
A benchmark method

for the propositional modal logics K, KT, S4

Peter Balsiger, Alain Heuerding∗, Stefan Schwendimann∗

Institut für Informatik und angewandte Mathematik,
Universität Bern, Switzerland

December 21, 1999

Abstract

A lot of methods have been proposed — and sometimes implemented — for proof search in the
propositional modal logics K, KT, and S4.

It is difficult to compare the usefulness of these methods in practice, since in most cases no or
only a few execution times have been published. We try to improve this unsatisfactory situation by
presenting a set of benchmark formulas. Note that we do not just list formulas, but give a method
that allows to compare different provers today and in the future.

As a starting point we give the results we obtained when we applied this benchmark method to
the Logics Workbench (LWB).

We hope that the discussion of postulates concerning ATP benchmark helps to obtain improved
benchmark methods for other logics, too.

1 Introduction

A lot of methods have been proposed — and sometimes implemented — for proof search in the
propositional modal logics K, KT, and S4. An incomplete list: tableaux and sequent calculi,
embeddings in other logics, connection method, inverse method, logical frameworks. (There are far
too many publications on this subject to list them here.)
It is difficult to compare the usefulness of these methods in practice, since in most publications no
or only a few execution times are listed. There are some exceptions like [2] (31 formulas for K, KT,
S4) and [4] (38 formulas for S4). However, these formulas are already today too simple to serve as
benchmarks. For example it takes about 0.002 seconds to solve the hardest problem of [2] for K,
KT, S4 with the Logics Workbench (LWB). The formulas of [4] are harder, but also there it takes
only about 0.035 seconds to solve the hardest formula with the LWB.
This situation is very unsatisfactory. Therefore we decided to collect a set of benchmark problems
for the propositional modal logics K, KT, and S4.
In classical predicate logic, the often-cited collection of Pelletier [10] has been replaced by the TPTP
library [12]. Although this library is considerably large, it is still common to choose a dozen of
these formulas out of this library and publish the execution times for these formulas. Therefore we
do not just give a list of formulas, but present a method that makes it possible to compare different
provers. (Also the producers of TPTP plan a so-called benchmark suite for the next version that
should allow the computation of a performance index for automated theorem provers for classical
predicate logic; cp. [12].)

∗Work supported by the Swiss National Science Foundation, 21-43197.95.

1



The selection of the hard benchmark formulas was guided by the following postulates:

1. Provable as well as not provable formulas.

2. Formulas of various structures.

3. Some of the benchmark formulas are hard enough for forth-coming provers.

4. For each formula the result is already known today.

5. Simple ‘tricks’ do not help to solve the problems.

6. Applying the benchmark test to a prover takes not too much time.

7. The results can be summarized.

These postulates lead us to the exclusive use of scalable formulas. We test for which parameters n
a certain prover can decide whether the scalable formula A(n) is provable or not in less than 100
seconds. On purpose, this test does not take the machine speed into account. Because it is nearly
impossible to determine a scaling factor to relate different machines, especially for distributed
system, it is equally impossible to include it into the benchmarks. Furthermore, most of the
benchmark formulas are built in such a way, that computation time increases exponentiallly with
the scaling factor. Thus the speed of the machine will change the result for normally no more than
one up or down. The results of a comparsion of modal provers held at the TABLEAUX ’98 [1],
showed that the type of machine used did not influence the overall results of a prover at all.
Clearly, these postulates and the benchmark formulas described below cannot measure any math-
ematical or logical properties of a prover. They are just used to measure the practical speed of the
prover, i.e. the efficiency a user can expect when using the prover for general problems. Although
this does ignore many aspects of provers, like user friendliness or special fitness for certain problems,
it can be used to compare the general efficiency of provers.
The drawback of scalable formulas is their regular structure. If ‘by chance’ a prover ‘recognizes’
this structure, it can perform extremely well for a certain class of formulas, but still work very
bad for slightly different formulas. We try to overcome this problem by hiding their structure with
superfluous subformulas, and by presenting a sufficient number of different classes.
Collecting and constructing scalable formulas – always keeping the seven postulates in mind – is a
very time-consuming task. This is not a problem in the approach chosen in [5], where formulas (in
some sort of nested conjunctive normal form) are constructed using a random generator. However
all these formulas have a similar structure (cp. postulate 2), and the correct result is not known
beforehand (cp. postulate 4).
At the end we apply the benchmark method on the decision procedures integrated in the LWB. At
the TABLEAUX ’98 conference, the benchmarks were successfully used in a comparison of several
modal provers [3].
Of course it is possible to implement much faster decision procedures for K, KT, and S4, but
hopefully these results serve as a starting point.
For convenience we offer the possibility to fetch some formulas and the programs that produce these
formulas via WWW. However note that this paper contains all the information that is required
in order to use the benchmark method. This is very important: in a journal the formulas are
accessible for many years, whereas experience shows that it is difficult to ensure the maintenance
of files in ftp or WWW site over a long period. We think that a major part of the success of the
collection of Pelletier was the publication of the formulas in this journal.

2 Postulates

These postulates guided us when we developed our benchmark method. Note that they are widely
applicable, not just for the logics we consider in this paper.

Provable as well as not provable formulas.

2



Often only provable formulas are considered as benchmark formulas. We think that not provable
formulas are as interesting as provable ones.
Moreover, algorithms like the Greedy procedure in classical propositional logic ([11]) can recognize
many not provable formulas in a very short time, but they cannot show that a formula is provable.
A benchmark method must also be applicable for such semi-decision procedures.

Formulas of various structures
It is clear that four or five formulas are not enough to obtain representative results about the
performance of a prover. However, also a large number of formulas does not guarantee the quality
of the benchmark set. For example it is tempting to use the embedding of IPC in S4 in order
to obtain a list of benchmark formulas for S4 from a list of benchmark formulas for IPC, but all
the resulting formulas look similar. An even more dubious method it the use of just one class of
formulas, e.g. the pigeonhole formulas.
Things look of course different if one has a certain application in mind and develops a tuned prover
for this application, but here we want to measure the overall performance.

Some of the benchmark formulas are hard enough for forth-coming provers.
It is not enough if the benchmark test is hard enough for today’s provers. The test should still be
applicable for much faster computers and improved search methods in the future. Thus the test
must contain formulas that are far too hard for existing provers.

