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Introduction

Abstract

This thesis consists of two separate parts. The first part contains information about the MacLWB
and its implementation. The creation of the MacLWB required much new implementations, but
also forced changes in existing code of the LWB. Furthermore, the first part also gives some
general information concerning porting and maintenance, using the LWB as an example.

The second part is completely different, only connected to the first through the common tool used,
the Logics Workbench. This second part provides information about a special propositional logic
and its implementation in the LWB. The logic of likelihood LL is a modal logic that allows to
express statements denoting probability. The second part contains some theoretical aspects of
the logic, like the sequent calculus used for the implementation, as well as the practical aspects
of the implementation of the prover using object oriented techniques.

The Logics Workbench

The Logics Workbench, short LWB, is an interactive system allowing symbolic computations in
various propositional logics. The LWB was first introduced in [26], but has been extended many
times.1 A more detailed overview of the LWB and its internal structure can be found in [43].

The LWB offers the possibility to work in a user-friendly way in classical and non-classical
propositional logics, including nonmonotonic approaches. Provided are functions concerning
provability, simplification, computation of normal forms, embeddings, and many more. There
are functions available for various logics, including classical propositional logic, intuitionistic
propositional logic, various modal logics, likeK, KT, S4, and temporal logics. The LWB also
provides a programming language, to allow easy extension of the builtin functions.

The LWB was created by a lot of people (cf.http://www.lwb.unibe.ch/about/au-
thors.html ). The first version was done by Alain Heuerding (cf. [26] and Stefan Schwendi-
mann (cf. [43]). Many years of effort of these and other people were put in the creation of

1 this thesis uses a beta version of the LWB 1.2
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the LWB. Currently, the LWB comprises about 2’500 files with roughly 400’000 lines of code,
documentation and tests.
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Chapter 1

Introduction

This part contains information about the the porting of the graphical user interface of the LWB
from a Unix system to the Apple Macintosh. While doing this, some problems surfaced that
needed special treatment. These problems and their solutions are presented here. Furthermore,
a general overview and description of the implementation of the GUI for the Logics Workbench
LWB is given. The material presented here also contains some guidelines and strategies for
porting code from one machine to another. Furthermore, information is given describing how to
write code that is portable between several systems. Thus, information about the Unix version of
the LWB does also appear in this chapter, mainly because of porting to Linux, but the information
is limited to those parts affected by porting and maintenance.

1.1 Prerequisites

For the development of the graphical user interface of the MacLWB, certain prerequisites were
given. They had to be taken into account when designing the graphical user interface and thus
somewhat limited the possibilities for its development.

1.1.1 Existing X WINDOWS GUI

When the development of the graphical user interface for the Macintosh was started, a fully
functional, graphical user interface for Unix with X WINDOWS already existed. Therefore, it
was obvious to require that the new user interface should at least be similar to the X WINDOWS

version. This allows users to switch from one system to the other, without having to learn a new
way of using the program. Furthermore, that way some of the documentation and maybe even of
the implementation can be shared.

The drawback is that the look and feel of the user interface is already fixed and can only be
changed in minor details. Large scale changes would require much change in the existing user

5



6 Chapter 1: Introduction

interface and thus they are hardly possible. This includes changes that would simplify the imple-
mentation on another system, but also prohibits the use of some system specific features.

1.1.2 Existing Code and Algorithms

For the graphical interface, only the appearance was fixed beforehand, the code could be created
from scratch. Most of the rest of the code of the LWB had to be reused on the Macintosh. This
includes all the logic specific algorithms like provability algorithms, but also most of the kernel
and the parser of the LWB, documentation and tests.

Most of these things are not system dependent at all, and thus do not produce porting problems.
Unfortunately, there are some small but significant parts of the existing code that turned out to be
highly system dependent. These parts had to be identified and adapted to a version compatible
with both systems.

1.1.3 Native Look and Feel

The implementation of the MacLWB should create a real, native Macintosh application. Thus,
the user interface has to have the same look and feel as any other macintosh application. Because
the Macintosh look and feel differs from the one of X WINDOWS, it is not possible to strictly
comply with both systems and at the same time produce a user interface that looks and works
similar. Therefore, a compromise had to be found between the existing user interface for X
WINDOWS and the one for the Macintosh, requiring changes on both sides.

Furthermore, to make sure the application seamlessly integrates in the operating system, some
Macintosh specific oddities have to be taken care of as well. This includes program installation
and initialization, for example.



Chapter 2

Operating System Comparison

This chapter compares some operating systems, mainly Unix and Macintosh, to show their dif-
ferences, especially concerning the implementation or porting of applications. The information
detailed below is mostly from a developers point of view and not from the one of a user. Further-
more, only the parts somehow concerning the Logics Workbench1 will be treated.

When porting an application, or even when just developing an application which is intended or
expected to be ported, most of the time the following differences are crucial to be known and
to be taken care of. Otherwise, at the latest when actually porting an application to another
operating system, problems almost certainly arise. Chapter 5 will will actually explain problems
when porting programs and how to solve them. This chapter just shows some of the differences
between operating systems and how they affect program development.

2.1 Introduction

2.1.1 Unix

There are a lot of different Unix systems available for many different hardware platforms. But
many of the concepts and strategies used in all these different systems are the same. The later
chapters will only contain general information about Unix, to be able to not have to specify a
particular Unix system. Nevertheless, the information presented below is mostly taken from
Solaris and Linux systems and may be different for other Unix systems.

1 the LWB does not support networking, thus this part, for example, is left out.
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8 Chapter 2: Operating System Comparison

2.1.2 Macintosh

Contrary to Unix, there is just a single Macintosh operating system, although various versions of
that operating system exist. Although there are basically two different hardware platforms that
are important for the Macintosh, we will only treat one here, the PowerPC architecture. The older
architecture, using Motorola 68’000 processors was, due to compiler problems, never supported
by the LWB. Furthermore, most Macintosh computers in use today use the PowerPC architecture
anyway.

2.2 Versions

Because operating systems change over time, there are normally various versions of an operating
system in use. This may cause serious problems when developing a program for a specific version
and then running it on another version, be it newer or older. This has serious impact on how long
an application can be used without special maintenance to ensure compatibility.

2.2.1 Unix

The version of the Unix system is not really important when developing for Unix.2 More im-
portant is the version of the different libraries used by a program. Because these libraries are
normally not binary compatible between different versions, it is not possible to create a binary
release of a program for different versions of a library. For that reason, a lot of Unix programs
are distributed in source format and are compiled on the destination machine with the current set
of libraries.

2.2.2 Macintosh

On the macintosh the situation is much better, because programs here rarely use external libraries
and the operating system is normally upward compatible. Thus, as long as the operating system
is not older than the one a program was written for, there should not be any problems. Of course,
problems will arise as well if the operating system is much newer.

The first Macintosh operating system, version 0.0 was introduced, along with the first Macintosh
in 1984. Since then, several new version were released. Currently, version 9.04 is available. The
port of the LWB was done on a MacOS 7.6 system. Some care has been taken to ensure that

2 actually the version number of a Unix system cannot easily determined, because the version numbers of individual
tools greatly differ; the version number can only be used to compare it to versions of the same software producer;
comparisons with other Unix implementations of other producers are mostly useless
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the Logics Workbench will also run with future versions of the MacOS.3 It has be successfully
tested on a MacOS 8.1 system.

2.3 System Software Routines

The Operating System provides routines to perform basic low-level tasks. This includes, among
others, low-level file input and output, memory management, or process and device control. In a
way, the operating system provides the communication between an application and the hardware
used.

2.3.1 Unix Libraries

The system routines provided by Unix systems are packed together in libraries. These libraries
actually are just a bunch of system routines put together in a file. A program using such a library
can either statically link the libraries to the executable program, thus actually copying the used
system functions into the own program code. Or, as a more modern method, dynamically link
the program to the libraries. When the program is run later, the operating system locates the
libraries used by a program and dynamically loads the needed functions for use by the program.

Static linking has the big advantage that a program does not need external files to be installed on
a computer and thus can be installed more easily. The disadvantage is that libraries used in more
than one program have to be stored each time they are used. Thus, a program uses more space
on disk and in memory that way.4

Dynamic linking removes this disadvantage by using a single library by multiple programs, as
well on disk as in memory. The drawback is that the system library must be present when the
program is run, or a run time error will occur. Thus, the installation of the program has to make
sure that the correct libraries in the correct versions are installed on the system. Furthermore,
after a system upgrade it is possible that certain programs stop functioning because libraries are
no more present or are not compatible to the old ones.

Unix systems are generally quite strict when dealing with dynamic libraries. When a library is
used, the version number of the library has to completely match the one used when developing
a program. Otherwise, the library will not be found and the program terminates. This does not
make it easy to provide binary releases of a program. Therefore, as mentioned, a lot of programs
are distributed as source installations.

3 the CARBON DATER provided by Apple indicated no serious problems.

4 this can be quite important, considering that some libraries occupy several MBytes of memory.
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Process Manager launching, scheduling, and termination of applications; infor-
mation about open processes

Memory Manager dynamic allocation and release of memory
Virtual Memory Manager virtual memory services
File Manager creation, opening, reading, writing, and closing files
Alias Manager location of specified files, directories, or volumes
Disk Initialization Manager initialize disks
Device Manager input from and output to hardware devices
SCSI Manager information exchange to SCSI devices
Time Manager periodical execution of routines, execution of routines after a

specified delay
Vertical Retrace Manager synchronize routines with the redrawing of the screen
Shutdown Manager execution of routines at startup or shutdown

Table 2.1: Some Managers of the Macintosh Operating System

2.3.2 Macintosh Managers

Distinct collections of system software routines on the Macintosh are called managers and get
their own names. There is a collection of routines dealing with the initialization of disks, called
theDisk Initialization Manager.5 Table 2.1 lists the main managers that are part of the Macintosh
operating system. Several Managers are sometimes further grouped into bigger parts, like the
TOOLBOX or the FINDER.

For most tasks, higher level routines provided by the Macintosh TOOLBOX (see 2.4) or other ser-
vices are easier to use and more directly provide the required functionality than the low level op-
erating system functions. While Unix systems distinguish between static and dynamic libraries,
managers are always present in the system and may directly be used by any program.6

Most of the time, Macintosh managers are compatible between different versions of the operating
system. Newer operating system versions may contain new managers or existing managers may
get additional functions, but normally old functions are still present for compatibility. Thus, a
program developed for a specific version of the MacOS normally runs on newer systems as well.
It may have problems running on older systems, though. This makes development of programs
running on different version easier, but on the other hand makes the managers quite rigid and
with a lot of old routines that are only present for compatibility. Thus, overall, these managers
are slower to change than Unix libraries.

5 in the past, such collections were called packages, a term that is still used for some collections, like—for
example—the Standard File Package.

6 modern MacOS versions do support dynamic and static libraries as well, but these are only used for user defined
or third party libraries and not for system functions.
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2.3.3 C/C++ Library

The compilers provide several standard libraries supporting the C and C++ standards. While
the functionality of these libraries is the same for all Unix systems and for the Macintosh, the
implementations are normally not compatible. Thus the program needs to use the compiler
dependent libraries to run correctly. This is normally automatically handled by the compiler.

In the case of Unix systems, these libraries can be dynamically linked to the program, resulting
in reduced size of the executable file. The drawback is that the user of the program needs to
have the same set of C/C++ libraries installed, i.e. an installation of roughly the same version
of the compiler. Most compilers do not allow to ship the dynamic libraries with the compiled
program, thus the libraries have to linked statically in any case. Fortunately, most compilers
allow the dynamic and static linkage of libraries in the same program. If a program is distributed
as source, then this is not a problem, because with the recompilation of the program the correct
libraries are used automatically. A binary distribution runs into serious trouble, though.

The same is true for modern Macintosh operating systems, where dynamic libraries are available
as well. As long as static linking is used, there is no problem, but dynamic linking is even
worse than on Unix systems, because contrary to most Unix systems, Macintosh systems don’t
normally have a compiler installed.

2.4 Windowing System

The windowing system is the part of an operating system most often seen when working with
a computer. While the windowing system of different operating systems fulfill about the same
tasks, their implementation and most importantly their use from a developers point of view is
strongly different.

2.4.1 X WINDOWS

On Unix, the windowing systems is actually divided into two major parts. One part normally is
X W INDOWS, while the other part is the overlaying window manager. While there are various
different window managers available, the underlying X WINDOWS normally is the same for all
Unix systems.7

X W INDOWS is standardized and thus can be used from every program without having to worry
about a specific type of Unix. On the negative side, X WINDOWS is a fairly old standard and
as that does not use modern programming practices. That means that the library is not object
oriented and thus is quite hard to use. Furthermore, the available standard libraries do not support
sophisticated user interfaces, e.g. dynamic positioning of interface elements. On the other hand,

7 X W INDOWS is also available for non Unix machines, for example for Windows or MacOS.
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X W INDOWS provides a fairly broad standard, which includes network support and is compatible
between a variety of Unix systems.

To provide a more comfortable development environment and at the same time give the user
a more intuitive and easier to use user interface, there are several window managers available.
These are additions to the core X WINDOWS libraries, providing additional functionality. While
the basics of all the window managers is always X WINDOWS, the mangers themselves are not
compatible to each other. Thus, in order to be able to use a special application, the end user needs
to use the same window manager.8

A variety of window managers with associated interface libraries are available. Below is a short
description of two major products using two different approaches.

M OTIF

MOTIF is a quite old extension to X WINDOWS and allows much easier handling of a graphical
user interface and is also available for most Unix systems. Furthermore, it is possible to link it
statically to the final program, removing the requirement to have MOTIF installed.

On the other hand, MOTIF has some of the same drawbacks of X WINDOWS, because it does not
use object oriented techniques. Furthermore, MOTIF is not freely distributable and thus can only
be redistributed using static linking. The graphical version of the LWB was implemented using
the MOTIF interface library.

QT

QT itself is only an interface library, but several window managers were built using this library,
most notably KDE for Linux. QT is completely object oriented and supports dynamic placement
and runtime creation of interface elements. It provides an abstract graphical user interface layer,
to implement the final user interface. This makes the porting of a program to another operating
system supporting QT easy and simplifies the integration of the user interface into an object
oriented C++ program. QT itself is available for all Unix systems as well as for various Windows
systems. Furthermore, at least the Unix version of the Qt development libraries are available for
free.

2.4.2 FINDER

The FINDER is the most visible part of the MacOS. It is responsible for managing the user’s
desktop display. The FINDER uses many of the other parts of the operating system, like the

8 it is possible to create an application with static linking which runs on any X WINDOW system, but this application
might have a look and feel totally different to other applications installed on the system because of incompatible
window managers.
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QuickDraw screen display operations (drawing of graphics or text)
Window Manager creation and management of all kinds of windows
Dialog Manager creation and management of dialog boxes
Control Manager creation and management of controls (buttons, checkboxes, radio

buttons, pup-up menus, scroll bars)
Menu Manager creation of the menu bar, handling of drawing and actions within

menus
Event Manager reporting of events, communication with other applications
TextEdit simple text-formatting and text-editing (input, selection, cutting,

pasting)
Resource Manager reading and writing of resources
Finder Interface interaction with the FINDER

Scrap Manager cutting and pasting among applications
Standard File Package standard dialog boxes for file selection
Help Manager Balloon Help
List Manager creating of lists of items
Sound Manager sound output
Sound Input Manager sound input

Table 2.2: Macintosh TOOLBOX Managers

Macintosh TOOLBOX or QUICKDRAW, to keep track of all files stored on a Macintosh. The
FINDER also takes care of copying and moving files, or creating folders.

As mentioned, the FINDER uses other components to provide its functions. The two most impor-
tant of these parts are described below.

TOOLBOX

The TOOLBOX is a set of routines provided for developers to create user interfaces. The TOOL-
BOX is not visible as an individual part of the MacOS or its interface, because unlike the FINDER

it is not present on the disk and there is no single program using it. Instead, it is used to create the
user interface of most applications, thus it visible in most applications. Actually, it is the TOOL-
BOX that ensures the Macintosh look and feel, i.e. the TOOLBOX makes sure that all Macintosh
applications look and work similar. It mainly deals with the management of the user interface,
i.e. helps to establish the connection between the application and the user.

The Macintosh TOOLBOX contains a variety of Managers. Table 2.2 lists the most commonly
used TOOLBOX Managers. It is a level above the Operating System, thus it uses some of the
low-level functions provided by the Operating System to provide its functionality.
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QUICKDRAW

Where the TOOLBOX provides high level support for graphical user interface elements, QUICK-
DRAW provides the routines to do basic drawing on the screen. Thus, it is comparable to X
WINDOWS on Unix Systems, although much of the functionality present in X WINDOWS is
distributed into several distinct parts on the Macintosh.

2.5 Files

The handling and internal structure of files and their names varies greatly from operating sys-
tem to operating system. Unfortunately, even modern programming languages don’t support a
uniform handling of files and their names.

Actually, there are two different situations when developing a program where file names are
important. First, when a program is able to use files, it needs a way to determine the name of the
file to read or write. Second, the source code of the program most certainly needs to include text
from external files, which must again be referenced from the code itself. We will deal with this
second problem later, while looking at the different developing environments for the operating
systems (see chapter 3).

2.5.1 Unix Files

A Unix file is a simple block of data, without additional, file specific information. Unix can
only distinguish different file types by directly looking at the contents of the file (i.e. magic
numbers). While this is bad for applications dealing with files, it is a great benefit when copying
files between different operating systems. Because no additional information is present, the files
can be copied as is.

There are still some considerations to be taken care of when dealing with Unix files on different
operating systems. When dealing with ASCII files, the ending of a line is unfortunately not
standardized. While Unix uses a line feed to represent a new line, the Macintosh uses a carriage
return and Windows even uses a carriage return and a line feed. Thus copying an ASCII file from
one operating system to another might make problems.9

Even more problematic are binary files, i.e. files where data is not stored in text format but
instead as it is present in the memory used by the program. In such cases, the processor used
determines how integer values are stored. Different processor, even using the same operating
system, may interpret the values differently. That’s why most Unix programs use the text format
to store data instead of directly using a binary format.

9 programs to transfer files, likeftp automatically convert line endings in ASCII files depending on the systems
involved
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2.5.2 Mac Files

The file concept of the Macintosh operating system differs in some key concepts from other op-
erating systems. The most important difference is the concept of resources. While a file on most
other operating systems, including Unix and Windows, consists of a single part, a Macintosh file
basically consists of two separate parts. One part contains the normal contents of the file, like on
other operating systems. The second part of a file, contains additional information concerning
the file. This information is stored in the so called resource fork and contains a variable number
of resources. This resource fork makes it impossible to copy a Macintosh file to another operat-
ing system without conversion. At least the resource fork has to be stripped from the file to get
the real data to another operating system. In that process, some vital information of the file may
be lost. Thus, even simple text files cannot be easily converted from Macintosh to Unix.

Macintosh files have another specialty. While Unix and Windows use a file’s extension or some
magic number at the beginning of a file to determine its type and which application to use to open
the file, the Macintosh has a creator and a file type stored in a resource. Both are 4 Byte character
sequences, uniquely identifying the program that created the file and the file’s type. With this
information it’s easy to determine how to treat a file. Using this information, it is possible for the
MacLWB to start the LWB when a file is double clicked. In such a case, the LWB is started and
the selected files are automatically executed. With this mechanism, it is possible to implement a
sort of scripting for the LWB, i.e. automatically calling a predefined set of commands at startup.

2.5.3 File and Path Names

Of course, the names of the files also differ from one operating system to another. On Unix,
directories are delimited with the slash ’/’, while DOS/Windows uses the backslash ’\’ and the
Macintosh uses a colon ’:’. Furthermore, the maximal length allowed for a file name differs from
operating system to operating system as well.10

2.6 Software Installation

The installation of a program is an important aspect of a program’s distribution. Several key
questions have to be answered before a program can be released. Most importantly, if the pro-
gram is to be released as a source or a binary distribution. The latter has the advantage of much
easier installation, while the earlier is more compatible with different versions of an operating
system (cf. 2.2 and 2.3).

The installation of a program is highly system dependent. As already mentioned, a program is
normally written for a specific version of an operating system and using it on a newer, or worse

10 fortunately, the very restricting 8/3 limits of DOS are finally gone on Windows systems; thus file names up to a
length of 32 characters don’t make any problems.
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on an older version of the same operating system might or might not work. Below we have a look
at the two different basic distribution methods and how feasible they are for Unix or Macintosh
systems.

2.6.1 Source Distributions

A source distribution of a program contains the complete source code and all the information
necessary to build the final executable program. The end user needs the appropriate compiler
and all other additional tools necessary to built the executable program from the sources.11

There are several tools that help to make building the final executable program easier. Never-
theless, the building process can be complicated, time consuming and error-prone. On the other
hand, source distributions have many advantages that often make them the only choice for a
program’s distribution. The main advantage surely is the compatibility to the current operating
system. When a program is compiled on the machine it is intended to run on, a lot of com-
patibility problems are solved. The version problems with libraries on Unix systems (cf. 2.2)
are solved, thus prohibiting compatibility problems with system software routines and problems
with positions of dynamic libraries on disk.

Of course, the source distribution has to be prepared for the desired target operating systems or
compilation almost certainly won’t work. The building process on a specific Unix system may
work if it was prepared for another Unix system. But, actually compiling a program for a system
it was not originally intended for generally requires a port of the program which involves a great
deal of work.

A natural requirement when installing a program from a source distribution is the presence of
an appropriate development environment. While such an environment can be assumed to be
present on most Unix systems, most Macintosh or Windows systems don’t have a development
environment installed and thus are not a good choice for source distributions.

2.6.2 Binary Distribution

The binary distribution only contains the final executable program and all the files necessary to
run the program. The source code of the program is not part of a binary distribution.

Normally, a binary distribution only contains an executable program for a specific operating
system and a specific hardware platform. It is generally not possible to run the same program
on a different hardware platform or on a different operating system. This, of course, is the
main drawback of binary distributions. Their advantage, on the other side, is generally a quite
easy installation. With binary distributions it is, with some effort, possible to create installation
packages that are easy to install and don’t require special skills or efforts when installing.

11 like the MAKE tool
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Because there are a lot of different computer systems and most of them are incompatible, a
program may have to offer many different binary distributions in order to be able to allow it
to be run on a variety of computer systems. This requires huge maintenance effort and thus is
rarely done for Unix systems. For Macintosh systems, on the other hand, this kind of software
distribution normally is the only possible way.

2.6.3 Comparison

For the Macintosh, only binary distributions make sense. It cannot be assumed that the user of a
program has access to a C++ development environment. Furthermore, Macintosh systems tend
to be quite compatible between different operating system versions (compare 2.2.2). Thus, a
binary distribution is much easier for the user and does not have many drawbacks.

This is different for Unix systems. The various Unix systems are not binary compatible between
each other, mainly because the processors used are not compatible. Furthermore, Unix systems
tend to be quite strict concerning library versions (cf. 2.2.1). Thus a lot of programs are dis-
tributed as source code, which the user has to compile to be able to use the program. This has the
advantage of providing a single installation file which will then, after compilation, run on any
Unix machine. The developer has to make sure, that the compilation runs without problems on
any system, which can be challenging task.

Nevertheless, the LWB is distributed using binary packages. Mainly because distribution as
source would make the build process much more difficult and would require drastic changes.
See chapter 3 for more information about the tools used for creating distribution packages.

2.7 Scripting and Redirection

Scripting describes the process of automatically control one or more programs with a predefined
sequence of commands. With scripting it is possible to call programs and process their results
with other programs. Furthermore, it is possible to generate a sequence of commands which can
then be run without user intervention to carry through a time consuming or repeating event.

Redirection is used to change where input to a program comes from or where output goes to.
With redirection, a program can take its input from a file or another program instead from user
interaction. Similarly, output can be stored in a file or redirected to another program instead of
displaying it on screen.

For the LWB, scripting is mainly used to automatically test the internal algorithms for correct-
ness. This is done by issuing commands to the LWB and compare the results to a previously
computed and hand-checked result. For LWB users, scripting and redirection allows the auto-
matic execution of LWB commands stored in a file, for example to carry through time consuming
computations without requiring direct user interaction.



18 Chapter 2: Operating System Comparison

2.7.1 Unix Shell

The shell is an important part of a Unix system. It provides a text oriented way of invoking and
controlling programs.

Input and output using a shell are standardized and an integral part of the C++ language. Thus, an
application using only shell in- and output can easily be ported to another computer system sup-
porting C++ and shells. Furthermore, using a shell makes scripting of programs and redirection
of input and output easy possible, without additional implementations.

While these programs are often not as user friendly as programs with a graphical user interface,
they can still be quite easy to use. Furthermore, using the shell has several advantages from the
developers viewpoint.

By using scripting and input/output redirecting it is quite easy to implement procedures that
automatically test a program for errors. That way, after changes are made, it can easily and
automatically be checked if all that worked before still does.

The drawback of shell oriented programs is of course the lack of a comfortable user interface.
Thus it is normally best, as was done with the LWB, to implement two version of a program,
one using Shell input and output (the ASCII LWB) and another one using a more sophisticated
graphical user interface (the XLWB and the MacLWB).

2.7.2 Apple Script

The Macintosh operating systems does not contain a shell. Because the user interface of the
Macintosh is completely graphic oriented, a shell would be out of place. Nevertheless, there is
still a way to use scripting on the Macintosh, although a more complicated one. The Macintosh
supports Apple Script, a Macintosh specific scripting system. While it does not allow to redirect
input or output, it can be used to control the execution of a program.

The drawback of this approach is that only programs actually supporting Apple Script can be
controlled and only those features of a program can be used which are supported via a command
in the Apple Scripting Language. Furthermore, the this language is quite complicated and uses a
complicated method of writing script files.

All in all, scripting on the Macintosh is much harder to use than it is on a Unix system. Because
the LWB mostly uses scripting for automatic testing, it is not supported on the Macintosh. The
automatic tests can be carried through on Unix much easier and because the program code cor-
responding to the LWB algorithms is the same for Unix and the Macintosh, the tests actually test
the Macintosh version of the LWB as well. The automatic executing of certain commands, is
solved on the Macintosh by the so called initialization files, i.e. files that are automatically read
with the MacLWB when double clicked.
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2.8 Compilation and Building

We look at two principally different approaches for the building process of a program. The first
is shell oriented and the second graphic oriented.

2.8.1 Shell Oriented

The shell oriented approach uses makefiles, the MAKE tool and the shell to create an application
(see chapter 3). The makefile contains the commands and rules necessary to create an application
from its source files. MAKE is then able to create the application, using the compiler and all other
necessary tools. It has the capability of automatically deciding which files need to be remade
because their sources were changed. This makes the tool very powerful and can drastically
reduce the time required for compilation.

The MAKE tool cannot only be used for the creation of the program itself. It can also generate
distribution archives, run test procedures, create documentation files and a lot of other tasks that
can be started in a shell. The creation of correctly working makefiles for the building process can
be quite complicated and time consuming. On the other hand, all tasks required for compilation
and building of a program and its maintenance can be done using MAKE. This can greatly
decrease maintenance overhead and reduce the number for errors.

All in all, MAKE is a powerful tool, capable of integrating many other programs. It is available
for all Unix systems and used for almost all programs.

2.8.2 Graphic Oriented

Because some operating systems—like the Macintosh—do not provide a shell, another than shell
oriented approach has to be used. A graphic oriented development environment includes han-
dling of projects and their building and compiling process using a completely graphic oriented
user interface. The developer only has to select the source files to be compiled into the final
program. Building and linking is done automatically by the development environment.

Clearly, this type of building is much easier, because most of things necessary are done by the de-
velopment environment and do not concern the developer. There are several drawbacks, though.
Only tasks that are actually supported by the development environment can be done. This is nor-
mally only compiling and linking of a single program. If there are tasks that need to be done in
order to create a final program that are not supported by the development environment, they have
to be done using external programs and, worse, have to be repeated by hand whenever necessary.
Such things are, for example, the automatic generation of source code, like a parser generated
with LEX (cf. 3.2.5) and YACC (cf. 3.2.6), or the automatic generation of program documenta-
tion. While such things can be integrated into shell oriented development environments, there is
normally no way to include them in a graphic oriented development environment.
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Furthermore, graphic oriented development environment use proprietary data structures and files
to store project specific information. Thus, the building information is not compatible with other
development environments. If a program is to be developed for different computer systems, then
either the same development environment is available for all systems, or multiple systems have
to be maintained.

2.9 Preferences and Configuration

The configuration values, i.e. preferences, of a program are stored at different position and in
different ways on Unix and on Macintosh systems. The Macintosh uses the preferences folder,
while Unix generally uses dot files.

2.9.1 Preferences Folder

The preferences folder is a special directory on the hard disk of a Macintosh system. This folder
is used to store the preferences information of all programs installed on the system. This way,
the program as well as the user know where to look for program specific configuration files.

The data is stored in standard Macintosh files using resources. The Macintosh operating system
provides only some very basic functions to deal with preferences. This is mainly a way of
locating the preferences folder, because its name and location are user defined. Handling of the
preferences values is left to the program, with no additional support by the operating system.

2.9.2 Dot Files

The standard for configuration files on Unix systems are so called dot files. These are files
beginning with a dot ’.’. They are normally not shown when displaying the contents of a directory
and are thus hidden from the user.

The files normally contain ASCII text defining the configuration values of a program. Normally,
a program reads a specific dot file at startup. That way, it is possible to set the configuration
of a program permanently. The location of the dot files is not as standardized as Macintosh
preferences files, but the files are generally stored either in the users home directory, a program
specific configuration directory or in the program directory itself.

2.10 Documentation

Because operating systems are quite different from each other, there also exists different docu-
mentations for the systems. Below are some of the standard documentations essential for Unix
and Macintosh software development.
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2.10.1 C++

Most general C/C++ books assume Unix systems for development and thus provide enough
information to start programming on such systems. Furthermore, the input/output system of
C++12 was actually made for Unix and thus is easy to use on Unix systems. On the Macintosh,
the books can be used for general C/C++ programming, but additional information is necessary
for input and output, because standard input and output may not be available.

To be able to use operating specific routines and libraries, additional books are required, even
if coding in C++. Thus books for X WINDOWS or MOTIF are necessary for Unix systems
and documentation for general Macintosh programming is almost certainly required to develop
Macintosh Software.

2.10.2 System Software Routines

The documentation for calling system software routines is usually either available online on the
Internet or on the system itself. This information normally is enough to be able to call a specific
system function, but additional documentation may be necessary to be able to really use these
functions effectively.

Man Pages

Unix uses the man pages for system documentation. The man pages allow easy and fast access
to the most important information concerning a system routine. Additional information must be
found either on the Internet or in books about Unix development.

Inside Macintosh

Inside Macintosh is a library of books forming a complete reference manual of the system soft-
ware of the Macintosh. The books are primarily designed as reference books, not as step-by-step
tutorials. One notable exception to this rule is the introductory bookInside Macintosh: Overview
[6]. It does not contain references to a specific part of the macintosh operating system, but a gen-
eral introduction to programming on Macintosh computers and to the other Inside Macintosh
books.

The Inside Macintosh library consists of approximately 35 volumes13, each with several hundred
pages describing a specific part of the Macintosh operating system. They contain a reference
of all available functions and data structures. There are books for text processing [10], imaging
[12], memory [14], files [11] and all the other parts of the operating system. The whole contents

12 the iostream s.

13 see the bibliography for a complete list of available volumes
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of these books is electronically available [5]. Furthermore, the most recent additions to the Inside
Macintosh library are available on the word wide web only.

The books are, like the whole operating system, mainly written for Pascal or Assembler pro-
grammers. There are always some side references about using the functions and data structures
in C, but object oriented techniques or paradigms are neither used nor supported. This makes
usage of some of the functions a bit unpredictable at first, for example when dealing with Pascal
or C Strings (cf. 2.12). The functions normally just assume one or the other, without clearly
stating which.

One of the most important volumes in the Inside Macintosh series, apart from the introductory
volume [6], is the volume describing the Macintosh TOOLBOX [13]. It contains the references to
the most important routines of the operating system. The contents of the volume is continued in
[9]. For application containing text or graphics, the volumes [12] and [10] are important. Most
application will also need information from [14], [11], and [16].

2.11 Memory

Every application has to deal with memory in a way. Most of the time memory will handled
care of by the compiler. Even if the compiler does not have complete memory management with
garbage collection, like C/C++, most memory allocations and its uses are still handled. Only
freeing of memory must concern a C++ developer.

Below are some consideration concerning allocation and use of memory for Unix and the Mac-
intosh. The release of memory is not specially treated, because this is a general C++ problem,
discussed in any basic book about C++.

2.11.1 Unix

A program running on a Unix system can assume that it has complete control of all memory
available in the system. The individual memory spaces used by different programs are all man-
aged by the operating system and need not concern the program or its developer. An application
cannot, even if faulty, write into the memory space of another program. Virtual memory is au-
tomatically handled by the operating system, actually providing the Unix program with more
memory than is available as physical memory of the machine. Additionally, a memory block is
never moved by the operating system.

All this makes memory management for Unix programs easy and most of details are handled by
the C++ compiler. A C++ program written for Unix thus has to do nothing special to allocate or
free memory, even when calling system software routines.
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2.11.2 Macintosh

The Macintosh uses a cooperative multitasking (see below) to share the hardware between several
processes. Therefore, an application can only use part of the total available memory. Some of
the total RAM available on a machine is used by the operating system, while the rest is shared
among all open applications.

The whole memory is split into two sections, called partitions, the system partition and the ap-
plication partitions. The system partition mainly consists of a system heap and a set of global
variables. The system heap is reserved for exclusive use by the operating system and other
system software components. The set of global variables, called system global variables (or low-
memory system global variables), are used to maintain different kinds of information about the
operating environment. For example, theTicks global variable contains the number of ticks
( 1

60
of a second) that have elapsed since system startup. Additionally, pointers to the heads of

various operating system queues are also stored in system global variables. The system partition
is not normally used by applications, except in some rare cases when reading some variables.

All memory outside the system partition is available to applications and other software compo-
nents. When an application is launched, the operating system assigns it a section of memory
known as its application partition, which normally is the only memory usable by an application.
Therefore, an application has a fix amount of memory, determined beforehand14. The application
heap will be allocated at the bottom of the partition, growing upward, while the stack starts at
the end of the partition and grows down. The operating system makes sure that the heap does not
grow above a predefined limit (theApplLimit ), but it does not prevent the stack of growing
into the heap, but instead checks approximately 60 times a second if the stack has moved into the
heap. A system error is generated if it has. The application stack mainly contains the memory
used for the execution of functions, i.e. arguments and return values of functions, as well as local
variables. The application heap, on the other side contains the data that is dynamically allocated
during process execution, like window records, dialog records or document data.

The system used by the Macintosh makes handling of low memory usage absolutely necessary.
Because the memory a program can use usually is limited beforehand, it is always possible that
memory runs out. On most Unix and similar systems, the available memory generally is so
big that most developers don’t check if an allocation of memory actually succeeded. On the
Macintosh this kind of carelessness can be fatal.

The Memory Manager does all the necessary bookkeeping about free and used memory blocks.
Contrary to the stack, the allocation and freeing of memory can occur in any order. Thus, the
heap can, after the application has been running for a while, become fragmented into a patch-
work of allocated and free blocks. This fragmentation is known as heap fragmentation. If the
memory is fragmented too much, the system may no more be able to satisfy a request for a single,
large block of memory, even if the total amount of free memory is much larger than the desired
block. If this happens, the Memory Manager tries to collect the free space into a single block,

14 this amount is fixed in the information panel of a program icon in the FINDER.
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an operation which is known as heap compaction. To be able to do this, the blocks of memory
used by the application need to be relocatable, i.e. the operating system must be allowed to move
memory blocks. This heavily concerns application programs. Data allocated by an application
may suddenly be moved by the operating system, making all pointers to this data invalid.15 To
prevent this, the Macintosh operating system supports a special data type, the handles. These
are actually double indirected pointers, which are adjusted when the operating system moves a
memory block. This prevents these pointer from becoming invalid, but on the other hand requires
additional tasks to be done when allocating, freeing or using such memory in a program.

The system used by the Macintosh operating system is quite old and originates from a time
where memory was scarce and it was useful to save memory. Most modern computer systems
have enough memory nowadays and thus most of these techniques have become obsolete. Fur-
thermore, the virtual memory mechanism used in current computers does similar things on the
hardware level. This solution is much faster and furthermore does not burden the developer with
additional considerations to take care of.

2.12 Data Types

C++ uses various data types that may be problematic when porting programs from one system
to another. Below, we briefly look at some standard data types generally used in programs that
might produce problems.

2.12.1 Pointers

Pointers are normally no problem, because all systems know this data type and support it in the
same way. Depending on the architecture, pointers may have different sizes though, but this does
not normally create any problems if the code is written properly.

Handles

Handles are pointers to pointers, indirectly giving access to memory blocks. Unix programs
rarely use handles to access memory. They are mainly used on the Macintosh, because of the
relocatable memory blocks. Because handles are just pointers to pointers, they can be used on
any system, but rarely make sense unless required by the operating system.

15 in C++ this means all data not stored on the stack
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2.12.2 Strings

C Type

Unix uses C type strings, i.e. strings which are terminated by a NULL character. This is the same
used by C++ and thus there are no problems using strings on a Unix system, even when calling
system software routines.

The object oriented string class provided by C++ cannot directly be used to call system functions.
But it provides a means of converting the string into a standard C string, which can be safely used
with any system function.

Pascal Type

Although some of the new the operating system routines of the Macintosh use C type strings as
well, most still use use Pascal type strings. These strings contain the length of the string in the
first byte of the text, but are not NULL terminated.

While the text itself is completely the same for both types of strings, the values can neverthe-
less not be interchanged. Thus, special care has to be taken when using a string obtained by a
Macintosh system function in a C string function and vice versa. Normally, the string has to be
converted, or output may not be as desired.

Additionally, because the length of a string is stored in the first byte, a Pascal type string may not
be longer than 255 characters. For longer strings, a different data structure has to be used.

2.12.3 Integers

Integers are a bit more complicated, because they more closely depend on the processor used.
Mainly the size of an integer may vary from one system to another. That can be a problem,
if a computation produces numbers that are bigger than those that can be stored on a specific
processor.

Another problem with integers is the internal ordering of the value in memory. This ordering
differs from processor to processor. Normally all memory access is handled by the compiler, but
in some special cases problems might arise. This is for example the case, if a memory block is
directly stored in a file. While this file can be read without any problems on a similar processor,
the values might be interpreted completely different on another machine.

These problems are the same for Unix and Macintosh machines. Normally, they are not to hard to
solve. If no data is interchanged between systems in binary format, the latter problem disappears.
If code is not written using the full storage capabilities of integer values up to the limits, but
instead in a way that only uses the standard 4 Byte integers, then the size considerations are not
a real problem as well.
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Of course, similar problems arise for floating point numbers, but they can be solved accordingly.

2.12.4 Complex Types

More complex types are normally built up using the basic types and thus produce no additional
problems. There may be some problems if compilers handle some parts of the language differ-
ently, which rarely occurs. The problem most often encountered is when a compiler does not
support one of the more recent additions to the C++ standard. Using such features results in a
program that cannot be compiled on all compilers.

The internal layout of complex data types is highly compiler dependent, though. Thus, it is never
a good idea to store the values of a complex data type in binary format by simply storing its
memory. This most certainly results in unportable programs. Furthermore, it is never guaranteed
that a future version of the same compiler will actually place the data in completely the same
order. Thus, binary files written like that might become unreadable when the program is compiled
with a new version of the compiler.

2.13 Interprocess Communication

Interprocess communication is used every time a program or process tries to communicate with
another one. There are several solution how this communication can be carried through. The
most important ones will be detailed below.

For the LWB, interprocess communication is important in several parts. The same type of com-
munication is used to get information from the operating system to the graphical user interface.
Furthermore, interprocess communication is used when a program needs to be interrupted by the
user. Lastly, interprocess communication is used to communicate with external programs, like
the web browser used for the help system.

2.13.1 Signals

A Unix system uses signals to provide simple communication to a program. This only allows
very basic, one way communication. All that can be sent to another process is a signal, a simple
number. The system provides various predefined signals, for example to interrupt, quit, abort,
kill, alarm, restart or stop a process.

The signal is received by a process, which should react appropriately. Some of the basic standard
signals, like stopping, are automatically handled by the C library, thus need not be handled by
the program code.
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2.13.2 Events

The Macintosh does not use signals for interprocess communication but instead uses a similar,
though more versatile event system. Events are complex data types used to exchange information
between processes. An application can receive or send many types of events. They are usually
divided into three categories, low-level events, operating system events, and high-level events.

Low-level events are created by the operating system for simple, hardware or user generated
information. Low-level events are sent by the Event Manager when the user presses a mouse
button, releases the mouse button, presses a key on the keyboard, or inserts a disk. Furthermore,
the Event Manager sends an application an event when the window is to be activated or when
part of a window has to be redrawn. If an application requests an event and there is none, a null
event is returned by the operating system.

The Event Manager sends an operating system event when an application’s processing status is
about to change or has changed. For example, an operating system event is sent to an application
that is brought into the foreground by the user. The application then has to reactivate itself.

High-level events are sent to an application by another application or another process. They are
mainly used for interprocess communication on a higher level.

The communication between two processes (or a process and the operating system) conforms
to the client/server model. The communication is normally initiated by a client process sending
a request to a server application using an Apple event. Both processes can run on the same
computer or on remote computers connected over a network.

[39] contains a standard vocabulary of Apple events that can be used to for the communication
between applications. These are predefined events, corresponding to many services an applica-
tion might request of another. Additional events can be defined by an application, but communi-
cation is only possible if both processes interpret the event the same way..

Event Loop

The central part of most Macintosh applications is the event loop. This is the loop in the program
in which all events are treated. The event loop initiates the appropriate reaction to all events
received by a program. This approach is especially useful for applications with a graphical user
interface, because all user actions are transmitted to the program via events. The event loop will
treat these events and thus makes the program able to react to user input.

The process of obtaining and reacting to events is active, the program needs to poll events in order
to treat them. As long as no events are read, no user input reaches the application. Because of
the Macintosh’s cooperative multitasking (see next section), the computer looks frozen when an
application seizes the CPU for an extended time. To prevent this, each time events are requested
from the event manager, the CPU switches to the operating system, giving it some time to update
the display and do other important things. Thus, the event loop also helps to keep the user
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interface alive. This only works, if each reaction to an event does not use more than some
fraction of a second of CPU time. Otherwise, the display may freeze.16

2.13.3 Shell and I/O Redirection

There are many situations, where an application needs to be able to start an external program to
carry through some specific task. Because this is an important situation, C/C++ has a special,
system dependent function defined just for this case. Thesystem() function starts an external
program, independent from the current one. Technically, this function takes a string and treats it
just as if it was entered into a shell (cf. 2.7.1).

Using this method, it is easy to start external programs and with I/O redirection it is even possible
to get back some output of the program after the external program is finished.

The LWB needs to communicate with a web browser for the help system and with the ProofWish
tool to display classical proofs. On the Macintosh, this is handled using the events described
above. On Unix, signals cannot be used to achieve the desired result. Thus, usingsystem() ,
the shell is used.

2.14 Processes

Most modern operating systems support multi tasking, i.e. allow multiple programs to be exe-
cuted simultaneously. Even if just a single program is running on the computer, normally other,
system specific processes are running as well. The operating system needs a means to switch be-
tween these process, because most machines only have a single processor and thus can execute a
single program at a time.

2.14.1 Cooperative Multitasking

The Macintosh supports a simple form of multi tasking, so called cooperative multi tasking. As
the name implies, cooperative multi tasking requires the cooperating of all tasks running on a
machine. Thus, each application is required to hand on the CPU to other tasks from time to
time, to give each other task a possibility to do something. The operating system relies on each
individual task to be cooperative, i.e. an application can never be forced to give up the CPU but
instead should do it on its own.

