
Dependent Choice in

Explicit Mathematics

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Dieter Probst

1999

Leiter der Arbeit:

Prof. Dr. Gerhard Jäger,
Institut für Informatik und angewandte Mathematik

Contents

0 Introduction 5

1 A Lower Bound for EETJ + (dc) + (T-IN) 7
1.1 The Theory EETJ . 7
1.2 The Axiom (dc) . 12
1.3 The Theories (Π1

0-CA)α for α < ε0 . 14
1.4 The Embedding of (Π1

0-CA)<ωω� into EETJ + (dc) + (T-IN) 15

2 An Upper Bound for EETJ + (dc) + (T-IN) 21
2.1 The Theories FID(K) . 21
2.2 A Recursion Theoretic Model . 23
2.3 A Term Model . 30

3

0 Introduction

In this thesis we’ll present an axiom (dc) for dependent choice in explicit mathemat-
ics, and we’ll give a proof-theoretical analysis of the resulting theory. The axiom we
treat here was proposed by Jäger and enables us to embed the subsystem of analysis
(Π1

0-CA)<ωω� into our theory in much the same way as it is embedded into the system
(Σ1

1-DC)� in Cantini [3]. Hence we get ϕω0 as a lower bound. An upper bound for
our theory with dependent choice is established by formalizing models within the
theory FIDr(Π0

1), introduced in Jäger [10] . This yields that the bound ϕω0 is sharp.

The fragment of explicit mathematics we start with is the theory EETJ + (T-IN),
i.e. we have just the usual axioms for elementary comprehension, an axiom for the
constant j that allows us to build the disjoint union of an infinite family of types,
and an induction principle for types. This theory corresponds to the subsystem of
analysis (Σ1

1-AC)�. As EETJ+(T-IN), it lacks the possibility of forming hierarchies, i.e
we can’t form infinite sequence of sets, where each set is defined referring explicitly
to its predecessors. In the theory (Σ1

1-DC)� this possibility is given by the axiom DC,
stating, that given an arithmetic formula F such that (∀X)(∃Y)F (X, Y) holds, there
is a set (a hierarchy) Z, satisfying (Z)0 = X and (∀x)F ([(Z)x, (Z)x+1]. In explicit
mathematics this is realized by introducing a new constant (dc) by the following
axioms:

Dependent choice (dc).

(dc.1) <(a) ∧ (f : < → <)→ (dc(a, f) : N→ <),
(dc.2) <(a) ∧ (f : < → <)→

dc(a, f)(0) = a ∧ (∀n ∈ N)[dc(a, f)(sNn) = f(dc(a, f)(n))].

The strength of (dc) is due to the totality assertion in (dc.1). Together with join
this enables us to build hierarchies: If F is an elementary formula, let HierF (α, z)
formalize the statement ’a type X named z is a hierarchy w.r.t. F up to α’. Then
elementary comprehension allows us to define a term f0 such that HierF (α, z) implies
HierF (α+1, f0z). Now (dc) yields HierF (α+n, dc(f0, z)(n)). Applying join, we can
define a term f1 such that f1z = ∪

n∈N{dc(f0, z)(n)}, so that we get HierF (a+ω, f1z).

Iterating this process, we get for each k ∈ N a term fk with HierF (a+ωk, fkz). This
suffices to perform the aforementioned embedding.

To formalize models within the theory FIDr(Π0
1) we are using methods described

in Studer [15]. That is, we model the naming and elementhood relation by an
inductively generated relation PA(m,n, k) such that <(a) translates to PA(a∗, 0, 0)
and t ∈̇ a to PA(a∗, t∗, 1). We have just to take care that our operator form stays
Π0

1.

5

In our thesis we discuss two standard models, a recursion theoretic one, and a term
model. In the recursion theoretic model, the universe is the set of the natural
numbers, and r · s ' t is interpreted as {r∗}(s∗) ' t∗. Note that this abbreviates an
Σ0

1-formula. Now the constants are interpreted by appropriate codes for recursive
functions. That the translation of (dc.1) becomes provable in FIDr(Π0

1) we add the
following clause to our operator form A:

(1) P (a, 0, 0) ∧ (∀x)[P (x, 0, 0)→ P ({f}(x), 0, 0)]→ P (cl∗(a, f), 0, 2).

This clause is to ensure, that if the translation of the premise of (dc.1) holds, then
there exists already a stage α such that

Pα
A(a, 0, 0) ∧ (∀x)[Pα

A(x, 0, 0)→ Pα
A({f}(x), 0, 0)]

holds. That allows us to prove the translation of (dc.1) by ∆O

0 -induction on the
natural numbers. In order to reformulate (1) such that it becomes Π0

1 we introduce
an auxiliary type noval∗ (no value) with (f, s) ∈ noval∗ ⇐⇒ ¬{f}(s) ↓. Hence we
can check in A if {f ∗}(s∗) ↓ holds by asking if (f, s) /∈ noval∗. Then the translation
of (f : < → <) becomes equivalent to the Π0

1-formula

(∀x)[P (x, 0, 0)→ {f}(x) ↓] ∧ (∀x)(∀y)[P (x, 0, 0) ∧ {f}(x) = y → P (y, 0, 0)].

In the term model, the universe consists of all codes for closed Lp-terms. To model
equality, we define a relation Red1ρ on the codes for closed terms that models the
behaviour of the constants, e.g. if t∗ stands for the code of an Lp-term t, then
Red1ρ((kab)∗, a∗) holds. Equality is then interpreted by the Σ0

1-relation ≈ρ , the
reflexive, symmetric and transitive closure of Red1ρ. A problem is that PA has to
be closed w.r.t. ≈ρ . This can’t be achieved directly by a Π0

1-operator form. But
we find a primitive recursive function bd(x) satisfying Red1ρ(s, t) ⇒ t < bd(s), so
we can close PA under Red1ρ, that is, if we have PA(m,n, 1) and Red1ρ(m,m

′) or
Red1ρ(n, n

′), then also PA(m′, n, 1) or PA(m,n′, 1). Fortunately, it turns out that
closure w.r.t Red1ρ already means closure w.r.t. ≈ρ .

I am grateful to Prof. Gerhard Jäger for introducing me to explicit mathematics,
and Dr. Thomas Strahm for guiding me during my work. I have always appreciated
his competent advise. I also wish to acknowledge support and assistance I received
while writing this thesis from the entire research group. Finally, I would like to
thank all the people who contributed in one way or another to the completion of
this work.

Dieter Probst
Bern, May 31, 1999

6

1 A Lower Bound for EETJ + (dc) + (T-IN)

In this chapter we introduce a new axiom (dc) in order to handle dependent choice
in explicit mathematics, and we establish a lower bound for the theory EETJ+(dc)+
(T-IN) by embedding the subsystem of analysis (Π1

0-CA)<ωω into it.

1.1 The Theory EETJ

We formulate the theory EETJ in the language Lp, a two-sorted language with
individual variables a, b, c, f, g, h, w, x, y, z, . . . (possibly with subscript), and type
variables A,B,C,X, Y, Z, Lp includes individual constants k, s (combinators),
p, p0, p1 (pairing and projections), 0 (zero), sN (successor on natural numbers), pN
(predecessor on natural numbers), dN (definition by cases on natural numbers), id
(identity), co (complement), int (intersection), dom (domain), inv (inverse image)
and j (join). Further Lp has a binary function symbol · for (partial) term application,
unary relation symbols ↓ (defined) and N (natural numbers) as well as binary relation
symbols = (equality for individuals), ∈ (elementhood between individuals and types)
and < (naming).
The individual terms (r, s, t, . . .) of Lp are inductively defined as follows:

1. Every individual variable and constant is an individual term.

2. If s, t are individual terms, then (s · t) is an individual term.

In the sequel we write (st), or just st instead of (s · t) and we adopt the convention
of association to the left, i.e. s1s2 . . . sn stands for (. . . (s1s2) . . . sn). Further, (t1, t2)
stands for pt0t1 and (t1, . . . tn) for (t1, (t2, . . . , tn)). We also use vector notation

to denote finite sequences of terms, e.g. ~a or ~X for a0, . . . , an−1 or X0, . . . , Xm−1,
respectively. The length of these sequences is given by the context.
The Lp-formulas (F,G,H, . . .) are inductively defined as follows:

1. N(t), t↓, (s = t), (s ∈ X), (X = Y) and <(t,X) are (atomic) formulas.

2. If F and G are formulas, then ¬F , (F ∨G, (F ∧G) are formulas, too.

3. If F is a formula, then (∀x)F , (∃x)F , (∀X)F , and (∃X)F are formulas, too.

If F is a formula, F (~x, ~X) indicates that the variables ~x, ~X may occur free in F .

F [~t/~x, ~Y / ~X] or short F [~t, ~Y] denotes the result of the simultaneous substitution
of all free occurrences of the variables xi and Xj in F by the terms ti and the
type variables Yj. As usual we write (F → G) for (¬F ∨ G) and (F ↔ G) for
((F → G)∧ (F → G)). An Lp-formula F is called elementary, if the relation symbol

7

< does not occur in F , and F does not contain bounded type variables. We use the
following abbreviations:

t ∈ N :≡ N(t),
X ⊆ Y :≡ (∀x)[x ∈ X → x ∈ Y],

(∃x ∈ N)F :≡ (∃x)(x ∈ N ∧ F),
(∀x ∈ N)F :≡ (∀x)(x ∈ N→ F),

(∃X ⊆ N)F :≡ (∃X)(X ⊆ N ∧ F),
(∀X ⊆ N)F :≡ (∀X)(X ⊆ N→ F),
(t : N→ N) :≡ (∀x ∈ N)(tx ∈ N),

(t : Nm+1 → N) :≡ (∀x ∈ N)(tx : Nm → N).

Our theory is based on partial term application. Hence it is not guaranteed that
terms have a value, and t ↓ is read as ’t is defined’ or ’t has a value’. So we introduce
the relation of partial equality ' by:

s ' t :≡ (s↓ ∨ t↓)→ (s = t).

Now we are ready to state the axioms of the theory EETJ. The underlying logic of
EETJ is the classical logic of partial terms with equality axioms for individuals, due
to Beeson [2]. The first order part of the non-logical axioms consists of the following
five groups of axioms that define the first-order theory BON of Feferman and Jäger
[5].

I. Partial combinatory algebra.

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz).

II. Pairing and projections.

(3) p0(x, y) = x ∧ p1(x, y) = y.

III. Natural numbers.

(4) 0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N),

(5) (∀x ∈ N)(sNx 6= 0 ∧ pN(sNx) = x),

(6) (∀x ∈ N)(x 6= 0→ pNx ∈ N ∧ sN(pNx) = x).

IV. Definition by cases on natural numbers.

(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

8

(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

V. Primitive recursion on N.

(9) (f : N→ N) ∧ (g : N3 → N)→ (rNfg : N2 → N),

(10) (f : N→ N) ∧ (g : N3 → N) ∧ x ∈ N ∧ y ∈ N ∧ h = rNfg

→ hx0 = fx ∧ hx(sNy) = gxy(hxy).

The axioms about primitive recursion on N are only required in the absence of
strong enough induction principles. If we have e.g. type induction, (T-IN) primitive
recursion on N can be proven (see below). Sometimes we want the application to be
total. Therefore we add the axiom (Tot) that states (∀x)(∀y)(xy↓), i.e. every term
has a value. (Tot) won’t be an axiom of our theory, unless it is explicitly mentioned.

The second order part of EETJ deals with addressing and building types. The
relation < acts as a naming relation between individuals and types, i.e. <(s, A)
means that s is a name of the type A. Before we state the axioms, we define
equality for types. We call two types A and B equal (A = B), if they have the same
elements, i.e.

A = B :≡ (∀x)[x ∈ A↔ x ∈ B].

The next axiom assures that types with the same elements also have the same names.

VI. Equality for types.

(EQ) <(a,A) ∧ A = B → <(a,B).

The axioms about explicit representation state that every type has a name (E.1)
and that there are no homonyms (E.2).

VII. Explicit representation.

(E.1) (∃x)<(x,A),

(E.2) <(a,B) ∧ <(a, C)→ B = C.

To build types one has the following six principles which are equivalent to elementary
comprehension (see below):

VIII. Natural numbers.

(N.1) (∃X)(∀x)(x ∈ X ↔ N(x)),

(N.2) (∀x)(x ∈ A↔ N(x))→ <(nat, A).

