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Abstract. This paper is a contribution to the area of metapredicative
proof theory. It continues recent investigations on the transfinitely it-
erated fixed point theories ÎDα (cf. [10]) and addresses the question of
autonomity in iterated fixed point theories. An external and an internal
form of autonomous generation of transfinite hierarchies of fixed points
of positive arithmetic operators are introduced and proof-theoretically
analyzed. This includes the discussion of the principle of so-called fixed
point transfinite recursion. Connections to theories for iterated inaccessi-
bility in the context of Kripke Platek set theory without foundation are
revealed.

1 Introduction

The foundational program to study the principles and ordinals which are implicit
in a predicative conception of the universe of sets of natural numbers led to the
progression of systems of ramified analysis up to the famous Feferman-Schütte
ordinal Γ0 in the early sixties. Since then numerous theories have been found
which are not prima facie predicatively justifiable, but nevertheless have pred-
icative strength in the sense that Γ0 is an upper bound to their proof-theoretic
ordinal. It is common to all these predicative theories that their analysis re-
quires methods from predicative proof theory only, in contrast to the present
proof-theoretic treatment of stronger impredicative systems. On the other hand,
it has long been known that there are natural systems which have proof-theoretic
ordinal greater than Γ0 and whose analysis makes use just as well of methods
which every proof-theorist would consider to be predicative. Nevertheless, not
many theories of the latter kind have been known until recently.

Metapredicativity is a new area in proof theory which is concerned with the
analysis of formal systems whose proof-theoretic ordinal is beyond the Feferman-
Schütte ordinal Γ0, but which can be given a proof-theoretic analysis that
uses methods from predicative proof theory only. It has recently been discov-
ered that the world of metapredicativity is extremely rich and that it includes
many natural and foundationally interesting formal systems. For previous work
in metapredicativity the reader is referred to Jäger, Kahle, Setzer and Strahm
[10], Jäger and Strahm [11], Kahle [13], Rathjen [21], and Strahm [27]. A short
discussion of this recent research work is given in the last section of this paper.
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This paper starts off from the article Jäger, Kahle, Setzer and Strahm [10]
on the proof-theoretic analysis of transfinitely iterated fixed point theories ÎDα.
Finitely iterated fixed point theories ÎDn were introduced and analyzed in Fefer-
man [5] in connection with his proof of Hancock’s conjecture about the strength
of Martin-Löf type theory with finitely many universes. It is shown in [5] that
the union of the theories ÎDn for n < ω has proof-theoretic ordinal Γ0. In [10]
the proof-theoretic ordinals of ÎDα for α ≥ ω are determined by providing a
metapredicative ordinal analysis.

The main concern of this article is to study and elucidate various ways of
generating hierarchies of fixed points of positive arithmetic operators in an au-
tonomous manner. The simplest form of autonomity is formalized in the theory
Aut(ÎD): the crucial rule of inference of Aut(ÎD) states that whenever we have
a proof that a specific primitive recursive ordering is wellfounded, then one is
allowed to claim the existence of a fixed point hierarchy along that wellordering.
We will see that the proof-theoretic ordinal of Aut(ÎD) is ϕ200 for ϕ a ternary
Veblen function. A more general account to autonomity is implemented by the
principle of so-called fixed point transfinite recursion (FTR), which demands the
existence of fixed point hierarchies along arbitrary given wellorderings. (FTR)
is more liberal than Aut(ÎD) in the sense that we are no longer dealing with
primitive recursive wellorderings only and, moreover, (FTR) does not require a
previously recognized proof of wellfoundedness. We introduce two subsystems
of analysis FTR0 and FTR which are based on fixed point transfinite recursion
(FTR) and include set and formula induction in the natural numbers, respec-
tively. We show that FTR0 and FTR have proof-theoretic ordinal ϕ200 and ϕ20ε0

respectively. Hence, FTR0 has the same proof-theoretic strength as Aut(ÎD). Up-
per bounds are obtained by modeling (FTR) in a system of Kripke Platek set
theory without foundation which formalizes a hyperinaccessible1 universe of sets.

The exact plan of this paper is as follows. We start with some ordinal-
theoretic preliminaries in Section 2; in particular, we define the ternary Veblen
function λα, β, γ.ϕαβγ which will be relevant in the sequel. In Section 3 we in-
troduce a first order framework for transfinitely iterated fixed point theories. We
review the results of [10] about the proof-theoretic ordinal of ÎDα and see that
the theory Aut(ÎD) has ordinal ϕ200. Section 4 is devoted to the exact definition
of fixed point transfinite recursion (FTR) and the corresponding theories FTR0

and FTR. Moreover, we establish ϕ200 and ϕ20ε0 as lower bounds of FTR0 and
FTR, respectively. In particular, Aut(ÎD) is interpretable in FTR0. In Section 5
we first introduce a system of Kripke Platek set theory without foundation for
a hyperinaccessible universe of sets, namely the theory KPh0. Then we show
that fixed point transfinite recursion (FTR) can be modeled in KPh0, i.e. the
theory FTR0 is interpretable into KPh0. The full system FTR is contained in a
slight strengthening of KPh0. Using results of Jäger and Strahm [12] about the
proof-theoretic ordinals of these theories for hyperinaccessibility, we find that