Cooperative multi tasking puts several requirements on an application, essential for smooth op-
eration of the whole machine. The Macintosh operating system adds further requirements to the
application to give the user a better handling of multiple programs running at the same time.

16 this is contrary to the Unix signals, which can interrupt program execution and force a program into a certain
state.
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These requirements will be detailed below, mainly because ignoring some of these requirements
results in serious troubles for the operating system.

Application States

The Macintosh distinguishes two main states for an application. An application can either be the
active application, a foreground or a background application.

The active application is the application that currently interacts with the user. It is not neces-
sarily the application that currently has control over the processor, i.e. the application currently
running. It is gets all events generated because of user actions, like mouse or keyboard events. If
a process17 is currently in control of the CPU, it is called the foreground process. As mentioned
above, the active application may also be the foreground process, but this is not necessary. A
process that is open and ready to run but isn’t the foreground process, is called a background
process.

Context Switches

As long as an application runs, it can only be interrupted by hardware interrupts. To give time to
background processes, the application needs to call the Event Manager from time to time. That
way, the application gives away the control of the CPU for a short period, during which another
process gets some time for computations. The process of changing the CPU from a currently
running process to a process waiting for execution is called a context switch.

There are two distinguishable types of context switches, major and minor switches. A major
switch fully switches from one application to another, maybe for a long period. For that switch,
the application has to move it’s windows from the back to the front or vice versa. Furthermore,
some windows may be hidden or shown again. Thus the active application switches from one
process to another.

For a minor switch, the Process Manager gives a background process some computing time,
without actually changing the active application. The windows are not changed in any way for
such a switch and the background application is still not capable of getting user input.

Events

Several special events are used to change an applications processing status. If an application
should be switched into the background, the Process Manager sends it a suspend event. This
tells the application to prepare to give the CPU away. The switch is carried though the next time
the application checks for an event. If an application is switched into the foreground, it gets a
resume event,after the switch.

17 an application or a desk accessory.
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If an application gets a suspend event, it should deactivate its front window, and remove the high-
lighting from any selections and hide all floating windows. After a resume event, the application
should activate its front window and restore any states inside the windows.

One special type of event is the null event. If an application receives a null event, this means that
no other application needs the CPU for computation. Thus the application can then perform idle
processing. This includes blinking the insertion point, for example. The application should do
only minimal processing at this time though, because some other process might want to compute
something soon. If an application is in the background, it can do other processing while in the
background. It should not perform lengthy tasks, because these might slow down responsiveness
of the foreground process. Furthermore, an application should never interact with the user if it is
in the background.

Summary

All in all, the Macintosh’s process handling system is quite old fashioned and puts a lot of
requirements to the programs running on the system. Thus, if an application is faulty, locks
and hang-ups often occur and cannot be prevented. Furthermore, there is no real process and
resource management. A process may not easily be killed and there is no way of giving execution
priorities to processes. Last but not least, there is no real interrupt system, making it hard to
control a program which runs out of bounds (the only solution on the Macintosh is to completely
terminate the program).

2.14.2 Preemptive Multitasking

An operating system supporting preemptive multi tasking is capable of switching from one pro-
cess to another, without having to rely on the cooperating of the processes involved. Thus, the
operating system switches from one process to another using its own scheduling information. It
is capable of interrupting a running application and switch to another one.18

Thus, a program can be written without regard to other programs or the operating system. The
program is assumed to have complete control of the whole machine. The process switching is
done by the operating system without the program even noticing it.19 Furthermore, a program
cannot normally prohibit process switching, and thus even if a program crashes, the machine
might go on. More importantly, development is easier because no care has to be taken to consider
process switching. On the other hand, this solution requires a complicated operating systems and
puts special requirements to the hardware.

All Unix systems support preemptive multi tasking.

18 this is normally done through hardware interrupts.

19 the program can notice it if need be, but normally this is not necessary.
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2.15 Compatibility

It is quite important for an application to be compatible with future versions of the operating
system. As already mentioned (cf. 2.2), this task is quite hard on Unix systems but feasible on
Macintosh systems.

2.15.1 Macintosh

To ensure compatibility for a Macintosh application means to write applications that are able to
run with little or no modifications on all members of the Macintosh computer family and on all
system software versions. There are some basic guidelines to be followed to ensure compatibil-
ity:

• never directly address the hardware
• never directly write to the screen
• don’t rely on system global variables

By keeping these guidelines in mind, an application will most certainly run with future Macin-
tosh systems. Furthermore, Apple released a special program, calledCarbon Dater , which
checks an application program for its fitness with new versions of the operating system, espe-
cially System X.

2.15.2 Unix

Unix applications are not normally binary compatible with major changes in the Unix system.
While small changes or updates normally don’t interfere with programs, major changes won’t
allow the program to go on working, mainly because the necessary libraries are no more available
or are not compatible with old ones.

The solution to this problem is the recompilation of the program. This normally solves all com-
patibility programs, because now the current, updated system libraries are used. Because the C++
standard and the compilers normally change very slowly, compilation is normally no problem on
a new system.
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Chapter 3

Development Tools

This chapter gives a brief overview of the tools used for the creation of the MacLWB and the
Unix LWB. For further, more detailed information, have a look at the program documentations.

3.1 Macintosh

3.1.1 CODEWARRIOR

CODEWARRIOR by Metrowerks is a commercial integrated development environment for the
Macintosh. It has a completely graphical user interface and includes an editor for writing the
source code, a compiler to create the executable files and a debugger, in case the program does
not work as expected. It also includes automatic project management. This means, the compiler
will automatically decide which files need to be recompiled and does automatically link the
appropriate files to create an executable program.

The integrated development environment does not allow additional steps to be taken into the
computation process. Thus it is not possible to create source files when building an application,
like usinglex (cf. 3.2.5) oryacc (cf. 3.2.6) to automatically create a parser.1

The integrated compiler is a complete C/C++ compiler supporting all current standards of C++,
including function templates and the standard template library (STL). Furthermore, it has special
additions dealing with Macintosh specific issues, like handling Pascal type strings or resources.

Picture 3.1 shows the project management of CODEWARRIOR, picture 3.2 displays a sample of
an editing session, and picture 3.3 shows the debugger when debugging the MacLWB. CODE-
WARRIOR contains extensive online documentation but further books like [23] are also available.

1 these source files had to reused over from Unix.

33
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Figure 3.1: CODEWARRIOR: graphical project management
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Figure 3.2: CODEWARRIOR: source code editing

3.1.2 POWERPLANT

POWERPLANT is part of the CODEWARRIOR development environment. It is an extensive li-
brary for the creation of graphical user interfaces (cf. [24]).

Overview

Although the Macintosh Toolbox already provides quite a lot of routines and support to create
graphical user interfaces, it does not directly support object oriented programming and thus is
complicated to use. POWERPLANT smoothes these problems by providing a layer between a
graphical user interface and the Macintosh operating system. This layer is completely object
oriented and thus can be easily introduced into any C++ program.

Furthermore, the CONSTRUCTORtool (see 3.1.3) allows to graphically create a user interface
using the POWERPLANT libraries.

Structure

The POWERPLANT library is written in C++ and its source code is available to developers,
making debugging and problem solving easier. The library bases all graphical user interface
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Figure 3.3: CODEWARRIOR: a debugging session
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elements on a pane, defined by the classLPane . A pane is a simple display element, including
a size and position and the methods necessary to paint, move and otherwise handle it. All other
graphical elements are derived from that base object. For example, the object for views (LView )
is directly derived from a pane (LPane ) and additionally provides a means of displaying a pane
that is larger than its display and whose visible portion can be scrolled.

If a graphical interface element is required that is not directly supported by POWERPLANT or if
one of the provided elements needs to be changed somewhat, the existing classes can be derived
to create new, user defined custom classes. These classes can then be integrated into the POW-
ERPLANT library structure just like the internal classes. Even the graphical construction tool, the
CONSTRUCTOR, can support custom defined classes in a limited way.

The library has some predefined structures which must be taken into account when developing
applications, to ensure that own classes are smoothly integrated into the POWERPLANT environ-
ment.2 This requires the implementation of some necessary methods in custom interface classes.

Problems

Unfortunately, The POWERPLANT library has some drawbacks as well. One of its most serious
drawbacks is the big overhead used for drawing interface elements. POWERPLANT uses quite
inefficient ways for drawing and often draws a single pane several times. Together with the
already inefficient interface handling of the Macintosh operating system and a slow computer,
this results in painfully slow display updates. Especially when dealing with a big number of
interface elements, as is the case with the MacLWB and its input and output regions, this can
become unbearable.

Furthermore, POWERPLANT does not completely support all available Macintosh managers.
Thus it can be necessary to directly deal with a manager. While this itself may be inconvenient, it
gets really problematic if directly calling some manager routines interferes with POWERPLANT ’s
internal data structures. Unfortunately, this is often the case and can most of the time can only
be solved by reimplementing some parts of POWERPLANT .

A major drawback and especially time consuming were some errors in the library, which resulted
in faulty handling of interface elements. While most of these errors were minor, they still caused
quite a lot of debugging. Most of these minor errors were corrected in newer versions of the
POWERPLANT library, directly leading into new problems. New versions of the POWERPLANT

library were quite incompatible to previous versions and the changes sometimes were quite se-
vere. This required the rewriting of some parts of the graphical user interface with each change
of library version.

One last drawback is that the library is not portable, i.e. there is only a version for the Macintosh.
If the same library was also available for Unix or Windows system, then porting a program—
including the graphical user interface—would be easy and not time consuming. Furthermore,

2 Examples are the calling chain used to process keyboard and menu commands or the drawing procedure used to
draw the individual interface elements on the screen.
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Figure 3.4: CONSTRUCTOR: graphical interface creation

changes in the user interface would not only benefit a single system but all systems where the
interface library was used.

3.1.3 CONSTRUCTOR

The CONSTRUCTORis a development tool closely working together with the POWERPLANT li-
brary. It is a graphic oriented tool (see figure 3.4) for the creation of graphical user interfaces
using POWERPLANT . The interface is composed by putting interface elements of various pre-
defined types at their places and define all their values. From a thus designed user interface, the
CONSTRUCTORcreates the necessary resources, which can be added to an application program.
From these resources, the POWERPLANT library automatically constructs all objects necessary
to display the graphical user interface on the screen.

The CONSTRUCTOReven allows the handling of custom classes. This is done when providing
the appropriate information to the CONSTRUCTORby creating a new type of interface element.
The program gets the base class of the new interface element to define its general behavior and
additionally all newly added variables of the class. CONSTRUCTORthen allows the positioning of
these new custom elements just as the predefined elements, additionally with the new variables.3

3 Other, special properties of the new elements are not shown in the created interface, though. It is only possible to
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// a type for a window dimension
type TYPE_DIMENSION
{

unsigned integer; // width
unsigned integer; // height
unsigned longint; // top position
unsigned longint; // left position

};

resource TYPE_DIMENSION (PREF_DIM_MAIN, "Position of Main Window")
{

DEF_DIM_MAIN_WIDTH, DEF_DIM_MAIN_HEIGHT,
DEF_DIM_MAIN_TOP, DEF_DIM_MAIN_LEFT

};

resource TYPE_DIMENSION (PREF_DIM_INFO, "Position of Info Window")
{

DEF_DIM_INFO_WIDTH, DEF_DIM_INFO_HEIGHT,
DEF_DIM_INFO_TOP, DEF_DIM_INFO_LEFT

};

Table 3.1: REZ: Definition of the Dimension type and some resources

The CONSTRUCTORhas one major drawback, sharing it with the POWERPLANT library. It
does not allow the relative positioning of interface elements. Thus, only static user interfaces
can be built using the CONSTRUCTOR. If an interface element has to be positioned relative to
another one, especially one that may change its size, or if the size or position of an interface
element has to react to changes in the layout of the user interface, then the positioning and
moving of the element has to be done in the program code an cannot be left to POWERPLANT or
the CONSTRUCTOR.

3.1.4 REZ

The REZ tool provides a resource description language that can be used to create Macintosh
resources. It uses a C preprocessor like language to generate the final resources. REZ also allows
the definition of user defined types and resources of such custom types. The REZ compiler takes
a description file and generates a file containing the defined resources.

Defining a resource with REZ may be a bit more complicated than doing the same with a tool
using a graphical user interface4, but using the REZ language has the advantage of automation.
Resources can be generated automatically, without user interaction. Thus, certain elements of the
resources may depend on other parts of the program, including values from a definition file. This

define new variables.

4 like CONSTRUCTORor RESEDIT
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Figure 3.5: RESEDIT: graphical resource editing

way, information has to be stored and maintained at a single place in the source code, making
maintenance much easier. Furthermore, when changing the information, automatically all similar
information is changed throughout the whole program.

3.1.5 RESEDIT

Like REZ, RESEDIT is used to create Macintosh resources. Unlike REZ, RESEDIT is a graphical
resource editor. It shows all the resources of a file and allows changing, deleting, and adding of
resource values. This prevents automatic generation of resources, but on the other hand allows
easier definition, especially for icons and other pictures. Like REZ, RESEDIT does also allow
the definition and treatment of custom resources.

Luckily, CODEWARRIOR allows multiple resource files to be included in a single executable.
Thus it is possible to generate part of the resources using Rez or the CONSTRUCTORand other
resources using RESEDIT.

3.1.6 INSTALLER M AKER

The INSTALLER MAKER is used to generate an installable archive of a program. This archive is
distributed to the end user for installation on the target machine.
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Figure 3.6: INSTALLERMAKER: installation package creation

The generation of the installation package is easily done using a graphical user interface. The
files to be installed can be placed in the archive, along with additional information, for example
where the file will be installed. This allows files to be installed in predefined locations, like fonts
in the fonts folder or preferences in the preferences folder.

The final installation package makes the installation of a program simple. All a user has to do is
to double click on the archive icon, select an installation directory where the application should
be installed (or accepting the default location) and all the rest is done automatically.

Unfortunately, the INSTALLER MAKER does not allow the automized creation of installation
packages. Thus, for each new release or update of a program, the package has to be newly
assembled by hand. This makes the process of creating installation packages error prone and
time consuming.

3.1.7 TCL /TK

TCL/TK is a scripting language with user interface support, available for a variety of operating
systems. The language allows the creation of programs with a user interface that may be run on
any implementation of TCL/TK on any of the supported systems.5

This type of user interface seems to be a clever way to create portable programs that may be run
on different systems. It has several drawbacks, though. First, the language is a scripting language
and thus quite slow. Furthermore, it is not fully object oriented, making the development of larger
programs hardly possible.

But even using TCL/TK only for some small tasks is not without problems. While the language
is theoretically system independent, several limits still exist. Not all that is possible on a Unix
system can be done on a Macintosh and vice versa. Thus, an application has to be developed
with all target systems in mind and must be thoroughly tested on each system to make sure that
the program will smoothly run on all of them.

5 Unix, Macintosh, Windows
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3.2 Unix

3.2.1 SUN V ISUAL WORKSHOP

SUN V ISUAL WORKSHOPis a commercial C and C++ development environment by SUN M I-
CROSYSTEMS. It contains an integrated development environment and the CC compiler. The
compiler in its current version 5.0 does support most of the current C++ standard.6 The compiler
is quite slow in compiling code with templates and sometimes uses a lot of memory. Further-
more, program compiled with CC that use the standard template library (STL) are quite slow,
especially when compared to other compilers, like GNU GCC.

On the positive side, the VISUAL WORKSHOPcomes with a lot of additional tools convenient
for development. For example, it contains an integrated development environment, a debugger
and performance and benchmarking tools.

3.2.2 GNU GCC/EGCS

Contrary to CC, the GNU GCC7 is freely available. It can be used on any Unix system and on a
lot of other systems, like Windows, as well.

The implementation of the standard template library within GCC is quite fast, especially when
compared to CC. The compilation of the source code is fast as well. On the negative side,
compiling with optimization turned on is very slow and requires up huge amounts of memory.8

GCC does not come with a set of tools and programs to help in the development process. Instead,
the compiler relies on the many freely available tools that can be used for programming. Some-
times, these tools lack the professional quality of a commercial product, but because there are a
lot of them, the right tools can almost always be found.

3.2.3 GNU M AKE

As all other GNU tools, GNU MAKE9 is freely distributed using the GNU license. The program
is available for all Unix systems.

The program is used to automate program building and compilation. It provides a language to
define rules and commands for building files from other files. When run, it does automatically

6 earlier versions of the compiler lacked some important parts of the standard, like template functions and the
standard template library (STL).

7 previously called EGCS

8 more than 256 MBytes at least

9 SUN CC also contains a MAKE tool, which supports much less features and is much less sophisticated.
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.

.

.

GLOBAL_DIR = /home/lwb/beta/src# # dir of global lwb
LOCAL_DIR = /home/lwb/beta/src# # dir of local installation
TMP_DIR = /home/til/betatmp# # dir for temporary files
X_DIR = /usr/openwin# # X directory

.

.

.

%.cpp: $(RCS_DIR)/%.cpp$(RCS_EXT)
@$(CO) $< $@ # generate C++ file from RCS

%.h: $(RCS_DIR)/%.h$(RCS_EXT)
@$(CO) $< $@ # generate header from RCS

$(DEST_DIR)/%.o : %.cpp
@$(PRINT) "$(INDENT) compiling $<"
@$(CXX) -c $(CXX_FLAGS) $(CXX_LIBFLAGS) $(CUR_INC) -o $@ $<

# C++ files
.
.
.

Table 3.2: GNU MAKE: excerpts of an example makefile
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compare file modification dates to determine which files need to be remade and which files are
up to date.

The features supported by GNU MAKE are many, thus writing complex makefiles is possible. It
is possible to integrate almost any other, shell based tool into the building process. Thus, it is easy
to integrate RCS, LEX, YACC and the various compilers into the building process of a program.
MAKE does automatically generate source files with these programs and compiles them into a
final executable.

MAKE is not limited to building of programs, though. Any task that depends on files to be created
by shell tools using some predefined rules can be done by MAKE. Thus, cleaning the directory
tree, testing a program, creating distribution packages, making backups, layouting documenta-
tion and a lot of other things can all be automated using MAKE.

Figure 3.2 shows some small excerpts from the standard makefile used to for the building process
of the Logics Workbench.

3.2.4 EMACS

Because the GCC does not have an integrated development environment, a separate editor has to
be used. EMACS is the standard and very powerful editor for Unix. It is available for free for
Unix and also for Windows. It contains an own programming language and a lot of predefined
features helping in various editing tasks10, including program development.

3.2.5 LEX

LEX is a freely available tool for the automatic generation of a lexical analyzer. Together with
YACC it can be used to automatically generate a parser from a given set of rules.LEX creates fast
and powerful lexical analyzers, but only produces C code and is not object oriented. This makes
integrating the lexical analyzer into an object oriented program complicated.

Table 3.3 contains some excerpts from the file containing the rules for the lexical analyzer of the
Logics Workbench.

3.2.6 YACC

As a lot of Unix tools,YACC is available for free.YACC takes a file containing rules describing a
language and produces C source for a parser capable of interpreting text for this language.

YACC can useLEX to lexically analyze the text before its is actually parsed. AsLEX, it does not
produce object oriented code and is thus problematic to integrate into an object oriented program.

10 like text coloring or automatic indentation.
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Figure 3.7: EMACS: source code editing
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.

.

.

alpha [a-zA-Z]
digit [0-9]
integer {digit}*
symbol {alpha}({alpha}|{digit}|_)*
.
.
.

"=" { tokenpos += yyleng; return tEQUAL; }
"<>" { tokenpos += yyleng; return tNONEQUAL; }
">=" { tokenpos += yyleng; return tGREATEREQ; }
">" { tokenpos += yyleng; return tGREATER; }
"<" { tokenpos += yyleng; return tLESS; }
"<=" { tokenpos += yyleng; return tLESSEQ; }

{help} { tokenpos += yyleng; return tHELP; }
quit|bye|g2h { tokenpos += yyleng; quitReadFlag = true; return 0; }

plus|"+" { tokenpos += yyleng; return tPLUS; }
"-" { tokenpos += yyleng; return tMINUS; }
mult { tokenpos += yyleng; return tMULT; }
div { tokenpos += yyleng; return tDIV; }
mod { tokenpos += yyleng; return tMOD; }

.

.

.

Table 3.3:LEX: excerpts of an example lex rules file
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.

.

.

%token tPROC tBEGIN tEND tLOCAL tVAR tRETURN tIF tTHEN tELSE
%token tFOREACH tIN tDO tRAISEERROR tCATCHERROR tWHILE tAPPEND
%token tPUSH tPOP tRANGE tEVAL tBY tTO tFOR tARRAY tINC tDEC
.
.
.

arg_decl_list :
tSYMBOL { if(declare_argument_value($1, 1)) YYERROR;

free($1); $$ = 1; }
| tVAR tSYMBOL { if(declare_argument_reference($2, 1)) YYERROR;

free($2); $$ = 1; }
| arg_decl_list ’,’ tSYMBOL { if(declare_argument_value($3,$1+1))

YYERROR;
free($3); $$ = $1 + 1; }

| arg_decl_list ’,’ tVAR tSYMBOL {
if(declare_argument_reference($4,$1+1))

YYERROR;
free($4);
$$ = $1 + 1; }

;

opt_arg_decl_list :
tSYMBOL { if (declare_opt_argument($1))

YYERROR;
free($1); $$ = 1; }

| opt_arg_decl_list ’,’ tSYMBOL { if (declare_opt_argument($3))
YYERROR;

free($3); $$ = $1 + 1; }
;
.
.
.

Table 3.4:YACC: excerpts of an example yacc rules file
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Table 3.3 contains some excerpts from the file containing the rules for the parser of the Logics
Workbench.

3.2.7 MOTIFATION

MOTIFATION is a commercial tool used to create graphical user interfaces for Unix machines
with X W INDOWS and MOTIF. The user interface is created with a graphical editor by placing
the desired interface elements at their positions. The C code generated by MOTIFATION has then
to be completed with own functions.

The C code obtained by MOTIFATION is not object oriented and almost impossible to read.
Therefore, it is problematic to integrate such code into an object oriented program.

3.2.8 REDHAT PACKAGE M ANAGER (RPM)

The REDHAT PACKAGE MANAGER (RPM) was originally developed for Linux systems, but
because it is freely available as open source, has in the meantime been ported to various other
Unix systems. It is the standard installation package manager for most Linux systems. From a
specification file, the program creates installation packages of programs for their distribution. It
is also used to install the package on the target machine. RPM does support additional tasks to be
carried out when installing a package as well as the possibility to install different files in different
destination directories. It is able to check that the correct libraries or other programs are installed
on a system before installing a program.

The program automates the creation of installation packages and makes final installation an easy
and controlled task. It also allows the removal of programs after their installation and other
administration tasks. Furthermore, it is also possible to distribute source packages with RPM,
which can automatically be built on the target machine.

Table 3.5 contains the beginning of the specification file used to create the Linux distribution
package of the Logics Workbench.

3.2.9 TAR and GZIP

TAR andGZIP are both small, freely distributable Unix tools. They can each be used alone, but
are mostly used together to created compressed archives of multiple files.11

TAR is used to pack multiple files together into a single file. Originally, this was used to make
backups of files to tapes, but nowadays it is more often used to create archives of files.TAR itself
does not compress the resulting file. Thats whatGZIP is for. It takes a file and compresses it,
generating a compressed version of the file.

11 modern versions ofTAR can automatically callGZIP when creating archives
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Summary: The Logics Workbench
Name: lwb
Version: 1.1
Release: 1
Copyright: distributable
Group: Applications/Math
Source: ftp.iam.unibe.ch:/pub/LWB/lwb_1.1_source.tar.gz
Icon: lwbicon.gif
URL: http://lwbwww.unibe.ch:8080/
Vendor: University of Bern
Packager: Peter Balsiger <balsiger@iam.unibe.ch>
ExclusiveOS: Linux
Prefix: /usr/local/lwb-1.1
BuildRoot:

%description
The LWB offers the possibility to work in a user-friendly way in
classical and non-classical propositional logics, including nonmonotonic
approaches.

%prep
%setup -c
cd src
co Makefile.linuxlocal
co Makefile.Xlinuxlocal
co Makefile
co Makefile.default

%build
cd src
export RPM_BUILD_DIR
make -r SYS=linux --no-print-directory prepare
make -r SYS=linux --no-print-directory
make -r SYS=Xlinux --no-print-directory prepare
make -r SYS=Xlinux --no-print-directory

%install
if !test -d $RPM_BUILD_ROOT/usr; then mkdir $RPM_BUILD_ROOT/usr; fi
if !test -d $RPM_BUILD_ROOT/usr/local; then

mkdir $RPM_BUILD_ROOT/usr/local; fi
mkdir $RPM_BUILD_ROOT/usr/local/lwb-1.1
ln -s $RPM_BUILD_ROOT/usr/local/lwb-1.1 $RPM_BUILD_ROOT/usr/local/lwb
mkdir $RPM_BUILD_ROOT/usr/local/lwb-1.1/bin
cp $RPM_BUILD_DIR/lwb-1.1/bin/lwb $RPM_BUILD_ROOT/usr/local/lwb-1.1//bin
.
.
.

Table 3.5: RPM: beginning of a specification
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Using theTAR-GZIP combination can create simple distribution packages of a program, contain-
ing all required files. WithTAR-GZIP it is not possible to create sophisticated installations. It
is not possible to easily distribute files into different directors or to execute some pre- or post-
installation steps. On the other hand, creating and unpacking aTAR-GZIP archive is easy and
fast.

3.2.10 RCS

RCS is the abbreviation for REVISION CONTROL SYSTEM. It is another freely distributable
Unix tool, used to manage different versions of files, mainly source code of programs.

It allows the space efficient and controlled storage of multiple versions of a file, including the
handling of revision numbers and log entries. Furthermore, RCSsolves most problems occurring
when different people work on the same files. In such a case, it has to be made sure, that not
two persons change a file at the same time. RCS solves this by providing a locking mechanism,
which only allows a single user to edit a file at a time.

In order to use RCS, all users need access to the same storage area, where the master files for
each file are stored. Thus, RCScannot be used over a network without direct access to a common
file server.

3.2.11 CVS

CVS stands for CONCURRENT VERSIONSSYSTEMS and is another free Unix tool. It is a en-
hancement of RCS and is actually based on it.

The focus of CVS is on distributed development. Thus, it supports a client/server mechanism
for file modification. Users connected over a network can all work together on the same sets
of files at the same time. CVS does not, like RCS, normally lock files while they are modified,
to allow all users to change files when necessary. Instead, CVS contains a powerful merging
strategy. Files updated by two users at the same time are automatically merged into a single file
containing all changes. If changes overlap, CVS is not able to automatically merge the files and
thus inserts special comments to make merging by hand easier. CVS provides additional features,
like the support of multiple releases of a program or different development branches.

3.2.12 HSC

HSC is a small, simple HTML preprocessor. It generates HTML files from HSC source files.

HSC understands all current HTML statements and automatically checks that they are correctly
used. Furthermore, HSC understands additional statements that are translated into HTML text
when the files are generated. These statements allow the definition of macros, including loops
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<$INCLUDE FILE="macros_titlepage.hsc">

<PAGE TITLE = "The Logics Workbench"
DESC = "the main page of the LWB Documentation"
KEYWORDS = "logic, propositional, computational, symbolic,

education; decision procedures, simplification
of formulas, proofs, normal forms, embeddings;
classical, non-classical, nonclassical,
intuitionistic, modal, provability, multimodal,
tense, linear; non-monotonic, nonmonotonic,
autoepistemic, circumscription, closed world
assumption, default logic">

<TABLE>
<TABLERULE>
<WIDTHLINE VALIGN=MIDDLE><A HREF=":about/index.html">

<IMG ALIGN=MIDDLE SRC=":pics/information.gif" ALT="about"
BORDER=0></A>

<TD><A HREF=":about/index.html">About the LWB</A>
<TD><A HREF=":new.html"><IMG ALIGN=MIDDLE SRC=":pics/new.gif"

ALT="News" BORDER=0></A>
<TD><A HREF=":new.html">What’s New</A>

<TABLERULE>
<WIDTHLINE VALIGN=MIDDLE>
.
.
.

Table 3.6: HSC: sources for a HTML page
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and conditions. It is even possible to directly include text from external programs right into the
HTML text.

HSC is mainly used to generate static HTML pages and to check their correct use of the HTML
syntax. It also allows to create a common and easily changeable layout of pages by using macros
instead of directly using HTML statements.

Table 3.6 show the beginning of the source of the LWB home page. The ’<Page>’ statement
at the beginning is a macro that automatically sets up the general layout of the page.

3.2.13 TCL /TK

TCL/TK as described in the previous chapter for the Macintosh is also available for Unix systems.
It is generally the same as the Macintosh version.



Chapter 4

Parts of the LWB

Before we look at the different steps done for porting the LWB, we take a closer look at those
parts of the LWB that are most affected by porting. A complete overview of the LWB can be
found in [26] and [43].

4.1 Installation

The installation of the LWB is a crucial step for the program development. It has to make sure
that the program is correctly installed and run on the target system. Furthermore, the installation
has to be as easy as possible, to make it feasible for the end user.

The Macintosh Installation of the LWB is done with the Installer Maker (cf. 3.1.6) and the Unix
installation is done either using a compressed archive (for Solaris, cf. 3.2.9) or anRpmpackage
(for Linux, cf. 3.2.8).

The installation process of the LWB has to meet some requirements to ensure correct installation
and to allow running the LWB without problems.

4.1.1 Compression

The final installation file needs to be compressed for several reasons. A compressed package
needs less memory on the server offering it for download. But more importantly, the download
time for the user to get the installation package onto the target computer is much less with a com-
pressed package. Furthermore, the installation package should consist of a single file. Otherwise,
the user has to download and take care of too many files. Forgetting one of the installation files
would result in serious installation problems.

53
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4.1.2 Installation Directories

The LWB contains some files that have to interact in a special way with the operating system.
These are mainly the configuration files, fonts and dynamic libraries. It depends on the operating
system where these files have to be put after installation.

On Unix, the files have to be stored either in a directory already containing similar files or the
environment variables pointing to these files have to be adjusted.1 Because the LWB for Unix
is also distributed as a simple compressed archive, only the second solution is feasible. The
installation itself cannot adjust the environment variables, therefore this has to be done when the
LWB is started (see the next section).

On the Macintosh, the situation is different. Because a special installation tool is used to install
the application on the target machine, files can be distributed to the appropriate directories. This
is actually necessary on the Macintosh, because the MacOS does not have something similar to
environment variables. Fonts and preferences files have to be stored in their respective directories
or they can’t be used.

4.1.3 Post Installation Steps

After the installation of the application on the Macintosh, some additional steps have to be taken
to integrate the application into the operating system. The file types, creator and icons used by
the MacLWB have to be registered with the MacOS. This step makes it then possible to recognize
LWB files by their icons and to start the LWB by double clicking on one of its files.

The LWB internally uses a variable to access its auxiliary files. This variable contains the position
of the directory the LWB was installed in. The installation cannot set this directory in any
way. On the Macintosh this is impossible because the Macintosh does not have a concept of
environment variables. On Unix, a simple compressed archive does not allow to set any variables.
Thus, the variable has to be set at startup of the LWB (see below).

4.2 Startup

As mentioned above, several additional tasks have to be carried through each time the LWB is
started. Some of these tasks are necessary because the installation cannot do them, others are
just better done while starting the LWB to make sure all things are set correctly each time.

1 these are the environment variableLD Library Path. for dynamic libraries and the X font path for the fonts
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4.2.1 Configuration Files

The LWB has to make sure that the configuration settings—given by the user the last time the
LWB was used—are restored when the LWB is started. That way, the user can adjust the look
and feel of the LWB to his liking in a persistent way. Thus, at startup, the LWB has to locate and
read the configuration settings from the appropriate file.

4.2.2 Scripting

There has to be a way to allow some sort of scripting of the LWB. This means the capability of
executing a predefined set of commands. This can be used to automatically compute results or
to compute various problems without user interaction. This has to be taken care of at startup, to
allow running the LWB without user interaction.

4.2.3 Dynamic Libraries (Unix)

The LWB on Unix systems makes heavy use of dynamic libraries.2 The operating system auto-
matically loads all dynamic libraries whenever they are used. This can only be done when the
operating system knows where to look for these files. Thus, at startup, the LWB has to make sure
that the operating system will look at the right place to find the libraries.3

4.2.4 Home Directory

The home directory where the LWB was installed, has to be set at startup. Together with a fixed
directory structure, the LWB is then able to locate its auxiliary files, like the font translation files
(see 4.3 below), in one of its subdirectories.

4.2.5 Font Directory (Unix)

The LWB supports special fonts containing special symbols for the logical operators used by the
LWB. On Unix, X WINDOWS has to be informed where these fonts can be found. Because this
cannot be done while installing the LWB, this has to be done at each startup.4

2 the MacLWB on the other hand does not use dynamic libraries at all.

3 actually, this has to be donebeforethe LWB executable is actually started; just starting the program might already
cause the operating system to try to load dynamic libraries.

4 on the Macintosh, fonts are put in the correct directories by the installation.
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4.3 Fonts

The additional fonts that are part of an LWB installation have to be made available to the op-
erating system, either by installing them in the correct place or by adjusting the environment at
startup.

But this is not all that is necessary to be able to use these fonts. The LWB also has to do a correct
mapping of the special symbols, i.e. the correct symbols have to be displayed whenever a special
logical operator is used. This has to be done the same way for all operating systems, to prevent
that central parts of the LWB, like the parser, have to be adjusted when porting the LWB to a new
system.

4.4 Compilation

A special part of the LWB, which is not actually visible in the final product, is the creation of the
executable program itself. The compilation process itself should also fulfill some requirements
to make current and future management of the LWB easier.

4.4.1 Handling and Speed

The compilation process itself should be as easy as possible, while, at the same time, being as
fast as possible. The first requirement makes sure that a recompilation of the LWB can be done
without having to read a lot of documentation. The latter ensures that—while developing the
LWB—small changes can be integrated into the executable in short time. This keeps the turn-
around cycle short and speeds up development, especially for debugging and testing, because
small changes can be incorporated into an executable program in short time, allowing immediate
testing and, if necessary, debugging.

When building an application, it is not necessary to always recompile all sources. It is much faster
to just compile those files that were changed since the last compilation. Unfortunately, some
source files depend on other files and have to be recompiled when one of those files is changed,
even if it itself was not. The building process has to include this dependency information and
use it when compiling. To make management easier, this dependency information should be
generated automatically, if possible.

4.4.2 Multi-User Development

A program with the size of the Logics Workbench cannot be developed by a single person. Thus,
multiple users have to work on the same program. Therefore, the development process, including
editing, compiling and building has to support multiple users.
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There are several issues that need to be treated. First of all, every developer needs access to the
same set of source files. It should also be possible for each developer to make changes to the files
and to distribute these changes to other developers. Because people make mistakes, it should be
possible to take back any changes if problems arise. All these demands are comfortably solved
by tools like RCS (cf. 3.2.10) or CVS (cf. 3.2.11). The building process just has to handle
the automatic interaction with these tools to make sure the newest revision of a files is used for
building.

4.4.3 Space Consideration (Unix)

When development for the Logics Workbench was started, hard disk space on the systems was
limited.5 Thus, the compiling and building process had to make sure that only as much disk space
is used as really necessary. As long as possible, disk space should be shared between different
developers, reusing as much space as possible.

4.4.4 Package Generation (Unix)

The building process should contain the generation of the installation package as well.6 On
Unix systems, the installation packages should be generated using the same procedures as those
used for building the program itself. Especially the packages should be generated automatically,
without user intervention.

4.4.5 Testing (Unix)

With every change of or addition to the source code of a program, errors may be incorporated
as well. Either, code that worked without problems may now be faulty or the newly introduced
features don’t work as expected.

To detect as much errors as possible, the program should be tested periodically. These tests
should be done totally automatically. That way, tests can be carried through without user in-
tervention, especially convenient for time consuming tests. Furthermore, test results should be
easily readable and should help to identify the errors as fast as possible.

Because a lot of scripting facilities are only available on Unix systems, testing was only done
on such systems. Because the code of the main algorithms, like the provers, is the same for all
versions, testing on a specific system is enough to make sure that they work as intended on all
systems.

5 this changed when more disk space became available later.

6 this is not possible on the Macintosh due to a mouse and graphical oriented package generator and building
process.
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4.4.6 Documentation (Unix)

As with package generation and testing, the documentation has to be generated automatically
as well. This includes the generation of a printable version of the documentation as well as
generating the necessary web pages and text files for the LWB help system.

Of course, it is not possible to actually write the documentation automatically. But to make
maintenance feasible, a single document should contain all documentation information. Specific
types of documentation, like ASCII or HTML, have to be generated automatically from this
central document. This generating process should also be initiated and supervised by the general
building process of the Logics Workbench.

Because only the building process on Unix systems supports arbitrary commands to be invoked,
the documentation is only generated on Unix system and is then copied onto the Macintosh when
finished.7

4.4.7 Maintenance

Additionally to all the building tasks mentioned above, the building process should also support
additional tasks used for program and source code maintenance. This includes cleaning up the
directory tree, making backups or preparing the development environment, for example.

4.5 User Interface

The Logics Workbench provides several different user interfaces. These user interfaces are first
predetermined by the operating systems, but there is also a distinction between text oriented and
graphical user interfaces.

4.5.1 Text Oriented User Interfaces

The ASCII-LWB contains a text oriented user interface without graphical interaction. Instead, it
uses simple text input and output to take commands and give back results.

This interface is the most simple and requires the least programming effort. On the other hand,
it is not as comfortable for the user as the other interfaces. Nevertheless, it can be used for big
benefits with the automatic execution of commands in the LWB. This can be used for automatic
testing as well as for automatically computing complex problems.

This type of interface is the easiest to port to another operating system. If an operating system
provides a Unix like shell with support for C++ input and output, the interface is already ported
because of the C++ standard.

7 the generated documentation uses a standard format that is usable on all systems.



4.5 User Interface 59

4.5.2 Graphical User Interfaces

Because text oriented user interfaces are not very comfortable to use, the LWB is also available
with a graphical user interface. The implementation of a graphical user interface is much more
time consuming and complicated than that of a text oriented one. Furthermore, porting a graph-
ical user interface is much harder as well. Actually, directly porting the user interface is rarely
possible and also rarely makes sense. Instead, the user interface has to be completely rewritten.
This makes sure that the look and feel of the operating system is considered and also ensure
smooth operating on the destination system.

Motif/X

The MOTIF/X interface is the graphical user interface available for Unix systems. It uses MOTIF

and X WINDOWS to display its interface and provides various features to make working with the
LWB more comfortable. It was created using MOTIFATION (cf. 3.2.7).

This version of the interface can be used in addition or as a replacement of the ASCII, which is
also available for Unix systems.

Macintosh

The Macintosh version of the user interface, along with other modifications of the program,
makes it available to run the LWB on the Macintosh. Because the Macintosh operating system
does not support a shell, using the ASCII version of the LWB is not possible. Thus this inter-
face is the only one available on the Macintosh. Details concerning the implementation of this
interface can be found in chapter 6.

Interaction

To make maintenance of the LWB easier, as much of the source code as possible should be shared
between the different versions of the LWB. This means sharing of code between different user
interfaces, but also sharing between different operating systems.

To make this possible, the interface specific8 code has to be decoupled from the code of the rest
of the LWB. This allows switching the interface without forcing changes in the rest of the LWB
code.9

8 and for the reuse of operating system dependent code the system specific.

9 Unfortunately, the already existing version of the LWB did not already have such a decoupling and introducing it
would have required heavy reengineering of much of the LWB; Because this would have required too much work,
a complete decoupling could not be done.
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4.6 File Handling

The LWB is capable of reading and writing files, mainly session and configuration files. As
mentioned in section 2.5, file handling is a system specific task. Nevertheless, certain things
should be shared between the different LWB versions.

Because the Macintosh uses an operating system specific system of storing configuration val-
ues, configuration files of the Macintosh cannot be used with other systems. Nevertheless, the
MacLWB should be able to handle the shell based startup scripts used by the ASCII Version of
the LWB.

Session files10 should be compatible between all systems. Thus, a session file from an XLWB
session can be used with the MacLWB as well.

4.7 System Specifics

Several aspects of the LWB code can only be implemented using system specific code. The
following lists the system specific parts of the LWB. These parts have to be implemented in a
way that allows their exchange and adaptation without interfering with the rest of the code.

4.7.1 Interrupts

Interrupt handling is highly system specific. Not only the name and calling conventions of the
functions differ for the various operating systems, but the interrupt handling in general can be
totally different. While Unix supports the standard C interrupt handling, the Macintosh does not
really have an interrupt handling at all.

Thus, besides interrupt handling, there has to be another way of dealing with user interrupts to
allow the same features on all supported systems (see the following section).

4.7.2 Periodical Tasks

Mostly because the Macintosh does not really support interrupts, periodical tasks have to be in-
troduced. This is operating system specific source code that is called at periodical times through
program execution. This allows the different operating systems to carry through all tasks that the
system has to complete while running a program.

Furthermore, this easily allowed the introduction of thelimitstart() andlimitstop()
commands, which allow to limit the maximal computation time that may be used by a computa-
tion, forcing a break in execution if the time is surpassed.

10 these are files containing all the text that was entered into the LWB, along with all results that were returned.
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4.7.3 Timing

Timing is operating system specific as well. Unlike the interrupt handling, timing issues don’t
vary too much from system to system. Thus, only calling conventions and the names of the
functions differ from system to system. Furthermore, the number of clock ticks fitting into a
single second vary.

Timing is used for thelimitstart() andlimitstop() commands mentioned above but
also for the timing commands used to determine the execution time of one or multiple LWB
commands (timestart() andtimestop() ).

4.8 Additional Parts

The LWB contains other important parts, which have to be considered when porting. Different
to the parts mentioned above, the following parts don’t require much changes when porting. It
is normally enough to make sure that these parts can be compiled on the target system. Other
problems rarely arise. The parts listed below are briefly described to give a complete overview
of the LWB. Additional information can be found in [43] or [29].

4.8.1 Modules

The modules encompass the most important part of the Logics Workbench. They contain the
various algorithms for the different logics to actually compute results. While other parts of the
LWB provide functionality for user interaction or general data structures, the modules contain
the real algorithms, like the automatic theorem provers.

Because the implementation of the various modules only use standard C++ code, they don’t have
to be changed much for different operating systems. What has to be adjusted are mainly compiler
specific issues, i.e. things that are valid for one compiler but not allowed in another one.

4.8.2 Parser

The parser is the part of the LWB that gets the user input and prepares them for execution. It
takes the user input and splits it into commands and expressions. Then it uses functions and data
structures of the kernel and the modules to execute the commands and compute the results. The
parser also contains the LWB programming language with its debugger.

Because no system specific parts are contained in the parser, it does not have to be changed when
porting it to another operating system. The only problematic part is the automatically generated
parser usingLEX (cf. 3.2.5) andYACC (cf. 3.2.6). Because these tools are not available on all
systems, the generated code has to be copied to other systems instead of individually generating
the parser on each system.
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4.8.3 Kernel

The kernel contains the general parts of the Logics Workbench that are used by all modules
and other parts of the LWB. It contains the basic data structures used for handling formulas and
expressions, as well as the internal structures necessary to handle all user and system defined
functions and expressions.

The kernel should not contain any system specific code, instead using these parts from the user
interface or other system specific parts of the LWB. This way, the kernel can be ported to other
systems as easy as the modules or the parser.
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Porting and Maintenance Steps for the
LWB

This chapter describes some of the steps that were done to create the Macintosh version of the
Logics Workbench. Several of the steps detailed below allow any program to be more portable,
sometimes even without a focus on a specific operating system. Additionally, some steps listed
below are not necessary for porting but generally make the maintenance of a program and its
development environment easier.