9

IX. Identity.

(I.1) (∃X)(∀x)(x ∈ X ↔ (∃y)(x = (y, y))),

(I.2) (∀x)(x ∈ A↔ (∃y)(x = (y, y)))→ <(id, A).

X. Complements.

(CO.1) (∃X)(∀x)(x ∈ X ↔ x /∈ B),

(CO.2) <(b, B) ∧ (∀x)(x ∈ A↔ x /∈ B)→ <(co b, A).

XI. Intersections.

(INT.1) (∃X)(∀x)(x ∈ X ↔ x ∈ B ∧ x ∈ C),

(INT.2) <(b, B) ∧ <(c, C) ∧ (∀x)(x ∈ A↔ x ∈ B ∧ x ∈ C)→ <(int(b, c), A).

XII. Domains.

(DOM.1) (∃X)(∀x)(x ∈ X ↔ (∃y)((x, y) ∈ B)),

(DOM.2) <(b, B) ∧ (∀x)(x ∈ A↔ (∃y)((x, y) ∈ B))→ <(dom b, A).

XIII. Inverse images.

(INV.1) (∃X)(∀x)(x ∈ X ↔ fx ∈ B),

(INV.2) <(b, B) ∧ (∀x)(x ∈ A↔ fx ∈ B)→ <(inv(b, f), A).

The axioms stated so far define the theory EET. As the following theorem due to
Feferman and Jäger [6] shows, elementary comprehension is also available to define
types. This proves to be useful in the sequel. In order to formulate the theorem, we
introduce the notation

s ∈̇ t :≡ (∃X)[<(t,X) ∧ s ∈ X].

Theorem 1.1.1 For every elementary Lp-formula F (x, ~y, ~A) containing at most the
indicated variables free, there exists a closed term t such that EET proves:

(i) <(~a, ~A)→ <(t(~y,~a)),

(ii) <(~a, ~A)→ (∀x)[x ∈̇ t(~y,~a)↔ F (x, ~y, ~A)].

We conclude the description of our theory EETJ by stating a stronger type building
axiom (J) for join, that enables us to form the disjoint union of an infinite family of
types. If we write A = Σ(B, f) for the statement

(∀x)(x ∈ A↔ x = (p0x, p1x) ∧ p0x ∈ B ∧ (∃X)[<(f(p0x), X) ∧ p1x ∈ X)],

10

join takes the form

XI. Join.

(J) <(a,A) ∧ (∀x ∈ A)(∃Y)<(fx, Y)→ (∃Z)[<(j(a, f), Z) ∧ Z = Σ(A, f)].

In order to get some proof-theoretical strength we need to endow our theory with
certain forms of induction on N. The two induction principles we are interested in
are:

Type induction on N.

(T-IN) 0 ∈ A ∧ (∀x ∈ N)(x ∈ A→ sNx ∈ A)→ (∀x ∈ N)(x ∈ A),

Formula induction on N.

(F-IN) F (0) ∧ [∀x ∈ N)(F (x)→ F (sNx)]→ (∀x ∈ N)(F (x)).

Of course, type induction is a special case of formula induction and therefore much
weaker. Other forms of induction won’t be treated here.

In the remaining of this section, we present some standard results concerning the
combinators k and s. We define λ-abstraction and state a recursion theorem:

Definition 1.1.2 Let t be a term of Lp. Then (λx.t) is the term given by the
following inductive definition:

(i) (λx.t) :≡ skk, if t ≡ x,

(ii) (λx.t) :≡ kt, if t is a variable different from x or a constant,

(iii) (λx.t) :≡ s(λx.s1)(λx.s2), if t ≡ (s1s2).

Theorem 1.1.3 (λ-abstraction) Let t, s be terms of Lp. Then

(i) BON ` (λx.t)↓,

(ii) BON ` (λx.t)x ' t,

(iii) BON ` s↓ → (λx.t)s ' t[s/x].

Theorem 1.1.4 (Recursion theorem) There is a closed term rec of Lp such that:

BON ` recf↓ ∧ recfx ' f(recf)x.

Proofs of these theorems can be found in Feferman [4] or Beeson [2].

In the presence of type induction (T-IN) the term rec helps us to prove the following
theorem. A detailed proof can be found in [9].

11

Theorem 1.1.5 (Primitive recursion on N) There is a closed term r̃N that does not
contain the constant rN , such that EET + (T-IN) proves:

1. (f : N→ N) ∧ (g : N3 → N)→ (̃rNfg : N2 → N),

2. (f : N→ N) ∧ (g : N3 → N) ∧ x ∈ N ∧ y ∈ N ∧ h = r̃Nfg

→ hx0 = fx ∧ hx(sNy) = gxy(hxy).

2

1.2 The Axiom (dc)

Before we introduce the axiom (dc) for dependent choice in explicit mathematics,
we like to have a look at the theory (Σ1

1-DC)� of second order arithmetic to observe
how dependent choice is formulated there.

Let L2 be a language of second order arithmetic, with number variables (x, y, z, . . .),
set variables (X, Y, Z, . . .), the constant 0 (zero), symbols for all primitive recursive
functions and relations, in particular a symbol S (successor), the symbol ∈ for
elementhood between numbers and sets as well as a symbol = for equality in both
sorts of variables. Terms (r, s, t, . . .) and formulas (F,G,H, . . .) of L2 are defined
as usual. An L2-formula is called arithmetic, if it does not contain bounded set
variables (but possibly free set variables); we write Π1

0 for the collection of these
formulas. The formulas of the form (∃X)F (X) [(∀X)F (X)], where F is Π1

0 are
called Σ1

1-formulas [Π1
1-formulas]. In the sequel 〈·, ·〉 denotes a standard primitive

recursive pairing function with associated primitive recursive projections (·)0 and
(·)1. Further we’ll write s ∈ (X)t for 〈t, s〉 ∈ X, and if ≺ stands for a primitive
recursive well-ordering, s ∈ (X)≺t abbreviates s = 〈(s)0, (s)1〉 ∧ (s)0 ≺ t ∧ s ∈ X.
Expressions of the form (X)s = (Y)≺t are read as (∀x)[x ∈ (X)s ↔ x ∈ (Y)≺t]. For
every k ∈ N, k denotes the kth numeral, where 0 :≡ 0 and k + 1 :≡ Sk. Furthermore
x+ 1 stands for Sx.
Now we introduce the theory (Σ1

1-DC)� and some related theories of second order
arithmetic. They are all formulated in the language L2. The theory Π1

0-CA comprises
the usual axioms for the two-sorted predicate calculus with equality in both sorts
and extensionality for sets, the axioms of Peano arithmetic PA, defining axioms for
all primitive recursive functions and relations, the ordinary schema for arithmetic
comprehension, i.e.

(Π1
0-CA) (∃X)(∀x)[x ∈ X ↔ F (x)]

where F is Π1
0, and the induction schema

(IND-S) F (0) ∧ (∀x)[F (x)→ F (x+ 1)]→ (∀x)F (x)

12

for all formulas F .
If the above schema is replaced by the axiom

(IND-A) 0 ∈ X ∧ (∀x)[x ∈ X → (x+ 1) ∈ X]→ (∀x)(x ∈ X)

we denote the resulting theory by (Π1
0-CA)�.

The theory (Π1
0-CA)� can be seen as classical analogue of the theory EET + (T-IN),

whereas the conservative extension EETJ + (T-IN) corresponds to the conservative
extension (Σ1

1-AC)� of (Π1
0-CA)�, i.e. the theory (Π1

0-CA)� with the additional axiom
schema (axiom of choice)

(Σ1
1-AC) (∀x)(∃Z)F (x, Z)→ (∃Y)(∀x)F [x, (Y)x]

where F is Σ1
1.

Like (J) in explicit mathematics, (Σ1
1-AC) enables us to form the disjoint union of

a family of sets. If we replace the schema (Σ1
1-AC) in the theory (Σ1

1-AC)� by the
stronger schema (dependent choice)

(Σ1
1-DC) (∀X)(∃Y)F (X, Y)→ (∀X)(∃Z)[(Z)0 = X ∧ (∀x)F [(Z)x, (Z)x+1]]

where F is Σ1
1, we get the theory (Σ1

1-DC)�. It is important to note, that by means of
the axiom (Σ1

1-DC) we can build the iterated jump-hierarchy along a well-ordering
≺ of order-type less than ωω, so that we can embed (Π1

0-CA)<ωω� into (Σ1
1-DC)�,

which shows, that (Σ1
1-DC)� is indeed stronger than (Σ1

1-AC)�. For details we refer
to Cantini [3].
Our axiom (dc) is tailored such that EETJ + (dc) + (T-IN) becomes an analogue of
(Σ1

1-DC)�, i.e. we want to be able to embed (Π1
0-CA)<ωω� into EETJ + (dc) + (T-IN)

in much the same way as it is embedded into (Σ1
1-DC)� in the aforementioned paper

[3]. It turns out that we get an adequate form of (dc) by extending the language
Lp by the new constant dc, and by adding the axioms (dc.1), (dc.2) to the theory
EETJ.

Dependent choice (dc).

(dc.1) <(a) ∧ (f : < → <)→ (dc(a, f) : N→ <),
(dc.2) <(a) ∧ (f : < → <)→

dc(a, f)(0) = a ∧ (∀n ∈ N)[dc(a, f)(sNn) = f(dc(a, f)(n))].

Here (f : < → <) stands for (∀x)(<(x) → <(fx)), <(x) stands for (∃X)<(x,X)
and (t : N → <) abbreviates (∀x ∈ N)<(tx). Whereas the existence of a term d̃c
satisfying (dc.2) can be proven in EETJ+(T-IN), type induction is not strong enough

13

to prove the totality of the function (d̃c(a, f) : N→ <). We can’t apply the premise
(f : < → <) to show the induction step, because we can’t express <(dc(a, f)(n))
as an elementary formula. Of course (dc.1) becomes a theorem if we admit formula
induction.
In the next section we present the theory (Π1

0-CA)<ωω . Then we’ll demonstrate how
(J) and (dc) serve to build the iterated jump-hierarchy.

1.3 The Theories (Π1
0-CA)α for α < ε0

For the description of these theories we fix a primitive recursive standard well-
ordering ≺ of order-type ε0. Without loss of generality we may assume that the
field of ≺ is the set of all natural numbers and that 0 is the least element of ≺.
Hence each natural number a codes an ordinal, say ord(a), less than ε0, and each
ordinal α < ε0 is represented by an unique number, say nr(α). Moreover, there
exist binary primitive recursive functions ⊕, and ω̇, that model the usual ordinal
operations plus, times and exponentiation on these codes, that is:

• ⊕(m,n) := nr[ord(m) + ord(n)],

• ω̇(m,n) := nr[ωm · n].

In order to keep notation as simple as possible, we’ll write (m+n) instead of ⊕(m,n),
if the context makes clear that m and n are codes for ordinals, ωm · n for ω̇(m,n),
ωm for ωm · 1 and ω for ω1. If α denotes a fixed ordinal, then we identify α with
nr(α) or nr(α), respectively.

If F (x,X, Y, a) is an arithmetic L2-formula with x,X, Y and a free, we can define the
F jump hierarchy along ≺ with parameter X by the following transfinite recursion:

Ya := {x : F [x,X, (Y)≺a, a]}.

We can formalize this definition by the arithmetic formula

HierF (a,X, Y) :≡ (∀b ≺ a)(∀x)[x ∈ (Y)b ↔ F [x,X, (Y)≺b, b]],

that says ’Y is a jump-hierarchy along ≺ with parameter X up to a’. If it is clear or
unimportant which parameter X we refer to, it will be omitted.

If α is an ordinal less than ε0 we denote by (Π1
0-CA)α the theory that extends Π1

0-CA
by the axiom schema

TI(≺, α, F) (∀x ≺ α)[(∀y ≺ x)F (y)→ F (x)]→ (∀x ≺ α)F (x)

for all L2-formulas F , and the axiom

14

(H, α) (∀X)(∃Y)HierF [α,X, Y]

for all arithmetic formulas F . The theory (Π1
0-CA)α� is the theory (Π1

0-CA)� plus
the axiom (H, α). The union of all the theories (Π1

0-CA)β with β < α is called

(Π1
0-CA)<α; (Π1

0-CA)<α� is defined analogously.

Following Schütte’s well-ordering proofs [13] for subsystems of predicative analysis
we see that already (Π1

0-CA)<ωω� has the proof-theoretical ordinal ϕω0.1 Therefore
it suffices to embed (Π1

0-CA)<ωω� into EETJ + (dc) + (T-IN) in order to get ϕω0 as a
lower bound.

