Idea: K |= D ∧ 4 ∧ B{¬p0/p0} → T (cp. theorem 11.3.4).

Hiding: The left hand side occurs with 1 to n 2, the right hand side occurs just with n 2 in
front. 2nT is repeated n times. Additionally there are some superfluous instances, and the whole
formula is in negation normal form.

Characteristics: One variable, modal depth n+ 3, in negation normal form. There are no ‘com-
plicated’ formulas inside a 2 or 3.

k d4 p(n) :≡ nnf(
∨
i=1,...,n(2nT ∨ ¬2iD2 ∨ ¬2i4 ∨ ¬2i4{3p0/p0} ∨ ¬2iB ∨ ¬2iB{¬p0/p0}))

> for i := 1 to 6 do

print(i, ": ", length(k_d4_p(i)), ", ", modaldepth(k_d4_p(i)), ", ", vars(k_d4_p(i)));

> k_d4_p(1);

> k_d4_p(2);

10.5.4 k d4 n

Idea: S4 6|= 5 and S4 |= D, thus KDT4H 0 5 (cp. chapter 11).

Hiding: As in 10.5.3.

Characteristics: One variable, modal depth n+ 3, in negation normal form.

k d4 n(n) :≡ nnf(
∨
i=1,...,n(2n(2p0 ∨23¬p0) ∨ ¬2iD2 ∨ ¬2i4 ∨ ¬2i4{3p0/p0} ∨ ¬2iD
∨ ¬2i4{3p0 → p0/p0} ∨ ¬2i4{2p0 → p0/p0}))

> for i := 1 to 6 do

print(i, ": ", length(k_d4_n(i)), ", ", modaldepth(k_d4_n(i)), ", ", vars(k_d4_n(i)));

> k_d4_n(1);

> k_d4_n(2);

10.5.5 k dum p

Idea: K |= 4{2(p0 → 2p0) → p0/p0} ∧ 24 ∧ Dum ∧ Dum{p0 → 2p0/p0} → Dum1 (cp. theorem
11.3.9).

Hiding: Some of the formulas on the left hand side of the implication occur with 1 to n− 1 2 in
front, the right hand side occurs just once with n div 2 + 1 2 in front.

Characteristics: One variable, modal depth about n
2 +4. There are no complicated formulas inside

a 2 or a 3. Certain subformulas (for example p0 → 2p0) occur many times in these formulas.

k dum p(n) :≡
∧
i=1,...,n div 2(2i(24 ∧Dum)) ∧ ¬2n div 2+1Dum1

→ 3n div 2+1¬(4{2(p0 → 2p0)→ p0/p0} ∧24 ∧Dum ∧Dum{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬(24 ∧Dum))

> for i := 1 to 6 do

print(i, ": ", length(k_dum_p(i)), ", ", modaldepth(k_dum_p(i)), ", ", vars(k_dum_p(i)));

> k_dum_p(1);

> k_dum_p(2);

10.5.6 k dum n

Idea: K4DumH4 0 Dum (cp. chapter 11).

Hiding: As in 10.5.5.

10.5. K 231

Characteristics: One variable, modal depth n+ 5. Certain subformulas (for example p0 → 2p0)
occur many times in these formulas.

k dum n(n) :≡
∧
i=1,...,n div 2(2i(24 ∧Dum4)) ∧ ¬2n+1Dum
→ 3n+1¬(4{2(p0 → 2p0)→ p0/p0} ∧24 ∧Dum4 ∧Dum4{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬(24 ∧Dum4))

> for i := 1 to 6 do

print(i, ": ", length(k_dum_n(i)), ", ", modaldepth(k_dum_n(i)), ", ", vars(k_dum_n(i)));

> k_dum_n(1);

> k_dum_n(2);

10.5.7 k grz p

Idea: K |= 2Grz ∧ Grz{C ∧ 4{C/p0}/p0} → Grz1, where C ≡ 2(p2 → 2p2) → p2 (cp. theorem
11.3.9).

Hiding: Many superfluous instances with three variables, and iterated 2 inside the instances.

Characteristics: 3 (if n < 5) or 4 variables, modal depth ≥ 7.

k grz p(n) :≡ 2Grz{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz{C () ∧ 4{C ()/p0}/p0}

→ Grz1{p1/p0} ∨Grz1{p2/p0} ∨Grz1{p3/p0}

l(i) :≡


Grz{l2 (i div 4)/p0} i mod 4 = 0
Grz{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 (i) :≡
{

false i = 0
2l2 (i− 1) ∨ p1 ∨ p2 ∨ p3 ∨ p4 otherwise

C () :≡ 2(p2 → 2p2)→ p2

> for i := 1 to 6 do

print(i, ": ", length(k_grz_p(i)), ", ", modaldepth(k_grz_p(i)), ", ", vars(k_grz_p(i)));

> k_grz_p(1);

> k_grz_p(2);

10.5.8 k grz n

Idea: KGrzH1 0 Grz (cp. chapter 11).

Hiding: As in 10.5.7.

Characteristics: 3 (if n < 5) or 4 variables, modal depth ≥ 7.

k grz n(n) :≡ 2Grz1{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz1{C () ∧ 4{C ()/p0}/p0}

→ Grz{p1/p0} ∨Grz{p2/p0} ∨Grz{p3/p0}

l(i) :≡


Grz1{l2 (i div 4)/p0} i mod 4 = 0
Grz1{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz1{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz1{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 , C as in 10.5.7.

> for i := 1 to 6 do

print(i, ": ", length(k_grz_n(i)), ", ", modaldepth(k_grz_n(i)), ", ", vars(k_grz_n(i)));

> k_grz_n(1);

> k_grz_n(2);

232 CHAPTER 10. BENCHMARKS

10.5.9 k lin p

Idea: K |= H{p0∧2p0 → p1/p0, p1∧2p1 → p0/p1} → L (cp. theorem 11.3.5). Thus K |= H2 → L,
where H2 ≡ H{p0 ∧2p0 ∧ p0 → p1/p0,¬p0 → ¬(2p1 ∧ p1)/p1}.
Hiding: Superfluous instances of H2 with other variables.
Characteristics: n+ 1 variables, modal depth 3.

k lin p(n) :≡
∨
i=1,...,n div 3(¬H2 (pi, pi+1))
∨ L{pn/p0, pn/p1}
∨
∨
i=n div 3+1,...,n(¬H2 (pi, pi+1))

H2 (A,B) :≡ H{A ∧2A ∧A→ B/p0,¬A→ ¬(2B ∧B)/p1}

> for i := 1 to 6 do

print(i, ": ", length(k_lin_p(i)), ", ", modaldepth(k_lin_p(i)), ", ", vars(k_lin_p(i)));

> k_lin_p(1);

> k_lin_p(2);

10.5.10 k lin n

Idea: KLH 0 L+ (cp. chapter 11).
Characteristics: n+ 1 variables, modal depth 2 (if n = 1) or 3.

k lin n(n) :≡
∨
i=1,...,2n−2(¬L{3pi/p0, pi+1/p1} ∨ ¬L{pi → 2pi+1/p0, pi+1/p1})
∨ L+{pn/p0, pn/p1}
∨
∨
i=2n,...,4n−4(¬L{3pi/p0, pi+1/p1} ∨ ¬L{pi → 2pi+1/p0, pi+1/p1})

> for i := 1 to 6 do

print(i, ": ", length(k_lin_n(i)), ", ", modaldepth(k_lin_n(i)), ", ", vars(k_lin_n(i)));

> k_lin_n(1);

> k_lin_n(2);

10.5.11 k path p

Idea: Without hiding, the formula would just be 2ppath el(1,n) ∨3(¬ppath el(1,n) ∧2ppath el(2,n))∨
. . .∨3(¬ppath el(n−1,n)∧2ppath el(n, n))∨3n¬ppath el(n,n). It is easy to check the validity of these
formulas with backward proof search in a sequent calculus.
Hiding: The formula above is the path from the entry to the exit of a labyrinth. The labyrinth
consists of a start point, n levels of 6 points, and an end point (see figure 10.5.11). The formula
2p1 ∨ 2p3 ∨ 2p5 connects the start point with the points 1,3,5 on the first level, and 3n¬p2 ∨
3n¬p4 ∨3n¬p6 connects the points 2,4,6 on the nth level with the end point. The path from the
start point to the end point is defined by the formula displayed in the ‘idea’ part. The formula
generated by left to right(l, k, n) defines with which points on level l+ 1 the point k on level l is
connected. The formulas generated by left to right are the backward connections.
Characteristics: If we do backward proof search in a sequent calculus, then the path from the
entry to the exit has to be found with backtracking, i.e. the function path el must be reconstructed.
There is only one such path. 6 variables, modal depth n.

k path p(n) :≡ (2p1 ∨2ppath el(1,n) ∨2p3 ∨2p5)
∨
∨
i=1,...,n;j=1,...,6(left to right(i, j, n) ∨ right to left(i, j, n))

∨ (3n¬p2 ∨3n¬p4 ∨3n¬ppath el(n,n) ∨3n¬p6)

path el(l, n) :≡

 2 l = 1
modg(path el(l − 1, n) + 3, 6) l > n div 2
modg(path el(l − 1, n) + 5, 6) otherwise

10.5. K 233

t
start point

�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
��
��s
s
s
s
t
s

level 1

@
@
@
@
@
@�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

s
t
s
s
s
s

level 2

@
@
@
@
@
@

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

@
@
@
@
@
@�

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�

�
� @

@
@
@

@
@

s
s
s
s
t
s

level 3

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
��

@
@
@

@
@
@

�
�
�

�
�
� A

A
A
A
A
A
A
A
A
A
AA

@
@
@

@
@
@

tend point

�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
��J
J
J
J
J
J
J
JJ

�
��
��
�

Figure 10.a: The labyrinth given by the formula k path p(3). The thick
line is the path.

left to right(l, k, n) :≡
false l = n
false l 6= n, k mod 2 = 0, k 6= path el(l, n)
lists2fml(l, k, [path el(l + 1, n)]) l 6= n, k mod 2 = 0, k = path el(l, n)
lists2fml(l, k, [1, 3, path el(l + 1, n), 5]) l 6= n, k mod 2 6= 0, k = path el(l, n)
lists2fml(l, k, delete(path el(l + 1, n), 1, 3, 5)) otherwise

right to left(l, k, n) :≡

 false l = 1
false l 6= 1, k mod 2 = 1
lists2fml back(l − 1, k, delete(path el(l − 1, n), 2, 4, 6)) otherwise

lists2fml(l, k, s) :≡
∨
x∈s(3

l(¬pk ∧2px))

lists2fml back(l, k, s) :≡
∨
x∈s(3

l(¬px ∧2pk))

delete(x, y1 , y2 , y3) :≡


[y2 , y3] x = y1
[y1 , y3] x = y2
[y1 , y2] x = y3
[y1 , y2 , y3] otherwise

modg(n1, n2) :≡
{
n2 n1 mod n2 = 0
n1 mod n2 otherwise

> for i := 1 to 6 do

print(i, ": ", length(k_path_p(i)), ", ", modaldepth(k_path_p(i)), ", ", vars(k_path_p(i)));

> k_path_p(1);

> k_path_p(2);

10.5.12 k path n

Idea: As in 10.5.11, but one piece of the path is missing (cp. the different definitions of left to right
in 10.5.11 and 10.5.12).

Hiding: As in 10.5.11.

Characteristics: If we do backward proof search in a sequent calculus, then the labyrinth is
searched (using backtracking) for a path from the entry to the exit. 6 variables, modal depth
n+ 1.

234 CHAPTER 10. BENCHMARKS

k path n(n) :≡ (2p1 ∨2ppath el(1,n+1) ∨2p3 ∨2p5)
∨
∨
i=1,...,n+1;j=1,...,6(left to right(i, j, n+ 1) ∨ right to left(i, j, n+ 1))

∨ (3n+1¬p2 ∨3n+1¬p4 ∨3n+1¬ppath el(n+1,n+1) ∨3n+1¬p6)

path el , right to left , lists2fml , lists2fml back , delete, modg as in 10.5.11.

left to right(l, k, n) :≡

false l = n
false l 6= n, k mod 2 = 0, k 6= path el(l, n)
false l 6= n, k mod 2 = 0, k = path el(l, n), l = n div 2
lists2fml(l, k, [path el(l + 1, n)]) l 6= n, k mod 2 = 0, k = path el(l, n), l 6= n div 2
lists2fml(l, k, [1, 3, 5]) l 6= n, k mod 2 6= 0, k = path el(l, n), l = n div 2
lists2fml(l, k, [1, 3, path el(l + 1, n), 5]) l 6= n, k mod 2 6= 0, k = path el(l, n), l 6= n div 2
lists2fml(l, k, delete(path el(l + 1, n), 1, 3, 5)) otherwise

> for i := 1 to 6 do

print(i, ": ", length(k_path_n(i)), ", ", modaldepth(k_path_n(i)), ", ", vars(k_path_n(i)));

> k_path_n(1);

> k_path_n(2);

10.5.13 k ph p

Idea: The pigeonhole formulas, which are valid in CPC and thus in K. We assume n < 100.

Hiding: Some 2 and 3.

Characteristics: Essentially a CPC problem. n2 + n variables, modal depth 1 (if n = 1) or 2.

k ph p(n) :≡ 3left(n)→ 3right(n)

left(n) :≡
∧
i=1,...,n+1(

∨
j=1,...,n(l(i, j)))

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(l(i1, j) ∧ l(i2, j))

l(i, j) :≡
{

2p100i+j i < j
p100i+j otherwise

> for i := 1 to 6 do

print(i, ": ", length(k_ph_p(i)), ", ", modaldepth(k_ph_p(i)), ", ", vars(k_ph_p(i)));

> k_ph_p(1);

> k_ph_p(2);

10.5.14 k ph n

Idea: The pigeonhole formulas, with one missing conjunct on the right hand side to make them
nonvalid. We assume n < 100.

Hiding: Some 2 and 3.

Characteristics: Essentially a CPC problem. n2 + n variables, modal depth 1 (if n = 1) or 2.

k ph n(n) :≡ 3left(n)→ 3right(n)

left , l as in 10.5.13.

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(l2 (n, i1, j) ∧ l2 (n, i2, j))

l2 (n, i, j) :≡
{
¬l(i, j) i = j, i = (2n) div 3 + 1
l(i, j) otherwise

> for i := 1 to 6 do

print(i, ": ", length(k_ph_n(i)), ", ", modaldepth(k_ph_n(i)), ", ", vars(k_ph_n(i)));

> k_ph_n(1);

> k_ph_n(2);

10.5. K 235

10.5.15 k poly p

Idea: The formula (p1 ↔ p2) ∨ (p2 ↔ p3) ∨ . . . ∨ (pn−1 ↔ pn) ∨ (pn ↔ p1) says: If we have a
polygon with n vertices, and all the vertices are either black or white, then two adjacent vertices
have the same colour. If n is odd, then this formula is valid in CPC.

Hiding: Many 2, 3, and superfluous subformulas.

Characteristics: Essentially a CPC problem. In contrast to the formulas k ph p, these formulas
have a larger modal depth, but less variables. About 4.5n variables, modal depth about 3n.

k poly p(n) :≡
{

poly(3n+ 1) n mod 2 = 0
poly(3n) n mod 2 = 1

poly(n) :≡ 2n+1
∧
i=1,...,n+1(pi) ∨ f(n, n) ∨2n+1

∧
i=1,...,n+1(¬p2i)

f (i, n) :≡

 false i = 0
3(f (i− 1, n) ∨3i(pn ↔ p1)) ∨2pi+2 i = n
3(f (i− 1, n) ∨3i(pi ↔ pi+1)) ∨2pi+2 otherwise

> for i := 1 to 6 do

print(i, ": ", length(k_poly_p(i)), ", ", modaldepth(k_poly_p(i)), ", ", vars(k_poly_p(i)));

> k_poly_p(1);

> k_poly_p(2);

10.5.16 k poly n

Idea: As in 10.5.15, but for an even number of vertices.

Hiding: Many 2, 3, and superfluous subformulas. The superfluous subformulas do not influence
the nonvalidity.

Characteristics: Essentially a CPC problem. In contrast to the formulas k ph n, these formulas
have a larger modal depth, but less variables. About 4.5n variables, modal depth about 3n.

k poly n(n) :≡
{

poly(3n) n mod 2 = 0
poly(3n+ 1) n mod 2 = 1

poly , f as in 10.5.15.

> for i := 1 to 6 do

print(i, ": ", length(k_poly_n(i)), ", ", modaldepth(k_poly_n(i)), ", ", vars(k_poly_n(i)));

> k_poly_n(1);

> k_poly_n(2);

10.5.17 k t4p p

Idea: K |= T{3p0/p0} ∧2T{¬23p0/p0} ∧ 4{3p0/p0} ∧ P→ nnf(M) (cp. theorem 11.3.8).

Hiding: Superfluous subformulas (3¬p3, 3p4), superfluous instances of 4 and 5, nested 2.

Characteristics: 4 variables, modal depth n+ 5. Partially in negation normal form.

k t4p p(n) :≡ E (n) ∨ nnf(¬C (n)) ∨3p4

C (i) :≡

 ((23p0 → 3p1) ∧2(2¬23p1 → ¬23p0) ∧ (23p0 → 223p1)
∧2(323p0 ∧ p0 → 2p1) ∧23p1){p0 ∧3¬p3/p1} i = 0

24{p1/p0} ∧2C (i− 1) ∧24{3p1/p0} otherwise

E (i) :≡
{

32p0 i = 0
3¬4{¬p1/p0} ∨2E (i− 1) ∨25{p1/p0} otherwise

> for i := 1 to 6 do

print(i, ": ", length(k_t4p_p(i)), ", ", modaldepth(k_t4p_p(i)), ", ", vars(k_t4p_p(i)));

236 CHAPTER 10. BENCHMARKS

> k_t4p_p(1);

> k_t4p_p(2);

10.5.18 k t4p n

Idea: KT4PH 0 32p0 (cp. theorem 11.3.8).

Hiding: As in 10.5.17.

Characteristics: 4 variables, modal depth 2n+ 4. Partially in negation normal form.

k t4p n(n) :≡ E (2n− 1) ∨ nnf(¬C (2n− 1)) ∨3p4

C (i) :≡

 ((23p0 → 3p1) ∧2(2¬23p1 → ¬23p0) ∧ (23p0 → 223p1)
∧2(323p0 ∧ p0 → 2p1)){p0 ∧3¬p3/p1} i = 0

24{p1/p0} ∧2C (i− 1) ∧24{3p1/p0} otherwise
E as in 10.5.17.

> for i := 1 to 6 do

print(i, ": ", length(k_t4p_n(i)), ", ", modaldepth(k_t4p_n(i)), ", ", vars(k_t4p_n(i)));

> k_t4p_n(1);

> k_t4p_n(2);

10.6 KT

10.6.1 kt 45 p

Idea: KTH ` 5{2p0/p0} ∧25{¬p0/p0} → 4 (cp. theorem 11.3.4).

Hiding: The left hand side occurs with 1 to n 2, the right hand side occurs just with n 2 in
front. Additionally some superfluous instances, and the whole formula in negation normal form.

Characteristics: One variable, modal depth n+ 3, in negation normal form.

kt 45 p(n) :≡ nnf(
∨
i=1,...,n(2n4 ∨ ¬2iD2 ∨ ¬2i5{3¬p0/p0} ∨ ¬2i25 ∨ ¬2iB))

> for i := 1 to 6 do

print(i, ": ", length(kt_45_p(i)), ", ", modaldepth(kt_45_p(i)), ", ", vars(kt_45_p(i)));

> kt_45_p(1);

> kt_45_p(2);

10.6.2 kt 45 n

Idea: S4 6|= 5.

Hiding: As in 10.6.1.

Characteristics: One variable, modal depth n+ 3, in negation normal form.

kt 45 n(n) :≡ nnf(
∨
i=1,...,n(2n(2p0 ∨23¬p0) ∨ ¬2i4 ∨ ¬2i4{3p0/p0} ∨ ¬2iT

∨ ¬2i4{3p0 → p0/p0} ∨ ¬2i4{2p0 → p0/p0}))

> for i := 1 to 6 do

print(i, ": ", length(kt_45_n(i)), ", ", modaldepth(kt_45_n(i)), ", ", vars(kt_45_n(i)));

> kt_45_n(1);

> kt_45_n(2);

10.6. KT 237

10.6.3 kt branch p

Idea: The branching formula as described in [HM92], plus a negation symbol in front and the
additional subformula ¬2np(n div 3)+1 in order to make the formula valid.

Characteristics: 2n + 3 variables, modal depth n + 1. The formulas are much shorter than the
corresponding one for K, since in KT the formula 2nA is equivalent to A ∧2A ∧ . . . ∧2nA.

kt branch p(n) :≡ ¬(p100 ∧ ¬p101 ∧2n(bdepth(n) ∧ det(n) ∧ branching(n))) ∨ ¬2np(n div 3)+1

bdepth, det , branching as in 10.5.1.

> for i := 1 to 6 do

print(i, ": ", length(kt_branch_p(i)), ", ", modaldepth(kt_branch_p(i)), ", ",

vars(kt_branch_p(i)));

> kt_branch_p(1);

> kt_branch_p(2);

10.6.4 kt branch n

Idea: The branching formula as defined in [HM92].