1 Throughout this paper the notions “inaccessible” and “hyperinaccessible” always
refer to “recursively inaccessible” and “recursively hyperinaccessible”, respectively.
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ϕ200 and ϕ20ε0 are upper bounds for the proof-theoretic ordinal of FTR0 and
FTR, respectively. Finally, in Section 6 of this paper we summarize our results
and we discuss various kinds of related metapredicative systems, ranging from
subsystems of analysis and systems of Kripke Platek set theory to systems of
explicit mathematics with universes.

2 The ternary Veblen function

In this section we fix a few ordinal-theoretic facts which will be relevant in the
sequel. Namley, we sketch an ordinal notation system which is based on a ternary
Veblen or ϕ function. This ordinal function will be sufficient for denoting the
proof-theoretic ordinals of the theories considered in this article.

The standard notation system up to the Feferman-Schütte ordinal Γ0 makes
use of the usual Veblen hierarchy generated by the binary function ϕ, starting
off with the function ϕ0β = ωβ , cf. Pohlers [20] or Schütte [24]. The ternary
ϕ function is obtained as a straightforward generalization of the binary case by
defining ϕαβγ inductively as follows:

(i) ϕ0βγ is just ϕβγ;
(ii) if α > 0, then ϕα0γ denotes the γth ordinal which is strongly critical with

respect to all functions λξ, η.ϕα′ξη for α′ < α.
(iii) if α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of the

functions λξ.ϕαβ′ξ for β′ < β.

For example, ϕ10α is Γα, and more generally, ϕ1αβ denotes a Veblen hierarchy
over λα.Γα. It is straightforward how to extend these ideas in order to obtain
ϕ functions of all finite arities, and even further to Schütte’s Klammersymbole
[23].

Let Λ3 denote the least ordinal greater than 0 which is closed under the
ternary ϕ function. In the following we confine ourselves to the standard notation
system which is based on this function. Since the exact definition of such a system
is a straightforward generalization of the notation system for Γ0 (cf. [20, 24]), we
do not go into details here. We write ≺ for the corresponding primitive recursive
wellordering and assume without loss of generality that the field of ≺ is the set
of all natural numbers and 0 is the least element with respect to ≺.

3 The theory Aut(ÎD)

In this section we first introduce the transfinitely iterated fixed point theories
ÎDα of [10] and we recall the main theorem about their proof-theoretic strength.
Then we define the autonomous fixed point theory Aut(ÎD), which incorporates
the most simple form of autonomous generation of fixed point hierarchies. The
proof-theoretic ordinal of Aut(ÎD) is ϕ200.

In the following we let L denote the language of first order arithmetic. L
includes number variables (a, b, c, u, v, w, x, y, z, . . .), symbols for all primitive
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recursive functions and relations, as well as a unary relation symbol U whose
status will become clear below. The number terms (r, s, t, . . .) and formulas
(A,B,C, . . .) of L are defined as usual.

If P and Q are fresh unary relation symbols, then we let L(P,Q) denote the
extension of L by P and Q. We call an L(P,Q) formula P positive, if the relation
symbol P has only positive occurrences in it. A P positive L(P,Q) formula which
contains at most x and y free is called an inductive operator form, and we let
A(P,Q, x, y) range over such forms.

Further, we set for all primitive recursive relations �, all formulas A(x) and
terms s:

Prog(�, A) := (∀x)[(∀y)(y � x→ A(y))→ A(x)],
TI(�, A) := Prog(�, A)→ (∀x)A(x),

TI(�, s, A) := Prog(�, A)→ (∀x� s)A(x).

We write Prog(A) and TI(s,A) instead of Prog(≺, A) and TI(≺, s, A), respec-
tively. If we want to stress the relevant induction variable of the formula A, we
sometimes write Prog(λx.A(x)) instead of Prog(A).

The stage is now set in order to introduce the theories ÎDα for each α less
than Λ3.2 ÎDα is formulated in the language Lfix, which extends L by a new
unary relation symbol PA for each inductive operator form A(P,Q, x, y). We
write PAs (t) for PA(〈t, s〉) and PA≺s(t) for t = 〈(t)0, (t)1〉 ∧ (t)1 ≺ s∧PA(t); here
〈·, ·〉 denotes a primitive recursive coding function with associated projections
(·)0 and (·)1.

The theory ÎDα for α times iterated fixed points comprises the following ax-
ioms: (i) the axioms of Peano arithmetic PA with the scheme of complete induc-
tion for all formulas of Lfix, (ii) the fixed point axioms

(∀a ≺ α)(∀x)[PAa (x)↔ A(PAa , P
A
≺a, x, a)]

for all inductive operator forms A(X,Y, x, y), as well as (iii) the axioms TI(α,A)
for all Lfix formulas A. We write ÎD<α for the union of the theories ÎDβ for β less
than α.

