
A Theory of Explicit Mathematics Equivalent to
ID1

Reinhard Kahle1 and Thomas Studer2

1 WSI, Universität Tübingen,
Sand 13, D-72076 Tübingen, Germany

Tel. +49-7071-29 74036, Fax: +49-7071-29 5060
kahle@informatik.uni-tuebingen.de

2 IAM, Universität Bern,
Neubrückstr. 10, CH-3012 Bern, Switzerland
Tel. +41-31-631 4976, Fax: +41-31-631 3965

tstuder@iam.unibe.ch

Abstract. We show that the addition of name induction to the theory
EETJ + (LEM-IN) of explicit elementary types with join yields a theory
proof-theoretically equivalent to ID1.

Keywords: Proof theory, explicit mathematics, inductive definitions.

1 Introduction

In this paper, we introduce a theory of explicit mathematics which is proof-
theoretically equivalent to the well-known theory ID1 of non-iterated positive
arithmetical inductive definitions.

Explicit mathematics was introduced by Feferman to formalize Bishop-style
constructive mathematics [Fef75,Fef79]. In the following, it turned out that this
framework is important for proof-theoretic studies of subsystems of analysis and
Kripke-Platek set theory. Moreover, it provides a very useful account to theoret-
ical computer science, particularly, it is well-suited for the study of functional
and object-oriented programming, cf. [Fef90,Fef91,Fef92,Stä97,Stä98,Stu0x].

Theories of explicit mathematics are formulated in a two sorted language. The
first-order part, consisting of so-called applicative theories, is based on partial
combinatory logic which can be extended axiomatically by additional constants,
cf. [JKS99]. Types build the second sort of objects in explicit mathematics. They
are extensional in the usual set-theoretic sense, but a special naming relation due
to Jäger [Jäg88] allows us to deal with names of the types on the first-order level.
These names show an intensional behaviour.

There exist a wide variety of theories of explicit mathematics. The proof-
theoretic strength of the different theories cover a broad part of the landscape of
mathematical theories. Nevertheless, the theory presented here is the first theory
of explicit mathematics equivalent to ID1.

The well-known theory ID1 of non-iterated inductive definitions is one of
the most prominent theories in proof theory. Formalizing least fixed points of



positive arithmetical operator forms, it can be regarded as the most elementary
impredicative theory. Going back to Kreisel [Kre63], its proof-theoretic study
(and the study of its iterations) can be found in [Fef70,BFPS81,Poh89].

In order to get a theory with the proof-theoretic strength of ID1, we will add
the concept of name induction to the theory EETJ of explicit elementary types
with join. That means that names of types can be built by use of generators
only, i.e. that the naming relation < is, so to say, least.

In the context of Martin-Löf’s type theory, this leastness condition corre-
sponds to certain elimination rules which have first been considered by Palm-
gren and later by Rathjen, also in connection with universes, [Pal98,GR94]. For
applicative theories, the concept of name induction in the presence of universes
is studied in detail in a joint work with Jäger, [JKS0x]. The theories studied
in that paper exceed the strength of ID1 substantially by having proof-theoretic
strength of Feferman’s theory T0. For the notion of proof-theoretic strength, we
refer to Feferman [Fef88,Fef0x].

In type systems dealing with record or object types the concept of structural
rule is important. Simplifying, we can say that these rules rely on the assumption
that the universe of types consists of record or object types only, cf. e.g. [AC96].
Name induction can be seen as a generalization of this idea since it allows us
to prove that the only types that exists are those which are created by the
generators.

The structure of the paper is as follows. In the next section, we introduce the
theory NEM of explicit mathematics with name induction and state some basic
results. As the core of the paper, we prove in Section 3 that NEM allows for the
definition of accessible parts. This result is used in the fourth section to give an
interpretation of IDacc

1 , a theory equivalent to ID1, in NEM. In the final section,
we describe a model of NEM which can be formalized in ID1.

A substantial part of the work of the first author was elaborated while visiting
Sol Feferman at Stanford University under support of the Deutsche Forschungs-
gemeinschaft. The work of the second author is supported by the Schweizerische
Nationalfonds. This article benefits from fruitful discussion with Gerhard Jäger.

2 The Theory NEM of Explicit Mathematics with Name
Induction

2.1 Explicit Mathematics

In this section, we present the theory EETJ of explicit elementary types with
join.