For each formula the result is already known today.
The correct result, i.e. ‘provable’ or ‘not provable’, must be known already today. Therefore it must
be possible to check the provability resp. non-provability of the formulas with logical methods, and
not just with theorem provers. Random formulas do not fulfill this postulate.

Simple ‘tricks’ do not help.
The addition of a simple trick to the prover should not influence the results.
Assume for example that a benchmark set for K contains formulas without 2 and without 3. If a
prover checks at the beginning whether modal operators occur in the formula, then he can apply a
fast decision procedure for classical propositional logic. Therefore we disguised e.g. the pigeonhole
formula with some ‘superfluous’ 2 and 3. (If a prover recognizes this disguise, or if he sees during
the proof search that a subproblem is purely classical, then we think that this is no longer a simple
trick.)
Of course it is impossible to foresee all such tricks when constructing benchmark formulas, but at
least one should try.

Execution of the benchmark test takes not too much time.
Nobody wants to spend a lot of time to measure the performance of his prover. In particular, the
required time should not depend on the prover or on the computer. Therefore some limits must be
used, e.g. ‘if the prover cannot solve the problem in n seconds, then stop’.

Results can be summarized.
A list of hundreds of numbers is not a satisfactory result, since it makes a comparison of several
provers almost impossible. Therefore it must be possible to summarize the results. On the other
hand one single number is probably not satisfactory (remember the semi-decision procedures).

3 Benchmark method for K, KT, and S4

3.1 Formulas

For each logic L, the formulas are divided into 9 classes of provable and 9 classes of not provable
formulas. The formulas in each class are parametrized by a number in N. We call the jth formula
in the ith class of provable resp. not provable formulas Fp,i,j resp. Fn,i,j . Thus L ` Fp,i,j and
L 0 Fn,i,j for all i ∈ {1, . . . , 9}, j ∈ N.

3



Let t(C) be the time in seconds the prover takes to decide whether or not the formula C is provable,
i.e. t : Fml → N ∪∞. We compute for each i ∈ {1, . . . , 9} the numbers np,i := max{j | t(Fp,i,j) <
100 seconds} and nn,i := max{j | t(Fn,i,j) < 100 seconds}. Thus Fp,i,np,i+1 is the first formula in
the ith class of provable formulas such that the prover cannot decide its provability in less than
100 seconds (Fn,i,nn,i+1 analogous).
The limit of 100 seconds may be too low to be able to separate two provers with only a minimal
difference in the execution times. Furthermore, a prover producing bad results with small problems
might still be faster for complex problems, because of a slower increase in execution times. By
carefully selecting the appropriate time limit according to the provers to be tested, it should be
possible to avoid the problem. Furthermore, the general user of a prover normally is interested in
problems the prover can solver in quite a short time, anyway.

3.2 Timing

It is not possible to describe a timing procedure that is sensible for all provers (think e.g. of
non-deterministic and parallel provers). Therefore it is important that everybody who applies the
benchmark method describes exactly how the timing took place. See section 6 for an example.
If possible, then observe the following conditions in order to make the comparison of different
provers easier.

• The timing starts after the start-up of the prover.

• No conversions, e.g. in negation normal form, before the timing starts.

• The timing includes the construction of the data structure that contains the formula. This is
especially important if you use some sort of preprocessing.

• Make your prover accessible in some way, in order to give people the possibility to check your
results.

3.3 Presentation of the results

It is important that others can check your results. We propose to include the following information
(see section 6 for an example):

1. Name of the prover, a reference to further information, a short description of the methods
used by the prover.

2. Availability of the prover.

3. Short list of features your prover offers besides checking the provability of formulas: Examples:
Is the prover tuned for a certain application? Has the correctness of the prover been verified?
Can one use one prover for many logics? Is a proof resp. a counter-model generated?

4. Hardware that was used for the benchmark test.

5. An example of the way you timed your prover.

6. Results, i.e. the numbers np,i and nn,i for all i ∈ {1, . . . , 9}.

3.4 What about the postulates ?

Our method largely satisfies the seven postulates:

1. There are provable as well as not provable formulas.

2. The formulas have various properties (number of variables, modal depth, . . . ) and origins.

3. Each class contains arbitrarily hard formulas.

4. It is clear which formulas are provable.

5. We tried . . .

4



6. Applying our benchmark method is rather tiresome if one does not automate it, but it can
be done in a reasonable time.

7. For each logic the result consists of a list of 18 numbers.

The main problems are the postulate 5, and — at least for semi-decision procedures — the relatively
small number of classes.

4 Notation

Logics: CPC stands for classical propositional logic. K, KT, S4 are the modal propositional logics
we consider. In order to avoid misunderstanding we list the corresponding properties of the ac-
cessibility relation in Kripke semantics. K: neither reflexive nor transitive, KT: reflexive, but not
transitive, S4: reflexive and transitive.

Variables and formulas: Var = {p0, p1, p2, . . .} is the set of the variables. We inductively define
the set of the formulas Fml: true, false ∈ Fml; P ∈ Var⇒ P ∈ Fml; A ∈ Fml⇒ 2A,3A,¬A ∈ Fml;
A,B ∈ Fml⇒ A ∧B,A ∨B,A→ B,A↔ B ∈ Fml. A ≡ C means that the two formulas A and C
are syntactically equal.

Conventions: We use meta-variables (sometimes with subscripts) as follows: A, C for formulas,
n for elements of {1, 2, . . .}.
∨ and ∧ are left-associative. ¬, 2, 3 have the highest priority, followed by ∧, ∨, →, and ↔. We
omit the outermost brackets. Example: p0 ∨ p1 ∨ p2 → (¬p2 ∧ p1) ↔ p0 stands for the formula
((((p0 ∨ p1) ∨ p2)→ ((¬p2) ∧ p1))↔ p0).

Iterations: 20A stands for the formula A, 2nA stands for the formula 22n−1A. 30A stands
for the formula A, 3nA stands for the formula 33n−1A.

∧
i=n1,...,n2

(Ai) stands for the formula
An1 ∧An1+1 ∧ . . .∧An2 (if n1 ≤ n2) resp. for the formula true (if n1 > n2).

∨
i=n1,...,n2

(Ai) stands
for the formula An1 ∨An1+1 ∨ . . . ∨An2 (if n1 ≤ n2) resp. for the formula false (if n1 > n2).