1.4 The Embedding of (Π1
0-CA)<ωω� into EETJ + (dc) + (T-IN)

First we give an interpretation of the language L2 of second order arithmetic into
Lp. The number variables are interpreted as ranging over N and the set variables
are ranging over the subtypes of N. Due to the recursion operator rN each primitive
recursive function can be represented by an Lp-term, hence each primitive recursive
function symbol f can be interpreted by a term fp, and for every primitive recursive
relation symbol R we find a term Rp that represents its characteristic function.
Now we assign to every L2-term t a Lp-term tN according to

• if t is a variable (symbol), then tN is the same variable (symbol),

• if t is the constant 0, then tN is the constant 0,

• if t ≡ f(t0, . . . tn−1), then tN :≡ fpt
N
0 · · · tNn−1,

and to every L2-formula F we assign a Lp-formula FN according to the following
inductive definition:

• if F ≡ R(t0, . . . tn−1), then FN :≡ Rpt
N
0 · · · tNn−1 = 0,

• if F ≡ t1 = t2, then FN :≡ tN1 = tN2 ,

• if F ≡ t ∈ X , then FN :≡ tN ∈ X,

• if F ≡ (Qx)G(x), then FN :≡ (Qx ∈ N)GN(x), (where Q denotes ∀ or ∃),

• if F ≡ (QX)G(X), then FN :≡ (QX ⊆ N)GN(X), (where Q denotes ∀ or ∃),

1Schütte’s formula R(P,Q, t) is equivalent to the formula HierF (t, P,Q) for a suitable F ∈ Π1
0.

So Schütte’s lemma 12 becomes an instance of an axiom (H, α) and the claim follows by Schütte’s
lemma 10.

15

• if F ≡ G j H, then FN :≡ GN j HN , (where j stands for ∨ or ∧),

• if F ≡ ¬G, then FN :≡ ¬GN .

Finally, if the free variables of the L2-formula F are among {~x, ~X}, then we define
the interpreted Lp-formula F I to be

F I :≡ (~x ∈ N ∧ ~X ⊆ N)→ FN ,

where ~x ∈ N [~X ⊆ N] stands for x0 ∈ N∧ . . .∧xn−1 ∈ N [X0 ⊆ N∧ . . .∧Xm−1 ⊆ N].
In order to show that the above introduced operation ·I defines indeed an embedding
of (Π1

0-CA)<ωω� into EETJ + (dc) + (T-IN) we have to prove that

Proposition 1.4.1 For every axiom F of (Π1
0-CA)<ωω� we have:

EETJ + (dc) + (T-IN) ` F I .

This is clear for the logical axioms and the axioms concerning the first order part of
(Π1

0-CA)<ωω�. Also the interpretation of the induction axiom (IND-A) follows directly
from (T-IN). However, to prove the axioms (H, α) some extra work has to be done.
Before we do so, we introduce some notational shorthands.
If R is a binary relation symbol of the language L2, we write for the Lp-formula
(R(a, b))N simply aRb instead of Rpab = 0. Similarly, if f is a primitive recursive
function symbol, we denote the Lp-term (f(~x))N by f(~x) instead of fp~x. Further, we

want to substitute names for types in elementary Lp-formulas. Therefore, if F (~X)

is an elementary Lp-formula, Ḟ [~t/ ~X] or short Ḟ [~t] denotes the formula that is the
result of replacing each atomic subformula of F of the form (s ∈ Xi) by (s ∈̇ ti).
Recall that s ∈̇ t :≡ (∃X)[<(t,X) ∧ s ∈ X].
Next we choose closed terms sec (section) and seg (initial segment) such that if s
is a name of the type A, then sec(s, t) is a name of the type (A)t and seg(s, t) is a
name of the type (A)≺t. That is, sec and seg are closed terms that satisfy

(sec.1) <(a,A)→ <(sec(a, y)),

(sec.2) <(a,A)→ (∀x)[x ∈̇ sec(a, y)↔ 〈y, x〉 ∈ A].

(seg.1) <(a,A)→ <(seg(a, y)),

(seg.2) <(a,A)→ (∀x)[x ∈̇ seg(a, y)↔ x = 〈(x)0, (x)1〉 ∧ (x)0 ≺ y ∧ x ∈ A].

Note that the existence of the terms sec and seg is ensured by theorem 1.1.1.
So far, the section (A)t and the initial segment (A)≺t of a type A was defined w.r.t.
the pairing function 〈·, ·〉. We now define these notions also w.r.t. the pairing
function (·, ·), what proves to be usefull if we are dealing with types obtained by

16

applying join. Further, we define equalitiy for names (s
.
= t) and ’equality of the

natural part’ of a name or a type:

s ∈ [X]t :≡ (t, s) ∈ X,
s ∈ [X]≺t :≡ s = (p0s, p1s) ∧ s ≺ t ∧ s ∈ X,

s
.
= t :≡ (∃X)(∃Y)[<(s,X) ∧ <(t, Y) ∧X = Y],

X =N Y :≡ (∀x ∈ N)[x ∈ X ↔ x ∈ Y],

s
.
=N t :≡ <(s) ∧ <(t) ∧ (∀x ∈ N)[x ∈̇ s↔ x ∈̇ t].

In the sequel we often deal with terms containing exactly one variable free. If t is
such a term and y is a variable, we denote by ty the result of replacing in t every
free occurrence of a variable by y.
Let’s turn to the proof of proposition 1.4.1. We have to show that EETJ+(dc)+(T-IN)
proves (H, α)I for α < ωω. It suffices to show that EETJ + (dc) + (T-IN) proves for
all k ∈ N

(∗) (∀Y)(∃Z)HierNF [ωk, Y, Z],

for if we have an L2-formula F (X), the Lp-formula FN(X) just sees the ’natural
part’ of a set X. More precisely we have

Lemma 1.4.2 If the free number variables of an L2-formula F are in {x0, . . . , xn−1},
then EET proves:

~x ∈ N→
(
FN(X)↔ FN [X ∩ N]

)
.

Proof: This is easily shown by induction on the definition of F . 2

To prove (∗) we construct for each k ∈ N a term fk that contains exactly one variable

free, such that <(y, Y), <(z, Z) and ˙HierNF [a, y, z] implies ˙HierNF [a+ ωk, y, fykz].
In the following lemma we show how to get the term f0, and in the next theorem we
get terms fk for each k ∈ N.

Lemma 1.4.3 There exists an Lp-term f0 that contains exactly one variable free
such that EETJ + (dc) + (T-IN) proves:

(i) <(y)→ (fy0 : < → <),

(ii) <(y) ∧ <(z) ∧ a ∈ N ∧ ˙HierNF [a, y, z]→ ˙HierNF [a+ 1, y, fy0z]∧
seg(z, a)

.
=N seg(fy0z, a).

17

Proof: First observe that the formula FN [(x)1, Y, (Z)≺(x)0 , (x)0] is elementary.
Therefore theorem 1.1.1 allows us to find a closed term t such that

(a) <(y, Y) ∧ <(z, Z)→ <(t(y, z)),

(b) <(y, Y) ∧ <(z, Z)→ (∀x)[x ∈̇ t(y, z)↔ FN [(x)1, Y, (Z)≺(x)0 , (x)0]].

Now we set f0 :≡ λx.t(y, x). So f0 contains exactly one variable free and satisfies (i).
To show (ii) we work informally in EETJ + (dc) + (T-IN) and assume that (i) and
the premise of (ii) hold. First we show that

seg(z, a)
.
=N seg(fy0z, a).

Let x ∈ N. Then we have

x ∈̇ seg(z, a) ⇐⇒ x = 〈(x)0, (x)1〉 ∧ (x)0 ≺ a ∧ (x)1 ∈̇ sec(z, (x)0)

⇐⇒ ḞN [(x)1, y, seg(z, (x)0), (x)0] ∧ (x)0 ≺ a ∧ x = 〈(x)0, (x)1〉
⇐⇒ (x)1 ∈̇ sec(fy0z, (x)0) ∧ (x)0 ≺ a ∧ x = 〈(x)0, (x)1〉
⇐⇒ x ∈̇ seg(fy0z, a)

But this implies ˙HierNF [a, y, fy0z]. Moreover, for w ∈ N

w ∈̇ sec(fy0z, a) ⇐⇒ ḞN [w, y, seg(z, a), a] ⇐⇒ ḞN [w, y, seg(fy0z, a), a],

hence ˙HierNF [a+ 1, y, fy0z]. 2

With the help of (dc) we can now define terms fk for every k ∈ N that take the
hierarchy ωk steps further:

Theorem 1.4.4 For each k ∈ N there is an Lp-term fk that contains exactly one
variable free such that EETJ + (dc) + (T-IN) proves:

(i) <(y)→ (fyk : < → <),

(ii) <(y) ∧ <(z) ∧ a ∈ N ∧ ˙HierNF [a, y, z]→ ˙HierNF [a+ ωk, y, fykz]∧
seg(z, a)

.
=N seg(fykz, a).

Proof: We work informally in EETJ+(dc)+(T-IN) and prove the claim by metain-
duction on k. We have already shown the case k = 0. For the induction step assume
that we have already a term fk containing exactly one variable free satisfying the
assertions (i) and (ii).

Suppose now that <(y, Y), <(z, Z) and a, n ∈ N and ˙HierNF [a, y, z]. Then the
following holds:

(1) ˙HierNF [a+ ωk · n, y, dc(z, fyk)(n)] ∧ seg(z, a)
.
=N seg(dc(z, fyk)(n), a).

18

We show (1) by type induction on n. Let C be the type with

<(j(nat, dc(z, fyk)), C),

so that we have
(∀x ∈ N)[<(dc(z, fyk)(x), [C]x)],

and (1) becomes equivalent to

(1′) HierNF [a+ ωk · n, Y, [C]n] ∧ (Z)≺a =N ([C]n)≺a,

which is an elementary formula. For n = 0, there is nothing to show and the
induction step follows if we apply the metainduction assertion (ii) to (1). That
shows (1).
Further, if also b, l ∈ N, (1) yields immediately that

(2) ˙HierNF [b, y, dc(z, fyk)(n)]→ seg(dc(z, fyk)(n), b)
.
=N seg(dc(z, fyk)(n+ l), b),

because of dc
(

dc(z, fyk)(n), fyk

)
(l) = dc(z, fyk)(n + l) (equal as terms !) as an easy

induction on l yields.

Now we want to define a term fk+1 that contains exactly one variable free and satisfies

(a) <(y)→ (fyk+1 : < → <),

(b) <(y) ∧ <(z)→
(∀x)[x ∈̇ fyk+1z ↔ (∃n0 ∈ N)(∀n ∈ N)[(n > n0)→ (n, x) ∈̇ j(nat, dc(z, fyk))].

Observe that (n, x) ∈̇ j(nat, dc(z, fyk)) is equivalent to x ∈̇ dc(z, fyk)(n). Note also
that instead of (b), the requirement

(b′) <(y) ∧ <(z)→ (∀x)[x ∈̇ fyk+1z ↔ (∃n ∈ N)[(n, x) ∈̇ j(nat, dc(z, fyk))]]

wouldn’t be adequate. Let e.g. ˙HierNF [a, y, z] and x = 〈b, w〉, x ∈̇ dc(z, fyk)(n), with

a + ωk · n < b < a + ωk+1. It’s possible that we have ¬(x ∈̇ c), for all names c

with ˙HierNF [b + 1, y, c]. Of course we don’t want that x ∈̇ fyk+1z. However, if the

requirement (b) holds, then we get an m such that b < a+ωk ·m and x ∈̇ dc(z, fyk)(m).

Now we construct the term fk+1. By theorem 1.1.1 we find a closed term t with

(c) <(c, C)→ <(t(c)),

(d) <(c, C)→ (∀x)[x ∈̇ t(c)↔ (∃n0 ∈ N)(∀n ∈ N)[(n > n0)→ (n, x) ∈ C]].

19

We set fk+1 :≡ λx.t[j(nat, dc(x, fyk))]. Clearly fk+1 contains exactly the variable y
free, and if <(y), <(z) we have

fyk+1z = t[j(nat, dc(z, fyk))].

By the choice of the term t and the metainduction assertion the term fk+1 has the
properties (a) and (b).
For the following we assume that (i) and the premise of (ii) hold, and that n, n0,m
and l denote natural numbers. With this we show that

(3) seg(fyk+1z, a+ ωk ·m)
.
=N seg(dc(z, fyk)(m), a+ ωk ·m).