As usual we call an ordinal α provable in a theory T, if there is a primitive
recursive wellordering � of ordertype α so that T ` TI(�, U). The least ordinal
which is not provable in T is called the proof-theoretic ordinal of T and is denoted
by |T|.

The theories ÎDα provide first paradigmatic examples of metapredicative the-
ories. Their proof-theoretic analysis has been carried through only recently by
Jäger, Kahle, Setzer and Strahm in [10]. It turns out that the proof-theoretic
ordinal of ÎDα can be described by means of the function λα, β.ϕ1αβ, which
forms a Veblen hierarchy starting with the initial function λα.Γα.

2 Of course, the restriction to ordinals less than Λ3 is not essential; its just stems from
the choice of our notation system for the purpose of this article.
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In order to formulate the main theorem of [10], we let ε(α) denote the least
ε number greater than α. Moreover, the ordinals (α|m) are inductively defined
by

(α|0) := ε(α), (α|m+ 1) := ϕ(α|m)0.

Theorem 1. Assume that α is an ordinal less than Λ3 of the form

α = ω1+αn + ω1+αn−1 + · · ·+ ω1+α1 +m,

for ordinals αn ≥ αn−1 ≥ · · · ≥ α1 and m < ω. Then we have

|ÎDα| = ϕ1αn(ϕ1αn−1(· · ·ϕ1α1(α|m)) · · ·).

This finishes our short review of the theories ÎDα. Let us now turn to autonomous
fixed point processes. The simplest way to generate fixed point hierarchies au-
tonomously is formalized in the theory Aut(ÎD). The principal rule of inference
of Aut(ÎD) states that whenever we have a proof that a specific primitive recur-
sive linear ordering � is wellfounded, then we are allowed to adjoin the axiom
which claims the existence of a fixed point hierarchy along � with respect to an
operator form A.

Since in the theory Aut(ÎD) we are no longer dealing with the fixed primi-
tive recursive wellordering ≺, but with arbitrary previously recognized primitive
recursive wellorderings �, the corresponding fixed point hierarchies depend on
these orderings �. Accordingly, for the formulation of Aut(ÎD) we assume that
our language Lfix includes unary relation symbols PA,� for each operator form A
and (binary) primitive recursive relation �. The formulas PA,�s (t) and PA,��s (t)
are understood as above.

The theory Aut(ÎD) now extends Peano arithmetic (formulated in the lan-
guage Lfix) by the autonomous fixed point hierarchy generation rule and the bar
rule, i.e. Aut(ÎD) incorporates the two rules of inference

TI(�, U)

(∀a ∈ field(�))(∀x)[PA,�a (x)↔ A(PA,�a , PA,��a , x, a)]
and

TI(�, U)
TI(�, A)

,

where � denotes a primitive recursive linear ordering (provably say in PA),
field(�) signifies the field of � and A denotes an arbitrary Lfix formula.

The proof-theoretic ordinal of Aut(ÎD) is the ordinal ϕ200, i.e. the first ordinal
which is strongly critical w.r.t. a Veblen hierarchy above the Γ function. This
result essentially follows from Theorem 1. Alternatively, we can say that ϕ200
is the least ordinal α such that |ÎD<α| = α.

Theorem 2. |Aut(ÎD)| = ϕ200.

Proof. We define a canonical fundamental sequence (αn)n∈N for ϕ200 by setting
α0 := ε0 and αn+1 := ϕ1αn0. Then Theorem 1 immediately yields that each of
the theories ÎD<αn is contained in Aut(ÎD), and consequently ϕ200 ≤ |Aut(ÎD)|.
The reverse direction |Aut(ÎD)| ≤ ϕ200 is entailed by Theorem 1 as well if one
observes that the upper bound arguments given in Section 6 of [10] do not depend
on the specific representation of the ordering ≺.
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4 The theories FTR0 and FTR

In this section we introduce the subsystems of analysis FTR0 and FTR, which
incorporate the crucial principle of fixed point transfinite recursion (FTR). In
analogy to arithmetic transfinite recursion (ATR) (cf. e.g. [6]), (FTR) claims the
existence of fixed point hierarchies along arbitrary given wellorderings. (FTR)
can be seen as a more liberal account to autonomous fixed point processes
in the sense that we are dealing not only with primitive recursive (or arith-
metic) wellorderings as in Aut(ÎD) and, moreover, (FTR) does not require a
previously recognized proof of wellfoundedness. Hence, in a sense, autonomity
in Aut(ÎD) could be called external, whereas (FTR) formalizes an internal form
of autonomity. Nevertheless, we will see that these two forms of autonomity have
the same proof-theoretic strength as long as induction on the natural numbers
in the context of (FTR) is restricted to sets.

