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Abstract

We show how the charaterization of the polytime functions by Bellantoni
and Cook [1] can be extended to characterize any stage of the Grzegorzyk
hierarchy above the second, thus proposing an answer to a problem posted
by Clote [3]. This is done by allowing an arbitrary fixed number of distinct
positions for variables instead of only two as in the original work of Bellantoni
and Cook. As turned out after writing down this paper, comparable results
were also proved by Bellantoni and Niggl [2].
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1 Introduction

Bellantoni and Cook [1] characterized the polytime functions by distinguishing be-
tween two sorts of arguments of functions, called normal and safe arguments. Re-
cursion is only allowed over normal arguments, whereas the recursively computed
values must be inserted in a safe position, and function composition is defined ac-
cordingly. Related tiering notions also appeared elsewhere, e.g. in Leivant [5] or
Simmons [10]. Clote [3] gives a short review of some recent results and rises the
problem of relating these concepts to the Grzegorczyk hierarchy (Problem 3.102).
This paper proposes an answer to that question.
Many characterizations of the Grzegorczyk hierarchy are based on controlling the
depth of nested recursions, as e.g. in [6] or [9]. Even its usual definition can be
seen from this angle: If we ignore the instances of bounded recursion as negligible
then the functions in the n + 1-st level of the Grzegorczyk hierarchy are exactly
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those definable with at most n relevant recursions. The ramification used in the
safe recursion scheme allows to control the nesting of definitions by recursion in
a similar way. As each argument of a function can be used at most once as a
recursion argument, the maximal depth of nested recursions is 1. If we allow n+ 1
tiers instead of only 2 tiers, and if we formulate the recursion scheme such that
the recursive values must be inserted in a tier lower than the tier of the recursion
argument, then the depth of the nesting is at most n. Thus, one can expect that
such a system will produce exactly the functions in En+1, a conjecture which we will
prove below.
However, Bellantoni and Cook characterized the polytime functions, rather than the
second level E2 of the Grzegorczyk hierarchy which equals linear time by a result
of Ritchie [7]. This is, of course, due to the fact they don’t use primitive recursion,
but recursion on binary notation. If their definitions are adapted for unary notation
of integers, their class would correspond to E2, as noticed by several people, cf. [3].
As soon as the exponentiation function is available, i.e. above the third level of the
Grzegorzyk hierarchy, both definitions coincide, but still unary notation is more in
tune with Grzegorczyk’s definitions, and it is technically simpler.

2 The classes Bn

Functions in Bellantoni’s and Cook’s class B have two sorts of inputs, called safe
and normal inputs. We generalize this definition to obtain a hierarchy Bn, where
the functions of the n-th level have n sorts.
To distinguish between arguments of different levels we separate them by semicolons
and we use the convention that a variable xk or a sequence xk = xk,1, . . . , xk,rk of
variables is always inserted in the k-th level when used as an argument to such a
function. This convention also applies to function symbols, or even to constants,
when it is necessary to make clear in which level a certain value is inserted.

Definition 1 For n ≥ 0, define Bn+1 to be the smallest set of functions containing
the initial functions 1.-5. and closed under safe recursion and safe composition.

1. The constant (zero-ary) function 0.

2. (Projection) πk,j(xn,1, . . . , xn,rn ; . . . ;x0,1, . . . , x0,r0) = xk,j,
for 0 ≤ k ≤ n and 1 ≤ j ≤ rk.

3. (Sucessor) S(x0) = x0 + 1.

4. (Predecessor) P (00) = 0,
P (x0 + 1) = x0.

5. (Conditional) C(00, y0, z0) = y0,
C(x0 + 1, y0, z0) = z0.
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6. (Safe Recursion)
f(xn; . . . ;xk+2;xk+1, 0k+1;xk) = g(xn; . . . ;xk+2;xk+1;xk),
f(xn; . . . ;xk+2;xk+1, vk+1 + 1;xk) =

h(xn; . . . ;xk+2;xk+1, vk+1;xk, f(xn; . . . ;xk+2;xk+1, vk+1;xk)),
where g and h are in Bn+1.