Substitution: If P1, . . . , Pn are variables, then A{C1/P1, . . . , Cn/Pn} is the formula A with si-
multaneously substituted P1 by C1, . . . , Pn by Cn. Example: (p0 ∨ 2(p1 → p0)){p2/p0,3p1 ↔
p0/p1} ≡ p2 ∨2((3p1 ↔ p0)→ p2).

Lists: [x1, x2, . . . , xn] is the list with the elements x1, x2, . . . , xn. Note that [1, 2], [2, 1], [1, 1, 2]
are three different lists.

∨
y∈[x1,...,xn](Ax) stands for Ax1 ∨ . . . ∨Axn .

Standard functions: The function nnf (negation normal form) for formulas without equivalence
symbols, div and mod are defined as usual. Examples: nnf(¬p0 → ¬(2p1 ∨ true)) ≡ p0 ∨3¬p1 ∧
false, 14 div 3 = 4, 14 mod 3 = 2.

Standard formulas:
D :≡ 2p0 → 3p0

D2 :≡ 3true
B :≡ p0 → 23p0

T :≡ 2p0 → p0

A4 :≡ 2p0 → 22p0

A5 :≡ ¬2p0 → 2¬2p0

H :≡ 2(p0 ∨ p1) ∧2(2p0 ∨ p1) ∧2(p0 ∨2p1)→ 2p0 ∨2p1

L :≡ 2(p0 ∧2p0 → p1) ∨2(p1 ∧2p1 → p0)
L+ :≡ 2(2p0 → p1) ∨2(2p1 → p0)
Grz :≡ 2(2(p0 → 2p0)→ p0)→ p0

5



Grz1 :≡ 2(2(p0 → 2p0)→ p0)→ 2p0

Dum :≡ 2(2(p0 → 2p0)→ p0)→ (32p0 → p0)
Dum1 :≡ 2(2(p0 → 2p0)→ p0)→ (32p0 → 2p0)
Dum4 :≡ 2(2(p0 → 2p0)→ p0)→ (32p0 → p0 ∨2p0)

5 Formulas

5.1 Presentation of formulas

For each class of formulas we list in the following section:

1. Idea: Why is the formula provable resp. not provable?

2. Hiding: How is the formula ‘hidden’ in order to make the problem harder to solve?

3. An inductive definition of the formulas.

5.2 Formulas for K

k branch p

Idea: The branching formula as defined in [6], plus a negation symbol in front and the additional subformula

¬2npn div 3+1 in order to make the formula provable. We assume n < 100.

k branch p(n) :≡ ¬(p100 ∧ ¬p101 ∧
∧
i=0,...,n(2i(bdepth(n) ∧ det(n) ∧ branching(n)))) ∨ ¬2npn div 3+1

bdepth(n) :≡
∧
i=1,...,n+1(p100+i → p99+i)

det(n) :≡
∧
i=0,...,n(p100+i → (pi → 2(p100+i → pi)) ∧ (¬pi → 2(p100+i → ¬pi)))

branching(n) :≡∧
i=0,...,n−1(p100+i ∧ ¬p101+i → 3(p101+i ∧ ¬p102+i ∧ pi+1) ∧3(p101+i ∧ ¬p102+i ∧ ¬pi+1))

k branch n

Idea: The branching formula as defined in [6].

k branch n(n) :≡ ¬(p100 ∧ ¬p101 ∧
∧
i=0,...,n(2i(bdepth(n) ∧ det(n) ∧ branching(n))))

bdepth, det , branching as in k branch p.

k d4 p

Idea: K ` D ∧A4 ∧ B{¬p0/p0} → T.

Hiding: The left hand side occurs with 1 to n 2, the right hand side occurs just with n 2 in front. 2nT

is repeated n times. Additionally some superfluous instances, and the whole formula in negation normal

form.

k d4 p(n) :≡ nnf(
∨
i=1,...,n(2nT ∨ ¬2iD2 ∨ ¬2iA4 ∨ ¬2iA4{3p0/p0} ∨ ¬2iB ∨ ¬2iB{¬p0/p0}))

k d4 n

Idea: A5 is not provable in K plus any instances of D, A4, and T.

Hiding: As for k d4 p.

k d4 n(n) :≡ nnf(
∨
i=1,...,n(2n(2p0 ∨ 23¬p0) ∨ ¬2iD2 ∨ ¬2iA4 ∨ ¬2iA4{3p0/p0} ∨ ¬2iD

∨ ¬2iA4{3p0 → p0/p0} ∨ ¬2iA4{2p0 → p0/p0}))

k dum p

Idea: K ` A4{2(p0 → 2p0)→ p0/p0} ∧ 2A4 ∧Dum ∧Dum{p0 → 2p0/p0} → Dum1.

Hiding: Some of the formulas on the left hand side of the implication occur with 1 to n− 1 2 in front, the

right hand side occurs just once with n div 2 + 1 2 in front.

k dum p(n) :≡
∧
i=1,...,n div 2(2i(2A4 ∧Dum)) ∧ ¬2n div 2+1Dum1

→ 3n div 2+1¬(A4{2(p0 → 2p0)→ p0/p0} ∧ 2A4 ∧Dum ∧Dum{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬(2A4 ∧Dum))

6



k dum n

Idea: Dum is not provable in K plus any instances of Dum4 and A4.

Hiding: As for k dum p.

k dum n(n) :≡
∧
i=1,...,n div 2(2i(2A4 ∧Dum4)) ∧ ¬2n+1Dum

→ 3n+1¬(A4{2(p0 → 2p0)→ p0/p0} ∧ 2A4 ∧Dum4 ∧Dum4{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬(2A4 ∧Dum4))

k grz p

Idea: K ` 2Grz ∧Grz{C () ∧A4{C ()/p0}/p0} → Grz1, where C () is defined as below.

Hiding: Many superfluous instances with three variables, and iterated 2 inside the instances.

k grz p(n) :≡ 2Grz{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz{C () ∧A4{C ()/p0}/p0}

→ Grz1{p1/p0} ∨Grz1{p2/p0} ∨Grz1{p3/p0}

l(i) :≡


Grz{l2 (i div 4)/p0} i mod 4 = 0
Grz{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 (i) :≡
{

false i = 0
2l2 (i− 1) ∨ p1 ∨ p2 ∨ p3 ∨ p4 otherwise

C () :≡ 2(p2 → 2p2)→ p2

k grz n

Idea: Grz is not provable in K plus instances of Grz1.