The underlying language LEM is comprised of

– individual variables a, b, c, f, u, v, w, x, y, z, . . .,
– type variables A,B, S, T, U, V,X, Y, Z, . . .,
– individual constants k, s (combinators), p, p0, p1 (pairing and projections),

0 (zero), sN (successor), pN (predecessor) and dN (definition by numerical
cases),



– generators which are special individual constants, namely nat (natural num-
bers), id (identity), co (complement), int (intersection), dom (domain), inv
(inverse image) and j (join),

– one binary function symbol · for (partial) application of individuals to indi-
viduals,

– unary relation symbols ↓ (defined) and N (natural numbers) and
– binary relation symbols ∈ (membership), = (equality) and < (naming or

representation).

Individual terms (r, s, t, r1, s1, t1, . . .) of LEM are built up from individual
variables and individual constants by means of the function symbol ·. We use
(st) or st as an abbreviation for (s · t) and adopt the convention of association
to the left, i.e. s1s2 . . . sn stands for (. . . (s1 · s2) . . . sn).

Atomic formulae of LEM are N(s), s↓, s = t, U = V , s ∈ U and <(s, U). N(s)
means that s is a natural number. s↓ means that s is defined or s has a value.
<(s, U) is the naming relation, expressing that the individual s represents the
type U or is a name of U .

The formulae of LEM (ϕ,ψ, . . .) are built up from the atomic formulae by
use of the usual propositional connectives and quantification in both sorts, over
individuals as well as over types.

A formula which contains neither quantifiers over types nor the naming re-
lation < is called elementary.

As abbreviations, we use:

t′ := sNt,

(s, t) := pst,

s ' t := s↓ ∨ t↓ → s = t,

s 6= t := s↓ ∧ t↓ ∧ ¬(s = t),
s ∈ N := N(s),

∃x ∈ N.ϕ(x) := ∃x.x ∈ N ∧ ϕ(x),
∀x ∈ N.ϕ(x) := ∀x.x ∈ N→ ϕ(x),

s ∈̇ t := ∃X.<(t,X) ∧ s ∈ X,
∃x ∈̇ s.ϕ(x) := ∃x.x ∈̇ s ∧ ϕ(x),
∀x ∈̇ s.ϕ(x) := ∀x.x ∈̇ s→ ϕ(x),

<(s) := ∃X.<(s,X).

The logic for the first-order part of theories of explicit mathematics is Bee-
son’s classical logic of partial terms, cf. [Bee85,TvD88]. The second order part is
based on classical logic with equality.

The nonlogical axioms of EETJ can be divided into the following groups.

I. Applicative axioms.

(1) kab = a,



(2) sab↓ ∧ sabc ' ac(bc),
(3) p0(a, b) = a ∧ p1(a, b) = b,
(4) 0 ∈ N ∧ ∀x ∈ N.x′ ∈ N,
(5) ∀x ∈ N.x′ 6= 0 ∧ pN(x′) = x,
(6) ∀x ∈ N.x 6= 0 → pNx ∈ N ∧ (pNx)′ = x,
(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,
(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

II. Explicit representation and extensionality.

(1) ∃x.<(x,U),
(2) <(a, U) ∧ <(a, V )→ U = V ,
(3) (∀x.x ∈ U ↔ x ∈ U)→ U = V .

III. Basic type existence axioms.

Natural numbers

<(nat) ∧ ∀x.x ∈̇ nat↔ N(x).

Identity

<(id) ∧ ∀x.x ∈̇ id↔ ∃y.x = (y, y).

Complements

<(a) → <(co(a)) ∧ ∀x.x ∈̇ co(a)↔ x /̇∈ a.

Intersections

<(a) ∧ <(b) → <(int(a, b)) ∧ ∀x.x ∈̇ int(a, b)↔ x ∈̇ a ∧ x ∈̇ b.

Domains

<(a) → <(dom(a)) ∧ ∀x.x ∈̇ dom(a)↔ ∃y.(x, y) ∈̇ a.

Inverse images

<(a) → <(inv(a, f)) ∧ ∀x.x ∈̇ inv(a, f)↔ fx ∈̇ a.

Joins

<(a) ∧ (∀x ∈̇ a.<(fx)) → <(j(a, f)) ∧Σ(a, f, j(a, f)),

where Σ(a, f, b) means that b names the disjoint union of f over a, defined as

Σ(a, f, b) := ∀x.x ∈̇ b↔ ∃y, z.x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy.

IV. Uniqueness of generators. With respect to LEM, it is given by the collection
(LEM-UG) of the following axioms for all syntactically different generators r0 and
r1 and arbitrary generators s and t of LEM:

(1) r0 6= r1,
(2) ∀x.sx 6= nat ∧ sx 6= id,



(3) ∀x, y.sx = ty → s = t ∧ x = y.