7. (Safe Composition)
f(xn; . . . ;x0) = h(rn(xn; ); rn−1(xn;xn−1); . . . ; r0(xn; . . . ;x0)),
where rn, . . . , r0 and h are in Bn+1.

Thus, Bellantoni’s and Cook’s original class B corresponds to B2 in our defini-
tion, when adapted for unary notation of integers. More explicit, one obtains B
from B2 by replacing the unary sucessor and predecessor function by their binary
couterparts and the Safe Recursion scheme by an analogous scheme for Recursion
on Notation and modifying the conditional such that it checks for the last bit of the
binary expansion of its first argument. We will sometimes identify fuctions from Bn

with functions in Bn+k which use only arguments in levels lower than n. Bn then
obviously becomes a subset of Bn+k.
The definition of the sets En is based on the following sequence of hierarchy functions
En:

Definition 2

E1(x) = x2 + 2
En+1(0) = 2
En+1(x+ 1) = En(En+1(x)).

Definition 3 For n ≥ 1, define En+1 to be the smallest set of functions containing
the zero, sucessor and projection functions and En closed under composition and the
scheme of bounded recursion:
If g, h and j are in En+1 then so is f , where

f(0, x) = g(x)
f(y + 1, x) = h(y, x, f(y, x)),

provided that
f(y, x) ≤ j(y, x).

We conclude this section recalling some properties of the functions En. Proofs, when
not straightforward, can be found in [8].

Remark 1 For all n ≥ 1:

i) En(x) ≥ x+ 1

ii) En(x+ 1) ≥ En(x) + 1
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iii) En(x) ≥ 2x

iv) En(x) ≥ x2

v) En(x) + En(y) ≤
{
En(x+ y), if x, y > 0
En(x+ y) + 2, else

vi) If f is in En+1 then there is an integer m such that

f(x1, . . . , xk) ≤ Em
n (max(x1, . . . , xk)).

3 Bn contains En

To show that En is contained in Bn we can use the techniques from [1]. The proof
of the first lemma even becomes more simple by using unary notation for integers.
This lemma shows how definitions by several bounded recursions can be replaced
with recursion in a single variable, provided that a number is given which is big
enough to comprise the complexity of the computation.

Lemma 2 For each f in En there are a function f ′ in B2 and a monotone function
ef in En such that for all integers x0 and all w satisfying w1 ≥ ef (x0)

f ′(w1;x0) = f(x0)

holds.

Proof. We proceed by induction on the definition of f as a function of En. To simplify
notation we omit the subscripts indicating the levels, but use the convention that
arguments to the left of the semicolon are in level 1 and those to the right in level
0.
If f is the zero, the sucessor or a projection function then we can define f ′ using the
corresponding initial function of B2. In this case we choose ef = 0.
En−1 has a definition by n applications of bounded recursion, proceeding from the
sucessor and the projection functions, where each recursion is bounded by En−1.
Since the treatment of bounded recursion does not make use of the induction hy-
pothesis for the bounding function, we can use this method to get functions E ′n−1

and eEn−1 with the required properties.
If f is defined by composition, f(x) = h(g(x)), then we put f ′(w;x) = h′(w; g′(w;x)),
where g′ and h′ are obtained from the induction hypothesis. The functions g are
bounded by monotone functions bg from En, as every function in En is. Therefore
the function ef (x) = eh(bg(x)) +

∑
j egj(x) does the job.
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Finally we consider the case that f is defined by bounded recursion. Let g′ and h′

in B2 be given by the induction hypothesis and define

f̂(0, w;x, y) = g′(w; y)

f̂(v + 1, w;x, y) = C(;x .− (w .− (v + 1)),
g′(w; y),

h′(w;x .− (w .− v), y, f̂(v, w;x, y)))

f ′(w;x, y) = f̂(w,w;x, y).

In this definition we used the function W (v, w;x) = x .− (w .− v), which is in B2 as
it can be defined by

.−(0;x) = x

.−(y + 1;x) = P ( .−(y;x))
W (v, w;x) = .−( .−(v;w);x).

