Theories of ordinal strength $\varphi 20$ and $\varphi 2\varepsilon_0$

Diplomarbeit der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern

vorgelegt von

Marc Heissenbüttel

2001

Leiter der Arbeit:

Prof. Dr. Gerhard Jäger Institut für Informatik und angewandte Mathematik

Contents

1	Introduction					
2	Introduction of \mathcal{L}_2 and second order theories 2.1 The syntax of second order theories	7				
3	Equivalence of (RFN) and $(\omega - Jump)$ over ACA_0 3.1 RFN ₀ proves the $(\omega - Jump)$ axiom					
4	Upper bound for proof strength of $ACA_0 + (BR)$ 4.1 Embedding of $ACA_0 + (BR)$ into $RFN_0 \dots \dots$	18 18				
5	The proof-theoretic strength of ACA ⁺ and RFN 5.1 The wellordering proof of RFN ₀ and RFN	31 31				
6	Additional Results 6.1 The well-ordering proof of $ACA_0 + (BR) \dots \dots$	53				
7	Appendix 7.1 Details of the proof of Lemma 5.2.23					

1 Introduction

In this thesis we will study different principles in the context of the well-known second order theories ACA_0 and ACA and we will give a proof-theoretic analysis of the resulting theories. These two fragments of the formal system of second order arithmetic comprise the usual number-theoretic axioms as well as the defining equations for all primitive-recursive functions, comprehension for arithmetical formulas as well as induction on the natural numbers, for ACA_0 this is formulated for sets as for ACA this is the full second order induction scheme. Further we have the following principles:

- 1. The axiom of ω model reflection in second order arithmetic (RFN) basically is the axiom that for every set X, there exists a set Y, which models ACA₀ and contains X.
- 2. The $(\omega$ -Jump) axiom states that for any given set X, there exists a set (a hierarchy) Y, satisfying $(Y)_0 = X$ and $(\forall x)((Y)_{x+1} = TJ((Y)_x))$, where TJ denotes the Turing jump.
- 3. Finally we have the Bar Rule (BR), which permits one to infer the scheme of transfinite induction on a primitive recursive relation \prec when it has been proven that \prec is well-ordered.

The following results extend and refine previous similar results of Rathjen, who showed in [7] that $|ACA_0 + (BR)| = |ACA_0 + (\omega-Jump)| = \varphi 20$. In Section 3 we will show that the principle of ω model reflection (RFN) is equivalent over ACA₀, and hence ACA, to the $(\omega-Jump)$ axiom. As an immediate consequence we obtain that the proof-theoretic ordinal of $ACA_0+(RFN)$ is $\varphi 20$ as it was announced in Jäger and Strahm [4]. An upper bound for the proof strength of $ACA_0+(RFN)$ is obtained in Section 4 by embedding this theory into the theory $ACA_0+(RFN)$. Further we will see in Section 6 that in fact this bound is sharp, when we will give a well-ordering proof of $ACA_0+(BR)$. As an extension of Section 3 we will determine in Section 5 the proof strength of the theory ACA augmented first with $(\omega-Jump)$ and secondly with (RFN). We will give a well-ordering proof of ACA+(RFN) and therefore obtain a lower bound for the proof-theoretic ordinal, and by making use of Schütte's semi-formal system RA* of [9], we will see that in fact this is the greatest lower bound.

I am grateful to Prof. Gerhard Jäger for introducing me to proof theory and Dr. Thomas Strahm for guiding me during my work. I also thank Dieter Probst for his helpful advices and the interesting discussions we often had together with David Steiner.

2 Introduction of \mathcal{L}_2 and second order theories

2.1 The syntax of second order theories

For technical reasons we choose a Tait-style formulation of the language \mathcal{L}_2 of second order arithmetic. More precisely, \mathcal{L}_2 contains the following basic symbols:

- 1. Countably many free number variables a, b, c, \ldots, u, v, w and bound number variables x, y, z, \ldots as well as free set variables U, V, W, \ldots and bound set variables X, Y, Z, \ldots (all four sorts possibly with subscripts).
- 2. Symbols for all primitive recursive functions and relations.
- 3. The symbol \sim for forming negative literals.
- 4. The symbols \in for the membership relation between numbers and sets.
- 5. The propositional connectives \vee and \wedge and the quantifiers \exists and \forall .