EETJ is the theory consisting of all axioms of the groups I. – IV.
As addition to the axioms of EETJ, we will consider the induction principle

(LEM-IN), the schema of complete induction on N for arbitrary formulae ϕ(u):

(LEM-IN) ϕ(0) ∧ (∀x ∈ N.ϕ(x)→ ϕ(x′)) → ∀x ∈ N.ϕ(x)

It is a well-known result that we can introduce λ abstraction and recursion using
the combinator axioms (1) and (2), cf. [Fef75,Bee85].

Proposition 1.
1. For every variable x and every term t of LEM, there exists a term λx.t of
LEM whose free variables are those of t, excluding x, such that

EETJ ` λx.t ↓ ∧ (λx.t)x ' t.

2. There exists a term rec of LEM such that

EETJ ` rec f ↓ ∧ ∀x.rec f x ' f (rec f)x.

Our definition EETJ is based on a finite axiomatization of elementary compre-
hension. This approach is essential for the formulation of name induction below.
In contrast, the original definition of EETJ employed an infinite axiom schema.
A theorem of Feferman and Jäger [FJ96] shows that this schema is derivable
from the finite axiomatization.

Lemma 1 (Elementary comprehension). Let ϕ be an elementary LEM for-
mula with no (distinct) individual variables other than z1, . . . , zm+1 and no (dis-
tinct) type variables other than Z1, . . . , Zn. Then there exists a closed individual
term t of LEM, depending on ϕ, such that EETJ proves for all individual terms
a = a1, . . . , am, b = b1, . . . , bn and type terms S = S1, . . . , Sn that:

1. <(b,S) → <(t(a, b)),
2. <(b,S) → ∀x(x ∈̇ t(a, b)↔ ϕ[x,a,S]).

Informally, we will write {x : ϕ(x)} for the collection of all individuals c
satisfying ϕ(c). Using this notation, the lemma expresses that, for elementary
formulae ϕ[u,y,Y ], the following hold:

1. {x : ϕ[x,a,S]} is a type,
2. there is a name t(a, b) for this type which is given uniformly in the individual

parameters and the names of the type parameters.

2.2 Name Induction

In this section, we define the schema of name induction. This induction principle
states that names can be defined by means of generators only. Because, in a
certain sense, names can be seen as intensional representations of sets, we get
an intensional version of ∈ induction.

In order to state the formal definition of name induction, we introduce as
auxiliary notation the closure condition C(ϕ, a) as the disjunction of the following
formulae:



(1) a = nat ∨ a = id,
(2) ∃x.a = co(x) ∧ ϕ(x),
(3) ∃x, y.a = int(x, y) ∧ ϕ(x) ∧ ϕ(y),
(4) ∃x.a = dom(x) ∧ ϕ(x),
(5) ∃f, x.a = inv(f, x) ∧ ϕ(x),
(6) ∃f, x.a = j(x, f) ∧ ϕ(x) ∧ ∀y ∈̇ x.ϕ(fy).

The schema of name induction is now given by

(LEM-I<) (∀x.C(ϕ, x)→ ϕ(x))→ ∀x.<(x)→ ϕ(x),

for arbitrary formulae ϕ(x) of LEM.
The theory NEM of explicit mathematics with name induction consists of the

axioms of EETJ plus (LEM-IN) and (LEM-I<).
As a first consequence of (LEM-I<), we prove name strictness which, more

explicitly, says the (appropriate) arguments of generators of names are names,
too. This is represented by the conjunction Str(<) of the following clauses:

(1) ∀x.<(co(x))→ <(x),
(2) ∀x, y.<(int(x, y))→ <(x) ∧ <(y),
(3) ∀x.<(dom(x))→ <(x),
(4) ∀f, x.<(inv(f, x))→ <(x),
(5) ∀f, x.<(j(x, f))→ <(x) ∧ ∀y ∈̇ x.<(fy).

To show Str(<) in NEM, we first note that the closure of the names under
condition C is guaranteed by the type existence axioms of EETJ:

EETJ ` C(<, x)→ <(x).

Lemma 2. NEM ` Str(<).

Proof. The proof is straightforward using (LEM-I<) on the formula C(<, x), i.e.
we have

(∀x.C(C(<, x), x)→ C(<, x))→ ∀x.<(x)→ C(<, x).

The premise follows immediately from the preceding remark and the fact that
ϕ occurs only positively in C(ϕ, x). From the consequence ∀x.<(x) → C(<, x)
we get the required conclusion Str(<) by substituting the different names. For
example, for clause (5) we have

<(j(x, f))→ C(<, j(x, f))
→ ∃g, z.j(x, f) = j(z, g) ∧ <(z) ∧ ∀y ∈̇ z.<(gy)
→ ∃g, z.x = z ∧ f = g ∧ <(z) ∧ ∀y ∈̇ z.<(gy)
→ <(x) ∧ ∀y ∈̇ x.<(fy)

For this argument, the uniqueness of generators (LEM-UG) is essential.