Characteristics: Every KT model that satisfies the pure branching formula must have an expo-
nential number of worlds (cp. [HM92]). 2n + 3 variables, modal depth n + 1. The formulas are
much shorter than the corresponding one for K, since in KT the formula 2nA is equivalent to
A ∧2A ∧ . . . ∧2nA.

kt branch n(n) :≡ ¬(p100 ∧ ¬p101 ∧2n(bdepth(n) ∧ det(n) ∧ branching(n)))

bdepth, det , branching as in 10.5.1.

> for i := 1 to 6 do

print(i, ": ", length(kt_branch_n(i)), ", ", modaldepth(kt_branch_n(i)), ", ",

vars(kt_branch_n(i)));

> kt_branch_n(1);

> kt_branch_n(2);

10.6.5 kt dum p

Idea: KT |= 4{2(p0 → 2p0) → p0} ∧ 24 ∧ Dum ∧ Dum{p0 → 2p0/p0} → Dum1 (cp. theorem
11.3.4).

Hiding: Some of he formulas on the left hand side of the implication occur with 1 to n− 1 2 in
front, the right hand side occurs just once with (n div 2) + 1 2 in front.

Characteristics: One variable, modal depth n + 1 (if n > 6). Certain subformulas (for example
p0 → 2p0) occur many times in these formulas.

kt dum p(n) :≡
∧
i=1,...,n div 2(2i4) ∧ ¬2(n div 2)+1Dum1

→ 3(n div 2)+1¬(4{2(p0 → 2p0)→ p0/p0} ∧24 ∧Dum ∧Dum{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬4)

> for i := 1 to 6 do

print(i, ": ", length(kt_dum_p(i)), ", ", modaldepth(kt_dum_p(i)), ", ",

vars(kt_dum_p(i)));

> kt_dum_p(1);

> kt_dum_p(2);

238 CHAPTER 10. BENCHMARKS

10.6.6 kt dum n

Idea: KTDumH 0 Grz (cp. chapter 11).

Hiding: As in 10.6.5.

Characteristics: One variable, modal depth about n
2 + 4. Certain subformulas (for example

p0 → 2p0) occur many times in these formulas.

kt dum n(n) :≡
∧
i=1,...,n div 2(2i(24 ∧Dum)) ∧ ¬2n div 2+1Grz
→ 3n div 2+1¬(4{2(p0 → 2p0)→ p0/p0} ∧24 ∧Dum ∧Dum{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬(24 ∧Dum))

> for i := 1 to 6 do

print(i, ": ", length(kt_dum_n(i)), ", ", modaldepth(kt_dum_n(i)), ", ",

vars(kt_dum_n(i)));

> kt_dum_n(1);

> kt_dum_n(2);

10.6.7 kt grz p

Idea: KT |= 2Grz∧Grz{C ∧ (4{C/p0})/p0} → Grz1, where C ≡ 2(p2 → 2p2)→ p2 (cp. theorem
11.3.9).

Hiding: Many superfluous instances with iterated 2 inside the instances. The subformulas 32¬p0

and 3p0 are the parts of an instance of T .

Characteristics: 3 (if n < 5) or 4 variables, modal depth ≥ 7.

kt grz p(n) :≡ 2Grz{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz{C () ∧ (4{C ()/p0})/p0}

→ Grz1{p1/p0} ∨Grz1{p2/p0} ∧32¬p0 ∨Grz1{p3/p0} ∨Grz1{p2/p0} ∧3p0

l , l2 , C as in 10.5.7.

> for i := 1 to 6 do

print(i, ": ", length(kt_grz_p(i)), ", ", modaldepth(kt_grz_p(i)), ", ",

vars(kt_grz_p(i)));

> kt_grz_p(1);

> kt_grz_p(2);

10.6.8 kt grz n

Idea: KTGrzH1 0 5 (cp. chapter 11).

Hiding: As in 10.5.7.

Characteristics: 3 (if n < 5) or 4 variables, modal depth ≥ 7.

kt grz n(n) :≡ 2Grz1{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz1{C () ∧ 4{C ()/p0}/p0}

→ 5{p1/p0} ∨ 5{p2/p0} ∨ 5{p3/p0}

l(i) :≡


Grz1{l2 (i div 4)/p0} i mod 4 = 0
Grz1{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz1{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz1{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 , C as in 10.5.7.

> for i := 1 to 6 do

print(i, ": ", length(kt_grz_n(i)), ", ", modaldepth(kt_grz_n(i)), ", ",

vars(kt_grz_n(i)));

> kt_grz_n(1);

10.6. KT 239

> kt_grz_n(2);

10.6.9 kt md p

Idea: When doing backward proof search in a sequent calculus, we have to find the way to
g(n, n,¬p1) through several 2 and 3.

Characteristics: One (if n = 1) or two variables, modal depth 0 (if n = 1) or n2 − n+ 1.

kt md p(n) :≡
p1 ∨

∨
i=1,...,n−1(g(i, n,¬p1 ∧3f(1, n, p2)) ∨ g(i, n,¬p1 ∧3f (1, n, p1)) ∨ g(i, n,¬p2 ∧3f (1, n, p1)))

∨ g(n, n,¬p1)

g(i, n,A) :≡
{
A i = 1
f (i, n, g(i− 1, n, A)) otherwise

f (i, n,A) :≡ 3i−123n−iA

> for i := 1 to 6 do

print(i, ": ", length(kt_md_p(i)), ", ", modaldepth(kt_md_p(i)), ", ", vars(kt_md_p(i)));

> kt_md_p(1);

> kt_md_p(2);

10.6.10 kt md n

Idea: Similar to 10.6.9, but simpler. The subformula g(n, n,¬p1) is missing in order to make the
formulas nonvalid.

Characteristics: One variable, modal depth 0 (if n = 1) or n2 − n+ 1.

kt md n(n) :≡ p1 ∨
∨
i=1,...,n−1(g(i, n,¬p1 ∧3f (1, n, p1)))

f , g as in 10.6.9.

> for i := 1 to 6 do

print(i, ": ", length(kt_md_n(i)), ", ", modaldepth(kt_md_n(i)), ", ", vars(kt_md_n(i)));

> kt_md_n(1);

> kt_md_n(2);

10.6.11 kt path p

Idea, hiding: As in 10.5.11, but we use new variables on each level of the labyrinth. (The formulas
k path p collapse in KT since KT |= 2nA→ A.)

Characteristics: 6n variables, modal depth n.

kt path p(n) :≡ (2p11 ∨2p10+path el(1,n) ∨2p13 ∨2p15)
∨
∨
i=1,...,n;j=1,...,6(left to right(i, j, n) ∨ right to left(i, j, n))

∨ (3n¬p10n+2 ∨3n¬p10n+4 ∨3n¬p10n+path el(n,n) ∨3n¬p10n+6)

path el , left to right , right to left , delete, modg as in 10.5.11.

lists2fml(l, k, s) :≡
∨
x∈s(3

l(¬p10l+k ∧2p10(l+1)+x))

lists2fml back(l, k, s) :≡
∨
x∈s(3

l(¬p10l+x ∧2p10(l+1)+k))

> for i := 1 to 6 do

print(i, ": ", length(kt_path_p(i)), ", ", modaldepth(kt_path_p(i)), ", ",

vars(kt_path_p(i)));

> kt_path_p(1);

> kt_path_p(2);

240 CHAPTER 10. BENCHMARKS

10.6.12 kt path n

Idea, hiding: As in 10.5.12, but we use new variables on each level of the labyrinth. (The formulas
k path p collapse in KT since KT |= 2nA→ A.)
Characteristics: 6n variables, modal depth n+ 1.

kt path n(n) :≡
(2p11 ∨2p10+path el(1,n+1) ∨2p13 ∨2p15)
∨
∨
i=1,...,n+1;j=1,...,6(left to right(i, j, n+ 1) ∨ right to left(i, j, n+ 1))

∨ (3n+1¬p10(n+1)+2 ∨3n+1¬p10(n+1)+4 ∨3n+1¬p10(n+1)+path el(n+1,n+1) ∨3n+1¬p10(n+1)+6)

path el , left to right , right to left , delete, modg as in 10.5.12.

lists2fml , lists2fml back as in 10.6.11.

> for i := 1 to 6 do

print(i, ": ", length(kt_path_n(i)), ", ", modaldepth(kt_path_n(i)), ", ",

vars(kt_path_n(i)));

> kt_path_n(1);

> kt_path_n(2);

10.6.13 kt ph p

Idea, hiding: As in 10.5.13.
Characteristics: Essentially a CPC problem. n2 + n variables, modal depth 1 (if n = 1) or 2.

kt ph p(n) :≡ left(n)→ 3right(n)

left , right , l as in 10.5.13.

> for i := 1 to 6 do

print(i, ": ", length(kt_ph_p(i)), ", ", modaldepth(kt_ph_p(i)), ", ", vars(kt_ph_p(i)));

> kt_ph_p(1);

> kt_ph_p(2);

10.6.14 kt ph n

Idea, hiding: As in 10.5.14.
Characteristics: Essentially a CPC problem. n2 + n variables, modal depth 1 (if n = 1) or 2.

kt ph n(n) :≡ left(n)→ 3right(n)

left , right , l , l2 as in 10.5.14.

> for i := 1 to 6 do

print(i, ": ", length(kt_ph_n(i)), ", ", modaldepth(kt_ph_n(i)), ", ", vars(kt_ph_n(i)));

> kt_ph_n(1);

> kt_ph_n(2);

10.6.15 kt poly p

Idea, hiding: As in 10.5.15.
Characteristics: Essentially a CPC problem. About 7.5n variables, modal depth about 5n.

kt poly p(n) :≡
{

poly(5n+ 1) n mod 2 = 0
poly(5n) n mod 2 = 1

poly as in 10.5.15.

f (i, n) :≡

 false i = 0
3(f (i− 1, n) ∨3i+2(pn ↔ p1)) ∨2pi+2 i = n
3(f (i− 1, n) ∨3i+2(pi ↔ pi+1)) ∨2pi+2 otherwise

10.6. KT 241

> for i := 1 to 6 do

print(i, ": ", length(kt_poly_p(i)), ", ", modaldepth(kt_poly_p(i)), ", ",

vars(kt_poly_p(i)));

> kt_poly_p(1);

> kt_poly_p(2);

10.6.16 kt poly n

Idea, hiding: As in 10.5.16.

Characteristics: Essentially a CPC problem. About 7.5n variables, modal depth about 5n.

kt poly n(n) :≡
{

poly(3n) n mod 2 = 0
poly(3n+ 1) n mod 2 = 1

poly , f as in 10.6.15.

> for i := 1 to 6 do

print(i, ": ", length(kt_poly_n(i)), ", ", modaldepth(kt_poly_n(i)), ", ",

vars(kt_poly_n(i)));

> kt_poly_n(1);

> kt_poly_n(2);

10.6.17 kt t4p p

Idea, hiding: As in 10.5.17.

Characteristics: 4 variables, modal depth n+ 4. Partially in negation normal form.

kt t4p p(n) :≡ E (n) ∨ nnf(¬C (n)) ∨3p4

C (i) :≡
{

((23p0 → 223p1) ∧2(323p0 ∧ p0 → 2p1) ∧23p1){p0 ∧3¬p3/p1} i = 0
24{p1/p0} ∧2C (i− 1) otherwise

E as in 10.5.17.

> for i := 1 to 6 do

print(i, ": ", length(kt_t4p_p(i)), ", ", modaldepth(kt_t4p_p(i)), ", ",

vars(kt_t4p_p(i)));

> kt_t4p_p(1);

> kt_t4p_p(2);

10.6.18 kt t4p n

Idea, hiding: As in 10.5.18.

Characteristics: 4 variables, modal depth 2n+ 3. Partially in negation normal form.

kt t4p n(n) :≡ E (2n− 1) ∨ nnf(¬C (2n− 1)) ∨3p4

C (i) :≡

 ((23p0 → 3p1) ∧ (23p0 → 223p1)
∧2(323p0 ∧ p0 → 2p1)){p0 ∧3¬p3/p1} i = 0

24{p1/p0} ∧2C (i− 1) otherwise
E as in 10.5.17.

> for i := 1 to 6 do

print(i, ": ", length(kt_t4p_n(i)), ", ", modaldepth(kt_t4p_n(i)), ", ",

vars(kt_t4p_n(i)));

> kt_t4p_n(1);

> kt_t4p_n(2);

242 CHAPTER 10. BENCHMARKS

10.7 S4

10.7.1 s4 45 p

Idea: S4 |= 5{2p0/p0} ∧25{¬p0/p0} → 5.

Hiding: The left hand side occurs with 1 to n 2, the right hand side occurs just with n 2 in front.
Additionally some superfluous instances, and the whole formula is in negation normal form.

Characteristics: Two variables, modal depth n+ 3, in negation normal form.

s4 45 p(n) :≡ nnf(
∨
i=1,...,n(h(n, 5) ∨ ¬h(i,D2) ∨ ¬h(i, 5{3¬p0/p0}) ∨ ¬h(i,25) ∨ ¬h(i,B)))

h(i, A) :≡
{
A i = 0
2p0 ∨2h(i− 1, A) ∨2p1 otherwise

> for i := 1 to 6 do

print(i, ": ", length(s4_45_p(i)), ", ", modaldepth(s4_45_p(i)), ", ", vars(s4_45_p(i)));

> s4_45_p(1);

> s4_45_p(2);

10.7.2 s4 45 n

Idea: S4 6|= 5.

Hiding: As in 10.7.1.

Characteristics: Two variables, modal depth n+ 3, in negation normal form.

s4 45 n(n) :≡ nnf(
∨
i=1,...,n(h(n, (2p0 ∨23¬p0)) ∨ ¬h(i, 4) ∨ ¬h(i, 4{3p0/p0}) ∨ ¬h(i,T)

∨ ¬h(i, 4{2p0 → p0/p0}) ∨ ¬h(i,T{2p0 → p0/p0})))

h as in 10.7.1.

> for i := 1 to 6 do

print(i, ": ", length(s4_45_n(i)), ", ", modaldepth(s4_45_n(i)), ", ", vars(s4_45_n(i)));

> s4_45_n(1);

> s4_45_n(2);

10.7.3 s4 branch p

Idea: The branching formula as described in [HM92], plus a negation symbol in front and the
additional subformula 2p(n div 3)+1 in order to make the formula valid.

Characteristics: 2n+ 3 variables, modal depth 2.

s4 branch p(n) :≡ ¬(p100 ∧ ¬p101 ∧2(bdepth(n) ∧ det(n) ∧ branching(n))) ∨ ¬2p(n div 3)+1

bdepth, det , branching as in 10.5.1.

> for i := 1 to 6 do

print(i, ": ", length(s4_branch_p(i)), ", ", modaldepth(s4_branch_p(i)), ", ",

vars(s4_branch_p(i)));

> s4_branch_p(1);

> s4_branch_p(2);

10.7. S4 243

10.7.4 s4 branch n

Idea: The branching formula as defined in [HM92].

Characteristics: Every S4 model that satisfies the pure branching formula must have an expo-
nential number of worlds (cp. [HM92]). 2n+ 3 variables, modal depth 2.

s4 branch n(n) :≡ ¬(p100 ∧ ¬p101 ∧2(bdepth(n) ∧ det(n) ∧ branching(n)))

bdepth, det , branching as in 10.5.1.

> for i := 1 to 6 do

print(i, ": ", length(s4_branch_n(i)), ", ", modaldepth(s4_branch_n(i)), ", ",

vars(s4_branch_n(i)));

> s4_branch_n(1);

> s4_branch_n(2);

10.7.5 s4 grz p

Idea: S4 ` 2Grz ∧Grz{C ∧ (4{C/p0})/p0 → Grz1, where C ≡ 2(p2 → 2p2)→ p2 (cp. theorem
11.3.9).

Hiding: Many superfluous instances with iterated 2 inside the instances. The subformulas ¬23p0

and ¬3¬(23p0 ∨ p1) are the parts of a weakened instance of 4.

Characteristics: 4 (if n < 5) or 5 variables, modal depth ≥ 7.

s4 grz p(n) :≡
2Grz{p2/p0} ∧

∧
i=1,...,n−1(l(i)) ∧Grz{C () ∧ (4{C ()/p0})/p0}

→ Grz1{p1/p0} ∨Grz1{p2/p0} ∧ ¬23p0 ∨Grz1{p3/p0} ∨Grz1{p2/p0} ∧ ¬3¬(23p0 ∨ p1)

l , l2 , C as in 10.5.7.

> for i := 1 to 6 do

print(i, ": ", length(s4_grz_p(i)), ", ", modaldepth(s4_grz_p(i)), ", ",

vars(s4_grz_p(i)));

> s4_grz_p(1);

> s4_grz_p(2);

10.7.6 s4 grz n

Idea: S4GrzH1 0 5 (cp. chapter 11).

Hiding: As in 10.5.7.

Characteristics: 3 (if n < 5) or 4 variables, modal depth ≥ 7.

s4 grz n(n) :≡ 2Grz1{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz1{C () ∧ 4{C ()/p0}/p0}

→ 5{p1/p0} ∨ 5{p2/p0} ∨ 5{p3/p0}

l(i) :≡


Grz1{l2 (i div 4)/p0} i mod 4 = 0
Grz1{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz1{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz1{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 , C as in 10.5.7.

> for i := 1 to 6 do

print(i, ": ", length(s4_grz_n(i)), ", ", modaldepth(s4_grz_n(i)), ", ",

vars(s4_grz_n(i)));

> s4_grz_n(1);

> s4_grz_n(2);

244 CHAPTER 10. BENCHMARKS

10.7.7 s4 ipc p

Idea: We embed the formula
∧
i=1,...,n(p1 ∧ . . . ∧ pn → false)→ false, which is valid in IPC, in the

logic S4.

Characteristics: n variables, modal depth 3.

s4 ipc p(n) :≡
∧
i=1,...,n(f(i, n))→ false

f (i, n) :≡ 2(2(2pi →
∧
j=1,...,n(2pj))→ false)

> for i := 1 to 6 do

print(i, ": ", length(s4_ipc_p(i)), ", ", modaldepth(s4_ipc_p(i)), ", ",

vars(s4_ipc_p(i)));

> s4_ipc_p(1);

> s4_ipc_p(2);

10.7.8 s4 ipc n

Idea: We take the formula of IPC from 10.7.7, remove one part in order to make it nonvalid, and
embed it in S4.

Characteristics: n variables, modal depth 3.

s4 ipc n(n) :≡
∧
i=1,...,n(f2 (i, n))→ false

f2 (i, n) :≡
{

true i = (n+ 1) div 2
f (i, n) otherwise

f as in 10.7.7.

> for i := 1 to 6 do

print(i, ": ", length(s4_ipc_n(i)), ", ", modaldepth(s4_ipc_n(i)), ", ", vars(s4_ipc_n(i)));

> s4_ipc_n(1);

> s4_ipc_n(2);

10.7.9 s4 md p

Idea: When doing backward proof search, we have to find the way to g(n, n,¬p1) through a lot
of 2 and 3.

Characteristics: One (if n = 1) or two variables, modal depth 0 (if n = 1) or n2 − n+ 1.

s4 md p(n) :≡
p1

∨
∨
i=1,...,n−1(g(i, n,¬p1 ∧3f (1, n, p2)) ∨ g(i, n,¬p1 ∧3f (1, n, p1)) ∨ g(i, n,¬p2 ∧3f (1, n, p1)))

∨ g(n, n,¬p1)

g as in 10.6.9.

f (i, n,A) :≡ h(i− 1,2h(n− i, A))

h(i, A) :≡
{
A i = 0
3h(i− 1, A) ∨ p2 otherwise

> for i := 1 to 6 do

print(i, ": ", length(s4_md_p(i)), ", ", modaldepth(s4_md_p(i)), ", ", vars(s4_md_p(i)));

> s4_md_p(1);

> s4_md_p(2);

10.7. S4 245

10.7.10 s4 md n

Idea: Similar to 10.7.9, but simpler. The subformula g(n, n,¬p1) is missing in order to make the
formulas nonvalid.
Characteristics: One (if n = 1) or two variables, modal depth 0 (if n = 1) or n2 − n+ 1.

s4 md n(n) :≡ p1 ∨
∨
i=1,...,n−1(g(i, n,¬p1 ∧3f(1, n, p1)))

f , g , h as in 10.7.9.

> for i := 1 to 6 do

print(i, ": ", length(s4_md_n(i)), ", ", modaldepth(s4_md_n(i)), ", ", vars(s4_md_n(i)));

> s4_md_n(1);

> s4_md_n(2);

10.7.11 s4 path p

Idea, hiding: As in 10.6.11.
Characteristics: 6n variables, modal depth n+ 1.

s4 path p(n) :≡ (22p11 ∨22p10+path el(1,n) ∨22p13 ∨22p15)
∨
∨
i=1,...,n;j=1,...,6(left to right(i, j, n) ∨ right to left(i, j, n))

∨3(3¬p10n+2 ∨3¬p10n+4 ∨3¬p10n+path el(n,n) ∨3¬p10n+6)

path el , left to right , right to left , delete, modg , lists2fml , lists2fml back as in 10.6.11.