Let L2 denote the usual language of second order arithmetic, which extends
L by set variables X,Y, Z, . . . (possibly with subscripts) and the binary relation
symbol ∈ for elementhood between numbers and sets. Terms and formulas of L2

are defined as usual. We write s ∈ (X)t for 〈s, t〉 ∈ X. An L2 formula is called
arithmetic, if it does not contain bound set variables. Similarly as before, we
call an arithmetic L2 formula A(X,Y, x, y) an inductive operator form if X does
only occur positively in it; inductive operator forms may contain further free set
and number variables.

A set X of natural numbers can be regarded as a binary relation by stipulat-
ing s X t for 〈s, t〉 ∈ X. In the sequel we let LO(X) denote the usual arithmetic
formula which expresses that the binary relation X is a linear ordering of its
field, field(X). Moreover, we say that X is wellfounded if transfinite induction
along X holds w.r.t. all sets Z, i.e. (∀Z)TI(X,Z). Finally, X is a wellordering,
in symbols WO(X), if X is a wellfounded linear ordering.

Our main concern is to build hierarchies of fixed points along arbitrary
wellorderings. For that purpose, we introduce the formula FHierA(X,Y ) which
expresses that Y is a hierarchy of fixed points along X w.r.t. the inductive op-
erator form A:

FHierA(X,Y ) := (∀a ∈ field(X))(∀x)[x ∈ (Y )a ↔ A((Y )a, (Y )Xa, x, a)].

Here (Y )Xa denotes the set {〈y, b〉 : b X a ∧ 〈y, b〉 ∈ Y }. Observe that the
formula FHierA(X,Y ) depends on the additional parameters of the inductive
operator form A. We are now ready to state the principle of fixed point transfinite
recursion (FTR), which states for each operator form A that an A fixed point
hierarchy exists along any given wellordering, i.e.

(FTR) (∀X)[WO(X) → (∃Y )FHierA(X,Y )].

In the following we let ACA0 denote the standard system of second order arith-
metic which includes comprehension for arithmetic formulas and complete in-
duction on the natural numbers for sets. The theory FTR0 extends ACA0 by each
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instance of fixed point transfinite recursion (FTR) and FTR is just FTR0 with
induction on the natural numbers for arbitrary statements of L2.

In the sequel we will see that the proof-theoretic ordinals of FTR0 and FTR
are ϕ200 and ϕ20ε0, respectively. In order to establish ϕ200 as a lower bound of
FTR0 one can either carry through a direct wellordering proof using the methods
of [10] or observe that the theory Aut(ÎD) is contained in FTR0 in a rather direct
manner.

Theorem 3. Aut(ÎD) is contained in FTR0.

Proof. Rather than giving a global interpretation of the language Lfix in L2 we
inductively translate each proof in Aut(ÎD) into FTR0. Thereby, the anonymous
relation symbol U ranges over arbitrary sets in FTR0 which means that inductive
operator forms of L containing U carry over to operator forms in L2 which
depend on set parameters. Given a specific proof d in Aut(ÎD), the only crucial
point is to interpret those relation symbols PA,� which are introduced in d by the
autonomous fixed point hierarchy generation rule. In this case we know by the
inductive hypothesis that WO(�) is provable in FTR0 and hence a fixed point
hierarchy along � exists by (FTR) giving PA,� its interpretation. Under this
interpretation, the bar rule is trivialized and, moreover, complete induction on
the natural numbers is only needed for sets in FTR0. This finishes our argument.

Corollary 1. ϕ200 ≤ |FTR0|.

In order to see that ϕ20ε0 is a lower bound for FTR, i.e. FTR0 with induction on
the natural numbers for arbitrary L2 formulas, one makes use of the wellordering
proofs for the theories ÎDα given in [10].

Theorem 4. ϕ20ε0 ≤ |FTR|.

Proof. (Sketch) Essentially by making use of Main Lemma II in Section 5 of [10],
one shows that FTR proves

(∀a)[(∀X)TI(X, a)→ (∀X)TI(X,ϕ1a0)]. (1)

Furthermore, using (1) it is immediate to show that FTR derives

Prog(λa.(∀X)TI(X,ϕ20a)). (2)

Due to the presence of full formula induction on the natural numbers, transfinite
induction with respect to arbitrary L2 formulas is available in FTR for fixed initial
segments of ε0. From this observation and (2) we immediately obtain our claim,
namely that (∀X)TI(X,ϕ20α) is derivable in FTR for each α less than ε0.

In the next paragraph we will show that the lower bounds for FTR0 and FTR are
sharp by modeling fixed point transfinite recursion (FTR) in a system of Kripke
Platek set theory without foundation which formalizes a hyperinaccessible uni-
verse of sets.