3 Accessible Parts in NEM

For the proof-theoretic analysis of NEM, the crucial property is the possibility
of defining accessible parts. This will be used in the next section to embed the
theory IDacc

1 in NEM.
Let us introduce the following abbreviation:

Closed(a, b, ϕ) := ∀x ∈̇ a.(∀y ∈̇ a.(y, x) ∈̇ b→ ϕ(y))→ ϕ(x).

If b is a name for a binary relation, then Closed(a, b, ϕ) expresses that ϕ holds
for all elements c ∈̇ a if it holds for all predecessors of c in a with respect to the
relation named by b.

Using this abbreviation we can state the following proposition which is the
essential step of the embedding of IDacc

1 .

Theorem 1. There exists a formula Acc(a, b, x) such that NEM proves for ar-
bitrary formulae ϕ(x):

(Acc.1) <(a) ∧ <(b)→ Closed(a, b,Acc(a, b, ·)),
(Acc.2) <(a) ∧ <(b) ∧ Closed(a, b, ϕ)→ ∀x.Acc(a, b, x)→ ϕ(x).

Proof. Let us assume <(a,A) and <(b, B). We set Ax = {y ∈ A|(y, x) ∈ B}, i.e.
the subset of A consisting of all B-predecessors of x. By elementary comprehen-
sion, there exists a closed term pd so that <(pd (a, b, x), Ax).

By use of the recursion theorem, we can define a term f satisfying the equa-
tion:

f (a, b, c) ' j (pd (a, b, c), λy.f(a, b, y)). (?)

Hence, f maps an element c ∈ A to the disjoint union of all f-images of B-
predecessors of c. Using f, we define the formula Acc in the following way:

Acc(a, b, c) := c ∈̇ a ∧ <(f (a, b, c)).

If Acc(a, b, c) holds we say that “c is accessible”. The idea of its definition is
the following. pd (a, b, c) is the name of the set Ac which contains of all B-
predecessors of c in A. Using join, we associate this set with a set of elements
which can be proven to be names if f (a, b, c) is a name. This trick allows us to
encode arbitrary objects of our language by names, and then name induction
can be used to prove the required properties.

(Acc.1) To show Closed(a, b,Acc(a, b, ·)), we choose an element c of A such that

∀y ∈̇ a.(y, c) ∈̇ b→ Acc(a, b, y).

The definition of pd yields

∀y.y ∈̇ pd (a, b, c)→ Acc(a, b, y).

This implies by the definition of Acc that

∀y.y ∈̇ pd (a, b, c)→ <(f (a, b, y)).



From the axioms about join, we obtain

<(j (pd (a, b, c), f)).

By the equation (?), this means <(f (a, b, c)). Together with the assump-
tion c ∈̇ a we have Acc(a, b, c). Since c was chosen arbitrarily, the proof
of Closed(a, b,Acc) is completed.

(Acc.2) To prove the second assertion we first show two auxiliary statements
(A) and (B).
(A) says that if c is accessible, then all its b predecessors are accessible,
too.

Acc(a, b, c)→ (∀x ∈̇ pd (a, b, c).Acc(a, b, x)). (A)

Assuming Acc(a, b, c), we get by (?) that <(j (pd (a, b, c), λy.f(a, b, y)))
holds. Then ∀x ∈̇ pd (a, b, c).<(f(a, b, x)) is a consequence of Lemma 2
about name strictness. To complete the proof of (A), we have to check
that ∀x ∈̇ pd (a, b, c).x ∈̇ a, which immediately follows from the defini-
tion of pd.
In order to formulate the assertion (B), we define an additional formula
ψϕ(u, v, w) depending on a formula ϕ(x) which will be used as induction
formula in the schema of name induction. Using the definition of f, here
we “replace” an arbitrary objects by their associated names.

ψϕ(a, b, u) := ∀y.Acc(a, b, y) ∧ f (a, b, y) = u→ ϕ(y).

Now, the statement (B) reads as

Closed(a, b, ϕ) ∧ C(ψϕ(a, b, ·), u)→ ψϕ(a, b, u). (B)

For the proof of (B), we assume Closed(a, b, ϕ) ∧ C(ψϕ(a, b, ·), u) and
Acc(a, b, c) ∧ f (a, b, c) = u, from which we have to show ϕ(c). From the
last assumption, we get by (?):

u = j (pd (a, b, c), λy.f(a, b, y)).

Uniqueness of generators and clause (5) of C(ψϕ(a, b, ·), u) yield

∀x ∈̇ pd (a, b, c).ψϕ(a, b, f(a, b, x))).