Let b, w ∈ N and 〈b, w〉 ∈̇ seg(fyk+1z, a + ωk), so we have b ≺ a + ωk · m and
〈b, w〉 ∈̇ dc(z, fyk)(n) (∀n > n0) for a certain n0 by the definition of the term fk+1.
Now we choose n such that n ≥ m, say n = m+ l for a certain l.
By (1) we have

˙Hier
N

F [a+ ωk ·m, y, dc(z, fyk)(m)],

so (2) yields

(4) seg(dc(z, fyk)(m), a+ ωk ·m)
.
=N seg(dc(z, fyk)(m+ l), a+ ωk ·m).

That shows that 〈b, w〉 ∈̇ seg(dc(z, fyk)(m), a+ ωk ·m).

Now let 〈b, w〉 ∈̇ seg(dc(z, fyk)(m), a + ωk · m). Using (4) shows that we have also

〈b, w〉 ∈̇ seg(dc(z, fyk)(n), a+ωk ·m) (∀n ≥ m). Hence 〈b, w〉 ∈̇ seg(fyk+1z, a+ωk), and
(3) is established. For m = 0, this yields immediately seg(z, a)

.
=N seg(fyk+1z, a).

To conclude our proof we still have to show that ˙HierNF [a + ωk+1, y, fyk+1z] holds.

However, if b ∈ N, b ≺ a+ ωk+1, there is an n0 such that b ≺ a+ ωk · n0. Using (3)
we get

w ∈̇ sec(fyk+1z, b) ⇐⇒ w ∈̇ sec(dc(z, fyk)(n0), b)

⇐⇒ ḞN [w, y, seg(dc(z, fyk)(n0), b), b]

⇐⇒ ḞN [w, y, seg(fyk+1z, b), b].

Hence the theorem holds. 2

Proposition 1.4.1 follows now directly form the above theorem, hence we could suc-
cessfully embed (Π1

0-CA)<ωω� into EETJ + (dc) + (T-IN). If T denotes one of our
theories, we define the proof-theoretic ordinal |T| of the theory T in the usual way
(cf. e.g. [11]). Now we can state our initially announced result.

Proposition 1.4.5 ϕω0 ≤ |(Π1
0-CA)<ωω�| ≤ |EETJ + (dc) + (T-IN)|.

2

20

2 An Upper Bound for EETJ + (dc) + (T-IN)

In this chapter we’ll establish an upper bound for EETJ+(dc)+(T-IN) by formalizing
the construction of models in the theory FIDr(Π0

1), introduced in Jäger [10]. As a
corollary we get that ϕω0 is a sharp upper bound for FIDr(Π0

1).

2.1 The Theories FID(K)

Let L1 be a standard first order language with number variables x, y, z, . . ., pos-
sibly with subscripts, a constant 0, symbols for all primitive recursive functions
and relations, in particular symbols SN for the successor and PdN for the predeces-
sor function. Then L1(P) is the extension of L1 by a fresh n-ary relation symbol
P . An L1(P)-formula F (P, ~x) is called n-ary operator form if it contains at most
x0, . . . , xn−1, P free.
Now let K be a collection of operator forms. Then we extend L1 to the language
LK by adding ordinal variables α, β, γ, . . . , a binary relation symbol ≺ for the less
relation on the ordinals and an (n+1)-ary relation symbol PA for each n-ary operator
form A ∈ K. The number terms s, t, . . . of LK are the terms of L1, the ordinal terms
of LK are the ordinal variables. The formulas F,G,H, . . . are inductively defined as
follows:

1. If R is an n-ary relation symbol of L1, then R(~s) is an (atomic) formula of LK.

2. (α ≺ β), (α = β) and PA(α,~s) are (atomic) formulas of LK.

3. If F and G are formulas, then ¬F, (F ∧G) and (F ∨G) are formulas of LK.

4. If F is a formula, then (∀x)F and (∃x)F are formulas of LK.

5. If F is a formula, then (∀α)F and (∃α)F are formulas of LK.

We are mainly interested in two classes of operator forms, Π0
1 and POS. The class Π0

1

comprises all L1(P)-formulas F of the form (∀x)G where G contains solely bounded
number quantifiers, where bounded ordinal [number] quantifiers are quantifiers ap-
pearing in the context (Qα ≺ β), [(Qx < t)]. F belongs to POS if each occurrence
of P in F is positive. ∆O

0 denotes the LK-formulas which do not contain unbounded
ordinal quantifiers. Further 〈·, . . . , ·〉 denotes the usual primitive recursive function
for forming n-tuples, Seq is the primitive recursive set of sequence numbers, lh(t)
gives the length of the sequence coded by t, i.e. if t = 〈t0, . . . , tn−1〉 then lh(t) = n,
and (t)i denotes the ith component of the sequence coded by t. We’ll write (m)i,j
for ((m)i)j, 1, 2, 3, . . . for 1, 2, 3, . . ., x + 1 for SNx and x . 1 for PdNx. Additional
abbreviations are:

21

• Pα
A(~s) :≡ PA(α,~s),

• P≺αA (~s) :≡ (∃β ≺ α)P β
A(~s),

• PA(~s) :≡ (∃α)Pα
A(~s).

Now we present three LK-theories which differ in the strength of their induction
principles. The weakest of these theories is FIDr(K) and consists of the following
axioms:

I. Number-theoretic axioms. The axioms of PA, except complete induction on the
natural numbers.

II. Linearity of ≺ on the ordinals.

(L,≺) α 6≺ α ∧ (α ≺ β ∧ β ≺ γ → α ≺ γ) ∧ (α ≺ β ∨ α = β ∨ β ≺ α).

III. Operator axioms. For every operator form A ∈ K:

(OP.1) (∀~x)[Pα
A(~x)↔ P≺αA (~x) ∨ A(P≺αA , ~x)],

(OP.2) (∀~x)[A(PA, ~x)→ PA(~x)].

IV. ∆O

0 -induction on the natural numbers.

(∆O

0 -INDN) F (0) ∧ (∀x)[F (x)→ F (x+ 1)]→ (∀x)F (x), for all F ∈ ∆O

0 .

V. ∆O

0 -induction on the ordinals.

(∆O

0 -INDO) (∀α)[(∀β ≺ α)F (β)→ F (α)]→ (∀α)F (α), for all F ∈ ∆O

0 .

FIDw(K) is the extension of FIDr(K) by the following schema of complete induction
on the natural numbers:

(F-INDN) F (0) ∧ (∀x)[F (x)→ F (x+ 1)]→ (∀x)F (x),

for all LK-formulas F . FID(K) is the extension of FIDw(K) by the following schema
of induction on the ordinals:

(F-INDO) (∀α)[(∀β ≺ α)F (β)→ F (α)]→ (∀α)F (α),

for all LK-formulas F .
The operator axioms stated above are tailored according to the usual treatment of
monotone or nonmonotone inductive definitions as described for example in Richter
[12]. The first ones (OP.1) formalize that the sets Pα

A are the stages of the inductive

22

definition generated by the operator form A(P, ~x); then one says that PA is the
set inductively defined by A(P, ~x). The axioms (OP.2) are closure properties which
implicitly require that there are sufficiently many ordinals in FID(K) and its sub-
systems, so that the process of forming the stages of the inductive definition with
clauses from K comes to an end. The least ordinal |K| such that for all operator-
forms A ∈ K (∀~x)(Pα

A(~x)↔ P≺αA (~x)) holds is called the closure ordinal of the class
K. One has |Π0

1| = ωck1 (Gandy, unpublished) and |POS| = ωck1 (Spector [14]).

2.2 A Recursion Theoretic Model

In this section we’ll formalize a recursion theoretic model of EETJ + (dc) + (T-IN) in
FIDr(Π0

1). Thereby we adapt the construction given in Studer [15]. The main ideas
are sketched below:

The individual variables of Lp are ranging over the natural numbers of FIDr(Π0
1), and

application is modeled in the usual recursion theoretic way: x·y ' z is interpreted as
{x∗}(y∗) ' z∗. To the constants we assign appropriate codes for functions, e.g. to k
we assign a numeral k∗ such that {{k∗}(x)}(y) = x holds. Types are identified with
their names, so that the type variables of Lp are ranging over the natural numbers
coding names. The type structure is modeled by the inductively defined relation
PA(m,n, k). PA(m, 0, 0) is to express that m codes a type, and PA(m,n, 1) states
that n is an element of the type coded by m. The terms nat∗ and id∗ are meant
to code the types named nat and id. noval∗ (no value) codes the auxiliary type
{(f, x) : ¬(fx) ↓}, so we can check the totality of a function f by the Π0

1-formula
(∀x)[PA(x, 0, 0) → ¬PA(noval∗, 〈f, x〉, 1)]. The interpretations co∗, int∗, . . . of the
Lp-terms co , int, . . . are given by codes of total functions: If a codes the type A,
{co∗}(a) codes A’s complement, and if a and b code the types A and B, {int∗}(〈a, b〉)
codes the type A ∩ B. Because of existential quantifiers are not admitted in the
operator form A, we sometimes have to model the complement of a type first, e.g.
{codom∗}(a) codes the type named co (dom a), and the type named dom a is then
coded by the term {co∗}({codom∗}(a)). So far the relation PA could be defined by a
monotone inductive definition, i.e. PA could be defined within FIDr(POS) (cf. Studer
[15]). However, the limited strength of FIDr(POS) doesn’t allow to model the axiom
(dc). In particular, we can’t verify the condition (f : < → <) by a positive operator
form. That is where we need the full strength of FIDr(Π0

1). What we want to ensure
is the following: Provided we have a function (f : < → <) and a name a, then there
should be a stage α such that P≺αA (m, 0, 0) → P≺αA ({f}(m), 0, 0) and P≺αA (a, 0, 0)
holds for all m. We mark this stage by adding the triple ({cl∗}(〈a, f〉), 0, 2) to
the relation PA. That makes the statement (dc(a, f) : N → <) correspond to the
claim (∀n)P≺αA ({{dc∗}(〈a, f〉)}(n), 0, 0), which is ∆O

0 and therefore provable by (∆O

0 -
INDN).

23

Let’s outline the above given sketch. With Kleene brackets in mind, we extend the
language L1 by the 2-place function symbol ’{}’ to the language Lp1. The terms and
formulas of Lp1 are defined as usual, and we write {s}(t) for the Lp1-term {}(s, t). Now
we further extend the language Lp1 to Lp1(P) and then to Lp

Π0
1

in the same way we

extended L1 to L1(P) and LΠ0
1
, but with the difference that we only add a relation

symbol to Lp
Π0

1
if it belongs also to LΠ0

1
. The purpose of introducing the languages

L
p
1(P) and Lp

Π0
1

is to have Kleene brackets at disposal.

An Lp
Π0

1
-formula F is meant to abbreviate the LΠ0

1
-formula F ?, where the restriction

of ·? to the atoms of Lp
Π0

1
is given by the following inductive definition. For Lp1(P)-

formulas ·? is defined as below, but with the first and last clause properly adjusted.

• If F is the formula (y = z), (c = z), (α = β) or (α ≺ β), then F ? is the
formula (y = z), (c = z),(α = β) or (α ≺ β), where c denotes the constants of
L
p

Π0
1
.

• If F ≡ ({x}(y) = z), then F ? :≡ (∃u)[T(x, 〈y〉, u) ∧ (u)0 = z].

• If F ≡ (f(~s) = z), then F ? :≡ (∃~x)[(~s = ~x)? ∧ f(~x) = z], for every function
symbol f of LΠ0

1
.

• If F ≡ ({r}(s) = z) then F ? :≡ (∃x)(∃y)[(r = x)? ∧ (s = y)? ∧ ({x}(y) = z)?].

• If F ≡ (s = t), then F ? :≡ (∃x)[(s = x)? ∧ (t = x)?].

• If F ≡ (R(α,~s)), then F ? :≡ (∃~x)[(~s = ~x)?∧R(α, ~x)], for every relation symbol
R of Lp

Π0
1
.

The map ·? extends canonically to all Lp
Π0

1
-formulas. The definition of ({x}(y) =

z)? is the usual way of introducing Kleene brackets. Observe that the relation
T(x, 〈y〉, u) (Kleene’s T-predicate) is primitive recursive. T(x, 〈y〉, u) states that
u = 〈z, x, y, v0, . . . , vn−1〉 codes the computation of the value z by the function with
code x, given the input y. For details confer Hinman [8]. Further, if s, t are Lp1-
terms, then t ↓ abbreviates the formula (∃x)(t = x)?, and s ' t stands for the
formula (s ↓ ∨ t ↓)→ (s = t)?.