8

5 Hyperinaccessibility without foundation

It is the aim of this section to show that the lower bounds ϕ200 and ϕ20ε0 for
FTR0 and FTR, respectively, are sharp. This is done by modeling the schema
of fixed point transfinite recursion (FTR) in a universe of sets which forms a
limit of inaccessible sets. Below we introduce the theory KPh0 which formalizes
a hyperinaccessible universe of sets. KPh0 includes induction on the natural
numbers for sets only and – most importantly – it does not include foundation at
all. The corresponding theory with foundation has an enormous proof-theoretic
strength which exceeds the strength of ∆1

2-CA + (BI) by far.
The language Ls of KPh0 extends the usual language of set theory with ∈ and

= by a unary predicate symbol Ad to mean that a set is admissible. In addition,
we assume that Ls includes a constant ω for the first infinite ordinal.3 Variables of
Ls are denoted by a, b, c, x, y, z, u, v, w, f, g, h, . . ., and we let A,B,C, . . . range
over the formulas of Ls. An Ls formula is called ∆0 if all its quantifiers are
bounded; Σ1,Π1, Σ,Π and ∆ formulas are defined as usual. The formula Aa is
the result of restricting all unbounded quantifiers in A to a. We make free use of
standard set-theoretic notions and notations, for example Tran(a) signifies that
a is a transitive set.

In order to formalize a hyperinaccessible universe of sets we need the notion
InAcc(a) in order to express that a set a is inaccessible, i.e. admissible and limit
of admissibles:

InAcc(a) := Ad(a) ∧ (∀x ∈ a)(∃y ∈ a)(x ∈ y ∧ Ad(y)).

We are now ready to introduce the theory KPh0. The logical axioms and rules
of KPh0 are the ones for classical predicate logic with equality. The non-logical
axioms of KPh0 are divided into the following four groups.

I. Basic set-theoretic axioms. For all ∆0 formulas A(x) and B(x, y):

(Extensionality) (∀x)(x ∈ a↔ x ∈ b)→ a = b,

(Pair) (∃x)(x = {a, b}),
(Union) (∃x)(x =

⋃
a),

(∆0 Separation) (∃x)(x = {y ∈ a : A(y)}),
(∆0 Collection) (∀x ∈ a)(∃y)B(x, y)→ (∃z)(∀x ∈ a)(∃y ∈ z)B(x, y).

II. Axioms about ω.

(Infinity) ∅ ∈ ω ∧ (∀x ∈ ω)(x ∪ {x} ∈ ω),

(ω Induction) ∅ ∈ a ∧ (∀x ∈ ω)[x ∈ a→ x ∪ {x} ∈ a] → (∀x ∈ ω)(x ∈ a).

III. Axioms about Ad. For all axioms A(x) of group I whose free variables
belong to x:
3 To be precise, we also presuppose that Ls contains the free unary relation symbol U

so that we can use the same definition of proof-theoretic ordinal as before.
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(Ad Transitivity) Ad(a) → ω ∈ a ∧ Tran(a),

(Ad Linearity) Ad(a) ∧ Ad(b) → a ∈ b ∨ a = b ∨ b ∈ a,

(Ad Reflection) Ad(a) → (∀x ∈ a)Aa(x).

IV. Limit of inaccessibles.

(InAcc Limit) (∀x)(∃y)(x ∈ y ∧ InAcc(y)).

This finishes the description of KPh0. By KPi0 we denote KPh0 with axiom IV
replaced by

(∀x)(∃y)(x ∈ y ∧ Ad(y)),

i.e., KPi0 formalizes an inaccessible universe of sets. Due to Jäger [8], the proof-
theoretic ordinal of KPi0 is exactly the Feferman-Schütte ordinal Γ0.

As already mentioned above, we do not give the proof-theoretic analysis
of KPh0 in this article, since it is contained in Jäger and Strahm [12]. There
the exact proof-theoretic strength of the theory KPm0 is determined; KPm0

formalizes a recursively Mahlo universe of sets without foundation, i.e. it results
from the well-known theory KPm (cf. Rathjen [22]) by omitting ∈ induction
completely. The upper bound computation of KPm0 goes via a treatment of
theories formalizing an n-hyperinaccessible universe of sets without foundation
for each fixed natural number n. The theory KPh0 is just one of these theories,
and it is shown in [12] that |KPh0| ≤ ϕ200; indeed, by Strahm [28] this bound
is sharp, as we will also see by interpreting FTR0 into KPh0 below.

Theorem 5. |KPh0| = ϕ200.

In our embedding of FTR0 into KPh0 we will need the important fact that KPi0

provides a Σ1 operation which picks an admissible set above any given set. Of
course, the natural candidate for an admissible set containing a set a is the least
admissible a+ above a, where

a+ :=
⋂
{b : a ∈ b ∧ Ad(b)}.

The Σ1 definability of a+ in KPi0 is due to Gerhard Jäger. For completeness, we
give a proof of Jäger’s theorem; it appears that linearity of admissibles is crucial
for his argument.

Theorem 6. 1. KPi0 proves that a+ is a set and, in addition, Ad(a+). More-
over, the function a 7→ a+ is Σ1 definable in KPi0.