> for i := 1 to 6 do

print(i, ": ", length(s4_path_p(i)), ", ", modaldepth(s4_path_p(i)), ", ",

vars(s4_path_p(i)));

> s4_path_p(1);

> s4_path_p(2);

10.7.12 s4 path n

Idea, hiding: As in 10.6.12.
Characteristics: 6n variables, modal depth n+ 1.

s4 path n(n) :≡
(22p11 ∨22p10+path el(1,n+1) ∨22p13 ∨22p15)
∨
∨
i=1,...,n+1;j=1,...,6(left to right(i, j, n+ 1) ∨ right to left(i, j, n+ 1))

∨3(3¬p10(n+1)+2 ∨3¬p10(n+1)+4 ∨3¬p10(n+1)+path el((n+1),(n+1)) ∨3¬p10(n+1)+6)

path el , left to right , right to left , delete, modg , lists2fml , lists2fml back as in 10.6.12.

> for i := 1 to 6 do

print(i, ": ", length(s4_path_n(i)), ", ", modaldepth(s4_path_n(i)), ", ",

vars(s4_path_n(i)));

> s4_path_n(1);

> s4_path_n(2);

10.7.13 s4 ph p

Idea: The pigeonhole formulas. We assume n < 100.
Hiding: Some 2 and 3.
Characteristics: Essentially a CPC problem. O(n2) variables, modal depth 2 (if n = 1) or 3.

s4 ph p(n) :≡ left(n)→ 3right(n)

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(3(l(i1, j) ∧ l(i2, j)))

left , l as in 10.5.13.

246 CHAPTER 10. BENCHMARKS

> for i := 1 to 6 do

print(i, ": ", length(s4_ph_p(i)), ", ", modaldepth(s4_ph_p(i)), ", ", vars(s4_ph_p(i)));

> s4_ph_p(1);

> s4_ph_p(2);

10.7.14 s4 ph n

Idea: The pigeonhole formulas, with one missing conjunct on the right hand side. We assume
n < 100.

Hiding: Some 2 and 3.

Characteristics: Essentially a CPC problem. O(n2) variables, modal depth 2 (if n = 1) or 3.

s4 ph n(n) :≡ left(n)→ 3right(n)

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(3(l2 (n, i1, j) ∧ l2 (n, i2, j)))

left , l as in 10.5.13.

l2 (n, i, j) :≡
{
¬l(i, j) i = j, i = (2n) div 3 + 1
l(i, j) otherwise

> for i := 1 to 6 do

print(i, ": ", length(s4_ph_n(i)), ", ", modaldepth(s4_ph_n(i)), ", ", vars(s4_ph_n(i)));

> s4_ph_n(1);

> s4_ph_n(2);

10.7.15 s4 s5 p

Idea: A formula that is valid in S5 embedded in S4.

Hiding: Some superfluous subformulas.

Characteristics: 3n variables, modal depth 3n.

s4 s5 p(n) :≡ 23(2
∨
i=1,...,3n−2(pi ↔ pi+1) ∨2p3n ∨ f (1, 3n− 1)) ∨2(3p1 → ¬p3n)

f (i, n) :≡
{

false i = n
3(pi ∧ ¬pi+1 ∨ ¬pi ∧ pi+1) ∨2f (i+ 1, n) otherwise

> for i := 1 to 6 do

print(i, ": ", length(s4_s5_p(i)), ", ", modaldepth(s4_s5_p(i)), ", ", vars(s4_s5_p(i)));

> s4_s5_p(1);

> s4_s5_p(2);

10.7.16 s4 s5 n

Idea: A formula that is not valid in S5 embedded in S4.

Hiding: Some superfluous subformulas.

Characteristics: 6n variables, modal depth 6− 4n.

s4 s5 n(n) :≡ 23(2p6n ∨ f (1, 6n− 5)) ∨2(3p1 → ¬p6n)

f as in 10.7.15.

> for i := 1 to 6 do

print(i, ": ", length(s4_s5_n(i)), ", ", modaldepth(s4_s5_n(i)), ", ", vars(s4_s5_n(i)));

> s4_s5_n(1);

> s4_s5_n(2);

10.7. S4 247

10.7.17 s4 t4p p

Idea, hiding: As in 10.5.17.

Characteristics: 4 variables, modal depth 2n+ 3. Partially in negation normal form.

s4 t4p p(n) :≡ E (n) ∨ nnf(¬C (2n− 1)) ∨3p4

C (i) :≡
{

(2(323p0 ∧ p0 → 2p1) ∧23p1){p0 ∧3¬p3/p1} i = 0
Dum{p1/p0} ∧2C (i− 1) otherwise

E as in 10.5.17.

> for i := 1 to 6 do

print(i, ": ", length(s4_t4p_p(i)), ", ", modaldepth(s4_t4p_p(i)), ", ",

vars(s4_t4p_p(i)));

> s4_t4p_p(1);

> s4_t4p_p(2);

10.7.18 s4 t4p n

Idea, hiding: As in 10.5.18.

Characteristics: 4 variables, modal depth 4n+ 3. Partially in negation normal form.

s4 t4p n(n) :≡ E (2n− 1) ∨ nnf(¬C (4n− 1)) ∨3p4

C (i) :≡
{

((23p0 → 3p1) ∧2(323p0 ∧ p0 → 2p1)){p0 ∧3¬p3/p1} i = 0
Dum{p1/p0} ∧2C (i− 1) otherwise

E as in 10.5.17.

> for i := 1 to 6 do

print(i, ": ", length(s4_t4p_n(i)), ", ", modaldepth(s4_t4p_n(i)), ", ",

vars(s4_t4p_n(i)));

> s4_t4p_n(1);

> s4_t4p_n(2);

248 CHAPTER 10. BENCHMARKS

10.8 LWB

Prover: LWB, version 1.0

Availability, additional facilities of the prover: See chapter 8.

Hardware: Sun SPARCstation 5, main memory: 80 MB, 1 CPU (70 MHz microSPARC II)

Timing: The timing includes the parsing of the formulas and the construction of the correspond-
ing data structure. The files loaded by the LWB have the following form:

load(k);
timestart; provable(box p0 -> box box p0); timestop;
quit;

Results:

class np,i class nn,i

k branch p 6 k branch n 7
k d4 p 8 k d4 n 6
k dum p 13 k dum n 19
k grz p 7 k grz n 13
k lin p 11 k lin n 8
k path p 12 k path n 10
k ph p 4 k ph n 8
k poly p 8 k poly n 11
k t4p p 8 k t4p n 7

class np,i class nn,i

kt 45 p 5 kt 45 n 4
kt branch p 5 kt branch n 6
kt dum p 5 kt dum n 10
kt grz p 6 kt grz n > 20
kt md p 5 kt md n 5
kt path p 10 kt path n 9
kt ph p 4 kt ph n 8
kt poly p 14 kt poly n 2
kt t4p p 5 kt t4p n 7

class np,i class nn,i

s4 45 p 3 s4 45 n 5
s4 branch p 11 s4 branch n 7
s4 grz p 9 s4 grz n > 20
s4 ipc p 8 s4 ipc n 7
s4 md p 8 s4 md n 6
s4 path p 8 s4 path n 6
s4 ph p 4 s4 ph n 8
s4 s5 p 4 s4 s5 n 9
s4 t4p p 9 s4 t4p n 12

In order to make absolutely clear how we obtained the numbers in the tables above from the run
times, we give the run times for some of the formulas in the classes k branch p and k branch n.
k branch p(6) and k branch n(7) are the last formulas that could be decided in less than 100
seconds; therefore we enter the numbers 6 and 7 in the first line of the table for K.

formula run time
(in seconds)

k branch p(1) 0.02
k branch p(2) 0.06
k branch p(3) 0.28
k branch p(4) 1.80
k branch p(5) 11.89
k branch p(6) 74.64
k branch p(7) 503.94

formula run time
(in seconds)

k branch n(1) 0.02
k branch n(2) 0.05
k branch n(3) 0.15
k branch n(4) 0.51
k branch n(5) 2.17
k branch n(6) 9.69
k branch n(7) 43.42
k branch n(8) 203.81

10.9. AVAILABILITY OF THE FORMULAS 249

10.9 AVAILABILITY OF THE FORMULAS

The first 15 formulas of each class as well as the LWB programs that generated these formulas
are available via the LWB home page http://lwbwww.unibe.ch:8080/LWBinfo.html.

For each class of the three logics K, KT, S4 there is a compressed ASCII file (inside a tar file)
that contains the first 21 formulas. The files contain a header line, a line with the word begin ,
then one formula on each line (with the corresponding number in front), and finally a line with
the word end . The formulas are written in infix notation. The connectives are & for ∧, v for ∨,
-> for →, <-> for ↔, and a tilde for ¬. No brackets are omitted in the formulas in order to make
the conversion into other formats easier.

It can happen that for some classes more than 21 formulas are needed. Then there are several
possibilities:

• Get the LWB procedures we used to generate the formulas, install the LWB, and generate
the required formulas.

• Write a procedure that generates the formulas in this class according to the definitions in
the sections 10.5, 10.6, 10.7. Please make sure that you generate the same formulas as we
do by comparing the first 21 formulas.

• Get the LWB procedures and use the LWB via WWW (choose the item run a session
on the LWB home page). You have to replace the read statements in the files with the
corresponding files for this purpose. Use set("bracketmode", "full"); to obtain all the
brackets.

10.10 SUMMARY

We have investigated the requirements for benchmark methods in the area of decision procedures
for logics. Beginning with these requirements we have developed a benchmark method for the
logics K, KT, S4. This method should be applicable to many other logics.

11

RELATIONS BETWEEN
NORMAL MODAL LOGICS

‘We can send a microphotograph in an ordi-
nary letter. You stick it on as a full stop and
they float it in the water until the dot comes
unstuck. I suppose you do write letters home
sometimes. Business letters . . . ?’
‘I send those to New York.’
‘Friends and relations?’

G. Greene. Our man in Havanna.

11.1 INTRODUCTION

In this thesis, we investigate just three propositional normal modal logics in detail, namely K,
KT, and S4. However, many others exist. Propositional normal modal logics are essentially
extensions of the logic K. We can define them via Hilbert-style calculi: We take the calculus
KH (see definition 2.2.1) and add new axioms. The Hilbert-style calculus KTH, for example, is
obtained from KH by adding a formula scheme that corresponds to the formula T as an axiom
(cp. definition 2.4.2), and the Hilbert-style calculus S4H is obtained from KH by adding a formula
schemes that correspond to the formulas T and 4 as axioms (cp. definition 2.6.2). Note that we
cannot use K + T for this purpose, since there the theory T must be finite, whereas adding an
axiom to K means that all its (i.e. in general infinitely many) instances are added.

In this chapter we investigate the relations between the ‘usual’ propositional normal modal logics.
More exactly, we compare, using the ⊆ relation, the sets of formulas that are provable in these
logics. An obvious example is {A | KH ` A} ⊆ {A | KTH ` A}.

254 CHAPTER 11. RELATIONS BETWEEN NORMAL MODAL LOGICS

11.2 THEORY

11.2.1 DEFINITION propositional normal modal logics

A propositional modal logic L is normal if the set of formulas that are provable in L can be
defined with a Hilbert-style calculus that contains the axioms and rules of KH plus finitely many
additional axioms. If A1, . . . , An are formulas, then we write KA1 . . .An

H for the Hilbert-style
calculus that consists of KH plus formula schemes that correspond to A1, . . . , An as axioms.

11.2.2 REMARK KT4H and S4H

Note that the calculus S4H is called KT4H in this chapter, and that S5H is called KT45H.

11.2.3 DEFINITION boxed instance of a formula

A boxed instance of a formula A is a formula of the form 2nA{C0/p0, . . . , Cm/pm}.

Example

Let A be the formula 2p0 → 3p1. Then 22(2p0 → 3p1){p0∨3p2/p0} ≡ 22(2(p0∨3p2)→ 3p1)
is a boxed instance of A.

11.2.4 DEFINITION provability

KA1 . . .An
H ` C iff there exist m1, . . . ,mn ∈ N such that:

• ∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : Ai,j is a boxed instance of the formula Ai

• KH `
∧
i∈{1,...,n},j∈{1,...,mi}(Ai,j)→ B

11.2.5 THEOREM equality

Let KA1 . . .An1
H and KC1 . . .Cn2

H be two Hilbert-style calculi of two propositional normal modal
logics. Then {D | KA1 . . .An1

H ` D} = {D | KC1 . . .Cn2
H ` D} if we have:

• ∀i ∈ {1, . . . , n1} : KC1 . . .Cn2
H ` Ai

• ∀i ∈ {1, . . . , n2} : KA1 . . .An1
H ` Ci

11.3 RESULTS

11.3.1 REMARK how to read the tables

In this section, a row in a table consists of a list of formulas A1, . . . , An, a formula C, and a list
of formulas A′1, . . . , A

′
m, where A′1, . . . , A

′
m are boxed instances of the formulas A1, . . . , An.

Such a row means:

• KA1 . . .An
H ` C

• KH ` A′1 ∧ . . . ∧A′m → C

11.3. RESULTS 255

Example

The row

T, 5 4 T{3¬p0/p0}, 5{2p0/p0}, 25{¬p0/p0}

means that KH ` T{3¬p0/p0}∧5{2p0/p0}∧25{¬p0/p0} → 4. Thus KT5H ` 4, and T{3¬p0/p0},
5{2p0/p0}, 25{¬p0/p0} are the required boxed instances of the formulas T and 5.

11.3.2 REMARK searching for boxed instances

Using a decision procedure for K, we can search for boxed instances in a systematic way, i.e. we
immediately obtain semi-decision procedures for all propositional normal modal logics.

Without any guidance, only the most trivial examples can be solved. A first optimisation is to
start with the decision procedure for KT and S4 whenever possible. Consider for example the
case where we wanted to prove that KT4RH ` Dum. We first used the decision procedure for S4
in order to find the required boxed instances of R. Only afterwards did we look for the instances
of T and 4. In fact, these instances can be easily computed (cp. theorem 7.4.3).

We soon observed that in many cases it is sufficient to consider just the boxed instances with no
or just one 2 in front. Often it is also sufficient to substitute the variables only by subformulas
of the formula we want to prove. Unfortunately, there are counterexamples, for example already
in the simple case KWH ` 4.

Assume for example that we consider a case where only subformulas of the formula we want to
prove are required to build the boxed instances and where at most two 2 are required. Then in
theory, a fully automatic search with a program in the LWB programming language would be
possible. However, sometimes a lot of time is used to decide whether a certain formula is provable
in a logic L even if ‘similar’ formulas were easy, i.e. the automatic search gets stuck. To overcome
this problem, the program would have to stop the proof search for a formula after a while and to
continue with the next one. This is not possible with the LWB 1.0, but is part of a forthcoming
version.

Many of the boxed instances given in the tables in this section have been found during a search
with the LWB. However, this has only been possible because of the help of the human modal logic
experts Rajeev Goré and Wolfgang Heinle, who made suggestions on what the boxed instances
could look like.

Example

We try to prove KT5H ` 4. First we work in KT and try to find the boxed instances of the
formula 5. To build those boxed instances, we use a list of the most simple formulas with one
variable and assume that one 2 is sufficient. (Note that in KT, the formula 2A→ C is valid iff
the formula A ∧2A→ C is valid.) We find a solution if we take two boxed instances.

> load(kt);

> A4 :== box p0 -> box box p0;

A5 :== dia p0 -> box dia p0;

> l :== [p0, ~p0, box p0, box ~p0, dia p0, dia ~p0];

> foreach x1 in l do

if provable(box A5{x1/p0} -> A4) then print(x1);

> foreach x1 in l do

foreach x2 in l do

if kt::provable(box A5{x1/p0} & box A5{x2/p0} -> A4)

then print(x1, ", ", x2);

256 CHAPTER 11. RELATIONS BETWEEN NORMAL MODAL LOGICS

We check whether the 2 are necessary and find that we can omit one of them.

> kt::provable(A5{~p0/p0} & A5{box p0/p0} -> A4);

> kt::provable(A5{~p0/p0} & box A5{box p0/p0} -> A4);

> kt::provable(box A5{~p0/p0} & A5{box p0/p0} -> A4);

Now we still have to find the instances of T. We make use of theorem 7.4.3. The 3 formulas in
nnf(5{¬p0/p0}∧25{¬p0/p0}∧A5{2p0/p0} → 4) are {3¬p0,32p0,3(3¬p0∧32p0),323¬p0}.
Therefore it is sufficient to consider the instances T, T{3¬p0/p0}, T{2p0 ∨ 23¬p0/p0}, and
T{32p0/p0}. We first use theories to find a minimal set of these instances and then check how
many 2 are needed.

Two remarks: In practice, it is often better not to work with theories, but to assume that at
most one or two 2 are needed, because it is easier to decide the validity of these formulas. And of
course trial and error would be a more efficient solution in this simple case, but look for example
at the formulas in theorem 11.3.9 . . .

Note that we have to use both 25{¬p0/p0} and 5{¬p0/p0}, since A∧2A→ C and 2A→ C are
not equivalent in K.

> load(k);

> T :== box p0 -> p0;

> l :== [T, T{dia ~p0/p0}, T{box p0 v box dia ~p0/p0}, T{dia box p0/p0}];

> k::provable(A5{~p0/p0} & box A5{~p0/p0} & A5{box p0/p0} -> A4, [l[1]]);

> k::provable(A5{~p0/p0} & box A5{~p0/p0} & A5{box p0/p0} -> A4, [l[1],l[2]]);

> k::provable(A5{~p0/p0} & box A5{~p0/p0} & A5{box p0/p0} -> A4, [l[2]]);

> k::provable(l[2] & box l[2] & A5{~p0/p0} & box A5{~p0/p0} & A5{box p0/p0} -> A4);

Finally we check whether we need both 5{¬p0/p0} and 25{¬p0/p0} or whether 25{¬p0/p0} is
sufficient, and analogously for T{3¬p0/p0}.

> k::provable(T{dia ~p0/p0} & A5{~p0/p0} & box A5{~p0/p0} & A5{box p0/p0} -> A4);

> k::provable(T{dia ~p0/p0} & box A5{~p0/p0} & A5{box p0/p0} -> A4);

Thus we end up with the boxed instances shown in theorem 11.3.4. Of course the search is not
always so simple, especially if the formulas are longer or contain two variables.

11.3.3 REMARK checking the results

Probably most of the results in the tables below can be found somewhere in the literature.
However, this literature is sometimes almost inaccessible (for example [Seg71]) or uses a nowadays
unusual notation (see for example [Sob64], [Sob70]). In addition, it is rather difficult to check
these results, since a variety of methods has been used to prove them.

The tables below do not only summarise the most important relations. Thanks to the boxed
instances in the third column, we can check each result by deciding the validity of a formula
in K. This can be done using a theorem prover, but it is also possible to do it by hand, using
for example backward proof search in KS,2 (although it can be annoying in some of the more
complicated cases). No additional knowledge (for example about semantics, algebra, . . .) is
required.

11.3.4 THEOREM relations concerning D,T, 4, 5,B

11.3. RESULTS 257

KA1 . . .Ak ` B
A1, . . . , Ak B

D D2 D
D2 D D2

4 4M 4
4M 4 4M{¬2p0/p1}
5 5M 5

5M 5 5M{¬3p0/p1}
B BM B

BM B BM{¬3p0/p1}
T D T{false/p0}

T, 5 4 T{3¬p0/p0}, 5{2p0/p0}, 25{¬p0/p0}
T, 5 B T{¬p0/p0}, 5
4, B 5 24{¬p0/p0}, B{3p0/p0}
5, B 4 25{¬p0/p0}, B{2p0/p0}

D, 4, B T D, 4, B{¬p0/p0}

See for example [Che80] for a complete diagram of the logics that are obtained by adding combi-
nations of T, D, 4, 5, B as axioms to K.

11.3.5 THEOREM relations concerning G,L,H

KA1 . . .Ak ` B
A1, . . . , Ak B

G G0 G{p1/p0}
D,G0 G 2D, G0{2p0/p0, p0/p1}

L H L
H L H{p0 ∧2p0 → p1/p0, p1 ∧2p1 → p0/p1}
L+ H+ L+

H+ L+ H+{2p0 → p1/p0,2p1 → p0/p1}
L+ L L+

T,L L+ 2T, 2T{p1/p0}, L
T,L++ L+ 2T, 2T{p1/p0}, L++

4,L L++ 4{p0 ∧2p0 → p1/p0}, 4{p1 ∧2p1 → p0/p0}, 24, 24{p1/p0}, L
5 L++ 5{2p0/p0}, 25{¬p0/p0}

D,L++ G 2D{¬p0/p0}, L++{¬p0/p1}
5 G 5, 5{¬p/p0}

11.3.6 THEOREM relations concerning M

258 CHAPTER 11. RELATIONS BETWEEN NORMAL MODAL LOGICS

KA1 . . .Ak ` B
A1, . . . , Ak B

T, 4,M M2 T{M/p0}, 24, 2M
T, 4,M2 M T{M2/p0}, 4{3¬p0/p0}, M2

4,M M3 4{3p1 ∧ (¬p0 ∨ ¬p1)/p0}, M
M3 M M3{¬p0/p1}
M D M

4,M Pt 4{(p0 ∨3p0) ∧ (¬p0 ∨3¬p0)/p0},
24{p0 ∧3¬p0/p0},
24{¬p0 ∧3p0/p0},
M

Pt M Pt

Variants of M have been investigated in [Sob64]. Pt was introduced in [Hei95].