The ordinary recursion theorem allows us to define the LΠ0
1
-numerals k∗, s∗, p∗, p∗0, p

∗
1,

s∗N, p∗N, d∗N, and dc∗ such that the following formulas hold. These numerals are
adequate interpretations of the corresponding Lp-constants k, s, p, p0, p1, sN , pN , dN
and dc.

• {{k∗}(x)}(y) = y,

24

• {{s∗}(x)}(y) ↓,

• {{{s∗}(x)}(y)}(z) ' {{x}(z)}({y}(z)),

• {{p∗}(x)}(y) = 〈x, y〉,

• {p∗0}(〈x, y〉) = x,

• {p∗1}(〈x, y〉) = y,

• {s∗N}(x) = x+ 1,

• {p∗N}(x) = x . 1,

• z0 = z1 → {{{{d∗N}(x)}(y)}(z0)}(z1) = x,

• z0 6= z1 → {{{{d∗N}(x)}(y)}(z0)}(z1) = y,

• {{dc∗}(〈x, y〉)}(0) = x,

• {{dc∗}(〈x, y〉)}(z + 1) ' {y}({{dc∗}(〈x, y〉)}(z)).

Further we need the Lp
Π0

1
-numerals nat∗, id∗, co∗, int∗, codom∗, dom∗, coinv∗, inv∗, coj∗,

j∗ and cl∗ to code the type structure. We choose them such that the following holds:

• nat∗ :≡ 〈1, 0〉,

• id∗ :≡ 〈2, 0〉,

• noval∗ :≡ 〈3, 0〉,

• {int∗}(x) = 〈4, x〉,

• {co∗}(x) = 〈5, x〉,

• {codom∗}(x) = 〈6, x〉,

• {coinv∗}(x) = 〈7, x〉,

• {coj∗} = 〈8, x〉,

• {cl∗}(x) = 〈9, x〉,

• {dom∗}(x) = {co∗}({codom∗}(x)),

• {inv∗}(x) = {co∗}({coinv∗}(x)),

• {j∗}(x) = {co∗}({coj∗}(x)).

25

Now the stage is set to present the operator form A. Observe that A is in-
deed (equivalent to) a Π0

1-formula: Kleene brackets appear only in the context
¬P ({f(x)}(y), n, k) which translates to the L1(P)-formula

¬[(∃e)(∃z)(f(x) = e ∧ (∃u)[T(e, 〈y〉, u) ∧ (u)0 = z] ∧ P (z, n, k)],

and ¬[{(n)0}((n)1) ↓] which translates to an L1(P)-formula equivalent to

(∀u)¬[T((n)0, 〈(n)1〉, u)].

To keep our definition of A readable, we write e.g. m = {int∗}(〈a, b〉)∧P (a, 0, 0) for
the statement

m = 〈(m)0, (m)1〉 ∧ (m)0 = 4 ∧ (m)1 = (〈(m)1,0, (m)1,1〉) ∧ P ((m)1,0, 0, 0).

Definition 2.2.1 A(P,m, n, k) is the disjunction of the following formulas:

1a) m = noval∗ ∧ n = 0 ∧ k = 0,
1b) m = noval∗ ∧ n = 〈(n)0, (n)1〉 ∧ ¬{(n)0}((n)1) ↓ ∧ k = 1,

2a) m = nat∗ ∧ n = 0 ∧ k = 0,
2b) m = nat∗ ∧ k = 1,

3a) m = id∗ ∧ n = 0 ∧ k = 0,
3b) m = id∗ ∧ n = 〈(n)0, (n)0〉 ∧ k = 1,

4a) m = {int∗}(〈a, b〉) ∧ P (a, 0, 0) ∧ P (b, 0, 0) ∧ n = 0 ∧ k = 0,
4b) m = {int∗}(〈a, b〉) ∧ P (a, 0, 0) ∧ P (b, 0, 0) ∧ P (a, n, 1) ∧ P (b, n, 1) ∧ k = 1,

5a) m = {co∗}(a) ∧ P (a, 0, 0) ∧ n = 0 ∧ k = 0,
5b) m = {co∗}(a) ∧ P (a, 0, 0) ∧ ¬P (a, n, 1) ∧ k = 1,

6a) m = {codom∗}(a) ∧ P (a, 0, 0) ∧ n = 0 ∧ k = 0,
6b) m = {codom∗}(a) ∧ P (a, 0, 0) ∧ (∀q)¬P (a, 〈n, q〉, 1) ∧ k = 1,

7a) m = {coinv∗}(〈a, f〉) ∧ P (a, 0, 0) ∧ n = 0 ∧ k = 0,
7b) m = {coinv∗}(〈a, f〉) ∧ P (a, 0, 0) ∧ ¬P (a, {f}(n), 1) ∧ k = 1,

8a) m = {coj∗}(〈a, f〉) ∧ P (a, 0, 0) ∧ (∀x)[P (a, x, 1)→ ¬P (noval∗, 〈f, x〉, 1)]∧
(∀x)(∀y)[P (a, x, 1) ∧ {f}(x) = y → P (y, 0, 0)] ∧ n = 0 ∧ k = 0,

8b) m = {coj∗}(〈a, f〉) ∧ P (a, 0, 0) ∧ (∀x)[P (a, x, 1)→ ¬P (noval∗, 〈f, x〉, 1)]∧
(∀x)(∀y)[P (a, x, 1) ∧ {f}(x) = y → P (y, 0, 0)]∧
¬[n = 〈(n)0, (n)1〉 ∧ P (a, (n)0, 1) ∧ P ({f}((n)0), (n)1, 1)] ∧ k = 1,

9) m = {cl∗}(〈a, f〉) ∧ P (a, 0, 0) ∧ (∀x)[P (x, 0, 0)→ ¬P (noval∗, 〈f, x〉, 1)]∧
(∀x)(∀y)[P (x, 0, 0) ∧ {f}(x) = y → P (y, 0, 0)] ∧ n = 0 ∧ k = 2.

26

Observe that the type noval∗ is generated at the very first stage, i.e. PA
0(noval∗, 0, 0)

holds. Hence when we refer to the type noval∗ in 8) and 9), we know that it’s already
built. Moreover, we have the following lemmas.

Lemma 2.2.2 FIDr(Π0
1) ` P β

A(m,n, k)→ (∃α � β)[Pα
A(m,n, k) ∧ ¬P≺αA (m,n, k)].

Proof: We show the claim by (∆O

0 -INDO) on β. (OP.1) yields P≺βA (m,n, k) or
A(P≺βA ,m, n, k). If P≺βA (m,n, k) holds the claim follows by the IH (induction hy-
pothesis), if ¬P≺βA (m,n, k) , then β is a witness for α. 2

Lemma 2.2.3 FIDr(Π0
1) ` A(PA,m, n, k)→ (∃α)A(P≺αA ,m, n, k).

Proof: Let A(PA,m, n, k). By (OP.2) we have PA(m,n, k). Now lemma 2.2.2
gives us an α such that Pα

A(m,n, k) and ¬P≺αA (m,n, k), hence by (OP.1) we have
A(P≺αA ,m, n, k). 2

Lemma 2.2.4 FIDr(Π0
1) ` Pα

A(m,n, 1)→ Pα
A(m, 0, 0).

Proof: By (∆O

0 -INDO) on α. If P≺αA (m,n, 1), the IH applies, otherwise we have
A(P≺αA ,m, n, 1). Now the definition of A yields immediately A(P≺αA ,m, 0, 0), that
is Pα

A(m, 0, 0). 2

Lemma 2.2.5 (Persistence Lemma) FIDr(Π0
1) proves:

Pα
A(m, 0, 0) ∧ P β

A(m,n, 1)→ Pα
A(m,n, 1).

Proof: By (∆O

0 -INDO) on α. If P≺αA (m, 0, 0), the IH applies, otherwise we have

A(P≺αA ,m, 0, 0). Then there is a β′ � β with P β′

A (m,n, 1) and ¬P≺β
′

A (m,n, 1),

hence A(P≺β
′

A ,m, n, 1) and α � β′ by lemma 2.2.4. If m = nat∗ or m = id∗, the

claim is obvious. If m = {int∗}(〈a, b〉), then A(P≺αA ,m, 0, 0) and A(P≺β
′

A ,m, n, 1),
therefore P≺αA (a, 0, 0) and P≺αA (b, 0, 0) as well as P≺βA (a, n, 1) and P≺βA (b, n, 1). Now
the IH yields A(P≺αA ,m, n, 1). If m = {codom∗}(a), then A(P≺αA ,m, 0, 0) and

A(P≺β
′

A ,m, n, 1), therefore P≺αA (a, 0, 0) as well as (∀q)[¬P≺β
′

A (a, 〈n, q〉, 1). We may

assume that α � β′, so (∀q)[¬P≺β
′

A (a, 〈n, q〉, 1)] implies (∀q)[¬P≺αA (a, 〈n, q〉, 1)],
hence A(P≺αA ,m, n, 1). The remaining cases are shown similarly. 2

In order to give a translation ·I from Lp into LΠ0
1

it suffices to give a translation ·∗
from Lp into Lp

Π0
1
. The translation ·I is then given by the composition (·∗)?.

First we define ∗ for Lp-terms:

27

• If t is a individual variable x or a type variable X, then t∗ is the number
variable x∗, X∗ respectively; where ·∗ maps individual and type variables one-
one to number variables of LΠ0

1
, i.e. syntactically different variables of Lp are

mapped on syntactically different variables of LΠ0
1
.

• If t is the constant 0, k, s, . . ., then t∗ is the constant 0, k∗, s∗,

• If t ≡ r · s, then t∗ :≡ {r∗}(s∗).

Now we extend ∗ to Lp-formulas:

(r = s)∗ :≡ (r∗ = t∗),
[N(t)]∗ :≡ (∃x)(t∗ = x),
(t ↓)∗ :≡ (∃x)(t∗ = x),

(t ∈ X)∗ :≡ PA(X∗, t∗, 1),
[<(t,X)]∗ :≡ PA(t∗, 0, 0) ∧ (∀x)(PA(t∗, x, 1)↔ PA(X∗, x, 1)),
(X = Y)∗ :≡ (∀x)(PA(X∗, x, 1)↔ PA(Y ∗, x, 1)),

(¬F)∗ :≡ ¬F ∗,
(F j G)∗ :≡ F ∗ j G∗,
[(Qx)F]∗ :≡ (Qx∗)F ∗,
[(∃X)F]∗ :≡ (∃X∗)(PA(X∗, 0, 0) ∧ F ∗),
[(∀X)F]∗ :≡ (∀X∗)(PA(X∗, 0, 0)→ F ∗).

As usual j denotes the connectives ∧ and ∨, and Q stands for a quantifier.
Now we have the following proposition:

Proposition 2.2.6 For every axiom F of EETJ + (dc) + (T-IN) with its free type
variables among X0, . . . , Xn−1 we have

FIDr(Π0
1) ` PA(X∗0 , 0, 0) ∧ . . . ∧ PA(X∗n−1, 0, 0)→ F I .

Proof: The logical axioms and the axioms concerning the constants and the nat-
ural numbers are shown as in Studer [15]. From the axioms concerning elementary
comprehension, we show exemplary the axiom (INV). For (T-IN) and (dc), the proof
is given below, too.

The axiom (INV.1) translates to

PA(B∗, 0, 0)→ (∃X∗)[PA(X∗, 0, 0) ∧ (∀x∗)(PA(X∗, x∗, 1)↔ ¬PA(B∗, {f ∗}(x∗), 1))].

PA(B∗, 0, 0) implies PA({coinv∗}(〈B∗, f∗〉), 0, 0). Now we show that

(∀x∗)[PA({coinv∗}(〈B∗, f∗〉), x∗, 1)↔ ¬PA(B∗, {f ∗}(x∗), 1)].

28

Assume that PA({coinv∗}(〈B∗, f∗〉), x∗, 1). As before we can find an α such that
A(P≺αA , {coinv∗}(〈B∗, f∗〉), x∗, 1) holds. So P≺αA (B∗, 0, 0) and ¬P≺αA (B∗, {f ∗}(x∗), 1)
by the definition of A. Now persistence yields ¬PA(B∗, {f ∗}(x∗), 1). Because of
{inv∗}(x∗) = {co∗}({coinv∗}(x∗)), X∗ can be witnessed by {inv∗}(〈B∗, f∗〉). The
translation of (INV.2) follows from the translation of (INV.1) and lemma 2.2.4.
The translation of (T-IN) is equivalent to

PA(A∗, 0, 0)→
[PA(A∗, 0, 1) ∧ (∀x∗)[PA(A∗, x∗, 1)→ PA(A∗, x∗ + 1, 1)]→ (∀x∗)PA(A∗, x∗, 1)].