As auxiliary symbols we have parentheses and commas. Observe that there is no propositional connective \neg for negation. Further we exhibit the relation symbols < and = which denote the standard less and equality relation on the natural number, respectively. If \mathcal{Z} and $\mathbf{a}_1, \ldots, \mathbf{a}_n$ are finite strings and u_1, \ldots, u_n is a sequence of pairwise disjoint free variables, then

$$\mathcal{Z}[\mathbf{a}_1,\ldots,\mathbf{a}_n/u_1,\ldots,u_n]$$

is the \mathcal{L}_2 -formula which is obtained from \mathcal{Z} by simultaneously replacing all free occurrences of the variables u_1, \ldots, u_n by $\mathbf{a}_1, \ldots, \mathbf{a}_n$. We often simply write $\mathcal{Z}(\mathbf{a}_1, \ldots, \mathbf{a}_n)$ instead of $\mathcal{Z}[\mathbf{a}_1, \ldots, \mathbf{a}_n/u_1, \ldots, u_n]$. The number terms r, s, t, \ldots of \mathcal{L}_2 are defined as usual, the set terms are just the set variables. Positive literals of \mathcal{L}_2 are all expressions $R(s_1, \ldots, s_n)$ and $(s \in U)$ for R an n-ary relation symbol. The negative literals of \mathcal{L}_2 are all expressions $\sim E$ so that E is a positive literal of \mathcal{L}_2 .

The formulas of \mathcal{L}_2 A, B, F, \dots are defined inductively as follows:

- 1. All literals of \mathcal{L}_2 are \mathcal{L}_2 -formulas.
- 2. If A and B are \mathcal{L}_2 -formulas, then $(A \vee B)$ and $(A \wedge B)$ are \mathcal{L}_2 -formulas.
- 3. If A is an \mathcal{L}_2 -formula in which x does not occur, then $(\exists x)A[x/u]$ and $(\forall x)A[x/u]$ are \mathcal{L}_2 -formulas.
- 4. If A is an \mathcal{L}_2 -formula in which X does not occur, then $(\exists X)A[X/U]$ and $(\forall X)A[X/U]$ are \mathcal{L}_2 -formulas.

We often write $(s \neq t)$ and $(s \notin U)$ instead of $\sim (s = t)$ and $\sim (s \in U)$, respectively. The notation \vec{e} is a shorthand for a finite string e_1, \ldots, e_n of expressions whose length will be specified by the context. We also write $A[\vec{u}]$ to indicate that \vec{u} comprises all free number variables occurring in A and $A[\vec{U}]$ if \vec{U} comprises all free set variables occurring in A.

The negation $\neg A$ of an arbitrary \mathcal{L}_2 -formula A is inductively defined as usual by making use of the law of double negation and the De Morgan's laws. This means in particular that $\neg A$ is $\sim A$, if A is a positive literal, and $\neg A$ is B, if A is $\sim B$ for some positive literal. The remaining logical connectives are abbreviated as usual.

An \mathcal{L}_2 -formula is called \triangle_0 , if it contains no bound set variables and, in addition, every number quantifier is bounded. An \mathcal{L}_2 formula is called Π_n^0 if it has the form

$$(\forall x_1)(\exists x_2)\dots(Q_nx_n)A$$

with A being \triangle_0 . A formula is called Σ_n^0 if its negation is a Π_n^0 formula. A formula is called arithmetic if it does not contain bound set variables; we write Π_0^1 or Π_∞^0 for the collection of these formulas. Analogously, an \mathcal{L}_2 formula is called Π_n^1 if it has the form

$$(\forall X_1)(\exists X_2)\dots(Q_nX_n)A$$

with A arithmetic. A formula is called Σ_n^1 if its negation is a Π_n^1 formula.

For brevity we often omit brackets in formulas, when there is no risk of confusion. Sometimes we will also use the following abbreviations:

$$\begin{array}{rcl} a \leq b & := & a < b \vee a = b \\ U(t) & := & t \in U \\ U \subseteq V & := & (\forall x)(x \in U \rightarrow x \in V) \\ U = V & := & (\forall x)(x \in U \leftrightarrow x \in V) \\ (\exists x < t)A(x) & := & (\exists x)(x < t \wedge A(x)) \\ (\forall x < t)A(x) & := & (\forall x)(x < t \rightarrow A(x)) \end{array}$$

We presuppose standard notation for coding sequences of natural numbers: $\langle \ldots \rangle$ is a primitive recursive function for forming n tuples $\langle t_0, \ldots, t_{n-1} \rangle$; Seq denotes the primitive recursive set of sequence numbers; lh(t) gives the length of the sequence coded by t, i.e. if $t = \langle t_0, \ldots, t_{n-1} \rangle$ then lh(t) = n; $(t)_i$ denotes the ith component of the sequence coded by t if i < lh(t).

In the following we make use of the usual way of coding a finite or infinite sequence of sets of natural numbers into a single one by writing $s \in (U)_t$ instead of $\langle s, t \rangle \in U$.