This chapter only contains a rough overview of the implementation of the steps and mechanisms
involved in porting the LWB and of ensuring its maintenance. More detailed information about
the implementations of the graphical user interface of the MacLWB is presented in the next
chapter. Additional details to the steps below, can of course be found in the source code of the
parts concerned.

5.1 Prerequisites

When the implementation of the MacLWB was started, a Unix Version of the LWB was already
finished, including a prototype version of the XLWB with a graphical user interface. Thus, most
of the implementations necessary for the Unix version of the LWB were already done. These
things needed to be ported in order to create the MacLWB.

The LWB was only running on SOLARIS systems, though. Furthermore, only the SUN CC

compiler was used to compile the program. To make transition to the Macintosh easier and
to additionally support the LINUX operating system the, Unix version had to be changed as
well. This chapter contains information about these changes and also general information to be
considered when creating a program that should run on different Unix systems.

The chapter uses the different parts of the LWB introduced in the previous chapter as a guideline
to describe which steps were done to make the LWB more portable and ease maintenance, and
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finally to create the Macintosh and Linux versions. It also contains some general steps that were
done to make development easier and to ensure future maintenance of the LWB.

5.2 Modularization

To make the internal structure or larger programs clearer, they are often separated into different
modules. These modules are more or less independent from each other and thus make them
easier to oversee and understand, mainly because only smaller parts have to be studied at a time.

The same technique can be used to make a program more portable. Instead of mixing system
specific code with the rest of the program, it is put into on or more modules. This allows to
clearly ascertain which parts need to be adjusted.

The LWB already used modularization for the kernel, parser, and of course for the modules
themselves. System specific code on the other hand, was spread over the whole program, and
thus needed to be collected and grouped together.

5.2.1 Strategies

Before actually being able to start to extract the system specific parts, they had to be identified.
The previous chapter lists mainly two kinds of system specific code. One is the complete user
interface. As mentioned, user interfaces are generally hard or impossible to port to another
operating system. Thus, they are clearly system specific and need to be separated from the rest.
The other is code includes code that requires system specific functions or data structures. This
includes the interrupt handling, timing and the periodical tasks.

When the problematic parts of the code are identified, there are several possible ways to separate
them from the rest of the program.

Complete Detachment

As part of the system specific code, the user interface can be completely detached from the rest of
the program. Such a detachment actually splits a program into two new programs, one containing
the user interface and the other the rest of the original program.

A complete detachment of the user interface from the computation part of the program brings
several benefits. Foremost, the part containing the non-interface part is most certainly quite easy
to port. Furthermore, it allows multiple, distributed computation parts to be used with a single
interface. This includes the use of the program via a network connection.1

1 the programs for mathematical symbolic computations MATHEMATICA and MAPLE both support multiple oper-
ating systems and in their newer version both make use of complete detachment.
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A complete detachment also has drawbacks, though. Foremost, implementing a detached user
interface requires a lot of work. The detachment requires the implementation of a communica-
tion interface to allow the program to exchange the necessary data, if necessary over some sort
of network. The interface is likely to be system specific, and thus may itself porting more com-
plicated. Furthermore, this solution is hard to incorporate into an existing program, because a
lot of redesign would be required. It is much better to actually use complete detachment when
development is started.

For the LWB, the situation is even worse. The parser and the symbol table of the LWB would
have to be incorporated either into the interface or the computation part. Both solutions immedi-
ately bring up serious problems. If parser and symbol table are a part of the computation part, the
client/server use or the use of multiple computation parts are no more possible, thus removing
one of the main advantage of a complete detachment. If they are part of the user interface, then a
big part of the LWB kernel has to be present in both, the user interface and the computation part.
Furthermore, kernel and parser would have to be heavily redesigned.

For these reasons, a complete detachment was no implemented. Instead, a simpler, more re-
stricted solution was used (see below).

5.2.2 Abstract Interface

Instead of completely separating the user interface from the rest of a program, it can be con-
ceptually separated by using interface functions. The same can be done for all system specific
parts, not just the user interface. Thus, it stays a part of the same program but is clearly separated
from the rest of the code. These modules, containing user interface and system specific code, are
independent from the rest of the program. They communicate with the rest of the program by
using special interface functions, grouped together in the abstract interface.

The abstract interface remains the same even if some system specific parts are changed, changing
the system specific modules does not require to change any code in the rest of the program. This
makes porting much easier and additionally prevents the introduction of new bugs into already
existing code. Furthermore, it allows to clearly detect system specific parts, because they are all
collected into specific modules. Thus, when the program is ported, only these modules need to
be specially treated.

5.2.3 Technical Aspects

Technically, separation using an abstract interface is done by putting all methods with system
specific code into a special class. The same class declaration is used for all versions of the
program, while its implementation differs from version to version. This easily ensures that the
interface remains the same for all implementations, while allowing different implementations
for different versions. The building process has to make sure that the correct implementation is
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Figure 5.1: Schemata of an abstract interface

used for a specific system. The abstract interface corresponds to the bridge or adaptor patterns
mentioned in [19].

Figure 5.1 shows the relationship between different parts of the program and different operating
systems.

5.2.4 LWB Implementation

User Interface

The Logics Workbench uses the classinterface as interface between kernel and parser and
the user interface. The class only contains the interface functions, additional data is not necessary.

The implementations of the member functions of theinterface class are distributed over
different files. The fileinterfaces/basic/interfaceToLWB.cpp contains the imple-
mentation of the interface functions called from the user interface. It would be possible to directly
call functions in the computation part of the LWB. But by using interface functions, the compu-
tation part is separated from the user interface and thus changes in the computation part don’t
require changes in the various user interfaces. Because there are multiple implementations of the
user interface, such a change would otherwise require changes in all the implementations for the
different systems.

The implementations of the member functions of theinterface class for the functions called
from the computation part are stored in different files, depending on the interface and operating
system to be used. For the Macintosh, the implementation is stored ininterfaces/Pow-
erPlant/interfaceToGUI.cpp . The Unix implementation for the XLWB is stored in
interfaces/Motifation/interfaceToGUI.cpp and the one for the ASCII LWB is
stored in the fileinterfaces/ASCII/interfaceToGUI.cpp .

The building process automatically compiles and links the desired implementation to the final
program created. Only one of the implementations is present in the final program, thus no addi-
tional steps are necessary to determine which functions to call at runtime.
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unsigned long
systime::clockticks()
{

return clock();
}

Table 5.1: example implementation ofclockticks() for the Macintosh

unsigned long
systime::clockticks()
{

static tms procTime;

times(&procTime);
return procTime.tms_utime;

}

Table 5.2: example implementation ofclockticks() for Unix

System Specifics

The system specific parts are put into several classes and thus also use multiple abstract inter-
faces. The interrupt handling is access using theinterrupt class, the timing functions use
thesystime 2 class, the periodical tasks theperiodical class, and the process handling for
external program in thesysproc class.

As with the user interface, the declaration of the class is the same for all systems (insystems/
generic/interrupt.h etc.) while the implementation of the member functions is different
for the Macintosh and for Unix. The implementations are thus stored in the system specific
directoriesinterfaces/PowerMac andinterfaces/unix .

Analogous to the user interface, the building process only compiles and links exactly one version
of the implementations to the final program.

Example 1 Implementation of System Specific Functions
As an example for the implementation of a system specific function using abstract classes, we
look at the methodclockticks() . This function determines the number of clock ticks that
passed so far. This information is used to compute the time required by the LWB commands
timestart() /timestop() andlimitstart() /limitstop() .

The implementation of these functions for the Macintosh and for Unix is shown in tables 5.1
and 5.2. As can be seen, the interface is the same for both functions. Thus, somewhere in
the computation part of the LWB, the function callclockticks() calls the correct system

2 the nametime is already used for system specific purposes, as well as the nameprocess .



68 Chapter 5: Porting and Maintenance Steps for the LWB

dependent function and returns the result. The calling of the function does not change, even if
the implementation changes.3

5.3 Building and Compiling

The building process had to be changed for several reasons. First of all, due to the fact that
more developers were starting to make changes to the LWB, a revision control system had to
be added. Furthermore, due to space considerations, the makefile had to support a global and
a local version. Additionally, some tasks were added to the building process to make overall
maintenance easier.

5.3.1 General

The general goal of the building and compiling process is the creation of the executable program
which can then be run. Depending on the development environment used, this can be done in
different ways. When a graphical development environment is used, then all the details of the
building process are done by the development environment and need not concern the developer.
All that is required is to define the building and compilation options once and to make sure that
all required files are included in the building process.

If a text oriented development environment is used, then the building and compiling process
has to be organized in some way. While this requires additional work, it also allows to include
additional tasks into the building process, as mentioned in the previous chapter. The rest of this
section only deals with the steps that were done for the text oriented building and compiling
process used for the LWB on Unix systems.

5.3.2 Local and Global Version

Space requirements for the sources and auxiliary files of the Logic Workbench are quite high,
especially if all files have to be stored multiple times because several developers work on the
program. To solve this, a distinction was made between a local and a global version of the LWB
development.

The local version contains all the source directories in which a developer wants to make changes.
Parts of the LWB that are not changed are taken from the global version. Thus, the local version
is different for each developer, while the global version is the same for all.

3 unless the interface is changed, which would require the adjustment of all implementations for all systems as well
as all parts actually calling the functions concerned.
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The global version on the other hand, contains all sources available. The global version is used
to provide the files that are not part of the local version, but also to provide a complete, stable
version of the final program. The global version is used in the end to create the final product.

Space

The distinction into a local and global version clearly saves disk space. Each developer only
needs to have those files locally which he intends to change, instead of copying all files. It
nevertheless allows each developer to change any part of the final program without interfering
with other developers.

Speed

Speed is another advantage of the local and global versions. The compilation of global parts of
the LWB has to be done only once for all developers. Thus, overall compilation time can be
drastically reduced, again without disadvantages.

Implementation

The building process with MAKE does not need much changes for a local and global version.
Instead, the set up of the development environment has to be done more complicated. It has to
make sure that the local parts are correctly set up and that special links are generated to be able to
automatically use the global parts without interfering with the general building and compilation
process. All the set up is done with the MAKE targetprepare .

5.3.3 Configuration

Because development environments tend to change over time, the building process needs a way
allowing it to be configured easily. Additionally, the configuration has to support individual
changes for specific users without interfering with the configuration of other users. This allows
easy adaptation of the building process to the needs of single users without influencing the gen-
eral building process of other users. The configuration must also support the global and local
versions mentioned above. This includes the definition of which parts should be made local and
which ones should be take from the global version.

Implementation

The LWB on Unix systems uses the MAKE tool to manage the building process (cf. 3.2.3).
MAKE bases the whole building process on makefiles, text files containing rules and variables
defining how a program is built or another tasks is carried through. All configurable parameters
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of the building process are stored in variables. These variables are used for building instead of
directly using some specific values, thus allowing easy management of the whole process.

Because the LWB uses many different directories, each requiring an ownmakefile , these
configuration variables have to be collected in a single external file. This is done in the file
Makefile.default , which contains the default configuration for all users, and all directo-
ries.

As mentioned, each individual developer should be able to modify his personal configuration
without interfering with the default configuration. For that reason, after reading the default
Makefile, the fileMakefile.local is read. This file may set any of the variables of the
configuration. Because MAKE only uses the most recent definition of a variable, variables from
Makefile.local always override the ones from the default configuration.

Additionally, the building process has to be able to differentiate between different versions to
build. This is done by automatically use a version specificMakefile.local file, which con-
tains all version specific settings, including which interface to build and which implementation
of the abstract interfaces to use.

5.3.4 Dependencies

When building a program, the building process has to decide, which files need to be recompiled
and for which files the compilation results of the last compilation can be reused. Although it
is always possible to just make a rebuild of all files, this would require much more compilation
time.4

For these reasons, the building process needs a way to find out which files are required to re-
compile. Clearly, all files that changed since the last compilation have to be compiled anew. But
because C/C++ allows the inclusion of other files, a file must also be recompiled in one of the
included files was changed. Thus, to check if a file needs to be compiled, not only the file itself
has to be checked for modification, but also all included files, the so called dependencies.

To be able to do this, the building process needs to know all the dependencies of a source file.
This information can either be entered manually or generated automatically. An automatic gen-
eration of the dependency structure is not without problems but is much safer, because changes
in the dependency structure are taken into account when compiling.5

4 when first developing for the LWB, compilation of all files of the LWB required approximately 30 minutes; with
the faster computer today it still takes about 5 minutes; too much time to wait for a small change.

5 if the dependencies are not up to date, a file that actually needs compilation might be left out, possibly resulting
in a faulty program.
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Implementation

Automatically generating all dependencies each time compilation is done was too time consum-
ing, even if only the dependencies are recalculated for changed files. Thus, the generation of the
dependencies has to be initiated by hand, using a predefined MAKE target6. MAKE then uses the
compiler to generate the set of files included from a file and stored them in a special dependency
file (makefile.dep ), which will be automatically used for future compilations. The target
depend upd is provided to store the current set of dependencies into the global installation.

Initiating the generating the dependency information by hand is also necessary to make sure that
the dependency information is up to date in respect with the global installation. If one user adds
a dependency to the global version, all other users need to take care of that automatically. If
the dependencies are generated automatically, it could be possible that this global information is
lost.

5.3.5 Multi-User Support

As mentioned in 4.4.2, revision control is required for every larger development project. There
are several tools available to do the revision control, namely RCS and CVS. The building and
compilation process has to work with these tools to always use the correct set of source files.

For the LWB, RCS was selected as revision control system, mainly because CVS was not yet
available and the network support provided by CVS was not required because all users have
direct access to the same repository.

Using RCS allows to automatically fetch the newest revision of a file when compiling, even if
the file was changed by another user. Thus, it automatically makes sure that the newest files are
used.7

Preparation

As mentioned, RCS requires access to a common repository for all developers. This can easily
solved by using file system links to access the global repository. These links need to be set
up for each developer. This process is also integrated in the building process with MAKE by
providing the targetprepare which sets up the complete development environment for a user.
The includes the correct creation of links to the RCS repository.

6 the targetdepend , initiated withmake depend

7 this is not possible with CVS, where new files have to be fetched from the repository by hand; although this
is more complicated, it has the advantage of better control of which files are compiled, because no files are
automatically copied.
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5.3.6 Documentation

As with other development tasks, it is essential that the program documentation is generated
automatically. Thus, the building process has to include rules and commands to generate the
documentation as well. For the MAKE tool, documentation can be treated just like source files,
thus it is no problem to integrate the documentation into the general compilation and building
process.

The documentation is automatically generated from LATEX sources using variousPERL scripts
written by Alain Heuerding. ThePERL scripts translate the LATEX sources into several ASCII
and HSC files. The HSC files are then used to automatically generate the final HTML files.
This intermediate step makes it possible to easily change the layout of the pages without having
to change the translation scripts. At the same time, all the pages remain static, allowing an
installation of the documentation anywhere desired.8

5.3.7 Installation

The creation of the final installation packages is done in several ways. On the Macintosh, the
INSTALLER MAKER is used and Linux uses RPM. Both tools cannot be integrated into the
general building process. The generation of simple compressed archives, though, can be easily
integrated in the general building process with MAKE. Thus, the creation of the installation
package can be fully automized. The building process provides the targetpackage for this
purpose.

Additionally, the building process also allows the creation of source packages, containing all
source files of the program. Using the building process for this task has the big advantage, that
automatically the same files are stored in the source package that are used to generate the final
program.

5.3.8 Tests

One of the most important tasks of software development is testing the final application. This
task is so important because it helps ensuring that an application works correctly. This not only
means that the application runs without crashing but also has to make sure that the computed
results are accurate.

For the LWB, this means that all algorithms have to be checked for two criterias. First, the testing
has to make sure that the algorithms terminate without crashing or otherwise producing errors.
Second, testing has to ensure that the results obtained are correct, thus the algorithm produces
the correct result, at least for the examples tested.

8 the layout change could also be done using server side includes or other dynamic pages, but then the pages would
require a specially configured server to be viewed.
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It is not easily possible to test user interfaces, especially graphical ones. Thus a test of these
features of the program was not done.

Implementation

As the previous task, testing was also implemented by including a special target into the make-
files. The target used istest , thus with make test testing can be initiated. The actual
testing is then done by a perl script, which feeds a special test file (extension.lwb ) to the LWB
executable. The resulting output is compared to a correct, manually computed file (extension
.lwbout ). If the results don’t match, a warning message is printed.

Using this test facility, it is quite easy to check that code still works after making changes. On
the other hand, the testing requires the creation of test files with the commands to test and also
writing and manually computing a file with the correct results.

5.4 Compiler

An important step when creating a potentially portable program is to compile it with different
compilers, even if it is on the same system. Different compilers, although supporting the same
programming language, generally interpret source code in different, sometimes surprising ways.
Code that quietly compiles on one compiler may generate a lot of warnings on another compiler
or even produce compilation errors. Most of the time, these problems arise with code that is ac-
tually faulty and needs to be corrected but somehow compiled without errors or warnings. While
removing those errors and warnings is time consuming, it nevertheless assures that the program
is more stable and can be more easily compiled on other systems and with other compilers.

For the LWB, the change to another compiler was required because of the port to Linux. The
SUN compiler used so far was not available, thus another compiler had to be used. The change
to a new compiler allowed to detect several problematic and even some outright wrong pieces of
code.

5.5 Scripts

Several scripts were necessary to ease the installation of the LWB as mentioned in 4.1. The
following steps are only necessary for the Unix versions of the LWB and do not concern the
Macintosh version. On the Macintosh, the installation does automatically take care of the neces-
sary adjustments during the installation.
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5.5.1 Startup Script

To make it possible to install the LWB from a simple compressed archive without requiring
several manual steps after the installation, several things have to be done before starting the
LWB. That means, instead of adjusting the environment after the installation, the same steps are
done each time the application is run. All the things that can be done after the LWB is actually
started are done in the program itself. Only steps that need to be done before the application is
started are done in the startup script.

The program can be started by simply executing the startup script. The script automatically sets
up the environment as necessary and then simply starts the LWB application itself.

The startup script makes the following settings to the environment:

• determine in which directory the dynamic libraries are stored and add the determined value
to the environment variable for the dynamic libraries9,

• check if there is a configuration file to read and give the found filename over to the LWB
executable,

• for the XLWB additionally add the directory where the fonts are stored to the X WINDOWS

font path10.

The startup script for the ASCII LWB is shown in figure 5.3. The script for the XLWB addition-
ally just contains the setting of the X font path.

5.5.2 Invocation Scripts for External Programs

Scripts are not only used for calling the LWB itself, but also every time the LWB calls an external
program. Currently this is the case for the help system and the ProofWish tool (cf. [4]).

Again, an intermediate step between the LWB and the environment serves to decouple the appli-
cation from the external programs used. Thus, the invocation details used to launch an external
program can be changed without requiring changes of the source code of the application.

The invocation script for the LWB help system is shown in figure 5.4. This default script calls
NETSCAPEwith the appropriate page to show.

9 LD LIBRARY PATH

10 via xset
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#!/bin/sh
\# variables that need contents
\# $dir: directory with the path to the executable (may contain
\# relative paths)
\# $fonts: directory with the path to the fonts (may NOT contain
\# relative paths)
\# $lib: directory with the library path of the lwb (may contain
\# relative paths)
\#

if test -h $0; then
echo "Sorry, the LWB cannot be started via a symbolic link !"
exit 1

fi

\# determine the directory in which the current script is located
if test ‘uname‘ = "Linux"; then

dir=‘dirname $0‘
else

dir=‘which $0‘
dir=‘dirname $dir‘

fi

dir=‘/bin/sh -c "cd $dir; pwd"‘
lib=‘/bin/sh -c "cd $dir/../lib; pwd"‘

if test ! -f $dir/lwb.exec; then
echo "Executable $dir/lwb.exec not found, aborting !"
exit

fi

# set the LD_LIBRARY_PATH to the corresponding directory
LD_LIBRARY_PATH=$LD_LIBRARY_PATH${LD_LIBRARY_PATH:+:}$lib
export LD_LIBRARY_PATH

echo "Starting the LWB, please wait..."

\# if there is a configuration file, we use that as well
if test -f .lwbrc; then

$dir/lwb.exec .lwbrc $*
else

if test -f $dir/.lwbrc; then
$dir/lwb.exec $dir/.lwbrc $*

else
$dir/lwb.exec $*

fi
fi

Table 5.3: LWB startup script
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#!/bin/sh

netscape -remote "openURL("$1")" 2> /dev/null
result=$?

\# netscape is not yet running
if [ $result -ne 0 ]; then

netscape $1 &
fi

Table 5.4: Launch script for the LWB help system
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MacLWB Implementation

6.1 Introduction

This chapter describes the structure and implementation of the graphical user interface (GUI) of
the LWB for the Macintosh (MacLWB). While earlier chapters showed why something has to be
done in a special way, this chapter shows how things were really done in the end. This chapter
only contains information concerning the Macintosh version of the LWB. While a version for
Linux systems was also done, using the strategies described in the previous chapters allowed to
implement this version on-the-fly, without much additional considerations.

The tools and utilities described in chapters 3 were heavily used in the creation of the user
interface. The METROWERKSCONSTRUCTORwas used to graphically create the positions of
the individual interface elements. The underlying code had to be created normally, though, with
all the limitations given from the use of the POWERPLANT library structure, as mentioned earlier
(cf. 3.1.2).

Some side glances to the graphical user interface of the Unix version will be done, to show both
versions are used the same way. At the same time the native look and feel of the Macintosh
version is preserved. The versions only differ where the general look and feel of the Macintosh
differs with the one of Unix.

The first part of this chapter will deal with the user interface from a users point of view, i.e. it
will briefly show how the Logics Workbench on the Macintosh is used and what features the
user interface offers (more details are available in the LWB help pages athttp://www.lwb.
unibe.ch ). The second part of the chapter takes a closer look at the implementations of the
functionality described in the first part.

77
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Figure 6.1: MacLWB: startup message

Figure 6.2: MacLWB: main and info windows

6.2 A User’s View

The first thing a user sees when starting the Logics Workbench on the Macintosh, is the about
message, a small display showing the version number and logo of the LWB (see figure 6.1). It
automatically disappears after a short time, to be replaced by the main and info windows of the
LWB (figure 6.2). The LWB is now fully started and ready for user input.

First attention will be focused to the main window, the most important part of the user interface
and later to the info window.

6.2.1 The Main Window

The main window, as its name implies, is the central input and output interface of the MacLWB.
All user inputs are entered in this window and here all results of the LWB are displayed.
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Figure 6.3: MacLWB: main window after entering some commands

Beside the standard interface elements of a window, like close or resize elements, the main
window additionally has three main elements. These are the regions, the module display and the
memory display.

Regions

In the beginning, the main window only contains three things, as shown in figure 6.2. The blue
bar is the so called input region. It is used to enter formulas and commands. Any text entered
here will be given to the LWB parser for interpretation and execution. Right below the input
region is its associated output region, shown as a yellow bar. This region will contain the output,
i.e. result of the statements given in the input region.

Figure 6.3 shows the same regions after some commands have been entered and the LWB gen-
erated some output. As can be seen, the LWB automatically generates a new pair of input and
output regions after the first one is completed. Thus, previous in- and outputs are still visible
and accessible for copying and pasting. Of course it is possible to navigate in and between these
input and output regions using the cursor keys or by selecting a specific text position with the
mouse pointer.

Of the three parts mentioned at the beginning of this section we have looked at two so far. What’s
left is the small triangular button just left of the input region. This button can be used to shrink
its associated input and output regions. When the triangle points down, the complete input and
output regions are displayed. If the triangle is clicked, it changes to pointing right and now only
the first line of the input region and no output region is displayed. Another click on the triangle
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Figure 6.4: MacLWB: main window with some regions hidden

shows the complete input and output region again. This can be used to get a better overview of
the whole LWB session by hiding currently not used information. If some sort of indication is
present in the first line of the input region to what is stored in that input/output region pair, then
a desired input/output region can easily be found afterwards. Figure 6.4 shows the same session
as in figure 6.3, but this time with some of the regions hidden.

Additionally, there is third type of region available to the user. The so called text region is a
region where text can be entered which will not be executed or evaluated at all. Regions of this
type are mainly used for documentation. Figure 6.5 shows an example.

As shown in figure 6.5, each type of region can have its own fore- and background color and its
own font, all configurable by the user.

Module and Memory Display

On the bottom border of the main window are two displays showing information about the current
state of the MacLWB. On the left side is the module display, showing the current order of loaded
LWB modules. Functions called are searched in the modules in the order shown. Figure 6.6
shows a MacLWB session with several modules loaded.

As shown in 2.11.2, the Macintosh provides each application with a set amount of memory as
defined in the FINDER. For the MacLWB, it is hard to determine the amount of memory required
beforehand, because it highly depends on the kind of computations done. For that reason, it is
essential for the user to know how much memory is free for the application to use. This helps



6.2 A User’s View 81

Figure 6.5: MacLWB: main window with some text regions

Figure 6.6: MacLWB: main window with the module and memory displays
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preventing low memory situations. Given that information, a user is able to adjust the preset
amount of memory in the FINDER if not enough memory seems to be available.

The MacLWB shows the free memory in the bottom right corner of the window border, as shown
in figure 6.6. This display is frequently updated to always show the current amount of free
memory.

6.2.2 Menus and Keyboard

The following sections describe the various keyboard and menu commands. Some of these com-
mands can either be called using the keyboard or using the menu entry, while others can only be
called from the keyboard or a menu, respectively.

The keystrokes and menu commands will only briefly be treated below. The LWB Help Pages
at http://www.lwb.unibe.ch/mac/keyboard.html contain a complete list and de-
scriptions of all keystrokes available in the MacLWB.

Navigation

As already mentioned, the cursor keys can be used to navigate the current input position, either
inside a region, or if a region boundary is reached, between adjoining regions. If at the same
time as using some cursor movement, the shift key is pressed, then the text passed over will be
selected, to be available for copying or deletion.1

Using the command keys, it’s possible to directly position the cursor at either the start or the
beginning of the line, using the left and right cursor key respectively, or at the beginning or end
of the whole region, using the up and down keys. Furthermore, using the option key in addition
to the left and right keys allows the hiding and showing of the current input/output region, while
the option key in combination with the up and down keys jumps to the beginning of the first or
to the end of the last region, respectively.

Region Handling

In addition to the navigation commands listed above, the MacLWB also supports several com-
mands dealing with complete regions and their contents.

First, cut, copy and paste works in all the regions as expected. Thus, it is possible to copy and
paste a text from one region to another. Of course it is not possible to change or enter text in an
output region, because they cannot be modified. Second, there is a command to insert a new pair
of input and output regions before the current one. It’s also possible to insert a new text region
in the same way. Third, input regions support automatic name completion. After entering the

1 This feature does not work over region boundaries, though.
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beginning of a name of an LWB symbol, pressing the tabulator key will automatically complete
the symbol name as long as it is unique, using the current symbol table. This works for predefined
functions and variables as well as for user defined ones. Lastly, there is a command available to
print a single region.

The return key has a special meaning in an input region. It terminates the commands entered and
hands them over to the LWB for parsing and computation. The LWB will compute the result and
show it in the corresponding output region, as well as creating a new input/output region pair, if
necessary.

Session Handling

Some commands are available to deal with complete sessions, i.e. all currently shown regions.

The reset command resets the whole session, i.e. all input and output regions are deleted and a
new, empty pair of input/output regions is created. As is the case with the X version of the LWB,
this does not affect the internal state of the LWB itself, i.e. all variables or functions keep their
values and are not reset.2

The MacLWB also has commands to save and load complete sessions. They only load and save
the text in the regions but won’t actually change or save the internal state of the LWB. Thus,
saving the current session will not store the variables defined or results obtained. Furthermore,
reading a session does not define or change any values, just sets the text of the regions. The
sessions need to be reevaluated to actually set the values again. This requires the repeated com-
putation of all results.

Lastly, there is a command to print all the current regions. The regions will be printed as they are
shown, using the same colors and the same font. Another command shows or hides all current
regions and one will reevaluate all regions, i.e. recompute the output of all regions starting with
the first and ending with the last.

Program Handling

As a last group, there are some commands that affect the whole MacLWB. Of course there is a
command to quit the MacLWB. Another commands allows to display the main help page (see
below for more information about the help system). While the MacLWB is computing a result, a
command is available to interrupt the computation and to return to editing. Of course, in such a
case, no result is obtained from the computation, but a computation that takes too much time my
be stopped.

Above, a command was mentioned that saves the text of the LWB regions without interfering
with the internal state of the LWB. Similarly, a command is available to save or read the internal

2 to reset the internal state of the LWB, thereset command is used; this does not affect the display in any way,
though.
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Figure 6.7: MacLWB: info window during a proof

state of the LWB. Commands for reading and writing the current configuration and for setting
up the page used for printing are available as well. Additionally, three commands allow to load,
unload and change the order of LWB modules. Last but not least, one command shows or hides
the info window and one sets the preferences of the program.

6.2.3 Info Window

Next to the main window, another window may be visible while working with the LWB, the
info window. This window displays information produced by the LWB algorithms. Output
only appears in this window, if the info level in the preferences is set to a value above 0 (see
below). The higher the info level setting, the more output will be generated. Especially for
proofs, the amount of output can be quite high, and thus slow down computation considerably.
The information in the info window can be quite useful to see in more detail what exactly happens
when the LWB computes a result. This is especially useful while debugging. Figure 6.7 shows
an example info window while making a proof with the infolevel set to 5.

The info window itself has two buttons, one to reset the window, i.e. clear its contents, and the
other to print the whole text.
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Figure 6.8: MacLWB: the preferences dialog

6.2.4 Preferences

The preferences are used to set the LWB configuration variables and to adjust the look of the
graphical user interface. First the configuration settings that influence the behavior of the LWB
and its algorithms will be explained. Later the ones that can be used to adjust the general outlook
of the MacLWB. Figure 6.8 shows the dialog used to set the preference values.

All the configuration settings influencing the LWB itself can either be adjusted with the graphical
user interface or by using theset() command of the LWB. For a complete overview of these
variables look at the LWB home page athttp://www.lwb.unibe.ch . The values set in
the MacLWB preferences are stored in the LWB preferences file and are automatically reloaded
upon the next start.

The MacLWB allows to configure the following values:

Output Mode
This value defines how normal output is printed. It can be set to either ’output’, printing in
ASCII using normal characters for the logical operators, in ’ASCII’, using full words for the
operators, to ’LaTeX’ to print in LATEXor to ’pretty’, using special symbols for the logical
connectors.
Bracket Mode
This mode defines if all brackets should be shown or, because of associativity and operator
precedence, only the necessary ones.
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Help Mode
This mode chooses the type of help system to be used. Help information will either be shown
as ASCII text in the info window or as a web page, using the configured web browser.
Percents
This switch determines if a progress bar is shown when computing a result. Computing with-
out a progress bar may be a trifle faster, but does not give any indication how long a compu-
tation may take.
Infolevel
This defines the level of output generated in the info window. The higher the number, the
more output will be generated.
Cut Off
If this switch is set, then long output is cut off after some amount of text; this can greatly
increase computation speed if a lot of output is generated. This switch applies to the text in
an output region as well as to the one in the info window.

The following values can only be configured using the preferences panel and not directly with
LWB commands. They configure the user interface and not the LWB itself, thus setting them in
another version of the LWB would not make sense.

Infowindow
This switch determines if the info window will be shown at startup of the MacLWB or not.
Help Homepage
This defines the main page to be shown for the help system; this can mainly be adjusted if the
help files are installed locally.
Browser
This value specifies the program that is used to view the help pages; any browser compatible
with the standard Mac events can be used.3

ProofWish
This value determines the ProofWish tool used to display classical proofs. This tool is part of
the LWB installation, but nevertheless must be selected here.

Finally, there are several options which define the graphical look of the operating system, i.e. its
fonts and colors. It is possible to set the general fore- and background color of a window and to
set the fore- and background color and font of input, output, text, and info regions individually.

Font Dialog

The font dialog is a sub window, displayed whenever a font has to be selected. It allows the
selection of the font, its size and other display styles, like bold or italic printing. An example is
depicted in figure 6.9.

3 at least Netscape Communicator and Internet Explorer are compatible.
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Figure 6.9: MacLWB: the preferences font dialog

6.2.5 Help System

The MacLWB has the same two help systems as the other versions of the LWB, namely an ASCII
and a WWW version. The ASCII version consists on several text files containing descriptions
for all built-in functions. These texts are shown in the info window whenever the user issues a
help command.

Furthermore, there is the web based help system using the LWB web pages. These pages can
either be viewed directly from the main LWB page over the Internet or can be installed locally.
The former is easier to install and the latter faster to access. The correct page is automatically
shown as a reaction to a help request in the LWB. If necessary, the web browser selected in the
preferences will be started. Using special Macintosh events, the browser is informed to show the
correct page, either from the Internet or from the local disk. The information for both versions
of the help texts is taken from the same set of LATEX files, thus both versions contain the same
information.

Figure 6.10 shows an example help page of the WWW help system for the provable command
of the classical propositional calculus (cpc). Figure 6.11 shows the same information displayed
in the info window with the ASCII help system.

6.2.6 Progress Indicator

The progress indicator is a simple display to show the progress of a computation in the LWB.
It shows how much of a computation was already done and thus allows to estimate the time
required to finish the computation. Furthermore, it allows the user to stop a computation if it will
take too long. Figure 6.12 shows an example.
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Figure 6.10: MacLWB: WWW based help system



6.2 A User’s View 89

Figure 6.11: MacLWB: ASCII based help system
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Figure 6.12: MacLWB: progress indicator

6.3 Implementation

This section contains some information about the implementations of the features presented
above. The information below only shows a rough overview of how things were implemented,
detailing important parts only. Additional information can be found in the source code.4

After some notation remarks and a short overview over the predefined classes of the POWER

PLANT library, a first look goes to some general features that required implementation for the
MacLWB. Afterwards, a short look to the main classes used to implement the user interface is
made. As mentioned, the information given will not go into much detail.

6.3.1 Notation

This chapter uses several figures displaying the structure of and relations between the classes
used. The notation used in these diagrams is shown in figure 6.13.

Relations between classes are shown if there is an inheritance between two classes, one class is
a member of another or a class is referenced from another one through a pointer. Furthermore,
additional relations between classes are shown when they use each other in an other, important
way. For example, if a class is used in an interface or through another, not listed intermediate
class.5

The diagrams only show own classes and the first level of the system classes. No additional
details are shown for the system classes, for example the ones provided by POWER PLANT . For
more details on these classes see [24]. Thus a lot of classes used in the creation of the user
interface are not directly shown on the following figures.

6.3.2 POWER PLANT Predefined Classes

As mentioned in 3.1.2, POWER PLANT offers a lot of features to make the implementation
of graphical user interfaces easier. To achieve this, POWER PLANT offers many predefined

4 in the directoriesinterfaces/PowerPlant andsystems/PowerPC .

5 this is especially the case when a class is used in a window or dialog and put there in the Constructor; while the
window clearly uses the class, it is not necessary visible in the code.
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Figure 6.13: Class Diagram Notation
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classes that can be used. These classes can either be used directly or—if they lack some de-
sired functionality—they can be derived and extended with additional code.

The following gives a short, incomplete6 summary of the classes used:

Display Classes
LPane this is the base class for all displayable GUI elements used in POWER

PLANT .
LView this is a class that can hold several panes; it allows scrolling of a pane

inside the view, to display a pane that is larger than the window, for
example.

LCaption this is a POWER PLANT class used to display simple static texts, i.e.
captions.

LGACaption like LCaption this class shows some static text, this time with ad-
ditional background color handling; all classes starting withLGAfea-
ture background handling.

LGACheckbox this shows a check box in the user interface.
LGARadioButton this is a display element for a radio button.
LGAEditField with this class, a simple editable text field is displayed.
LWindow this is the class for a basic window, supporting all the standard be-

havior of Macintosh windows.
LDialogBox this is a derivation of theLWindow class, additionally supporting

button handling.
LGADialogBox this class is similar to theLDialogBox class but offers a more mod-

ern display style, for example background handling.
Utility Classes
LCommander this class is not directly visible in the user interface, but instead works

behind the scenes to provide the mechanism used for handling menu
and keyboard commands.

LHierarchyTable this class is responsible for the management of the cells of a hierar-
chical table; in the case of the LWB this means the management of
the regions. Unfortunately, this class does not support the automatic
placement of variable sized cells.

LPreferencesFile this is a special class for storing preferences values in a file; it mainly
supports localizing a preferences file and some basic reading and
writing methods.

6 incomplete, because we only look at the classes we will later derive from; some of these classes are derivations
again, but those won’t be detailed.
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Figure 6.14: Classes for background color handling

6.3.3 Background Color

At the time the MacLWB was created, the Macintosh operating system did not yet support col-
ored backgrounds. All elements of the user interface generally had a white background. The
POWER PLANT library already supported some basic coloring of buttons and the like, but there
were still some parts missing. For example, it was not possible to make an input region with a
background other than white.

Because the LWB uses background colors quite heavily to distinguish input from output text,
it was necessary to implement correct background handling for all the GUI elements used. For
most layout elements this meant to make sure that the color was set to the preferences value when
the object was created. This had do be done in addition to the normal initialization of the standard
classes, because most POWER PLANT classes don’t support background colors. For some of the
classes this was not enough, mainly for the edit fields. Because edit fields tend to change quite
a lot, they are often erased, which means they are overwritten with the background color. In the
case of POWERPLANT this meant that the fields were reset back to a white background. This had
to be prevented by erasing the background with the correct color at certain points of the POWER

PLANT layouting process.

Along with the correct handling of the background color, it was also necessary to implement a
way that allows the user to set these colors. This was done in the preferences (see below).

Most of the background color handling is implemented in the various classes for the GUI ele-
ments they represent. We briefly look at two classes here. First thecolCaption class, because
this class will not be detailed below and second theresColorEraseAttachment , a class
which is an auxiliary helper class to enable other classes to correctly handle their background
color. As shown in figure 6.14, the classes are simple derivations of standard POWER PLANT

classes, adding some additional features.

colCaption

The colCaption class adds background handling to the standard POWER PLANT caption
class. The class is capable of reading and writing its color values directly from the preferences.
Thus, it is more easily integrated into the MacLWB preferences structure thanLGACaption .



94 Chapter 6: MacLWB Implementation

resColorEraseAttachment

POWER PLANT supports an attachment mechanism allowing the attachment of instances of cer-
tain classes of objects7 to other objects8. These attachments will be called at predefined positions
in the layouting and event process of POWER PLANT , for example before layouting an object or
before actually handling an event. It allows the attachments to carry through some special task
for different classes. Thus, it is easier and more flexible than deriving a class.

The standard POWER PLANT classLEraseAttachment can be attached to any drawable
object to automatically erase its background before drawing it. This is enhanced by adding
correct background handling with values from the preferences inresColorEraseAttach-
ment . This attachment can be added to POWER PLANT classes as well as to own classes to add
background handling.

6.3.4 Printing

Printing of individual regions or a complete session is not supported in the X Windows or
ASCII versions of the LWB, mainly because printing on Unix systems requires the generation of
Postscript files, which is quite complicated. The POWER PLANT library, on the other hand, quite
nicely supports printing by allowing the creation of a virtual display containing the information
to be printed and then automatically convert this to Postscript, using the Macintosh operating
system.

Although POWER PLANT helps a lot when doing this, there are still several important things that
had to be done. First, the virtual display had to be created, a step which is not all that hard,
because this display is static and can’t be changed by the user. What had to be done though, is
the correct computation of page breaks. If possible, page breaks should not occur in the middle
of a region, but with possibly very large regions spanning more than one page, this cannot be
avoided all the time. In such a case, the page break should not occur in the middle of a line, of
course. Furthermore, page counters, footers and headers have to be computed as well.

This required several changes and enhancements to existing classes to seamlessly support print-
ing of regions. Mainly the classeseditRegion andregionTableCell had to implement
support for printing (see below for more details).

6.3.5 Menu and Keyboard Commands

Whenever a user presses a key or selects a menu entry, he expects some sort of reaction from the
program. Sometimes, this is as simple as just displaying the key pressed, but other commands

7 derivations ofLAttachment

8 derivations ofLAttachable
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Figure 6.15: Handling of keyboard events

require more than that. In 6.2.2 is an overview of the keyboard sequences and menu command
that are supported by the MacLWB.

POWER PLANT uses a special mechanism to deal with keyboard and menu commands. These
commands are translated into events that are sent to the currently active interface element. This
element can either directly handle the event or pass it up to its enclosing object.

Figure 6.15 shows an example of a simple window with a check box enclosed in a scrolling
view. It also shows the chain used to handle the keyboard event issued from the check box.9

This mechanism allows treatment of element specific commands in the element itself but may
relegate treatment of more general commands to superior elements. This way, commands directly
concerning the current element, can be implemented directly in the class of the element, while
passing on all other commands without the need to treat them in any way. It requires a strictly
hierarchical organization of all the interface elements, to make sure that these commands are
handled.

The handling of these commands made no additional classes necessary. Instead, all classes that
need to react to menu or keyboard commands define the appropriate handling methods which are
called when necessary.

6.3.6 Font Handling

Like most Macintosh applications, the MacLWB supports different fonts for the different parts
of the user interface. The fonts can be selected by the user in the preferences.

POWER PLANT itself supports fonts for all of its display elements containing text. Thus, the
MacLWB only has to make sure, that all display elements get and display new font settings

9 cf. chain of responsibility in [19].



96 Chapter 6: MacLWB Implementation

and 236
v 235
->231
<->234

llplus 188
times 187

˜ 194
dia 215
box 249

false 217
delta 182
mu 181
pi 230
Sigma 183
Pi 184
pi 185
Omega 189
chi 244
lambda 251

Table 6.1: example of a font translation file for the Konstanz font

whenever these are changed. This was solved by providing methods in each relevant class that
either directly update the fonts and the display or pass it on to their content classes.

Furthermore, the LWB supports so called ’pretty’ fonts. These are fonts that contain special
symbols for some or all of the logical operators used in the LWB. Unfortunately, different fonts
will most certainly have the special symbols at other positions inside their font definition. To be
able to support different fonts nonetheless, so called ’font translation’ files are used. These files
describe the positions at which the symbols used can be found in the font. When a new font is
selected, the MacLWB checks if there is a font translation file and if one is present, loads and
uses it to print the defined logical operators. Table 6.1 shows an example of a font translation
file.

One thing is not possible10 with these font translation files. If the input and the output regions
don’t use the same font, then copy and paste between these regions may fail. When copying some
text, the characters are taken as is. Thus, when the text is used with another font, the wrong or no
translation takes place. This could actually be solved translating the copied text into the standard
LWB format and by translating it into the appropriate font translation when pasting. This would
require interference with the Macintosh operating system, because the operating system handles
all copy and paste operations.

10 or at least not yet implemented.
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6.3.7 Object Construction

Most of the interface elements used in the MacLWB are arranged and positioned with the CON-
STRUCTOR tool. Thus, POWER PLANT needs a special mechanism to initialize these objects,
using the values defined by the CONSTRUCTOR. As so often on the Macintosh, this is done
using resources. The CONSTRUCTORtool stores all values concerning interface elements in a
special resource which is read when an object is created.

The predefined classes of POWER PLANT do this automatically and thus are automatically ini-
tialized. Own classes, on the other hand, need to read the initialization data when they are
instantiated. The CONSTRUCTORtool allows the setting of these values as well, thus the POWER

PLANT concept for initializing can easily be incorporated into own classes.