11.3.7 THEOREM relations concerning W

KA1 . . .Ak ` B
A1, . . . , Ak B

W 4 W{p0 ∧2p0/p0}
W W0 W{false/p0}
W Z W

W0,Z W W0, Z
W Grz1 W{p0 ∧2(2p0 → p0)/p0},22W
4,Z Dum1 24,Z

11.3.8 THEOREM miscellaneous relations

KA1 . . .Ak ` B
A1, . . . , Ak B

R L+ R{2p0 → p1/p0}
T,R Zem T{32p0/p0}, R

T, 4,L+,Zem R 22T{4/p0}, 22T{¬(232p0 ∧2p0)/p0}, 24,
L+{32p0/p0,¬2p0/p1}, Zem

T, 4,P M T{3p0/p0}, 2T{¬23p0/p0}, 4{3p0/p0}, 2P
T,P R 22T{¬p0/p0}, P

4,M,R P 4{¬2p0/p0}, 2M, R
T,P Hs 222T, P, 2P{¬p0/p0}

T, 4,R Dum T{2(p0 → 2p0)→ p0/p0}, 24{p0 ∧ (2(p0 → 2p0)→ p0)/p0},
R{p0 → 2p0/p0}

Most of these relations were already proved in [Sob70].

11.4. LWB SESSION 259

11.3.9 THEOREM relations concerning Dum,Grz

Figure 11.a contains the instances concerning the formulas Dum,Grz and their variants. A few
results concerning the equivalence of variants of Grz and Dum can be found in [Sob70]. In [Seg71]
it is proved, using semantic means, that our variants of Dum are “deductively equivalent”.

Note that about 20 years ago, the result KGrzH ` 4 (near the bottom of the table) was still worth
a paper (see [vB87]).

11.3.10 REMARK a missing row

In an exercise in [Che80] it is stated that KL+H ` G. We have not been able to find instances of
L+ in order to prove this relationship.

11.3.11 REMARK diagrams, formula names

See [GHH97] for diagrams that summarise the relationships listed in the tables below. There
you can also find a table that helps to translate our formula names into other names used in the
literature.

11.4 LWB SESSION

The following LWB session corresponds to the tables given in the previous section.

> load(k);

> D :== box p0 -> dia p0;

D2 :== dia true;

T :== box p0 -> p0;

A4 :== box p0 -> box box p0;

A4m :== box p0 & dia p1 -> dia(box p0 & p1);

A5 :== dia p0 -> box dia p0;

A5m :== dia p0 & dia p1 -> dia(dia p0 & p1);

B :== p0 -> box dia p0;

Bm :== p0 & dia p1 -> dia(dia p0 & p1);

> G :== dia box p0 -> box dia p0;

G0 :== dia(p0 & box p1) -> box(p0 v dia p1);

H :== box(p0 v p1) & box(box p0 v p1) & box(p0 v box p1) -> box p0 v box p1;

Hp :== box(box p0 v p1) & box(p0 v box p1) -> box p0 v box p1;

L :== box(p0 & box p0 -> p1) v box(p1 & box p1 -> p0);

Lp :== box(box p0 -> p1) v box(box p1 -> p0);

Lpp :== box(box p0 -> box p1) v box(box p1 -> box p0);

> M :== box dia p0 -> dia box p0;

Pt :== box(p0 v dia p0) -> dia(p0 & box p0);

> W :== box(box p0 -> p0) -> box p0;

W0 :== box dia true -> box false;

Z :== box(box p0 -> p0) -> (dia box p0 -> box p0);

> Dum :== box(box(p0 -> box p0) -> p0) -> (dia box p0 -> p0);

Dum1 :== box(box(p0 -> box p0) -> p0) -> (dia box p0 -> box p0);

Grz :== box(box(p0 -> box p0) -> p0) -> p0;

Grz1 :== box(box(p0 -> box p0) -> p0) -> box p0;

> F :== (dia box p0 -> p1) v box(box p1 -> p0);

260 CHAPTER 11. RELATIONS BETWEEN NORMAL MODAL LOGICS

KA1 . . .Ak ` B
A1, . . . , Ak B

4,Dum Dum1 4{2(p0 → 2p0)→ p0/p0}, 24, Dum, Dum{p0 → 2p0/p0}
T,Dum1 Dum T, Dum1

T,Dum Dum2 2T, Dum
T,Dum2 Dum T, 2T{p0 → 2p0/p0}, Dum2

T, 4,Dum Dum3 2T, 4{2(p0 → 2p0)→ p0/p0}, 24, Dum, Dum{p0 → 2p0/p0}
T,Dum3 Dum T, 2T{p0 → 2p0/p0}, Dum3

Dum Dum4 Dum
T,Dum4 Dum T, Dum4

Grz Grz1 Grz{(2(p0 → 2p0)→ p0) ∧ 4{2(p0 → 2p0)→ p0/p0}/p0}, 2Grz
T,Grz1 Grz T, T{Grz1/p0}, 2Grz1

Grz Grz2 Grz, 2Grz
T,Grz2 Grz 2T{p0 → 2p0/p0}, T{¬2(2(p0 → 2p0)→ p0)/p0}, Grz2

Grz Grz3 Grz{(2(p0 → 2p0)→ 2p0) ∧Grz
∧ 4{(2(p0 → 2p0)→ 2p0) ∧Grz/p0}/p0},

2Grz
T,Grz3 Grz T, 2T{p0 → 2p0/p0}, Grz3

Grz Grz4 Grz, Grz{(2(p0 → 2p0)→ p0) ∧ 4{2(p0 → 2p0)→ p0/p0}/p0}
T,Grz4 Grz T, Grz4

Grz Grz5 Grz{(2(p0 → 2p1)→ 2p1) ∧ 4{2(p0 → 2p1)→ 2p1/p0}/p0},
Grz{(2((p0 → 2p1)→ 2(p0 → 2p1))→ (p0 → 2p1))
∧ 4{2((p0 → 2p1)→ 2(p0 → 2p1))→ (p0 → 2p1)/p0}/p0},

2Grz{p0 → 2p1/p0}
T, 4,Grz5 Grz T{2(p0 → 2p0)→ p0/p0}, 22T{p0 → 2p0/p0},

4{2(p0 → 2p0)→ p0/p0}, 24,
Grz5{p0 → 2p0/p1}

Grz T Grz
Grz 4 Grz{p0 ∧ 4/p0}
Grz M Grz{3¬p0/p0}, Grz{3¬p0 ∧ 4{3¬p0/p0}/p0},

Grz{¬2(p0 → 2p0) ∧ 4{¬2(p0 → 2p0)/p0}/p0},
2Grz

Grz Dum Grz
Grz1 Dum1 Grz1

T,M,Dum Grz 2T{¬p0/p0}, M, Dum

Figure 11.a: The instances from theorem 11.3.9.

11.4. LWB SESSION 261

Hs :== p0 -> box(dia p0 -> p0);

P :== dia box dia p0 -> (p0 -> box p0);

R :== dia box p0 -> (p0 -> box p0);

X :== box box p0 -> box p0;

Zem :== box dia box p0 -> (p0 -> box p0);

> M2 :== dia box(p0 -> box p0);

M3 :== box dia p0 & box dia p1 -> dia(p0 & p1);

> Dum2 :== box(box(p0 -> box p0) -> box p0) -> (dia box p0 -> p0);

Dum3 :== box(box(p0 -> box p0) -> box p0) -> (dia box p0 -> box p0);

Dum4 :== box(box(p0 -> box p0) -> p0) -> (dia box p0 -> p0 v box p0);

> Grz2 :== box(box(p0 -> box p0) -> box p0) -> p0;

Grz3 :== box(box(p0 -> box p0) -> box p0) -> box p0;

Grz4 :== box(box(p0 -> box p0) -> p0) -> p0 v box p0;

Grz5 :== box(box(p0 -> box p1) -> box p1) & box(box(~p0 -> box p1) -> box p1)

-> box p1;

Relations concerning D, T, 4, 5, B:

> k::provable(D -> D2);

> k::provable(D2 -> D);

> k::provable(A4 -> A4m);

> k::provable(A4m{~ box p0/p1} -> A4);

> k::provable(A5 -> A5m);

> k::provable(A5m{~ dia p0/p1} -> A5);

> k::provable(B -> Bm);

> k::provable(Bm{~ dia p0/p1} -> B);

> k::provable(T{false/p0} -> D);

> k::provable(T{dia ~p0/p0} & A5{box p0/p0} & box A5{~p0/p0} -> A4);

> k::provable(T{~p0/p0} & A5 -> B);

> k::provable(box A4{~p0/p0} & B{dia p0/p0} -> A5);

> k::provable(box A5{~p0/p0} & B{box p0/p0} -> A4);

> k::provable(D & A4 & B{~p0/p0} -> T);

Relations concerning G, G0, H, H+ L, L+, L++:

> k::provable(G{p1/p0} -> G0);

> k::provable(box D & G0{box p0/p0, p0/p1} -> G);

> k::provable(L -> H);

> k::provable(H{p0 & box p0 -> p1/p0, p1 & box p1 -> p0/p1} -> L);

> k::provable(Lp -> Hp);

> k::provable(Hp{box p0 -> p1/p0, box p1 -> p0/p1} -> Lp);

> k::provable(Lp -> L);

> k::provable(box T & box T{p1/p0} & L -> Lp);

> k::provable(box T & box T{p1/p0} & Lpp -> Lp);

> k::provable(A4{p0 & box p0 -> p1/p0} & A4{p1 & box p1 -> p0/p0}

& box A4 & box A4{p1/p0}

& L -> Lpp);

> k::provable(A5{box p0/p0} & box A5{~p0/p0} -> Lpp);

> k::provable(box D{~p0/p0} & Lpp{~p0/p1} -> G);

> k::provable(A5 & A5{~p0/p0} -> G);

Relations concerning M, Pt:

> k::provable(T{M/p0} & box A4 & box M -> M2);

262 CHAPTER 11. RELATIONS BETWEEN NORMAL MODAL LOGICS

> k::provable(T{M2/p0} & A4{dia ~p0/p0} & M2 -> M);

> k::provable(A4{dia p1 & (~p0 v ~p1)/p0} & M -> M3);

> k::provable(M3{~p0/p1} -> M);

> k::provable(M -> D);

> k::provable(A4{ (p0 v dia p0) & (~p0 v dia ~p0)/p0}

& box A4{ p0 & (p0 v dia p0) & (~p0 v dia ~p0)/p0}

& box A4{~p0 & (p0 v dia p0) & (~p0 v dia ~p0)/p0}

& M

-> Pt);

> k::provable(Pt -> M);

Relations concerning W, W0, Z:

> k::provable(W{p0 & box p0/p0} -> A4);

> k::provable(W{false/p0} -> W0);

> k::provable(W -> Z);

> k::provable(W0 & Z -> W);

> k::provable(W{p0 & box(box p0 -> p0)/p0} & box box W -> Grz1);

> k::provable(box A4 & Z -> Dum1);

Miscellaneous relations:

> k::provable(R{box p0 -> p1/p0} -> Lp);

> k::provable(T{dia box p0/p0} & R -> Zem);

> k::provable(box box T{A4/p0}

& box box T{~(box dia box p0 & box p0)/p0}

& box A4

& Lp{dia box p0/p0, ~ box p0/p1} & Zem

-> R);

> k::provable(T{dia p0/p0} & box T{~ box dia p0/p0}

& A4{dia p0/p0}

& box P -> M);

> k::provable(box box T{~p0/p0} & P -> R);

> k::provable(A4{~ box p0/p0} & box M & R -> P);

> k::provable(box box box T & P & box P{~p0/p0} -> Hs);

> k::provable(T{box(p0 -> box p0) -> p0/p0}

& box A4{p0 & (box(p0 -> box p0) -> p0)/p0}

& R{p0 -> box p0/p0}

-> Dum);

Relations concerning Dum, Grz:

> k::provable(A4{box(p0 -> box p0) -> p0/p0} & box A4

& Dum & Dum{p0 -> box p0/p0}

-> Dum1);

> k::provable(T & Dum1 -> Dum);

> k::provable(box T & Dum -> Dum2);

> k::provable(T & box T{p0 -> box p0/p0} & Dum2 -> Dum);

> k::provable(box T

& A4{box(p0 -> box p0) -> p0/p0} & box A4

& Dum & Dum{p0 -> box p0/p0}

-> Dum3);

> k::provable(T & box T{p0 -> box p0/p0} & Dum3 -> Dum);

> k::provable(Dum -> Dum4);

11.5. SUMMARY 263

> k::provable(T & Dum4 -> Dum);

> k::provable(Grz{(box(p0 -> box p0) -> p0) & A4{box(p0 -> box p0) -> p0/p0}/p0}

& box Grz

-> Grz1);

> k::provable(T & T{Grz1/p0} & box Grz1 -> Grz);

> k::provable(Grz & box Grz -> Grz2);

> k::provable(box T{p0 -> box p0/p0}

& T{~ box(box(p0 -> box p0) -> p0)/p0}

& Grz2

-> Grz);

> k::provable(Grz{(box(p0 -> box p0) -> box p0) & Grz

& A4{(box(p0 -> box p0) -> box p0) & Grz/p0}/p0}

& box Grz

-> Grz3);

> k::provable(T & box T{p0 -> box p0/p0} & Grz3 -> Grz);

> k::provable(

Grz

& Grz{(box(p0 -> box p0) -> p0) & A4{box(p0 -> box p0) -> p0/p0}/p0}

-> Grz4);

> k::provable(T & Grz4 -> Grz);

> k::provable(

Grz{(box(p0 -> box p1) -> box p1)

& A4{box(p0 -> box p1) -> box p1/p0}/p0}

& Grz{(box((p0 -> box p1) -> box(p0 -> box p1)) -> (p0 -> box p1))

& A4{box((p0 -> box p1) -> box(p0 -> box p1)) -> (p0 -> box p1)/p0}/p0}

& box Grz{ p0 -> box p1/p0}

-> Grz5);

> k::provable(T{box(p0 -> box p0) -> p0/p0}

& box box T{p0 -> box p0/p0}

& A4{box(p0 -> box p0) -> p0/p0} & box A4

& Grz5{p0 -> box p0/p1} -> Grz);

> k::provable(Grz -> T);

> k::provable(Grz{p0 & A4/p0} -> A4);

> k::provable(Grz{dia ~p0/p0}

& Grz{dia ~p0 & A4{dia ~p0/p0}/p0}

& Grz{~ box(p0 -> box p0) & A4{~ box(p0 -> box p0)/p0}/p0}

& box Grz

-> M);

> k::provable(Grz -> Dum);

> k::provable(Grz1 -> Dum1);

> k::provable(box T{~p0/p0} & M & Dum -> Grz);

11.5 SUMMARY

We have shown that it is possible, with the help of the LWB, to prove the most important relations
between normal modal logics. The results can be presented in a uniform way, which makes it
easy to check them.

12

COUNTING FORMULAS

‘I am great headman, Ghân-buri-Ghân. I
count many things: stars in sky, leaves on
trees, men in the dark. You have a score of
scores counted ten times and five. They have
more!’

J.R.R. Tolkien. The Lord of the Rings.

12.1 INTRODUCTION

In all the logics we consider in this thesis, there are infinitely many formulas. Even if we divide the
set of formulas into classes of equivalent formulas, we still have an infinite number of equivalence
classes.

In this chapter we investigate fragments of the logics. Instead of all formulas we only have
formulas that can be built from a set of atoms and a set of connectives. If we take a finite set of
variables as atoms, then the number of equivalence classes in CPC is finite. The situation is more
complicated in the case of modal logics.

12.2 THEORY

12.2.1 DEFINITION fragment

A fragment F is a triple 〈L, atoms, connectives〉, where:

• L ∈ {K,KT,S4}.
• atoms is a finite subset of non-equivalent elements of FmlL

(i.e. atoms ⊆ FmlL and ∀A,B ∈ atoms : L 6|=A↔ B).

• connectives is a set of unary and binary connectives of the logic L.

266 CHAPTER 12. COUNTING FORMULAS

Example

〈K, {p,3q}, {2,→}〉 is a fragment.

12.2.2 DEFINITION formulas of a fragment

The set FmlF of formulas of a fragment F = 〈L, atoms, connectives〉 is defined inductively:

• A ∈ atoms ⇒ A ∈ FmlF
• ? ∈ connectives, ? unary, A ∈ FmlF ⇒ ?A ∈ FmlF
• ◦ ∈ connectives, ◦ binary, A ∈ FmlF , B ∈ FmlF ⇒ A ◦B ∈ FmlF

Example

If F = 〈K, {p, q}, {2,→}〉, then:
FmlF = {p, q,

2p,2q, p→ p, p→ q, q → p, q → q,

22p, . . . , (q → p)→ 2q, . . .}

12.2.3 DEFINITION maximal set of non-equivalent formulas

A set S is a maximal set of non-equivalent formulas of a fragment F if:

• S ⊆ FmlF
• A,B ∈ S ⇒ L 6|=A↔ B

• A ∈ FmlF ⇒ ∃B ∈ S : L |= A↔ B

Example

The following two sets are maximal sets of non-equivalent formulas of 〈S4, {p, q}, {∧,∨}〉:

• {p, q, p ∧ q, p ∨ q}
• {p, q ∧ q, q ∧ p, q ∨ q ∨ p}

12.2.4 THEOREM size of finite maximal . . .

If S1 and S2 are finite maximal set of non-equivalent formulas of a fragment, then card(S1) =
card(S2).

Proof
The theorem is a consequence of the ‘transitivity’ of ↔, i.e. the fact that L |= A ↔ B and
L |= B ↔ C imply L |= A↔ C for L ∈ {K,KT,S4}.

12.2.5 REMARK compute maximal . . .

At the moment it is not clear how to compute a maximal set of non-equivalent formulas for a
given fragment. Of course we can start with the atoms, and then construct new formulas with
the help of the connectives in the fragment, but it is not clear when we can stop, i.e. whether or
not the set constructed so far is maximal. Theorem 12.2.8 shows how we can decide this question.
We start with two auxiliary definitions.

12.2.6 DEFINITION depthF

For all fragments F = 〈L, atoms, connectives〉 we define inductively the function depthF : FmlF →
N.

12.3. ALGORITHM 267

• A ∈ atoms ⇒ depthF (A) = 0

• ? ∈ connectives, ? unary, A ∈ FmlF , ?A /∈ atoms ⇒ depthF (?A) = 1 + depthF (A)

• ◦ ∈ connectives, ◦ unary, A ∈ FmlF , B ∈ FmlF , A ◦ B /∈ atoms ⇒ depthF (A ◦ B) =
1 + max(depthF (A),depthF (B))

Example

If F = 〈K, {p, q,2p,2q}, {3,∧,∨}〉, then:

depthF (q ∧3(p ∨2q)) = 1 + max(depthF (q),depthF (3(p ∨2q)))
= 1 + max(0,depthF (3(p ∨2q)))
= 1 + max(0, 1 + depthF (p ∨2q))
= 1 + max(0, 1 + 1 + max(depthF (p),depthF (2q)))
= 1 + max(0, 1 + 1 + max(0, 0))
= 3

12.2.7 DEFINITION A ∈L|= S

If L ∈ {K,KT,S4}, and S ⊆ FmlF , then:

A ∈L|= S :⇔ ∃B ∈ S : L |= A↔ B

12.2.8 THEOREM characterisation of maximal . . .

Let S be a finite set of non-equivalent formulas of a fragment F = 〈L, atoms, connectives〉.
If

• atoms ⊆ S
• ∀ ? ∈ connectives : ∀A ∈ S : (? unary⇒ ?A ∈L|= S)

• ∀ ◦ ∈ connectives : ∀A,B ∈ S : (◦ binary⇒ A ◦B ∈L|= S)

then S is maximal.

Proof

Assume that S is not maximal, i.e. that there is a formula C such that C /∈L|= S. Then there is
a D ∈ FmlF such that D /∈L|= S and ∀E ∈ FmlF : E /∈L|= S ⇒ depthF (D) ≤ depthF (E).

D can have three forms:

• D ∈ atoms: Then D ∈ S. Contradiction.

• D ≡ ?D1, D /∈ atoms: Then D1 /∈L|= S, and depthF (D1) < depthF (D). Contradiction.

• D ≡ D1 ◦D2, D /∈ atoms: Then D1 /∈L|= S, and depthF (D1) < depthF (D). Contradiction.

12.3 ALGORITHM

Theorem 12.2.8 shows a way to compute a maximal set of non-equivalent formulas of a fragment,
provided that these sets are finite.

268 CHAPTER 12. COUNTING FORMULAS

In a first attempt we obtain the following algorithm:

all fmls := atoms
do

tmp := {?A | A ∈ all fmls, ? ∈ connectives, ? unary}
∪ {A ◦B | A,B ∈ all fmls, ◦ ∈ connectives, ◦ binary}

new fmls := ∅
foreach A ∈ tmp do

if A /∈L|= all fmls and A /∈L|= new fmls
then new fmls := new fmls ∪ {A}

all fmls := all fmls ∪ new fmls
until new fmls = ∅

In this algorithm tmp is too large, since after the first loop it contains formulas we generated
already in the previous loop. We improve the algorithm by introducing another set last fmls that
contains the formulas that were generated in the previous loop.

all fmls := atoms
last fmls := ∅
do

tmp := {?A | A ∈ last fmls, ? ∈ connectives, ? unary}
∪ {A ◦B | A ∈ all fmls, B ∈ last fmls, ◦ ∈ connectives, ◦ binary}
∪ {A ◦B | A ∈ last fmls, B ∈ all fmls, ◦ ∈ connectives, ◦ binary}

new fmls := ∅
foreach A ∈ tmp do

if A /∈L|= all fmls and A /∈L|= new fmls
then new fmls := new fmls ∪ {A}

all fmls := all fmls ∪ new fmls
last fmls := new fmls

until new fmls = ∅

As a further improvement we can make use of the commutativity of binary connectives.