Accordingly, we have for each \mathcal{L}_2 formula A its relativization to the set U, denoted by A^U , which is obtained from A by replacing all quantifiers $(\forall X)(\ldots X\ldots)$ and $(\exists X)(\ldots X\ldots)$ in A by $(\forall x)(\ldots (U)_x\ldots)$ and $(\exists x)(\ldots (U)_x\ldots)$, respectively. Note that A^U is always arithmetic. Finally, element-hood $U \in V$ between sets has to be read in the obvious way as $(\exists x)(U=(V)_x)$. Therefore we also denote the relativization of an \mathcal{L}_2 formula A to a set U sometimes as $(\exists X \in U)(\ldots X\ldots)$ and $(\forall X \in U)(\ldots X\ldots)$.

In the sequel we let $LO(\triangleleft)$ denote that \triangleleft is a linear ordering relation, that is for all a, b, c:

$$\neg(a \lhd a) \qquad a \lhd b \land b \lhd c \rightarrow a \lhd c \qquad a \lhd b \lor a = b \lor a \lhd b$$

Furthermore we set for all primitive recursive relations \Box ,

$$\begin{array}{lll} \mathsf{PROG}(\sqsubset, U) &:= & (\forall x)((\forall y)(y \sqsubset x \to (y \in U)) \to (x \in U)) \\ \mathsf{TI}(\sqsubset, a, U) &:= & \mathsf{PROG}(\sqsubset, U) \to (\forall x \sqsubset a)(x \in U) \\ \mathsf{TI}(\sqsubset, U) &:= & \mathsf{PROG}(\sqsubset, U) \to (\forall x)(x \in U) \\ \mathsf{WF}(\sqsubset) &:= & (\forall X)\mathsf{TI}(\sqsubset, X) \\ \mathsf{WO}(\sqsubset) &:= & \mathsf{LO}(\sqsubset) \land \mathsf{WF}(\sqsubset) \end{array}$$

2.2 The theories ACA_0^+ , RFN_0 , and $ACA_0 + (BR)$

It is the purpose of this section to introduce the theories ACA_0^+ , ACA^+ , RFN_0 , RFN and $ACA_0 + (BR)$. All of these subsystems of second order arithmetic will be assumed to contain the rules and axioms of the classical two-sorted Hilbert calculus with equality for numbers, further they consist of the axioms of the theory ACA_0 (or ACA) and some further set existence axioms or rules of inference. Therefore we shortly state here the non-logical axioms of the theory ACA_0 and ACA. They consist of the following \mathcal{L}_2 -formulas:

I. Number-theoretic Axioms

These comprise the defining equations for the primitive-recursive functions and relations as well as the following axiom for the successor function S:

$$S(0) \neq 0$$

II. Set Induction Axiom

$$0 \in U \land (\forall z)(z \in U \to z + 1 \in U) \to (\forall z)(z \in U) \tag{IND0}$$

III. Arithmetical Comprehension Scheme

$$(\exists X)(\forall z)(z \in X \leftrightarrow A(z))$$
 (ACS)

where A(u) is an arithmetical formula of \mathcal{L}_2 .

The theory ACA_0 comprises the axioms of I, II and III.

IV. Formula Induction Scheme

$$A(0) \wedge (\forall z)(A(z) \to A(z+1)) \to (\forall z)A(z)$$
 (IND)

where A(u) is an arbitrary formula of \mathcal{L}_2 .

Adding scheme IV to ACA_0 gives theory ACA.

In general, for any theory Th the subscript 0 denotes restricted induction. This means that Th_0 does not include the full second order induction scheme (IND). Notice that ACA_0 is finitely axiomatizable by a Π^1_2 sentence, see for example Simpson [10] Lemma VIII.1.5. We will denote these sentences from now on by F_{ACA_0} .

We continue with the following definitions.

Definition 2.2.1 Let $F_{\pi}(e, \vec{b}, \vec{U})$ be a Π_1^0 formula of \mathcal{L}_2 with exactly the displayed free variables. We say that F_{π} is a universal lightface Π_1^0 if for all Π_1^0 formulas $F_{\pi'}$ of \mathcal{L}_2 with the same free variables as F_{π} we have

$$(\forall x)(\exists y)(\forall \vec{z})(\forall \vec{Z})(F_{\pi}(y,\vec{z},\vec{Z}) \leftrightarrow F_{\pi'}(x,\vec{z},\vec{Z}))$$

It is well-known that for all numbers of variables there exists a universal lightface Π_1^0 formula.

Definition 2.2.2 Let $F_{\pi}(e,b,U) \in \Pi_1^0$ denote a fixed universal lightface formula in \mathcal{L}_2 with exactly the displayed free variables. That is e.g. $F_{\pi}(e,b,U) := \neg(\exists z) \mathcal{T}^U(e,b,z)$, where \mathcal{T}^U is Kleene's T-predicate, relativized to U. Note that \mathcal{T}^U is primitive recursive in U.