Hiding: As for k grz p.

k grz n(n) :≡ 2Grz1{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz1{C () ∧A4{C ()/p0}/p0}

→ Grz{p1/p0} ∨Grz{p2/p0} ∨Grz{p3/p0}

l(i) :≡


Grz1{l2 (i div 4)/p0} i mod 4 = 0
Grz1{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz1{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz1{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 , C as in k grz p.

k lin p

Idea: K ` H2 → L, where H2 is the instance of H defined below.

Hiding: Superfluous instances of H2 with other variables.

k lin p(n) :≡
∨
i=1,...,n div 3(¬H2 (pi, pi+1)) ∨ L{pn/p0, pn/p1} ∨

∨
i=n div 3+1,...,n(¬H2 (pi, pi+1))

H2 (A,B) :≡ H{A ∧ 2A ∧A→ B/p0,¬A→ ¬(2B ∧B)/p1}

k lin n

Idea: L+ is not provable in K plus any instances of L.

k lin n(n) :≡
∨
i=1,...,2n−2(¬L{3pi/p0, pi+1/p1} ∨ ¬L{pi → 2pi+1/p0, pi+1/p1})
∨ L+{pn/p0, pn/p1}
∨
∨
i=2n,...,4n−4(¬L{3pi/p0, pi+1/p1} ∨ ¬L{pi → 2pi+1/p0, pi+1/p1})

k path p

Idea: Without hiding, the formula would just be 2ppath el(1,n) ∨ 3(¬ppath el(1,n) ∧ 2ppath el(2,n)) ∨ . . . ∨
3(¬ppath el(n−1,n) ∧ 2ppath el(n, n)) ∨3nppath el(n,n).

Hiding: The formula above is the path from the entry to the exit of a labyrinth described by k path p. It

makes no difference whether one starts at the entry or at the exit.

k path p(n) :≡ (2p1 ∨ 2ppath el(1,n) ∨ 2p3 ∨ 2p5)

∨
∨
i=1,...,n;j=1,...,6(left to right(i, j, n) ∨ right to left(i, j, n))

∨ (3n¬p2 ∨3n¬p4 ∨3n¬ppath el(n,n) ∨3n¬p6)

7



path el(l, n) :≡


2 l = 1
modg(path el(l − 1, n) + 3, 6) l > n div 2
modg(path el(l − 1, n) + 5, 6) otherwise

left to right(l, k, n) :≡
false l = n
false l 6= n, k mod 2 = 0, k 6= path el(l, n)
lists2fml(l, k, [path el(l + 1, n)]) l 6= n, k mod 2 = 0, k = path el(l, n)
lists2fml(l, k, [1, 3, path el(l + 1, n), 5]) l 6= n, k mod 2 6= 0, k = path el(l, n)
lists2fml(l, k, delete(path el(l + 1, n), 1, 3, 5)) otherwise

right to left(l, k, n) :≡


false l = 1
false l 6= 1, k mod 2 = 1
lists2fml back(l − 1, k, delete(path el(l − 1, n), 2, 4, 6)) otherwise

lists2fml(l, k, s) :≡
∨
x∈s(3

l(¬pk ∧ 2px))

lists2fml back(l, k, s) :≡
∨
x∈s(3

l(¬px ∧ 2pk))

delete(x, y1, y2, y3) :≡


[y2 , y3 ] x = y1
[y1 , y3 ] x = y2
[y1 , y2 ] x = y3
[y1 , y2 , y3 ] otherwise

modg(n1, n2) :≡
{
n2 n1 mod n2 = 0
n1 mod n2 otherwise

k path n

Idea: As for k path p, but one piece of the path is missing (cp. the different definitions of left to right in
k path p and k path n).

Hiding: As for k path p.

k path n(n) :≡
(2p1 ∨ 2ppath el(1,n+1) ∨ 2p3 ∨ 2p5)

∨
∨
i=1,...,n+1;j=1,...,6(left to right(i, j, n+ 1) ∨ right to left(i, j, n+ 1))

∨ (3n+1¬p2 ∨3n+1¬p4 ∨3n+1¬ppath el(n+1,n+1) ∨3n+1¬p6)

path el , right to left , lists2fml , lists2fml back , delete, modg as in k path p.

left to right(l, k, n) :≡

false l = n
false l 6= n, k mod 2 = 0, k 6= path el(l, n)
false l 6= n, k mod 2 = 0, k = path el(l, n), l = n div 2
lists2fml(l, k, [path el(l + 1, n)]) l 6= n, k mod 2 = 0, k = path el(l, n), l 6= n div 2
lists2fml(l, k, [1, 3, 5]) l 6= n, k mod 2 6= 0, k = path el(l, n), l = n div 2
lists2fml(l, k, [1, 3, path el(l + 1, n), 5]) l 6= n, k mod 2 6= 0, k = path el(l, n), l 6= n div 2
lists2fml(l, k, delete(path el(l + 1, n), 1, 3, 5)) otherwise

k ph p

Idea: The pigeonhole formulas. We assume n < 100.

Hiding: Some 2 and 3.

k ph p(n) :≡ 3left(n)→ 3right(n)

left(n) :≡
∧
i=1,...,n+1(

∨
j=1,...,n(l(i, j)))

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(l(i1, j) ∧ l(i2, j))

l(i, j) :≡
{

2p100i+j i < j
p100i+j otherwise

k ph n

Idea: The pigeonhole formulas, with one missing conjunct on the right hand side. We assume n < 100.

Hiding: Some 2 and 3.

k ph n(n) :≡ 3left(n)→ 3right(n)

left , l as in k ph p.

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(l2 (n, i1, j) ∧ l2 (n, i2, j))

8



l2 (n, i, j) :≡
{
¬l(i, j) i = j, i = (2n) div 3 + 1
l(i, j) otherwise

k poly p

Idea: The formula (p1 ↔ p2) ∨ (p2 ↔ p3) ∨ . . . ∨ (pn−1 ↔ pn) ∨ (pn ↔ p1) says: If we have a polygon with
n vertices, and all the vertices are either black or white, then two adjacent vertices have the same colour.
If n is odd, then this formula is provable in CPC.