By the definition of ψϕ, this reads

∀x ∈̇ pd (a, b, c).∀y.Acc(a, b, y) ∧ f (a, b, y) = f(a, b, x)→ ϕ(y).

Choosing x for y, we get

∀x ∈̇ pd (a, b, c).Acc(a, b, x)→ ϕ(x).

Assuming Acc(a, b, c), we obtain by (A) that ∀x ∈̇ pd (a, b, c).Acc(a, b, x)
holds. So we have

∀x ∈̇ pd (a, b, c).ϕ(x).



But this is the premise of the assumption Closed(a, b, ϕ) and we get A(c).
Thus, (B) is proven.
To prove the second assertion (Acc.2), we now take an arbitrary formula
ϕ(x) and assume Closed(a, b, ϕ) and Acc(a, b, x). For the first assumption
(B) yields

∀y.C(ψϕ(a, b, ·), y)→ ψϕ(a, b, y).

This is just the premise of name induction for ψϕ(a, b, y) and we get
from (LEM-I<)

∀y.<(y)→ ψϕ(a, b, y).

By the definition of ψϕ(a, b, y), this is

∀y.<(y)→ ∀x.Acc(a, b, x) ∧ f (a, b, x) = y → ϕ(x).

Since the assumption Acc(a, b, x) implies <(f (a, b, x)), we can choose y
as f (a, b, x) and all premises are satisfied. Therefore we finally obtain
the required result ϕ(x).

In this proof we followed the presentation of the corresponding proof in [JKS0x],
where the principle of inductive generation is verified in the presence of universes.

4 Modelling IDacc
1 in NEM

To show the lower bound of NEM, we will embed the theory IDacc
1 of accessibility

elementary inductive definitions, cf. [BFPS81,Can96]. Let L1 be the language
of Peano arithmetic. In order to obtain LID, we extend this language by adding
new unary predicate symbols Pϕ for every formula ϕ(x, y) of L1 containing two
distinct free variables. For the definition of IDacc

1 , we extend the axioms of PA to
the new language, including formulae induction for arbitrary LID formulae, and
add for each new predicate symbol Pϕ and each LID formula ψ the following two
axioms:

∀x.(∀y.ϕ(x, y)→ Pϕ(y))→ Pϕ(x)(IDacc
1 .1)

(∀x.(∀y.ϕ(x, y)→ ψ(y))→ ψ(x))→ ∀x.Pϕ(x)→ ψ(x)(IDacc
1 .2)

It is well-known that Peano arithmetic can be embedded in EETJ + (LEM-IN),
indeed in its applicative fragment BON+(LEM-IN), using an interpretation ·N , cf.
[FJ93]. This interpretation translates formulae of L1 into elementary formulae
of LEM. Thus, by elementary comprehension we get for every binary formulae
ϕ(x, y) of L1 a name tϕN for the corresponding type, i.e. EETJ proves that tϕN
is a name for {(x, y)|x ∈ N ∧ y ∈ N ∧ ϕN (x, y)}. These names will be employed
in the proof of the following theorem to represent the binary relations which are
used in the definition of IDacc

1 .

Theorem 2. There exists a translation ·N from LID to LEM such that

IDacc
1 ` ϕ ⇒ NEM ` ϕN

for all LID formulae ϕ.



Proof. To interpret IDacc
1 in NEM we extend the translation ·N by setting

[Pϕ(x)]N := Acc(nat, tϕN , x),

where Acc(x, y, z) is defined as in Theorem 1. Then the proof runs by induction
on the length of the derivation of IDacc

1 ` ϕ. In addition to the embedding of PA
in EETJ, we need only to check the axioms for the new predicate symbols. The
translation of (IDacc

1 .1) reads as

[∀x.(∀y.ϕ(x, y)→ Pϕ(y))→ Pϕ(x)]N

↔ ∀x ∈̇ nat.(∀y ∈̇ nat.ϕN (x, y)→ Acc(nat, tϕN , y))→ Acc(nat, tϕN , x)
↔ Closed(nat, tϕN ,Acc(nat, tϕN , ·)).

Since the last line is an instance of (Acc.1) of Theorem 1, this axiom is verified.
In the same way, (IDacc

1 .2)N follows from (Acc.2):

[(∀x.(∀y.ϕ(x, y)→ ψ(y))→ ψ(x))→ ∀x.Pϕ(x)→ ψ(x)]N

↔ (∀x ∈̇ nat.(∀y ∈̇ nat.ϕN (x, y)→ ψN (y))→ ψN (x))
→ ∀x ∈̇ nat.Acc(nat, tϕN , x)→ ψN (x)

↔ Closed(nat, tϕN , ψ
N )→ ∀x.Acc(nat, tϕN , x)→ ψN (x).