Definition 2.2.3 The Turing jump of any set U, denoted by TJ(U), is defined as

$$TJ(U) := \{\langle e, b \rangle : (\exists z) T^U(e, b, z)\}$$

This means that TJ(U) is the set of all $\langle e, b \rangle$ such that $\neg F_{\pi}(e, b, U)$ holds. In a theory comprising ACA₀ the existence of these sets becomes provable. For more details concerning Kleene's T-predicate, fixed universal lightface formulas and recursion theory in general see Rogers [8].

The stage is now set in order to introduce our theories.

V. ω -Jump Hierarchy

The axiom of ω -Jump hierarchy denotes the following formula.

$$(\forall X)(\exists Y)((Y)_0 = X \land (\forall z)((Y)_{z+1} = TJ((Y)_z))) \qquad (\omega - \mathsf{Jump})$$

TJ(U) denotes the Turing jump of a set U as defined in 2.2.3. That is the complete recursively enumerable set relative to U. The theory ACA_0^+ stands for ACA_0 plus the axiom $(\omega - \mathsf{Jump})$. Often we will abbreviate this formula by $(\forall X)(\exists Y)\mathcal{J}_{\omega}(X,Y)$.

VI. ω Model Reflection

Let us now turn to the axiom of ω model reflection. For any set U, this reflection principle guarantees the existence of a countable coded ω model of ACA_0 which contains U. More formally, we have:

$$(\forall X)(\exists Y)(X \dot{\in} Y \land F_{\mathsf{ACA}_0}^Y) \qquad (\mathsf{RFN})$$

Accordingly, RFN_0 denotes the theory ACA_0 augmented with (RFN).

VII. Bar Rule

The bar rule (BR) is the rule of inference, which permits to infer the scheme of transfinite induction for arbitrary \mathcal{L}_2 -formulas F on a primitive recursive relation \prec once it has been *proved* that \prec is well-ordered.

$$\frac{\mathsf{WO}(\prec)}{\mathsf{TI}(\prec,F)} \qquad (\mathsf{BR})$$

Obviously the theory $ACA_0 + (BR)$ extends ACA_0 by each instance of (BR). Rathjen showed in [7] that the bar rule does not permit us to profit from parameters occurring in the relation \prec . Therefore we just suppose from now on that there occurs no parameters at all in the relation \prec .

Definition 2.2.4 Let Th be a theory formulated in a language containing \mathcal{L}_2 .

- 1. We say that the ordinal α is provable in Th if there exists a primitive recursive well-ordering \prec of order type α so that Th \vdash $(\forall X)$ Tl (\prec, X) .
- 2. The proof-theoretic ordinal of Th, denoted |Th|, is the least ordinal which is not provable in Th.

It is well known that $|ACA_0| = \varepsilon_0$ and $|ACA| = \varphi 1\varepsilon_0$ (see for example Schütte [9] Theorem 23.3, Theorem 23.4 and Pohlers [6] Corollary 15.9). Further Rathjen proved in [7] Theorem 3.5 that $|ACA_0| = |ACA_0^+| = \varphi 20$.

Notice that the (RFN) axiom is a special case of the general scheme of ω model reflection in second order arithmetic as it has been introduced in Friedman [1] and basically states that for every true formula A of second order arithmetic, possibly with parameters, there exists a countable coded ω model of the theory ACA₀, containing these parameters so that A is true is this model. More formally we have for any \mathcal{L}_2 -formula A(U)

$$A(U) \to (\exists X)(U \dot{\in} X \wedge F_{\mathsf{ACA}}^X \wedge A^X(U))$$

The ω model reflection considered in this work (RFN) is the general scheme of ω model reflection, as stated above, restricted to Π_1^1 formulas. Since if $A \in \Pi_1^1$ and A(U) holds, then clearly also $A^V(U)$.

We will prove in the next section that the proof-theoretic ordinal of RFN_0 is also $\varphi 20$ as it was announced by Jäger and Strahm in [4]. As a further result we have from Section 5 that $|RFN| = |ACA^+| = \varphi 2\varepsilon_0$.

3 Equivalence of (RFN) and $(\omega - Jump)$ over ACA₀

The purpose of this section is to show the equivalence of two set existence axioms over a certain theory. Namely that (RFN) is equivalent to $(\omega - \mathsf{Jump})$ over the theory ACA_0 .

3.1 RFN₀ proves the $(\omega - Jump)$ axiom

The following is provable in ACA_0 .