Hiding: Many 2, 3, and superfluous subformulas.

k poly p(n) :≡
{

poly(3n+ 1) n mod 2 = 0
poly(3n) n mod 2 = 1

poly(n) :≡ 2n+1∧
i=1,...,n+1(pi) ∨ f(n, n) ∨ 2n+1∧

i=1,...,n+1(¬p2i)

f (i, n) :≡


false i = 0
3(f (i− 1, n) ∨3i(pn ↔ p1)) ∨ 2pi+2 i = n
3(f (i− 1, n) ∨3i(pi ↔ pi+1)) ∨ 2pi+2 otherwise

k poly n

Idea: As for k poly p, but for an even number of vertices.

Hiding: Many 2, 3, and superfluous subformulas. The superfluous subformulas do not influence the

non-provability.

k poly n(n) :≡
{

poly(3n) n mod 2 = 0
poly(3n+ 1) n mod 2 = 1

poly , f as in k poly p.

k t4p p

Idea: K ` T{3p0/p0} ∧ 2T{¬23p0/p0} ∧A4{3p0/p0} ∧ 2(323p0 → (p0 → 2p0))→ 32p0 ∨32¬p0.

Hiding: Superfluous subformulas (3¬p3, 3p4), superfluous instances of A4 and A5, nested 2.

k t4p p(n) :≡ E(n) ∨ nnf(¬C (n)) ∨3p4

C (i) :≡


((23p0 → 3p1) ∧ 2(2¬23p1 → ¬23p0) ∧ (23p0 → 223p1)
∧2(323p0 ∧ p0 → 2p1) ∧ 23p1){p0 ∧3¬p3/p1} i = 0

2A4{p1/p0} ∧ 2C (i− 1) ∧ 2A4{3p1/p0} otherwise

E(i) :≡
{

32p0 i = 0
3¬A4{¬p1/p0} ∨ 2E(i− 1) ∨ 2A5{p1/p0} otherwise

k t4p n

Idea: 32p0 is not provable in K plus any instances of T, A4, and 2(323p0 → (p0 → 2p0)).

Hiding: As for k t4p p.

k t4p n(n) :≡ E(2n− 1) ∨ nnf(¬C (2n− 1)) ∨3p4

C (i) :≡


((23p0 → 3p1) ∧ 2(2¬23p1 → ¬23p0) ∧ (23p0 → 223p1)
∧2(323p0 ∧ p0 → 2p1)){p0 ∧3¬p3/p1} i = 0

2A4{p1/p0} ∧ 2C (i− 1) ∧ 2A4{3p1/p0} otherwise
E as in k t4p p.

5.3 Formulas for KT

kt 45 p

Idea: KT ` A5{2p0/p0} ∧ 2A5{¬p0/p0} → A4.

Hiding: The left hand side occurs with 1 to n 2, the right hand side occurs just with n 2 in front.

Additionally some superfluous instances, and the whole formula in negation normal form.

kt 45 p(n) :≡ nnf(
∨
i=1,...,n(2nA4 ∨ ¬2iD2 ∨ ¬2iA5{3¬p0/p0} ∨ ¬2i2A5 ∨ ¬2iB))

kt 45 n

Idea: A5 is not provable in KT plus any instances of A4.

Hiding: As for kt 45 p.

9



kt 45 n(n) :≡ nnf(
∨
i=1,...,n(2n(2p0 ∨ 23¬p0) ∨ ¬2iA4 ∨ ¬2iA4{3p0/p0} ∨ ¬2iT

∨ ¬2iA4{3p0 → p0/p0} ∨ ¬2iA4{2p0 → p0/p0}))

kt branch p

Idea: The branching formula as described in [6], plus a negation symbol in front and the additional

subformula ¬2np(n div 3)+1 in order to make the formula provable.

kt branch p(n) :≡ ¬(p100 ∧ ¬p101 ∧ 2n(bdepth(n) ∧ det(n) ∧ branching(n))) ∨ ¬2np(n div 3)+1

bdepth, det , branching as in k branch p.

kt branch n

Idea: The branching formula as defined in [6].

kt branch n(n) :≡ ¬(p100 ∧ ¬p101 ∧ 2n(bdepth(n) ∧ det(n) ∧ branching(n)))

bdepth, det , branching as in k branch p.

kt dum p

Idea: KT ` A4{2(p0 → 2p0)→ p0} ∧ 2A4 ∧Dum ∧Dum{p0 → 2p0/p0} → Dum1.

Hiding: Some of he formulas on the left hand side of the implication occur with 1 to n− 1 2 in front, the

right hand side occurs just once with (n div 2) + 1 2 in front.

kt dum p(n) :≡
∧
i=1,...,n div 2(2iA4) ∧ ¬2(n div 2)+1Dum1

→ 3(n div 2)+1¬(A4{2(p0 → 2p0)→ p0/p0} ∧ 2A4 ∧Dum ∧Dum{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬A4)

kt dum n

Idea: Grz is not provable in KT plus any instances of Dum.

Hiding: As for kt dum p.

kt dum n(n) :≡
∧
i=1,...,n div 2(2i(2A4 ∧Dum)) ∧ ¬2n div 2+1Grz

→ 3n div 2+1¬(A4{2(p0 → 2p0)→ p0/p0} ∧ 2A4 ∧Dum ∧Dum{p0 → 2p0/p0})
∨
∨
i=n div 2+2,...,n−1(3i¬(2A4 ∧Dum))

kt grz p

Idea: KT ` 2Grz ∧Grz{C () ∧ (A4{C ()/p0})/p0} → Grz1, where C is defined as below.

Hiding: Many superfluous instances with iterated 2 inside the instances. The subformulas 32¬p0 and 3p0

are the parts of an instance of T .

kt grz p(n) :≡ 2Grz{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz{C () ∧ (A4{C ()/p0})/p0}

→ Grz1{p1/p0} ∨Grz1{p2/p0} ∧32¬p0 ∨Grz1{p3/p0} ∨Grz1{p2/p0} ∧3p0

l , l2 , C as in k grz p.

kt grz n

Idea: A5 is not provable in KT plus instances of Grz1.

Hiding: As for k grz p.

kt grz n(n) :≡ 2Grz1{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz1{C () ∧A4{C ()/p0}/p0}

→ A5{p1/p0} ∨A5{p2/p0} ∨A5{p3/p0}

l(i) :≡


Grz1{l2 (i div 4)/p0} i mod 4 = 0
Grz1{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz1{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz1{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 , C as in k grz p.

kt md p

Idea: In backward proof search, we have to find the way to g(n, n,¬p1) through a lot of 2 and 3.