Some of the objects also need so called ’on the fly’ constructors. Such a constructor creates an
object dynamically, without using any values from resources. This is mainly necessary for the
regions, because the number of regions cannot be determined beforehand and regions have to be
added and removed dynamically while the program is running.

6.3.8 Preferences

A major part of the user interface deals with the preference values. This part has to deal with all
configuration values that can be adjusted by the user. They influence the graphical user interface
as well as adjusting the behavior of the LWB itself.

As described in 6.2.4, the MacLWB offers two dialogs dealing with preference values. These two
dialogs are implemented in their respective classes (prefDialog andfontDialog ) and have
to set the configuration values internally. Furthermore, they have to load the stored preferences
values at startup and to store changed values when the user saves the preferences. When the user
applies (or saves) preference values, these changes have to be incorporated into the user interface
and the LWB kernel, updating interface elements, if necessary.

A distinction is made between the preferences values for the graphical user interface and for
those setting internal states of the LWB. Setting, storing, and changing of configuration values
for the GUI is done in the preferences objects itself and thus automatically handled correctly.

The internal LWB values have to be configured differently. Because the values are used for
all LWB versions, they have to be stored and handled in a way compatible with all systems.
Furthermore to prevent discrepancies between values of the user interface and values of the
kernel, only one set of variables is stored for all versions of the LWB. Therefore, the LWB kernel
had to be changed to take its configuration values from an abstract interface function instead
of directly using it. This allows different versions of the LWB to implement different interface
methods, specially targeted for an operating system. For the MacLWB, this means to implement
an abstract interface that takes the values from the preferences, the same as for values of the user
interface.
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Figure 6.16: Class diagram of the preferences classes

These abstract interfaces and the dialogs were not the only thing that needed to be done when
implementing the preferences. The configuration needs to be stored in and loaded from a file.
On the Macintosh, special care has also to be taken to make sure that the values are stored in the
proper place.11 POWER PLANT partially supports the storing and loading of preferences values
by providing a classLPreferencesFile . This class only supports basic file handling. Thus,
functions had to be added to be able to save and load individual values as used by the MacLWB.

The classes used for handling the preference , including the dialogs, are detailed below. Figure
6.16 shows the class diagram for these classes.

prefDialog

This is the main dialog used for setting preferences values. This dialog displays the current
settings of the LWB and of the user interface. It allows to store the values and provides means to
change all configuration values. The nestedcurrent class is just a simple storage class used to
hold the current directory for file queries using the Macintosh file dialogs.

The class mainly fulfills the following tasks:

Value Management
TheprefDialog manages a set of values for the current settings and a set of values for the
currently displayed values, to allow a user to change the values without changing the stored
values. This is necessary to allow a user to cancel his changes and to revert to the last saved
values.

11 i.e. the Preferences Folder, wherever on the system it is.
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Commands
The class listens to commands, mostly pressed buttons, and execute their associated actions,
like

• get a color for an area’s background or foreground
• get a font, using thefontDialog class and dialog
• revert to the last saved values
• revert to the default values
• apply the changes made to the configuration to the LWB kernel and to the user interface

Display Update
The class adjusts its display to react to changes of configuration values, be they from user
manipulation in the dialog or by the execution of an LWB command. The dialog has also to
be changed if a value is changed through LWB commands.
External Program
The class manages filenames and directories of the helper applications, the web browser and
the Proof Wish tool. This is done by allowing the user to select an arbitrary program to be
launched either for the help system or for the proof display.
Values
The prefDialog makes sure that preference values are read at startup. It also provides
functions to load and store the preferences values.
Closing
Instead of closing the window and destroying the object, theprefDialog merely hides the
window when it is closed. This speeds up the display and also allows to easily store the values
in the class for later use.

fontDialog

This class is fairly simple and only needs to support the handling of the user interface. This means
handling the commands issued by pressed buttons and the like and then adjusting the display as
necessary. Furthermore, the class has to provide functions that allow theprefDialog to set
the initial values to start with, as well as a means to return the values selected by the user.

preferences

Thepreferences class is responsible for managing all configuration values of the MacLWB.
It mainly contains a list of preferences values for each type of data stored.

The class handles the following tasks:

Resource File
The class handles the Macintosh resource files used, i.e. writing and reading the actual files.
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Values
As main part, the class provides methods to get individual configuration values stored. Values
of the following types are possible:

• color,
• font characteristics (type, name, size, color),
• integer,
• string,
• dimension (with and height of windows).

The values are automatically read from disk the first time they are used and are written back
if they were changed when the instance is destroyed. Furthermore, the configuration values
can be reverted to the last saved or set back to the default values.
Dimensions
The class can adjust the dimension of a window to a dimension stored in the configuration. A
dimension of a window can also be stored in the corresponding preferences value.
Files
The class allows to save the values of the configuration variables to a user defined file or to
load the configuration values from such a file.

The nested classpaneDim is used to provide a place to store the dimensions of a pane, including
windows. It does not provide any methods other than a constructor and is solely used to store
values.

prefVariable

While the preferences class manages the whole set of preferences variable, this class is
responsible for the management of a single configuration value. Thepreferences class uses
an instance of this class for each configuration value to be stored.

The class provides the following features:

List Management
The class provides simple list management by providing a pointer to the next value. This
is used to manage multiple values inpreferences .
States
The class handles three different states of a value in the resource file: A default value, the
last saved value and the currently set value.
Resources
The class automatically releases the resources when the variable is destroyed. Furthermore,
it can save a resource to the resource file and tell the rest of the list to do the same. It can
also revert its value to the saved or default state of the variable. This is also propagated
further down the list.
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Files
The class can not only save its value to a resource, but can also save and load the value and
the rest of the list to or from a normal text file.

6.3.9 Regions

The regions are the most important part of the interface of the MacLWB. Here, commands are
entered by the user and the results are given back. This is also the part of the user interface which
changes most. Contrary to most other parts of the user interface, the regions are not static but
instead will often change in size and position. Furthermore, the user can add additional regions
or remove existing ones.

Unfortunately, the POWER PLANT library only rudimentary supports fields in which text can be
entered. While these classes support inserting and deleting of text, word wrapping etc., they to-
tally lack support for dynamically sized regions. The POWER PLANT classes support the resizing
of a single element of the user interface, but they do not automatically allow the repositioning of
adjoining elements. But because the input and output regions of the LWB directly follow each
other, a size change of one region has to change the positions of the following regions. Adding
even more complications, POWER PLANT internally uses no less than four different coordinate
systems to store positioning and dimension values, . Furthermore, methods and user elements
had to be added to support the expansion and collapsing of regions.

Several classes had to be implemented to handle a single region and to put multiple regions into
a list capable of correctly displaying all its regions, even if the size of one of its regions changes.
This has to be done by computing and setting the positions for the region whenever one of the
regions changes its size. These positioning adjustments had to be incorporated into the POWER

PLANT layouting process, without disturbing existing drawing procedures and by making sure
that the positions are not changed again by POWERPLANT . This includes the general positioning
of the interface elements as well as cursor positioning and scrolling.

The layouting process of the Macintosh operating system is quite inefficient, because many draw-
ing operations are done multiple times, to make sure the resulting display is correct. The addi-
tional level of the POWER PLANT layouting makes it even slower by adding even more repe-
titions. Additionally adding positioning and resizing operations for the regions, resulted in a
display that was much too slow. Considering that the LWB tends to output quite a lot of text, this
situation had to be greatly improved.

In the first version of the implementation, the display of the regions took much more time than
it took the LWB to compute them. Therefore, the speed of the layouting process was improved.
This was done first by ensuring that display changes were only done when really necessary, thus
preventing multiple drawings. In a next step, text added to a region was not shown straight away.
Instead, the display was updated only after a certain time passed. Thus, instead of updating and
redrawing the display each time a short text is added to a region, the display is updated after
some time only, incorporating all texts added since the last update. Much less updates had to be
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Figure 6.17: Region Classes

done that way, resulting in a much faster output with only a very short delay of showing results.
As a last step, the layouting process had to be adjusted to remove flickering caused by many
successive redraws. While the last step did in no way increase the speed of drawing, it made it
visually faster. Now a user can no more distinguish between time used for displaying and time
used for computing the results.

The implementation of all region specific parts is done in the classeseditRegion , region-
Table andregionTableCell . The first class actually handles the region itself, while the
last two classes are used for positioning multiple regions in a window. The class diagrams for
these three classes is shown in figure 6.17

editRegion

TheeditRegion class implements the following features:

Object Creation
The class is capable of creating objects not only using the Constructor resources but by di-
rectly constructing an object on the fly. This is necessary because a user can add an arbitrary
number of regions while the MacLWB is running. Thus at startup, only one set of input/output
regions is created using the Constructor method and all other regions are constructed and
added to the window on the fly.
Background Color Handling
As mentioned, theeditRegion has to correctly handle its background color, even when
text is changed in the input field.
Command
The keyboard commands dealing with a single region have to be handled by this class. This
includes name completion, command processing, cursor positioning and selection.
Size Adjustments
The class has to automatically adjust its size to match the amount of text entered. This is quite



6.3 Implementation 103

time consuming, because not only the size of the current region needs to be computed, but it
may become necessary to adjust the positions of the following regions as well.
Scrolling
Regions need to be able to be scrolled, either because a single region is larger than the window
it is in or because multiple regions exceed the size of their window. A region has to be able
to scroll itself to an absolute position, allowing the superior interface elements to scroll the
regions according to the wishes of the user.
Execute Insert, Delete and Print Commands
These three commands have to be handled by this class, although their keyboard sequences
are handled by the superior classes. The superior classes just delegate the commands to each
individual region affected.
Text Adding
TheeditRegion class provides a method to allow other parts of the MacLWB to add text
to a region. This method takes care of the size limits for edit fields on the macintosh12 and
initiates the updates of the display in specific intervals.
Reset
A region needs a way to be reset, i.e. to clear all its contents. This can either be as a reaction
to a user command or through some other part of the LWB.
Information
The class needs to provide some methods returning information about the current state of the
region. This includes the regions height and position as well as the text currently shown.
Expand and Collapse
The region needs to be able to expand or collapse itself. For output regions this means to
hide itself completely, while input and text regions only reduce itself to display their first line.
Again, this can either be the reaction to a user command or a direct call of the method by
some other part of the program.
Cursor Positioning
The class provides a method to set the cursor to a specified position in the text. This is mainly
used to allow cursor navigation between regions, for example if the cursor is moved from the
last line of a region to the first line of the following region.
Bracket Matching
To make input safer and easier for the user, closing brackets entered are automatically matched
with their opening brackets, visibly showing which two brackets belong together. If a bracket
is entered without a matching opening respectively closing bracket, then a acoustic message
is played.
Selection Handling
A region has to support the various ways of selecting text. The user can select text either with
the mouse, by cursor keys or menu commands.
Positioning
To make dynamic sizing and positioning of regions possible, they must provide a means of
positioning or moving them. This way, an enclosing interface element can move a region to a

12 no more than 32 KBytes of text may be present in an edit field.
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new position according to a size change of another region.
Printing
A region has to be able to print its contents, including handling of page headers, footers and
correct page counting.

regionTable

TheregionTable is responsible for handling the list of regions in the main window. It has to
manage all the positions and sizes of the regions and to readjust them, if necessary. This required
the following parts to be implemented in the class:

Drop Flag
The regionTable is responsible for drawing the drop flag, the little triangle left of each
input region. Because the drop flag is not directly a part of the region itself, its management
is done in the region’s enclosing class, i.e. theregionTable .
Expand and Collapse
Like regions, theregionTable supports collapsing and expanding. But this time, this
means to collapse or expand all regions at once, not just a single region. Thus, The command
has to be redirected to each individual region.
Insertions and Removals
The table allows the insertion and removal of input/output region pairs and of text regions, as
directed by user commands or other program parts. Again, the positions of affected regions
have to be adjusted accordingly.
Positions
The table takes care of all positions of its regions. This includes handling when a region
changes size or when a new region is inserted into the table. In these cases, the correct
position changes are communicated to the affected regions.
Scrolling
The whole table supports scrolling, allowing more and larger regions to be used than actually
fit in the window. The table supports automatic scrolling when text is entered or the cursor
position is changed, as well as user initiated scrolling when the scroll bar is hit or page up or
page down keys are pressed. The table determines which parts of which regions have to be
displayed and sets the values for drawing accordingly.
Command Execution
All the keyboard and menu commands that are not directly handled by a region or that may
be called without a current region, are handled in theregionTable . This includes the
commands to resize a region, add text to a region, scroll the table or a region, delete a region,
move the cursor between regions, and the collapsing and expansion of multiple regions.
Font Update
An update of fonts originating from a superior class is routed to all the individual regions in
the table.
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Printing
The table computes the page breaks that are necessary when printing the whole session, i.e.
all current regions.
Reevaluation
The regionTable supports the reevaluation of all input regions currently stored. This
means that all input commands are reexecuted, starting with the first region.
InformationThe table only supports access to the whole text of all presently stored regions,
but not to the text of individual regions.

regionTableCell

This is an auxiliary class used by theregionTable class to store the information of each table
cell. This class stores a pointer to the actualeditRegion along with the regions type. It is only
a wrapper for theeditRegion class. The main purpose for this class lies in the structure of the
POWER PLANT providedLHieararchyTable class. This class uses small, simple objects to
store the contents of each table cell. Because these objects are copied when adding them to the
table or when moving them around, it’s more efficient to use a wrapper class instead of directly
using the wholeeditRegion .

The class does not fulfill any other tasks and does not have any functions beside its constructor
and destructor.

6.3.10 Progress Indicator

Another, on the Macintosh especially important part to be implemented was the progress indi-
cator. It displays the amount of a computation already done. On the Macintosh it also allows to
interrupt the current computation.

The actual computation of the percentage values is part of the LWB algorithms and was reused
without problems. This information has to be displayed, though. This required to add some code
to display values, but also required changes in existing code. Earlier versions of the LWB directly
wrote the percentage information to the screen.13 Again, the main part of the LWB and the user
interface were decoupled using an abstract interface (cf. 5.2.2). Thus, when the percentage value
changes, an interface method is called. This method, depending on version of the LWB, does the
things necessary to update the display showing the value. For the MacLWB this means to adjust
the progress bar.

The user interface of the progress indicator must fulfill another important task. It must provide
the means to interrupt the current computation. This is done by providing a button which initiates
the interrupt. How the computation is actually interrupted is described in the next section.

13 more precisely to the info window.
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progressDialog


LGADialogBox


LCaption
 LPicture


Figure 6.18: Class diagram of the progress dialog class

The implementation of the progress indicator—excluding interrupt handling—is done in the class
progressDialog . The class diagram for this class is shown in figure 6.18.

progressDialog

This class implements all the layout specific tasks concerning the progress indicator. As already
mentioned, the actual computation of the percentage value is done in the LWB algorithms and
the interrupt handling is done in the system specific part (see below).

The implementation has to respond to the interrupt request either from the button or from a
keyboard or menu command. As with other windows, this window is also merely hidden from
view when it is closed, to allow faster display. Of course, the class has to provide a method
allowing the LWB kernel to adjust the value displayed.

6.3.11 Interrupts

Interrupts are used in the LWB to stop a lengthy computation right in the middle of its execution.
This can be used as a means to stop a computation that’s not worth waiting for or that simply
takes more time than is acceptable. The implementation of interrupts faces some problems.
The main problem when interrupting a program in the middle of its execution is that its current
state is unknown. Such an interrupt may easily result in inconsistent data, locking of resources
(files, devices, memory), and general loss of memory. Furthermore, somehow the program has
to continue, if possible with as little loss of data as possible and by returning into a stable state.

Earlier versions of the LWB used the interrupt handling mechanisms provided by Unix to in-
terrupt program execution. This mechanism allows to store the state of the machine (program
counter, registers, stack pointer) in a special data structure. Later in the program execution, as
a reaction to the interrupt, this state can be reloaded, forcing the program to continue right after
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storing the state, just as nothing had happened. This approach has the advantage to be easy to
implement. It only requires to add an initializing statement to save the state and an interrupt
handling routine which reloads and sets the machine back to a previous state. Thus, most part
of a program does not have to be changed. It has some serious drawbacks, though. First and
foremost, the Macintosh does not have a similar interrupt handling mechanism. While it is pos-
sible to interrupt a program on the Macintosh, this does completely stop the program. It is not
possible to interrupt a program and give it some way to react to the interrupt. Furthermore, the
program is interrupted at an arbitrary position in the program code. While the restoring of the
machine state adjusts the stack and the program counter to resume normal program execution,
it does not otherwise handle memory considerations. All memory that was not allocated on the
stack cannot be freed again and is lost. Furthermore, any cleanups that should have been done
when freeing such memory is not done as well. Worse, data may have been partially initialized
or modified and can now contain inconsistent data. Using such data later will probably create
serious problems.14

To take care of both of these disadvantages, a new, different interrupt handling mechanisms
was implemented, on Unix and especially on the Macintosh. Instead of allowing an interrupt
at arbitrary program position, an interrupt is only handled at certain positions. To achieve this,
each algorithm calls, at certain, safe positions, a periodical function. This function checks if an
interrupt occurred and if necessary handles it.

Instead of restoring a previous machine state to handle an interrupt to return to a stable program
state before the computation, an interrupt is handled by using the exception handling mechanism
of C++. This mechanism allows a chain of positions to be defined while a program is running.
This positions can, if necessary, be resolved backwards using the exception mechanism. As a
result, the program can resume at a desired, previous position.

This mechanism replaces direct restoring of machine states in a portable way, supported by the
C++ language. Furthermore, each affected function may include special exception handling
routines that allow to clean up resources, free memory and to make sure all data is consistent.
This mechanism can theoretically clean up all resources, including memory. This requires special
clean up routines each time memory is allocated. This means to make lots of modifications to
an existing program. But even if no additional routines are added, this solution is not worse
than the previous one and with little effort, the most important memory losses may be prevented.
Furthermore, future algorithms could provide the necessary exception handling routines from the
start, allowing a complete clean up of their resources.

As a result, existing algorithms only need to define the positions in their execution, where an in-
terrupt can be allowed. This is done by calling a special function at these positions. This function
checks for interrupts. If each algorithm makes sure that this function is called periodically, for
example at least once per second, the program can respond with little or now delay to an interrupt
request by the user.

14 of course, algorithms should always correctly clean up all memory previously allocated when terminating nor-
mally.
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For the Macintosh, this solution has several benefits. First, it allows the implementation of
interrupt handling at all. Second, periodically calling a function also allows to periodically give
the user interface time to update its display and to react to user input while a computation is
under way. Without this, the graphical user interface is blocked and does not react in any way to
the user. The user is only able to move the mouse pointer, but windows moved or resized are not
redrawn until a computation is finished. With this new approach, the user is even able to switch
to another application while the MacLWB still continues to compute. Furthermore, the user can
actually see that the computation is still done and that the computer is not crashed. This includes
the updating of the progress indicator, of course. A third benefit is the timing features that are
now possible (see next section).

The following two classes implement interrupt handling. As all system specific parts, both use
an abstract interface (cf. 5.2.2) to decouple the implementation of the methods from their callers.

interrupt

This is the main class responsible for interrupt handling. It handles interrupts by throwing an
interrupt exception and disabling further interrupts, to prevent additional interrupts while one is
being handled. It also provides a method to check if an interrupt is pending or if one is currently
handled. Furthermore, methods allow to enable, disable and initialize interrupt handling.

periodical

The periodical class is not directly involved in the interrupt handling process, but instead
provides a means for the LWB algorithms to periodically do certain things, including checking
for pending interrupts. The class contains a single method, which is periodically called by each
algorithm of the LWB. On the Macintosh, this method makes a limit check to find out if a time
limit has passed (see next section), checks for low stack space to warn the user and processes
Macintosh events. The last allows interrupt handling and gives the user interface time to refresh
its display while a computation is done.

6.3.12 Timing

The LWB provides commands to determine the time used by a computation. Adding the peri-
odical and interrupt tasks previously mentioned, allowed to add commands to set up a time limit
for a computation (limitstart() andlimitstop() ).

systime

Part of the timing process, i.e. theperiodical andinterrupt classes were already men-
tioned in the previous section. The rest of the timing specific code is encapsulated in the class
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Figure 6.19: Class diagram of the main window

systime .15 This class provides an abstract interface with methods to get the current number of
clock ticks and the number of clock ticks per second. Furthermore, it is possible to directly get
the amount of 1/100 s passed so far, thus allowing to determine how much time has passed.

6.3.13 Main Window

As mentioned in 6.2.1, the main window deals with the user input and with displaying results.

mainWindow

The main window is implemented through the classmainWindow . Its class structure is shown
in figure 6.19. The classesregionTable , editRegion andregionTableCell are de-
scribed in 6.3.9.

The mainWindow class is derived from the POWER PLANT classLWindow , the POWER

PLANT class for general windows. This base class does most of the layouting and basic event
handling for the window. ThemainWindow class has to fulfill the following additional tasks:

Quit
When the window is closed, after asking the user for confirmation, it has to quit the whole
MacLWB.

15 the nametime is already used on Unix systems.
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Figure 6.20: Class diagram of the info window

Commands
Most of the keyboard and menu commands are handled by this class or must be relegated to
the appropriate interface elements.
Preferences
Preferences values for dimensions, fore- and background colors are read—and used–when
first opening the window.
Regions
Methods are available to write to the current output region, to update fonts and to show an
error. Furthermore, it is possible to insert input/output and text regions and a method returns
the text of all current regions.
Modules
The class handles the display of which modules are loaded, i.e. shows when modules are
added, removed or changed in sequence.
Memory
Finally, the class shows with the memory display how much memory is available for compu-
tation.

6.3.14 Info Window

The info window is responsible for displaying status and debugging information of the LWB
algorithms.

infoWindow

The Info Window is implemented in the classinfoWindow . Its class diagram is shown in
figure 6.20. This section will deal with theinfoWindow class and theinfoBack class. The
classeditRegion was detailed in 6.3.9.



6.4 Conclusion 111

The infoWindow class is not derived from the POWER PLANT LWindow class but instead
from theLDialogBox class. This is because the info window also has buttons which need
to be handled. This can be done easier using theLDialogBox class, which in turn is itself a
derivation of theLWindow class.

The following tasks are implemented in theinfoWindow class:

Preferences
Depending on the preferences values, the info window is shown or hidden at startup. Further-
more, the size, position, font and color of the window is adjusted to the values last stored.
Quit
As the other windows, the info window is merely hidden when it is closed by the user instead
of really destroying the class. This way, the text in the window is saved and additional text
can be added as well, even if it is not shown.
Commands
The class listens to the events issued by the reset and print buttons and execute the appropriate
actions, i.e. resetting the window contents or printing the whole text.
Update
The class provides methods to update the font used, in case it is changed by the user, and also
allows to refresh the text display.

infoBack

The infoBack occupies most part of the info window. It is responsible for scrolling the text
display. It also manages resizing and cursor movement and provides the means to display the
correct background color in the window. Finally, it is responsible for printing, mainly for deter-
mining the number of pages and the actual page breaks.

6.4 Conclusion

The information presented in this chapter only contains an overview of the implementations that
were done for the MacLWB and for the LWB in general. Further information on the implementa-
tion can be found in the documentation of the source code itself. For that reason, the source code,
along with executable versions of the LWB for the Macintosh, Linux and Solaris are present on
the attached CD-ROM. The CD also contains the complete documentation as it is available on
the world wide web.
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Chapter 7

Introduction

The logic of likelihood LL was introduced in 1987 by Halpern and Rabin in [22]. They motivate
their logic mainly with an example of a protocol verification of data transfer. The logic can be
used for other things as well, though and it has some interesting relationships other modal logics
and even with logics dealing with common knowledge.

Most of this part will deal solely with a subset of the logic of likelihood, called LL−. While one
important operator of the logic is not present (L∗) in this subset, it is still strong enough for the
examples shown in the paper. The subset of the logic can be implemented much easier and more
efficiently than the full logic.

The next chapter gives the semantics and some simple examples for the logic, while later chapters
deal more closely with proof search in the logic. Chapter 9 introduces a Hilbert calculus for LL−,
which will be used to obtain the Tait calculus of chapter 10. The Tait calculus will be used as a
basis for the double-sided sequent calculus of chapter 11. The remaining chapters will deal with
an extensive example of the logic that was done using the Logics Workbench, followed by some
remarks about the implementation of the automatic theorem prover for LL− in the LWB.

7.1 Motivation

A lot of logics are used to formalize real world problems to be able to better understand and
handle them. In this context, a set of statements is translated into the notation of the logic. The
logic then helps to find out if—from this set of statements—it is possible to deduce certain facts,
i.e. other statements.

While it is sometimes necessary to use a first order logic to formalize real world problems, a
lot of problems can be dealt with in the context of propositional logics. This often results in a
big number of propositional variables that have to be used. But, because propositional logics
are often much simpler to deal with than first order logics, this step is only a notational but not
always a computational disadvantage.
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One category of interesting real world problems that is to deal with, is the decision making
process. It is often interesting to know, given certain facts, which decision can be deduced
from them. Because most real world facts are not based on certainty, likelihood is an important
component to formalize and make deductions for them.

One way to deal with likelihood is to use probability theory. Unfortunately there are several
drawbacks to this solution. Most importantly, it may not always be possible to attach probabilistic
values to the events and facts in question. For example, in a lot of medical situations the expense
and inconvenience to the patient from obtaining probabilistic values rarely justify the conclusions
that can be drawn from them. Furthermore, even if the exact probabilistic numbers are available,
people are often quite uncomfortable using them. Although people are ready to state that some
fact is more likely than another, they are rarely willing to give exact numerical probabilities for
them.

Lastly, a lot of expert systems have shown that their results do not change for small (< 30%)
perturbations in the numerical probabilities used. This observation suggests an approach to like-
lihood may be preferable that only uses a qualitative, non numerical notion of likelihood. The
logic of likelihood LL by Halpern and Rabin uses this approach. It takes normal classical propo-
sitional logic and adds a modal operatorL. This operator will be used to express that a formula is
likely. Thus, the formulaLp can be roughly translated to “p is reasonably likely to be a consistent
hypothesis”. Clearly, it is the user of the logic who decides what confidence should be given to
the operatorL. As we will see, it is also possible that at the same timeLp andL¬p hold.

Although the logic wants to avoid the problems for probabilistic approaches mentioned above,
it is still possible to express various degrees of likelihood. This is done by nesting multipleL
operators, i.e.LLp could be translated as “p is somewhat likely to be a consistent hypothesis”.
Adding even moreL, would make the statement less and less likely. Furthermore, given the fact
thatp2 is reasonably likely givenp1 (formalp1 → Lp2), and thatp3 is reasonably likely givenp2

(formal p2 → Lp3), it can be deduced thatp3 is somewhat likely givenp1 (formal p1 → LLp3).
This means that likelihood behaves as expected.

In addition, the logic of likelihood contains an operatorG is used to denote necessity. This allows
formulas to express facts that must hold in general, without making use of likelihood.

If we compare the logic of likelihood with one of the standard modal logics, likeK or S4, we can
relate the operatorL to the♦ operator of the modal logic andG to its� operator. Although both
logics are similar in many ways, it has to be noted that there are subtle, but important differences.
While the♦ operator in standard modal logic can be defined as¬�¬ this is not the case for the
logic of likelihood. While we still haveGp → ¬L¬p, the direction backwards is not necessarily
true. We will see a more detailed example at the end of the next chapter after the semantics of
the logic were introduced.



Chapter 8

Semantics

This chapter defines the semantics of the logic of likelihood LL. It concentrates on the subset
LL− from [22], that does not contain theL∗ operator for the transitive closure ofL.

8.1 Syntax

Before we start describing how to express statements and facts in the logic of likelihood, we have
to look at the syntactical structure of the logic. The following definitions take care of the basics
of the logic.

Definition 1 Language of LL−

The language of LL− consists of

• countably many propositional variables p0, p1, p2, . . .,
• the operators ¬ and ∧,
• ( and ) to group formulas,
• the modal operators G and L.

The complete logic of likelihood LL has an additional operatorL∗, which will be left out for this
and the next chapters. Later, several abbreviations for commonly used formulas and operators,
like disjunction or the dual operators toG andL, will be introduced. They are left out in the
definition above to simplify the following definitions and proofs.

Definition 2 Formula of LL−

A formulaof LL− is inductively defined as follows

• each propositional variable p0, p1, . . . is a formula,
• if A is a formula, then ¬A is a formula as well,
• if A and B are formulas, then (A ∧B) is also a formula,
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• if A is a formula, then GA and LA, are formulas.

The set of all formulas of LL− is called FmlLL− .

The parentheses in the previous definition are omitted if they are clear from context, i.e. we write
A ∧ ¬B instead of(A ∧ ¬B). Furthermore∧ is left associative. This allows to leave out even
more parentheses, i.e. instead of writing((A ∧B) ∧ C) ∧D we can writeA ∧B ∧ C ∧D.

Definition 3 Theory of LL−

A theory T is a finite set of formulas of LL−, i.e. T ⊂ FmlLL− and T finite.

Definition 4 Formula Length
We define the length of a formula| · | inductively as:

|pi| = 1,
|¬A| = |A|+ 1,
|A ∧B| = |A|+ |B|+ 1,
|GA| = |A|+ 1,
|LA| = |A|+ 1.

Using this definition, the length of a formula is exactly the same as the number of its symbols,
counting each propositional variable as a single, different symbol.

To simplify the following definitions and propositions, we introduce several abbreviations. It
must be noted, though, that these abbreviations are not a part of the language and thus are not
treated in proofs and propositions.

Definition 5 Abbreviations of LL−

A ∨B := ¬(¬A ∧ ¬B),
A→ B := ¬A ∨B,
A↔ B := (A→ B) ∧ (B → A),
FA := ¬G¬A,
KA := ¬L¬A.

8.2 Notation

To make writing and reading statements easier, some notations will be introduced below. These
notations in no way extend the language of LL−, but allow to write down statements in a more
compact, easily readable form.

The following notations will be used in this and later chapters:
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Figure 8.1: An example of a model in LL−

• we use the symbolsp, q, p0, p1, . . . for propositional variables,
• the capital lettersA,B,C, andD are used to denote formulas of the logic,
• we use the letterT for theories,
• as mentioned, we omit parentheses that are clear from context
• we writeLnA for L · · · L︸ ︷︷ ︸

n×L

A andKnA for K · · ·K︸ ︷︷ ︸
n×K

A,

• we useM for models ands or t for single states in such models.

8.2.1 Models

As usual for modal logics, the semantics for LL− is given be means of Kripke models.

Definition 6 Model
An LL− modelM is a quadruple (S,L ,C , π) with the following properties

• S is a set of states,
• L ⊂ S × S is a binary reflexive relation,
• C ⊂ S × S is a binary relation,
• π : {pi : i ∈ N} → 2S .

A comparison with a usual modal logic might help to completely understand the definition above.
The setS of states corresponds to the different worlds used in modal logics. In LL− it represents
different sets of hypotheses considered to be valid at each state. The relationsL andC are
later used to define theL andG operators, similarly to the definition of the� operator in modal
logics. From a specific state, they represent which states are likely respectively conceivable .
The functionπ intuitively associates with each propositional variable the set of states in which
the variable is assumed to be true. Thus,π is the truth function of an individual state.
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Example 2 Simple Model
Before we go on with additional definitions for models, we take a look at a simple example. Let

S = {s1, s2, s3, s4},

L = {(s1, s1), (s1, s3), (s1, s4), (s2, s2),
(s3, s3), (s4, s3), (s4, s4)},

C = {(s1, s2), (s1, s4), (s2, s4)},

π(p1) = {s1, s2},
π(p2) = {s2, s3, s4}.

The model has four statess1 to s4. The statess1 ands3 are connected byL , as well ass1 to s4

and so on. We have a similar situation forC . Furthermore, the propositional variablep1 is true
in the statess1 ands2, while p2 is true in the statess2, s3, ands4. As required, the definition of
L is reflexive. The whole model is shown in figure 8.1.

To be able to talk a little more about models of LL−, some additional definitions are required.

Definition 7 Model Size
The sizeof a modelM = (S,L ,C , π) is |S|, i.e. the number of states in the set of states S.

Because the definition of a model does no put any requirements to the set of states, models in
LL− can be finite or infinite.

The following definitions helps us to speak about the connections between different states.

Definition 8 Successor
A state t is a successorof a state s if (s, t) ∈ L ∪ C .
A state t is a L -successorof a state s if (s, t) ∈ L .
A state t is a C -successorof a state s if (s, t) ∈ C .

Clearly, because the relationL has to be reflexive, every state is a successor (even aL -
successor) of itself. Furthermore, if a state is anL - or C -successor of another state, it’s clearly
a successor as well.

Using our previous example shown in figure 8.1 we see thats4 is a successor, anL -successor
and aC -successor ofs1. s2 is only aC -successor and with that of course also a successor ofs1.
Last but not least,s3 is anL -successor ofs1 but not aC -successor.

As will be shown below, theL relation will be used to define the OperatorL. This means, anL -
successor describes the set of hypotheses regarded as reasonably likely given the hypotheses of
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the current state. On the other hand, aC -successor describes the hypotheses that are conceivable
but not necessarily likely given the hypotheses of the current state.1

Example 3 Likely and Conceivable
As an example for the two relations we regard a state describing weather situations. If our current
state has hypotheses that state that we are in the month of April and located in Switzerland, then
it’s likely that it will rain the next day. Thus, a state where it rains the next day might be an
L -successor. Although it is not likely that it will snow the next day, it did happen. Thus, it is
surely conceivable though not likely that it will snow the next day. Thus, a state where it will
snow the next day is aC -successor of our current state.

The next definition treats relationships between states that are not direct successors but connected
via multiple states.

Definition 9 Reachable
A state t is reachable(respectively L -reachable) from a state s, if there is a finite sequence of
states s0, . . . , sk, where s0 = s, sk = t and si+1 is a successor (respectively an L -successor) of
si, for all 0 ≤ i < k.

Again, given the fact that theL -relation has to be reflexive, every state is reachable andL -
reachable from itself.

Coming back to our previous example for a model in LL−, shown in figure 8.1, we see thats4, s3,
ands2 are all reachable froms1, but onlys4 ands3 are alsoL -reachable. Furthermore,s3 is
reachable froms2, using a path overs4, but it’s notL -reachable. Lastly,s1, s2, ands4 are all
not reachable froms3.

Now we have everything we need to define the truth value of a complex formula in a specific
state. As expected, this has to use information from other states as well.

Definition 10 Valuation
We extend the mapping π to a valuationπ̂ : FmlLL− → 2S as follows

π̂(p) = π(p),
π̂(¬A) = S − π̂(A),
π̂(A ∧B) = π̂(A) ∩ π̂(B),
π̂(GA) = {s | t ∈ π̂(A) for all t reachable from s},
π̂(LA) = {s | t ∈ π̂(A) for a t that is an L -successor of s}.

1 it would have been possible to interpret the relationC as just meaning conceivable by itself, but then a relationship
between the relationsL andC would have to be postulated, because everything that is likely should also be
conceivable.



122 Chapter 8: Semantics

The definition for the value ofGA uses the union of the relationsL andC . That means theG
operator includes all states that are conceivable, including the likely ones. This actually defines
GA as meaning thatA has to hold in any case, i.e. generally. Thus,GA is similar to a transitive
�-operator of modal logic (for example the� of S4).

On the other hand, the definition of theL operator only uses theL -relation, as expected. It is
comparable to a♦-operator, which is not transitive and does not include all successors.

The definition of the other values are the same as for classical propositional logic. If we take
a look at the abbreviations we have done, then we see that for the classical operators∨,→
,↔ nothing extraordinary happens. The operatorK says thatKA holds if A holds inall L -
successors. That does not mean that it must hold in all successors, becauseC -successors need
not fulfill this property in order forKA to hold. K can thus be viewed as a sort of modal, non-
transitive�-operator, with the difference that not all successors have to be used. Thus, the duality
of theL andK-operators from the definition nicely corresponds with the duality of standard modal
logics. The operatorF says thatFA holds if there is a reachable state whereA holds. Thus, it is
comparable to a transitive♦-operator, again the dual toG, respectively the�-operator.

All in all, we see that LL− is actually comparable to a logic with two sets of modal operators,
where one set is transitive and the other is not. This will be shown in more detail in 11.9.

Definition 11 Models
As usual we writeM, s |= A instead of s ∈ π̂(A) andM |= A ifM, s |= A for all s ∈ S.

The following two definitions are the same as for other logics, but still necessary.

Definition 12 Satisfiable
A formula A is satisfiable, if M, s |= A for a model M = (S,L ,C , π) and a state s ∈ S.

Definition 13 Valid
A formula A is valid, if M, s |= A for all models M = (S,L ,C , π) and all states s ∈ S. In that
case we write |= A.

If we take a look at the strength of the various operators, we can order them in strictly decreasing
order as follows:

Gp, . . . , Knp, . . . , Kp, p, Lp, . . . , Lnp, . . . , Fp

This means that, for example, the formulasGp → Kp, Kp → Lp, or p → Lp are all valid. The
last one clearly makes sense, if we know thatp holds, it is also at least likely that it holds. The
inverse of the formulas are generally not valid.
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8.3 Properties

Before we take a look at some examples, we state some important properties of LL− and its
models. The proofs of these statements (or at least a proof sketch) can be found in the original
paper [22].

Theorem 1 Finite Models
An LL− formula A is satisfiable iff it is satisfiable in a model of size ≤ 2|A|.

Theorem 2 Decision Procedure
For some c > 0, there is a procedure for deciding if a formulaA is satisfiable (respectively valid),
which runs in deterministic time O(2c|A|).

8.4 Examples

In this chapter we take a look at two examples which will show how LL− can be used to express
statements including likelihood. Both examples originally are from [22], but are presented here
in a slightly different form.

8.4.1 Medical

Example 4 Simple Medical Deductions
As a first example, we take a look at medical patients. Each patients may show several symptoms,
has a medical history and may have diseases. For each possible symptom, history data and
disease we define a propositional variable. Each variable states if a patient has the corresponding
symptom, history data, or disease. For example, we can use the following set of propositional
variables:

Symptoms:

pY the patient has a yellow complexion,
pW the patient has a white tongue.

History:

pDR the patient is a heavy drinker,
pHR the patient has heart troubles.

Disease:

pHP the patient has hepatitis,
pD the patient will die,
pT the patient has a tumor.
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Figure 8.2: Medical example: some hypotheses

Of course, this set is far from complete for a real medical application, but it is enough to show
some basic properties and applications of LL−.

A medical doctor can use the language of LL− and the propositional variables defined above
to formalize a patient’s symptoms and medical history. He can use theL-operator to express his
uncertainty, not only in the disease he wants to deduce, but also in the symptoms and the patient’s
medical history. Thus, while a doctor may not know for a fact that a patient has a drinking
problem, he may still have suspicions. Thus, instead of directly takingpDR as a hypothesis he
can only takeLpDR. Thus, he expresses that it is likely that the patient has a drinking problem,
but it’s not necessary so.

It has to be noted that the logic of likelihood is not a temporal logic. Thus, the successors defined
for the states in a model are not temporal successors in the sense that after the current state
the successor state will follow. Instead, the successors represent the sets of hypothesis that are
likely respective conceivable if the current state is accepted. That means, each state represents
a consistent and complete set of hypotheses which are taken to be true for now. Of course, in
practice only the ’relevant’ formulas will be treated in each of these sets.

From a specific set of states we can create other sets of hypotheses either as being likely or
conceivable (or nothing at all) from our current set of hypotheses. This is the modeled in an LL−

model using the previously defined relationsL andC .

For example, we start in states with the following hypotheses for a specific patient. The doctor
observes that the patient has a yellow complexion, thus we putpY into our set of hypotheses.
Furthermore, the medical record of the patient does not show that he has heart troubles, thus we
add¬pHR. Then, after a close examination, the doctor is sure that the patient does not a have
a tumor, thus we add¬pT. For the rest of the propositional variables we know nothing special,
thus we add their negation to our working hypotheses. This gives us the state as depicted in
figure 8.2.2 We can now define hypotheses that are eitherL -successors orC -successor of our

2 all additional propositional variables are assumed to be false and are not shown
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current working hypothesis. As a likely successor, the doctor decides that the patient may have a
drinking problem, thus we havepDR here. We leave the rest and get the states1.

Another likely hypothesis givens could be that we had wrong or outdated information in our
history record of the patient and thus didn’t see that the patient has a heart problem. In that case,
we want a likely successors2 in which we havepHR, and because of that, alsopD. This is shown
in states2.

As a last set of hypotheses, we think it is conceivable, also not likely, that, the thorough exam-
ination did not notice that a tumor is present. Thus, we addpT at states3. We could also think
that the observation of the patients skin complexion might have been wrong, thus we have here
¬pY as a working hypothesis. This is all shown in states3.

From the model shown in figure 8.2 we can now determine the values for some more complicated
formulas. For example, while we have¬pHR in s, we still have a likely successor withpHR. Thus,
in s we haveLpHR, i.e. it is likely that the patient has heart problems. We also have¬pHR, and
becauseL is reflexive alsoL¬pHR. This shows thatLA andL¬A can both be valid in the same
state. AlthoughpY is in every likely successor ofs, it is not in every successor, thus we don’t
haveG pY in s. It’s another matter forpHP. This is, negated, present in all successor states ofs,
thus we haveG¬pHP in s.

These last two examples show that it’s not the same that a formula is valid at a certain state and
that is generally valid, i.e. thatG of it is valid. Therefore, if, for the previous example, we want to
express that it is certain that the patient does not have a tumor, we takeG pT into our hypothesis
and not simplypT. While the latter allows a successor to have¬pT the former does not.

The example shows how a decision making process could be done using the logic of likelihood.
An expert creates a model by stating a state and its hypotheses and then subsequently enlarges
the model by adding all the likely and conceivable successors. This process is done until a
complete model is created. Then, for each state the values for more complex formulas can
be determined until an answer to the question sought is found. While this process is feasible for
certain problems, it is too complicated and too time consuming to effectively use it. Furthermore,
it’s most of the time hard to determine what sets of hypotheses are likely and what sets are
conceivable given a specific set of hypotheses. And, last but not least, the resulting decision
should be valid for all models and not just for the one which is created.

Thus, to solve problems, it will be much easier to state special, non-logical axioms instead of
directly working with hypotheses. For our example, this could mean that the doctor states, from
his experience, that if a patient has a yellow complexion he either has a drinking problem or he
has hepatitis. This could be formalized asGpY → GpDR ∨ GpHP. Note that we don’t simply take
pY → pDR ∨ pHP, which would be much weaker.

The deductions that can be made from such a set of hypotheses and its non-logical axioms don’t
normally result in clear answers to a problem. Consider the earlier example and assume that it
can be deduced thatL G pT. The doctor might in that case decide it’s best to operate. But what is
he to do if onlyL3GpT can be deduced, or something even weaker. In that case, much will depend
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on the interpretation of the resulting formulas. This could again be formalized with extra logical
axioms. For example, the doctor could includeLGpT → pO, wherepO stands for an operation,
to model his interpretation of the system. Such extra logical axioms are similarly problematic,
though.

8.4.2 Correctness of a Protocol

The second example is much more complicated than the one of the previous section. It is the
reason why Halpern and Rabin created the logic of likelihood. The main reason for the logic was
to be able to verify the special protocol used in this example. This example shows that LL− can
be used to prove certain properties of a protocol used to exchange data between two persons. In
this situation, credibility and threats get important, and LL− can be used to formalize and analyze
these facets as well.

We take a close look at this example after the introduction of the various calculi used to make
proofs in the logic. Furthermore, we can use the LWB to show that the results for the protocol
really hold. This is all shown in chapter 12.



Chapter 9

Hilbert Calculus

Semantically dealing with LL− formulas can be quite problematic, as mentioned in the previous
chapter. Thus, it is often much easier to use a syntactical approach. For that reason, this chap-
ter defines a calculus which is provably equivalent to the semantical definition of the previous
chapter, but much easier to prove with.