12.4 IMPLEMENTATION

Compared with the algorithm in the previous section 12.3, there are three differences:

• We use lists instead of sets.

• We do not first construct a list tmp, but check immediately whether we have to insert it in
new fmls for each constructed formula.

• The search for new formulas stops if limit formulas have been found. This makes it
possible to investigate the ‘beginning’ of infinite maximal sets of non-equivalent formulas
of a fragment.

> proc : fmls(atoms, connectives, limit)

#

local new_fmls, last_fmls;

local total, x;

12.4. IMPLEMENTATION 269

#

##############################

#

Check whether fml is equivalent to a formula we have constructed before.

If not, insert fml into new_fmls .

#

proc insert(fml)

local x;

begin

foreach x in all_fmls do if provable(x <-> fml) then return;

foreach x in new_fmls do if provable(x <-> fml) then return;

append(new_fmls, fml);

inc(total);

print(total);

if (total >= limit)

then begin

all_fmls := concat(all_fmls, new_fmls);

raiseerror("limit");

end;

end;

#

##############################

#

The main procedure. Constructs the formula and checks with insert whether

they are ‘new’.

#

proc search()

local l, n, x, y;

begin

n := nops(atoms);

while n > 0 do begin

print(" while");

foreach x in last_fmls do begin

foreach c in connectives do begin

if (c = NOT) then insert(~x);

if (c = BOX) then insert(box x);

if (c = DIA) then insert(dia x);

end;

foreach y in all_fmls do begin

foreach c in connectives do begin

if (c = AND) then insert(x & y);

else if (c = OR) then insert(x v y);

else if (c = IMP) then begin insert(x -> y); insert(y -> x); end;

else if (c = EQ) then insert(x <-> y);

end;

end;

end;

n := nops(new_fmls);

all_fmls := concat(all_fmls, new_fmls);

last_fmls := new_fmls;

new_fmls := [];

270 CHAPTER 12. COUNTING FORMULAS

end;

end;

#

##############################

#

begin

total := 0;

new_fmls := []; all_fmls := [];

foreach x in atoms do insert(x);

all_fmls := new_fmls; last_fmls := new_fmls; new_fmls := [];

catcherror(search());

return(all_fmls);

end;

12.5 RUNS

Modalities are formulas that consist of a sequence of 2 and 3 followed by p or ¬p. We compute
the number of modalities in S4.

> load(s4);

> timestart; l := sort(fmls([p,~p], [BOX,DIA], 100)); timestop;

Thus there are 14 non-equivalent modalities in S4 (cp. for example [Che80]).
In the case of KT, there are infinitely many non-equivalent modalities; in fact no two modalities
are equivalent (see [Bel89]). We compute the first 15 non-equivalent modalities.

> load(kt);

> timestart; l := sort(fmls([p], [BOX,DIA], 15)); timestop;

In K, there are also infinitely many non-equivalent modalities. We compute the first 20 non-
equivalent modalities.

> load(k);

> timestart; l := sort(fmls([p,~p], [BOX,DIA], 20)); timestop;

12.6 OTHER LOGICS

12.6.1 THEOREM 〈S5, {p0, . . . , pn}, {2,3,¬,∧,∨}〉

The fragment 〈S5, {p0, . . . , pn}, {2,3,¬,∧,∨}〉 is finite for all n.

12.6.2 THEOREM 〈CPC, {p0, . . . , pn}, {¬,∧,∨}〉

There are 22n equivalence classes in the fragment 〈CPC, {p0, . . . , pn}, {¬,∧,∨}〉.

12.6.3 THEOREM 〈CPC, {p0, . . . , pn}, {→}〉

There are
∑n

k=1((−1)k−1
(
n
k

)
22n−k) equivalence classes in the fragment 〈CPC, {p0, . . . , pn}, {→}〉.

Proof

12.7. SUMMARY 271

See [Dar93].

12.6.4 THEOREM some fragments of IPC

The number of equivalence classes in fragments of IPC has been thoroughly investigated in [Hen96]
and [dJHdL91].

Here we simply give an extract of the tables in [Hen96] and [dJHdL91]. The entry ‘large’ means
that the entry is a natural number, but greater than 107. We have been able to compute all
numbers given below except 518 and 2134 with the LWB using the brute-force approach presented
in this chapter.

connectives {p0} {p0, p1} {p0, p1, p2}
{∧} 1 3 7
{∨} 1 3 7
{∧,∨} 1 4 18
{→} 2 14 large
{∧,→} 2 18 large
{∨,→} 2 ∞ ∞
{∧,∨,→} 2 ∞ ∞
{¬} 3 6 9
{∧,¬} 5 23 311
{∨,¬} 7 385 large
{∧,∨,¬} 7 626 large
{→,¬} 6 518 large
{∧,→,¬} 6 2134 large
{∨,→,¬} ∞ ∞ ∞
{∧,∨,→,¬} ∞ ∞ ∞

12.7 SUMMARY

We have shown how decision procedures for K, KT, S4 can be used to count the number of
equivalence classes in fragments of these logics. The same brute-force method will be used in the
following two chapters.

13

OPTIMAL SIMPLIFICATION

“I quite agree with you,” said the Duchess;
“and the moral of that is — ‘Be what you seem
to be’ — or if you’d like it put more simply
— ‘Never imagine yourself not to be otherwise
than what it might appear to others that what
you were or might have been was not otherwise
than what you had been would have appeared
to them to be otherwise.’ ”

L. Carroll. Alice’s Adventures in Wonderland.

13.1 INTRODUCTION

Assume that for a given fragment we want to compute the shortest formula A that satisfies a
certain property X.

The simplest algorithm is to enumerate all formulas (of this fragment) with length 1. If one of
these formulas satisfies the property X, then we stop. Otherwise we enumerate all formulas with
length 2, then those with length 3, and so on, until we find a solution.

Because of the huge number of formulas in most interesting fragments, this procedure is only
feasible if a very short solution exists. Consider for example the number of formulas in the
fragment 〈S4, {true, false, p0}, {2,3,¬,∧,∨,→,↔}〉 with length n. We define #n := card({A |
A ∈ 〈S4, {true, false, p0}, {2,3,¬,∧,∨,→,↔}〉, length(A) = n}).

These numbers can be recursively defined as follows:

• #1 := card({true, false, p0}), i.e. #1 = 3.

• #2 := card({2true,3true,¬true,2false,3false,¬false,2p0,3p0,¬p0}), i.e. #2 = 9.

• #n+2 := 3 ·#n+1 +
∑n

i=1(4 ·#i ·#(n+1)−i).

We obtain the following values:

274 CHAPTER 13. OPTIMAL SIMPLIFICATION

n #n

1 3
2 9
3 63
4 405
5 3051
6 23409
7 188487
8 1551069
9 13056147

10 111648537

Of course these numbers are smaller if we consider less connectives and only p0 as an atom, but
the problem remains the same. Moreover, we would no longer find the shortest solution.

Assume that we investigate the fragment 〈L, V,C〉. If the property X satisfies the condition

X(A) and L |= A↔ B ⇒ X(B)

then there is a much more efficient way to compute a solution: We do not enumerate all the
formulas, but only the non-equivalent ones (cp. chapter 12).
The following table shows that we obtain much smaller numbers than above. The numbers in the
table are for the fragment 〈S4, {true, false, p0}, {2,3,¬,∧,∨,→,↔}〉, but here only the first few
numbers would change if we omitted the atoms true and false and the connectives 3, ∨, →, ↔.

n

1 3
2 3
3 4
4 8
5 29
6 66
7 84
8 204
9 509

10 898

An important property X that satisfies the condition is

X(A) :⇔ L |= A↔ C

for L ∈ {K,KT,S4} and a given constant formula C in FmlL.
Using this property, we can implement a — relative to length — optimal simplification of a
formula A. Of course this is only possible for short formulas with few variables, in contrast to
the simplification described in chapter 8.

13.2 THEORY

The underlying theory is almost the same as in chapter 12. We just have to replace the function
depthF by an analogous function lengthF .

13.3. ALGORITHM 275

13.3 ALGORITHM

The basic idea is the same as in chapter 12: We start with the given variables, and then construct
larger formulas from the already constructed formulas and the given connectives. Those formulas
that are equivalent to a formula constructed earlier are eliminated.

In chapter 12, we use the fact that a formula A ◦ B has depth n > 0 iff one of A, B has depth
n− 1. Thus it was sufficient to maintain just two lists of formulas during the construction. Here
we have to maintain a list of formulas for each length, since we have lengthF (A ◦ B) = n iff
lengthF (A) + lengthF (B) = n − 1 (if n > 2 and A ◦ B is not an atom of the fragment). Unary
connectives cause no problems: lengthF (?A) = n iff lengthF (A) = n− 1 (if n > 1 and ?A is not
an atom of the fragment).

13.4 IMPLEMENTATION

We do not go into details since (besides the differences discussed in the previous section) the
implementation is essentially the same as in chapter 12. Note that the first argument aim is a
procedure that has to check whether a formula is a solution. Here aim will always check whether
its argument is equivalent to a given formula.

> proc : shorter_fml(aim, max_length, atoms, connectives)

#

local fmls_size, found, i, j, n, s, total;

#

##

#

proc insert_and_test(var l, a)

local a1, fmls_i, i;

begin

if found = 1 then return 0;

for i := 1 to fmls_top do

begin

fmls_i := fmls[i];

for j := 1 to nops(fmls_i) do

if provable(fmls_i[j] <-> a) then return 0;

end;

foreach a1 in l do

if provable(a1 <-> a) then return 0;

append(l, a);

if aim(a)

then begin

print("found: ", a);

found := 1;

end;

return 0;

end; # insert_and_test

#

##

#

276 CHAPTER 13. OPTIMAL SIMPLIFICATION

Construct formulas with unary main connective in c and argument in l .

#

proc unary_combinations(l)

local a, r;

begin

r := [];

foreach a in l do

foreach c in connectives do

begin

if c = NOT then insert_and_test(r, ~a);

if c = BOX then insert_and_test(r, box a);

if c = DIA then insert_and_test(r, dia a);

end;

return r;

end; # unary_combinations

#

##

#

Construct formulas with binary main connective in c and arguments

in l1 resp. l2 .

#

proc binary_combinations(l1, l2)

local a1, a2, r;

begin

r := [];

foreach a1 in l1 do foreach a2 in l2 do

foreach c in connectives do

begin

if c = AND then insert_and_test(r, a1 & a2);

if c = OR then insert_and_test(r, a1 v a2);

if c = IMP then insert_and_test(r, a1 -> a2);

if c = EQ then insert_and_test(r, a1 <-> a2);

end;

return r;

end; # binary_combinations

#

##

#

begin

found := 0;

#

fmls := array[max_length];

#

if (max_length > 1)

then begin

s := [];

fmls_top := 0;

insert_and_test(s, true);

insert_and_test(s, false);

for i := 1 to nops(atoms) do insert_and_test(s, atoms[i]);

fmls[1] := convert2array(s);

13.5. RUNS 277

end;

#

for i := 2 to max_length do

begin

if (found = 0)

then begin

fmls_top := i - 1;

s := unary_combinations(fmls[i - 1]);

for j := 1 to i - 2 do

s := concat(s, binary_combinations(fmls[j], fmls[i - (1 + j)]));

fmls[i] := convert2array(s);

end;

end;

#

print();

if (found = 0) then return "nothing found";

#

end; # shorter_fml

13.5 RUNS

For each formula A in figure 1.a, we try to find a shorter formula B such that S4 |= A↔ B.

For formulas with length less than 8 and one variable, the search is fast (for example less than
ten seconds for M). With the LWB 1.0, a complete search is possible for all one-variable formulas
from figure 1.a.
We start with some simple formulas that are not valid in S4, namely 5, B, M, and Z.

> load(s4);

> A5 :== dia p0 -> box dia p0;

proc : aim(a) begin return s4::provable(a <-> A5); end;

> shorter_fml(aim, 5, [p0], [BOX,DIA,NOT,AND,OR,IMP,EQ]);

> B :== p0 -> box dia p0;

proc : aim(a) begin return s4::provable(a <-> B); end;

> shorter_fml(aim, 4, [p0], [BOX,DIA,NOT,AND,OR,IMP,EQ]);

> M :== box dia p0 -> dia box p0;

proc : aim(a) begin return s4::provable(a <-> M); end;

> timestart;

shorter_fml(aim, 6, [p0], [BOX,DIA,NOT,AND,OR,IMP,EQ]);

timestop;

> Z :== box(box p0 -> p0) -> (dia box p0 -> box p0);

proc : aim(a) begin return s4::provable(a <-> Z); end;

> timestart;

shorter_fml(aim, 11, [p0], [BOX,DIA,NOT,AND,OR,IMP,EQ]);

timestop;

In figure 13.a we list the results for all one-variable formulas from figure 1.a. If the table entry for
a formula A is ‘no such formula’, then an exhaustive search was carried out with the LWB and
no solution was found, i.e. there exists no formula B that is shorter than A and S4 |= A↔ B.

A short discussion of these results:

278 CHAPTER 13. OPTIMAL SIMPLIFICATION

formula shorter equivalent formula in S4

D true

D2 true

T true

4 true

5 no such formula
B no such formula
G no such formula
M M2

M2 no such formula
Pt M2

W 2p0

W0 false

Z 2p0 ↔ 32p0

Dum no such formula
Dum1 no such formula
Dum2 32p0 → 2(2(p0 → 2p0)→ p0)→ p0

Dum3 2p0 ↔ 32p0 ∧2(2(p0 → 2p0)→ p0)
Dum4 32p0 → 2(2(p0 → 2p0)→ p0)→ p0

Grz no such formula
Grz1 no such formula
Grz2 Grz
Grz3 2(2(p0 → 2p0)→ p0)↔ 2p0

Grz4 Grz
Hs no such formula
P no such formula
R no such formula
X true

Zem no such formula

Figure 13.a: Results of search for shorter equivalent formula in S4.

13.6. SUMMARY 279

• The formulas D, D2, T, 4 are valid in S4, and thus the corresponding entries in the table
must be true. For 5 and B no shorter formulas exist.

• G cannot be shortened.

• We have S4 |= M↔ M2 and S4 |= M↔ Pt (cp. theorem 11.3.6). Thus the result for M and
Pt is M2. The formula M2 itself cannot be shortened.

• Obviously W0 is equivalent to false in S4. Since S4 |= 2p0 → p0 the formula W can be
simplified to 2p0. For the same reason Z can be simplified to 32p0 → 2p0. With the
search we find the equivalent formula 2p0 ↔ 32p0.

• No formula is shorter than Dum and equivalent to Dum in S4. Since S4 |= Dum ↔ Dum2

and S4 |= Dum↔ Dum4 (cp. theorem 11.3.9) the result for Dum2 and Dum4 is essentially
Dum. Also Dum1 cannot be simplified, and it is equivalent to Dum3 and to the formula
2p0 ↔ 32p0 ∧ 2(2(p0 → 2p0) → p0) found by our search. For Grz, Grz1, Grz2, Grz3,
Grz4 we have the same situation as for Dum, Dum1, Dum2, Dum3, Dum4. The formula
2(2(p0 → 2p0)→ p0)↔ 2p0 found for Grz3 is equivalent to Grz1.

• None of the formulas Hs, P, R, Zem can be shortened. X is valid in S4 as it is an instance
of the formula T.

13.6 SUMMARY

We have shown how to search for the shortest formula A in FmlS4 with S4 |= A ↔ C, where C
is a given formula. This (relative to length) optimal simplification is only feasible if C is short
and contains very few variables. Nevertheless it has, for example, been possible to prove with the
LWB that the formulas Grz and Dum cannot be simplified in S4.

14

DIAGRAMS

Heterogeneous logical systems are logics hav-
ing both linguistic and non-linguistic ele-
ments, such as diagrams, charts, tables, etc.
They are very important with respect to our
main thesis since a great deal of inference
involving non-linguistic representations com-
bines the non-linguistic with the linguistic.

J. Barwise and E. Hammer. Diagrams and the
Concept of Logical System.

14.1 INTRODUCTION

In chapter 12 we generated maximal sets of non-equivalent formulas. We use the following
ordering:

A �L B :⇔ L |= A→ B

A set for formulas of FmlL together with the ordering �L can be drawn as a graph. In order to
obtain simpler pictures, we use the following two conventions:

• We draw just lines, not arrows. The direction is always from bottom to top.

• Obviously the ordering �L is reflexive and transitive for the logics we consider. Therefore
we draw only those lines that do not follow with reflexivity/transitivity from other lines.

Take for example the set {p0 ∨ p1, p1 ∧ p0, p0, p1} of formulas of CPC. Then we have:

• p0 ∨ p1 �CPC p0 ∨ p1

• p0 �CPC p0, p0 �CPC p0 ∨ p1

• p1 �CPC p1, p1 �CPC p0 ∨ p1

• p1 ∧ p0 �CPC p1 ∧ p0, p1 ∧ p0 �CPC p0, p1 ∧ p0 �CPC p1, p1 ∧ p0 �CPC p0 ∨ p1

282 CHAPTER 14. DIAGRAMS

u p0 ∨ p1@
@
@
@
@@I

�
�
�
�
���

6

��
��y

u p0�
�
�
�
���

��
��

W up1@
@
@

@
@@I

��
��
�

u p1 ∧ p0��
��
z

u p0 ∨ p1@
@

@
@

@
@

�
�
�
�
�
�

u p0�
�
�
�
�
�

up1@
@
@
@
@
@
u p1 ∧ p0

Figure 14.a: The same diagram with and without arrows that correspond
to reflexivity and transitivity.

If we drew all arrows, then we would obtain the diagram on the left hand side of figure 14.a. If
we drew lines instead of arrows and omitted all lines that follow with reflexivity/transitivity, then
we would obtain the one on the right hand side of this figure.

To draw such diagrams automatically is a difficult task. The diagrams in this chapter have been
drawn ‘by hand’.

14.2 ALGORITHM

In a first step we compute a maximal set of non-equivalent formulas of the given fragment
(cp. chapter 12).

Then we compute the diagram by extracting the minimal elements of this list of formulas itera-
tively. For each extracted formula we compute the list of its predecessors. For this purpose it is
sufficient to consider only formulas that have been extracted in a previous step.

old min := []
while fmls 6= []
do

min := {A ∈ fmls | ∀B ∈ fmls, B 6= A : L |= B → A}
foreach A ∈ min
do

pred := {B ∈ old min | L |= B → A
and ∀C ∈ old min, C 6= B : (L 6|=B → C or L 6|= C → A)}

print(A, ” above ”, pred)
old min := min
fmls := {A ∈ fmls | A /∈ min}

14.3. IMPLEMENTATION 283

14.3 IMPLEMENTATION

We use the function fmls from the last chapter, but without output during the construction of
the formulas.

> proc : fmls(atoms, connectives, limit)

local new_list, last_list;

local total, x;

#

proc insert(fml)

local x;

begin

foreach x in all_list do if provable(x <-> fml) then return;

foreach x in new_list do if provable(x <-> fml) then return;

append(new_list, fml);

inc(total);

if (total >= limit)

then begin

all_list := concat(all_list, new_list);

raiseerror("limit");

end;

end; # insert

#

proc search()

local l, n, x, y;

begin

n := nops(atoms);

while n > 0 do begin

foreach x in last_list do begin

foreach c in connectives do begin

if (c = NOT) then insert(~x);

if (c = BOX) then insert(box x);

if (c = DIA) then insert(dia x);

end;

foreach y in all_list do begin

foreach c in connectives do begin

if (c = AND) then insert(x & y);

else if (c = OR) then insert(x v y);

else if (c = IMP) then begin insert(x -> y); insert(y -> x); end;

else if (c = EQ) then insert(x <-> y);

end;

end;

end;

n := nops(new_list);

all_list := concat(all_list, new_list);

last_list := new_list;

new_list := [];

end;

end; # search

#

284 CHAPTER 14. DIAGRAMS

begin

total := 0;

new_list := []; all_list := [];

foreach x in atoms do insert(x);

all_list := new_list; last_list := new_list; new_list := [];

catcherror(search());

return(all_list);

end;

In order to obtain a readable output, we introduce natural numbers as abbreviations for the
formulas generated by fmls .

> # add_index converts a list [a1, a2, ..., an] into [[1,a1], [2,a2], ..., [n,an]] .

#

proc : add_index(var fmls)

#

local a, i, r;

#

begin

r := [];

i := 0;

foreach a in fmls do begin inc(i); append(r, [i,a]); end;

fmls := r;

end; # add_index

numbers is the inverse procedure of add index .

> # If fmls is [[i1,a1], [i2,a2], ..., [in,an]], then the result is [i1, i2, ..., in] .

#

proc : numbers(fmls)

#

local r, x;

#

begin

#

r := [];

foreach x in fmls do append(r, x[1]);

return r;

#

end;

The procedure minimal elements removes the minimal elements from fmls (a variable parame-
ter) and returns them as a list.