Assume PA(A∗, 0, 0). By (OP.2) we find an α such that Pα
A(A∗, 0, 0) holds, hence

PA(A∗, n, 1) implies Pα
A(A∗, n, 1) by persistence. Therefore the conclusion becomes

equivalent to

Pα
A(A∗, 0, 1) ∧ (∀x∗)[Pα

A(A∗, x∗, 1)→ Pα
A(A∗, x∗ + 1, 1)]→ (∀x∗)Pα

A(A∗, x∗, 1),

and follows immediately with (∆O

0 -INDN).
The translation of (dc.2) holds due to the choice of the numeral dc∗. It remains to
show the translation of (dc.1), which is equivalent to

PA(a, 0, 0) ∧ (∀x)[PA(x, 0, 0)→ PA({f}(x), 0, 0)]→
(∀n)PA({{dc∗}(〈a, f〉)}(n), 0, 0).

Under the assumption that the premise holds, we have A(PA, {cl∗}(〈a, f〉), 0, 2).
Hence lemma 2.2.3 yields A(P≺αA , {cl∗}, (〈a, f〉), 0, 2) for some α, therefore we have
P≺αA (a, 0, 0) ∧ (∀x)P≺αA (x, 0, 0)→ P≺αA ({f}(x), 0, 0). Now (∆O

0 -INDN) enables us to
prove (∀n)P≺αA ({{dc∗}(〈a, f〉)}(n), 0, 0), and we are done.

2

Hence we have established that the theory EETJ + (dc) + (T-IN) isn’t stronger than
the theory FIDr(Π0

1). By techniques presented in Jäger [10] and standard methods
from proof-theory it can be shown that the proof-theoretic strength of the theory
FIDr(Π0

1) is at most ϕω0. That allows us to state the following proposition.

Proposition 2.2.7 |EETJ + (dc) + (T-IN)| ≤ |FIDr(Π0
1)| ≤ ϕω0.

2

Together with proposition 1.4.5 from chapter 1, this yields:

Corollary 2.2.8 |EETJ + (dc) + (T-IN)| = |FIDr(Π0
1)| = ϕω0.

2

In the final section of our thesis we show, that also EETJ + (dc) + (T-IN) + (Tot) can
be embedded into FIDr(Π0

1).

29

2.3 A Term Model

In this section we’ll formalize a total term model of EETJ + (dc) + (T-IN) + (Tot)
in FIDr(Π0

1). Thereby we proceed basically as in the previous section. However, this
times things are a bit more complicate. We give a rough sketch:
The individual variables of Lp are ranging over the LΠ0

1
-terms coding the closed

Lp-terms, and the application is modeled in the usual term model way: If s∗ codes
the Lp-term s and t∗ codes the Lp-term t, then s∗ ◦ t∗ is given by (s · t)∗. The
constants are modeled together with equality. Equality is interpreted by the Σ0

1-
relation ≈ρ . That way we force the constants to behave appropriate, e.g. we
have ((k∗ ◦ x) ◦ y) ≈ρ x. The natural numbers are represented by the LΠ0

1
-terms n

with n ≈ρ Num(x) for some x, where Num(x) denotes the Gödelnumber of the xth

natural number. As before, types are identified with their names, so that the type
variables of Lp are ranging over the LΠ0

1
-terms coding names. The type structure

is modeled by the inductively defined relation PA(m,n, k). Again, PA(m, 0, 0) is to
express that m is a name, and PA(m,n, k) states that n is an element of the type
named m. The type structure and the axiom (dc) are modeled as before. However,
when we generate the relation PA, we have to take into account that equality is
interpreted by the relation ≈ρ . We can’t add just one representative t of the
equivalence class [t]≈ρ to PA and model the naming relation by interpreting <(a) by
(∃x)[PA(x, 0, 0)∧a ≈ρ x]: To check if we can include e.g. the triple (j∗ ◦ (a, f)?, 0, 0)
into PA we have to check if (∀x)[PA(a, x, 1) → PA(f ◦ x, 0, 0)]. But in general, the
terms f ◦x aren’t canonical representatives of their equivalence classes, and the test
(∃x)(f ◦ x ≈ρ y ∧ P (y, 0, 0) can’t be performed for the operator form A is Π0

1. So if
we want to model the type structure by the relation PA as in the previous section,
PA has to be closed under ≈ρ , i.e. if PA(m,n, 1) and m′ ≈ρ m and n′ ≈ρ n then
PA(m′, n′, 1).

Let’s make thing precise. First we assign to each constant c of Lp and to the function
symbol · Gödelnumbers pcq and p·q such that pcq and p·q aren’t elements of Seq.
Then the Gödelnumber of a compound term (st) can be defined by

pstq = 〈p·q, psq, ptq〉.

Due to this definition we have a primitive recursive relation CTer(x), indicating that
x is the Gödelnumber of a closed term, and a primitive recursive function Num(x)
satisfying Num(x) = pxq, i.e. Num(x) is the Gödelnumber of the xth numeral of
Lp. Further let pcodomq be a natural number that isn’t in Seq and different from
all the Gödelnumbers p·q and pcq.
Next, we define a translation ·∗ from the Lp-terms into the LΠ0

1
-terms in the following

way:

• If t is a individual variable x or a type variable X, then t∗ is the number

30

variable x∗, X∗ respectively; where ·∗ maps individual and type variables one-
one to number variables of LΠ0

1
, i.e. syntactically different variables of Lp are

mapped on different variables of LΠ0
1
.

• If t is an individual constant, then

t∗ :≡
{
〈p·q, co∗, pcodomq〉 if t ≡ dom ,
ptq otherwise.

• If t ≡ r · s, then t∗ :≡ 〈p·q, r∗, s∗〉.

Further we define the primitive recursive functions ◦, (·, ·)?, [·]0 and [·]1 by:

• x ◦ y := 〈p·q, x, y〉

• (x, y)? := 〈p·q, 〈p·q, p∗, x〉, y〉

• [n]0 := (n)1,2

• [n]1 := (n)2

If s, t are Lp-terms then (s · t)∗ = s∗ ◦ t∗, (s, t)∗ = (s∗, t∗)?, and [([n]0, [n]1)?]0 = [n]0
and [([n]0, [n]1)?]1 = [n]1.

Now we focus on the relation ≈ρ that is to interpret equality. It is based on a
binary relation ρ (the notion of reduction) on the Lp-terms, that is tailored to
model the behaviour of the Lp-constants. The relation ρ is given by the following
redex-contractum pairs, where t0, t1, t2 are Lp terms, m,n are natural numbers with
m 6= n and m,n are the corresponding numerals of Lp.

kt0t1 ρ t0,

st0t1t2 ρ t0t2(t0t1),

p0(pt0t1) ρ t0,

p1(pt0t1) ρ t1,

pN(sNm) ρ m,

dN t0t1mm ρ t0,

dN t0t1mn ρ t1,

dc(pt0t1)0 ρ t0,

dc(pt0t1)(sNn) ρ t1(dc(pt0t1)n).

This notion of reduction induces the binary relation→ρ of one step ρ reduction (the
compatible closure of ρ) and the binary relation �ρ of ρ reduction (the reflexive

31

transitive closure of →ρ). We remark that �ρ satisfies the Church Rosser property
(cf. e.g. Barendregt [1]).
Further we need a formalized version Redρ of the relation�ρ on the Gödelnumbers of
the closed terms of Lp. For that purpose, let RedConρ(x, y) be a primitive recursive
relation formalizing the notion of reduction ρ. Then a formalized version Red1ρ(x, y)
of →ρ can be described by the following primitive recursive definition:

Red1ρ(x, y) := CTer(x) ∧ CTer(y) ∧ Red1∗ρ(x, y),

where Red1∗ρ(x, y) is the disjunction of the following formulas:

(1) RedConρ(x, y),

(2) x = 〈p·q, (x)1, (x)2〉 ∧ y = 〈p·q, (x)1, (y)2〉 ∧ Red1ρ((x)2, (y)2),

(3) x = 〈p·q, (x)1, (x)2〉 ∧ y = 〈p·q, (y)1, (x)2〉 ∧ Red1ρ((x)1, (y)1).

In order to formalize the reflexive, transitive closure �ρ of →ρ we define an in-
termediate predicate RedSeqρ(x, y, z) with the intended meaning that x codes a
reduction sequence from the closed term with Gödelnumber y to the closed term
with Gödelnumber z with respect to →ρ:

RedSeqρ(x, y, z) := Seq(x) ∧ CTer(y) ∧ CTer(z) ∧ Red∗ρ(x, y, z),

where Red∗ρ(x, y, z) is the disjunction of the following formulas:

(1) lh(x) = 1 ∧ x = 〈y〉 ∧ y = z,

(2) lh(x) > 1 ∧ y = (x)0 ∧ z = (x)lh(x) . 1 ∧ (∀i < lh(x) . 1)Red1ρ((x)i, (x)i+1).

The formalization Redρ of �ρ is then given by the Σ0
1-formula

Redρ(y, z) :≡ (∃x)(RedSeqρ(x, y, z).

It is well known (cf. e.g. Girard [7]) that the Church Rosser property can already
be proven in PRA, therefore we have the theorem

Theorem 2.3.1 FIDr(Π0
1) proves:

(∀x)(∀y)(∀z)[Redρ(x, y) ∧ Redρ(x, z)→ (∃w)(Redρ(y, w) ∧ Redρ(z, w))].

2

By the above theorem we can define the equivalence relation ≈ρ on L2-terms by
the Σ0

1-formula
s ≈ρ t :⇐⇒ (∃x)[Redρ(s, x) ∧ Redρ(t, x)],

that is s and t have a common Redρ-reduct. In the definition of the operator form A
the reflexive closure Red1r

ρ of the relation Red1ρ plays a major role. An important
property of the relation Red1r

ρ is stated in the following lemma.

32

Lemma 2.3.2 There is a primitive recursive function bd(x) such that

Red1r
ρ(m,m

′)→ m′ < bd(m).

Proof: We define the function bd(x) by:

bd(x) :=

bd[(t0t2)∗] ◦ bd[(t1t2)∗], if x = (st0t1t2)∗,
bd[t∗0] ◦ bd[(dc(pt0t1)n)∗], if x = (dc(pt0t1)(sNn))∗,
bd(t0) ◦ bd(t1), if x = t0 ◦ t1 ∧ x 6= (dc(pr0r1)(sNn))∗∧

x 6= (sl0l1l2)∗,
x+ 1, otherwise.

It is immediate from that definition that bd(x) is primitive recursive and satisfies
the demanded property. 2

Before we present the operator form A, we describe informally how we manage to
close PA w.r.t. ≈ρ : With an operator form that is Π0

1 we can’t test if Redρ(n, n
′)

or n′ ≈ρ n. However, given a closed term n, we can check if there is a closed term
n′ such that Red1r

ρ(n, n
′) by the ∆O

0 -formula (∃n′ < bd(n))Red1r
ρ(n, n

′). But note
that the converse, i.e. given a term n, is there a term n′ such that Red1r

ρ(n
′, n), is

not decidable by a Π0
1-predicate. To model PA we use a combined operator form.

The first operator A0 is POS and ∆O

0 , and the second operator A1 is Π0
1, so that

the whole operator form A is still Π0
1. What the first operator does is this: If m′

is a term coding a type and Red1r
ρ(m,m

′), then m is to code the same type, and
if n′ is in the extension of a type and Red1r

ρ(n, n
′), then so is n. We apply the

first operator over and over again until closure is reached, and it turns out that at
this stage PA is also closed under ≈ρ . Then we apply the second operator once in
order to get representatives of the types co a, int(a, b) etc., then we apply again the
first operator over and over again until closure is reached (w.r.t. the first operator
and w.r.t. ≈ρ), then the second operator once, and so on until closure under both
operators is achieved.
Now we are in the position to define the operator form A. To keep our nota-
tion intuitive, we write e.g. m = int∗ ◦ (a, b)? ∧ PA(a, 0, 0) for the statement
m = (m)1 ◦ (m)2 ∧ (m)1 = int∗ ∧ (∃x)[x = (m)2 → x = ([x]0, [x]1)? ∧ P ([x]0, 0, 0)].