In [22] Halpern and Rabin give a Hilbert calculus for LL−. This calculus can be used to make
proofs in LL− and it also shows some properties of LL− itself.

9.1 Calculus

Definition 14 Hilbert Calculus

(AX1) instances of classical tautologies
(AX2) GA→ A
(AX3) GA→ GGA
(AX4) GA→ ¬L¬A
(AX5) A→ LA
(AX6) L(A ∨B)↔ (LA ∨ LB)
(AX7) G(A→ B)→ (GA→ GB)
(AX8) G(A→ B)→ (LA→ LB)

Inference Rules:

(R1)
A

GA (generalization)

(R2)
A,A→ B

B (modus ponens)

127
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All the axioms are axiom schemes, i.e. every formula of LL− can be substituted forA andB.
These axioms are completely the same as in [22]. Only small notational changes were made and
the axioms concerning theL∗ operator are left out.

A closer look at the individual axioms of the Hilbert Calculus helps to better understand the
motivation behind each of them:

(AX1) This axiom makes sure that LL− does include the classical propositional calculus.
Everything that is classically provable can also be proven in LL−.

(AX2) This axiom enforces the reflexivity ofG. It can actually be deduced easily from AX4
and the contraposition of AX5. Thus, it could be left out.

(AX3) This comes from the transitivity ofG. G is semantically defined over reachability, i.e.
over an arbitrary number of states, thus is transitive.

(AX4) Using the previously defined abbreviations, this is actually justGA → KA and states
that G does includeK (which is based on the fact thatG is defined overL ∪ C and
thus includes all the relationships used forL andK).

(AX5) This expresses the reflexivity ofL (it would be somewhat clearer using the abbreviation
for K, then the axiom could be formulate asKA → A, which nicely corresponds to
AX2).

(AX6) This axiom expresses thatL is a modal operator. More common, but equivalent would
be to use the abbreviation forK again and use the axiom(KA ∧ K(A→ B))→ KB.

(AX7) This is similar to AX6 but for the operatorG.
(AX8) Finally, this axiom states that the modal operatorG encompasses the modal operator

L.

Furthermore, the Hilbert calculus also defines two inference rules:

(R1) This is the same generalization used in most modal logics. Similar to modal logic, this
rule is not the same as an axiomA→ GA. Such an axiom, together with (AX2) would
directly lead toA↔ GA, which would make the operatorG useless.

(R2) This is the standard inference rule used for classical propositional logic.

9.2 Properties

Before treating some properties of the Hilbert calculus, we need some more definitions.

Definition 15 Proofs
We say we have a proof of formula A, written as

H
A if

• A is an instance of one of the axioms (AX1) to (AX8), or
• A is the conclusion of one of the inference rules and there is a proof for the premiss(es) of

this rule.
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Definition 16 Proof Length n
H

The lengthn of a proof n
H
A is inductively defined as

• n
H
A for every n ≥ 0 if A is an instance of one of the Axioms (AX1) to (AX8).

• n
H
A if A is the conclusion of an inference rule and for each of its premisses Ai we have

ni
H
Ai with ni < n.

The following theorem makes sure that the semantics introduced in the previous chapter are
equivalent to the Hilbert calculus defined above.

Theorem 3 Axiom System
The previously given Hilbert calculus is sound and complete for LL−, i.e.

|= A ⇔
H
A

A proof of this theorem can be found in [22]. Because only notational changes were made to the
calculus, the proof is not shown here.

Theorem 3 allows us to use this syntactical calculus instead of examining models to decide of a
formula if valid or not. As we have seen in an example in the previous chapter, the treatment of
models can be quite complicated and error prone. Thus, making proofs in the strictly syntactical
Hilbert calculus can be much easier.

Example 5 Hilbert Proof
As an example, we make in the following a small, simple proof in the Hilbert calculus. This
proof shows some of the benefits and problems of Hilbert style calculi. We want to prove the
formula(GA∧ GB)↔ G(A∧B) in LL−. The following is a proof in the Hilbert style calculus,
showing on the right side the axioms and inference rules that were used:

H A→ (B → (A ∧B)) (classical)

H G(A→ (B → (A ∧B))) (R1)

H GA→ (GB → G(A ∧B)) (AX7 and R2)

H (GA ∧ GB)→ G(A ∧B) (classical)

H A ∧B → A (classical)

H G((A ∧B)→ A) (R1)

H G(A ∧B)→ GA (AX7 and R2)

H G(A ∧B)→ GB (analogous)

H G(A ∧B)→ (GA ∧ GB) (classical)
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9.3 Automated Theorem Proving

There are two main problems with proofs in the Hilbert calculus. First, (AX1) states that every-
thing which is classically provable is also provable in LL−. Of course, we could use a classical
theorem prover to decide if a given formula is classically provable. Thus, it would be quite easy
for a computer to decide if the proof given above is a valid proof or not. But that is not exactly
the goal of an automated theorem prover. Instead, a theorem prover should take an arbitrary for-
mula of the logic and try to find a proof for it. But, as in the example above, the first step of the
proof could be to take a classically provable formula and to go on deriving from there. Unfortu-
nately, there are infinitely many classically provable formulas that we could use, thus if we want
a decidable procedure, this solution is not feasible. Even if we are content with a semi-decidable
theorem prover, such a procedure would be much too slow for practical use.

Thus, most theorem provers go a different way. Instead of starting with an axiom and then using
rules to try to deduce the desired formula, they start with the formula to prove and apply the
rules backwards, until an axiom is reached. This would, in a way, solve the previous problem,
because we could check any formula if its provable in classical logic with an external theorem
prover and if its not we’d try to apply an inference rule or axiom of the Hilbert calculus. This
might work, but would be quite slow. Furthermore, there is the second problem with the Hilbert
calculus. The modus ponens rule (R2) violates the so called subformula property which states
that the premiss of a rule only contains subformulas of its conclusion. This makes it very hard,
if not impossible, for a theorem prover to apply the rule backwards. Which formulaA should be
taken in the premiss of the rule. There are infinitely many formulas available, and even if we can
somehow limit the number of available formulas it’s presumably still too slow.

Thus, the Hilbert style calculus has several drawbacks, preventing it from being implemented on
a computer in an automatic theorem prover. While the proof of theorem 2 says that there is a
decision procedure—which terminates—that can be implemented on a computer, it does not use
the Hilbert calculus given above. Instead it tries to create a counter model to a given formula,
and if that fails, the given formula must be satisfiable, thus its negation provable. Although this
solution does work, it is quite error prone for implementing. Furthermore, all the decision pro-
cedures already implemented in the Logics Workbench LWB use a syntactical approach instead
of a semantical one.

Thus, we need a syntactical calculus like the Hilbert calculus given above, which does not have
the same drawbacks and which can easily be implemented on a computer. This task is the con-
tents of the next chapter.
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Tait Calculus

Most of the decision procedures implemented in the Logics Workbench use sequent calculi (see
next chapter). But before we introduce a sequent calculus for LL−, we start with a Tait calculus.
The main reason behind this are the completeness and soundness proofs. Using intermediate
calculi, instead of directly making these proofs for the calculus that will be implemented in the
end, is much easier.

The Tait calculus does no more just deal with single formulas, but instead with sets of formulas.
Thus, before we take a closer look at it, we need some additional notational remarks.

10.1 Notation

• We use the symbolsΓ and∆, sometimes with indices, for sets of formulas.
• Γ,∆ stands for the union ofΓ and∆ and we also writeΓ, A for the union ofΓ and the set

consisting solely of the formulaA, i.e. Γ, A := Γ ∪ {A}.
• We write

∨
Γ and

∧
Γ for the disjunction, respectively the conjunction of all elements of

Γ.
• We write¬Γ for the set consisting of all elements ofΓ, with an additional leading negation.
• We write FΓ for the set consisting of all elements ofΓ, with an additional leadingF-

operator. Similarly we writeGΓ, KΓ, andLΓ.

All formulas treated in this chapter are assumed to be in a special form, the so called negation
normal form.

Definition 17 Negation Normal Form
The negation normal form nnf(A) of a formula A is inductively defined as:

nnf(pi) = pi,
nnf(A ∧B) = nnf(A) ∧ nnf(B),
nnf(A ∨B) = nnf(A) ∨ nnf(B),

131



132 Chapter 10: Tait Calculus

nnf(A→ B) = nnf(¬A ∨B),
nnf(A↔ B) = nnf(A→ B ∧B → A),
nnf(LA) = L(nnf(A)),
nnf(KA) = K(nnf(A)),
nnf(GA) = G(nnf(A)),
nnf(FA) = F(nnf(A)),
nnf(¬pi) = ¬pi,
nnf(¬¬A) = nnf(A),
nnf(¬A ∧B) = nnf(¬A) ∨ nnf(¬B),
nnf(¬A ∨B) = nnf(¬A) ∧ nnf(¬B),
nnf(¬LA) = K(nnf(¬A)),
nnf(¬KA) = L(nnf(¬A)),
nnf(¬GA) = F(nnf(¬A)),
nnf(¬FA) = G(nnf(¬A)).

The negation normal form actually just moves all negation symbols down (if the formula is
viewed as a tree) to the propositional variables. To be able to define it as easily as in the previous
definition, i.e. to have negation really only in front of propositional variables, we need the dual
operators∨, F andK. Otherwise, nnf(¬LA) would be defined as¬L¬nnf(¬A). Although this is
the same asKnnf(¬A), the latter form directly shows that negation symbols are only in front of
propositional variables.

Example 6 Negation Normal Form
As an example,

nnf(¬L(GA ∧ ¬¬F¬LB)) = K(F¬A ∨ GLB).

If no abbreviations for the dual operators are used, this would instead be

¬L¬(¬(GA ∧ ¬GLB),

which is not easily recognizable as being in negation normal form.

Notation Γ?
If Γ is a set of formulas, thenΓ? denotes a set of formulas with the property that

A ∈ Γ? ⇒ ?A ∈ Γ,

where? is one of the operatorL, F, G, or K.

This notation will later be used to easily describe a special set of formulas determined by their
context.

Thus,ΓL is a set of formulas containing some or all of the formulas inΓ which begin with the
operatorL but where the leading operator is removed. Most of the time,ΓL will contain all the
L-formulas ofΓ, but this is not required.1
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Example 7 Operator Sets
As an example, ifΓ = {A, LB, LC, LD,GE,KA}, thenΓL could be, for exampleΓL = {B,D}.

10.2 Calculus

Definition 18 Tait calculus for LL−

We define the following Tait calculus

p,¬p,Γ (id)

A,B,Γ
A ∨B,Γ (∨)

A,Γ B,∆
A ∧B,Γ,∆ (∧)

A,Γ

LA,Γ
(L)

A,ΓL,FΓF

KA,Γ
(K)

A,Γ

FA,Γ
(F)

A,FΓF

GA,Γ
(G)

Later we will need an extended Tait calculus, including an additional rule, the cut rule. This rule
has the following form

A,Γ ¬A,Γ
Γ

(cut)

Before we look at some of the properties of this calculus, we note what these rules actually mean
and why they are written like that.

When we make a backward proof search with such a calculus, we do nothing else than trying
to create a counter model for the formula given (cf. [29] for a close look at this situation using
graph calculi). If all possible counter model constructions fail, then we know that our formula
must be valid in all models, i.e. that it is provable.

We take a look at all individual rules to see how this counter model construction is done. First,
we have the axiom (id). Clearly, if a state in a model is forced to make such a set of formulas
true, it has to fail. It’s just not possible to makep and¬p false in the same state of a model.
1 Actually, the rules given below, if implemented on a computer, will always take all possible formulas into the set.

That way, no formula that might be used later is forgotten, which could force backtracking. On the other hand, a
proof is valid as well if not all formulas are taken over, if the right ones are present.
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Thus, if we reach such a step, the counter model creation has failed. If all our possible ways to
a counter model reach such a set of formulas (i.e. an axiom), we know that the counter model
search failed and thus that the formula must be provable.

The (∨)-rule tries to makeA ∨ B false, thus must try to make both formula false. Thus, in the
Tait calculus the comma between formulas can be interpreted as ’∨’.

The (∧)-rule, on the other hand, wants to makeA ∧ B false, and that can be done in either of
two ways, either by makingA false or by makingB false. These two possibilities are expressed
with the two premisses of the rule. We have to try both possible paths to be sure that no counter
model can be created. Thus, only if both of the branches end in axioms, we know the formula is
provable.

These first three rules can directly been taken over from a Tait calculus for classical logic, and
actually make sure that the calculus will include the whole classical propositional logic. As we
will see later, the axiom given in the calculus could also have been given using full formulas
instead of only propositional variables. Using the definition above makes the following proofs a
little bit simpler, thus we stick to that for the time being.

The remaining four rules are the more interesting ones, i.e. the ones that define the modal oper-
ators. As mentioned before, all the rules assume that the formulas are in negation normal form.
Because the negation normal form uses four modal operators, we also need special rules for all
of these.2

The (L)-rule simply expresses that theL-operator is reflexive. Thinking of counter model cre-
ation, we see that if we want to make the formulaLA false, we need to makeA false in the current
state. This those not make sure thatLA is false. But ifA is true in the current state, we surely
haveLA. Additionally, we need to make sure, thatA is also false in all statesL -reachable from
the current one. This is done in the (G)- and (K)-rules (see below).

The rule forF is dual to the rule forL. Limited to the current state,L andF are, for counter
model creation, the same, as both are reflexive. The difference between these two operators will
come into play if we examine the formulas in states reachable from the current one. While it is
enough to treatL -reachable states forL, we need to treat theC -reachable (or, includingL , the
reachable) states forF.

A bit more complicated are the rules forK andG. As mentioned above, they not only have to
treat their respective operator but also the cases not yet treated forL andF. We first take a look
at the rule forG, because is a little bit simpler. If we want to create a counter model forGA its
easiest to create aC -successor to the current state in whichA is made false. We could do that
with a rule like

A,Γ

GA,Γ
(G)

,

2 But because of the negation normal form we don’t need to treat negations, except in axioms.
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because we also wantΓ to be made false. This way we end up with an incorrect rule, i.e. if the
premiss of the rule is valid the conclusion does not need to be as well.3 Furthermore, we want to
makeΓ to be false in thecurrentstate, not in a successor. Thus we could take the rule

A
GA,Γ

(G)
,

which would be correct. But this rule leaves out the conditions mentioned above for (F). We
remarked that, when making a formulaF false, we need to make it false in the current state but
also in all successor state. That holds for the state created with this rule as well. Thus, we have
to take over all theF-formulas into the new state as well, to try to make them false. Because
the F operator is transitive, we have to take over the wholeF formula and not just the formula
without F. Thus we need not only be able to make the formula false in the successor but also in
its successor, and so on. Thus, we end up with the rule

A,FΓF

GA,Γ
(G)

,

i.e. we take over all (or at least the necessary ones)F formulas into the new state.

Even more complicated is the last rule, the rule for theK operator. A first idea might be to use
the same arguments as forG and use the rule

A,FΓF

KA,Γ
(K)

.

But to make the formulaKA false in a state, we need to create anL -successor whereA is false,
not aC successor as forG. For anL -successor we have to take care of the condition expressed
with the (L)-rule. We noted that to makeLA false in a state, we also have to makeA false in all
L -successor states. Therefore, we have to take over theL-formulas as well. This time though,
because theL operator is not transitive, we only have to take overB if LB was part ofΓ. Thus,
we end up with the rule

A,ΓL,FΓF

KA,Γ
(K)

,

as used in the definition above.

If we compare the rules of this calculus with existing modal logics, likeKT or S4 (as for example
in [29]), we note some similarities. InKT or S4, which are also reflexive, the rule for the♦-
operator is

3 for example, ifA ∨B is valid for a model,GA ∨B does not have to be as well.a
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A,Γ

♦A,Γ
(♦)

.

This corresponds nicely with the rules we used forL andF above.

The rule for� in KT is, for example

A,Γ♦
�A,Γ

(�KT)
.

where as inS4 the rule is

A,♦Γ♦
�A,Γ

(�S4) .

The latter rule is similar to the rule we used above forG, which is quite clear, because only
S4 is transitive whileKT is not. The rule forK, on the other hand, is some sort of mixture of
the�-rules ofKT andS4, clearly because theL-operator is reflexive but not transitive, as the
�-operator inKT, whereas theG-operator is reflexive and transitive, like the�-operator inS4.

10.3 Correctness

A first step to show that the newly introduced Tait calculus is equivalent to the previously defined
Hilbert calculus, is to show that the Tait calculus is correct, i.e. that if we have a proof of a
formula in the Tait calculus, we can find a prove in the Hilbert calculus as well. As mentioned,
a proof of a set of formulas is interpreted as having a proof of the disjunction of all formulas of
the set.

Definition 19 Tait Proof
We say we have a proof for a formula A in the Tait calculus, written as

T
A if

• A is an instance of the axiom (id), or
• A is the conclusion of one of the rules (∨), (∧), (L), (F), (K), or (G) and there are proofs

for all premisses of this rule.

We say we have a proof for a formula A in the Tait calculus with cut, written as
T + C

A if A
is either one of the above or additionally the conclusion of a (cut)-Rule, where proofs exists for
both premisses.

Definition 20 Proof Length n
T

The lengthn of a proof n
T
A is inductively defined as

• n
T
A for every n ≥ 0 if A is an instance of the axiom (id).
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• n
T
A if A is the conclusion of an inference rule and for each of its premisses Ai we have

ni
T
Ai with ni < n.

Similarly we define n
T + C

A.

This definition is the same as the definition for the proof length of proofs in the Hilbert style
calculus. It just says that if a formula is provable with a length ofn, then the longest branch in
the proof tree will have at most lengthn, but may have less.

Definition 21 Main and Side Formulas
The main formulaof a rule is the formula that appears distinguished in the conclusions of the
rules in the calculus shown above.

All other formulas of the conclusion are called side formulas.

Example 8 Main Formula
As an example,A ∨ B is the main formula in the (∨)-rule andGA is the main formula of the
(G)-rule.

Theorem 4 Correctness

T
Γ ⇒

H

∨
Γ

Proof
We transform every proof in the Tait calculus into a proof in the Hilbert calculus. Because the Hilbert
calculus is correct, the Tait calculus will thus be as well.

The proof is the done by induction over the length of the proof in the Tait calculus. Thus, ifn
T Γ then we

make an induction onn to show thatH
∨

Γ, by transforming the proof as follows:

n = 0 ThenΓ is an axiom, i.e. a conclusion of the (id)-rule.

In that case,
∨

Γ is a classical tautology and because of (AX1) provable in the Hilbert calculus.

n > 0 We distinguish different cases, depending on the last rule used in the proof ofΓ. If Γ is an
axiom, then the assumption follows as in the case ofn = 0.

Thus letΓ = A,Γ′, whereA is the main formula of the last rule used in the proof.

(∨) A ≡ B ∨ C.

Applying the (∨)-rule backwards gives us<nT B,C,Γ′. From the induction hypothesis
we know thatH

∨
B,C,Γ′. But then, by a simple classical transformation alsoH

∨
B∨

C,Γ′, .
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(∧) A ≡ B ∧ C.

With the (∧)-rule backwards we get<nT B,Γ′ and <n
T C,Γ′. With the induction hypoth-

esis this gives usH
∨
B,Γ′1 andH

∨
C,Γ′2. From the classical tautology

(B ∨
∨

Γ′1)→ ((C ∨
∨

Γ′2)→ ((B ∧ C) ∨ (
∨

Γ′1,Γ
′
2)))

and with modus ponens (R2) followsH
∨
B ∧ C,Γ′.

(L) A ≡ LB.

We know from the induction hypothesis and the premiss of the (L)-rule thatH
∨
A,Γ′.

With AX5, the classical tautology

(A ∨
∨

Γ′) ∧ (A→ LA)→ (LA ∨
∨

Γ′)

and modus ponens followsH LA,Γ′.

(K) A ≡ KB.

Using the (K)-rule backwards and the induction hypothesis followsH

∨
A,ΓL,FΓF.

With generalization (R1) followsH G(A ∨
∨

ΓL,FΓF). This is, with some rewriting

H G(¬A → (
∨

ΓL,FΓF)). With (AX8) and (R2) followsH L¬A → L(
∨

ΓL,FΓF).
With (AX6) and some rewriting we getH KA ∨

∨
LΓL, LFΓF. From LC → FC and

FFC → FC follows H

∨
KA, LΓL,FΓF and thus surelyH

∨
KA, LΓL,FΓF,Γ′. 4

(F) A ≡ FB.

With the (F)-rule backwards and the induction hypothesis followsH A ∨
∨

Γ′. Because
of H A→ FA follows H FA,Γ′.

(G) A ≡ GB.

With the (G)-rule backwards and the induction hypothesis followsH A ∨
∨

FΓF. This is
the same asH ¬

∨
FΓF → A. With generalization (R1) followsH G(¬

∨
FΓF → A).

Using (AX7) this isG¬
∨

FΓF → GA. Translated back this isF
∨

FΓF ∨ GA. From
FFC → FC andF(A ∨ B) → (FA ∨ FB) follows H

∨
FΓF ∨ GA. This surely leads to

H

∨
GA,Γ′.

10.4 Completeness

Completeness of the Tait calculus cannot be proven as easily as correctness. Before we can start
to prove the completeness theorem, we need some auxiliary lemmas.

4 This shows that the (K)-rule cannot be written similar forL andF. While we haveFFA→ FA, i.e. F is transitive,
we do not have the same forL, which is not transitive. If we putL in the premiss for theL-formulas, the rule
would not be correct.
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Lemma 1 Weakening

n
T

Γ ⇒ n
T

Γ,∆

Proof
We make the proof by induction on the lengthn of the proof:

n = 0 thenΓ is an axiom.

In that case,Γ,∆ is an axiom as well, thus0T Γ,∆

n > 0 If Γ is an axiom, thenΓ,∆ as well.

If Γ is not an axiom, thenΓ was deduced with one of the rules of the Tait calculus. We assume
thatΓ = A,Γ′, whereA is the main formula of the last step of the proof.

We now distinguish different cases, depending on the last rule used in the proof:

(∨) By applying the induction hypothesis to the premiss and then carrying through the (∨)-
step we get the assumption.

(∧) By applying the induction hypothesis on one of the premisses and then carrying through
the (∧)-step we get the assumption.

(L) This too easily follows from the induction hypothesis and the premiss.

(K) The (K)-rule has built-in weakening. Thus, from the premiss of the last step we directly
get the assumption by expandingΓ′ as necessary.

(F) Again, this easily follows form the induction hypothesis and the premiss.

(G) As the (K)-rule, the (G)-rule does have built in weakening as well. Thus, the assumption
directly follows from the premiss.

Lemma 2 Cut
From

T
Γ, A and

T
∆,¬A follows

T
Γ,∆.

Proof
We make the proof first by an induction on the construction ofA, i.e. the lengthn of A.

n = 0 A ≡ pi
We now make a subinduction on the lengthm of the proof ofΓ, A:

m = 0 Γ, A is an axiom

We can distinguish two cases. If¬A ∈ Γ, then we have∆,¬A ⊂ Γ,∆. Thus from

T ∆,¬A follows with lemma 1 (weakening) thatT Γ,∆.

Otherwise,¬A 6∈ Γ. In that case,Γ is an axiom by itself. But then,Γ,∆ is an axiom
as well.
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m > 0 Γ, A needs not to be an axiom

If Γ, A is an axiom, we have the same case as form = 0.

If Γ, A is not an axiom and becauseA is just a propositional variable,A cannot be
the main formula of the last step of the proof. Nevertheless, we make a distinction
between the last rule used in the proof ofΓ, A.

In the case of the rules (∨), (∧), (L) and (F) we can use the induction hypothesis on the
premiss together withT ∆,¬A to get a new premiss without anyA. We then carry
through the same deduction step to get the desired result.

If the last rule was either a (K) or (G)-rule, thenA cannot appear in the premiss,
because it does not start with anL or F operator. Thus, from the same premiss, it is
also possible to deduceΓ,∆, using the built-in weakening of the rule and leaving out
A.

n > 0 We make an induction on the sum of the lengthsm1 of the proofs ofΓ, A and ofm2 of ∆,¬A.

m1 = 0 Γ, A is an axiom

This is equal to the case thatA is a propositional variable.

m2 = 0 ∆,¬A is an axiom

Again, this is equal to the case thatA is propositional variable.

m1 > 0
m2 > 0

If either Γ, A or ∆,¬A are axioms, then we argue as form1 = 0 or m2 = 0
respectively. Thus we assume thatΓ, A and∆,¬A are both not axioms

We now have to distinguish different cases, depending on the last rules of the proofs
and their main formulas. Because—in this special case—it is quite easy to miss one
of the possible cases, we list all 16 possible combinations below, even though several
of them are quite similar.

1) A was not the main formula,¬A was not the main formula and both proofs did
not end with a (K)- or (G)-rule:
In this case we use the hypothesis of the subinduction on the premiss of the last
step ofT Γ, A together withT ∆,¬A to get the desired result.

2) A was not the main formula,¬A was not the main formula and both proofs
ended with a (K)- or (G)-rule:
If A does not start with eitherL or F, then it cannot be present in the premiss of
the rule. Thus, by using the premiss of the proof ofΓ, A we can also directly
proofΓ,∆ by using the built-in weakening of the rule and leaving outA.
If A does start with eitherL or F, then¬A on the other hand does not. Thus the
assumption directly follows from the premiss of the last step ofT ∆,¬A.

3) A was not the main formula,¬A was not the main formula,T Γ, A ended with
a (K)- or (G)-rule but T ∆,¬A did not:
This time we use the hypothesis of the subinduction on the premiss of the last
step ofT ∆,¬A together withT Γ, A to get the desired result.

4) A was not the main formula,¬A was not the main formula,T Γ, A ended not
with a (K)- or (G)-rule but T ∆,¬A did:
This is the same as case 1.
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5) A was the main formula,¬A was not the main formula and both proofs did not
end with a (K)- or (G)-rule:
This can be done as case 3.

6) A was the main formula,¬A was not the main formula and both proofs ended
with a (K)- or (G)-rule:
This case is a bit more complicated. We have to distinguish several subcases:

• A ≡ KB and the main formula ofT ∆, L¬B is KC
Then the premisses of the last steps give usT B,ΓL,FΓF respectivelyT
¬B,∆′L,F∆′F, C. We can now use the hypothesis of the main induction
onB to get T ΓL,FΓF,∆′L,F∆′F, C. Now, we carry through the (K)-rule
onC with the appropriate weakenings to get the desired proof.

• A ≡ KB and the main formula ofT ∆, L¬B is GC
In this case,¬B does not appear in the premiss of the last step ofT
∆, L¬B. Thus with the right weakenings we can directly obtain the de-
sired proof.

• A ≡ GB and the main formula ofT ∆,F¬B is KC
In that case, the premiss of the proof ofT ∆,F¬B is F¬B,∆′L,F∆′F, C.
Furthermore, we can change the last step of the proof ofT GB,Γ to get
from the premissT B,FΓF just to T GB,FΓF by not using the built-in
weakening. This does not affect proof length and thus we can now use
the hypothesis of the subinduction together withT F¬B,∆′L,F∆′F, C to
obtainFΓF,∆′L,F∆′F, C. Now, we just carry through a (K)-step onC
again to get the proof we are looking for.

• A ≡ GB and the main formula ofT ∆,F¬B is GC
This case can be handled similar to the one before.

7) A was the main formula,¬A was not the main formula,T Γ, A ended with a
(K)- or (G)-rule but T ∆,¬A did not:
This is the same as case 3.

8) A was the main formula,¬A was not the main formula,T Γ, A ended not with
a (K)- or (G)-rule but T ∆,¬A did:
BecauseA is the main formula of the last step, which is not a (K)- or (G)-rule,
A cannot begin with eitherG or K. Thus¬A cannot begin withL or F. Because
¬A was not the main formula of the last step of its proof, which was a (K)- or
(G)-rule,¬A cannot appear in its premiss. Thus, from the same premiss we can
directly obtain our desired proof by using the built-in weakening.

9) A was not the main formula,¬A was the main formula and both proofs did not
end with a (K)- or (G)-rule:
This is the same as case 1.

10) A was not the main formula,¬A was the main formula and both proofs ended
with a (K)- or (G)-rule:
By switching the roles ofA and¬A this case is similar to case 6.

11) A was not the main formula,¬A was the main formula,T Γ, A ended with a
(K)- or (G)-rule but T ∆,¬A did not:
By switching the roles ofA and¬A this case is similar to case 8.
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12) A was not the main formula,¬A was the main formula,T Γ, A ended not with
a (K)- or (G)-rule but T ∆,¬A did:
This is the same as case 1.

13) A was the main formula,¬A was the main formula and both proofs did not end
with a (K)- or (G)-rule:
Depending on the structure ofA we have to distinguish two cases:

∧ A ≡ B ∧ C, and¬A ≡ ¬B ∨ ¬C
From the premisses of the last steps we have<m1

T Γ1, B ∧ C,B, and
<m1
T Γ2, B ∧ C,C and <m2

T ∆,¬B ∨ ¬C,¬B,¬C. We can use the
hypothesis of the subinduction to getT Γ1, B,∆, T Γ2, C,∆, and

T Γ,∆,¬B,¬C. We can now use the induction hypothesis of the main
induction withΓ1,∆, B and∆,¬B,¬C to get T Γ1,∆,¬C. This, to-
gether withΓ2,∆, C and the main induction hypothesis yieldsT Γ,∆.

∨ A ≡ B ∨ C, and¬A ≡ ¬B ∧ ¬C
with a swap ofA and¬A this is equivalent to the previous case

14) A was the main formula,¬A was the main formula and both proofs ended with
a (K)- or (G)-rule:
This case can actually never occur. IfA is the main formula of a (K)- or (G)-
rule it has to start withG or K. But then¬A has to start either withF or L and
thus cannot be the main formula of a (K)- or (G)-rule.

15) A was the main formula,¬A was the main formula,T Γ, A ended with a (K)-
or (G)-rule but T ∆,¬A did not:
Again we distinguish several different cases, depending on the structure ofA:

L A ≡ LB, and¬A ≡ K¬B
From the premisses of the last steps of the proofs we get<m1

T B, LB,Γ
and <m2

T ¬B,∆L,F∆F. Using the subinduction with the setsB, LB,Γ
andK¬B,∆ yields T B,Γ,∆.
With the main induction hypothesis we getT Γ,∆,∆L,F∆F. Now, we
use one (L)-rule for every element in∆L and getT Γ,∆, L∆L,F∆F.
This sequent is actually the same asΓ,∆.

K A ≡ KB, and¬A ≡ L¬B
With a swap ofA and¬A this is equivalent to the previous case.

F A ≡ FB, and¬A ≡ G¬B
From the premisses of the last steps of the proof we get<m1

T B,FB,Γ
and <m2

T ¬B,F∆F. With the subinduction hypothesis and the assump-
tion G¬B,∆, we getT B,Γ,∆.
Using the main induction onB,Γ,∆ and¬B,F∆F, yields T Γ,∆,F∆F.
This sequent is actually the same asΓ,∆, thus we haveT Γ,∆.

G A ≡ GB, and¬A ≡ F¬B
With a swap ofA and¬A this is equivalent to the previous case.

16) A was the main formula,¬A was the main formula,T Γ, A ended not with a
(K)- or (G)-rule but T ∆,¬A did:
With inverse roles forA and¬A this is the same as case 15.
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Lemma 3 Extended Axioms
For all formulas A and alls sets of formulas Γ we have

T
Γ, A,¬A

Proof
We make an induction on the lengthn of A:

n = 0: thenA ≡ pi, i.e.A is a propositional variable.

In that case,Γ, A,¬A is an axiom of the Tait calculus and thus provable.

n > 0: we distinguish several cases depending on the structure ofA.

• A ≡ B ∨ C and¬A ≡ ¬B ∧ ¬C.

From the induction hypothesis we get proofs forΓ, B, C,¬B andΓ, B, C,¬C. We use
these proofs to get the following proof:

Γ,B,C,¬B (induction)
Γ,B,C,¬C (induction)

Γ,B,C,¬B∧¬C (∧)

Γ,B∨C,¬B∧¬C (∨)

• A ≡ B ∧ C and¬A ≡ ¬B ∨ ¬C.

From the induction hypothesis we get proofs forΓ, B,¬B,¬C andΓ, C,¬B,¬C. We
use these proofs to get the following proof:

Γ,B,¬B,¬C (induction)
Γ,C,¬B,¬C (induction)

Γ,B∧C,¬B,¬C (∧)

Γ,B∧C,¬B∨¬C (∨)

Theorem 5 Completeness

H
A ⇒

T
A

Proof
Let n

H A. We now prove—with induction on the lengthn of the proof—thatT A.

n = 0 For each axiom of the Hilbert calculus we have to find a proof in the Tait calculus.

AX1 Because the Tait calculus contains the derivation rules of classical propositional logic,
A will be provable.
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AX2 A ≡ GB → B

¬B,B (lemma 3)

F¬B,B (F)

F¬B∨B (∨)

AX3 A ≡ GB → GGB

¬B,B (lemma 3)

F¬B,B (F)

F¬B,GB (G)

F¬B,GGB
(G)

F¬B∨GGB
(∨)

AX4 A ≡ GB → KB

¬B,B (lemma 3)

F¬B,B (F)

F¬B,KB (K)

F¬B∨KB
(∨)

AX5 A ≡ B → LB

¬B,B (lemma 3)

¬B,LB (L)

¬B∨LB
(∨)

AX6 A ≡ L(B ∨ C)↔ (LB ∨ LC)

¬B,B,C (lemma 3) ¬C,B,C (lemma 3)

¬B∧¬C,B,C (∧)

K(¬B∧¬C),LB,LC
(K)

K(¬B∧¬C),LB∨LC
(∨)

K(¬B∧¬C)∨(LB∨LC)
(∨)

¬B,B,C (lemma 3)

¬B,B∨C (∨)

K¬B,L(B∨C)
(K)

¬C,B,C (lemma 3)

¬C,B∨C (∨)

K¬C,L(B∨C)
(K)

K¬B∧K¬C,L(B∨C)
(∧)

(K¬B∧K¬C)∨L(B∨C)
(∨)

(K(¬B∧¬C)∨(LB∨LC))∧((K¬B∧K¬C)∨L(B∨C))
(∧)

AX7 A ≡ G(B → C)→ (GB → GC)

B,¬B,C (lemma 3) ¬C,¬B,C (lemma 3)

B∧¬C,¬B,C (∧)

FB∧¬C,¬B,C (F)

FB∧¬C,F¬B,C (F)

F(B∧¬C),F¬B,GC (G)

F(B∧¬C),F¬B∨GC
(∨)

F(B∧¬C)∨(F¬B∨GC)
(∨)

AX8 A ≡ G(B → C)→ (LB → LC)
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B,¬B,C (lemma 3) ¬C,¬B,C (lemma 3)

B∧¬C,¬B,C (∧)

F(B∧¬C),¬B,C (F)

F(B∧¬C),K¬B,LC (K)

F(B∧¬C),(K¬B∨LC)
(∨)

F(B∧¬C)∨(K¬B∨LC)
(∨)

n > 0 R1 A ≡ GB andGB has been deduced in the last step by (R1)

With the induction hypothesis we have<nT B. With the (G)-rule immediately follows

T GB, i.e. T A.

R2 A ≡ C andC has been deduced in the last step by (R2) fromB → C andB.

With the induction hypothesis we get<nT ¬B ∨ C and <n
T B. The last step in the proof

of ¬B ∨ C must have been a (∨)-rule, thus we can also getT ¬B,C.

Now we can use lemma 2 (cut) to getT C, i.e. T A.

Example 9 Tait Proof
We now take a look at an example of a proof in the Tait calculus. We take the same formula used
for the example in the Hilbert calculus (cf. 5).

The proof of the formula(GA ∧ GB)↔ G(A ∧B) in the Tait calculus looks as follows:

¬A¬A¬A,¬B,AAA (id) ¬A,¬B¬B¬B,BBB (id)

¬A,¬B,A ∧BA ∧BA ∧B (∧)

¬A,F¬BF¬BF¬B,A ∧B (F)

F¬AF¬AF¬A,F¬B,A ∧B (F)

F¬A,F¬B,G(A ∧B)G(A ∧B)G(A ∧B)
(G)

F¬A ∨ F¬BF¬A ∨ F¬BF¬A ∨ F¬B,G(A ∧B)
(∨)

(F¬A ∨ F¬B) ∨ G(A ∧B)(F¬A ∨ F¬B) ∨ G(A ∧B)(F¬A ∨ F¬B) ∨ G(A ∧B)
(∨)

¬A¬A¬A,¬B,AAA (id)

¬A ∨ ¬B¬A ∨ ¬B¬A ∨ ¬B,A (∨)

F(¬A ∨ ¬B)F(¬A ∨ ¬B)F(¬A ∨ ¬B), A
(F)

F(¬A ∨ ¬B),GAGAGA
(G)

¬A,¬B¬B¬B,BBB (id)

¬A ∨ ¬B¬A ∨ ¬B¬A ∨ ¬B,B (∨)

F(¬A ∨ ¬B)F(¬A ∨ ¬B)F(¬A ∨ ¬B), B
(F)

F(¬A ∨ ¬B),GBGBGB
(G)

F(¬A ∨ ¬B),GA ∧ GBGA ∧ GBGA ∧ GB
(∧)

F(¬A ∨ ¬B) ∨ (GA ∧ GB)F(¬A ∨ ¬B) ∨ (GA ∧ GB)F(¬A ∨ ¬B) ∨ (GA ∧ GB)
(∨)

((F¬A ∨ F¬B) ∨ G(A ∧B)) ∧ (F(¬A ∨ ¬B) ∨ (GA ∧ GB))((F¬A ∨ F¬B) ∨ G(A ∧B)) ∧ (F(¬A ∨ ¬B) ∨ (GA ∧ GB))((F¬A ∨ F¬B) ∨ G(A ∧B)) ∧ (F(¬A ∨ ¬B) ∨ (GA ∧ GB))
(∧)

The main formula of each step of the proof is printed in bold face. Clearly, this proof is much
more goal oriented and looks much better to automate than the Hilbert proof of the previous
chapter.

10.5 Properties

In this chapter we look at some properties of the Tait Calculus. We already know that the calculus
is sound and complete, i.e. that we can do the same in this calculus as in the original Hilbert
calculus and thus with the semantics of LL−.
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Subformula Property

Definition 22 Subformulassubfml(·)
If A is a formula, then the set of subformulas subfml(A) is inductively defined as follows:

A ≡ pi then subfml(A) := {pi} ,
A ≡ ¬B then subfml(A) := subfml(B) ∪ {¬B},
A ≡ B ∨ C then subfml(A) := subfml(B) ∪ subfml(C) ∪ {B ∨ C},
A ≡ B ∧ C then subfml(A) := subfml(A) ∪ subfml(B) ∪ {B ∧ C},
A ≡ LB then subfml(A) := subfml(B) ∪ {LB},
A ≡ KB then subfml(A) := subfml(B) ∪ {KB},
A ≡ FB then subfml(A) := subfml(B) ∪ {FB},
A ≡ GB then subfml(A) := subfml(B) ∪ {GB}.

Lemma 4 Number of Subformulas|subfml(A)|
If A is a formula then

|subfml(A)| ≤ |A|

Proof
This can easily been shown by induction over the structure ofA.

Definition 23 Subformula Property
If Γ is the conclusion of a rule and ∆ one of it’s premisses, then the rule has the subformula
property iff

B ∈ ∆ ⇒ B ∈ subfml(A) for a A ∈ Γ

Lemma 5 Subformula Property
Every rule in the Tait calculus has the subformula property.

Proof
A closer look at the individual rules of the calculus shows that every formula of a premiss either already
exists in the conclusion or is a subformula of one of these formulas.

It is important to note here that not all rules of the Hilbert calculus presented in the previous
chapter have the subformula property. The modus ponens rule used for that calculus introduces
a new formula in the premiss. This creates serious problems for implementing the calculus in an
automated theorem prover, as mentioned in the previous chapter.
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10.5.1 Contraction

Contraction is the fact that fromn
T
A,A,Γ follows n

T
A,Γ. Because we are dealing with sets in

the Tait calculus, the setA,A,Γ is actually the same as the setA,Γ.

Thus, the Tait calculus surely has contraction. We just mention it here, because the same propo-
sition will be examined for the later calculi, where we deal with sequents of formulas instead of
sets. In these cases, this property is no more trivial.

10.5.2 Invertible Rules

Definition 24 Invertible Rule

A rule
∆0 ∆1 . . . ∆i

Γ of the Tait calculus is invertibleiff

T
Γ ⇒ (

T
∆j for all 0 ≤ j ≤ i)

A rule is invertible, if each premiss is provable if the conclusion is provable.

Definition 25 Strongly Invertible Rule

A rule
∆0 ∆1 . . . ∆i

Γ of the Tait calculus is strongly invertible, iff for all n ∈ N

n
T

Γ ⇒ ( n
T

∆j for all 0 ≤ j ≤ i)

A strongly invertible rule is one that is invertible and whose premisses can be proven with the
same length as its conclusion.

Lemma 6 Strongly Invertible Rules of the Tait Calculus
The rules (∧), (∨) are strongly invertible.

As an example we prove the strong invertibility of the (∨)-rule:

Proof
We assume that the conclusion has the formA ∨B,Γ.

We make an induction over the structure of the proof of the Conclusion:



148 Chapter 10: Tait Calculus

• if A ∨B was the main formula of the last step—which thus must have been a (∨)-rule—we get the
assumption directly from the premiss of the rule and the induction hypothesis5, with the same proof
length.

• if the last rule used was (id), thenA ∨ B,Γ must be an axiom. Because axioms must contain a
propositional variable and its negation,Γ itself must be an axiom (A ∨B cannot be a propositional
variable). Thus, the same proof can be done for the premiss, using the same length

• if the last step was a (∨), (L), or a (F)-rule, we can use the induction hypothesis on its premiss and
carry through the same step to get the desired proof, with the same length.

• if the last step was a (∧)-rule, then we can use the induction hypothesis on both premisses and carry
through the same step to get the proof we are looking for, with the correct length.

• if the last step was a (G) or (K)-rule, then the formulaA∨B cannot appear in the premiss, because it
does not start with either aL or F. Thus, from the same premiss using the rule’s builtin weakening,
we get the proof we are looking for, with the same length as before.

The proof for the (∧)-rule is almost the same.

Although the (L) and (F)-rules don’t seem to be invertible at first glance, they are nevertheless
invertible in a special case. Because we deal with sets in a Tait calculus, the formulaLA may
appear on the premiss of the rule as well (i.e.{LA}∩Γ = {LA}). In that case the rule is strongly
invertible, otherwise it is not.

Example 10 Invertibility
As an example we setΓ to the empty set. In this case, invertibility would for example mean

T
Lpi,¬Lpi ⇒ T

pi¬, Lpi. While the former is always provable, the latter surely is not.6

It has to be noted that the (K) and (G)-rules arenot invertible. As a simple example consider the
following set of formulas

pi,¬pi, GB.

This is surely an axiom and thus provable. But the premiss of the (G)-rule is justB and in general
not provable.

10.5.3 Backward Proof Search

A formulaA is provable in the Tait calculus if and only if there exists a derivation sequence which
starts with axioms, ends with the formulaA and only uses the rules of the calculus. When doing

5 for the case thatA ∨B appears in the premiss as well

6 the latter is actuallyLpi → pi, and thus surely not provable.
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backward proof search to actually find a proof of a formula, we do the whole process backwards.
We start with the formula to prove and apply rules backwards until we arrive at axioms in each
branch or don’t have any rule to go on with. A tree built in such a way that ends in axioms only
is clearly a proof of the formula.