2. We have that 1. relativizes to any inaccessible set.

Proof. In the following we prove the first part of the theorem only; the second
part is immediate by relativization. Let us work informally in KPi0. Given a set
a, the limit axiom of KPi0 guarantees the existence of a set c such that Ad(c)
and a ∈ c and, hence, we have that

a+ =
⋂
{b ∈ c ∪ {c} : a ∈ b ∧ Ad(b)}
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by linearity of admissibles. This proves that a+ is indeed a set and one readily
sees that the operation a 7→ a+ is Σ1 definable. It remains to show that a+

is admissible, i.e. Ad(a+). For that purpose we define a++ := (a+)+ and first
convince ourselves that

a+ 6= a++. (3)

For a contradiction, assume a+ = a++. We have that r := {x ∈ a+ : x /∈ x}
is a set by ∆0 separation and, moreover, r ∈ d for each admissible set d such
that a+ ∈ d, i.e. r ∈ a++ by definition. But then r ∈ a+ since we have assumed
a+ = a++. This yields a contradiction since

r ∈ r ↔ r ∈ a+ ∧ r /∈ r ↔ r /∈ r.

Using (3), there exists a set d such that Ad(d), a ∈ d and a+ /∈ d, and indeed we
have that d = a+. The inclusion a+ ⊂ d is obvious. In order to show that d ⊂ a+

we pick an arbitrary set b with Ad(b) and a ∈ b and establish d ⊂ b. By linearity
we have d ∈ b ∨ d = b ∨ b ∈ d. In case of d ∈ b or d = b, d ⊂ b is obvious. But
b ∈ d is impossible since this would imply a+ ∈ d, a contradiction to the choice
of d. All together we have shown d = a+, which entails Ad(a+) as desired. This
finishes our argument. We observe that ∆0 collection was not used in this proof.

We now turn to the final preparatory step for our embedding of FTR0 into KPh0.
Given an inductive operator form A(X,Y, x, y) with additional set parameters Z
and number parameters z, we will have to construct an A fixed point depending
on Y, y,Z,z. Most importantly, the construction of such a fixed point must
be uniform in these parameters. Due to the above theorem, we know how to
pick an admissible set (Y,Z)+ containing Y and Z. In order to construct an
A fixed point w.r.t. Y, y,Z,z one can now make use of the Second Recursion
Theorem of admissible set theory (cf. Barwise [2], p. 157) on the admissible
(Y,Z)+, thus producing a fixed point FPA(Y, y,Z,z) uniformly in the given
parameters. Note that FPA(Y, y,Z,z) is Σ on (Y,Z)+ and, hence, defines a
set by ∆0 separation. Moreover, the proof of the Second Recursion Theorem
does not use foundation. Summing up, FPA is Σ1 definable in KPi0 and on any
inaccessible set, respectively.

Theorem 7. FTR0 is contained in KPh0.

Proof. Of course we work with the standard embedding of the language of anal-
ysis L2 into the language of set theory Ls. Accordingly, we use capital letters
also in Ls for subsets of the set of natural numbers ω. In verifying the axioms
of FTR0 under this translation, only the axioms about fixed point transfinite
recursion (FTR) require special attention. Therefore, let A be an inductive op-
erator form with additional parameters Z,z. We work informally in KPh0. First
we choose a wellordering X and observe that transfinite induction along X is
available in KPh0 for all ∆0 formulas due to the presence of ∆0 separation. Using
(InAcc Limit), we pick an inaccessible set d such that X,Z belong to d. Further,
we define HA(X,U, a) to be the following Ls formula (depending on Z,z):

HA(X,U, a) := (∀b ∈ ω)[b = a ∨ b X a → (U)b = FPA((U)Xb, b,Z,z)].
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Here we use FPA as Σ1 definable on d and consequently HA(X,U, a) is ∆ on d.
A straightforward induction along X yields for each a in the field of X:

HA(X,U, a) ∧ HA(X,V, a) → (∀b ∈ ω)[b = a ∨ b X a→ (U)b = (V )b]. (4)

Moreover, using Σ collection in d as well as totality of FPA in d, another induc-
tion along X establishes

(∀a ∈ field(X))(∃U ∈ d)HA(X,U, a). (5)

Finally, we can piece together the fixed point hierarchies up to each a in the field
of X by setting

Y := {〈y, a〉 : y ∈ ω ∧ a ∈ field(X) ∧ (∃U ∈ d)[HA(X,U, a) ∧ y ∈ (U)a]}.

Indeed, Y exists by ∆0 separation and we have FHierA(X,Y ) by (4) and (5).
This finishes our argument and, hence, the embedding of FTR0 into KPh0.

Remark 1. We observe that in the above embedding of FTR0 into KPh0, we
did not make use of global ∆0 collection. Collection was used only locally in
admissible sets. Therefore, global ∆0 collection does not contribute to the proof-
theoretic strength of KPh0.