We also notice that the subtraction x .− y is in B2 where x and y are arguments in
the levels 0 and 1 respectively. This result will be used later. Back to the proof, we
define ef (x, y) = eg(y) + eh(x, y, j(x, y)). Assuming the bounding function j to be
monotone, ef is monotone, too. Next we show by induction on u that: whenever
w ≥ ef (x, y) and w − x ≤ u ≤ w, then

f̂(u,w;x, y) = f(x− (w − u), y).

When u = w − x we immediately get f̂(w − x,w;x, y) = g′(w; y) = g(y). As to the
induction step, we observe that

f̂(u+ 1, w;x, y) = h′(w;x .− (w .− u), y, f̂(u,w;x, y))

= h′(w;x− (w − u), y, f(x− (w − u), y))

= h(x− (w − u), y, f(x− (w − u), y))

= f(x− (w − u) + 1, y)

= f(x− (w − (u+ 1)), y).

Thus we have found that f ′(w;x, y) = f̂(w,w;x, y) = f(x, y) for all w ≥ ef (x, y),
and we are done. �

Theorem 3 If f(x1, . . . , xr) is in En and n ≥ 2 then f(xn−1,1, . . . , xn−1,r) is in Bn.

Proof. Let f ′ and ef be obtained by the preceeding lemma. According to remark
1.vi) there is an integer m such that ef (x1, . . . , xr) ≤ Em

n−1(max1≤i≤r(xi)).
We first establish that some auxiliary functions belong to B2, using the same sim-
plified notation as in the preceeding lemma:

+(0; y) = y
+(x+ 1; y) = S(+(x; y))
·(x, 0; ) = 0
·(x, y + 1; ) = +(x; ·(x, y; ))
max2(x, y; ) = +(x .− y; y)
maxk+1(x1, . . . , xk+1; ) = max2(maxk(x1, . . . , xk; ), xk+1; ),
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where the subtraction function x .− y is defined as in the proof of the preceeding
lemma. Moreover, for each k ≤ n− 1 the function Em

k belongs to Bn:

E1(x1) = S(S(·(x1, x1; )))
Ek+1(0k+1) = 2
Ek+1(xk+1 + 1) = Ek(Ek+1(xk+1))
E0
k(xk) = x

Em+1
k (xk) = Ek(E

m
k (xk)).

We now define

f(xn−1,1, . . . , xn−1,r) = f ′(Em
n−1(max

r
(xn−1,1, . . . , xn−1,r));xn−1,1, . . . , xn−1,r),

then this function f belongs to Bn, and it agrees with the given f according to the
preceeding lemma. �

4 En contains Bn

To prove that every function in Bn belongs to En we have to show that its restriction
to the arguments in the k-th level is bounded by a function in Ek+1. To make this
statement precise we define functions en,k of arity (n− k + 2), for all n ≥ k ≥ 0.

Definition 4 e0,0(z, x) = x+ z
ek,k(z, x) = Ez

k(x), if k ≥ 1
en+1,k(z, xn+1, xn, . . . , xk) = en,k(E

z
n+1(xn+1), xn, . . . , xk).

In a more reader-friendly presentation, this means en,k(z, xn, . . . , xk) = E
E·
··
Ezn(xn)

k+1 (xk+1)

k (xk)
if k ≥ 1, whereas en,0(z, xn, . . . , x1, x0) = en,1(z, xn, . . . , x1) + x0. Evidently, en,k
belongs to En+2. Further, for each fixed integer z the function (xn, . . . , xk) 7→
en,k(z, xn, . . . , xk) is in En+1. We first derive some properties of these functions en,k.

Lemma 4 For all n ≥ m ≥ k ≥ 0:

i) en,k is strictly monotonic in each of its arguments.

ii) en,k(z, xn, . . . , x
2
m, . . . , xk) ≤ en,k(z + 1, xn, . . . , xm, . . . , xk), if m ≥ 1

iii) en,k(z, xn, . . . , 2xm + 2, . . . , xk) ≤ en,k(z + 2, xn, . . . , xm, . . . , xk), if m ≥ 1

iv) 2en,k(z, xn, . . . , xk) ≤ en,k(z + 1, xn, . . . , xk), if k ≥ 1

v) en,k(z, en,n(z̃, xn), xn−1, . . . , xk) = en,k(z + z̃, xn, . . . , xk)

vi) en+1,k(z, xn+1, . . . , xm+2, xm+1, en+1,m(z, xn+1, . . . , xm+2, x̃m+1, xm), xm−1, . . . , xk)
≤ en+1,k(z, xn+1, . . . , xm+2, xm+1 + x̃m+1 + 2, xm, xm−1, . . . , xk).
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Proof.
i) follows from monontonicity of the Ek and from remark 1.i).
ii) is proved by induction on n ≥ m. If n = m ≥ 1 we use 1.iv) to obtain

en,k(z, x
2
n, xn−1, . . . , xk) = en−1,k(E

z
n(x2

n), xn−1, . . . , xk)