Definition 2.3.3 (The operator form A):

A(P,m, n, k) :≡ A0(P,m, n, k) ∨ [(∀~x)(A0(P, ~x)→ P (~x)) ∧ A1(P,m, n, k)], where

A0(P,m, n, k) :≡(∃m′ < bd(m))[Red1r
ρ(m,m

′) ∧ P (m′, 0, 0) ∧ n = k = 0] ∨
(∃m′ < bd(m))[Red1r

ρ(m,m
′) ∧ P (m′, n, 1) ∧ k = 1] ∨

(∃n′ < bd(n))[Red1r
ρ(n, n

′) ∧ P (m,n′, 1) ∧ k = 1],

33

and A1(P,m, n, k) is the disjunction of the following formulas:

1a) m = nat∗ ∧ n = 0 ∧ k = 0,
1b) m = nat∗ ∧ CTer(n) ∧ (∃x < n)(Num(x) = n) ∧ k = 1,

2a) m = id∗ ∧ n = 0 ∧ k = 0,
2b) m = id∗ ∧ CTer(n) ∧ n = ([n]0, [n]0)? ∧ k = 1,

3a) m = int∗ ◦ (a, b)? ∧ P (a, 0, 0) ∧ P (b, 0, 0) ∧ n = 0 ∧ k = 0,
3b) m = int∗ ◦ (a, b)? ∧ P (a, 0, 0) ∧ P (b, 0, 0) ∧ P (a, n, 1) ∧ P (b, n, 1) ∧ k = 1,

4a) m = co∗ ◦ a ∧ P (a, 0, 0) ∧ n = 0 ∧ k = 0,
4b) m = co∗ ◦ a ∧ P (a, 0, 0) ∧ CTer(n) ∧ ¬P (a, n, 1) ∧ k = 1,

5a) m = codom∗ ◦ a ∧ P (a, 0, 0) ∧ n = 0 ∧ k = 0,
5b) m = codom∗ ◦ a ∧ P (a, 0, 0) ∧ CTer(n) ∧ (∀q)¬P (a, (n, q)?, 1) ∧ k = 1,

6a) m = inv∗ ◦ (a, f)? ∧ P (a, 0, 0) ∧ CTer(f) ∧ n = 0 ∧ k = 0,
6b) m = inv∗ ◦ (a, f)? ∧ P (a, 0, 0) ∧ CTer(f) ∧ P (a, f ◦ n, 1) ∧ k = 1,

7a) m = j∗ ◦ (a, f)? ∧ P (a, 0, 0) ∧ CTer(f) ∧ (∀x)[P (a, x, 1)→ P (f ◦ x, 0, 0)]∧
n = 0 ∧ k = 0,

7b) m = j∗ ◦ (a, f)? ∧ P (a, 0, 0) ∧ CTer(f) ∧ (∀x)[P (a, x, 1)→ P (f ◦ x, 0, 0)] ∧
n = ([n]0, [n]1)? ∧ P (a, [n]0, 1) ∧ P (f ◦ [n]0, [n]1, 1) ∧ k = 1,

8) m = cl∗ ◦ (a, f)? ∧ P (a, 0, 0) ∧ CTer(f) ∧ (∀x)[P (x, 0, 0)→ P (f ◦ x, 0, 0)]∧
n = 0 ∧ k = 2.

In the sequel const denotes the set {int, co , codom , inv, j, cl}. Then the expression
(∃c ∈ const)A(c∗) is meant to abbreviate the formula A[int∗]∨. . .∨A[cl∗]. In addition
we set C(P≺αA) :≡ (∀~x)(A0(P≺αA , ~x)→ P≺αA (~x)).

Lemma 2.3.4 For all c in const FIDr(Π0
1) proves:

Redρ(c∗ ◦ t, s)→ (∃t′)(s = c∗ ◦ t′ ∧ Redρ(t, t
′)).

Proof: For no c in const there is a redex-contractum pair of the form c . . . ρ c . . .,
therefore, for c in const Red1r

ρ(c∗◦t,m) holds if and only if m = c∗◦t′ and Red1r
ρ(t, t

′).

Now (∆O

0 -INDN) on the length of the reduction sequence s yields the claim. 2

Lemma 2.3.5 FIDr(Π0
1) proves:

m = (a, b)? ∧ Redρ(m,m
′)→ (∃a′)(∃b′)[Redρ(a, a

′) ∧ Redρ(b, b
′) ∧m′ = (a′, b′)?

34

Proof: There is no redex-contractum pair of the form p . . . ρ p . . ., therefore
Red1r

ρ((a, b)
?,m′) holds if and only if m′ = (a′, b′)? with Red1r

ρ(a, a
′) and Red1r

ρ(b, b
′).

Again (∆O

0 -INDN) yields the claim. 2

Lemma 2.3.6 FIDr(Π0
1) ` Pα

A(m, 0, 0)→ (∃t)(∃c ∈ const)Redρ(m, c
∗ ◦ t).

Proof: By (∆O

0 -INDO) on α. If P≺αA (m, 0, 0) the IH applies. If A0(P≺αA ,m, 0, 0)
there is an m′ with Red1r

ρ(m,m
′) and P≺αA (m′, 0, 0), hence by IH there is a term t

and a c in const with Redρ(m
′, c∗ ◦ t). The definition of Redρ yields Redρ(m, c

∗ ◦ t).
If ¬A0(P≺αA ,m, 0, 0) and A(P≺αA ,m, 0, 0), then m is of the form c∗ ◦ t for a c in const
and we are done. 2

By the definition of A we have that PA is ’closed upwards’ under Red1r
ρ, i.e. if

Red1r
ρ(m,m

′) ∧ PA(m′, n, k) then PA(m,n, k) (k ∈ {0, 1}), and if Red1r
ρ(n, n

′) ∧
PA(m,n′, 1) then PA(m,n, 1). We aim to show that PA is closed under ≈ρ .

Lemma 2.3.7 FIDr(Π0
1) proves: k = 0 ∨ k = 1 implies

(i) Redρ(m,m
′) ∧ C(P≺αA)→ [P≺αA (m′, n, k)→ P≺αA (m,n, k)]

(ii) Redρ(n, n
′) ∧ C(P≺αA)→ [P≺αA (m,n′, 1)→ P≺αA (m,n, 1)]

Proof: Let F (P≺αA ,m,m′, n, k) :≡ C(P≺αA) → [P≺αA (m,n, k) → P≺αA (m′, n, k)].
Now (∆O

0 -INDN) on l shows (∀l)(∀s)(∀m)(∀m′)[RedSeqρ(s,m,m
′)∧ lh(s) = l+ 1→

F (P≺αA ,m,m′, n, k)]: l = 0 implies m = m′, so there is nothing to show. For the
induction step note, that if lh(s) = l + 2 then there is a reduction sequence s′ and
a term m0 with lh(s′) = l + 1, RedSeqρ(s

′,m0,m
′) and Red1r

ρ(m,m0). Now the IH
yields P≺αA (m0, n, k) and the definition of A0 implies A0(P≺αA ,m, n, k), so by C(P≺αA)
we get P≺αA (m,n, k). This proves (i), (ii) is shown the same way. 2

In order to formulate the next lemma, we set

G(α, β,m, n, k) :≡ (∀γ)[(β ≺ γ ∧ (γ ≺ α ∨ γ = α) ∧ C(P≺γA))→ P≺γA (m,n, k)]

G(α, β,m, n, k) expresses that P≺γA (m,n, k) holds for all γ with β ≺ γ � α and
C(P≺γA).

Lemma 2.3.8 FIDr(Π0
1) proves: k = 0 ∨ k = 1 implies

(i) Redρ(m>,m0) ∧ C(P≺αA) ∧ β ≺ α→ [P β
A(m>, n, k)→ G(α, β,m0, n, k)]

(ii) Redρ(n>, n0) ∧ C(P≺αA) ∧ β ≺ α→ [P β
A(m,n>, 1)→ G(α, β,m, n0, k)]

35

Proof: We prove (i) and (ii) simultaneously by ∆O

0 -induction on β. We show the
induction step for the case (i): If P≺βA (m>, n, k) then the claim follows from the IH.
If A(P≺βA ,m>, n, k), we distinguish two cases:

(a) A0(P≺βA ,m>, n, k). By the definition of A0 there is

(a.1) an m1 with Red1r
ρ(m>,m1)∧P≺βA (m1, n, k). Redρ has the Church-Rosser

property, hence there is a m⊥ such that Redρ(m0,m⊥) ∧ Redρ(m1,m⊥).
By IH we have G(α, β,m⊥, n, k) and therefore G(α, β,m0, n, k) by the
previous lemma.

(a.2) an n′ with Red1r
ρ(n, n

′)∧P≺βA (m>, n
′, k). By IH we have G(α, β,m0, n

′, k)
and therefore G(α, β,m0, n, k) by the previous lemma.

�
�
�	

@
@
@R

@
@
@R

�
�
�	

�
�
�	

@
@
@R

@
@
@R

�
�
�	

m>

m0 m1

m⊥

r
r r
r

(b) A(P≺βA ,m>, n, k) ∧ ¬A0(P≺βA ,m>, n, k). The definition of A implies C(P≺βA)
and A1(P≺βA ,m>, n, k). So m> is of the form c∗ ◦ t and m0 is of the form c∗ ◦ t′
where Redρ(t, t

′) for a c in const. We just consider the case where c is the term
j. So m> = j∗ ◦ (a, f)? for suitable terms a and f , and m0 = j∗ ◦ (a′, f ′)? where
Redρ(a, a

′) or Redρ(f, f
′). Assume A1(P≺βA ,m>, n, k) holds because of

P≺βA (a, 0, 0) ∧ (∀x)[P≺βA (a, x, 1)→ P≺βA (f ◦ x, 0, 0)] ∧
n = ([n]0, [n]1)? ∧ P≺βA (a, [n]0, 1) ∧ P≺βA (f ◦ [n]0, [n]1, 1) ∧ k = 1.

(the case k = 0 is shown similarly). C(P≺βA) expresses that P≺βA is closed under
A0, hence by IH and lemma 2.3.7 we have

P≺βA (a′, 0, 0) ∧ (∀x)[P≺βA (a′, x, 1)→ P≺βA (f ′ ◦ x, 0, 0)] ∧
n = ([n]0, [n]1)? ∧ P≺βA (a′, [n]0, 1) ∧ P≺βA (f ′ ◦ [n]0, [n]1, 1) ∧ k = 1.

This yields A1(P≺βA , j∗◦(a′, f ′)?, n, k), hence P β
A(m0, n, k), and G(α, β,m0, n, k)

trivially follows.

2

Lemma 2.3.9 FIDr(Π0
1) proves: k = 0 ∨ k = 1 implies

(i) Redρ(m,m
′) ∧ C(P≺αA)→ [Pα

A(m,n, k)↔ Pα
A(m′, n, k)]

36

(ii) Redρ(n, n
′) ∧ C(P≺αA)→ [Pα

A(m,n, 1)↔ Pα
A(m,n′, 1)]

Proof: Let Pα
A(m,n, k). If P≺αA (m,n, k), the previous lemma applies. If we

have ¬P≺αA (m,n, k), A0(P≺αA ,m, n, k) is impossible because of C(P≺αA), therefore
A1(P≺αA ,m, n, k). Let e.g. m = int∗ ◦ (a, b)?, then m′ = int∗ ◦ (a′, b′)? where
Redρ(a, a

′) or Redρ(b, b
′). By the previous lemma P≺αA (a, n, 1) and P≺αA (b, n, 1) im-

plies P≺αA (a′, n, 1) and P≺αA (b′, n, 1), hence Pα
A(m′, n, 1). The other direction is shown

similarly. 2

Corollary 2.3.10 FIDr(Π0
1) proves: k = 0 ∨ k = 1 implies

(i) (m ≈ρ m′) ∧ C(P≺αA)→ [Pα
A(m,n, k)↔ Pα

A(m′, n, k)]

(ii) (n ≈ρ n′) ∧ C(P≺αA)→ [Pα
A(m,n, 1)↔ Pα

A(m,n′, 1)]

Proof: This follows immediately form the definition of ≈ρ and the above lemma.
2

Lemma 2.3.11 For all c in const FIDr(Π0
1) proves:

Pα
A(c∗ ◦m,n, k) ∧ ¬P≺αA (c∗ ◦m,n, k)→ C(P≺αA) ∧ A1(P≺αA , c∗ ◦m,n, k).