The last line is an instance of (Acc.2), and we have finished the embedding of
IDacc

1 .

5 Modelling NEM in ID1

In this section, we embed NEM in the theory ID1 of non-iterated inductive defini-
tions. This extension of Peano arithmetic postulates the existence of least fixed
points for positive arithmetical operator forms. These are formulae ϕ(R, x) in
the language L1 with one additional relation symbol R that has only positive
occurrences in ϕ. The language of ID1 is L1 extended by new predicate symbols
Pϕ for each positive operator form ϕ(R, x). As axioms, we choose those of PA,
including formulae induction extended to the new language and the following
two principles for each new predicate symbol Pϕ and arbitrary formulae ψ:

∀x.ϕ(Pϕ, x)→ Pϕ(x)(ID1.1)
(∀x.ϕ(ψ/R, x)→ ψ(x))→ ∀x.Pϕ(x)→ ψ(x)(ID1.2)

Here ϕ(ψ/R, x) denotes the result of substituting any occurrence of R(t) in ϕ
by ψ(t/x).

In [Fef75], Feferman presented an inductive model construction for explicit
mathematics. Beeson showed in [Bee85] that for the system EETJ + (LEM-IN)
this construction can be carried out in the theory ÎD1, cf. also [Mar94,MS98].
This theory stating only the existence of (not necessarily least) fixed points of



positive arithmetical operator forms can be obtained from ID1 by replacing the
axioms (ID1.1) and (ID1.2) by

∀x.ϕ(Pϕ, x)↔ Pϕ(x).(ÎD1)

In fact, we can use Beeson’s formalization for the analysis of NEM using, in
addition, the induction principle of ID1 to verify name induction (LEM-I<). The
only differences are the adaption to the finite axiomatization of elementary com-
prehension and the (trivial) verification of uniqueness of generators (LEM-UG)
which was not part of the original formulation of EETJ.

We start with a standard interpretation ·? of the applicative structure us-
ing the relation App(x, y, z) := {x}(y) ' y in the sense of ordinary recursion,
cf. [FJ93]. Here, the constants of LEM are interpreted by numerals of L1 coding
appropriate number-theoretic functions satisfying the axioms of EETJ. With re-
spect to the generators we have to choose numerals according to the following
codes which will be used for the interpretation of the type structure:

– 〈1〉 codes the type of numerals,
– 〈2〉 codes the type of pairs with identical elements,
– 〈3, a〉 codes the complement of the type coded by a,
– 〈4, a, b〉 codes the intersection of the two types coded by a and b,
– 〈5, a〉 codes the domain of a function given as a type of ordered pairs coded

by a
– 〈6, f, a〉 codes the inverse images of f , i.e. the type of all individuals x with
fx is an element of the type coded by a,

– 〈7, a, f〉 codes the join of f over the type coded by a.

By choosing the codes for the generators according to these conditions, the
axioms about uniqueness of generators are obviously satisfied.

To interpret the second order part of NEM we define three relations Typ, In
and In, using appropriate operator forms. The meaning of these predicates and
their relation to LEM is as follows. Let s, t be terms of ID1 interpreting types S, T
of LEM, respectively, and let r be the interpretation of an arbitrary LEM term,
then we have:

– Typ(t) represents that t is a code of a type.
– In(r, t) interprets the formula r ∈ T .
– In(r, t) holds for ¬r ∈ T .
– We have to introduce the relation In in order to guarantee that the defining

operator forms are positive. As a consequence, we have to prove that In(r, t)
is equivalent to ¬In(r, t).

– T = S is interpreted by Typ(t) ∧ Typ(s) ∧ ∀x.In(x, t) ↔ In(x, s), i.e. as
extensional equality.

– <(t, S) is also modelled by Typ(t) ∧ Typ(s) ∧ ∀x.In(x, t)↔ In(x, s).

In order to define Typ(x), In(x, y) and In(x, y) we need some coding. Let us
use ϕ0(x), ϕ1(x, y) and ϕ2(x, y) as abbreviations for ϕ(〈0, x〉), ϕ(〈1, 〈x, y〉〉) and
ϕ(〈2, 〈x, y〉〉), respectively. With this notation we can define Typ(x), In(x, y) and



In(x, y) as the “projections” P0
ϕ(x), P1

ϕ(x, y) and P2
ϕ(x, y) of the fixed point

Pϕ of the positive operator form:

ϕ(ψ, z) := (∃y.z = 〈0, y〉 ∧ CTyp(ψ, y)) ∨
(∃x, y.z = 〈1, 〈x, y〉〉 ∧ CIn(ψ, x, y)) ∨
(∃x, y.z = 〈2, 〈x, y〉〉 ∧ CIn(ψ, x, y))

with the following closure conditions (where it is helpful to keep in mind the in-
tended meanings of ψ0, ψ1 and ψ2, namely Typ, In and In, respectively). CTyp(ψ, z)
is the disjunction of the following clauses:

– z = 〈1〉,
– z = 〈2〉,
– ∃x.z = 〈3, x〉 ∧ ψ0(x),
– ∃x, y.z = 〈4, x, y〉 ∧ ψ0(x) ∧ ψ0(x),
– ∃x.z = 〈5, x〉 ∧ ψ0(x),
– ∃f, x.z = 〈6, f, x〉 ∧ ψ0(x),
– ∃f, x.z = 〈7, x, f〉 ∧ ψ0(x) ∧ ∀y.¬ψ2(y, x)→ ψ0({f}(y)).

CIn(ψ, u, z) is the disjunction of the following clauses:

– z = 〈0〉,
– z = 〈1〉 ∧ ∃y.u = 〈y, y〉,
– ∃x.z = 〈2, x〉 ∧ ψ0(x) ∧ ψ2(u, x),
– ∃x, y.z = 〈4, x, y〉 ∧ ψ0(x) ∧ ψ0(x) ∧ ψ1(u, x) ∧ ψ1(u, y),
– ∃x.z = 〈5, x〉 ∧ ψ0(x) ∧ ∃v.ψ1(〈u, v〉, x),
– ∃f, x.z = 〈6, f, x〉 ∧ ψ0(x) ∧ ψ1({f}(u), x),
– ∃f, x.z = 〈7, x, f〉 ∧ ψ0(x) ∧ (∀y.¬ψ2(y, x)→ ψ0({f}(y))) ∧

∃v, w.u = 〈v, w〉 ∧ ψ1(v, x) ∧ ψ1(w, {f}(v)).

The defining clauses for CIn are analogous, also containing positive occurrences
of ψ only.

Without the leastness property for the fixed point defined by ϕ we cannot
prove that In and In are complementary. Hence, for embedding EETJ + (LEM-IN)
in ÎD1 one has to make use of Aczel’s trick of sorting out all codes a for types
where In(·, a) is not the complement of In(·, a). However, in ID1 the leastness
condition allows for a direct proof that In and In are complements, cf. [Bee85].

Lemma 3. ID1 ` Typ(y)→ ∀x.In(x, y)↔ ¬In(x, y).

Theorem 3. NEM can be embedded in ID1.

Proof. The interpretation ·? is chosen according to the remarks above. The ver-
ification of the axioms of EETJ and the induction schema (LEM-IN) is straight-
forward, cf. [Bee85] and [Mar94]. It only remains to check the principle of name
induction,

(LEM-I<) (∀x.C(χ, x)→ χ(x))→ ∀x.<(x)→ χ(x).



This can be derived from the leastness principle for Pϕ

(∀z.ϕ(ψ, z)→ ψ(z))→ ∀z.Pϕ(z)→ ψ(z)

by choosing a formula ψ(z) so that

ψ(〈0, x〉)↔ χ?(x),
ψ(〈1, 〈x, y〉〉)↔ In(x, y),
ψ(〈2, 〈x, y〉〉)↔ In(x, y),

ψ(z)↔ 0 = 0 for every other argument z.

Starting from the premise [∀x.C(χ, x)→ χ(x)]? we obtain (∀z.ϕ(ψ, z)→ ψ(z)):
assume ϕ(ψ, z) holds with z = 〈0, x〉 for some x. Then we get CTyp(ψ, x) which
implies [C(χ, x)]?. So χ?(x) follows by our premise and ψ(〈0, x〉) holds by the
definition of ψ. If ϕ(ψ, z) holds and there is no x with z = 〈0, x〉, then ψ(z)
is trivially fulfilled. Hence we conclude by the leastness condition for Pϕ that
∀z.Pϕ(z) → ψ(z) holds. Let z be 〈0, x〉, then we have Pϕ(〈0, x〉) → ψ(〈0, x〉)
which reads as Typ(x) → χ?(x). Because <(x) is interpreted as Typ(x) we are
finished.

This theorem, together with Theorem 2 and the well-known proof-theoretic
equivalence of IDacc

1 and ID1, yields the final result:

Theorem 4. The theory NEM of explicit mathematics with name induction
is proof-theoretically equivalent to ID1, and its proof-theoretic ordinal is the
Bachmann-Howard ordinal.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[Bee85] Michael Beeson. Foundations of Constructive Mathematics. Ergebnisse der
Mathematik und ihrer Grenzgebiete; 3.Folge, Bd. 6. Springer, Berlin, 1985.