Lemma 3.1.1 The Turing jump hierarchy is unique, that is

$$\mathcal{J}_{\omega}(U, V_1) \wedge \mathcal{J}_{\omega}(U, V_2) \rightarrow V_1 = V_2$$

PROOF: Given any set U and any two V_i , with $i \in \{1, 2\}$, such that we have $(V_i)_0 = U \wedge (\forall z)((V_i)_{z+1} = TJ((V_i)_z))$, we show with arithmetical induction (IND₀) on u that $V_1 = V_2$. In the base-case, where u = 0, we have $(V_1)_0 = (V_2)_0$. According to the definition of $(\omega - \mathsf{Jump})$ and hence $(V_1)_1 = (V_2)_1$ because the Turing jump is unique. In the case $u \to u+1$ we have by the induction hypothesis that $(V_1)_u = (V_2)_u$, which is $(\forall x)(x \in (V_1)_u \leftrightarrow x \in (V_2)_u)$. Again, since the Turing jump is unique, we have $(\forall x)(x \in TJ((V_1)_u) \leftrightarrow x \in TJ((V_2)_u))$, which is $(\forall x)(x \in (V_1)_{u+1} \leftrightarrow x \in (V_2)_{u+1})$.

Compare also Simpson [10] Lemma V.2.3.

Theorem 3.1.2

$$\mathsf{ACA_0} \vdash (\forall X)(\exists Z)(X \dot{\in} Z \land F^Z_{\mathsf{ACA_0}}) \to (\forall X)(\exists Y)\mathcal{J}_\omega(X,Y)$$

PROOF: Let Hier(U, V, u) denote the \mathcal{L}_2 -formula given by

$$Hier(U, V, u) := (V)_0 = U \land (\forall y < u)((V)_{y+1} = TJ((V)_y))$$

Further, in the following M will denote a set which is a model of ACA_0 and which comprises U. First we want to show that $(\forall x)(\exists Y \in M)Hier(U,Y,x)$ holds. Notice that this is an arithmetical formula with set parameter M, and since M is a model of ACA_0 it is closed under arithmetical comprehension. We prove the claim by arithmetical induction (IND_0) on x.

u = 0:

We have to show that $(\exists Y \in M)((Y)_0 = U)$. We obtain a set V by arithmetical comprehension as follows,

$$(\forall y)(y \in V \leftrightarrow (\exists v)(y = \langle v, 0 \rangle \land v \in U))$$

Note, this is clearly an element of M and hence we have $(\exists Y \in M)((Y)_0 = U)$.

 $u \rightarrow u + 1$:

We have to prove that

$$(\exists Y_N \dot{\in} M) Hier(U, Y_N, u+1)$$

holds under the induction hypothesis

$$(\exists Y_A \dot{\in} M) Hier(U, Y_A, u)$$

Now we construct the set Y_N by arithmetical comprehension that satisfies the claim.

$$Y_N = Y_A \cup \{\langle x, u + 1 \rangle : x \in TJ((Y_A)_u)\}$$

This set Y_N is clearly also an element of M, since M is a model of ACA_0 by supposition. We are done because we know by Lemma 3.1.1 that the Turing jump hierarchy is unique.

It remains to prove that there exists a set Z in ACA₀ such that

$$(\forall x) Hier(U, Z, x)$$

We construct this set Z by arithmetical comprehension as follows, where M is again the set from the supposition.

$$(\forall z)(z \in Z \leftrightarrow (\exists x)(\exists y)(\exists Y \dot{\in} M)(z = \langle x, y \rangle \land x \in (Y)_y \land Hier(U, Y, y)))$$

3.2 ACA $_0^+$ proves the (RFN) axiom

First we have to give some definitions and prove some general properties.

Definition 3.2.1 For any two sets U and V, we say that V is many-one reducible to U, denoted by $V \leq_m U$, if there exists a recursive function f such that $\forall x (x \in V \leftrightarrow f(x) \in U)$

14

The following is provable in ACA_0 .

Lemma 3.2.2 For any sets U, V we have

$$V$$
 is recursively enumerable in U \iff $V \leq_m TJ(U)$

PROOF: Suppose that V is recursively enumerable in U, then there exists an index \tilde{g} of a partial recursive function g such that

$$b \in V \leftrightarrow (\exists z) \{\tilde{g}\}^U(b) = z \leftrightarrow \langle \tilde{g}, b \rangle \in TJ(U)$$

and thus $V \leq_m TJ(U)$. On the other hand, TJ(U) is recursively enumerable in U by its definition and together with the supposition that V is many-one reducible to TJ(U) we immediately obtain the claim. For more details cf. e.g. Hinman [3]

Definition 3.2.3 For any two sets U and V, we say that V is recursive in U, written $V \leq_T U$, if there exists e_0, e_1 such that for all b the following holds.

$$(b \in V \leftrightarrow F_{\pi}(e_1, b, U)) \land (b \notin V \leftrightarrow F_{\pi}(e_0, b, U))$$

In this case we say that $e = \langle e_0, e_1 \rangle$ is the *U*-recursive index of *V* and we also often say that *V* is Turing reducible to *U*. Here $F_{\pi}(e, b, U)$ is a fixed universal lightface Π_1^0 formula as in definition 2.2.2.