10



kt md p(n) :≡
p1 ∨

∨
i=1,...,n−1(g(i, n,¬p1 ∧3f(1, n, p2)) ∨ g(i, n,¬p1 ∧3f (1, n, p1)) ∨ g(i, n,¬p2 ∧3f (1, n, p1)))

∨ g(n, n,¬p1)

g(i, n,A) :≡
{
A i = 1
f (i, n, g(i− 1, n,A)) otherwise

f (i, n,A) :≡ 3i−123n−iA

kt md n

Idea: Similar to kt md p, but simpler. The subformula g(n, n,¬p1) is missing in order to make the formulas

not provable.

kt md n(n) :≡ p1 ∨
∨
i=1,...,n−1(g(i, n,¬p1 ∧3f (1, n, p1)))

f , g as in kt md p.

kt path p

Idea, hiding: As for k path p, but we use new variables on each level of the labyrinth. (The formulas

k path p collapse in KT since KT ` 3nA→ A.)

kt path p(n) :≡ (2p11 ∨ 2p10+path el(1,n) ∨ 2p13 ∨ 2p15)

∨
∨
i=1,...,n;j=1,...,6(left to right(i, j, n) ∨ right to left(i, j, n))

∨ (3n¬p10n+2 ∨3n¬p10n+4 ∨3n¬p10n+path el(n,n) ∨3n¬p10n+6)

path el , left to right , right to left , delete, modg as in k path p.

lists2fml(l, k, s) :≡
∨
x∈s(3

l(¬p10l+k ∧ 2p10(l+1)+x))

lists2fml back(l, k, s) :≡
∨
x∈s(3

l(¬p10l+x ∧ 2p10(l+1)+k))

kt path n

Idea, hiding: As for k path n, but we use new variables on each level of the labyrinth. (The formulas

k path p collapse in KT since KT ` 3nA→ A.)

kt path n(n) :≡
(2p11 ∨ 2p10+path el(1,n+1) ∨ 2p13 ∨ 2p15)

∨
∨
i=1,...,n+1;j=1,...,6(left to right(i, j, n+ 1) ∨ right to left(i, j, n+ 1))

∨ (3n+1¬p10(n+1)+2 ∨3n+1¬p10(n+1)+4 ∨3n+1¬p10(n+1)+path el(n+1,n+1) ∨3n+1¬p10(n+1)+6)

path el , left to right , right to left , delete, modg as in k path n.

lists2fml , lists2fml back as in kt path p.

kt ph p

Idea, hiding: As for k ph p.

kt ph p(n) :≡ left(n)→ 3right(n)

left , right , l as in k ph p.

kt ph n

Idea, hiding: As for k ph n.

kt ph n(n) :≡ left(n)→ 3right(n)

left , right , l , l2 as in k ph n.

kt poly p

Idea, hiding: As for k poly p.

kt poly p(n) :≡
{

poly(5n+ 1) n mod 2 = 0
poly(5n) n mod 2 = 1

poly as in k poly p.

f (i, n) :≡


false i = 0
3(f (i− 1, n) ∨3i+2(pn ↔ p1)) ∨ 2pi+2 i = n
3(f (i− 1, n) ∨3i+2(pi ↔ pi+1)) ∨ 2pi+2 otherwise

11



kt poly n

Idea, hiding: As for k poly n.

kt poly n(n) :≡
{

poly(3n) n mod 2 = 0
poly(3n+ 1) n mod 2 = 1

poly , f as in kt poly p.

kt t4p p

Idea, hiding: As for k t4p p.

kt t4p p(n) :≡ E(n) ∨ nnf(¬C (n)) ∨3p4

C (i) :≡
{

((23p0 → 223p1) ∧ 2(323p0 ∧ p0 → 2p1) ∧ 23p1){p0 ∧3¬p3/p1} i = 0
2A4{p1/p0} ∧ 2C (i− 1) otherwise

E as in k t4p p.

kt t4p n

Idea, hiding: As for k t4p n.

kt t4p n(n) :≡ E(2n− 1) ∨ nnf(¬C (2n− 1)) ∨3p4

C (i) :≡


((23p0 → 3p1) ∧ (23p0 → 223p1)
∧2(323p0 ∧ p0 → 2p1)){p0 ∧3¬p3/p1} i = 0

2A4{p1/p0} ∧ 2C (i− 1) otherwise
E as in k t4p p.

5.4 Formulas for S4

s4 45 p

Idea: S4 ` A5{2p0/p0} ∧ 2A5{¬p0/p0} → A5.

Hiding: The left hand side occurs with 1 to n 2, the right hand side occurs just with n 2 in front.

Additionally some superfluous instances, and the whole formula in negation normal form.

s4 45 p(n) :≡ nnf(
∨
i=1,...,n(h(n,A5) ∨ ¬h(i,D2) ∨ ¬h(i,A5{3¬p0/p0}) ∨ ¬h(i,2A5) ∨ ¬h(i,B)))

h(i, A) :≡
{
A i = 0
2p0 ∨ 2h(i− 1, A) ∨ 2p1 otherwise

s4 45 n

Idea: A5 is not provable in S4.

Hiding: As for s4 45 p.

s4 45 n(n) :≡ nnf(
∨
i=1,...,n(h(n, (2p0 ∨ 23¬p0)) ∨ ¬h(i,A4) ∨ ¬h(i,A4{3p0/p0}) ∨ ¬h(i,T)

∨ ¬h(i,A4{2p0 → p0/p0}) ∨ ¬h(i,T{2p0 → p0/p0})))
h as in s4 45 p.

s4 branch p

Idea: The branching formula as described in [6], plus a negation symbol in front and the additional

subformula 2p(n div 3)+1 in order to make the formula provable.

s4 branch p(n) :≡ ¬(p100 ∧ ¬p101 ∧ 2(bdepth(n) ∧ det(n) ∧ branching(n))) ∨ ¬2p(n div 3)+1

bdepth, det , branching as in k branch p.

s4 branch n

Idea: The branching formula as defined in [6].

s4 branch n(n) :≡ ¬(p100 ∧ ¬p101 ∧ 2(bdepth(n) ∧ det(n) ∧ branching(n)))

bdepth, det , branching as in k branch p.

s4 grz p

Idea: S4 ` 2Grz ∧Grz{C () ∧ (A4{C ()/p0})/p0 → Grz1, where C is defined as below.