Example 11 Backward Proof
Clearly, not every backward proof search ends in axioms only, even if the formula is provable.
Consider the following example of the proof ofF¬B∨GA∨GB (which is actually¬GB∨GA∨
GB in negation normal form):

¬B,A
F¬B,A F

F¬B,GA,GB G

F¬B,GA ∨ GB
∨

F¬B ∨ GA ∨ GB
∨

This proof does not work, i.e. we come to a place where we can’t go on. The problem lies in
the fact that the (G)-rule used the wrong main formula. If we useGB instead ofGA as the main
formula we get a successful proof:

¬B,B id

F¬B,B F

F¬B,GA,GB G

F¬B,GA ∨ GB
∨

F¬B ∨ GA ∨ GB
∨

This example shows that the main formula selected for a rule, as well as the general sequence of
the rules determines if a proof will be successful or not. Thus, when trying to find a proof of a
formula or to know that the formula is not provable, all possible selections and sequences of rule
applications have to be tried. This might require backtracking, if the selected formula did, for
example, not end in a successful proof.

For backward proof searches, invertible rules have big advantages. With an invertible rule, the
premiss is provable iff the conclusion is provable, thus they never require backtracking. If a
proof can be made starting with the conclusion of a rule, a proof can also be made starting with
its premiss. Thus, invertible rules can always be applied, without fear of dead ends. This can
speed up proof search considerably.
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10.5.4 Termination

In general, the given Tait calculus does not terminate. Because we are dealing with sets, for all
invertible rules the main formula can also appear on the premiss of the rule. But if the main
formula of a rule also appears in the premiss, this clearly may result in an infinite loop. Thus,
backward proof search would not terminate.

To be able to include the main formula of a rule in the premiss is actually essential for the
(L)- and (F)-rules to get completeness of the calculus. Unfortunately, this prohibits an efficient
implementation of the calculus in an automated theorem prover, because now the rule is not
invertible. Furthermore, the theorem prover does not always terminate.

10.5.5 Disjunction Principle

Lemma 7 Disjunction Principle

T
GA1, . . . ,GAn,KB1, . . . ,KBn ⇒

T
GA1 or . . . or

T
GAn or

T
KB1 or . . . or

T
KBm

Proof
Let T GA1, . . . ,GAn,KB1, . . . ,KBn.

Surly this can’t be an axiom, because we only allow propositional variables in axioms. Thus, there has to
be a last step of the proof. We distinguish two different cases:

• the main formula of the last step wasGAi.

In this case, the premiss of the rule is justAi. By using the same rule again, but without weakening,
we get the desired proof ofGAi.

• the main formula of the last step wasKBi.

In this case, the premiss of the rule is justBi. Again, by using the same rule again, but without
weakening, we get the desired proof ofKBi.

The disjunction principle says that if we have to prove twoG-formulas, we can make a proof
using one or the other, but we will never have to use both formulas.

This makes backward proof search much easier and also much faster. Each time aG-formula is
considered as main formula, all otherG-formulas can be removed. Furthermore, the sequence
which is used to determine whichG-formula to select as main formula does not influence prov-
ability. On the other hand, it also requires that the application of (G) and (K) rules is made last
in the proof search, or this principle cannot be used.7
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10.6 Deduction Theorem

For the practical use of the logic of likelihood, it is often essential to add special, non-logical
axioms to the proof search. These axioms are assumed to be valid and thus can directly be used
in a proof. Contrary to the logical axioms of the Hilbert calculus, substitution of variables for
arbitrary formulas is not allowed with these types of axioms. The only assumption made is that
non-logical axioms are assumed to be true.

Definition 26 Theories
We say a set ∆ is derivable in the Tait calculus with cut from a finite theory Σ, written as
Σ

T + C
∆ if there is a proof of ∆ using only rules of the Tait calculus and the (cut)-rule and

additionally treating all elements of Σ as extra-logical axioms, i.e.

A,Γ
(Σ)

is an axiom for all A ∈ Σ.

Using theories with a calculus is only useful when also allowing the (cut)-rule.8 Therefore prov-
ability using theories is only defined for the Tait calculus with (cut).

Theorem 6 Deduction Theorem

Σ
T + C

∆ ⇔
T + C

F¬Σ,∆

Proof

⇐: We assumeT + C F¬Σ,∆. Furthermore, we know thatΣ T + C Bi for all Bi ∈ Σ. Using
generalization this isΣ T + C GBi.

Because¬GBi ≡ F¬Bi, we can use|Σ| cuts to get toΣ T + C ∆, as desired.

⇒: This time we assumeΣ T + C ∆. Now we make an induction on the lengthn of the proof of∆
using the theoryΣ.

n = 0: in that case,∆ is an axiom.

If ∆ ∩ Σ = ∅, then∆ is an axiom of the Tait calculus with cut and thusT + C ∆
Otherwise, there is a formulaA ∈ ∆ with A ∈ Σ. Thus we can use a (F)-rule to get from
F¬A,A,∆′ to ¬A,A,∆′. According to lemma 3 this can be proven in the Tait calculus,
thus T + C F¬A,∆ surely holds.

7 the disjunction principle is not provable for sets containing arbitrary formulas.

8 it’s not possible to deduceA from the theoryA ∧B otherwise.
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n > 0: if ∆ still is an axiom, we proceed as inn = 0. Thus we assume that the last step of the
proof was a rule application and that the main formula of this rule wasA. We now make
a distinction between the last rule used:

∨: A ≡ B ∨ C
From the last step of the rule we knowΣ T + C B,C,∆′. Using the induction hy-
pothesis we getT + C F¬Σ, B, C,∆′. Using the (∨)-rule again yields the desired
proof.

∧: A ≡ B ∧ C
From the last step of the rule we knowΣ T + C B,∆′ andΣ T + C C,∆′. Using
the induction hypothesis twice we getT + C F¬Σ, B,∆′ and T + C F¬Σ, C,∆′.
Using the (∧)-rule again yields the desired proof.

L: A ≡ LB
From the last step of the rule we knowΣ T + C B,∆′. Using the induction
hypothesis we getT + C F¬Σ, B,∆′. Using the (L)-rule again yields the desired
proof.

K: A ≡ KB
From the last step of the rule we knowΣ T + C B,∆′L,F∆′F. Using the induction
hypothesis we getT + C F¬Σ, B,∆′L,F∆′F. Using the (F)-rule again yields the
desired proof, becauseall F-formulas are taken from the premiss to the conclusion,
including the newly introduced ones.

F: A ≡ FB
From the last step of the rule we knowΣ T + C B,∆′. Using the induction
hypothesis we getT + C F¬Σ, B,∆′. Using the (F)-rule again yields the desired
proof.

G: A ≡ GB
From the last step of the rule we knowΣ T + C B,F∆′F. Using the induction
hypothesis we getT + C F¬Σ, B,F∆′F. Using the (F)-rule again yields the desired
proof, because allF-formulas are taken from the premiss to the conclusion.

cut: From the last step of the rule we knowΣ T + C A,∆′1 andΣ T + C ¬A,∆
′
2.

By using the induction hypothesis twice we get proofs forT + C F¬Σ, A,∆′1 and

T + C F¬Σ,¬A,∆′2. Using the (cut)-rule again yields the desired proof.

TheG on the right side of the deduction theorem is necessary. It is not true that

Σ
T + C

A ⇒
T + C

¬Σ, A.

This can easily be seen with the next example or by examining the parts for the (G) and (K)-rules
in the proof of the deduction theorem. In order to be able to use the induction hypothesis an the
premiss of the rule and then still be able to apply the rule again, all formulas in the premiss are
required to start with anF-operator, or the rule cannot be applied.
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Example 12 Deduction Theorem
As an example, we consider the case thatΣ = {B} andA ≡ GB. Then, with generalization, we
can surely proveGB fromB.

On the other,¬B,GB is surely not provable, because this is the same asB → GB. As a counter
model, we can take a simple model with two states, where in the first stateB is true and in the
second,C -reachable state is not.

The deduction theorem is very important for automated backward proof search with theories.
Adding theory support to an algorithm for automated theorem proving only requires to transform
the theory along with the formula to prove. This new formula can then be proven normally. Thus,
the proving algorithm only requires some preprocessing steps, but no changes in the algorithm
itself.

The following corollary allows us to easily use theories with our Tait calculus without cut.

Corollary 1 Deduction Theorem

Σ
T + C

A ⇔
T

(
∧

GΣ)→ A

Proof
First we use the deduction theorem to get

Σ T + C A ⇔ F¬Σ, A

Then we use lemma 2 to get
Σ T + C A ⇔ T F¬Σ, A

As a last step we use the fact that¬GA ≡ F¬A and thatG(A∧B)↔ (GA∧GB) to get the desired result.

This version of the deduction theorem allows us to use theories for our Tait calculus without cut,
thus allowing easy implementation of theory handling in an automated theorem prover.

This version also adds a simple transformation to the theory. Using this in a theorem prover can
improve its performance, especially for large theories. Now, the (∧) rule can be applied before
having to use the (G)-rule. Because the (∧)-rule is invertible, it never requires backtracking. The
(G)-rule, on the other hand, always forces backtracking if more than oneG-formula is present.



154 Chapter 10: Tait Calculus



Chapter 11

Sequent Calculi

This chapter defines another calculus to be used for proof search. As mentioned in the previous
chapter, the Tait calculus has some serious drawbacks for implementations. Mainly, it does not
necessarily terminate.

11.1 Notation

For this chapter we use the following, slightly different notation:

• We use the symbolsΓ, ∆, Π, andΣ for multisets of formulas, i.e. the same formula may
now appear multiple times.

• Γ′ denotes sub-multisets ofΓ; the particular multiset will be determined by its context
• ΓL stands for a multiset consisting of someL-formulas1 of Γ, with the leadingL removed; it

is notnecessary thatΓL consist ofall L-formulas ofΓ. ΓF, ΓK andΓG are similarly defined.
•

∨
Γ stands for the disjunction of all elements ofΓ. Similarly,

∧
Γ stands for the conjunc-

tion of all elements ofΓ.
• nnf(A) is the negation normal form ofA, and nnf(Γ) is the negation normal form of all

formulas of the multisetΓ.
• ¬Γ stands for the multiset of formulas in which every individual formula ofΓ has been

negated.
• We writeΓ ∪ {A}, or sometimesΓ ∪A for the multisetΓ extended by adding the formula

A.

Example 13 Notations
We look at several examples to show the meaning of these notations. For all these examples we
assume thatΓ := p1,Fp2, Lp3,F(¬(p4 ∨ p2)), p1,¬Gp1,Gp2, LFp2.

• ΓL could beΓL = p3,Fp2, but it could also be justp3 or Fp2 or even the empty set.

1 formulas starting withL

155
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• ΓF could beΓF = ¬(p4 ∨ p2), but it could also bep2,¬(p4 ∨ p2), justp2, or again even the
empty set.

•
∨

Γ = p1 ∨ Fp2 ∨ Lp3 ∨ F(¬(p4 ∨ p2)) ∨ p1 ∨ ¬Gp1 ∨ Gp2 ∨ LFp2.
•

∧
Γ = p1 ∧ Fp2 ∧ Lp3 ∧ F(∧(p4 ∨ p2)) ∧ p1 ∧ ¬Gp1 ∧ Gp2 ∧ LFp2.

• nnf(()Γ) = p1,Fp2, Lp3,F(¬p4 ∧ ¬p2)), p1,¬Gp1,Gp2, LFp2.
• ¬Γ = ¬p1,¬Fp2,¬Lp3,¬F(¬(p4 ∨ p2)),¬p1,¬¬Gp1,¬Gp2,¬LFp2.

11.2 Sequents

Throughout this chapter, we will use several forms of sequents of formulas for the calculi. Se-
quents for sequent calculi are primarily split into two main patterns, one-sided and two-sided
sequents, giving one-sided and two-sided sequent calculi. In this chapter we will only use
double-sided sequents, because such sequents are better suited for implementation than one-
sided sequents. Using double-sided sequents allows algorithms to directly deal with implications
and equivalences.

A double sided sequents basically consist of two multisets delimited by the ’⊃’ sign. Sequents
of the formΓ ⊃ ∆ can be interpreted as meaning

∧
Γ→

∨
∆, i.e. the delimiter is treated as an

implication.

The sequent calculus introduced below requires more complicated sequents. These sequents
consists of the basic two sequents, but each of the two sequent sides gets two additional multisets
containing specially marked formulas. The left side additionally has multisets for markedK and
G-formulas, while the right side has two additional multisets for markedL andF-formulas. These
additional multisets are used to remember formulas already treated, to prevent simple loops.

11.3 Double-Sided Sequent Calculus

The next page show a double-sided sequent calculus that can be used to prove formulas of LL−.
The main reason to even introduce an additional calculus are the serious drawbacks of the Tait
and Hilbert style calculi mention in earlier chapters. These drawbacks make implementation of
the calculi in an automated theorem prover much harder, a situation which is improved by the
following double-sided sequent calculus.

After the calculus, we will first look at some motivation why this particular calculus was selected.
Then follows the necessary correctness and completeness proofs for the calculus. Afterwards,
we look at some properties of the calculus. This will include some remarks about implementing
it with an automated theorem prover. Because of some implementation problems, we will then
have to adjust the calculus to finally obtain the calculus that was actually implemented in the
Logics Workbench.
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Definition 27 Rule Names
We call the rules (l-¬), (r-¬), (l-∨), (r-∨), (l-∧), (r-∧), (l-→), (r-→), (l-↔), (r-↔) the classical
rules of the sequent calculus.

The rules (r-L), (r-F), (l-K), and (l-G) we call L/F rules.

The remaining rules (l-L), (l-F), (r-K), and (r-G) we call K/G rules.

The classical rules are those that are the same as for a classical sequent calculus. TheL/F-rules
actually are just marking rules, whereL andF-formulas are marked for later use. TheK/G-rules
are the most complicated rules. They may require backtracking when doing backward proof
search.

11.4 Motivation

The axioms of the calculus are the same as the one of the Tait calculus. We just treat the standard
sequents here and also added axioms to directly deal with the constantstrue andfalse.

The classical sequents are also similar to the one of the Tait calculus. Because we are no more
just dealing with formulas in negation normal form, we have to treat negation, implication and
equivalence as well. Furthermore, these rules have to deal with the whole sequents used for the
other rules.

The rules (r-L), (r-F), (l-K), and (l-G) (L/F-rules) are the same as the ones of the Tait calculus.
Instead of dealing with sets, we now have multisets. Furthermore, to prevent loops by taking the
same formula as main formula of the rule again and again, we mark the formula used by putting
them in a special multi set. Marked formulas can no more be used for this rule.

The rule (r-K), (r-G), (l-L), and (l-F) (K/G-rules) are similar to the Tait rules, but have to take care
of the marked formulas as well. Such formulas are unmarked and again available to be used for
application by other rules. This is necessary, as the next example shows.

Example 14 Unmarking Formulas
The formulaGp→ GGp, written in negation normal form asF¬p∨GGp should surely be provable
in our sequent calculus. The following proof shows that it is provable in our calculus.

∅; ∅ | p ⊃ p | ∅;¬p (id)

∅; ∅ | ⊃ p,¬p | ∅;¬p (¬)

∅; ∅ | ⊃ Gp,¬p | ∅;¬p (G)

∅; ∅ | ⊃ GGp | ∅;¬p (G)

∅; ∅ | ⊃ F¬p,GGp | ∅; ∅ (F)

∅; ∅ | ⊃ F¬p ∨ GGp | ∅; ∅ (∨)
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This example shows that it is necessary to put back the marked formulas into the sides of the
sequent. Additionally, it is also necessary to keep these same formulas marked, to take care of
the transitivity ofG.

11.5 Correctness

We prove correctness of the sequent calculus by transforming a proof of the sequent calculus
into one of the Tait calculus of the previous chapter. Because the Tait calculus only dealt with
formulas in negation normal form, we have to do this transformation here as well.

Theorem 7 Correctness of the Sequent Calculus

S
ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF →

T
nnf(¬KΠK,¬GΠG,¬Γ,∆, LΣL,FΣF)

Proof
We make the proof by induction on the lengthn of the proof:

n = 0 We have one of the axioms (id), (id-t), or (id-f)

If we have the axiom (id), then our assumption to prove is

nnf(¬KΠK,¬GΠG,¬A,¬Γ′, A,∆′, LΣL,FΣF).

While this is not necessarily directly an axiom of the Tait calculus, it is easy to see that this
formula is provable there, because it is a classical tautology.

If we have the axiom (id-t), then withtrue ≡ pi ∨ ¬pi we can make the following proof of our
assumption in the Tait calculus:

¬KΠK,¬GΠG,¬Γ, pi,¬pi,∆′, LΣL,FΣF
(id)

¬KΠK,¬GΠG,¬Γ, pi ∨ ¬pi,∆′, LΣL,FΣF
(∨)

If we have the axiom (id-f), then withfalse ≡ pi ∧ ¬pi and with nnf(¬(pi ∧ ¬pi) ≡ ¬pi ∨ pi
and the proof above follows the assumption.

n > 0 If we still only used one of the axioms in the proof, then we argue as in the case ofn = 0.

Otherwise, we used one of the other rules. Thus, we check all the remaining rules individually:

(l-¬) the induction hypothesis gives us

T nnf(¬KΠK,¬GΠG,¬A,¬Γ,∆, LΣL,FΣF).

But this is the same as the conclusion, thus the assumption holds.

(r-¬) this is the same as the case (l-¬).
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(l-∨) again, from the induction hypothesis we get that the premisses of the (l-∨) are provable
in the Tait calculus. Thus

T nnf(¬KΠK,¬GΠG,¬A,¬Γ,∆, LΣL,FΣF)

and

T nnf(¬KΠK,¬GΠG,¬B,¬Γ,∆, LΣL,FΣF)

With the application of a (∧)-rule and the fact that nnf(¬(A∨B)) = nnf(¬A)∧ nnf(¬B)
follows the assumption.

(r-∨) from the induction hypothesis we know that

T nnf(¬KΠK,¬GΠG,¬Γ, A,B,∆, LΣL,FΣF).

With the application of a (∨)-rule follows the assumption.

(l-∧) this case is similar to the case (r-∨).

(r-∧) this case is similar to the case (l-∨).

(l-→) The assumption follows directly from the induction hypothesis and the application of a
(∧) rule with the fact that nnf(¬(A→ B)) ≡ A ∧ ¬B.

(r-→) The assumption follows directly from the induction hypothesis and the application of
a (∨) rule with the fact that nnf(A→ B) ≡ A ∨ ¬B.

(l-↔) The assumption follows directly from the induction hypothesis and the application of
two (∨)-rules and a (∧)-rule and the fact that nnf(¬(A↔ B)) ≡ (A ∨B) ∧ (¬A ∨ ¬B).

(r-↔) The assumption follows directly from the induction hypothesis and the application of
two (∨)-rules and a (∧)-rule and the fact that nnf(A↔ B) ≡ (¬A ∨B) ∧ (A ∨ ¬B).

(l-L) From the premiss of the rule and the induction hypothesis we immediately get

T nnf(¬GΠG,¬A,¬ΠK,¬ΠG,ΣL,ΣF,FΣF).

By using the fact that nnf(¬GB) = F nnf(¬B) this is

T nnf(F¬ΠG,¬A,¬ΠK,¬ΠG,ΣL,ΣF,FΣF).

We can now apply a (F)-rule for every member of¬ΠG andΣF to get2

T nnf(F¬ΠG,¬A,¬ΠK,ΣL,FΣF).

Using the appropriate weakenings, this can be used as the premiss of the (K)-rule to get,

T nnf(¬KΠK,F¬ΠG,K¬A,¬Γ,∆, LΣL,FΣF).

Now, again with some properties of the negation normal form this is

T nnf(L¬ΠK,F¬ΠG,¬LA,Γ,∆, LΣL,FΣF),

which is the desired assumption.

2 we left out the double appearance ofF¬ΠG andFΣF to make things a bit easier; these formulas would not disturb
the further proof steps in any way.
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(r-L) As before, the assumption follows from the induction hypothesis and the application of a
(K)-rule, weakening and the fact that nnf(¬LA) ≡ K¬nnf(A) and nnf(¬FA) ≡ G¬nnf(A).

(l-F) this case is similar to the case of (l-L).

(r-F) this case is similar to the case of (r-L).

(l-K) this case is similar to the case of (r-L).

(r-K) this case is similar to the case of (l-L).

(l-G) this case is similar to the case of (r-L).

(r-G) this case is similar to the case of (l-L).

11.6 Completeness

As before, we need some preliminary lemmas before actually dealing with completeness of the
calculus itself.

Lemma 8 Weakening

S
ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF ⇒ S

ΠK ∪ Π′K; ΠG ∪ Π′G | Γ ∪ Γ′ ⊃ ∆ ∪∆′ | ΣL ∪ Σ′L; ΣF ∪ Σ′F

Proof
We make a proof by induction on the lengthn of the original proof.

n = 0 we have one of the axioms (id), (id-f), or (id-t)

In that case,ΠK ∪Π′K; ΠG ∪Π′G | Γ ∪ Γ′ ⊃ ∆ ∪∆′ | ΣL ∪ Σ′L; ΣF ∪ Σ′F is an axiom as well.

n > 0 if we still only had an axiom, we have the same situation as before

Otherwise we have to examine the last rule of the proof. If the last rule of the proof was a clas-
sical orL/F-rule, the statement follows directly from the premiss and the induction hypothesis.

If the last rule of the proof was aK/G-rule, we get the weakening inΠG and ΣF from the
induction hypothesis and the rest can be added to the conclusion of the last step as desired.

This lemma simply states that adding formulas to any of the multisets does not prevent a formula
from being provable.
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Lemma 9 F Invertibility

S
ΠK; ΠG | Γ ⊃ ∆,FA | ΣL; ΣF ⇒

S
ΠK; ΠG | Γ ⊃ ∆, A | ΣL; ΣF ∪ A

Proof
We make an induction on the lengthn of the proof ofΠK; ΠG | Γ ⊃ ∆,FA | ΣL; ΣF:

n = 0 thenΓ ⊃ ∆,FA is an axiom

ThenΓ ⊃ ∆ is an axiom itself, because only propositional variables are allowed in axioms.
ThenΓ ⊃ ∆, A is an axiom as well, thus the assumption holds.

n > 0 in the case of an axiom, we proceed as before.

Otherwise, one of the rules of the calculus was used in the last step of the proof.

If FA was not the main formula of the last step of the proof, then we can use the induction
hypothesis on the premiss of the rule and then carry through the same step to get to the desired
result. In the case of theK/G-rules, we must also used the rule’s built-in weakening.

If FA was the main formula of the last step of the proof, then the assumption is exactly the
premiss of the last rule. Thus, the assumption clearly holds.

Lemma 10 Strong Invertibility
The classical and the L/F-rules are strongly invertible.

Proof

(r-¬) n
S ΠK; ΠG | Γ ⊃ ¬A,∆ | ΣL; ΣF ⇒ n

S ΠK; ΠG | A,Γ ⊃ ∆ | ΣL; ΣF

We make an induction on the lengthn of the proof:

n = 0 in that case,Γ ⊃ ¬A,∆ is an axiom

ThenΓ ⊃ ∆ is an axiom by itself, thusA,Γ ⊃ ∆ is one as well.

n > 0 In the case of an axiom, we do the same as before.

Otherwise, a rule was applied. If¬A was not the main formula of the last step of the
proof, we can use the induction hypothesis on the premiss and afterwards carry through
the same rule again. This leads to the desired result. In the case of theK/G-rules, we
only use the rule’s built-in weakening, because¬A cannot appear in the premiss of one
of these rules, it is not the main formula.

If ¬A was the main formula of the last step, then the assumption is equal to the premiss
of the rule, and thus must be provable.
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(l-¬) This proof is similar to the one for (r-¬).

(r-∨) n
S ΠK; ΠG | Γ ⊃ A ∨B,∆ | ΣL; ΣF ⇒ n

S ΠK; ΠG | Γ ⊃ A,B,∆ | ΣL; ΣF

We make an induction on the lengthn of the proof:

n = 0 in that case,Γ ⊃ A ∨B,∆ is an axiom

BecauseA∨B is not a propositional variable,∆ ⊃ Γ has to be an axiom by itself. Thus
∆ ⊃ A,B,Γ is an axiom as well.

n > 0 In the case of an axiom, we do the same as before.

If A ∨ B was not the main formula of the last step of the proof, then we can use the
induction hypothesis on the premiss and afterwards carry through the same rule again.
This leads to the desired result. In the case ofK/G-rules, we only use the rule’s built-in
weakening, becauseA ∨B cannot appear in the premiss of one of these rules.

If A ∨ B was the main formula of the last step, then the assumption is equal to the
premiss of the rule, and thus must be provable.

(l-∨) n
S ΠK; ΠG | A ∨ B,Γ ⊃ ∆ | ΣL; ΣF ⇒ S ΠK; ΠG | A,Γ ⊃ ∆ | ΣL; ΣF and n

S ΠK; ΠG |
B,Γ ⊃ ∆ | ΣL; ΣF

We make an induction on the lengthn of the proof:

n = 0 in that case,A ∨B,∆ ⊃ Γ is an axiom

BecauseA∨B is not a propositional variable,Γ ⊃ ∆ has to be an axiom by itself. Thus
A,Γ ⊃ ∆ andB,Γ ⊃ ∆ are axioms as well and the assumption holds.

n > 0 In the case of an axiom, we do the same as before.

If A ∨ B was not the main formula of the last step of the proof, then we can use the
induction hypothesis on the premiss and afterwards carry through the same rule again.
This leads to the desired result. In the case of theK/G-rules, we only use the rule’s
built-in weakening, becauseA ∨B cannot appear in the premiss of one of these rules.

If A ∨ B was the main formula of the last step, then the assumptions are equal to the
premisses of the rule, and thus must be provable.

(r-∧) this proof is similar to the proof of (l-∨).

(l-∧) this proof is similar to the proof of (r-∨).

(l-→) this proof is similar to the proof of (l-∨).

(r-→) this proof is similar to the proof of (r-∨).

(l-↔) this proof is similar to the proof of (l-∨).

(r-↔) this proof is similar to the proof of (l-∨).

(r-L) n
S ΠK; ΠG | Γ ⊃ LA,∆ | ΣL; ΣF ⇒ n

S ΠK; ΠG | Γ ⊃ A,∆ | ΣL ∪A; ΣF

We make an induction on the lengthn of the proof:
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n = 0 in that case,Γ ⊃ LA,∆ is an axiom

BecauseLA is not a propositional variable,Γ ⊃ ∆ has to be an axiom by itself. Thus
Γ ⊃ A,∆ is an axiom as well and the assumption holds.

n > 0 In the case of an axiom, we do the same as before.

If LA was not the main formula of the last step of the proof, then we can use the
induction hypothesis on the premiss and afterwards carry through the same rule again.
This leads to the desired result. In the case of theK/G-rules, we only use the rule’s
built-in weakening, becauseLA cannot appear in the premiss of one of these rules (only
theL-formulas stored inΣL andΠK are considered for these rules).

If LA was the main formula of the last step, then the assumptions are equal to the
premisses of the rule, and thus must be provable.

(r-F) this proof is similar to the proof of (r-L).

(l-K) this proof is similar to the proof of (r-L).

(l-G) this proof is similar to the proof of (r-L).

This lemma shows the improvements of the sequent calculus over the Tait calculus of the previous
chapter. While in the Tait calculus only the classical rules were invertible, theL/F-rules are also
invertible in the sequent calculus. This greatly enhances the efficiency for automated backward
proof search.

Lemma 11 Contraction
a) n

S
ΠK; ΠG | Γ ⊃ A,A,∆ | ΣL; ΣF ⇒ n

S
ΠK; ΠG | Γ ⊃ A,∆ | ΣL; ΣF

b) n
S

ΠK; ΠG | A,A,Γ ⊃ ∆ | ΣL; ΣF ⇒ n
S

ΠK; ΠG | A,Γ ⊃ ∆ | ΣL; ΣF

Proof
We make a simultaneous induction on the lengthn of the proofs ofΣL; ΣF | Γ ⊃ A,A,∆ | ΠK; ΠG and
ΣL; ΣF | A,A,Γ ⊃ ∆ | ΠK; ΠG.

n = 0 in that case,Γ ⊃ A,A,∆ andA,A,Γ ⊃ ∆ are axioms.

But then,Γ ⊃ A,∆ andA,Γ ⊃ ∆ must be axioms as well.

n > 0 In the case of an axiom, we do the same as before.

If the main formula of the last step was not the formulaA, then we can use the induction
hypothesis on the premiss of the rule of the last step and carry through the rule again. This
results in the desired assumption.

If the main formula of the last step wasA, then we have to make a distinction on the last rule used
in the proof. If the rule is invertible (see lemma 10), then we can use the induction hypothesis
on the premiss(es), if necessary several times, and then carry through the same rule again.3
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If the last rule of the proof is not invertible, it has to be one of theK/G-rules. In all these cases,
the additionalA is dropped in the premiss anyway. Thus, from the same premiss it is possible
to get a proof of the assumption.

The lemma states that if some formula appears twice in the multiset, we can remove one appear-
ance without changing provability of the whole sequent.

Lemma 12 Axiom Extension

S
ΠK; ΠG | A,Γ ⊃ A,∆ | ΣL; ΣF for all formulas A

Proof
We make an induction on the lengthn of A:

n = 0 A ≡ pi, i.e.A is a propositional variable

In that case, the assumption itself is an axiom of the sequent calculus, and thus surely provable.

n > 0 we make a distinction between the structure ofA:

A ≡ ¬B The induction hypothesis gives usΠK; ΠG | B,Γ ⊃ B,∆ | ΣL; ΣF.

Now we use the following proof:

ΠK; ΠG | B,Γ ⊃ B,∆ | ΣL; ΣF

ΠK; ΠG | Γ ⊃ B,¬B,∆ | ΣL; ΣF
(r-¬)

ΠK; ΠG | ¬B,Γ ⊃ ¬B,∆ | ΣL; ΣF
(l-¬)

A ≡ B ∨ C The induction hypothesis gives usΠK; ΠG | B,Γ ⊃ B,C,∆ | ΣL; ΣF and
ΠK; ΠG | C,Γ ⊃ B,C,∆ | ΣL; ΣF.

Now we use the following proof:

ΠK; ΠG | B,Γ ⊃ B,C,∆ | ΣL; ΣF ΠK; ΠG | C,Γ ⊃ B,C,∆ | ΣL; ΣF

ΠK; ΠG | B ∨ C,Γ ⊃ B,C,∆ | ΣL; ΣF
(l-∨)

ΠK; ΠG | B ∨ C,Γ ⊃ B ∨ C,∆ | ΣL; ΣF
(r-∨)

A ≡ B ∧ C The induction hypothesis gives usΠK; ΠG | B,C,Γ ⊃ B,∆ | ΣL; ΣF and
ΠK; ΠG | B,C,Γ ⊃ C,∆ | ΣL; ΣF.

Now we use the proof:

ΠK; ΠG | B,C,Γ ⊃ B,∆ | ΣL; ΣF ΠK; ΠG | B,C,Γ ⊃ C,∆ | ΣL; ΣF

ΠK; ΠG | B,C,Γ ⊃ B ∧ C,∆ | ΣL; ΣF
(r-∧)

ΠK; ΠG | B ∧ C,Γ ⊃ B ∧ C,∆ | ΣL; ΣF
(l-∧)

3 the length of the proof is not changed by using the induction hypothesis or by using the strong invertibility of a
rule.
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A ≡ B → C The induction hypothesis gives usΠK; ΠG | B,Γ ⊃ B,C,∆ | ΣL; ΣF and
ΠK; ΠG | B,C,Γ ⊃ C,∆ | ΣL; ΣF.

Now we use the proof:

ΠK; ΠG | B,Γ ⊃ B,C,∆ | ΣL; ΣF ΠK; ΠG | B,C,Γ ⊃ C,∆ | ΣL; ΣF

ΠK; ΠG | B,B → C,Γ ⊃ C,∆ | ΣL; ΣF
(l-→)

ΠK; ΠG | B → C,Γ ⊃ B → C,∆ | ΣL; ΣF
(r-→)

A ≡ B ↔ C The induction hypothesis gives us

ΠK; ΠG | B,Γ ⊃ B,C,C,∆ | ΣL; ΣF,

ΠK; ΠG | B,B,C,Γ ⊃ C,∆ | ΣL; ΣF,

ΠK; ΠG | C,Γ ⊃ B,B,C,∆ | ΣL; ΣF, and

ΠK; ΠG | C,B,C,Γ ⊃ B,∆ | ΣL; ΣF.

Now we use the proof:

[A]:
ΠK; ΠG | B,Γ ⊃ B,C,C,∆ | ΣL; ΣF ΠK; ΠG | B,B,C,Γ ⊃ C,∆ | ΣL; ΣF

ΠK; ΠG | B,B ↔ C,Γ ⊃ C,∆ | ΣL; ΣF

(l-↔)

[A]

ΠK; ΠG | C,Γ ⊃ B,B,C,∆ | ΣL; ΣF ΠK; ΠG | C,B,C,Γ ⊃ B,∆ | ΣL; ΣF

ΠK; ΠG | C,B ↔ C,Γ ⊃ B,∆ | ΣL; ΣF

(l-↔)

ΠK; ΠG | B ↔ C,Γ ⊃ B ↔ C,∆ | ΣL; ΣF

(r-↔)

A ≡ LB The induction hypothesis gives us∅; ΠG | B,ΠK,ΠG ⊃ B,ΣL,ΣF | ∅; ΣF.

Now we use the proof:

∅; ΠG | B,ΠK,ΠG ⊃ B,ΣL,ΣF | ∅; ΣF

ΠK; ΠG | LB,Γ ⊃ B,∆ | ΣL ∪B; ΣF
(l-L)

ΠK; ΠG | LB,Γ ⊃ LB,∆ | ΣL; ΣF
(r-L)

A ≡ FB The induction hypothesis gives us∅; ΠG | B,ΠG ⊃ B,ΣF | ∅; ΣF.

Now we use the proof:

∅; ΠG | B,ΠG ⊃ B,ΣF | ∅; ΣF

ΠK; ΠG | FB,Γ ⊃ B,∆ | ΣL; ΣF ∪B
(l-F)

ΠK; ΠG | FB,Γ ⊃ FB,∆ | ΣL; ΣF
(r-F)

A ≡ KB The induction hypothesis gives us∅; ΠG | B,ΠK,ΠG ⊃ B,ΣL,ΣF | ∅; ΣF.

Now we use the proof:

∅; ΠG | B,ΠK,ΠG ⊃ B,ΣL,ΣF | ∅; ΣF

ΠK ∪B; ΠG | B,Γ ⊃ KB,∆ | ΣL; ΣF
(r-K)

ΠK; ΠG | KB,Γ ⊃ KB,∆ | ΣL; ΣF
(l-K)

A ≡ GB The induction hypothesis gives us∅; ΠG | B,ΠG ⊃ B,ΣF | ∅; ΣF.

Now we use the proof:

∅; ΠG | B,ΠG ⊃ B,ΣL | ∅; ΣF

ΠK; ΠG ∪B | B,Γ ⊃ GB,∆ | ΣL; ΣF
(r-G)

ΠK; ΠG | GB,Γ ⊃ GB,∆ | ΣL; ΣF
(l-G)
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This lemma allows us to directly use complex formulas in the place of the propositional variables
in axioms. This allows us to end proof search much earlier and thus speeds up proving. Directly
using complex formulas in the axioms of the original calculus, on the other hand, would make
most of the proofs in this chapter much more complicated.

Now, we are ready to prove the completeness of the sequent calculus. We do that by showing
that every proof of the Tait Calculus of the previous chapter can be transformed into a proof of
the sequent calculus.

Theorem 8 Completeness

T
nnf(∆) ⇒

S
∅; ∅ | ⊃ ∆ | ∅; ∅

Proof
We make an induction on the lengthn of the proof in the Tait calculus.

n = 0 thenΓ is an Axiom, i.e.Γ = A,¬A,Γ′ for some formulaA

We now make the following proof in the sequent calculus:

∅; ∅ | A ⊃ A,Γ′ | ∅; ∅
∅; ∅ | ⊃ A,¬A,Γ′ | ∅; ∅

(r-¬)

Using lemma 12 we get the proof.

n > 0 If we still have an axiom, we use the same as before.

Otherwise, we may assume thatΓ was deduced by one of the rules of the Tait calculus. We
assume that the formulaAwas the main formula of the last rule used in the proof and distinguish
the different cases by the last rule used.

(∨) thenA ≡ B ∨ C and from the last step we have<nT B,C,Γ′

With the induction hypothesis we getS ∅; ∅ | ⊃ A,B,Γ | ∅; ∅. Thus, we can make the
following proof in the sequent calculus:

∅; ∅ | ⊃ A,B,Γ′ | ∅; ∅
∅; ∅ | ⊃ A ∨B,Γ′ | ∅; ∅

(r-∨)

(∧) thenA ≡ B ∧ C and from the last step we have<nT B,Γ′ and <n
T C,Γ′

With the induction hypothesis (twice) we getS ∅; ∅ | ⊃ B,Γ′ | ∅; ∅ and S ∅; ∅ | ⊃
C,Γ′ | ∅; ∅. Thus, we can make the following proof in the sequent calculus:

∅; ∅ | ⊃ B,Γ′ | ∅; ∅ ∅; ∅ | ⊃ C,Γ′ | ∅; ∅
∅; ∅ | ⊃ B ∧ C,Γ′ | ∅; ∅

(r-∧)
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(L) thenA ≡ LB and from the last step we have<nT A,Γ′

With the induction hypothesis we getS ∅; ∅ | ⊃ B,Γ′ | ∅; ∅. Using Lemma 8 this can
be weakened toS ∅;B,Γ

′ | ⊃ | A; ∅. Now, we can make the following proof in the
sequent calculus:

∅; ∅ | ⊃ B,Γ′ | B; ∅
∅; ∅ | ⊃ LB,Γ′ | ∅; ∅

(r-L)

(F) thenA ≡ FB and from the last step we have<nT B,Γ′

With the induction hypothesis we getS ∅; ∅ | ⊃ B,Γ′ | ∅; ∅. Using Lemma 8 this can
be weakened toS ∅;B,Γ

′ | ⊃ | ∅;B. Now, we can make the following proof in the
sequent calculus:

∅; ∅ | ⊃ B,Γ′ | ∅;B
∅; ∅ | ⊃ FB,Γ′ | ∅; ∅

(r-F)

(K) thenA ≡ KB and from the last step we have<nT B,Γ′L,Γ
′
F,FΓ′F.

With the induction hypothesis we getS ∅; ∅ | ⊃ B,Γ′L,Γ
′
F,FΓ′F | ∅; ∅. Using lemma 9

once for each member ofΓ′F, we getS ∅; ∅ | ⊃ B,Γ′L,Γ
′
F,Γ

′
F | ∅; ∆. Now we can use

contraction (lemma 11) to achieveS ∅; ∅ | ⊃ B,Γ′L,Γ
′
F | ∅; Γ′F. We can now make the

following proof in the sequent calculus:

∅; ∅ | ⊃ B,Γ′L,Γ′F | ∅; Γ′F
∅; ∅ | ⊃ KB,Γ′,Γ′L,Γ

′
F | Γ′L; Γ′F

(r-K)

∅; ∅ | ⊃ KB,FΓ′F,Γ
′,Γ′L | Γ′L; ∅

(r-F several times)

∅; ∅ | ⊃ KB, LΓ′L,FΓ′F,Γ
′ | ∅; ∅

(r-L several times)

(G) thenA ≡ GB and from the last step we have<nT B,FΓ′F.

With the induction hypothesis we getS ∅; ∅ | ⊃ B,FΓ′F | ∅; ∅. Using lemma 9 once for
each member ofFΓ′F, we getS ∅; ∅ | ⊃ B,Γ′F | ∅; Γ′F. We can now make the following
proof in the sequent calculus:

∅; ∅ | ⊃ B,Γ′F | ∅; Γ′F
∅; ∅ | ⊃ GB,Γ′F,Γ

′ | ∅; Γ′F
(r-G)

∅; ∅ | ⊃ GB,FΓ′F,Γ
′ | ∅; ∅

(r-F several times)

11.7 Properties

As before with the Tait calculus, we take a look at some properties of the sequent calculus.
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11.7.1 Subformula Property

It can be easily seen that all rules of the sequent calculus have the subformula property, i.e. all
formulas present in the premiss of a rule are subformulas of one of the formulas of the conclusion.

11.7.2 Contraction

Contraction has been proven in lemma 11 and is thus valid in the sequent calculus as well.

Invertible Rules

As shown in lemma 10, most rules in the sequent calculus are strongly invertible. The rest of the
rules, namely theK/G-rules are not invertible, as was the case in the Tait calculus.

11.7.3 Backward Proof Search

A formulaA is provable in the sequent calculus, written as

S
A

if and only if there exists a derivation sequence which starts at axioms, ends with the formulaA
and only uses the rules of the calculus. This is exactly the same as for the Tait calculus. Again,
not every derivation ends in axioms only, even if the formula is provable. Consider the following
example of the proof of the formulaF¬B ∨ GA ∨ GB (which is the same as¬GB ∨ GA ∨ GB,
thus provable):

∅; ∅ | B ⊃ A | ∅;¬B
∅; ∅ | ⊃ ¬B,A | ∅;¬B (r-¬)

∅; ∅ | ⊃ ¬B,GA,GB | ∅;¬B (r-G)

∅; ∅ | ⊃ F¬B,GA,GB | ∅; ∅ (r-F)

∅; ∅ | ⊃ F¬B,GA ∨ GB | ∅; ∅ (r-∨)

∅; ∅ | ⊃ F¬B ∨ GA ∨ GB | ∅; ∅ (r-∨)

This proof does not work, i.e. we come to a position where we can’t go on. The problem comes
from the wrong selection of the main formula for the (G)-rule. If we useGB instead ofGA as
main formula, we get a successful proof:
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∅; ∅ | B ⊃ B | ∅;¬B
∅; ∅ | ⊃ ¬B,B | ∅;¬B (r-¬)

∅; ∅ | ⊃ ¬B,GA,GB | ∅;¬B (r-G)

∅; ∅ | ⊃ F¬B,GA,GB | ∅; ∅ (r-F)

∅; ∅ | ⊃ F¬B,GA ∨ GB | ∅; ∅ (r-∨)

∅; ∅ | ⊃ F¬B ∨ GA ∨ GB | ∅; ∅ (r-∨)

Thus, the situation is similar to the situation of the Tait calculus. This time, we have more
invertible rule. Because these rules don’t need backtracking, this calculus prospects to be more
efficient that the Tait calculus. Furthermore, because of the double-sided nature of the calculus,
the classical implication and equivalence can be treated much more efficiently. Instead of having
to replace them with their definition, we can directly treat them.

11.7.4 Termination

The given sequent calculus does not have the same problems concerning termination as the Tait
calculus presented in the previous chapter. The (L)- and (F)-rules are specifically made to treat
anL- or F-formula only once.4 Thus a loop cannot appear in such a case.

Unfortunately, there is a drawback to this solution. Each time aG-formula is treated, all previ-
ously handledF-formulas are brought back for treatment. If there is aG-formula present in the
sequent, then we can create a loop. Consider the following derivation of the formulaFGA:

...
∅; ∅ | ⊃ A,GA | ∅; GA

(r-G)

∅; ∅ | ⊃ A,GA | ∅; GA
(r-G)

∅; ∅ | ⊃ A,GA | ∅; GA
(r-G)

∅; ∅ | ⊃ FGA | ∅; ∅ (r-F)

Thus, without taking special care, this calculus is bound to loop just as the Tait calculus. This
problem will be tackled in the next section.