Lemma 3.2.4 The following are provable in ACA₀.

- 1. The relation \leq_T is transitive, i.e. $U \leq_T V \land V \leq_T W \to U \leq_T W$.
- 2. $U \leq_m V \to U \leq_T V$
- 3. $U <_T TJ(U)$
- 4. $\mathcal{J}_{\omega}(U,V) \wedge W \leq_T (V)_i \wedge j < i \rightarrow W \leq_T (V)_i$

PROOF: 1.) and 2.) cf. for example Simpson [10] Lemma VIII.1.2 and Rogers [8] Theorem 9.XII and Theorem 9.XIII.

- 3.) It is immediate from the definitions of \leq_T and TJ.
- 4.) It is immediate from 3.) and 1.)

For more details concerning recursion theory see Rogers [8].

We shortly state here the well-known theory RCA_0 , which will play an important role in the proof of this section.

The theory RCA_0 is the formal system in the language \mathcal{L}_2 whose axioms consist of the number-theoretic axioms plus the schemes of Σ_1^0 induction as well as Δ_1^0 comprehension as stated below.

Definition 3.2.5 For each $k < \omega$, the scheme of Σ_k^0 induction consists of all axioms of the form

$$A(0) \wedge (\forall z)(A(z) \rightarrow A(z+1)) \rightarrow (\forall z)A(z)$$

where A(u) is any Σ_k^0 formula of \mathcal{L}_2 .

Notice that ACA_0 proves the Σ_k^0 induction scheme for all $k < \omega$, i.e. ACA_0 proves all instances of arithmetical induction (cf. Simpson [10] Lemma IX.1.1)

Definition 3.2.6 The scheme of \triangle_1^0 comprehension consists of all axioms of the form

$$(\forall z)(A(z) \leftrightarrow B(z)) \rightarrow (\exists X)(\forall z)(z \in X \leftrightarrow A(z))$$

where A(u) is a Σ_1^0 and B(u) a Π_1^0 formula.

We have the following important Lemma.

Lemma 3.2.7 Σ_1^0 -comprehension is equivalent to arithmetical comprehension over RCA_0 .

Proof: cf. for example Simpson [10] Lemma III.1.3.

Theorem 3.2.8

$$\mathsf{ACA_0} \vdash (\forall X)(\exists Y)\mathcal{J}_\omega(X,Y) \to (\forall X)(\exists Z)(X \dot{\in} Z \land F^Z_{\mathsf{ACA_0}})$$

PROOF: We have to show that under the supposition $\mathcal{J}_{\omega}(U,V)$ we can construct in ACA_0 a set M which comprises U and models ACA_0 . We obtain this model M explicitly with arithmetical comprehension as follows.

$$(\forall z)(z \in M \leftrightarrow (\exists x_0)(\exists x_1)(\exists y_0)(\exists y_1)(F_{\pi}(x_1, y_0, (V)_{y_1}) \land \neg F_{\pi}(x_0, y_0, (V)_{y_1}) \land z = \langle y_0, \langle y_1, x_0, x_1 \rangle \rangle))$$

This means that in M we collect all sets recursive in any $(V)_j$. Clearly $U \in M$, i.e. $(\exists z)(U = (M)_z)$, since $(V)_0 = U$ and every set is recursive in itself and hence there exists $u = \langle v, e_0, e_1 \rangle$ with $U = (M)_u$.

What remains to show is that M is a model of ACA_0 , i.e. is closed under arithmetical comprehension. By Lemma 3.2.7 it is sufficient to prove that M is a model of RCA_0 and is closed under Σ_1^0 -comprehension. To show that M is a model of RCA_0 we have to prove that M is closed under Δ_1^0 -comprehension. Since Σ_1^0 -comprehension comprises Δ_1^0 -comprehension we are done, if we can prove the M is closed under

Σ_1^0 -comprehension.

We claim that M is a model of Σ_1^0 -comprehension. Define an arbitrary set $W \in \Sigma_1^0$ with parameters $\vec{U} = U_1, U_2, \dots, U_n$ from M, which exists in ACA₀ by arithmetical comprehension, with $U_1 \dot{\in} (M)_{i_1}, U_2 \dot{\in} (M)_{i_2}, \dots, U_n \dot{\in} (M)_{i_n}$, that is

$$(\forall z)(z \in W \leftrightarrow A(z, \vec{u}, \vec{U}))$$

where $A \in \Sigma_1^0$. We have to show that $W \dot{\in} M$.