Proof: By (∆O

0 -INDO) on α. We show that for c in const A0(P≺αA , c∗ ◦ m,n, k)
is impossible. In this case there are m′, n′ with Red1r

ρ(m,m
′) and Red1r

ρ(n, n
′)

such that P≺αA (c∗ ◦m′, n′, k), and therefore there is a β ≺ α with P β
A(c∗ ◦m′, n′, k)

and ¬P≺βA (c∗ ◦ m′, n′, k). The IH yields C(P≺βA), and due to lemma 2.3.9 we have
P β
A(c∗ ◦m,n, k), what contradicts the premise. 2

Lemma 2.3.12 FIDr(Π0
1) ` Pα

A(m,n, k)→ (∃β)[C(P≺βA) ∧ P≺βA (m,n, k)].

Proof: (OP.2) asserts that (∀~x)[A0(PA, ~x) → PA(~x)]. With Pα
A(m,n, k) we have

also PA(m,n, k). This yields A(PA, int∗ ◦ (m,m)?, n, k), so again by (OP.2) and
lemma 2.2.2 there is a stage β such that P β

A(int∗ ◦ (m,m)?, n, k) and ¬P≺βA (int∗ ◦
(m,m)?, n, k). Now lemma 2.3.11 yields C(P≺βA) and A1(P≺βA , int∗ ◦ (m,m)?, n, k),
that is P≺βA (m,n, k). 2

Now we are able to show that PA is closed under ≈ρ :

Lemma 2.3.13 FIDr(Π0
1) proves: k = 0 ∨ k = 1 implies

(i) (m ≈ρ m′)→ [PA(m,n, k)↔ PA(m′, n, k)]

(ii) (n ≈ρ n′)→ [PA(m,n, 1)↔ PA(m,n′, 1)]

37

Proof: PA(m,n, k) implies A(PA, int∗ ◦ (m,m)?, n, k). Then there is an α with
Pα
A(int∗◦(m,m)?, n, k) and ¬P≺αA (int∗◦(m,m)?, n, k), so lemma 2.3.11 yields C(P≺αA)

and P≺αA (m,n, k). Now corollary 2.3.10 yields the claim. 2

Lemma 2.3.14 FIDr(Π0
1) ` Pα

A(m,n, 1)→ Pα
A(m, 0, 0) ∧ CTer(n).

Proof: By (∆O

0 -INDO) on α. 2

Next we proof the Persistence Lemma, which states that the extension of a type
doesn’t change anymore after closure w.r.t. A0 is reached.

Lemma 2.3.15 FIDr(Π0
1) proves:

C(P≺αA) ∧ P≺αA (m, 0, 0) ∧ C(P≺βA) ∧ P≺βA (m,n, 1)→ P≺αA (m,n, 1)

Proof: By (∆O

0 -INDO) on α. Because of C(P≺αA), C(P≺βA), lemma 2.3.6 and lemma
2.3.7 we may assume that m is of the form c∗ ◦ t for a c in const. Let e.g. m =
int∗ ◦ (a, b)?. So there is an α′ ≺ α such that Pα′

A (m, 0, 0) and ¬P≺α′A (m,n, k). Now
lemma 2.3.11 implies C(P≺α′A), P≺α

′

A (a, 0, 0) and P≺α
′

A (b, 0, 0). On the other hand

there is a β′ ≺ β with P β′

A (m,n, 1) and ¬P≺β
′

A (m,n, 1), hence lemma 2.3.11 yields

C(P≺β
′

A) and A1(P≺β
′

A ,m, n, 1), hence P≺βA (a, n, 1) and P≺βA (b, n, 1). Now IH yields
P≺α

′

A (a, n, 1) and P≺α
′

A (b, n, 1), therefore P≺αA (m,n, 1). 2

Lemma 2.3.16 (Persistence Lemma) FIDr(Π0
1) proves:

C(P≺αA) ∧ P≺αA (m, 0, 0) ∧ P β
A(m,n, 1)→ P≺αA (m,n, 1)

Proof: By lemma 2.3.12 there is a β′ such that C(P≺β
′

A) and P≺β
′

A (m,n, 1). Now
the previous lemma yields the claim. 2

Lemma 2.3.17 FIDr(Π0
1) proves:

PA(co∗ ◦m,n, 1)↔ PA(m, 0, 0) ∧ ¬PA(m,n, 1)

Proof: If PA(co∗ ◦ m,n, 1) holds, then by (OP.2) and lemma 2.3.14 we get an α
with C(P≺αA) and A1(P≺αA , co∗◦m,n, 1), so ¬P≺αA (m,n, 1). Now ¬PA(m,n, 1) follows
by persistence.
If PA(m, 0, 0) and ¬PA(m,n, 1) then A(PA, co∗ ◦ m,n, 1), so the claim holds by
(OP.2).

2

38

Lemma 2.3.18 If t(x) is an Lp-term and x is a free number or type variable of Lp,
then the following holds:

FIDr(Π0
1) ` (u ≈ρ v)→ (t∗[u/x∗] ≈ρ t∗[v/x∗]).

Proof: The claim is shown by induction on the setup of the Lp-term t. 2

We extend the translation ·∗ such that for every formula F of Lp F ∗ is a formula of
LΠ0

1
.

(r = s)∗ :≡ (r∗ ≈ρ s∗),
(t ↓)∗ :≡ 0 = 0,

[N(t)]∗ :≡ PA(nat∗, t∗, 1)
(t ∈ X)∗ :≡ PA(X∗, t∗, 1),

[<(t,X)]∗ :≡ PA(t∗, 0, 0) ∧ (∀x)(PA(t∗, x, 1)↔ PA(X∗, x, 1)),
(X = Y)∗ :≡ (∀x)(PA(X∗, x, 1)↔ PA(Y ∗, x, 1)),

(¬F)∗ :≡ ¬F ∗,
(F j G)∗ :≡ F ∗ j G∗,
[(Qx)F]∗ :≡ (Qx∗)F ∗,
[(∃X)F]∗ :≡ (∃X∗)(PA(X∗, 0, 0) ∧ F ∗,
[(∀X)F]∗ :≡ (∀X∗)(PA(X∗, 0, 0)→ F ∗,

As usual j denotes the connectives ∧ or ∨ and Q stands for a quantifier.

Lemma 2.3.19 If F (x) is an Lp-formula and x is a free number or type variable
of Lp, then the following holds:

FIDr(Π0
1) ` u ≈ρ v → (F ∗[u/x∗]↔ F ∗[v/x∗]).

Proof: The claim is shown by induction on the setup of the Lp-formula F . We
just show an illustrative case:
Be F (x) ≡ N(t(x)). Then F ∗(x∗) ≡ PA(nat∗, t∗(x∗), 1). Now lemma 2.3.18 yields
(t(u/x))∗ ≈ρ (t(v/x))∗, and lemma 2.3.13 yields the claim.

2

Proposition 2.3.20 For every axiom F of EETJ + (dc) + (T-IN) with its free type
variables among X0, . . . , Xn−1 we have:

FIDr(Π0
1) ` PA(X∗0 , 0, 0) ∧ . . . ∧ PA(X∗n−1, 0, 0)→ F ∗.

Proof: The equality axioms hold due lemma 2.3.19, and the other logical axioms
are easily checked. The axioms concerning the constants follow directly from the
definition of the relation ≈ρ .

39

The axioms about the natural numbers are shown as follows: The function Num is
given by

Num(0) = 0∗,
Num(x+ 1) = s∗N ◦ Num(x)

The axiom
0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N)

translates to

PA(nat∗, 0∗, 1) ∧ (∀x)[PA(nat∗, x, 1)→ PA(nat∗, s∗N ◦ x, 1)],

which holds, because we have CTer(0∗) and Num(0) = 0∗, as well as x ≈ρ Num(y)
implies s∗N ◦x ≈ρ s∗N ◦Num(y) = Num(y+ 1). The other axioms are shown similarly.
Extensionality (EXT) is built in the translation of (X = Y). The axiom (E.1)
(∃x)(<(x,X) is checked by taking the witness X∗, and (E.2) again holds by its
translation.
Now we verify the axioms for elementary comprehension. To show (N.1) we witness
X∗ by nat∗. Because Num(x) > x holds, nat∗ has the correct extension. Also (N.2),
and the axioms concerning the identity type follow directly from the definitions of
A and ·∗. (CO.1) and (CO.2) are due to lemma 2.3.17.
In (INT.1) X∗ is witnessed by int∗ ◦ (B∗, C∗)?. We have to show:

(∀x)[PA(int∗ ◦ (B∗, C∗)?, x, 1)↔ PA(B∗, x, 1) ∧ PA(C∗, x, 1)].

Let PA(int∗ ◦ (B∗, C∗)?, x, 1). Then we find a α with Pα
A(int∗ ◦ (B∗, C∗)?, x, 1) and

¬P≺αA (int∗◦(B∗, C∗)?, x, 1). Now lemma 2.3.11 yields C(P≺αA) and P≺αA (B∗, x, 1) and
P≺αA (C∗, x, 1). By lemma 2.3.14 and persistence we get PA(B∗, x, 1) and PA(C∗, x, 1).
For the other direction note the (OP.2) yields C(PA). Because of A1(PA, int∗ ◦
(B∗, C∗)?, x, 1) holds, (OP.2) yields the claim. (INT.2) follows by (OP.2), too.
In (DOM.1) X∗ is witnessed by co∗ ◦ (codom∗ ◦B∗). As above we show

(∀x)[PA(codom∗ ◦B∗, x, 1)↔ (∀q)¬PA(B∗, (x, q)?, 1)].

By lemma 2.3.17 we then get

(∀x)[PA(co∗ ◦ (codom∗ ◦B∗), x, 1)↔ (∃q)PA(B∗, (x, q)?, 1)].

The remaining axioms concerning elementary comprehension are shown the same
way, and (dc) is shown as in the previous section. 2

This means that the result about the strength of the theory EETJ + (dc) + (T-IN)
from the previous section hold also for the theory EETJ + (dc) + (T-IN) + (Tot).

Corollary 2.3.21 |EETJ + (dc) + (T-IN) + (Tot)| = |FIDr(Π0
1)| = ϕω0.

2

40

References

[1] Henk P. Barendregt. The Lambda Calculus. North Holland, Amsterdam, revised
edition, 1984.

[2] Michael J. Beeson. Foundations of Constructive Mathematics: Metamathemat-
ical Studies. Springer, Berlin, 1985.

[3] Andrea Cantini. On the relationship between choice and comprehension prin-
ciples in second order arithmetic. Journal of Symbolic Logic, 51:360–373, 1986.

[4] Solomon Feferman. A language and axioms for explicit mathematics. In J.N.
Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Mathemat-
ics, pages 87–139. Springer, Berlin, 1975.

[5] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part I. Annals of Pure and Applied Logic,
65(3):243–263, 1993.

[6] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics with
non-constructive µ-operator. Part II. Annals of Pure and Applied Logic, 79(1),
1996.

[7] Jean-Yves Girard. Proof Theory and Logical Complexitiy. Bibliopolis, Napoli,
1987.

[8] Peter G. Hinman. Recursion-Theoretic Hierarchies. Springer, Berlin, 1978.

[9] Gerhard Jäger. Applikative Theorien und explizite Mathematik. Institut für
Informatik und angewandte Mathematik, Universität Bern, 1996.

[10] Gerhard Jäger. First order theories for nonmonotone inductive definitions:
recursively inaccessible and mahlo. Technical report, Institut für Informatik
und angewandte Mathematik, Universität Bern, June 1998.

[11] Gerhard Jäger and Thomas Strahm. Some theories with positive induction of
ordinal strength ϕω0. Journal of Symbolic Logic, 61(3):818–842, 1996.

[12] Wayne Richter. Recursively Mahlo ordinals and inductive definitions. In R.O.
Gandy and C.E.M. Yates, editors, Logic Colloqium ’69, pages 273–288. North-
Holland, Amsterdam, 1971.

[13] Kurt Schütte. Proof Theory. Springer, Berlin, 1977.

41

[14] C. Spector. Inductively definded sets of natural numbers. In Infinitistic Meth-
ods (Proceedings of the Warsaw symposium), pages 97–102. Pergamon Press,
Oxford, 1961.

[15] Thomas Studer. Explicit mathematics: W-types, models. Master’s thesis,
Institut für Informatik und angewandte Mathematik, Universität Bern, 1997.

Address

Dieter Probst, Institut für Informatik und angewandte Mathematik, Universität
Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland, probst@iam.unibe.ch

42