> proc : minimal_elements(var fmls)

#

local flag, i, j, r, fmls2, fmls_rest;

#

begin

#

r := [];

fmls2 := convert2array(fmls); # for faster access

fmls_rest := [];

for i := 1 to nops(fmls2)

14.3. IMPLEMENTATION 285

do begin

j := 1;

flag := true;

while (j <= nops(fmls2)) and flag

do begin

if (i <> j)

then

if provable(fmls2[j][2] -> fmls2[i][2]) then flag := false;

inc(j);

end;

if flag is true then fmls2[i] is minimal

if flag then append(r, fmls2[i]); else append(fmls_rest, fmls[i]);

end;

fmls := fmls_rest;

return r;

#

end; # minimal_elements

The procedure predecessors computes the predecessors of the formula x in the list fmls .

> proc : predecessors(x, fmls)

#

local flag, r, r2, y, z;

#

begin

#

r := [];

foreach y in fmls

do

if provable(y[2] -> x[2]) then append(r, y);

#

Now we remove superfluous elements.

r2 := [];

foreach y in r

do begin

flag := false;

foreach z in r do

if y <> z then if provable(y[2] -> z[2]) then flag := true;

if not flag then append(r2, y);

end;

#

return r2;

#

end; # predecessors

Finally the main procedure diagram .

> proc : diagram(fmls)

#

local x, min, old_min, level;

#

begin

#

286 CHAPTER 14. DIAGRAMS

add_index(fmls);

#

min := minimal_elements(fmls);

print();

print("level 0");

foreach a in min do print(" ", a[1], ": ", a[2], ", []");

print("--");

#

level := 1;

old_min := min;

#

while (fmls <> [])

do begin

print("level ", level);

min := minimal_elements(fmls);

foreach x in min

do begin

pred := predecessors(x, old_min);

print(" ", x[1], ": ", x[2], ", ", numbers(pred));

end;

print("--");

inc(level);

old_min := concat(old_min, min);

end;

#

end; # diagram

14.4 RUNS

First we compute the diagram of the modalities of S4 (cp. chapter 12). Note that this computation
takes only about half a second (same hardware as described in chapter 10).

> load(s4);

> timestart; l :== sort(fmls([p0,~p0], [BOX,DIA], 100)); diagram(l); timestop;

Figure 14.b shows the corresponding digram. It consists of two symmetric, disconnected halves.

Since the number of non-equivalent modalities of KT is infinite (see section 12.5), we cannot
compute the complete diagrams. We compute the first 3, 7, 15 modalities of KT ending in p0 and
draw the corresponding diagrams (see figures 14.c and 14.d).

> load(kt);

> l :== sort(fmls([p0], [BOX,DIA], 3));

> diagram(l);

> load(kt);

> l :== sort(fmls([p0], [BOX,DIA], 7));

> diagram(l);

> load(kt);

> l :== sort(fmls([p0], [BOX,DIA], 15));

> diagram(l);

14.4. RUNS 287

s1 ��
�

@
@
@ s 4

s 10

s
2
@
@
@

�
�
�
�
�
�

s3 ��
�

@
@
@

s8
�
�
�

@
@
@
@
@
@s 9 s12 �

�
�

@
@
@s5

s11

s
7
@
@
@

�
�
�
�
�
�

s 6@
@
@

�
�
�

s13
�

�
�

@
@
@
@
@
@s 14

Figure 14.b: The diagram of 〈S4, {p0,¬p0}, {2,3}〉.

u2
u1
u3

u3
u2@

@
@

�
�
�

u4 ��
�u1 u6@
@
@
u5
u7

Figure 14.c: The diagrams of the first three and seven modalities of KT.

288 CHAPTER 14. DIAGRAMS

u 4

u 3@
@
@

@
@
@

�
�
�
�
�
�

�
�
�
�
�
�

u5 u2@
@
@

@
@
@

�
�
�
�
�
�

r 7l
l
l

l
l
l
l

�
�
�
�
�
�

u 11

u6 �
�
�
�
�
�

,
,
,
,
,
,
,

u 1 u 10@
@
@

@
@
@

\
\
\
\
\
\

u8 �
�
�
�
�
�

u9 r 12D
D
D
D
D
D

u 14@
@
@

@
@
@
u 13

u 15

Figure 14.d: The diagram of the first fifteen modalities of KT.

14.5. OTHER LOGICS 289

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

Figure 14.e: The diagram of the first 10 modalities of K.

In K, the diagram of the non-equivalent modalities is trivial, since for all different modalities A
and B neither K |= A→ B nor K |= B → A (see figure 14.e).

> load(k);

> l :== sort(fmls([p,~p], [BOX,DIA], 10));

> diagram(l);

We go back to S4 and compute the diagram of formulas of the form A → B where A and B
are positive modalities. For this purpose we first compute a maximal list of modalities of S4 as
before, and then combine them to implications of the requested form.

> load(s4);

> l :== sort(fmls([p0], [BOX,DIA], 100));

> l2 :== [];

> foreach x in l do

foreach y in l do

begin

found :== 0;

foreach z in l2 do if s4::provable(z <-> (x -> y)) then found :== 1;

if found = 0 then l2 :== concat(l2, [x -> y]);

end;

> diagram(l2);

The resulting diagram looks rather odd (see figure 14.f). Note the numerous hexagons, for
example 1-10-27-26-22-21, 1-10-9-26-25-21, 1-11-12-8-9-10, 1-11-7-8-9-10, 1-11-19-20-22-21, and
1-11-12-20-22-21.

Finally we compute the diagram of all positive S4 formulas. Again — although the formulas are
far from trivial — only about one minute is required. See figure 14.g for the resulting diagram.
We used thick and thin lines in the drawing as if it were a three dimensional structure.

> load(s4);

> timestart;

l :== sort(fmls([p0], [BOX,DIA,AND,OR], 100));

diagram(l);

timestop;

14.5 OTHER LOGICS

14.5.1 THEOREM diagram of 〈CPC, {p0, . . . , pn}, {∧,∨,¬}〉

The diagram of 〈CPC, {p0, . . . , pn}, {∧,∨,¬}〉 is an n-dimensional cube.