Notice that $U_1 \leq_T (V)_{i_1}, \ldots, U_n \leq_T (V)_{i_n}$ and by Lemma 3.2.4.4 we have $U_1 \leq_T (V)_i, \ldots, U_n \leq_T (V)_i$ with $i = max(i_1, \ldots, i_n)$. Therefore W is already Σ_1^0 -definable in $(V)_i$. By Lemma 3.2.2 we conclude that $W \leq_m TJ((V)_i)$, that is $W \leq_m (V)_{i+1}$. By Lemma 3.2.4.2 we obtain $W \leq_T (V)_{i+1}$. Since W is recursive in $(V)_{i+1}$ we clearly have by the construction of M that $W \in M$.

Corollary 3.2.9 The theory RFN₀ has the proof-theoretic ordinal φ 20.

PROOF: This is an immediate consequence of Theorem 3.1.2 and Theorem 3.2.8, since RFN₀ and ACA₀⁺ are equivalent and we know by Rathjen [7], Theorem 3.5 that $|ACA_0^+| = \varphi 20$.

Corollary 3.2.10 The theories ACA⁺ and RFN are equivalent.

In Section 5 we will determine the proof-theoretic ordinal of ACA⁺, respectively RFN.

4 Upper bound for proof strength of ACA₀ + (BR)

4.1 Embedding of $ACA_0 + (BR)$ into RFN_0

According to Rathjen [7] Theorem 3.5, ACA_0^+ proves the same Π_1^1 sentences as $ACA_0 + (BR)$. We know from Section 3 that the theories ACA_0^+ and RFN_0 are equivalent, therefore it's an immediate consequence that RFN_0 also proves the same Π_1^1 sentences. In this section we will give a direct way of embedding $ACA_0 + (BR)$ into RFN_0 and we will show that RFN_0 even proves all Π_2^1 sentences of $ACA_0 + (BR)$. In the following M, N, \ldots will denote sets of \mathcal{L}_2 which model ACA_0 .

Lemma 4.1.1 The following is provable in RFN₀ with $\vec{V} = V_1, \dots, V_n$.

$$(\exists Y)(\vec{V} \dot{\in} Y \wedge F_{\mathsf{ACA}_0}^Y)$$

PROOF: First we code the sets V_i of \vec{V} into a single one and obtain by the (RFN) axiom a set from which we obtain again by arithmetical comprehension a set M, which clearly has the desired properties.

Lemma 4.1.2 We have for all \mathcal{L}_2 -formulas $C[\vec{V}]$

$$\mathsf{ACA_0} + (\mathsf{BR}) \vdash C[\vec{V}] \qquad \Rightarrow \qquad \mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V} \dot{\in} M \to C^M[\vec{V}]$$

PROOF: We prove that by induction on the length n of the derivation in $ACA_0 + (BR)$.

n = 0:

- If $C[\vec{V}]$ is a number theoretical axiom of $ACA_0 + (BR)$ or a tautology, then obviously $C^M[\vec{V}]$ is an axiom of the same kind of RFN_0 and therefore $RFN_0 \vdash F^M_{ACA_0} \land \vec{V} \dot{\in} M \to C^M[\vec{V}]$.
- For the case that $C[\vec{V}] = A(t) \to (\exists x) A(x)$ or $C[\vec{V}] = (\forall x) A(x) \to A(t)$ it is easy to see that the claim holds.
- If $C[\vec{V}]$ is one of the remaining logical axioms of the Hilbert calculus, then $U \in \vec{V}$, and $C[\vec{V}] = A(U) \to (\exists X) A(X)$ or $C[\vec{V}] = (\forall X) A(X) \to A(U)$. Thus obviously $\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land U \dot{\in} M \to (A(U) \to (\exists X \dot{\in} M) A(X))$, and respectively $\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land U \dot{\in} M \to ((\forall X \dot{\in} M) A(X) \to A(U))$.
- If $C[\vec{V}]$ is of the form $(0 \in U \land (\forall z)(z \in U \to z + 1 \in U)) \to (\forall z)(z \in U)$, where $U = \vec{V}$, then clearly $\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land U \dot{\in} M \to C^M[U]$.

• Let $C[\vec{V}]$ be an instance of the arithmetical comprehension scheme $(\exists X)(\forall z)(z \in X \leftrightarrow A(x, \vec{V}))$. Then $C^M[\vec{V}]$ is of the form

$$(\exists X \dot{\in} M)(\forall z)(z \in X \leftrightarrow A(z, \vec{V}))$$

where $A(u, \vec{V})$ is an \mathcal{L}_2 formula which is arithmetical in \vec{V} . We reason in $\mathsf{RFN_0}$ and have to show that $\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V} \in M \to (\exists x)(\forall z)(z \in (M)_x \leftrightarrow A(z, \vec{V}))$.