≤ en−1,k(E
z
n(En(xn)), xn−1, . . . , xk)

= en−1,k(E
z+1
n (xn), xn−1, . . . , xk)

= en,k(z + 1, xn, xn−1, . . . , xk).

The induction step follows from the induction hypothesis and from 1.i) by computing

en+1,k(z, xn+1, xn, . . . , x
2
m, . . . , xk) = en,k(E

z
n+1(xn+1), xn, . . . , x

2
m, . . . , xk)

≤ en,k(E
z
n+1(xn+1) + 1, xn, . . . , xm, . . . , xk)

≤ en,k(E
z+1
n+1(xn+1), xn, . . . , xm, . . . , xk)

= en+1,k(z + 1, xn+1, xn, . . . , xm, . . . , xk).

The proof of iii) ist almost identical, using 1.iii) and 1.i) instead of 1.iv) in the case
n = m. iv) is proved similarily again, by induction on n ≥ k. Here the case n = k
follows from 1.iii) by

2ek,k(z, xk) = 2Ez
k(xk) ≤ Ez+1

k (xk) = ek,k(z + 1, xk)

whereas the induction step holds by

2en+1,k(z, xn+1, xn, . . . , xk) = 2en,k(E
z
n+1(xn+1), xn, . . . , xk)

≤ en,k(E
z
n+1(xn+1) + 1, xn, . . . , xk)

≤ en,k(E
z+1
n+1(xn+1), xn, . . . , xk)

= en+1,k(z + 1, xn+1, xn, . . . , xk).

v) is shown by a simple calculation in the case n = k and by

en+1,k(z, en+1,n+1(z̃, xn+1), xn, . . . , xk) = en,k(E
z
n+1(E z̃

n+1(xn+1)), xn, . . . , xk)

= en+1,k(z + z̃, xn+1, xn, . . . , xk)

otherwise.
vi), finally, is proved by induction on n ≥ m. For the case n = m we first need a
generalization of 1.v):

Ez
n(x) + Ez

n(x̃) ≤
{
Ez
n(x+ x̃), if x, x̃ > 0

Ez
n(x+ x̃+ 2), else.

(∗)

Its proof is by induction on z. If z = 0 the claim is obvious. As to the induction
step we notice that En(x), En(x̃) > 0. Thus we obtain

Ez+1
n (x) + Ez+1

n (x̃) = Ez
n(En(x)) + Ez

n(En(x̃))

≤ Ez
n(En(x) + En(x̃))

≤
{
Ez
n(En(x+ x̃)) = Ez+1

n (x+ x̃), if x, x̃ > 0
Ez
n(En(x+ x̃) + 2) ≤ Ez+1

n (x+ x̃+ 2), else
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by the induction hypothesis, 1.v) and 1.ii).
To prove the case n = m of vi) we use v) and (∗) to obtain

em+1,k(z, xm+1, em+1,m(z, x̃m+1, xm), xm−1, . . . , xk)

= em,k(E
z
m+1(xm+1), em,m(Ez

m+1(x̃m+1), xm), xm−1, . . . , xk)

= em,k(E
z
m+1(xm+1) + Ez

m+1(x̃m+1), xm, xm−1, . . . , xk)

≤ em,k(E
z
m+1(xm+1 + x̃m+1 + 2), xm, xm−1, . . . , xk)

= em+1,k(z, xm+1 + x̃m+1 + 2, xm, xm−1, . . . , xk).