We are now in a position to combine Corollary 1, Theorem 5 and Theorem 7.

Corollary 2. |FTR0| = ϕ200.

Let us end this section by sketching how one can obtain a sharp upper bound
for the theory FTR, i.e., FTR0 plus the full schema of formula induction on the
natural numbers. As we have noted above (Remark 1), global ∆0 collection has
not been used in our embedding of FTR0 into KPh0. As a consequence, if KPh0

−
denotes KPh0 without global ∆0 collection, then FTR0 is already contained in
KPh0

−. In addition, if (F-Iω) denotes the schema of formula induction on the
natural numbers in the language Ls, then one readily realizes that Theorem 7
establishes an embedding of FTR into KPh0

− + (F-Iω). Moreover, the methods
of [12] allow one to show that |KPh0

− + (F-Iω)| ≤ ϕ20ε0 and, hence, we obtain
together with Theorem 4 an exact calibration of the strength of FTR.

Theorem 8. |FTR| = ϕ20ε0.

Remark 2. We note that the theory KPh0+(F-Iω) is stronger than KPh0
−+(F-Iω).

To be precise, we have that |KPh0 + (F-Iω)| = ϕ2ε00.

6 Conclusion and related systems

In this article we have studied various forms of constructing hierarchies of fixed
points of positive arithmetic operators in an autonomous manner. We have seen
that the corresponding principles are closely related to systems of Kripke Platek
set theory without foundation whose universe of sets forms a limit of inaccessi-
bles. We summarize the results of the previous sections in the following theorem.
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Theorem 9. We have the following proof-theoretic equivalences:

1. Aut(ÎD) ≡ FTR0 ≡ KPh0 ≡ KPh0
−;

2. FTR ≡ KPh0
− + (F-Iω).

The theories in the first row have proof-theoretic ordinal ϕ200, the ones in the
second row ϕ20ε0.

Let us finish this article by mentioning some recent results in metapredicative
proof theory which are related to the ones discussed in this paper. There is a
broad variety of theories whose proof-theoretic ordinal can be denoted by means
of the ternary Veblen function. Among those, theories with a proof-theoretic
ordinal that is expressible by the ordinal function λα, β.ϕ1αβ, i.e., an ordi-
nary Veblen hierarchy above the Γ function, provide first natural examples of
metapredicative systems. The theories ÎDα belong to this family, cf. Theorem 1
of this paper.

Interesting subsystems of second order arithmetic which can be measured
against transfinitely iterated fixed point theories are extension of Friedman’s
ATR0 (cf. [6, 9, 25, 26]) by Σ1

1 dependent choice. Let us recall that the schema
of arithmetic transfinite recursion (ATR) says that arithmetic jump hierarchies
exist along any wellordering. ATR0 is defined to be ACA0 plus all instances of
(ATR), and ATR denotes the corresponding system with full formula induction
on the natural numbers. Recently, Avigad [1] gave a neat equivalent formulation
of (ATR) in terms of a second order fixed point axiom schema. His principle (FP)
claims for each positive arithmetic operator form A(X,Y, x, y) the existence of
an A fixed point depending on parameters Y, y, more precisely:

(∃X)(∀x)[x ∈ X ↔ A(X,Y, x, y)].

It is shown in [1] that (ATR) and (FP) are equivalent over ACA0. The schema of
Σ1

1 dependent choice, (Σ1
1 -DC), consists of the assertions

(∀X)(∃Y )A(X,Y ) → (∀X)(∃Z)[(Z)0 = X ∧ (∀u)A((Z)u, (Z)u+1)]

for each Σ1
1 formula A of L2. It has long been known that (Σ1

1 -DC) is not provable
in ATR0, cf. e.g. Simpson [26]. The exact strength of (Σ1

1 -DC) in the context of
(ATR) is determined in Jäger and Strahm [11]; in particular, the following proof-
theoretic equivalences are established there:

ATR ≡ ÎDω, ATR0 + (Σ1
1 -DC) ≡ ÎD<ωω , ATR + (Σ1

1 -DC) ≡ ÎD<ε0 .

Thanks to Theorem 1, the corresponding proof-theoretic ordinals are Γε0 , ϕ1ω0
and ϕ1ε00, respectively. The proof-theoretic ordinal of ATR is previously due to
Friedman (cf. Simpson [25]) and Jäger [7]. For connections between the theories
ÎDα and subsystems of analysis based on restricted forms of bar induction the
reader is referred to Jäger and Strahm [11].