290 CHAPTER 14. DIAGRAMS

s
14
```

```
```

```
```

``̀

XX
XXX

XXX
XXX

XXX
X

��
���

���
���

���
�

   
   

   
   

   
   

s2 s16@
@
@
@

�
�
�
�

��
���

���
���

���
�

s24XX
XXX

XXX
XXX

XXX
X

@
@
@
@

�
�
�
�

s13

s4 ��
�
�

s17@
@
@
@

�
�
�
�

   
   

   
   

   
   

s15@
@
@
@

�
�
�
�

s
26
H
HH

H
HH

HH

@
@

@
@

�
�
�
�

�
��
�
��
��

s8@
@

@
@

�
�
�
�

s20```
```

```
```

```
``̀

@
@
@
@

�
�
�
�

s23@
@

@
@

s5 ��
�
�

s3 s18@
@
@
@

s25 �
�
�
�

s22 s27 s9@
@

@
@

s12�
�
�
�

s7 s19@
@

@
@

s6 ��������
���

���
�

s21 �
�
�
�

s10@
@
@
@

s11XX
XXX

XXX
XXX

XXX
Xs1

Figure 14.f: The diagram of the implications A → B, where A, B are
positive modalities of S4.

14.5.2 REMARK diagram of 〈IPC, {false, p0}, {∧,∨,→}〉

The diagram of 〈IPC, {false, p0}, {∧,∨,→}〉 is the well-known (infinite) Rieger-Nishimura lattice
(see for example [TvD88]).

14.5.3 REMARK diagram of fragments of IPC

Diagrams of fragments of IPC are thoroughly discussed in [Hen96].

14.6 SUMMARY

We have used the decision procedures and the programming language of the LWB to compute
diagrams of fragments of the modal logics K, KT, S4. In spite of the brute-force approach we
have used, all the computations have been possible in a short time.



14.6. SUMMARY 291

s2
s9Z

Z
Z
ZZ

�
�
�
��s4 ��

�
�� s14Z

Z
Z

ZZ

�
�
�
��s16Z

Z
Z
ZZ

�
�
�
�� s10Z
Z
Z

ZZ

�
�
�
��

s8ZZZ
ZZs11 �

�
�
�� s25Z
Z
Z

ZZ

�
�
�
��

q24Z
Z

Z
ZZ s29Z

Z
Z

ZZ

�
�
�
��s30 �

�
�
��

q18Z
Z

ZZ
ZZ s17Z

Z
Z

ZZ

�
�
�
�� s12Z

Z
Z

ZZ

�
�
�
��s3 s6�

�
�
��

s31Z
ZZ

Z
ZZ

�
�
�
�� s15Z

Z
Z

ZZ

�
�
�
�� s1ZZZ
ZZs28 �

�
�
�� s21Z
Z

Z
ZZ

�
�
�
��

s35Z
Z

Z
ZZ

�
�
�
�� s23Z

Z
Z

ZZs27 �
�
�
��

q13�
�
�
�� s19Z
Z
Z

ZZ

�
�
�
��

s20Z
Z

Z
ZZ
s34Z

Z
Z
ZZ

�
�
�
��

q22

s26Z
Z
Z

ZZs7 ��
�
�� s32Z

Z
Z

ZZ
s33

s5

Figure 14.g: The diagram of the positive formulas of S4.





~

CONCLUSION

‘Could you not begin at the beginning and go
on until you come to the end, and then, if you
are able to, stop?’
‘I’ll try,’ said his lordship, ‘but I always find
the stopping part of the business so difficult.’

D.L. Sayers. Murder must advertise.





~

BIBLIOGRAPHY

‘Do they read Shakespeare?’ asked the Savage
as they walked, on their way to the Biochem-
ical Laboratories, past the School Library.
‘Certainly not,’ said the Head Mistress, blush-
ing.
‘Our library,’ said Dr Gaffney, ‘contains only
books of reference.’

A. Huxley. Brave New World.

[And92] Jean-Marc Andreoli.
Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992.

[BE93] W. Bibel and E. Eder.
Methods and calculi for deduction.
In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logic in Artificial In-
telligence and Logic Programming, volume 1, pages 68–182. Clarendon Press, Oxford,
1993.

[Bel89] F. Bellissima.
Infinite sets of nonequivalent modalities.
Notre Dame Journal of Formal Logic, 30(4):574–582, 1989.

[BG97] B. Beckert and R. Goré.
Free variable tableaux for propositional modal logics.
In D. Galmiche, editor, Tableaux 97, LNCS 1227, pages 91–106, 1997.

[BH91] F. Baader and B. Hollunder.
A terminological knowledge representation system with complete inference algo-
rithms.
In PDK 91, LNAI 567, pages 67–86, 1991.

[BS86] R. Bull and K. Segerberg.
Basic modal logic.
In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic. Volume
2: Extensions of Classical Logic. Reidel, Dordrecht, 1986.



296 BIBLIOGRAPHY

[BS97] R. Bornat and B. Sufrin.
Jape: A calculator for animating proof-on-paper.
In W. McCune, editor, CADE-14, LNAI 1249, pages 412–415, 1997.

[Cat91] L. Catach.
Tableaux: A general theorem prover for modal logics.
Journal of Automated Reasoning, 7:489–510, 1991.

[CG97] S. Clemente and M. Gaspari.
VALE∗: evaluating strategies for strongly analytic tableaux.
Position paper at the Tableaux 97 conference, 1997.

[Che80] B. Chellas.
Modal logic: an introduction.
Cambridge University Press, 1980.

[CM97] S. Cerrito and M. Mayer.
Hintikka multiplicities in matrix decision methods for some propositional modal logics.
In D. Galmiche, editor, Tableaux 97, LNAI 1227, pages 138–152, 1997.

[CZ97] A. Chagrov and M. Zakharyaschev.
Modal Logic.
Clarendon Press, Oxford, 1997.

[d’A92] M. d’Agostino.
Are tableaux an improvement on truth-tables?
Journal of Logic, Language and Information, 1(3):235–252, 1992.

[Dar93] D. Darms.
Implikation in der mehrwertigen Logik.
Master’s thesis, ETH Zürich, Switzerland, 1993.

[Dem95] S. Demri.
Uniform and non uniform strategies for tableaux calculi for modal logics.
Journal of Applied Non-Classical Logics, 5(1):77–96, 1995.

[dG95] P. de Groote.
Linear logic with Isabelle: Pruning the search tree.
In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Tableaux 95, LNAI 918, pages
263–277, 1995.

[dJHdL91] D. de Jongh, A. Hendriks, and G. Renardel de Lavalette.
Computations in fragments of intuitionistic propositional logic.
Journal of Automated Reasoning, 7:537–561, 1991.

[Dos93] K. Dosen.
Modal translations in K and D.
In M. de Rijke, editor, Diamonds and defaults, pages 103–127. Kluwer, 1993.

[dS98] H. de Swart, editor.
Tableaux 98, LNCS, 1998.

[Dyc91] R. Dyckhoff.
MacLogic. A proof assistant for first-order logic on the Apple Macintosh, 1991.



297

[Dyc92] R. Dyckhoff.
Contraction-free sequent calculi for intuitionistic logic.
The Journal of Symbolic Logic, 57(3):795–807, 1992.

[Eme90] E. Emerson.
Temporal and modal logic.
In J. v. Leeuwen, editor, Handbook of Theoretical Computer Science. Volume B, pages
995–1072. Elsevier, 1990.

[FHMV96] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge.
MIT Press, 1996.

[Fit83] M. Fitting.
Proof Methods for Modal and Intuitionistic Logics.
Reidel, Dordrecht, 1983.

[Fit88] M. Fitting.
First-order modal tableaux.
Journal of Automated Reasoning, 4:191–213, 1988.

[Fit93] M. Fitting.
Basic modal logic.
In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, volume 1, pages 368–448. Clarendon Press,
Oxford, 1993.

[GHH97] R. Goré, W. Heinle, and A. Heuerding.
Relations between propositional normal modal logics: an overview.
Journal of Logic and Computation, 7(5):649–658, 1997.

[Gor] R. Goré.
Tableau methods for modal and temporal logics.
To appear in Handbook of Tableaux Methods.

[Gou89] G. Gough.
Decision procedures for temporal logic.
Technical Report UMCS-89-10-1, Department of Computer Science, University of
Manchester, 1989.

[GS96] F. Giunchiglia and R. Sebastiani.
Building decision procedures for modal logics from propositional decision procedures
— the case study of modal K.
In M. McRobbie and J. Slaney, editors, CADE-13, LNAI 1104, pages 583–597, 1996.

[Häh93] R. Hähnle.
Automated Deduction in Multiple-valued Logics.
Oxford Science Publications, 1993.

[Hal95] J. Halpern.
The effect of bounding the number of primitive propositions and the depth of nesting
on the complexity of modal logic.
Artificial Intelligence, 75:361–372, 1995.



298 BIBLIOGRAPHY

[Hei95] W. Heinle.
Expressivity and Definability in Extended Modal Languages.
PhD thesis, TU München, Germany, 1995.

[Hen96] A. Hendriks.
Computations in Propositional Logic.
PhD thesis, Institute for Logic, Language and Information. University of Amsterdam,
1996.

[HM92] J. Halpern and Y. Moses.
A guide to completeness and complexity for modal logics of knowledge and belief.
Artificial Intelligence, 54:319–379, 1992.

[Hor97] I. Horrocks.
Optimising tableaux decision procedures for description logics.
PhD thesis, University of Manchester, 1997.

[How97] J. Howe.
Two loop detection mechanisms: A comparison.
In D. Galmiche, editor, Tableaux 97, LNAI 1227, pages 188–200, 1997.

[HS97] U. Hustadt and R. Schmidt.
On evaluating decision procedures for modal logic.
In IJCAI-97, 202–207. Morgan Kaufmann, 1997.

[HSZ96] A. Heuerding, M. Seyfried, and H. Zimmermann.
Efficient loop-check for backward proof search in some non-classical propositional
logics.
In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Tableaux 96, LNAI
1071, pages 210–225, 1996.

[Hud93] J. Hudelmaier.
An O(n log n)-space decision procedure for intuitionistic propositional logic.
Journal of Logic and Computation, 3(1):63–75, 1993.

[Hud96] J. Hudelmaier.
Improved decision procedures for the modal logics K, KT, S4.
In CSL 95, LNCS 1092, pages 320–334, 1996.

[Jan90] G. Janssen.
Hardware verification using temporal logic: a practical view.
In L. Claesen, editor, Formal VSLI Correctness Verification, pages 159–168. Elsevier,
1990.

[Kas94] R. Kashima.
Cut-free sequent calculi for some tense logics.
Studia Logica, 53:119–135, 1994.

[KP92] E. Koutsoupias and C. Papadimitriou.
On the greedy algorithm for satisfiability.
Information Processing Letters, 43:53–55, 1992.

[Lad77] R. Ladner.
The computational complexity of provability in systems of modal propositional logic.
SIAM journal on computing, 6(3):467–480, 1977.



299

[Mas94] F. Massacci.
Strongly analytic tableaux for normal modal logics.
In A. Bundy, editor, CADE 12, LNCS 814, pages 723–737, 1994.

[Min90] G. Mints.
Gentzen-type systems and resolution. Part I. Propositional logic.
In P. Martin-Löf and G. Mints, editors, COLOG-88, LNCS 417, pages 198–231.
Springer, 1990.

[MM94] S. Martini and A. Masini.
A modal view of linear logic.
The Journal of Symbolic Logic, 59(3):888–899, 1994.

[MMO95] P. Miglioli, U. Moscato, and M. Ornaghi.
Refutation systems for propositional modal logics.
In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Tableaux 95, LNAI 918, pages
95–105, 1995.

[Mor76] C. Morgan.
Methods for automated theorem proving in nonclassical logics.
IEEE Transactions on Computers, C-25(8):852–862, 1976.

[NT87] I. Niemelä and H. Tuominen.
Helsinki logic machine: A system for logical expertise.
Technical report, Digital Systems Laboratory, Department of Computer Science,
Helsinki University of Technology, 1987.

[Ohl91] H. Ohlbach.
Semantics based translation methods for modal logics.
Journal of Logic and Computation, 1(5):691–746, 1991.

[OK96] J. Otten and C. Kreitz.
T-string unification: Unifying prefixes in non-classical proof methods.
In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Tableaux 96, LNAI
1071, pages 244–260, 1996.

[OS88] F. Oppacher and E. Suen.
Harp: A tableau-based theorem prover.
Journal of Automated Reasoning, 4:69–100, 1988.

[OS97] H. Ohlbach and R. Schmidt.
Functional translation and second-order frame properties of modal logics.
Journal of Logic and Computation, 7(5):581–603, 1997.

[Ott97] J. Otten.
ileanTAP: An intuitionistic theorem prover.
In D. Galmiche, editor, Tableaux 97, LNAI 1227, pages 307–312, 1997.

[Pau94] L. Paulson.
Isabelle: A Generic Theorem Prover.
LNCS 828. Springer, 1994.

[PC96] J. Pitt and J. Cunningham.
Distributed modal theorem proving with KE.
In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Tableaux 96, LNAI
1071, pages 160–176, 1996.



300 BIBLIOGRAPHY

[Pel86] F. Pelletier.
Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191–216, 1986.

[Rau79] W. Rautenberg.
Klassische und nichtklassische Aussagenlogik.
Vieweg, 1979.

[RU71] N. Rescher and A. Urquhart.
Temporal Logic.
Springer, 1971.

[SC85] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery, 32(3):733–749, 1985.

[Seg71] K. Segerberg.
An essay in classical modal logic.
Technical report, Uppsala University, 1971.

[SFH92] D. Sahlin, T. Franzén, and S. Haridi.
An intuitionistic predicate logic theorem prover.
Journal of Logic and Computation, 2(5):619–656, 1992.

[SLM92] B. Selman, H. Levesque, and D. Mitchell.
A new method for solving hard satisfiability problems.
In Proceedings 10th AAAI, pages 47–59, 1992.

[Sob64] B. Sobociński.
Remarks about axiomatizations of certain modal systems.
Notre Dame Journal of Formal Logic, 5(1):71–80, 1964.

[Sob70] B. Sobociński.
Certain extensions of modal system S4.
Notre Dame Journal of Formal Logic, 11(3):347–368, 1970.

[Spa93] E. Spaan.
The complexity of tense logics.
In M. de Rijke, editor, Diamonds and defaults, pages 287–307. Kluwer, 1993.

[SS92] W. Sieg and R. Scheines.
Searching for proofs (in sentential logic).
In L. Burkholder, editor, Philosophy and the Computer, pages 137–159. Westview
Press, Boulder, San Francisco & Oxford, 1992.

[SSY94] G. Sutcliffe, C. Suttner, and T. Yemenis.
The TPTP problem library.
In A. Bundy, editor, CADE 12, LNCS 814, pages 252–266, 1994.

[Sta79] R. Statman.
Intuitionistic logic is polynomial-space complete.
Theoretical Computer Science, 9:67–72, 1979.

[Tam94] T. Tammet.
Proof strategies in linear logic.
Journal of Automated Reasoning, 12:273–304, 1994.



301

[Tam96] T. Tammet.
A resolution theorem prover for intuitionistic logic.
In M. McRobbie and J. Slaney, editors, CADE-13, LNAI 1104, pages 2–16, 1996.

[Tro92] A. Troelstra.
Lectures on Linear Logic.
Number 29 in CSLI Lecture Notes. CSLI, 1992.

[TS96] A. Troelstra and H. Schwichtenberg.
Basic Proof Theory.
Cambridge University Press, 1996.

[TvD88] A. Troelstra and D. v. Dalen.
Contructivism in Mathematics. An Introduction. Volume 1.
North-Holland, 1988.

[vB87] J. v. Benthem.
Transitivity follows from Dummet’s axiom.
Theoria, 44:117–118, 1987.

[Vor92] A. Voronkov.
Theorem proving in non-standard logics based on the inverse method.
In CADE 92, LNAI 607, pages 648–662, 1992.

[Wal90] L. Wallen.
Automated Proof Search in Non-Classical Logics.
M.I.T. Press, Cambridge, Massachusetts, 1990.

[Wol85] P. Wolper.
The tableau method for temporal logic: an overview.
Logique et Analyse, 110-111:119–136, 1985.

[Zim94] H. Zimmermann.
A directed tree calculus for minimal tense logic.
Master’s thesis, IAM, University of Bern, Switzerland, 1994.





~

INDEX

“5 3 ‡ ‡ † 3 0 5 ) ) 6 * ; 4 8 2 6 ) 4 ‡ . ) 4 ‡ ) ; 8 0 6 * ; 4 8 † 8 § 6 0 ) ) 8 5 ; 1 ‡ ) ; : ‡
* 8 † 8 3 ) 8 8 ) 5 * † ; 4 6 ) ; 8 8 * 9 6 * ? ; 8 ) * ‡ ) ; 4 8 5 ) ; 5 * † 2 : * ‡ ) ; 4 9 5 6 *

2 ) 5 * – 4 ) 8 § 8 * ; 4 0 6 9 2 8 5 ) ; ) 6 † 8 ) 4 ‡ ‡ ; 1 ) ‡ 9 ; 4 8 0 8 1 ; 8 : 8 ‡ 1 ; 4 8 †
8 5 ; 4 ) 4 8 5 † 5 2 8 8 0 6 * 8 1 ) ‡ 9 ; 4 8 ; ) 8 8 ; 4 ) ‡ ? 3 4 ; 4 8 ) 4 ‡ ; 1 6 1 ; : 1 8 8

; ‡ ? ;”

‘But,’ said I, returning him the slip. ‘I am as much in the dark as ever.
Were all the jewels of Golconda awaiting me on my solution of this enigma,
I am quite sure that I should be unable to earn them.’
‘And yet,’ said Legrand, ‘the solution is by no means so difficult as you
might be led to imagine from the first hasty inspection of the characters.’

E.A. Poe. The gold-bug.

2 . . . . . . . . . . . . . . . . . . . . . . . . 13, 14
■ . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2n . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 . . . . . . . . . . . . . . . . . . . . . . . 13, 14
◆ . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3n . . . . . . . . . . . . . . . . . . . . . . . . . . 13∨

. . . . . . . . . . . . . . . . . . . . . . . . . . . 9∧

. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
↔ . . . . . . . . . . . . . . 9, 10, 182, 183, 187
→ . . . . . . . . . . . . . . . . . . . . . . . . 9, 10
¬ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
∨ . . . . . . . . . . . . . . . . . . . . . . . . . 9, 10
∧ . . . . . . . . . . . . . . . . . . . . . . . . . 9, 10
(4) . . . . . . . . . . . . . . . . . . . . . . . 22, 72
(2) . . . . . 19, 21–23, 43, 44, 55, 61, 68,

70, 71, 74, 75, 81, 85, 92, 92, 99, 100,
106, 107, 107, 108, 109, 109, 111, 118,
118, 121, 121, 124–126, 127, 128, 131,

133, 135, 136, 140, 142, 148, 155, 160,
174, 181, 183

(■) . . . . . . . . 23, 74, 75, 148, 155, 160
(■clash) . . . . . . . . . . 152, 154, 155, 159

(2clash) . . . . . . . . . . 152, 154, 155, 159
(3) . . . . . 44, 55, 68, 69, 70, 72–74, 92,

98, 118, 120, 131, 149, 152, 155, 155,
159

(3,dup) . . . . . . 99, 109, 121, 127, 135,
140, 172

(3,new) . . . . . . 99, 109, 121, 127, 135,
140, 142, 172

(◆) . . . . . . . 74, 149, 152, 155, 155, 159
(◆2) . . . . . . . . . . . . . . . . . . . . . . . . 23
(◆ ■1) . . . . . . . . . . . . . . . . . . . . . . . 23
(◆ ■2) . . . . . . . . . . . . . . . . . . . . . . . 23
(3■) . . . . . . . . . . . . . . . . . . . . . . . . 23
(321) . . . . . . . . . . . . . . . . . . 19, 21–23
(322) . . . . . . . . . . . . . . . . . . 19, 21–23
(∨) . . . . . . 43, 55, 74, 92, 99, 109, 117,

121, 127, 131, 135, 140, 148, 155, 159
(∧) . . . . . . . 43, 55, 74, 89, 92, 99, 109,

117, 121, 127, 131, 135, 140, 148, 155,
159, 168, 170

(cpc) . . . . . . . . . . . . . . . . . . 19, 21–23
(guess) . . . . . . . . . . . . . . . 152, 154, 160



304 INDEX

(id) . . . . . . . 43, 55, 74, 89, 90, 99, 102,
109, 112, 117, 121, 123, 127, 129, 131,

135, 140, 143, 148, 154, 159
(jump) . . . . 42, 44, 46, 57, 57, 68–71, 73,

75, 78, 149, 155, 167
(jump−) . . . . . 42, 44, 46, 55, 58–60, 69,

75, 78, 150, 155, 167
(k) . . . . . . . . . . . . . . . . . . . . 19, 21–23
(k■) . . . . . . . . . . . . . . . . . . . . . . . . . 23
(mp) . . . . . . . . . . . . . . . . . . . 19, 21–23
(t) . . . . . . . . . . . . . . . . . . . . 21, 22, 69
(true) . . . . 43, 55, 74, 90, 99, 109, 117,

121, 127, 131, 135, 140, 148, 154, 159
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
− . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
< . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
= . . . . . . . . . . . . . . . . . . . . . . 7–9, 254
> . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
[, ] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
⇐ . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
⇔ . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Π . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
· . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
∪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
∃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
≡ . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
∀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
m
n . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
≥ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
∈ . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8
∈L|= . . . . . . . . . . . . . . . . . 267, 267, 268
; . . . . . . . . . . . . . . . . . . . . . . . . 85, 87
≤ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
| . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
|= . . . . . . . . . . 29–36, 48, 66, 71, 73, 75
�L . . . . . . . . . . . . . . . . . . . . . . . . . 281∏

. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
? : ?→ ? . . . . . . . . . . . . . . . . . . . . . . 8
?{?/?} . . . . . . . . . . . . . . . . . . . 10, 185
⊆ . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8∑

. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
× . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

〈, 〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
` . . . . . . . . . . . . . . . . . 18, 41, 84, 254
{, } . . . . . . . . . . . . . . . . . . . . . . . . . . 7
m|n . . . . . . . . . . . . . . . . . . . . . . . . . . 8(
n
m

)
. . . . . . . . . . . . . . . . . . . . . . . . . . 8

n! . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4M . . . . . . . . . . . . . . . 15, 209, 210, 256
5M . . . . . . . . . . . . . . . 15, 209, 210, 256

4 . . . . . . . . . 15, 183, 209, 210, 230, 231,
235–238, 241, 243, 253, 255, 256, 278, 279

5 . . . . . . 15, 209, 210, 230, 236, 238, 242,
243, 256, 278, 279

A . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
accessibility relation . . . . . 27, 28, 68, 71,

104, 186
add garbage . . . . . . . . . . . . . . . . . . 206
additional assumption . . . . . . . 17, 18, 27
algorithm complexity . . . . . . . . 165, 165
atoms . . . . . . . . . . . . . . . . . . . 265, 266
average case complexity . . . . . . . . . . 166
axiom . . . . . . . . . . . . . . . . . . 17, 41, 84

B . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B . . . . . . 15, 209, 210, 230, 256, 278, 279
backtracking . . . . . . . . . . . . . . . . 50, 58
backward proof search . . . . 18, 41, 42, 50,
58, 78, 88, 89, 104, 115, 131, 146, 150, 155,

161, 168, 170–172, 174
benchmark . . . . . . . . . . . . . . . . 225–249
black box test . . . . . . . . . . . . . . . . . 203
BM . . . . . . . . . . . . . . . 15, 209, 210, 256
boxed instance . . . . . . . . . 254, 254, 255
branching formula . . . . 229, 237, 242, 243
breadth-first search . . . . . . . . . . . . . . 88

C . . . . . . . . . . . . . . . . . . . . . . . . . . 10
C++ . . . . . . . . . . . . . . . . . . . . 193, 195
card . . . . . . . . . . . . . . . . . . . . . . . . 7, 8
classical predicate logic . . . . . . . . . . . 187
classical propositional logic . . . . see CPC
comma . . . . . . . . . . . . . . . . . . . . . . . . 9
complexity . . . . . . . . . 165–176, 178, 198
complexity class . . . . . . . . . . . . . . . 166
connection method . . . . . . . . . . . . . . 90
connective . . . . . . . . . . . . . . . . . . . 9, 10
connectives . . . . . . . . . . . . . . . 265, 266
coNP . . . . . . . . . . . . . 166, 167, 176, 178
contraction . . . . . . . . . . . . . . . . . 89, 120
coPSPACE . . . . . . . . . . . . . . . . . . . . 167
courses . . . . . . . . . . . . . . . . . . . . . . 198



305

CPC . . . . 25, 27, 40, 89, 90, 163, 166, 167,
176, 265, 270, 289

CTL . . . . . . . . . . . . . . . 37, 81, 176, 187
cut off . . . . . . . . . . . . . . . . . . . . . . . 90

D . . . . . . . . . . . . . . . . . . . . . . . . . . 10
D . . . . . . 15, 209, 210, 230, 256, 278, 279
D2 . . . . . . . . . 15, 209, 210, 256, 278, 279
decision procedure . . . . . . . . . . . . . . 255
depth . . . . . . . . . . . . . . . . . . . . . 41, 84
depth . . . . . . . . . . . . . . . . . . . . . . . . 12
depth-first search . . . . . . . . . . . . 88, 117
depthF . . . . . . . . . . . . . . . . . . 266, 274
diagram . . . . . . . . . . . . . . . . . . 281–290
diagram . . . . . . . . . . . . . . . . . . . . . 285
diam . . . . . . . . . . 170–172, 174, 180, 181
diameter . . . . . . . . . . . . . . . . . . . . . . 29