12



Hiding: Many superfluous instances with iterated 2 inside the instances. The subformulas ¬23p0 and

¬3¬(23p0 ∨ p1) are the parts of a weakened instance of A4.

s4 grz p(n) :≡
2Grz{p2/p0} ∧

∧
i=1,...,n−1(l(i)) ∧Grz{C () ∧ (A4{C ()/p0})/p0}

→ Grz1{p1/p0} ∨Grz1{p2/p0} ∧ ¬23p0 ∨Grz1{p3/p0} ∨Grz1{p2/p0} ∧ ¬3¬(23p0 ∨ p1)

l , l2 , C as in k grz p.

s4 grz n

Idea: A5 is not provable in S4 plus instances of Grz1.

Hiding: As for k grz p.

s4 grz n(n) :≡ 2Grz1{p2/p0} ∧
∧
i=1,...,n−1(l(i)) ∧Grz1{C () ∧A4{C ()/p0}/p0}

→ A5{p1/p0} ∨A5{p2/p0} ∨A5{p3/p0}

l(i) :≡


Grz1{l2 (i div 4)/p0} i mod 4 = 0
Grz1{2l2 (i div 4) ∨ p1/p0} i mod 4 = 1
Grz1{2l2 (i div 4) ∨ p1 ∨ p2/p0} i mod 4 = 2
Grz1{2l2 (i div 4) ∨ p1 ∨ p2 ∨ p3/p0} otherwise

l2 , C as in k grz p.

s4 ipc p

Idea: We embed a formula that is provable in intuitionistic propositional logic in S4.

s4 ipc p(n) :≡
∧
i=1,...,n(f(i, n))→ false

f (i, n) :≡ 2(2(2pi →
∧
j=1,...,n(2pj))→ false)

s4 ipc n

Idea: We embed a formula that is not provable in intuitionistic propositional logic in S4.

s4 ipc n(n) :≡
∧
i=1,...,n(f2 (i, n))→ false

f2 (i, n) :≡
{

true i = (n+ 1) div 2
f (i, n) otherwise

f as in s4 ipc p.

s4 md p

Idea: In backward proof search, we have to find the way to g(n, n,¬p1) through a lot of 2 and 3.

s4 md p(n) :≡
p1

∨
∨
i=1,...,n−1(g(i, n,¬p1 ∧3f (1, n, p2)) ∨ g(i, n,¬p1 ∧3f (1, n, p1)) ∨ g(i, n,¬p2 ∧3f (1, n, p1)))

∨ g(n, n,¬p1)

g as in kt md p.

f (i, n,A) :≡ h(i− 1,2h(n− i, A))

h(i, A) :≡
{
A i = 0
3h(i− 1, A) ∨ p2 otherwise

s4 md n

Idea: Similar to s4 md p, but simpler. The subformula g(n, n,¬p1) is missing in order to make the formulas

not provable.

s4 md n(n) :≡ p1 ∨
∨
i=1,...,n−1(g(i, n,¬p1 ∧3f(1, n, p1)))

f , g , h as in s4 md p.

s4 path p

Idea, hiding: As for kt path p.

s4 path p(n) :≡ (22p11 ∨ 22p10+path el(1,n) ∨ 22p13 ∨ 22p15)

∨
∨
i=1,...,n;j=1,...,6(left to right(i, j, n) ∨ right to left(i, j, n))

∨3(3¬p10n+2 ∨3¬p10n+4 ∨3¬p10n+path el(n,n) ∨3¬p10n+6)

13



path el , left to right , right to left , delete, modg , lists2fml , lists2fml back as in kt path p.

s4 path n

Idea, hiding: As for kt path n.

s4 path n(n) :≡
(22p11 ∨ 22p10+path el(1,n+1) ∨ 22p13 ∨ 22p15)

∨
∨
i=1,...,n+1;j=1,...,6(left to right(i, j, n+ 1) ∨ right to left(i, j, n+ 1))

∨3(3¬p10(n+1)+2 ∨3¬p10(n+1)+4 ∨3¬p10(n+1)+path el((n+1),(n+1)) ∨3¬p10(n+1)+6)

path el , left to right , right to left , delete, modg , lists2fml , lists2fml back as in kt path n.

s4 ph p

Idea: The pigeonhole formulas. We assume n < 100.

Hiding: Some 2 and 3.

s4 ph p(n) :≡ left(n)→ 3right(n)

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(3(l(i1, j) ∧ l(i2, j)))

left , l as in k ph p.

s4 ph n

Idea: The pigeonhole formulas, with one missing conjunct on the right hand side. We assume n < 100.

Hiding: Some 2 and 3.

s4 ph n(n) :≡ left(n)→ 3right(n)

right(n) :≡
∨
j=1,...,n;i1=1,...,n+1;i2=i1+1,...,n+1(3(l2 (n, i1, j) ∧ l2 (n, i2, j)))

left , l as in k ph p.

l2 (n, i, j) :≡
{
¬l(i, j) i = j, i = (2n) div 3 + 1
l(i, j) otherwise

s4 s5 p

Idea: A formula that is provable in S5 embedded in S4.

Hiding: Some superfluous subformulas.

s4 s5 p(n) :≡ 23(2
∨
i=1,...,3n−2(pi ↔ pi+1) ∨ 2p3n ∨ f (1, 3n− 1)) ∨ 2(3p1 → ¬p3n)

f (i, n) :≡
{

false i = n
3(pi ∧ ¬pi+1 ∨ ¬pi ∧ pi+1) ∨ 2f (i+ 1, n) otherwise

s4 s5 n

Idea: A formula that is not provable in S5 embedded in S4.

Hiding: Some superfluous subformulas.

s4 s5 n(n) :≡ 23(2p6n ∨ f (1, 6n− 5)) ∨ 2(3p1 → ¬p6n)

f as in s4 s5 p.

s4 t4p p

Idea, hiding: As for k t4p p.

s4 t4p p(n) :≡ E(n) ∨ nnf(¬C (2n− 1)) ∨3p4

C (i) :≡
{

(2(323p0 ∧ p0 → 2p1) ∧ 23p1){p0 ∧3¬p3/p1} i = 0
Dum{p1/p0} ∧ 2C (i− 1) otherwise

E as in k t4p p.

s4 t4p n

Idea, hiding: As for k t4p n.

s4 t4p n(n) :≡ E(2n− 1) ∨ nnf(¬C (4n− 1)) ∨3p4

C (i) :≡
{

((23p0 → 3p1) ∧ 2(323p0 ∧ p0 → 2p1)){p0 ∧3¬p3/p1} i = 0
Dum{p1/p0} ∧ 2C (i− 1) otherwise

E as in k t4p p.