There are also natural subsystems of KPh0 which can be compared to trans-
finitely iterated fixed point theories. Recall that Jäger’s system KPi0 (cf. the last
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section) has proof-theoretic ordinal exactly Γ0 (cf. Jäger [8]). The system which
is obtained from KPi0 by omitting global ∆0 collection is usually denoted by
KPl0; since Jäger’s [8] embedding of ATR0 into KPi0 does not make use of global
∆0 collection, we have that KPi0 and KPl0 are of the same strength. This picture
changes drastically in the presence of formula induction (F-Iω) on the natural
numbers or induction on the natural numbers for Σ1 formulas, (Σ1-Iω). Here we
have the following relationship to transfinitely iterated fixed point theories:

KPl0 + (F-Iω) ≡ ÎDω, KPi0 + (Σ1-Iω) ≡ ÎD<ωω , KPi0 + (F-Iω) ≡ ÎD<ε0 .

Lower bounds for these three equivalences are obtained as follows: since ATR is
contained in KPl0 + (F-Iω) we have that Γε0 is a lower bound of this system; fur-
ther, since transfinite induction for Σ1 statements is available in KPi0 + (Σ1-Iω)
and KPi0 + (F-Iω) below ωω and ε0, respectively, the proof of Theorem 7 re-
veals that ÎD<ωω and ÎD<ε0 is contained in KPi0 + (Σ1-Iω) and KPi0 + (F-Iω),
respectively. Moreover, the methods of [10] or [12] can be used in order to show
that these bounds are indeed sharp. The system KPl0 + (Σ1-Iω) is not directly
comparable to transfinitely iterated fixed point theories. It can be shown that
its proof-theoretic ordinal is Γωω .

Let us include a short discussion on systems of explicit mathematics and
first steps into metapredicativity. Explicit mathematics goes back to Feferman
[3, 4]. Its primary aim was to lay a logical basis for constructive mathematics,
but it soon turned out to be important in connection with various activities in
proof theory, e.g. the reduction of strong classical systems to constructive ones.
Universes are a frequently studied concept in constructive mathematics at least
since the work of Martin-Löf, cf. e.g. Martin-Löf [15] or Palmgren [19] for a sur-
vey. They can be considered as types of types (or names) which are closed under
previously recognized type formation operations, i.e. a universe reflects these
operations. Hence, universes are closely related to reflection principles in classi-
cal and admissible set theory. Universes were first discussed in the framework of
explicit mathematics in Feferman [5] in connection with his proof of Hancock’s
conjecture. In Marzetta [17, 16] they are introduced via a so-called (non-uniform)
limit axiom, thus providing a natural framework of explicit mathematics which
has exactly the strength of predicative analysis, cf. also Marzetta and Strahm
[18] and Kahle [14].

In Strahm [27] a system of explicit mathematics termed EMU is introduced
which incorporates a uniform universe construction principle and includes the
schema of formula induction on the natural numbers. Universes are closed under
elementary comprehension and join (disjoint union). It is shown in [27] that EMU

is proof-theoretically equivalent to ÎD<ε0 . Further, a natural subsystem of EMU

is singled out which has the same strength as ÎD<ωω . Independently and very
recently, similar results have been obtained in the context of Frege structures by
Kahle [13] and in the framework of Martin-Löf type theory by Rathjen [21].

This concludes our short discussion on systems whose proof-theoretic ordinal
can be denoted by means of a Veblen hierachy above the Γ function. Next steps
into metapredicativity are provided by the theories which we have discussed
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in this article, namely systems which allow for various forms of autonomous
generation of fixed point hierarchies. We have seen that autonomous fixed point
theories are related to hyperinaccessibility in Kripke Platek set theory without
foundation. More generally, it is shown in Jäger and Strahm [12] and Strahm [28]
that the standard theory which formalizes an n-hyperinaccessible universe of sets
without foundation has proof-theoretic ordinal ϕ(n+1)00. Since the theory KPm0

for a recursively Mahlo universe of sets without foundation is proof-theoretically
equivalent to the union of these theories for n-hyperinaccessibility for each finite
n (see [12]), we have that ϕω00 is the proof-theoretic ordinal of KPm0. Finally,
let us mention that there are natural systems of explicit mathematics which
correspond to KPm0, see [12] for details.
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11. G. Jäger and T. Strahm. Fixed point theories and dependent choice. Archive for

Mathematical Logic. To appear.
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21. M. Rathjen. The strength of Martin-Löf type theory with a superuniverse. Part I.
Archive for Mathematical Logic. To appear.

22. M. Rathjen. Proof-theoretic analysis of KPm. Archive for Mathematical Logic,
30:377–403, 1991.
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24. K. Schütte. Proof Theory. Springer, Berlin, 1977.
25. S. G. Simpson. Σ1

1 and Π1
1 transfinite induction. In D. van Dalen, D. Lascar, and

J. Smiley, editors, Logic Colloquium ’80, pages 239–253. North Holland, Amster-
dam, 1982.

26. S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathe-
matical Logic. Springer-Verlag, 1998.

27. T. Strahm. First steps into metapredicativity in explicit mathematics. In S. B.
Cooper and J. Truss, editors, Sets and Proofs. Cambridge University Press. To
appear.

28. T. Strahm. Wellordering proofs for metapredicative Mahlo. In preparation.