double exponential time . . . . . . 166, 168,

171, 175
Dum . . . . . . . 15, 209, 210, 230, 237, 238,

259, 278, 279
Dum1 . . . . . . 15, 209, 210, 230, 237, 259,

278, 279
Dum2 . . . . . . 15, 209, 210, 259, 278, 279
Dum3 . . . . . . 15, 209, 210, 259, 278, 279
Dum4 . . . . . . 15, 209, 210, 230, 259, 278,

279
duplicate formula . . . . . . 88, 89, 94, 100,

109, 113, 119, 122, 123, 125, 130, 143, 172

E . . . . . . . . . . . . . . . . . . . . . . . . . . 10
education . . . . . . . . . . . . . . . . . . . . 198
eli . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
embedding . . . . . . . 22, 34, 177, 177–187,

226, 244, 246
exponential . . . . . . . . . 158, 229, 237, 243
exponential space . . . . . . . . 166, 171, 175
exponential time . . . . . . . . . . . 166, 168
EXPTIME . . . . . . . . . . . . . 166, 171, 176

F . . . . . . . . . . . . . . . . . . . . . . . . . . 146
F . . . . . . . . . . . . . . . . . . . . 15, 209, 210
FaCT . . . . . . . . . . . . . . . . . . . . . . . . . 3
fail . . . . . . . . . . . . . . . . . . . . . . . . . 42
false . . . . . . . . . . . . . . . . . . . . . . . . . . 9
FmlL . . . . . . . . . . . . . . . . . . . . . . . . . 9
FmlF . . . . . . . . . . . . . . . . . . . . . . . 266
fmls . . . . . . . . . . . . . . . . . . . . 268, 283
formula . . . . . . . . . . . . . . . . . . . . . . . 9
formula scheme . . . . . . . . . . . . . . . . . 10
forward proof search . . . . . . . . . . . . . 18

fragment . . . . . . 265, 265, 266, 267, 273,
282

frame . . . . . . . . . . . . . . . 28, 31, 33, 35
function . . . . . . . . . . . . . . . . . . . . . . . 8
future . . . . . . . . . . . . . . . . . . . . . . . . 36

G . . . . . . 15, 209, 210, 257, 259, 278, 279
G(b1, . . . , bm) . . . . . . . . . . . . . . 180, 180
G0 . . . . . . . . . . . . . . . 15, 209, 210, 257
gcd . . . . . . . . . . . . . . . . . . . . . . . . . . 8
graph . . . . . . . . . . . . . . . . . . . . . . . . 40
graph calculus . . . . . . 41, 39–81, 83, 146,

167
graph scheme . . . . . . . . . . . . . . . . . . 40
graphical user interface . . . . . . . 194, 197
Grz . . . . 15, 209, 210, 231, 238, 243, 259,

278, 279
Grz1 . . . . . . . 15, 209, 210, 231, 238, 243,

259, 278, 279
Grz2 . . . . . . . 15, 209, 210, 259, 278, 279
Grz3 . . . . . . . 15, 209, 210, 259, 278, 279
Grz4 . . . . . . . 15, 209, 210, 259, 278, 279
Grz5 . . . . . . . . . . . . . . 15, 209, 210, 259
GUI . . . . . . . see graphical user interface

H . . . . . . . . . . . . . . . . . . . . . . . . . 8, 89
H . . . . . . . . . . . . . 15, 209, 210, 232, 257
H+ . . . . . . . . . . . . . . . 15, 209, 210, 257
hardware . . . . . . . . . . . . . . . . . . . . . 248
Helsinki Logic Machine . . . . . . . . . . . 192
Hilbert-style calculus . . . . 17, 17–25, 88,

253–259
history . . . . . 89, 109, 112, 115, 117, 129,

143
home page . . . . . . . . . . . . . . . . 199, 249
Hs . . . . . . . . . 15, 209, 210, 258, 278, 279

indirect . . . . . . . . . . . . . . . . . . 152, 153
information system . . . . . . . . . . . . . 197
injective . . . . . . . . . . . . . . . . . . . . . . . 8
instance . . . . . . . . . . . . . . . . . . . . . . 10
intuitionistic propositional logic . . . . . see

IPC
invertible . . . . . . . . . . . . . . . . 50, 57, 85
invertible rule . . . . 42, 42, 45, 47, 51, 58,

66, 68, 70–73, 75, 85, 85, 87, 92, 100, 107,
108, 112, 118, 121, 125, 126, 129, 133, 136,

143, 150, 155, 167
IPC . . . . . 25, 37, 163, 176, 187, 223, 271,

290
Isabelle . . . . . . . . . . . . . . . . . . . . . . 193



306 INDEX

Jape . . . . . . . . . . . . . . . . . . . . . . . . 193

K . . . . . . . . 13, 19, 28–31, 43–61, 90–106,
168–171, 178–183, 187, 208–215, 229–236,

253, 255, 265, 270, 289
k . . . . . . . . . . . . . . . . . . . 182, 182, 183
KA1 . . .An

H . . . . . . . . . . . . 254, 254–259
kernel . . . . . . . . . . . . . . . . . . . . . . . 193
KG . . . . . 43, 45, 47, 48, 50–55, 57–61, 66,

68, 168
KG,2 . . . . . . 55, 55, 57, 58, 61–65, 70, 96
KH . . . . . . . . . . . 19, 20, 23, 97, 253, 254
Kn . . . . . . . . . . . . . . . . 25, 37, 161, 176
k ∗ n . . . . . . . . . . . . . . . . . . . . 229–236
Kn + T . . . . . . . . . . . . . . . . . 25, 37, 161
k ∗ p . . . . . . . . . . . . . . . . . . . . 229–236
Kris . . . . . . . . . . . . . . . . . . . . . . . . . . 3
KS . . . . . . . . . . . . 90, 92, 94, 96–99, 101
KS,2 . . . . . 99, 99, 100–102, 104, 106, 107,

170, 171
KT . . . . . . . . . . 13, 20–21, 31–32, 68–70,

117–124, 171–174, 181–183, 215–219,
236–242, 255, 265, 270, 286–288

Kt . . . . . . . . . 23, 35–36, 74–78, 146–161,
175–176

KT45H . . . . . . . . . . . . . . . . . . . . . . 254
KT4H . . . . . . . . . . . . . . . . . . . . . . . 254
KTG . . . . . . . . . . . . . 68, 68, 69–71, 171
KGt . . . . . . . . . . 74, 75–81, 146, 150, 175
KTG,2 . . . . . . . . . . . . . . 70, 70, 117, 119
KG,2t . . . . . . . . . . 146, 148, 150–152, 155
KG,3t . . . . . . . . . . . 146, 152, 154–158, 160
KTH . . . . . . . . . . . . . . . . 20, 21, 22, 253
KHt . . . . . . . . . . . . . . . . . . . . . . . 23, 23
KTn . . . . . . . . . . . . . . . 25, 37, 161, 176
kt ∗ n . . . . . . . . . . . . . . . . . . . . 236–242
KTn + T . . . . . . . . . . . . . . . . 25, 37, 161
kt ∗ p . . . . . . . . . . . . . . . . . . . . 236–242
KTS . . . . . . 117, 117, 118–122, 124, 172,

173
KSt . . . . . . . . 146, 158, 158, 160–162, 175
KTS,2 . . . . . 121, 121, 122–124, 126, 172,

174
KT + T . . . . . . . 13, 21–22, 32–33, 70–71,

124–131, 181–183
(kt + T) . . . . . . . . . . . . . . . . . 185, 185
(KT + T )G . . . . . . . . . . . . . . . 70, 70, 71
(KT + T )G,2 . . . . . . . . . . . . . 71, 71, 125
(KT + T )H . . . . . . . . . . . . . . . . 21, 125
(KT + T )S . . . . . . . . . . . . 124, 125, 126
(KT + T )S,2 . . . . . . . . . . . 126, 126, 127

(KT + T )S,3 . . . . . . . . 127, 127, 128–132
K + T . . . . . . 13, 20, 31, 61–68, 106–117,

171, 178–184, 187
(k + T) . . . . . . . . . . . . . . . 182, 182, 183
(K + T )G . . . . . . . . . . . . . 61, 61, 66, 68
(K + T )G,2 . . . . . . . . . . . . . . 68, 68, 107
(K + T )H . . . . . . . . . . . . . . . 20, 20, 107
(k + T)inst . . . . . . . . . . . . . . . . 183, 184
(K + T )S . . . . . . . . . . 106, 107, 108, 111
(K + T )S,2 . . . . . . . . . 107, 108, 109, 171
(K + T )S,3 . . . . . . . . . 109, 109, 110–116

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
L . . . . . . . . . . . . . 15, 209, 210, 232, 257
L+ . . . . . . . . . . . . . . . . . . . . . . 257, 259
L++ . . . . . . . . . . . . . . 15, 209, 210, 257
labelled tableau . . . . . . . . . . . . . . . . 170
labyrinth . . . . . . . . . . . . . . . . . 232, 233
language . . . . . . . . . . . . . . . . . . . . . . 9
left-associative . . . . . . . . . . . . . . . . . . 10
lemma generation . . . . . . . . . . . . 90, 171
length . . . . . . . . . . . . . . . . . . . . 12, 178
lengthF . . . . . . . . . . . . . . . . . . 274, 275
lex . . . . . . . . . . . . . . . . . . . . . . . . . 195
linear logic . . . . . . . . . . 25, 163, 176, 187
Logics Workbench . . . . . . . . . . see LWB
loop-check . . . . . . . . 66, 88, 89, 109, 196
LWB . . . . . . 191, 191–201, 203, 225, 229,

248–249, 255, 270, 277, 286

M . . . . . 15, 209, 210, 235, 241, 247, 257,
278, 279

M . . . . . . . . . . . . . . . . . . . . . . . . . . 28
m . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
M2 . . . . . . . . 15, 209, 210, 257, 278, 279
M3 . . . . . . . . . . . . . . . 15, 209, 210, 257
Mac Logic . . . . . . . . . . . . . . . . . . . . 193
many-valued logic . . . . . . . . . . . . 90, 163
mapping . . . . . . . . . . . . . . 177, 177–187
max . . . . . . . . . . . . . . . . . . . . . . . . . . 8
maximal set of non-equiv. fmls . . . . 266,

266–268, 281, 282
min . . . . . . . . . . . . . . . . . . . . . . . . . . 8
minimal elements . . . . . . . . . . . . . 284
modal depth . . . . . 13, 176, 239, 244, 245
modaldepth . . . . . . . . . . . . . . . . . . . 12
modality . . . . . . . . . . . . . . 270, 286–289
model . . . . 28, 28, 31–35, 39, 48, 53, 58,

65, 81, 117, 133, 142, 170, 172, 174,
179–181, 186, 229, 237, 243

module . . . . . . . . . . . . . . . . . . . . . . 195



307

modus ponens . . . . . . . . . . . . . . . . . . 17
Motif . . . . . . . . . . . . . . . . . . . . . . . 197
multimodal logics . . . . . . 25, 37, 161, 176
multiset . . . . . . . . . . . . . . . . . . . . . . . 8

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
natural number . . . . . . . . . . . . . . . . . . 8
negation normal form . . . . . . 13, 14, 168
next rnd . . . . . . . . . . . . . . . . . . . . 205
nnf . . . . . . . . . . . . . . . . . . . . . . 13, 14
non-det. polynomial time . . . . . . . . . 166
nonmonotonic logic . . . . . . 192, 196, 199
normal form . . . . . . . . . . . . . . . . . . . 20
normal modal logic . . . . . . 254, 253–259
NP . . . . . . . . . . . . . . . . . . 166, 166, 167

one-sided sequent calculus . . . . . . . . . see
sequent calculus

P . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
P . . . . . . . . . . . . . . . . . . . . . . . . . . 166
P . . . . . 15, 209, 210, 235, 236, 241, 247,

258, 278, 279
pi . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
parenthese . . . . . . . . . . . . . . . . . . . . 10
parser . . . . . . . . . . . . . . . . . . . . . . . 195
past . . . . . . . . . . . . . . . . . . . . . . . . . 36
path . . . . . . . . . . . . . . . . . . 29, 232, 233
permutation . . . . . . . . . . . . . . . . . . . 85
pigeonhole formula . . . . 90, 226, 227, 234,

240, 245, 246
PLTL . . . . . . . 25, 37, 81, 88, 90, 117, 176
polygon . . . . . . . . . . . . . . . 235, 240, 241
polynomial . . . . . 158, 178, 179, 181, 183
polynomial space . . . . 166, 170, 174, 175
polynomial time . . . . . . . . . . . . 166, 166
possible world semantics . . . . . 27, 39, 68,

71, 104
postulates . . . . . . . . . . . . . . . . . 225–228
predecessors . . . . . . . . . . . . . . . . . 285
prefixed tableau . . . . . . . . . . . . . . . . . 43
priority . . . . . . . . . . . . . . . . . . . . . . . 10
problem complexity . . . . . . . . . 165, 165
programming language . . . . . . . . . . . 195
proof . . . . . . 52, 54, 58, 62–65, 69, 72, 79,

80, 116, 132, 151, 157, 162, 173, 193, 196,
197

proof condensation . . . . . . . . . . . . . . 90
Proof Tutor . . . . . . . . . . . . . . . . . . . 193
propagation problem . . . . . . . . . . . . 203
provable . . . . . . . . . . . . . . . . . . . . see `

PSPACE . . . . . . . . . . 166, 167, 170, 172,
174–176, 178

Pt . . . . . . . . . 15, 209, 210, 257, 278, 279

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

R . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
R . . . . . . . . . 15, 209, 210, 258, 278, 279
random formula . . . . . . . . . . . . . . . . 204
reference counting . . . . . . . . . . . . . . 193
reflexive . . . . 30, 31, 33, 68, 69, 104, 281,

282
right-associative . . . . . . . . . . . . . . . . 10
rnd fml . . . . . . . . . . . . . . . . . . . . . 204
rule . . . . . . . . . . . . . . . . . . . 17, 41, 84

S4 . . . . . . 13, 22, 33–34, 71–73, 131–146,
174–175, 183–187, 219–223, 242–247, 255,

265, 270, 277–279, 286, 287, 289–291
S4G . . . . . . . . . . . . . . . . . . . 71–73, 174
S4G,2 . . . . . . . . . . . . . . . . . . 73, 73, 134
S4H . . . . . . . . . . . . 22, 22, 134, 253, 254
S4n . . . . . . . . . . . . . . . . 25, 37, 161, 176
s4 ∗ n . . . . . . . . . . . . . . . . . . . 242–247
S4n + T . . . . . . . . . . . . . . . . 25, 37, 161
s4 ∗ p . . . . . . . . . . . . . . . . . . . 242–247
S4S . . . . . . . . . . . . . . . . . 131, 133–136
S4S,2 . . . . . . . . . 135, 135, 136, 137, 140
S4S,3 . . . . . . 137, 140, 140, 141–146, 174
S4 + T . . . . . . . . . 13, 22–23, 34–35, 186
(S4 + T )H . . . . . . . . . . . . . . . . . . 22, 22
S5 . . . . . . . . . . . 25, 36, 78, 176, 187, 270
S5H . . . . . . . . . . . . . . . . . . . . . . . . 254
S5n . . . . . . . . . . . . . . . . . . . . . . . . . 176
satisfiability problem . . . . . . . . 165, 167
satisfiable . . . . . . . . . . . . . . . . . . . . . 28
scalable formula . . . . . . . . . . . . 226, 227
search . . . . . . . . . . . . . . . . . . . . . . 268
search tree . . . . 42, 51, 53, 56, 58, 61, 64,

78, 79, 89, 106, 115, 131, 150, 156, 161
sequent . . . . . . . . . . . . . . . . . . . . . . 83
sequent calculus . . . . . 39, 43, 84, 83–163
sequent scheme . . . . . . . . . . . . . . . . . 83
session . . . . . . . . . . . . . . . . . . . . . . 199
set . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
shorter fml . . . . . . . . . . . . . . . . . . 275
simplification . . . . . . . . . . . 196, 273–279
speed-up . . . . . . . . . . . 167, 171, 174, 175
standard formula . . . . . 14, 15, 204, 209,

210
strongly invertible rule . . . . . . . . . 42, 85
structure sharing . . . . . . . . . . . . 183, 196



308 INDEX

subfmls . . . . . . . . . . . . . . . . . . . . 11, 88
subformula property . . . . . . . . 17, 19, 88
substitution . . . . . . . . . . . . . . . 10, 185
substructural logic . . . . . . . . . . . . . . 187
surjective . . . . . . . . . . . . . . . . . . . . . . 8

T . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
T . . . . . 15, 183, 184, 209, 210, 230, 235,

236, 253, 255, 256, 278, 279
T〈b1,...,bm〉 . . . . . . . . . . 179, 179, 180, 181
temporal logic . . . . . . . . . see PLTL, CTL
termination . . . . . . 18, 39, 46, 66, 69, 73,

75, 88, 89, 102, 108–110, 120, 122, 126,
128, 137, 141, 160, 170

test . . . . . . . . . . . . . . . . . . . . . 203–223
ThL . . . . . . . . . . . . . . . . . . . . . . . . . 11
theory . . . . . . . . . . . . . . . . . . . . . . . 11
TPTP . . . . . . . . . . . . . . . . . . . . . . . 225
transitive . . . . . . . . 33, 71, 186, 281, 282
true . . . . . . . . . . . . . . . . . . . . . . . . . . 9
tuple . . . . . . . . . . . . . . . . . . . . . . . . . 9
two-sided sequent calculus . . . . . . . . . 84

undecidable . . . . . . . . . . . . . . . . . . . 176
use-check . . . . 89, 90, 102, 113, 123, 124,

130, 144, 145, 167, 170–172, 175, 196

valid . . . . . . . . . . . . . . . . . . . . . . see |=
validity problem . . . . . 165, 170–172, 174,

175, 178
valuation . . . . . . . . . . . . . . . . 27, 28, 29
Var . . . . . . . . . . . . . . . . . . . . . . . . . . 9
variable . . . . . . . . . . . . . . . . . . . . . . . 9
vars . . . . . . . . . . . . . . . . . . . . . . . . . 11

W . . . . . . . . . 15, 209, 210, 258, 278, 279
W0 . . . . . . . . 15, 209, 210, 258, 278, 279
weakening . . . . . 85, 92, 99, 107, 108, 118,

121, 125, 126, 133, 136
world . . . . . . . 27, 28, 186, 229, 237, 243
World Wide Web . . . . . . . . . see WWW
worst case complexity . . . . . . . . . . . . 166
WWW . . . . . . . . . . . . . . . 197, 199, 249

X . . . . . . . . . . . . . 15, 209, 210, 278, 279

yacc . . . . . . . . . . . . . . . . . . . . . . . . 195

Z . . . . . . . . . . 15, 209, 210, 258, 278, 279
Zem . . . . . . . 15, 209, 210, 258, 278, 279



r
2

r
9

Z
Z
Z

� � �

r4 � � �
r
14

Z
Z
Z

� � �

r16ZZ
Z

� � �r
10

Z
Z
Z

� � �r
8

Z
Z
Z

r11 � � �r
25

Z
Z
Z

� � �p24Z
Z
Z

r
29

Z
Z
Z

� � �

r30 � � �p18Z
ZZ

r
17

Z
Z
Z

� � �

r
12

Z
Z
Z

� � �

r3 r
6
� � �r

31

ZZ
Z
Z

� � �

r
15

Z
Z
Z

� � �

r
1

Z
Z
Z

r28 � � �r
21

Z
Z
Z

� � �r
35

Z
Z
Z

� � �

r23Z
Z
Z

r27 � � �p13� � �r
19

Z
Z
Z

� � �r
20

Z
Z
Z

r34ZZ
Z

� � �p22 r
26

Z
Z
Z

r7 � � �
r
32

Z
Z
Z
r
33

r
5

1

ε|A

(∨
)

...

(3
)

5

3¬
p
1 ,A

1 ,A
2 ,A|3

(¬
p
0∨
p
3 ),2

p
2 ,2

(p
0∧
p
1 )

(2
)

6

2
(p

0∧
p
1 ),3¬

p
1 ,A

1 ,A
2 ,A|3

(¬
p
0∨
p
3 ),2

p
2

ε|p
0∧
p
1 ,¬
p
1

H
HHj

(2
)

7

2
p
2 ,2

(p
0∧
p
1 ),3¬

p
1 ,A

1 ,A
2 ,A|3

(¬
p
0∨
p
3 )

ε|p
2 ,¬
p
1

ε|p
0∧
p
1 ,¬
p
1

H
HHj

� ��*

(3
)

8
Π|ε

ε|¬
p
0∨
p
3 ,p

2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(jum
p)

9
Π|ε

ε|¬
p
0∨
p
3 ,p

2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(∨
)

10
Π|ε

¬
p
0∨
p
3 |¬
p
0 ,p

3 ,p
2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(jum
p−

)

11
Π|ε

¬
p
0∨
p
3 |¬
p
0 ,p

3 ,p
2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(jum
p)

12
Π|ε

¬
p
0∨
p
3 |¬
p
0 ,p

3 ,p
2 ,¬
p
1

ε|¬
p
0∨
p
3 ,p

0∧
p
1 ,¬
p
1

H
HHj

� ��*

(∧
)

#
The

main
procedure.

#
Constructs

the
formula

and
checks

with
insert

whether
they

are
‘new’.

proc
search()

local
l,

n,
x,

y;

begin
n
:=

nops(atoms);

while
n
>
0
do

begin

print("
while");

foreach
x
in

last
fmls

do
begin

foreach
c
in

connectives
do

begin

if
(c

=
BOX)

then
insert(box

x);

if
(c

=
DIA)

then
insert(dia

x);

end;foreach
y
in

all
fmls

do
begin

foreach
c
in

connectives
do

begin

if
(c

=
AND)

then
insert(x

&
y);

else
if

(c
=
OR)

then
insert(x

v
y);

else
if

(c
=
IMP)

then
begin

insert(x
->

y);
insert(y

->
x);

end;

else
if

(c
=
EQ)

then
insert(x

<->
y);

end;

end;

end;n
:=

nops(new
fmls);

all
fmls

:=
concat(all

fmls,
new

fmls);

last
fmls

:=
new

fmls;

new
fmls

:=
[];

end;

end;

KA
1 . . .A

k `
B

A
1 , . . . , A

k

B

4,Dum

Dum
1

4{2(p
0 →

2
p
0 )→

p
0 /p

0 }, 24, Dum, Dum{p
0 →

2
p
0 /p

0 }

T
,Dum

1

Dum
T, Dum

1

T
,Dum

Dum
2

2T, Dum

T
,Dum

2

Dum
T, 2T{p

0 →
2
p
0 /p

0 }, Dum
2

T
, 4,Dum

Dum
3

2T, 4{2(p
0 →

2
p
0 )→

p
0 /p

0 }, 24, Dum, Dum{p
0 →

2
p
0 /p

0 }

T
,Dum

3

Dum
T, 2T{p

0 →
2
p
0 /p

0 }, Dum
3

Dum

Dum
4

Dum

T
,Dum

4

Dum
T, Dum

4

Grz

Grz
1

Grz{(2(p
0 →

2
p
0 )→

p
0 ) ∧

4{2(p
0 →

2
p
0 )→

p
0 /p

0 }/p
0 }, 2Grz

T
,Grz

1

Grz
T, T{Grz

1 /p
0 }, 2Grz

1

Grz

Grz
2

Grz, 2Grz

T
,Grz

2

Grz
2T{p

0 →
2
p
0 /p

0 }, T{¬
2(2(p

0 →
2
p
0 )→

p
0 )/p

0 }, Grz
2

Grz

Grz
3

Grz{(2(p
0 →

2
p
0 )→

2
p
0 ) ∧

Grz

∧ 4{(2(p
0 →

2
p
0 )→

2
p
0 ) ∧

Grz/p
0 }/p

0 },

2Grz

T
,Grz

3

Grz
T, 2T{p

0 →
2
p
0 /p

0 }, Grz
3

Grz

Grz
4

Grz, Grz{(2(p
0 →

2
p
0 )→

p
0 ) ∧

4{2(p
0 →

2
p
0 )→

p
0 /p

0 }/p
0 }

T
,Grz

4

Grz
T, Grz

4

Grz

Grz
5

Grz{(2(p
0 →

2
p
1 )→

2
p
1 ) ∧

4{2(p
0 →

2
p
1 )→

2
p
1 /p

0 }/p
0 },

Grz{(2((p
0 →

2
p
1 )→

2(p
0 →

2
p
1 ))→

(p
0 →

2
p
1 ))

∧ 4{2((p
0 →

2
p
1 )→

2(p
0 →

2
p
1 ))→

(p
0 →

2
p
1 )/p

0 }/p
0 },

2Grz{p
0 →

2
p
1 /p

0 }

T
, 4,Grz

5

Grz
T{2(p

0 →
2
p
0 )→

p
0 /p

0 }, 2
2T{p

0 →
2
p
0 /p

0 },

4{2(p
0 →

2
p
0 )→

p
0 /p

0 }, 24,

Grz
5 {p

0 →
2
p
0 /p

1 }

Grz

T

Grz

Grz

4

Grz{p
0 ∧

4/p
0 }

Grz

M

Grz{3¬p
0 /p

0 }, Grz{3¬p
0 ∧

4{3¬p
0 /p

0 }/p
0 },

Grz{¬
2(p

0 →
2
p
0 ) ∧

4{¬
2(p

0 →
2
p
0 )/p

0 }/p
0 },

2Grz

Grz

Dum
Grz

Grz
1

Dum
1

Grz
1

T
,M
,Dum

Grz
2T{¬p

0 /p
0 }, M

, Dum

PSPACE, NP, coNP

(p
5
v
(
(p
4
v
di
a
bo
x
fa
ls
e
<-
>
bo
x
p3

->
tr
ue
)
&
p0

->
(p
7
<-
>
di
a

(d
ia

di
a
(p
7
->

p2
)
<-
>
p7

&
(d
ia

p7
v
p2
)
)
&
p6
)
v
di
a
(
(d
ia

p1
->

di
a
p0

<-
>
(b
ox

p5
<-
>
p5
)
)
<-
>
bo
x
bo
x
(p
5
&
p7
)
->

(p
3
&
fa
ls
e
->

di
a
p4
)
)
)
->

p0
)
&
(b
ox

(
(
(
(
(p
7
<-
>
p7
)
v
p1
)
<-
>
(p
5
->

p4
)
->

(p
6
->

p3
)
->

fa
ls
e)

->
(p
4
&
(p
5
v
p7
)
&
di
a
bo
x
p5
)
<-
>
(
(p
1
v
p7
)

&
p4

v
(t
ru
e
<-
>
p3

<-
>
p2

v
p3
)
->

(b
ox

p6
&
bo
x
p1
)
)
)
&
(
(
(d
ia

tr
ue

->
(f
al
se

&
p0
)
)
&
(
(p
3
->

fa
ls
e)

<-
>
(p
2
<-
>
p7
)
)
<-
>
p4
)
v

(
(t
ru
e
<-
>
p7
)
v
(
(p
2
<-
>
p5
)
v
bo
x
fa
ls
e)

)
)
)
&
bo
x
(
(b
ox

(d
ia

(p
4
<-
>
fa
ls
e)

v
di
a
p7

&
di
a
tr
ue
)
<-
>
p5

<-
>
bo
x
(d
ia

(p
0
&
p3
)
v

(f
al
se

v
di
a
p4
)
)
v
di
a
p4

&
p4

<-
>
p7

->
di
a
(p
6
->

(f
al
se

<-
>
p2
)

->
p7

->
p4
)
)
v
(
(
(
(b
ox

(p
7
&
p5
)
->

p2
v
bo
x
fa
ls
e)

->
(d
ia

p5
v

(p
1
->

tr
ue
)
)
)
->

(p
1
->

di
a
p0

<-
>
p6

&
p1

->
tr
ue
)
)
&
(b
ox

(b
ox

p6
<-
>
(p
1
<-
>
p6
)
)
v
di
a
p4
)
)
)
)
v
(p
0
&
p1

v
p0

<-
>
p4

->
p5
)

->
(
(p
1
&
(p
1
&
p2
)
v
p2

&
p3
)
->

p4
)
v
(p
4
v
di
a
bo
x
fa
ls
e
<-
>
bo
x

p3
->

tr
ue
)
->

(p
5
v
(
(p
4
v
di
a
bo
x
fa
ls
e
<-
>
bo
x
p3

->
tr
ue
)
&
p0

->
(p
7
<-
>
di
a
(d
ia

di
a
(p
7
->

p2
)
<-
>
p7

&
(d
ia

p7
v
p2
)
)
&
p6
)
v

di
a
(
(d
ia

p1
->

di
a
p0

<-
>
(b
ox

p5
<-
>
p5
)
)
<-
>
bo
x
bo
x
(p
5
&
p7
)

->
(p
3
&
fa
ls
e
->

di
a
p4
)
)
)
->

p0
)
&
(b
ox

(
(
(
(
(p
7
<-
>
p7
)
v
p1
)

<-
>
(p
5
->

p4
)
->

(p
6
->

p3
)
->

fa
ls
e)

->
(p
4
&
(p
5
v
p7
)
&
di
a
bo
x

p5
)
<-
>
(
(p
1
v
p7
)
&
p4

v
(t
ru
e
<-
>
p3

<-
>
p2

v
p3
)
->

(b
ox

p6
&
bo
x

p1
)
)
)
&
(
(
(d
ia

tr
ue

->
(f
al
se

&
p0
)
)
&
(
(p
3
->

fa
ls
e)

<-
>
(p
2

<-
>
p7
)
)
<-
>
p4
)
v
(
(t
ru
e
<-
>
p7
)
v
(
(p
2
<-
>
p5
)
v
bo
x
fa
ls
e)

)

)
)
&
bo
x
(
(b
ox

(d
ia

(p
4
<-
>
fa
ls
e)

v
di
a
p7

&
di
a
tr
ue
)
<-
>
p5

<-
>

bo
x
(d
ia

(p
0
&
p3
)
v
(f
al
se

v
di
a
p4
)
)
v
di
a
p4

&
p4

<-
>
p7

->
di
a

(p
6
->

(f
al
se

<-
>
p2
)
->

p7
->

p4
)
)
v
(
(
(
(b
ox

(p
7
&
p5
)
->

p2
v

bo
x
fa
ls
e)

->
(d
ia

p5
v
(p
1
->

tr
ue
)
)
)
->

(p
1
->

di
a
p0

<-
>
p6

&
p1

->
tr
ue
)
)
&
(b
ox

(b
ox

p6
<-
>
(p
1
<-
>
p6
)
)
v
di
a
p4
)
)
)
)
v
(p
0
&

p1
v
p0

<-
>
p4

->
p5
)
->

(
(p
1
&
(p
1
&
p2
)
v
p2

&
p3
)
->

p4
)
v
(p
4
v

di
a
bo
x
fa
ls
e
<-
>
bo
x
p3

->
tr
ue
)
->

(cpc)

p
0 →

p
0 ∨

3
p
1

(2)

2(p
0 →

p
0 ∨

3
p
1 )

2()
(mp)

2
p
0 →

2(p
0 ∨

3
p
1 )

(2)

2(2
p
0 →

2(p
0 ∨

3
p
1 ))

Sequent Calculi for Proof Search

in Some Modal Logics

Modal logics have a long tradition in logic. In the first part
of this thesis we develop sequent calculi for the propositional
modal logics K, KT, S4 (with and without theories) and the
propositional tense logic Kt. Proof search in these calculi
always terminates, and several optimizations help to make
it more efficient.

Implementations of these decision procedures are part of the
Logics Workbench (LWB). We provide numerous tests and
benchmark formulas.

The third part contains some applications, for example the
computation of diagrams and investigations of the relations
between propositional normal modal logics.

We present not only new results, but also try to give an
overview on the subject. In addition there are remarks con-
cerning other logics at the end of each chapter.