14



6 Benchmark results for the LWB

Prover: Logics Workbench (LWB), version 1.0 (http://lwbwww.unibe.ch:8080/LWBinfo.html,
[7]).
Backward proof search in two-sided sequent calculi. Use-check (similar to [8]) helps to cut off
superfluous branches. In the case of S4, a loop-check is used (see [9]).
Programming language: C++ . Compiler: Sun C++ 4.0.1 . Operating system: Solaris 2.4 .
Availability: The binaries of the LWB 1.0 are available via the LWB home page (choose about
the LWB, install the LWB).
You can also use the LWB 1.0 via WWW. Choose run a session via WWW on the LWB home
page and type in your request.
Additional facilities of the prover:

• graphical user interface

• built-in programming language

• progress indicator: a slider shows how the proof search is advancing

• various functions to convert formulas

Hardware: Sun SPARCstation 5, main memory: 80MB, 1 CPU (70 MHz microSPARC II).
Timing: The timing includes the parsing of the formulas and the construction of the corresponding
data structure. The files loaded by the LWB have the following form:

load(k);
timestart; provable(box p0 -> box box p0); timestop;
quit;

Results:
class np,i class nn,i

k branch p 6 k branch n 7
k d4 p 8 k d4 n 6
k dum p 13 k dum n 19
k grz p 7 k grz n 13
k lin p 11 k lin n 8
k path p 12 k path n 10
k ph p 4 k ph n 8
k poly p 8 k poly n 11
k t4p p 8 k t4p n 7

class np,i class nn,i

kt 45 p 5 kt 45 n 4
kt branch p 5 kt branch n 6
kt dum p 5 kt dum n 10
kt grz p 6 kt grz n > 20
kt md p 5 kt md n 5
kt path p 10 kt path n 9
kt ph p 4 kt ph n 8
kt poly p 14 kt poly n 2
kt t4p p 5 kt t4p n 7

class np,i class nn,i

s4 45 p 3 s4 45 n 5
s4 branch p 11 s4 branch n 7
s4 grz p 9 s4 grz n > 20
s4 ipc p 8 s4 ipc n 7
s4 md p 8 s4 md n 6
s4 path p 8 s4 path n 6
s4 ph p 4 s4 ph n 8
s4 s5 p 4 s4 s5 n 9
s4 t4p p 9 s4 t4p n 12

In order to make absolutely clear how we obtained the numbers in the tables above from the run
times, we give the run times for some of the formulas in the classes k branch p. k branch p(6) is
the last formula that could be decided in less than 100 seconds; therefore we enter the numbers 6
on the left hand side of the first line of the table for K.

15



formula
run time
(in seconds)

k branch p(1) 0.02

k branch p(2) 0.06

k branch p(3) 0.28

k branch p(4) 1.80

k branch p(5) 11.89

k branch p(6) 74.64

k branch p(7) 503.94

7 Availability of the formulas

You can get the first 15 formulas of each class as well as the LWB programs that generated these
formulas. Load the LWB home page http://lwbwww.unibe.ch:8080/LWBinfo.html in a WWW
browser and then choose the item benchmarks.
The formulas are in infix notation. The connectives are ~ for ¬, & for ∧, v for ∨, -> for →, <-> for
↔. No brackets are omitted in order to make the conversion into other formats easier.
It can happen that for some classes you need more than 15 formulas. Then you have several
possibilities:

• Write a procedure that generates the formulas in this class according to the definitions in
section 5. Please make sure that you generate the same formulas as we do by comparing the
first 15 formulas.

• Get the LWB procedures we used to generate the formulas, install the LWB, and generate the
required formulas.

• Use the LWB via WWW. You have to replace the read statements in the files by the contents
of the corresponding files.

In order to avoid inconsistencies between the formulas in this section and the formulas used in
section 6, we implemented a Perl program that automatically converts the LaTeX definitions into
LWB programs.

8 Conclusion

We stated postulates for benchmark methods for proof search procedures. and presented a bench-
mark method for the propositional modal logics K, KT, S4 that largely satisfies these postulates.
Until now often just a few arbitrary — and often very easy — formulas were used to judge the
efficiency of such theorem provers. With our method it is now possible to compare these provers
in a standardized and fair way.
Since we use but scalable formulas, the method will still be applicable when there are much faster
machines and more efficient proof search procedures.
Of course the postulates are not limited to benchmark tests for modal logic theorem provers, but
seem also reasonable for other logics.

References

[1] P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics – introduction
and summary. In H. de Swart, editor, TABLEAUX ’98, LNAI 1397, pages 25–26, 1998.

[2] L. Catach. Tableaux: A general theorem prover for modal logics. Journal of Automated
Reasoning, 7:489–510, 1991.

[3] H. de Swart, editor. Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX ’98, LNAI 1397. Springer, 1998.

16



[4] S. Demri. Uniform and non uniform strategies for tableaux calculi for modal logics. Journal
of Applied Non-Classical Logics, 5(1):77–96, 1995.

[5] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propo-
sitional decision procedures – the case study of modal K. In CADE 96, LNCS, 1996.

[6] J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowl-
edge and belief. Artificial Intelligence, 54:319–379, 1992.

[7] A. Heuerding, G. Jäger, S. Schwendimann, and M. Seyfried. Propositional logics on the
computer. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Tableaux 95, LNCS 918,
pages 310–323, 1995.

[8] A. Heuerding and S. Schwendimann. On the modal logic K plus theories. In H. Kleine Büning,
editor, CSL 95, LNCS 1092, pages 308–319, 1996.

[9] A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward proof
search in some non-classical propositional logics. In P. Miglioli, U. Moscato, D. Mundici, and
M. Ornaghi, editors, Tableaux 96, LNCS 1071, pages 210–225, 1996.

[10] F. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of Auto-
mated Reasoning, 2:191–216, 1986.

[11] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability prob-
lems. In Proceedings 10th AAAI, pages 47–59, 1992.

[12] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy, editor,
CADE 12, LNCS 814, pages 252–266, 1994.

17