4 that is actually once in each state treated; the application of a (K)- or (G)-rule makes it possible that such a formula
is used again.
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11.7.5 Disjunction Principle

Lemma 13 Disjunction Principle

S
ΠK; ΠG | FA1, . . . ,FAn, LB1, . . . , LBm ⊃ GC1, . . . ,GCk,KD1, . . . ,KDl | ΣL; ΣF

⇒
S

ΠK; ΠG | FA1 ⊃ | ΣL; ΣF or . . . or
S

ΠK; ΠG | FAn ⊃ | ΣL; ΣF or

S
ΠK; ΠG | LB1 ⊃ | ΣL; ΣF or . . . or

S
ΠK; ΠG | KBm ⊃ | ΣL; ΣF or

S
ΠK; ΠG | ⊃ GC1 | ΣL; ΣF or . . . or

S
ΠK; ΠG | ⊃ GCk | ΣL; ΣF or

S
ΠK; ΠG | ⊃ KD1 | ΣL; ΣF or . . . or

S
ΠK; ΠG | ⊃ KDl | ΣL; ΣF

Proof
Let SΠK; ΠG | FA1, . . . ,FAn, LB1, . . . , LBm ⊃ GC1, . . . ,GCk,KD1, . . . ,KDl | ΣL; ΣF

This can’t be an axiom, because we only allow propositional variables in axioms. Thus a rule with main
formulaA was applied last.

We only treat the case whereA ≡ FAi. All other cases can be done similarly.

The premiss of the rule gives usS ∅; ΠG | Ai,ΠK,Π,G ⊃ ΣL,ΣK | ∅; ΣF. Using the (l-F)-rule without
built-in weakening gives usSΠK; ΠG | FAi ⊃ | ΣL; ΣF. This exactly what we want to prove.

Again, this property is crucial for proof search. As with the Tait Calculus, it allows to treat
backtracking formulas independent from each other.

11.8 Loop-Check

As mentioned, proof search in this sequent calculus does not always terminate. In order to be able
to implement the calculus in a theorem prover, termination has to be guaranteed. We guarantee
termination by adding a loop-check to the calculus.

11.8.1 Preparations

Before we actually deal with the loop check we have to make some preparations.

Lemma 14 Side Formulas
If ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF is the conclusion of a classical or L/F rule and Π′L; Π′F | Γ′ ⊃ ∆′ |
Σ′L; Σ′F one of its premisses and A is not the main formula of the rule, then

A ∈ ∆ ⇒ A ∈ ∆′
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and
A ∈ Γ ⇒ A ∈ Γ′

Proof
A closer look at the rules in question shows, that all these rules take over all side formulas from the
conclusion to the premiss.

This lemma just says that side formulas are retained with classical andL/F-rules.

Lemma 15 Marked Side Formulas
If ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF is the conclusion of a rule and Π′L; Π′F | Γ′ ⊃ ∆′ | Σ′L; Σ′F one of its
premisses and A is not the main formula of the rule, then we have

A ∈ ΣF and A ∈ ∆ ⇒ A ∈ ∆′

and
A ∈ ΠG and A ∈ Γ ⇒ A ∈ Γ′

Proof
We have to take a closer look at the rules of the calculus.

We don’t have to check the axiom rules, because they don’t have any premisses. All the classical rules
take over all side formulas that are present in the conclusion (lemma 14). Thus our proposition surly holds
for these rules. The same is true for theL/F rules.

What is left are theK/G rules. For these rules we use the fact, thatA ∈ ΣF. For all these rules,ΣF and
thusA is present in the premiss. Thus, our proposition holds for these rules as well.

For the second statement we can argue similarly.

Definition 28 Logical Element
Γ and ∆ are arbitrary, finite multisets. Then we define [Γ; ∆]n inductively by

[Γ; ∆]0 = ∆,
[Γ; ∆]n+1 = [Γ; ∆]n ∪ {¬B | B ∈ [∆; Γ]n}

∪ {B ∨ C | B ∈ [Γ; ∆]n and C ∈ [Γ; ∆]n}
∪ {B ∧ C | B ∈ [Γ; ∆]n or C ∈ [Γ; ∆]n}
∪ {B → C | B ∈ [∆; Γ]n and C ∈ [Γ; ∆]n}
∪ {B ↔ C | (B ∈ [∆; Γ]n and C ∈ [Γ; ∆]n) or

(B ∈ [Γ; ∆]n and C ∈ [∆; Γ]n)}
∪ {LB | B ∈ [Γ; ∆]n}
∪ {FB | B ∈ [Γ; ∆]n}
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We say a formula A is a logical elementof Γ; ∆, written as A ∈̇ Γ; ∆ iff there is an n with
A ∈ [Γ; ∆]n.

It has to be noted, that if aG-formula is in the set, then it’s subformulas are not necessarily as
well. ThusGA ∈̇ Γ; ∆ does not require thatA ∈̇ Γ; ∆.

This definition allows to say that a formula is present in a sequent, maybe after some proof steps
were carried through and the formula was broken up. The multisetΓ represents the left side of
the sequent and∆ represents the right side.

Lemma 16 Properties of∈̇

1. A ∈̇ Γ; ∆ ⇒ ¬A ∈̇ ∆; Γ

2. A ∈̇ Γ; ∆ and B ∈̇ Γ; ∆ ⇒ A ∨B ∈̇ Γ; ∆

3. A ∈̇ Γ; ∆ or B ∈̇ Γ; ∆ ⇒ A ∧B ∈̇ Γ; ∆

4. A ∈̇ ∆; Γ and B ∈̇ Γ; ∆ ⇒ A→ B ∈̇ Γ; ∆

5. (A ∈̇ ∆; Γ and B ∈̇ Γ; ∆) or (B ∈̇ ∆; Γ and A ∈̇ Γ; ∆) ⇒ A↔ B ∈̇ Γ; ∆

6. A ∈̇ Γ; ∆ ⇒ LA ∈̇ Γ; ∆

7. A ∈̇ Γ; ∆ ⇒ FA ∈̇ Γ; ∆

Proof
These propositions directly follow from the definition above.

The properties oḟ∈ will be used in the proofs below.

Lemma 17 Weakening for∈̇
If ∆ ⊂ ∆′ and Γ ⊂ Γ′ then

A ∈̇ Γ; ∆ ⇒ A ∈̇ Γ′; ∆′
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Proof
This directly follows from the definition oḟ∈, or more precise the definition of[Γ; ∆]n. We surely have
[Γ; ∆]0 ⊂ [Γ′; ∆′]0. The definition also gives us[Γ; ∆]n ⊂ [Γ′; ∆′]n for eachn.

FromA ∈̇ Γ; ∆ we know that there is ann withA ∈ [Γ; ∆]n. But then alsoA ∈ [Γ′; ∆′]n, i.e.A ∈̇ Γ′; ∆′.

With this lemma, we are allowed to enlarge the multisets without changing the fact that a formula
is a logical element.

The following has to be noted:

B ∈ subfml(A) 6⇒ B ∈̇ ∅;A

This means that not all subformulas of a formula are logical elements of its multisets.

Consider the case thatA ≡ B ∧C. In the case thatC ∈̇ ∅;A there is no guarantee thatB ∈̇ ∅;A
as well. The definition only requires that eitherB orC must be, but not both.

Lemma 18 Main Formulas as Logical Elements
If ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF is the conclusion of a classical or L/F rule and Π′L; Π′F | Γ′ ⊃ ∆′ |
Σ′L; Σ′F one of its premisses and A is the main formula of this rule, then we have

A ∈ ∆ ⇒ A ∈̇ Γ′; ∆′

and
A ∈ Γ ⇒ A ∈̇ ∆′; Γ′

Proof
We only prove the first part. The second part can be proven similarly.

We distinguish several cases for the different rules that could be used:

A ≡ ¬B In that case,B ∈ Γ′ and thusB ∈̇ ∆′; Γ′. With lemma 16 (1), we getA ≡ ¬B ∈ Γ′; ∆′.

A ≡ B ∨ C The rule gives us thatB ∈ ∆′ andC ∈ ∆. Thus, from the definition oḟ∈ we have
B ∈̇ Γ′; ∆′ andC ∈̇ Γ′; ∆′. With lemma 16 (2), this gives us the proposition.

A ≡ B ∧ C Depending on which premiss we choose, we either haveB ∈ ∆′ orC ∈ ∆′. That means,
eitherB ∈̇ Γ′; ∆′ orC ∈̇ Γ′; ∆′. According to lemma 16 (3), this gives us the proposition.

. . . The proofs for the remaining cases can be done similarly to the ones above and thus are
not detailed here.
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This lemma says that main formulas of classical andL/F-rules are logical elements of the premiss
of the rule. This is extended in the next lemma to all formulas.

Lemma 19 Formulas as Logical Elements
If ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF is the conclusion of a classical or L/F rule and Π′L; Π′F | Γ′ ⊃ ∆′ |
Σ′L; Σ′F one of its premisses then

A ∈̇ Γ; ∆ ⇒ A ∈̇ Γ′; ∆′

and
A ∈̇ ∆; Γ ⇒ A ∈̇ ∆′; Γ′

Proof
If A is the main formula of the proof, then, according to lemma 18, we are already done.

Otherwise, lemma 15 directly gives us the desired proposition.

With this lemma, every formula of a conclusion is a logical element of the premiss. The definition
of ∈̇ was actually tailored to make this lemma possible.

Lemma 20 Limited Marked Formulas as Logical Elements
If ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF is the conclusion of a rule and Π′L; Π′F | Γ′ ⊃ ∆′ | Σ′L; Σ′F one of its
premisses, then we have the following

A ∈ ΣF and A ∈̇ Γ; ∆ ⇒ A ∈̇ Γ′; ∆′

and
A ∈ ΠG and A ∈̇ ∆; Γ ⇒ A ∈̇ ∆′; Γ′

Proof
We assumeA ∈ ΣF andA ∈̇ Γ; ∆. If A is the main formula of the rule, then according to lemma 18 we
directly get the proposition. Thus, we only have to treat the cases whereA is not the main formula of the
rule.

If the rule in question was either a classical or aL/F-rule, then lemma 19 directly gives us the proposition,
without using thatA ∈ ΣF orA ∈ ΠG.

What’s left, is to show the proposition for theK/G rules. But for these rules we have—because ofA ∈
ΣF—thatA ∈ ∆′ and thus the proposition surely holds.
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Lemma 21 Marked Formulas as Logical Elements
For each conclusion ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF and premiss Π′L; Π′F | Γ′ ⊃ ∆′ | Σ′L; Σ′F of a rule
in a proof of the sequent ∅; ∅ | ⊃ B | ∅; ∅, we have

A ∈ ΣF ⇒ A ∈̇ Γ′; ∆′

and

A ∈ ΠG ⇒ A ∈̇ ∆′; Γ′

Proof
We only prove the first statement, because the proof of the second is similar.

If the rule in question is aK/G rule, then we surely have fromA ∈ ΣF thatA ∈ ∆′, thus the conclusion
holds.

If A ∈̇ Γ; ∆ then we know from lemma 20 that alsoA ∈̇ Γ′; ∆′.

What’s left is the case thatA ˙6∈ Γ; ∆. If A ∈̇ Γ′′,∆′′ of a Γ′′; ∆′′ of an earlier rule, then we’d have
A ∈̇ Γ; ∆ as well (lemma 20). Thus,A was never a logical element of a rule. But then,FA never was the
main formula of a rule, because otherwiseA must be an element of its premiss. But then we cannot have
A ∈ ΣF, because we started with empty sets for the marked formulas. Thus, this case never occurs.

Lemma 22 Removing Formulas

A ∈ ΣF and A ∈̇ Γ; ∆ and
S

ΠK; ΠG | Γ ⊃ ∆, A | ΣL; ΣF ⇒
S

ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF

and

A ∈ ΠG and A ∈̇ ∆; Γ and
S

ΠK; ΠG | Γ, A ⊃ ∆ | ΣL; ΣF ⇒
S

ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF
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Proof
We make a proof by induction over the structure of the proof:

If ΠK; ΠG | Γ ⊃ ∆, A | ΣL; ΣF is an axiom, then we can have one of two cases. In the first case,Γ ⊃ ∆
is an axiom by itself. Then the proposition surely holds. Otherwise, the sequent is an axiom because
¬A ∈ Γ. But thenA must be a propositional variable. Thus, fromA ∈̇ ∆; Γ follows thatA ∈ ∆. But
then the proposition surely is an axiom as well.

If A is not the main formula of the last step of the proof, then in the case of classical orL/F rules,A is
present in the premiss as well and we can use the induction hypothesis. In the case of aK/G ruleA is not
present in the premiss and we can directly prove our proposition using the built-in weakening.

What’s left is the case thatA is the main formula of the last step of the proof. We distinguish different
cases by the structure ofA.

A ≡ ¬B The premiss of the proof gives usSΠK; ΠG | Γ, B ⊃ ∆ | ΣL; ΣF. But either we had
from A ∈̇ Γ; ∆ thatA ∈ ∆, which would directly allow us to get the proposition, or we
haveB ∈̇ ∆; Γ. But then we can use the induction hypothesis on the second part to get the
proposition.

. . . For the other classical andL/F rules we can give similar proofs.

A ≡ GB Because we know thatA ∈̇ Γ; ∆, we know from the definition of ’̇∈’ thatA ∈ ∆. But then
the proposition directly follows using contraction.

A ≡ KB This case is similar to the previous one.

The proof of the second part of the lemma is done similarly.

Theorem 9 RemovingFA
If A ∈ ΣF then

S
ΠK; ΠG | Γ ⊃ ∆,FA | ΣL; ΣF ⇒

S
ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF

Proof
We make an induction on the structure of the proof in question:

If we have an axiom, it can surely not be because ofFA, because we only allow propositional variables in
axioms. Thus we can removeFA and still have an axiom.

If FA was not the main formula of the rule, then we can use the induction hypothesis on the premiss to
get the desired result.

We are left with the case thatFA is the main formula of the rule. But then the premiss of the rule is
ΠK; ΠG | Γ ⊃ ∆, A | ΣL; ΣF. With lemma 225 follows SΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF. This is exactly what
we want to prove.
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Corollary 2 RemovingGA
If A ∈ ΠG then

S
ΠK; ΠG | GA,Γ ⊃ ∆ | ΣL; ΣF ⇒

S
ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF

Proof
The proof of this lemma can be done analogously as the one for the theorem.

The theorem shows us that it is completely enough to have anF rule that treats newF formulas
and that it’s not necessary to treatF formulas again if they were already treated once. Using
theorem 9 allows us to add the condition ’A 6∈ ΓF’ to the (F)-rules, without having to add a rule
for A ∈ ΓF. The same is true for the (l-G) rule.

As some tests have shown, this can make proof search a little bit faster. Thus, these optimization
is included in the updated sequent calculus below.

11.8.2 History

Because formulas and theories in the logic of likelihood are finite, the only reason why we get
an infinite proof are loops. Thus, to make sure our calculus terminates in any case, we need to
detected and prevent loops. Each time a rule of the calculus is to be applied we check if the
current sequent was already used once for the same rule. If this is the case, then there is no use
in applying the rule again, because we cannot achieve a result different from that obtained by the
first application of the rule. Thus, we don’t allow the application of such a rule.

The most straightforward way to make a loop check is to store the complete conclusion of each
rule, along with its main formula into a history. Each time a rule of the calculus is to be applied,
we first check if the main formula of the rule, along with all its side formulas are in the history.
If they are, we know that we’d created a loop and thus skip the rule.

This method can be greatly improved, though. A closer look at the rules of the sequent calculus
shows that all rules except theK/G-rules decrease the length of the formulas in the premiss. Thus,
the only way to get a loop is by usingK/G-rules. This means, we don’t have to check for a loop
each time a rule is used, only when applying aK/G-rule.

When storing the information of the history, it is necessary to store all elements of the sequent
that are required for recognizing the loop. While all the elements of the conclusion of a rule are
5 thatA ∈ ΣF is given from the assumption; lemma 21 then gives us the second assumptionA ∈̇ Γ; ∆ that is used

for lemma 22.
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surely sufficient, it is enough to store the elements of the premiss. Although the elements of the
premiss don’t uniquely identify the sequent before the rule application, a loop is also achieved
if the premiss is the same as one already encountered. A look at theK/G-rules shows that the
premisses of these rules contain much less formulas and thus require much shorter histories.

In the sequent calculus with loop check, several symbols are used to store the histories. We
use the symbols HL to store the history information forL-formulas as main formula. Likewise,
HK stores the history information ofK-formulas, HG those ofG-formulas, and HF those ofF-
formulas.

A short inspection of the rules of the sequent calculus reveals, that the sets for markedG and
F-formulas never diminish. A formula that is present in such a set will never again be removed.
If a new formula not present in one of the sets is added, then we can never have a loop, because
the set is now bigger than the sets of all previous steps. Thus, it is not necessary to store these
sets along with the main formula of the rule. Instead, the main formula alone is stored and each
time a newG or F-formula is added to the sets of marked formulas, this storage is cleared. This
way, the same loops are recognized as when storing all data, but much less formulas need to be
stored.

For this reason, the histories HG and HF are simple sets containing the main formulas of the rule
applications. These histories are cleared, whenever a newG or F-formula is marked.

The same is only partially true for the historiesΠK andΣL. While storing the markedG and
F-formulas is not necessary as well, we need to store the markedL andK-formulas. TheK/G-
rules reset theΠK andΣL sets and thus diminish them. Using the same trick as above is thus not
possible.

The histories HL and HK thus have a more complicated structure. Each element of the history set
consists of a sequent, itself consisting of the main formula and the corresponding set of marked
K andL-formulas. We write this using the notation(A; ΠK; ΣL). Further we use{(A; ΠK; ΣL) |
A ∈ ΓL} for the set consisting of the sequents with each formula fromΓL as the main formula,
each time with the same set of marked formulas. Just as the other history sets, HL and HK have
to be cleared whenever a newF or G-formula is marked.

All together, the different histories have the following structure:

HL = {A1, . . . , An}, where eachAi is a triple(Bi; Πi; Σi), consisting of a formulaBi, and
two multisetsΠi andΣi.

HF = {A1, . . . , An}, where eachAi is a formula.
HK = {A1, . . . , An}, where eachAi is a triple(Bi; Πi; Σi), consisting of a formulaBi, and

two multisetsΠi andΣi.
HG = {A1, . . . , An}, where eachAi is a formula.

A last optimization step can be done by not only adding the main formula of the rule to the
history, but also all other candidates for this rule as well. Because we have to try all these
candidates with backtracking if one fails, we don’t need to use them while trying the first. This
can drastically reduce the amount of time needed for computation.
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All these optimizations are included in the sequent calculus that is shown on the next pages.
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11.8.3 Correctness

Compared to the earlier version of the sequent calculus, all rules just got some additional sets
that are stored and additional restrictions when the rule can be used. This does in no way inter-
fere with correctness. Therefore correctness follows from the correctness of the earlier sequent
calculus.

Especially, a proof in the sequent calculus with history can easily be transformed into a proof of
the sequent calculus without history by simply removing all history sets in all rules.

11.8.4 Completeness

Contrary to correctness, completeness has to be shown again, because the additional restrictions
on the rules could prevent some of the proofs used earlier.

Theorem 10 Completeness

S
∅; ∅ | Γ ⊃ ∆ | ∅; ∅ ⇒

SH
∅ ‖ ∅; ∅ | Γ ⊃ ∆ | ∅; ∅ ‖ ∅

Proof
We prove completeness by transforming a proof of the previous sequent calculus into one of the new
calculus.

If we have a proof of a sequent in the original sequent calculus that does not contain any loops, we can
use completely the same proof in the new calculus and just have to add the histories.

If the proof contains one or more loops, we simply remove all rule applications between the two equal
sequents. The resulting structure is still a proof, but does contain one loop less. By doing this for all
loops6, we get a proof with no loops and can easily transform it into a proof in the new calculus as before.

11.8.5 Termination

Lemma 23 History Size
If

S
∅; ∅ | ⊃ A | ∅; ∅, then

|HL|+ |HF|+ |HK|+ |HG| < |A|

for each rule of the proof.

6 a proof has to be finite, thus we can only have a finite number of loops.
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Proof
Clearly, the double-sided sequent calculus with history has the subformula property. Thus, every formula
appearing in the proof has to be a subformula ofA. This enforces that every formula in the sets HL, HF,
HK, and HG is a subformula ofA. Because the sets HF and HG only contain formulas that stem from
different subformulas ofA and the sets HL and HK only haveL- andK-formulas as the main formulas of
their sequents, all sets together cannot have more elements as there are subformulas ofA. Thus we have
|HL|+ |HF|+ |HK|+ |HG| ≤ |A|.

On the other hand,A must contain at least one propositional variable, required from the definition of the
structure of a formula (definition 2). But a propositional variable can never be part of one of the histories,
because onlyL, F, K, andG formulas are stored in histories. Therefore, there is at least one subformula of
A which is not present in the history sets, thus the lemma holds.

Lemma 24 Marked Formula Size
If

S
∅; ∅ | ⊃ A | ∅; ∅, then

|ΠK|+ |ΠG|+ |ΣL|+ |ΣF| < |A|

for each rule of the proof.

Proof
The proof is the similar to the one of the previous lemma. Every formula of theΠ andΣ sets must be a
subformula ofA and all these formulas were created from a different subformulas ofA. Furthermore,A
itself cannot be part of any of the formulas, because the top level operator of the formula is removed when
it is put into one of the multisets.

These lemmas make sure that|A| − (|HL|+ |HF|+ |HK|+ |HG|) > 0 and|A| − (|ΠK|+ |ΠG|+
|ΣL|+ |ΣF| > 0. This information is used below.

Definition 29 Sequent Measure
We assume that we have a proof of the formula A. We define the following measure for sequents
of a proof of the calculus:

m(HL,HF ‖ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF ‖HK,HG) =
(|Γ|+ |∆|+ |A|) · (|A| − (|HL|+ |HF|+ |HK|+ |HG|)

This definition ensures that we havem(. . .) ≥ 0 for every sequent that appears in the proof ofA.

Lemma 25 Termination
If HL,HF ‖ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF ‖HK,HG is the conclusion in the a proof of A and fur-
thermore the sequent H′L,H

′
F ‖Π′L; Π′F | Γ′ ⊃ ∆′ | Σ′L; Σ′F ‖H′K,H

′
G one of its premisses, then we

have
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m(HL,HF ‖ΠK; ΠG | Γ ⊃ ∆ | ΣL; ΣF ‖HK,HG) <
m(H′L,H

′
F ‖Π′L; Π′F | Γ′ ⊃ ∆′ | Σ′L; Σ′F ‖H′K,H

′
G)

Proof
We distinguish different cases according to the rule in question (we don’t have to treat axioms, because
they don’t have premisses):

(l-¬) According to the rule, we move a formula from left to the right side and remove the negation
operator. Thus, the total length ofΓ and∆ surely is reduced, i.e.|Γ|+ |∆| < |Γ′|+ |∆′|, while
the rest of the sequent stays the same. Thus, the proposition holds.

(r-¬) This can be done analogously to the previous case.

(l-∨) Only one part of the conjunction is present in the premiss treated, thusΓ is surely reduced, while
all the rest of the sequent stays the same. Thus,m decreases.

(r-∨) As with the previous rules, this rule does remove one operator from the formulas of∆ and leaves
the rest untouched. Thus,m surely is reduced.

(l-∧) This is dual to the case for (r-∨).

(r-∧) This is dual to the case for (l-∨).

(l-→) This is dual to the case for (l-∨).

(r-→) This is dual to the case for (r-∨).

(l-↔) Although both sides of the equivalence operator are taken over into the premiss, the operator
itself is not, thus the length is still reduced. All other parts of the sequent again stay the same.

(r-↔) This is the same as for (l-↔).

(l-L) In this case, it is not necessary that|Γ| + |∆| is reduced. It is quite possible that the length of
these formulas increases drastically. The maximal amount these length can increase is|HL| +
|HF| + |HK| + |HG| − 1, i.e. if we only have a formulaLA in the conclusion. But according to
lemma 24 this is smaller than|A|.
At the same time, the number of formulas stored in the history is increased by the rule at least
by one. Thus,|A| − |H| is reduced by at least one, and thereforem is reduced at least by|A|.
At the same time, it’s increased by at least|A| − 1, thus overallm is at least decreased by one.

(r-L) This is the same as for (r-∨).

. . . The rest of the rules can be proven similarly.

With the previous lemma, it is quite clear that backward proof search must always terminate. At
the beginning,m is finite and for each rule in the proof it is reduce by at least 1. Thus, after a
finite number of steps the proof has to be finished.
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11.9 Embeddings

We have already seen in chapter 8 that the logic of likelihood LL− has some similarities to
modal logics, mainly toKT andS4. In this section, we show that the logicsKT andS4 can easily
be embedded in the logic of likelihood. We will use these embeddings to use the benchmark
formulas forKT andS4 of [2] to test the efficiency of the implementation of the prover for LL−.

Definition 30 Transformation fromS4

We define the transformation ? of a formula A of S4 to a formula A? ∈ FmlLL− by:

• p?i = pi,
• (¬A)? = ¬A?,
• (A ∨B)? = A? ∨B?,
• (�A)? = GA?,
• (♦A)? = FA?.

Definition 31 Transformation fromKT
We define the transformation ∗ of a formula A of KT to a formula A∗ ∈ FmlLL− by:

• p∗i = pi,
• (¬A)∗ = ¬A∗,
• (A ∨B)∗ = A∗ ∨B∗,
• (�A)∗ = KA∗,
• (♦A)∗ = LA∗.

Lemma 26 Embedding ofS4

S4
A ⇒

H
A?

Proof
We have to prove that all axioms and inference rules ofS4 are provable in the Hilbert calculus for LL−:

classical: surely all valid classical formulas are provable, because they are axioms
of the Hilbert calculus of LL−.

�(A→ B)→ (�A→ �B): the translation of this isG(A? → B?) → (GA? → GB?), which is
exactly axiom (AX7).

�A→ A: the translation of this isGA? → A?, which is axiom (AX2).

�A→ ��A: the translation of this isGA? → GGA?, which is axiom (AX3).

modus ponens: the same inference rule is used in the Hilbert calculus for LL−.
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generalization: this generalization is the same as (R1).

Lemma 27 Embedding ofKT

KT
A ⇒

H
A∗

Proof
We have to prove that all axioms and inference rules ofKT are provable in the Hilbert calculus for LL−:

classical: surely all valid classical formulas are provable, because they are axioms
of the Hilbert calculus of LL−.

�(A→ B)→ (�A→ �B): the translation of this isK(A∗ → B∗)→ (KA∗ → KB∗), which can be
easily obtained through (AX6).

�A→ A: the translation of this isKA → A, i.e. ¬A → L¬A. This is axiom
(AX5).

modus ponens: the same inference rule is used in the Hilbert calculus for LL−.

generalization: this generalization can be easily proven by (R1) and the fact thatGA→
KA (AX4).
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Chapter 12

LWB Example

This chapter contains an extensive example that shows how the logic of likelihood can be used.
The example is taken from the original paper [22] by Rabin and Halpern. The example is not
only repeated here, but it is also verified using the Logics Workbench. To do that, it uses the
implementation described in the next chapter.

The example deals with the verification and proving of properties of a protocol for the exchange
of secrets. After an introduction into the protocol and some notational remarks, the protocol is
described in detail. Afterwards, a simplified example will be proven, followed by a proof of
some properties of the protocol. All proofs were done using the LWB and the statements used
for the proofs are always shown as well.

12.1 Introduction

The example in this chapter verifies a protocol for data transmission. It proves several properties
of the protocol and can also generally analyze it. For example, proofs are given to show that
cheating with the protocol is not possible or at least not advantageous.

As it is tradition in cryptography, the two participants in the data transmission are called Alice
and Bob. Alice and Bob would like to transmit one bit of secret information to each other. We
can assume that the secrets transmitted are passwords to specific files1, a file for Alice and one
for Bob.

The protocol is meant to be self-enforcing, i.e. there is no third party which has to be trusted to
adjudicate in disputes. To achieve this, the files are assumed to be trapped in a way that—if a file
is opened with the wrong password—bothfiles are destroyed. This prevents Bob and Alice from
guessing the password and, under certain circumstances detailed below, also prevents cheating.
Furthermore, we assume that Bob can tell when Alice opens his file and vice versa.

1 The transmission and the protocol shown below are only done for a single bit. If multiple bits are to be transferred,
then the same techniques may be used several times to get the desired result.
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12.1.1 Notation

We call the secret of Alice, i.e. the password to open Alice’s fileSA. Dually, the secret of Bob is
calledSB. In the following, information of Alice will always use the indexA, while information
of Bob uses the indexB.

The protocol uses addition modulo 2, denoted by⊕.

12.2 Protocol

12.2.1 Oblivious Transfer

Before we actually go into the details of the protocol used to transmit information, we have to
take a look at a special type of communication line used to transfer part of the information of the
protocol. While most of the information transmitted is sent over regular communication lines,
some crucial information has to be sent specially. For that reason, the oblivious transfer was
developed.

A transmission using oblivious transfer has the following properties:

• the probability is exactly 50% that the message sent is really transmitted,
• the recipient knows if he got the message or not,
• the sender does not know if the recipient got the message or not.

The properties of the transfer sound quite strange and it’s actually not easy to see that such a
transformation can actually be implemented. In [3], for example, a practical method is shown
how to implement oblivious transfer using faint pulses of polarized light. We won’t go into
further details how this sort of transformation is actually done, because the only things important
are the properties mentioned above.

12.2.2 Steps of the Protocol

The protocol proceeds along the following four steps:

Step 1. (a) Alice sends a random bit (RA) to Bob, using an oblivious transfer,

(b) Bob sends a random bit (RB) to Alice, using an oblivious transfer.

Step 2. (a) Alice setsµA = 1 if Bob’s random bit was transferred to her successfully, and
µA = 0 else,

(b) Bob does the same withµB and the message he got from Alice.

Step 3. (a) Alice sendsSA ⊕ µA to Bob, using a normal communication line,



12.2 Protocol 191

(b) Bob sendsSB ⊕ µB to Alice, using a normal communication line.

Step 4. (a) Alice sendsSA ⊕RA to Bob, again using a normal communication line,

(b) Bob sendsSB ⊕RB to Alice, also using a normal communication line.

After these four steps are carried through, both Alice and Bob may be capable of determining the
other’s secret. After step three, Bob is not yet capable to determine Alice’s secretRA, because
he has no way of determiningµA, which depends on the oblivious transfer. But if the oblivious
transfer form Bob to Alice transmittedRA, he can determineSA after step 4. The same holds true
for Alice. If, on the other hand, Bob’s transfer worked while Alice’s did not, Alice can directly
determineRB, but Bob can not. If now Alice opens Bob’s file, he knows that his transfer must
have worked, allowing him to deduceµA = 1. This information, together with the information
from step 3 allows him to computeSA as well. Thus, either both are able to deduce the secrets, or
in the case of both transfers not working, both don’t know the other’s secret. Thus, the protocol
gives exactly 75% chance that the secrets are exchanged.

12.2.3 Simplified Example

Example 15 Simplified Example
Before we look at the detailed example, we have a look at a simplified version, as it is done in
[22].

In this example, we want to see what would happen if Bob lies about his password to Alice. To
further simplify, we assume that the password to Bob’s file is 0, i.e.SB = 0.

This simplified version just uses the following propositional variables to express properties of
the protocol2:

(B,T, 1) Bob tells Alice that his password is1,
(A,E, 1) Alice enters Bob’s file with password1,
(DS) both files aredestroyed.

We additionally write down some extra logical axioms that define properties of the protocol we
want to take for granted. For this short example, the following three axioms (or hypotheses) are
enough:

(a) G(A,E, 1)→ G(DS),

(b) G¬(DS),

(c) G(B,T, 1)→ LkG(A,E, 1) for somek.

2 for better reading we don’t use thepX notation here.
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s

(B,T,1), ¬G(B,T,1),

G(B,T,1) -> L
k
G(A,E,1),

G¬(DS),

G(A,E,1) -> G(DS)


t

¬(B,T,1), ¬G(B,T,1),

G(B,T,1) -> L
k
G(A,E,1),

G¬(DS),

G(A,E,1) -> G(DS)


Figure 12.1: Countermodel forG¬(B,T, 1)

The first axiom just states that the password of Bob is not 1, i.e. if Alice uses that password then
this will destroy both files. The second axiom says that nobody wants that the files are destroyed.
The last axiom expresses, that if Bob transmits to Alice that his password is 1, then Alice will
likely use that password to open Bob’s file. This is an assumption of credibility. How much trust
Alice puts into the information she got from Bob can be expressed with the givenk. The higher
k the more unlikely it is that Alice uses the password and thus the less trust Alice gives to the
information obtained by Bob.

From these axiom we can now prove¬G(B,T, 1).3

We now check these results with the theorem prover for LL− in the LWB. First we have to define
a theory with the extra logical axioms mentioned above. This can be written in the LWB syntax
like this:

theory := [ G(AE1) -> G(DS),
G(˜DS),
G(BT1) -> LG(AE1) ];

3 in [22] the statement is said to beG¬(B,T, 1), which is not provable. Consider the counter example given in
picture 12.1 or the output of the LWB prover for LL−. Actually, G¬(B,T, 1) is the same¬(B,T, 1) and could be
translated as “we take the hypothesis that Bob won’t tell Alice the password is 1 for now”, whereas¬G(B,T, 1)
says that Bob actually does not send the wrong password in any case. The latter surely is the statement that is
interesting to be proven.
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Now we can use theprovable function to show that our assumption can be proven. We can
also show that the original assumption from [22] cannot be proven:

llh> provable(G(˜(BT1)), theory);
false

llh> provable(˜(BT1), theory);
false

llh> provable(˜G(BT1), theory);
true

The statement from [22] that—if the second of the extra-logical axioms above is weakened, then
only weakened version of our assumption can be proven—does not hold. Even if we replace the
second axiom by something weaker, like

¬LnG(DS)

it is still possible to prove our assumption. The reason here is that our adjusted assumption is
actually much weaker than the—not provable—assumption from the paper.

Negations

Another reason why weakening the theory by addingL-operators does not change the results, lies
in the fact that the logic of likelihood does not actually show the expected properties for negated
formulas. If we interpret¬LA as meaning “it’s not likely thatA” then we would think that from
this we cannot deduce¬A. But this deduction step is nothing else than the contraposition of
AX5. On the other hand, we’d also think that from¬LA it is not possible to deduce¬LLA. But
again, this is possible. This can be proven using the LWB, for example:

llh> provable(˜LLA, [˜LA]);
true

While in the first case, the implication can be proven, the second case actually needs the fact that
the formula is provable (i.e. uses generalization). A proof in the Hilbert calculus is just a little
more complex:

H ¬LA (assumption)

H G¬LA (R1)

H G¬LA→ ¬LLA (AX4)

H ¬LLA (R2 with the last two lines)

On the other hand, the implication
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¬LA→ ¬LLA

cannot be proven in LL−.

Summarized, if we have a negation in front of a formula, then the number ofL-operators is
irrelevant. This does actually contradict the understanding one has of a logic of likelihood. Thus,
it is best only to treat non-negated formulas.

12.3 Detailed Example

Example 16 Detailed Example
After the simplified example above, we can now treat the protocol in all its details. For the
detailed example we need much more propositional variables.

From the view of Alice, we need the following variables:

(SA, 0) the value of the password of Alice is 0,
(SA, 1) the value of the password of Alice is 1,
(µA, 0) the oblivious transfer from Bob did not succeed,
(µA, 1) the oblivious transfer from Bob did succeed,
(A, S, RA, 0) Alice sends as random bit the value 0,
(A, S, RA, 1) Alice sends as random bit the value 1,
(A, S, SA ⊕ µA, 0) Alice sends for the addition ofSA andµA the value 0,
(A, S, SA ⊕ µA, 1) Alice sends for the addition ofSA andµA the value 1,
(A, S, SA ⊕RA, 0) Alice sends for the addition ofSA andRA the value 0,
(A, S, SA ⊕RA, 1) Alice sends for the addition ofSA andRA the value 1,
(A,D, RB, 0) Alice deduces that Bob’s random value is 0,
(A,D, RB, 1) Alice deduces that Bob’s random value is 1,
(A,D, SB, 0) Alice deduces that Bob’s password is 0,
(A,D, SB, 1) Alice deduces that Bob’s password is 1,
(A,D, µB, 0) Alice deduces that her oblivious transfer to Bob did not succeed,
(A,D, µB, 1) Alice deduces that her oblivious transfer to Bob did succeed,
(A,D, SB ⊕ µB, 0) Alice deduces that Bob has the value 0 for the addition ofSB andµB,
(A,D, SB ⊕ µB, 1) Alice deduces that Bob has the value 1 for the addition ofSB andµB,
(A,D, SB ⊕RB, 0) Alice deduces that the value of the addition of Bob’sSB andRB is 0,
(A,D, SB ⊕RB, 1) Alice deduces that the value of the addition of Bob’sSB andRB is 1,
(A,E, 0) Alice enters Bob’s file with password 0,
(A,E, 1) Alice enters Bob’s file with password 1,
(DS) both files are destroyed.

We need a similar set of variables—with interchanged roles—for the viewpoint of Bob, with the
exception of(DS).
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Now that we have the necessary variables, we can list the extra-logical axioms necessary for
Alice:

(a) ¬(G(SA, 0) ∧ G(SA, 1))

(b) ¬(G(µA, 0) ∧ G(µA, 1))

(c) G(A,S, RA, 0)→ LG(B,D, RA, 0)
G(A,S, RA, 1)→ LG(B,D, RA, 1)

(d) G(A,S, SA ⊕ µA, 0)↔ G(B,D, SA ⊕ µA, 0) ∧ G(A,S, SA ⊕RA, 0)↔ G(B,D, SA ⊕RA, 0)
G(A,S, SA ⊕ µA, 1)↔ G(B,D, SA ⊕ µA, 1) ∧ G(A,S, SA ⊕RA, 1)↔ G(B,D, SA ⊕RA, 1)

(e) [(G(B,D, SA ⊕RA, 0)∧G(B,D, RA, 0)∨(G(B,D, SA ⊕ µA, 0)∧G(B,D, µA, 0))]→ G(B,D, SA, 0)
[(G(B,D, SA ⊕RA, 0)∧G(B,D, RA, 1)∨(G(B,D, SA ⊕ µA, 0)∧G(B,D, µA, 1))]→ G(B,D, SA, 1)
[(G(B,D, SA ⊕RA, 1)∧G(B,D, RA, 0)∨(G(B,D, SA ⊕ µA, 1)∧G(B,D, µA, 0))]→ G(B,D, SA, 1)
[(G(B,D, SA ⊕RA, 1)∧G(B,D, RA, 1)∨(G(B,D, SA ⊕ µA, 1)∧G(B,D, µA, 1))]→ G(B,D, SA, 0)

(f) [¬G(B,E, 0) ∧ ¬G(B,E, 1) ∧ (G(A,E, 0) ∨ G(A,E, 1))]→ G(B,D, µA, 1) ∧ G(µA, 1)

(g) G(B,D, SA, 0)→ LG(B,E, 0)
G(B,D, SA, 1)→ LG(B,E, 1)

(h) (G(SA, 0) ∧ G(B,E, 1))→ (DS)
(G(SA, 1) ∧ G(B,E, 0))→ (DS)

The axioms can be interpreted as follows:

(a) Because we do all computations in a propositional calculus, we need two variables to express
that SA has the value 0 or 1. This axiom makes sure, that these two variables actually
represent the value ofSA, i.e. it can have either the value 0 or the value 1 but not never both.

(b) We need to have the same forµA as forSA.

(c) These are actually two axioms, depending on the value Alice sends forRA. The axiom says
that if Alice sends the random bitRA using oblivious transfer, then it is likely that Bob will
be able to deduce the value ofRA. The L-operator expresses that the transmission ofRA

is done using oblivious transfer, which only allows Bob to receive the value in 50% of the
cases.

(d) These several axioms state that the transmission ofSA ⊕ µA andSA ⊕ RA are done using
regular, error free communication lines. This means, what Alice sends will be received by
Bob.

(e) The axioms in this group describe how Bob can compute the password of Alice from the
information he obtained. If he got the random bit of Alice, then he can deduceSA from
SA ⊕ RA sent by Alice. If Bob can somehow deduce the if Alice got his oblivious transfer
transmission, i.e.µA, then he can deduce the password fromSA ⊕ µA received from Alice.
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(f) This axiom says, that if Alice enters Bob file before he enters hers, i.e.(B,E, 0) and(B,E, 1)
are not true but one of(A,E, 0) or (A,E, 1) is, then Bob can deduce that Alice must have
received his random bit sent by oblivious transfer and thus thatµA = 1.

(g) As in the short example above, these are the credibility assumptions. They state that if Bob
can deduce the password of Alice he will likely trust her and enter her file with that password.
Depending on the degree of trust, these axioms could be adjusted to have moreL on the right
side of the implication.

(h) These last axioms just state that if Bob enters Alice’s file with the wrong password, then both
files will be destroyed.

The same set of axioms can be written down from the point of view of Bob. Because we only
want to prove statements from the point of view of Alice, we don’t need this second set of axioms
right now.

Before we start proving that cheating is not possible with this protocol, we have to look at the
theory we need to use to make the proofs within the Logics Workbench. The following theory is
exactly the same as the one above, just written in the LWB syntax:

Alice :=
[

˜(G(SA_0) & G(SA_1)),

˜(G(MuA_0) & G(MuA_1)),

G(A_S_RA_0) -> LG(B_D_RA_0),
G(A_S_RA_1) -> LG(B_D_RA_1),

((G(A_S_SA_pl_MuA_0) <-> G(B_D_SA_pl_MuA_0)) &
(G(A_S_SA_pl_RA_0) <-> G(B_D_SA_pl_RA_0)),

(G(A_S_SA_pl_MuA_1) <-> G(B_D_SA_pl_MuA_1)) &
(G(A_S_SA_pl_RA_1) <-> G(B_D_SA_pl_RA_1)),

((G(B_D_SA_pl_RA_0) & G(B_D_RA_0)) v
(G(B_D_SA_pl_MuA_0) & G(B_D_MuA_0))) -> G(B_D_SA_0),

((G(B_D_SA_pl_RA_0) & G(B_D_RA_1)) v
(G(B_D_SA_pl_MuA_0) & G(B_D_MuA_1))) -> G(B_D_SA_1),

((G(B_D_SA_pl_RA_1) & G(B_D_RA_0)) v
(G(B_D_SA_pl_MuA_1) & G(B_D_MuA_0))) -> G(B_D_SA_1),

((G(B_D_SA_pl_RA_1) & G(B_D_RA_1)) v
(G(B_D_SA_pl_MuA_1) & G(B_D_MuA_1))) -> G(B_D_SA_0),

(˜G(B_E_0) & ˜G(B_E_1) & (G(A_E_0) v G(A_E_1))) ->
(G(B_D_MuA_1) & G(MuA_1)),

G(B_D_SA_0) -> LG(B_E_0),
G(B_D_SA_1) -> LG(B_E_1),
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(G(SA_0) & G(B_E_1)) -> (DS),
(G(SA_1) & G(B_E_0)) -> (DS)

];

12.3.1 Cheating in Step 4

If Alice wants to cheat in Step 4, then she can do this only by sending the wrong value for
SA ⊕RA. This is the meaning of the following formula:

(A,C, 4) ≡ (G(A, S, RA, 0) ∧ G(SA, 0) ∧ G(A, S, SA ⊕RA, 1))∨
(G(A, S, RA, 0) ∧ G(SA, 1) ∧ G(A, S, SA ⊕RA, 0))∨
(G(A, S, RA, 1) ∧ G(SA, 0) ∧ G(A, S, SA ⊕RA, 0))∨
(G(A, S, RA, 1) ∧ G(SA, 1) ∧ G(A, S, SA ⊕RA, 1))

This is written in the LWB as follows:

A_C_4 := (G(A_S_RA_0) & G(SA_0) & G(A_S_SA_pl_RA_1)) v
(G(A_S_RA_0) & G(SA_1) & G(A_S_SA_pl_RA_0)) v
(G(A_S_RA_1) & G(SA_0) & G(A_S_SA_pl_RA_0)) v
(G(A_S_RA_1) & G(SA_1) & G(A_S_SA_pl_RA_1));

Now we can prove in LL− that—if Alice really cheats in step 4—it is somewhat likely that both
files will be destroyed. This is expressed with

(A,C, 4)→ L2G(DS)

This is in the LWB

provable(A_C_4 -> LLG(DS), Alice);
true

The contraposition of the above formula gives us¬L2G(DS) → ¬(A,C, 4). Thus, if Alice does
not want that its somewhat likely that the files will be destroyed, then she should not cheat in
step 4. Of course, we can also prove(A,C, 4) → LkG(DS) for all k > 2. It is not possible to
prove(A,C, 4)→ LG(DS) or even(A,C, 4)→ G(DS), though.

provable(A_C_4 -> LLLLLG(DS), Alice);
true

provable(A_C_4 -> LG(DS), Alice);
false

provable(A_C_4 -> G(DS), Alice);
false
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This computation takes roughly 13 minutes.4 While this, by itself, is not really a problem,
it would be good, especially for the following computations, if the execution time could be
somewhat reduced. Thus, we simplify the theory a bit to increase computation speed.