The induction step follows from the same calculation, using the induction hypothesis
instead of v) and (∗). �

Lemma 5 Let f(xn; . . . ;xk) be in Bn+1. Then there is an integer cf such that

f(xn; . . . ;xk) ≤ en,k(cf ,max
i

(xn,i), . . . ,max
i

(xk,i)).

Proof. We prove the claim by induction on the definition of f in Bn+1. It clearly
holds if f is an initial function of Bn+1.
If f is defined by composition let ch and crj,i be given by the induction hypothesis .
Using the abbreviations xj := maxi(xj,i), cj := maxi(crj,i) and c := max(ch,maxj(cj))
we get

f(xn; . . . ;xk) = h(rn(xn); . . . ; rk(xn; . . . ;xk))

≤ en,k(ch,max
i

(rn,i(xn)), . . . ,max
i

(rk,i(xn; . . . ;xk)))

≤ en,k(ch, en,n(cn, xn), . . . , en,k(ck, xn, . . . , xk))

≤ en,k(c+ 2, en,n(cn, xn), . . . , en,k+1(ck+1, xn, . . . , xk+1), xk)

≤ en,k(c+ 4, en,n(cn, xn), . . . , en,k+2(ck+2, xn, . . . , xk+2), xk+1, xk)
...

≤ en,k(c+ 2(n− k), en,n(cn, xn), xn−1, . . . , xk)

= en,k(2(c+ n− k), xn, . . . , xk).

Thus we are done, defining cf to be 2(c+n−k). (The first inequality holds according
to the induction hypothesis for h. In the second inequality we observe

max
i

(rj,i(xn; . . . ;xj)) ≤ max
i

(en,j(crj,i, xn, . . . , xj))

= en,j(cj, xn, . . . , xj).

The remaining inequalities hold by 4.vi and 4.iii, with m = k, k + 1, . . . , n − 1
respectively, and the last equality follows from 4.v. If n = k = 0 we may not apply
4.vi, however, in this case its applications are dropped anyway.)
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If f is defined by recursion we let xj := maxi(xj,i) again, and we additionally define
c := max(cg, ch) and pf (x, v) := (v + 1) ·max(x, v) + 2v. Then we prove

f(xn; . . . ;xk+1, v;xk) ≤ en,k(c, xn, . . . , xk+2, pf (xk+1, v), xk) (∗)

by induction on v. If v = 0 then the main induction hypothesis for g yields

f(xn; . . . ;xk+1, 0;xk) = g(xn; . . . ;xk+1;xk)

≤ en,k(cg, xn, . . . , xk+1, xk)

≤ en,k(c, xn, . . . , xk+2, pf (xk+1, 0), xk).

The induction step follows from the induction hypothesis and 4.vi (note that n = 0
is impossible) by

f(xn; . . . ;xk+1, v + 1;xk)

= h(xn; . . . ;xk+1, v;xk, f(xn; . . . ;xk+1, v;xk))

≤ en,k(ch, xn, . . . , xk+2,max(xk+1, v),max(xk, en,k(c, xn, . . . , xk+2, pf (xk+1, v), xk)))

≤ en,k(c, xn, . . . , xk+2,max(xk+1, v), en,k(c, xn, . . . , xk+2, pf (xk+1, v), xk))

≤ en,k(c, xn, . . . , xk+2,max(xk+1, v) + pf (xk+1, v) + 2, xk)

≤ en,k(c, xn, . . . , xk+2, pf (xk+1, v + 1), xk)).

Thus we have proved (∗). Now we just have to use 4.iii and 4.ii to compute

f(xn; . . . ;xk+1, v;xk) ≤ en,k(c, xn, . . . , xk+2, pf (xk+1, v), xk)

≤ en,k(c, xn, . . . , xk+2, (2 ·max(xk+1, v) + 2)2, xk)

≤ en,k(c+ 1, xn, . . . , xk+2, 2 ·max(xk+1, v) + 2, xk)

≤ en,k(c+ 3, xn, . . . , xk+2,max(xk+1, v), xk). �

Theorem 6 Every function in Bn belongs to En.

Proof. By induction on the definition of f in Bn again. The initial functions all
belong to En, and En is closed under composition. Furthermore, each instance of
safe recursion is an instance of bounded recursion in En by the preceeding lemma.
�
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