[BFPS81] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg.
Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-
Theoretical studies, volume 897 of Lecture Notes in Mathematics. Springer-
Verlag, 1981.

[Can96] Andrea Cantini. Logical Frameworks for Truth and Abstraction, volume 135
of Studies in Logic and the Foundations of Mathematics. North-Holland,
1996.

[Fef70] Solomon Feferman. Formal theories for transfinite iterations of generalized
inductive definitions and some subsystems of analysis. In A. Kino, J. My-
hill, and R. Vesley, editors, Intuitionismus and Proof Theory, pages 303–326.
North Holland, Amsterdam, 1970.

[Fef75] Solomon Feferman. A language and axioms for explicit mathematics. In
J. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Math-
ematics, pages 87–139. Springer, 1975.



[Fef79] Solomon Feferman. Constructive theories of functions and classes. In
M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 78,
pages 159–224. North–Holland, Amsterdam, 1979.

[Fef88] Solomon Feferman. Hilbert’s program relativized: Proof-theoretical and
foundational reductions. Journal of Symbolic Logic, 53(2):364–384, 1988.

[Fef90] Solomon Feferman. Polymorphic typed lambda-calculus in a type-free ax-
iomatic framework. In W. Sieg, editor, Logic and Computation, volume 106
of Contemporary Mathematics, pages 101–136. American Mathematical So-
ciety, 1990.

[Fef91] Solomon Feferman. Logics for termination and correctness of functional
programs. In Y. Moschovakis, editor, Logic from Computer Sciences, pages
95–127. Springer, 1991.

[Fef92] Solomon Feferman. Logics for termination and correctness of functional
programs II: Logics of strength PRA. In P. Aczel, H. Simmons, and S. S.
Wainer, editors, Proof Theory, pages 195–225. Cambridge University Press,
1992.

[Fef0x] Solomon Feferman. Does reductive proof theory have a viable rationale?
Erkenntnis, 200x. To appear.

[FJ93] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part I. Annals of Pure and Applied Logic,
65(3):243–263, 1993.

[FJ96] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics with
non-constructive µ-operator. Part II. Annals of Pure and Applied Logic,
79:37–52, 1996.

[GR94] Ed Griffor and Michael Rathjen. The strength of some Martin-Löf type
theories. Archive for Mathematical Logic, 33:347–385, 1994.

[Jäg88] Gerhard Jäger. Induction in the elementary theory of types and names. In
E. Börger, H. Kleine Büning, and M.M. Richter, editors, Computer Science
Logic ’87, volume 329 of Lecture Notes in Computer Science, pages 118–128.
Springer, 1988.

[JKS99] Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative theo-
ries. In A. Cantini, E. Casari, and P. Minari, editors, Logic and Foundation
of Mathematics, pages 83–92. Kluwer, 1999.

[JKS0x] Gerhard Jäger, Reinhard Kahle, and Thomas Studer. Universes in explicit
mathematics. 200x. Submitted.

[Kre63] Georg Kreisel. Generalized inductive definitions. Technical report, Stanford
Report, 1963.

[Mar94] Markus Marzetta. Predicative Theories of Types and Names. Dissertation,
Universität Bern, Institut für Informatik und angewandte Mathematik, 1994.

[MS98] Markus Marzetta and Thomas Strahm. The µ quantification operator in
explicit mathematics with universes and iterated fixed point theories with
ordinals. Archive for Mathematical Logic, 37:391–413, 1998.

[Pal98] Erik Palmgren. On universes in type theory. In G. Sambin and J. Smith,
editors, Twenty Five Years of Constructive Type Theory, pages 191–204.
Oxford University Press, 1998.

[Poh89] Wolfram Pohlers. Proof Theory, volume 1407 of Lecture Notes in Mathemat-
ics. Springer, 1989.

[Stä97] Robert Stärk. Call-by-value, call-by-name and the logic of values. In D. van
Dalen and M. Bezem, editors, Computer Science Logic CSL ’96: Selected
Papers, volume 1258 of Lecture Notes in Computer Science, pages 431–445.
Springer, 1997.



[Stä98] Robert Stärk. Why the constant ‘undefined’? Logics of partial terms for strict
and non-strict functional programming languages. Journal of Functional
Programming, 8(2):97–129, 1998.

[Stu0x] Thomas Studer. A semantics for λ
{}
str: a calculus with overloading and late-

binding. Journal of Logic and Computation, 200x. To appear.
[TvD88] Anne Troelstra and Dirk van Dalen. Constructivism in Mathematics, vol-

ume II. North Holland, Amsterdam, 1988.