A first simplification is to replace the last two axioms of the set with

(G(SA, 0) ∧ G(B,E, 1))→ G(DS)
(G(SA, 1) ∧ G(B,E, 0))→ G(DS).

This is actually even more natural and directly corresponds to the extra-logical axioms used for
the simple example above. Furthermore, it is easy to show that with` GA → B we can also
prove` GA→ GB and vice versa. Thus, the simplified theory is equivalent to the original one.

Because we are interested in proveing formulas withG(DS) instead of just(DS), our new theory
does speed up provability quite a bit. The example above takes now, with these changes, just
somewhat below one minute, instead of the 13 minutes it took before.

Below, we will use the following, slightly modified theory

(a) ¬(G(SA, 0) ∧ G(SA, 1))

(b) ¬(G(µA, 0) ∧ G(µA, 1))

(c) G(A,S, RA, 0)→ LG(B,D, RA, 0)
G(A,S, RA, 1)→ LG(B,D, RA, 1)

(d) G(A,S, SA ⊕ µA, 0)↔ G(B,D, SA ⊕ µA, 0) ∧ G(A,S, SA ⊕RA, 0)↔ G(B,D, SA ⊕RA, 0)
G(A,S, SA ⊕ µA, 1)↔ G(B,D, SA ⊕ µA, 1) ∧ G(A,S, SA ⊕RA, 1)↔ G(B,D, SA ⊕RA, 1)

(e) [(G(B,D, SA ⊕RA, 0)∧G(B,D, RA, 0)∨(G(B,D, SA ⊕ µA, 0)∧G(B,D, µA, 0))]→ G(B,D, SA, 0)
[(G(B,D, SA ⊕RA, 0)∧G(B,D, RA, 1)∨(G(B,D, SA ⊕ µA, 0)∧G(B,D, µA, 1))]→ G(B,D, SA, 1)
[(G(B,D, SA ⊕RA, 1)∧G(B,D, RA, 0)∨(G(B,D, SA ⊕ µA, 1)∧G(B,D, µA, 0))]→ G(B,D, SA, 1)
[(G(B,D, SA ⊕RA, 1)∧G(B,D, RA, 1)∨(G(B,D, SA ⊕ µA, 1)∧G(B,D, µA, 1))]→ G(B,D, SA, 0)

(f) [¬G(B,E, 0) ∧ ¬G(B,E, 1) ∧ (G(A,E, 0) ∨ G(A,E, 1))]→ G(B,D, µA, 1) ∧ G(µA, 1)

(g) G(B,D, SA, 0)→ LG(B,E, 0)
G(B,D, SA, 1)→ LG(B,E, 1)

(h) (G(SA, 0) ∧ G(B,E, 1))→ G(DS)
(G(SA, 1) ∧ G(B,E, 0))→ G(DS)

In the syntax of the LWB this is

4 of course this heavily depends on the machine used; the value given here is just used as a reference for the values
that follow.
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Alice :=
[

˜(G(SA_0) & G(SA_1)),

˜(G(MuA_0) & G(MuA_1)),

G(A_S_RA_0) -> LG(B_D_RA_0),
G(A_S_RA_1) -> LG(B_D_RA_1),

((G(A_S_SA_pl_MuA_0) <-> G(B_D_SA_pl_MuA_0)) &
(G(A_S_SA_pl_RA_0) <-> G(B_D_SA_pl_RA_0)),

(G(A_S_SA_pl_MuA_1) <-> G(B_D_SA_pl_MuA_1)) &
(G(A_S_SA_pl_RA_1) <-> G(B_D_SA_pl_RA_1)),

((G(B_D_SA_pl_RA_0) & G(B_D_RA_0)) v
(G(B_D_SA_pl_MuA_0) & G(B_D_MuA_0))) -> G(B_D_SA_0),

((G(B_D_SA_pl_RA_0) & G(B_D_RA_1)) v
(G(B_D_SA_pl_MuA_0) & G(B_D_MuA_1))) -> G(B_D_SA_1),

((G(B_D_SA_pl_RA_1) & G(B_D_RA_0)) v
(G(B_D_SA_pl_MuA_1) & G(B_D_MuA_0))) -> G(B_D_SA_1),

((G(B_D_SA_pl_RA_1) & G(B_D_RA_1)) v
(G(B_D_SA_pl_MuA_1) & G(B_D_MuA_1))) -> G(B_D_SA_0),

(˜G(B_E_0) & ˜G(B_E_1) & (G(A_E_0) v G(A_E_1))) ->
(G(B_D_MuA_1) & G(MuA_1)),

G(B_D_SA_0) -> LG(B_E_0),
G(B_D_SA_1) -> LG(B_E_1),

(G(SA_0) & G(B_E_1)) -> G(DS),
(G(SA_1) & G(B_E_0)) -> G(DS)

];

12.3.2 Cheating in Step 3

If Alice wants to cheat in Step 3, she just has to send the wrong value forSA ⊕ µA. This alone
thus not have any effect, though. Bob cannot deduce anything if he just has this value. For
him, it’s necessary that his random bit was successfully sent to Alice (i.e.µA = 1) and that he
somehow knows that. The only way to find that out is, when Alice opens his file before he opens
hers. This can be expressed as follows

(A,C, 3) ≡ ¬G(B,E, 0) ∧ ¬G(B,E, 1)∧
(G(A,E, 0) ∨ G(A,E, 1))∧
((G(SA, 0) ∧ G(A, S, SA ⊕ µA, 0))∨
(G(SA, 1) ∧ G(A, S, SA ⊕ µA, 1))).

This is written in the LWB as follows



200 Chapter 12: LWB Example

A_C_3 := (˜G(B_E_0) & ˜G(B_E_1)) &
(G(A_E_0) v G(A_E_1)) &
(G(SA_0) & G(A_S_SA_pl_MuA_0)) v

G(SA_1) & G(A_S_SA_pl_MuA_1)));

With the LWB we can now prove, using the theory above

(A,C, 3)→ LG(DS)

In the LWB this is

provable(A_C_3 -> LG(DS), Alice);
true

Again, we can prove the same formula with moreL-operators on the right hand side, but not with
less.

If Alice cheats in step three and she enters the files first, then it is likely that both files are
destroyed. Using contraposition this means that—if Alice does not want it to be likely that both
files are destroyed—she can not cheat in step three and at the same time use the information she
obtained from Bob. Thus, while she can cheat at step three, it’s not to here advantage. If she uses
the additional information she got, it’s likely that both files will be destroyed.

As expected, if we weaken the axiom that Bob will use the password if he knows it, then we get
weaker results. We change axiom g) of the theory above to

G(B,D, SA, 0)→ LLLG(B,E, 0)
G(B,D, SA, 1)→ LLG(B,E, 1)

With this changed theory, we can no longer prove(A,C, 3)→ LG(DS). But we can now prove

(A,C, 3)→ LLLG(DS).

Thus, the less trust Bob gives to the information he deduces from Alice (or the less credibility he
assigns to Alice), the less likely it is that the files will be destroyed.

For the LWB, this proof looks as follows

provable(A_C_4 -> LLLLG(DS), WAlice);
true

whereWAlice is the theory changed as mentioned above. To obtain this result, the LWB com-
putes for quite a long time, using approximately 50 minutes.5

5 without the optimizations of the theory for Alice mentioned above, the same example uses approximately 2 weeks
of computation time.
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12.3.3 Cheating in Step 2

It is actually not possible for Alice to cheat in step 2, because in that step Alice only sets the
value ofµA. If she does this wrong, then this is completely the same as cheating in step 3.

12.3.4 Cheating in Step 1

Again, if Alice wants to cheat here, she sends a wrong value forSA, which is the same as cheating
in step four (see above).

12.4 Stopping before Step 4

Another way for Alice to cheat would be to stop before step 4, i.e. not sending the lastSA⊕RA.
Surely, Alice cannot stop before step three, or she would not be able to enter Bob’s file at all.
But, she may already got enough information with step three, i.e. when the oblivious transfer in
step one worked. In that case, she could try to withhold the information from step 4. This can be
formalized as follows

(S, 4, 0) ≡ ¬G(B,E, 0) ∧ ¬G(B,E, 1) ∧ (G(A,E, 0) ∨ G(A,E, 1)) ∧ G(SA, 0) ∧ G(A,S, SA ⊕ µA, 1)

for the case thatSA = 0 and

(S, 4, 0) ≡ ¬G(B,E, 0) ∧ ¬G(B,E, 1) ∧ (G(A,E, 0) ∨ G(A,E, 1)) ∧ G(SA, 1) ∧ G(A,S, SA ⊕ µA, 0)

for the case thatSA = 1.

Using the LWB syntax this is

S_4_0 := ˜G(B_E_0) & ˜G(B_E_1) & (G(A_E_0) v G(A_E_1)) &
G(S_A_0) & G(A_S_SA_pl_MuA_1);

S_4_1 := ˜G(B_E_0) & ˜G(B_E_1) & (G(A_E_0) v G(A_E_1)) &
G(S_A_1) & G(A_S_SA_pl_MuA_0);

We can now prove that if Alice really stops before step four and opens Bob’s file, then Bob can
deduce the password of Alice. This is formalized as

(S, 4, 0)→ (B,D, SA, 0)

and
(S, 4, 1)→ (B,D, SA, 1).

Written in the LWB this is

provable(S_4_0 -> G(B_D_SA_0), Alice);
true

provable(S_4_1 -> G(B_D_SA_1), Alice);
true
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12.4.1 Bob Cheating

If Bob is trying to cheat, then the situation is completely the same as for Alice. We just need to
inverse the roles of Bob and Alice in the whole theory and in the statements to prove.

12.4.2 Obtaining Result

Another thing which is important to know, beside that cheating is not possible, is to make sure
that the information that ought to be exchanged really is. There is no use in a protocol which
makes it impossible that any of the involved parties can cheat, if the information is not transferred.
Thus, we want to show that under the circumstances that if Alice and Bob follow the protocol
correctly, then it is at least likely that both can enter the other’s files.

First, as before in 12.4, we can show that if Alice enters Bob’s file before he enters hers, then
Bob can deduce the Password of Alice. On the other hand, if the oblivious transfer from Alice to
Bob succeeded, then Bob is even earlier capable of deducing Alice’s Password. Thus, ifµB = 1,
then Bob can deduceRA. Therefore, he should be able to deduce the password of Alice, even if
she did not yet enter his file. This can be formalized as follows:

G(B,D, RA, 0) ∧ G(A, S, SA ⊕RA, 0)→ G(B,D, SA, 0),
G(B,D, RA, 0) ∧ G(A, S, SA ⊕RA, 1)→ G(B,D, SA, 1),
G(B,D, RA, 1) ∧ G(A, S, SA ⊕RA, 0)→ G(B,D, SA, 1),
G(B,D, RA, 1) ∧ G(A, S, SA ⊕RA, 1)→ G(B,D, SA, 0).

This is written and executed in the LWB gives us

provable(G(B_D_RA_0) & G(A_S_SA_pl_RA_0) -> G(B_D_SA_0), Alice);
true

provable(G(B_D_RA_0) & G(A_S_SA_pl_RA_1) -> G(B_D_SA_1), Alice);
true

provable(G(B_D_RA_1) & G(A_S_SA_pl_RA_0) -> G(B_D_SA_1), Alice);
true

provable(G(B_D_RA_1) & G(A_S_SA_pl_RA_1) -> G(B_D_SA_0), Alice);
true

Thus, all in all we have shown that if there is no cheating, Bob and Alice will likely be able to
deduce the other’s passwords. Furthermore, we have also shown that if either of both cheats,
then its likely that both files will be destroyed.

12.4.3 Analysis of the the Axioms

In their paper [22], Rabin and Halpern take a closer look at some of the axioms used above. We
won’t repeat all the theory here, but just point out how the these things can be proven using the
Logics Workbench.
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Axiom (e)

This axiom says that Bob can deduceµA = 1 if Alice enters his file before he enters hers. This
deduction process can be captured with the following axioms:

(8A) G(A,E, 0)→ G(A,D, SB, 0)
G(A,E, 1)→ G(A,D, SB, 1)

(9A) G(A,D, SB, 0) → [(G(A,D, SB ⊕RB, 0) ∧ G(A,D, RB, 0)) ∨
(G(A,D, SB ⊕RB, 1) ∧ G(A,D, RB, 1)) ∨
(G(A,D, SB ⊕ µB, 0) ∧ G(A,D, µB, 0)) ∨
(G(A,D, SB ⊕ µB, 1) ∧ G(A,D, µB, 1))],

G(A,D, SB, 1) → [(G(A,D, SB ⊕RB, 1) ∧ G(A,D, RB, 0)) ∨
(G(A,D, SB ⊕RB, 0) ∧ G(A,D, RB, 1)) ∨
(G(A,D, SB ⊕ µB, 1) ∧ G(A,D, µB, 0)) ∨
(G(A,D, SB ⊕ µB, 0) ∧ G(A,D, µB, 1))]

(10A) ¬G(A,D, µB, 0) ∧ (¬G(B,E, 0) ∧ ¬G(B,E, 1)→ ¬G(A,D, µB, 1))

Axiom (8A) says that Alice is rational, i.e. Alice only enters Bob’s file if she can deduce his
password. Axiom (9A) gives the modular arithmetic used for deducting the value ofSB. Then,
axiom (10A) describes under which circumstances Alice can deduce the value ofµB.

Using axioms (8A), (9A) and (10A) we can show that Alice can deduceRB, if Bob enters her
file before she his, i.e.

(A,E,F)→ G(A,D, RB, 0) ∨ G(A,D, RB, 1).

In the LWB this proof looks as follows:

Ax8A := (G(A_E_0) -> G(A_D_SB_0)) &
(G(A_E_1) -> G(A_D_SB_1));

Ax9A := (G(A_D_SB_0) -> ((G(A_D_SB_pl_RB_0) & G(A_D_RB_0)) v
(G(A_D_SB_pl_RB_1) & G(A_D_RB_1)) v
(G(A_D_SB_pl_MuB_0) & G(A_D_MuB_0)) v
(G(A_D_SB_pl_MuB_1) & G(A_D_MuB_1)))) &

(G(A_D_SB_1) -> ((G(A_D_SB_pl_RB_1) & G(A_D_RB_0)) v
(G(A_D_SB_pl_RB_0) & G(A_D_RB_1)) v
(G(A_D_SB_pl_MuB_1) & G(A_D_MuB_0)) v
(G(A_D_SB_pl_MuB_0) & G(A_D_MuB_1))));

Ax10A := ˜G(A_D_MuB_0) & (˜G(B_E_0) & ˜G(B_E_1) -> ˜G(A_D_MuB_1));

A_E_F := ˜G(B_E_0) & ˜G(B_E_1) & (G(A_E_0) v G(A_E_1));

provable((A_E_F) -> (G(A_D_RB_0) v G(A_D_RB_1)),
[ Ax8A, Ax9A, Ax10A ]);

true
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We leave out further considerations of the paper dealing with knowledge operators because these
operators are not implemented in the Logics Workbench (we’d have to make a mix between the
logic of likelihood andS4).



Chapter 13

Implementation

This chapter examines the implementation of the automatic theorem prover in LL− that was done
for the Logics Workbench. It implements the double-sided sequent calculus with loop-check
mentioned in chapter 11

13.1 Introduction

Aside from the code that needed be written in order to have a prover for LL−, the structure of
the LWB made other coding necessary as well. First, because the logic of likelihood needs the
additional modal operatorsL, K, F, G, the parser of the LWB had to be enhanced. To be able to
enter formulas with these new operators, the parser has to know these operators and does also
need to know how to deal with them.

The LWB makes things a bit more complicated, because the user can use different logics at the
same time. Because the new operators are normal letters, it would limit users too much if we treat
them as modal operators in all logics. This would prohibit the user from using symbol names
like Group , or Logic , for example. These words use letters that are also symbols for operators
and because the LWB does not require a space after an operator, they would be interpreted asG
roup andL ogic , respectively1. Thus, we had to limit the use of these operators to the logic
of likelihood itself, as it was also done with temporal operators. These operators are only valid
when the modulellh is the current top module.

Furthermore, the parser of the LWB was changed to allow these new, letter style operators only
at the beginning of a word. Thus, even if a letter is an operator of a logic, it may still appear in
the middle of a symbol name (e.g.STL or PROOF). Previously, symbols like these produced a
general parsing error, because the letters were interpreted as operators.

1 requiring no spaces, on the other hand, allows to directly write formulas likeLLGF A, instead of having to write
L L G F A.

205
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13.1.1 LWB Functions

In the LWB, the implementation of a prover for a new logic also requires the creation of a new
module. The module only requires some initialization code, but all the modules already present
in the LWB provide a common set of basic functions. Of course, a new logic has to implement
these functions as well.2 The following functions were implemented for LL−:

arrange Arranges the sub formula in a formula or theory by using associativity and com-
mutativity.

convert Converts connectives from one type to another (for example replacing all impli-
cations by disjunctions).

depth Computes the length of the longest branch of a formula viewed as a tree.
length Computes the length of the formula (as defined in a previous chapter).
less Determine if a formula is lexicographically less than another one (allows sorting

of formulas).
nnf Compute the negation normal form of a formula given.
nnfp This function computes a negation normal formula of the given formula, using

new variables to make the result much shorter.
provable This is the prover, which we be detailed below.
randomfml Compute a random formula for LL−.
remove Remove as much constants (true andfalse) from the formula as possible.
sort Sorts a set of formula lexicographically.
subfmls Determines all sub formulas (as defined in an earlier chapter) of the given for-

mula
typek Test the type of the given expression.
vars Extract all the names of variables from the given formula.

Below, we will concentrate on theprovable function only. The implementations of the other
functions is similar to those of other logics.

13.2 Overview

The implementation for the prover for the logic of likelihood differs quite a bit from the imple-
mentations that were done for other logics in the LWB. While the theoretical side is comparable
to other logics, especially as shown earlier to the modal logicsS4 andKT, the practical side is
quite different. The implementation for this prover is done using object oriented principles and
makes heavy use of the standard template library (STL [44]). This makes the code much easier
to read and also allows easier extension of the code.

2 the structure of the LWB does not allow sharing of such functions between different modules, i.e. different logics.
While this would be possible using the same techniques mentioned below for the prover, it would require some
big redesign of the LWB.



13.3 Classes 207

13.2.1 Object Oriented Programming

We won’t take a closer look on how object oriented programming works or how programming
in C++ is done (c.f. [34], [19]). In the following we assume that the reader is somewhat familiar
with object oriented programming in C++.

13.3 Classes

This section will take a look at the objects that were defined for the prover. Because the standard
template library was used, it was not necessary to implement many objects. The sets and lists
that are offered by the STL are sufficiently efficient3 and powerful.

13.3.1 Main Class

There is only one main class, namelyllh ProofNode .4 This class represents a node in the
proof tree of a formula. It contains all data necessary to represent a sequent of the sequent
calculus. It provides methods to add formulas to the sequent and to check if a sequent is provable.
To check this, the node can create additional proof nodes, for example when a branching rule is
encountered.

Internally, the class provides methods for each rule of the calculus, although some of these rules
are hardly recognizable. It uses these rules to check the current node for provability and to add
additional formulas. The class furthermore has methods to support branching rules, backtracking,
use check, the history and printing of algorithmic information. These parts of the proof node will
be detailed below.

Each proof node stores all the formulas of a sequent of the calculus as mentioned in chapter
11. While the marked formulas are stored in simple sets, the formulas to the left and to the
right of the sequent delimiter are split up in different groups. A first group contains all formulas
consisting of variables. A second group consists of those formulas that require branching rules,
like the∧-formulas on the right side of the sequent. A last group contains all formulas requiring
backtracking, for example theG-formulas on the right side. All other formulas are split up (cf.
13.4) usingclassify() until all their parts end up in one of those groups.

This split into different groups allows more efficient treatment of the formulas involved, because
at the different steps of the algorithm different types of formulas are used.

3 this heavily depends on the actual implementation provided by the compiler; the implementation of the GNU
C++ compiler is about 10 times faster than the one present in the Sun CC compiler—at least for those version that
were available at that time.

4 in the LWB, all the names of a module are prefixed with the module name to prevent name space cluttering;
nowadays, this could be achieved easier by using name spaces or by using a class for each module.
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13.3.2 Auxiliary Class

llh Expression is the only auxiliary class (not counting the STL classes), used by the prover.
This class is actually just a wrapper for the internalexpr class provided by the LWB kernel.
Because the LWB kernel and its expression class are not compatible to the STL classes, this
wrapper was necessary.5

13.3.3 Nested Classes

The llh ProofNode class uses some internal, nested classes. They are presented here for a
better understanding of the main class, but are actually quite simple.

ProofRule

This class stores a pointer to a method for a specific rule of the calculus. While a simple method
pointer might work as well, this class additionally takes care of empty or undefined method
pointers. Otherwise, the class is made in a way that it can be used exactly like a method itself.

History

This nested class is essential for the loop check. The history class stores a list of states encoun-
tered during proof search. These lists are then stored, together with their main formula, in the
main classllh ProofNode . It exactly represents the histories HK and HL of the double-sided
sequent calculus.

13.4 Main Algorithm provable()

Because some auxiliary classes and many methods are available, the main proving algorithm of
thellh ProofNode class is actually quite simple. A description of the rules and methods used
in the main algorithm follows in later sections. To make the algorithm easier to read, use check,
infolevel output and percents statements are left out. Furthermore, all code dealing with histories
is ignored for now as well. All these parts of the final algorithm will be detailed in later sections.

The main algorithm can be written in pseudo code as follows:

1. Add the formula to prove to the node, if necessary including the theory to use, by using
classify() .6

5 it would be much work to replace the internalexpr class with a STL compatible, modern class, because all the
algorithms would have to be changed as well.

6 this step is actually done outside thellh ProofNode class.
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bool
llh_ProofSequence::provable()
{

static Position lastSide = Expression::right;

lastSide = other(lastSide);
set<Expression> &firstSplit = split(lastSide);

if(!firstSplit.empty())
{

Expression formula = *(firstSplit.begin());

firstSplit.erase(firstSplit.begin());

return split(formula, lastSide);
}

lastSide = other(lastSide);
set<Expression> &secondSplit = split(lastSide);

if(!secondSplit.empty())
{

Expression formula = *(secondSplit.begin());

secondSplit.erase(secondSplit.begin());

return split(formula, lastSide);
}

// now its time to try the backtracking stuff
while(!lBacktrack.empty())
{

Expression formula = *(lBacktrack.begin());

lBacktrack.erase(lBacktrack.begin());

// save the old state for backtrack
llh_ProofSequence old(*this);

if(backtrack(formula, Expression::left))
return true;

// restore the old state
*this = old;

}

while(!rBacktrack.empty())
{

Expression formula = *(rBacktrack.begin());

rBacktrack.erase(rBacktrack.begin());

// save the old state for backtrack
llh_ProofSequence old(*this);

if(backtrack(formula, Expression::right))
return true;

// restore the old state
*this = old;

}

return false;
}

Table 13.1: Main proofing algorithm
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bool
llh_ProofSequence::classify(const Expression &inFormula,

Position inPos)
{

if(present(inFormula, other(inPos)))
return true;

return classifyFuncs[inFormula.type()](*this, inFormula, inPos);
}

Table 13.2: Main classification function

2. If there is a branching formula, callsplit() for it and return the result.

3. If there are no splitting formulas, then usingbacktrack() check in turn each backtracking
formula, restoring the state after each formula.

4. Returntrue if a backtracking formula is found which is provable, returnfalse else.

The methods used in this algorithm will be detailed below. Each of these methods calls a rule of
a specific category to actually carry through the rule of the calculus. The actual implementation
of this main algorithm, excluding step 1, is shown in table 13.1.

Classification with classify()

Classification is automatically done each time a formula is added to the current sequent. Thus,
no formulas are directly added to some internal storage, but instead all new formulas are clas-
sified using theclassify() method. This method makes sure each formula is split up and
distributed to their appropriate storage spaces, i.e. either variables, branching formulas or back-
tracking formulas.

Again, use check, infolevel, percents, and some special cases (the constantstrue andfalse) have
been left out). The classification method as it is implemented is shown in table 13.2. As can be
seen, it first checks if the formula is present7 in the other side of the sequent and then calls the
function associated with the main operator of the given formula. This is done using a previously
prepared calling table to speed up rule selection and invocation.
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bool
llh_ProofSequence::split(const Expression &inFormula, Position inPos)
{

// first we check for axioms (this was already done when inserting
// the formula into the list, but meanwhile other formulas may have
// been added and if we have an axiom we can leave out quite a bit)
if(present(inFormula, other(inPos)))

return true;

return splittingFuncs[inFormula.type()](*this, inFormula, inPos);
}

Table 13.3: Main split function

bool
llh_ProofSequence::backtrack(const Expression &inFormula,

Position inPos)
{

return backtrackingFuncs[inFormula.type()](*this, inFormula, inPos);
}

Table 13.4: Main backtrack function

Splitting with split()

The split() method is similar toclassify() . It just needs to check again for axioms—
just in case a new formula was inserted without the necessary check—and then calls the splitting
function associated with the top-level operator of the formula.

The simplified code for this method is shown in table 13.3.

Backtracking with backtrack()

The main backtracking methodbacktrack() is depicted in table 13.4. It is a very simple
method, consisting only of a call to the operator dependent backtracking function. In this case, a
check for an axiom is not necessary.

7 thepresent() method does a bit more than just check if the whole formula appears on the other side; if the
given formula is one that would have been split into sub formulas when classified on the other side, then the
function checks for existence of these sub formulas instead; while that way the function is a bit more complicated
and uses a bit more time, the overall speed gain is considerable.
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13.5 Rules

The rules of the sequent calculus are represented in the implementation by various functions, one
method for each rule. Such a function takes the current state of the object (i.e. the current node
in the proof tree) and modifies it to a new state, if necessary by creating additional nodes if a rule
is a branching rule. Thus, a rule method only has to do a single step of the proof, just as in the
calculus. This makes writing, and if necessary, enhancing a rule quite easy.

Because a rule is a normal C++ method, it is also not limited in what it can do. If the rules were
written more abstractly using a special syntax instead of a real method, they would be limited.
As a method, there are no limits and if a rule needs to do additional things, like using heuristics
or other optimizations, then this is possible as well while processing the rule.

As mentioned in the description of the main algorithm, the rules are split into three categories.
This distinction of the rules is necessary to be able to decide in the main algorithm which rule
has to be called at which time. For each category, there is method for each top-level operator a
formula treated with such a rule might have.

13.5.1 Classification Rules

Classification rules are the simplest of the rules. They represent invertible rules of the calculus
where no branching or backtracking occurs. They do nothing else than putting a given formula
into its storage place or, if necessary, splitting the formula and recursively call another classifi-
cation rule.

These rules are always called when a new formula has to be stored. The first time this is the case
when the proofing process is started and the formula to be proven has to be stored. Then, each
time one of the rules creates a new formula, for example because a formula is split up, another
classification rule is called. Each classification rule returnstrue if an axiom is found andfalse
else.

Because the prover must be able to store and thus classify every possible formula, there is a
classification method for each operator.

Example 17 Classification of Disjunctions
As an example, we take a closer look of the classification function for the disjunction.8 This
function is called for all formulas whose top operator is a disjunction. The code is shown in table
13.5.

Like all classification methods, it takes as argument the expression, i.e. formula, that is to be
classified, and the position this formula occurs, i.e. either on the left or the right side in the
sequent. The function returnstrue, if the classification results in an axiom, i.e. a formula appears
on both sides of the sequent. In all other cases the function returnsfalse.

8 some error checking has been removed from the code to make it clearer.
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inline bool
llh_ProofSequence::classifyOr(const Expression &inFormula,

Position inPos)
{

if(inPos == Expression::left)
{

lSplit.insert(inFormula);

return false;
}
else

return classify(inFormula[Expression::left], Expression::right) ||
classify(inFormula[Expression::right], Expression::right);

}

Table 13.5: Implementation of the classification rule for the disjunction

We have to distinguish two cases, depending on which side the formula has to be stored. If the
formula is on the left side, then we’d actually have to call the (l-∨)-Rule, which is a branching
rule. Because in the classification step we don’t want to carry through any branching rules, we
just store the formula in a set for later treatment with a splitting rule (see below). If the formula
is added on the right side, we carry through the full (r-∨)-rule, because the rule is invertible and
not branching. In that case, according to the rule, we just need to store both operands of the top
level disjunction. These subformulas are classified again. We have an axiom, if either classifying
the left or right operand produced an axiom.

13.5.2 Splitting Rules

While classification rules can always be done first, because they don’t have a long execution
time, splitting rules are worse in that aspect. Splitting rules and their functions implement the
branching rules of the sequent calculus (i.e. mainly (l-∨) and (r-∧) rules). These rules always
start a new branch for proving and thus require more computation time. Therefore, splitting
rules are done only after no more classification rules can be applied, but before starting with
backtracking rules.

Splitting rules have to be defined for all rules of the sequent calculus which have more than one
premiss. This means that there has to be a splitting function for all operators that can appear as
top level operator of the main formula of such a rule. This mainly excludes the modal operators
and the negation, i.e. all unary operators.

Example 18 Splitting of Conjuctions
As an example, we take a look at the splitting function for the conjunction9, shown in table 13.6.

9 all pieces of code that deal with status output and the computation of the amount of percents already done has
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bool
llh_ProofSequence::splitAnd(const Expression &inFormula,

Position inPos)
{

llh_ProofSequence sideBranch(*this);

return provable(inFormula[Expression::left], Expression::right))
&&
sideBranch.provable(inFormula[Expression::right],

Expression::right);
}

Table 13.6: Implementation of the splitting rule for the conjunction

This function just copies the current node and tries to proof each subformula of the premiss in a
different, independent node. The result istrue if both calls return true andfalse else.

13.5.3 Backtracking Rules

The backtracking rules are used for all rules requiring backtracking, i.e. theG/K-rules. The real
backtracking is done in the main algorithm. These methods just have to adjust the sequent as
determined in the rule of the calculus.

Example 19 Backtracking ofL-formulas
As an example, we take a quick look at the rule for theL-operator, show in table 13.7. As with
the previous examples, some additional code—like use check and infolevel output—has been
left out. This function looks quite complicated, but in fact its just some moving of sets using the
STL routines.10. In fact, this method just clears the appropriate sets and transfers some formulas
from the marked to the unmarked state usingclassify() .

13.6 History

Section 11.8.2 shows that it is necessary to add a history to the rules to be able to check for loops
and thus obtain a terminating algorithm. For clarity, the history has been left out in the example
code above, but of course has to be present.

been removed from this demonstration code, as well as some error checking and the use check; the real code is
about 10 times the size of the one shown.

10 we cannot use some of the generic algorithmsfor each or set union here, because if the classification finds
an axiom we can stop; the STL algorithms would do all elements in any case and thus would be less efficient;
furthermore, it’s not possible to call member functions in afor each statement.
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bool
llh_ProofSequence::backtrackL(const Expression &inFormula,

Position inPos)
{

// remove the whole left and right sequents
lMisc.clear();
rMisc.clear();
lSplit.clear();
rSplit.clear();
lBacktrack.clear();
rBacktrack.clear();

// add the whole lL, we use a copy of the list here,
// otherwise things added may be removed again in the
// loop below.
set<Expression> lLOld;
lLOld.swap(lL);

while(!lLOld.empty())
{

Expression formula = *(lLOld.begin());

lLOld.erase(lLOld.begin());

if(classify(formula, Expression::left))
return true;

}

// add the whole rL, as above
set<Expression> rLOld;
rLOld.swap(rL);

while(!rLOld.empty())
{

Expression formula = *(rLOld.begin());

rLOld.erase(rLOld.begin());

if(classify(formula, Expression::right))
return true;

}

// add the whole lF
for(set<Expression>::iterator i = lF.begin(); i != lF.end(); i++)
{

if(classify(*i, Expression::left))
return true;

}

// add the whole rF
for(set<Expression>::iterator i = rF.begin(); i != rF.end(); i++)
{

if(classify(*i, Expression::right))
return true;

}

return provable(inFormula[Expression::left], Expression::left);
}

Table 13.7: Implementation of a backtracking rule
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As can be seen from the rules of the sequent calculus, there are four different sets of histories
necessary, namely HL, HF, HK, and HG. Basically, the history contains the complete state of a
node, to be able to recognize it later. The history only depends on the premiss of the rule, and
thus, because it is only used inG/K-rules, only the marked formulas are necessary to identify it.

The histories for theG and F formulas only need to store the formulas encountered, because
these histories can only increase and are cleared when a (r-F) or (l-G)-rule is used. They are
implemented using STL sets.

The histories for theK andL-rules are more complicated. Because these histories can change
arbitrarily, it is necessary to store the sets of marked formulas, i.e. the complete premiss of
the rule, along with the main formula of the rule. Only if the same sets and main formula are
encountered again, we have detected a loop. These histories are stored using the class.

13.6.1 Code

The following additions to the code have to be made in order to include history handling:

• the classification functions forF andG have to clear all the history sets when a new formula
is classified,

• before starting backtracking inprovable() , all backtracking formulas are inserted into
the history11,

• all the rules of the calculus with history checks have to make them before actually applying
the rule

These changes are all that is necessary to add loop check to the code. Actually, according to the
rules of the calculus, it would have been necessary to adjust the histories in each backtracking
rule. But because we add all backtracking formulas before we start backtracking, we only need
to do that once, which is much easier to implement and more efficient as well.

13.7 Use Check

Use check was also mentioned in [29] and originally comes from [41], where it was used for a
decision procedure for intuitionistic logic. We take a look here to see what changes have to be
incorporated in the code to implement use check for LL−. Contrary to other implementations
in the LWB, use check for LL− is done using object oriented techniques. Because the whole
algorithm uses object oriented programming, it is easy to add used check into an already working
algorithm.

Use check is mainly done in two steps. In a first step, every axiom found adds its main formulas
to sets of used formulas. For simple propositional variables this means just adding the formula

11 this optimization increases computation speed much.
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for more complicated formulas this means adding all relevant sub formulas to their appropriate
sets as well. This way, all formulas that were used to actually obtain the axiom are stored.

After a successful branch of a splitting rule, a special function checks if the main formula of the
branch has been used in the proof. If this is not the case, then the second branch of the rule does
not have to be proven at all, saving much computation time.

If use check is not used, then the example in 12.3.1, checking for cheating in step 4, requires
more than 80 hours to compute the result, instead of the approximately 30 seconds it takes with
use check.

13.8 Infolevel

The Logics Workbench has a special way for printing information about a running algorithm,
the so called infolevel output. This output can be used to see what internally happens when an
algorithm runs, especially what a prover does when trying to prove a formula. The generated
output represents how the the algorithm internally develops, not specially prepared information
showing a readable proof. Nevertheless, the infolevel output can be interesting to find out why
something is provable or why it is not. Furthermore, when dealing with errors in the prover or
when debugging the prover, the infolevel is a great help for finding bugs.

Adding infolevel output to the algorithm just requires some additional outputs statements. By
using a special method, this printing also be reused for future provers.

Example 20 Infolevel
As an example of the infolevel output we look at the output generated when proving the formula
G(A ∧B)↔ (GA ∧ GB). In the LWB this is written as follows

set("infolevel", 5);
provable(G(A & B) <-> GA & GB);

The first line sets the infolevel output to level 5, determining that all information of the main
algorithm is to be printed. The output generated is shown in table 13.8. It starts with the name of
the rule used, using the following abbreviations:

C for a classification rule,
S for a splitting rule,
B for a backtracking rule.

This is followed by ’l ’ if the rule is applied on the left or by ’r ’ if the rule is applied on the right
side of the sequent. The name of the rules is ended by the top level operator of the formula, thus
completely identifying the method to be called for the rule.

After the identification of the rule follows the sequent as it is before applying the rule. The main
formula of the rule is enclosed in quotes. The sequents are written as in the theory chapter, i.e.
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the marked formulas at the beginning and the end. Finally follows a list of those formulas that
were used for proving so far. This information is used for the use check.

The output is indented to show the two branches involved in a splitting rule and to make clear
that backtracking rules are actually on the same level and are just carried through one after the
other.

For technical reasons, the infolevel output is printed before the rule is actually carried through.
This means that the information given for the used formulas does not incorporate the information
from the rule printed12

13.9 Derivation

The prover is implemented in a way allowing its derivation. Thus, the same structure can be used
for provers for other logics. As long as the general proving principle for a logic is the same, the
prover can be derived and most of the implementation can be reused.

Of course, for some logics—namely classical propositional logic—it would be better to create
a new prover from the current one and make the prover for LL− a derivation of it. Because
classical logic does not need loop checks and backtracking, such a prover is simpler and thus
could be more efficient. It should then be no problem to create a derivation of this prover to get
a prover for the logic of likelihood.

For such a derivation, mainly the new rule functions (as far as they differ) and history and back-
tracking have to be added. But things like use check or infolevel printing and all the necessary
interfacing to the LWB can be taken over without change. Furthermore, by incorporating addi-
tional optimizations into the base prover, they can be done for all provers at once, .

13.10 Efficiency

An important question when using object oriented techniques is always their efficiency. It is
widely believed that code written using object oriented methods has to be much slower and
inefficient than code written without. This does not always have to be the case (cf. [33]).

As shown in 11.9,S4 andKT can easily be embedded into LL−. As a test for efficiency, we
use the benchmark formulas of [2] forKT andS4 with an appropriate translation into LL−. This
results are compared to the results for existing provers forS4 andKT already present in the LWB.

Figures 13.1 and 13.2 show the maximal type of formula that could be proven in less than 100
seconds. As can be seen, the prover for LL− is generally somewhat slower than the existing

12 thus the formulas used in the axioms don’t show up in the printing of the used formulas. Furthermore, in the given
example, no used formulas are shown at all, because two splitting rules follow each other, and each branch of a
splitting rule uses a new set of used formulas.
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Cr-<-> ; | ; ; =) "G (A & B) <-> G A & G B"; ; | ; [ =) ]
Sr-<-> ; | ; ; =) ; "G (A & B) <-> G A & G B"; | ; [ =) ]

Cl-G ; | "G (A & B)"; ; =) ; ; | ; [ =) ]
Deleting History for G (A & B)
Cl-& ; A & B | "A & B"; ; =) ; ; | ; [ =) ]
Cl-var ; A & B | "A"; ; =) ; ; | ; [ =) ]
Cl-var ; A & B | "B", A; ; =) ; ; | ; [ =) ]
Cr-& ; A & B | A, B; ; =) "G A & G B"; ; | ; [ =) ]
Sr-& ; A & B | A, B; ; =) ; "G A & G B"; | ; [ =) ]

Cr-G ; A & B | A, B; ; =) "G A"; ; | ; [ =) ]
Br-G ; A & B | A, B; ; =) ; ; "G A" | ; [ =) ]

Cl-& ; A & B | "A & B"; ; =) ; ; | ; [ =) ]
Cl-var ; A & B | "A"; ; =) ; ; | ; [ =) ]
Cl-var ; A & B | "B", A; ; =) ; ; | ; [ =) ]
Cr-var ; A & B | A, B; ; =) "A"; ; | ; [ =) ] (axiom)
(axiom)

------------------------------
Cr-G ; A & B | A, B; ; =) "G B"; ; | ; [ =) ]
Br-G ; A & B | A, B; ; =) ; ; "G B" | ; [ =) ]

Cl-& ; A & B | "A & B"; ; =) ; ; | ; [ =) ]
Cl-var ; A & B | "A"; ; =) ; ; | ; [ =) ]
Cl-var ; A & B | "B", A; ; =) ; ; | ; [ =) ]
Cr-var ; A & B | A, B; ; =) "B"; ; | ; [ =) ] (axiom)
(axiom)

(axiom)
------------------------------
Cr-G ; | ; ; =) "G (A & B)"; ; | ; [ =) ]
Cl-& ; | "G A & G B"; ; =) ; ; G (A & B) | ; [ =) ]
Cl-G ; | "G A"; ; =) ; ; G (A & B) | ; [ =) ]
Deleting History for G A
Cl-var ; A | "A"; ; =) ; ; G (A & B) | ; [ =) ]
Cl-G ; A | "G B", A; ; =) ; ; G (A & B) | ; [ =) ]
Deleting History for G B
Cl-var ; A, B | "B", A; ; =) ; ; G (A & B) | ; [ =) ]
Br-G ; A, B | A, B; ; =) ; ; "G (A & B)" | ; [ =) ]

Cl-var ; A, B | "A"; ; =) ; ; | ; [ =) ]
Cl-var ; A, B | "B", A; ; =) ; ; | ; [ =) ]
Cr-& ; A, B | A, B; ; =) "A & B"; ; | ; [ =) ] (axiom)
(axiom)

(axiom)
true

Table 13.8: Infolevel output for the proof ofG(A ∧B)↔ (GA ∧ GB)
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Figure 13.1: Comparison of benchmark formulas betweenKT and LL−

Figure 13.2: Comparison of benchmark formulas betweenS4 and LL−
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Formula CPC LLH CPC sorted LLH sorted
pigeonhole(2) 0.01 s 0.00 s 0.00 0.00
pigeonhole(3) 0.00 s 0.01 s 0.01 s 0.01 s
pigeonhole(4) 0.04 s 0.19 s 0.18 s 0.30 s
pigeonhole(5) 0.72 s 3.72 s 1.97 s 1.35 s
pigeonhole(6) 15.07 s 1 m 26.23 s 6 m 54.37 s 5 m 40.20 s

Table 13.9: Comparison of pigeonhole formulas

algorithms, but not in all cases. Further analysis, using classical formulas help to find out where
the time is lost. Figure 13.9 shows the execution time for some pigeonhole formulas. While the
classical prover is always much faster than the one for LL−, this changes when the formula is
specially sorted. In that case, the classical prover uses much more time. While the prover for LL−

also requires more time, it is now faster than the classical one. The reason for this behavior lies in
the fact, that the implementation for LL− uses STL sets to store formulas. These sets internally
sort their elements, thus sorting is always done and thus not dependent on the sequence of the
input formula. This sorting uses quite a lot of computation time, but can sometimes improve the
speed as well.

The object oriented prover could be much improved if the sorting used for the sets could either
be improved in speed or could be heuristically changed to always prove formulas with the most
chance of success first. Unfortunately, this cannot be implemented by adjusting the STL provided
set class. Instead, a complete new class for sets must be implemented.
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