By Lemma 4.1.1 we obtain a set M, which is a model of ACA_0 and comprises \vec{V} . Since models of ACA_0 are closed under arithmetical comprehension, the claim follows easily.

n > 0:

• If the last inference was Modus Ponens, then $\mathsf{ACA}_0 + (\mathsf{BR}) \stackrel{n}{\vdash} C[\vec{V}]$, i.e. there exist $n_0 < n, n_1 < n$ such that $\mathsf{ACA}_0 + (\mathsf{BR}) \stackrel{n_0}{\vdash} A[\vec{U}, \vec{V}] \to C[\vec{V}]$ and $\mathsf{ACA}_0 + (\mathsf{BR}) \stackrel{n_1}{\vdash} A[\vec{U}, \vec{V}]$, where we assume the elements of \vec{U} to be pairwise disjoint from the elements of \vec{V} . By the induction hypothesis, we have

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{U}, \vec{V} \dot{\in} M \to (A^M[\vec{U}, \vec{V}] \to C^M[\vec{V}]) \tag{1}$$

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{U} \dot{\in} M \to A^M[\vec{U}, \vec{V}] \tag{2}$$

Hence we can infer from (1) and (2) that

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{U}, \vec{V} \dot{\in} M \to C^M[\vec{V}]$$

Because \vec{U} does not occur in $C^M[\vec{V}]$ and surely the empty set ϕ is an element of every model of ACA₀, we set $\vec{U} = \phi$ and obtain

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V} \dot{\in} M \to C^M[\vec{V}]$$

- If the last inference was an existential or universal number quantification, then we have the induction hypothesis and apply just the same rule of inference again.
- If the last inference was an existential set quantification, then there exists $n_0 < n$ such that

$$\mathsf{ACA_0} + (\mathsf{BR}) \stackrel{n_0}{\vdash} A[U, \vec{V}] \to B[\vec{V}]$$

where U is different from all V_i in \vec{V} . Then $C[\vec{V}] = (\exists X)A[X,\vec{V}] \to B[\vec{V}]$. With the induction hypothesis we obtain

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land U, \vec{V} \dot{\in} M \to (A^M[U, \vec{V}] \to B^M[\vec{V}])$$

By means of propositional logic this is equivalent to

$$\mathsf{RFN_0} \vdash A^M[U, \vec{V}] \land U \dot{\in} M \to ((F^M_{\mathsf{ACA_0}} \land \vec{V} \dot{\in} M) \to B^M[\vec{V}])$$

By applying the existential set quantification inference we obtain

$$\mathsf{RFN_0} \vdash (\exists X)(A^M[X, \vec{V}] \land X \dot{\in} M) \to ((F^M_{\mathsf{ACA_0}} \land \vec{V} \dot{\in} M) \to B^M[\vec{V}])$$

and again by means of propositional logic we finally obtain

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V} \dot{\in} M \to ((\exists X \dot{\in} M) A^M [X, \vec{V}] \to B^M [\vec{V}])$$

- For the case that the last inference was an universal set quantification the proof is similar.
- If the last inference was the bar rule (BR) then

$$\mathsf{ACA}_0 + (\mathsf{BR}) \stackrel{n}{\vdash} \mathsf{TI}(\prec, F[\vec{V}])$$
 for an $F \in \mathcal{L}_2$

Thus there exists $n_0 < n$ and

$$ACA_0 + (BR) \stackrel{n_0}{\models} WO(\prec)$$

from the definition of WO we have

$$\mathsf{ACA_0} + (\mathsf{BR}) \stackrel{n_0}{\models} (\forall X) \mathsf{TI}(\prec, X) \wedge \mathsf{LO}(\prec)$$

Since $(\forall X)\mathsf{TI}(\prec, X) \land \mathsf{LO}(\prec)$ contains no free set variables we obtain with the induction hypothesis that the following holds in RFN_0

$$F_{\mathsf{ACA}_0}^M \to (\forall X \dot{\in} M) \mathsf{TI}(\prec, X) \wedge \mathsf{LO}(\prec)$$
 (3)

and we have to show that if $F[\vec{V}]$ is an \mathcal{L}_2 -formula and N is a model of ACA_0 , that comprises \vec{V} , the following holds in RFN_0

$$\mathsf{TI}(\prec,F^N[\vec{V}]) \land \mathsf{LO}(\prec)$$

First notice that the formula $F^N[\vec{V}]$ is arithmetical. Therefore we have by arithmetical comprehension a set Z,

$$Z = \{x : F^{N}(x, \vec{V})\}$$
 (4)

Now by the (RFN) axiom we obtain a set O, which models ACA_0 and contains Z. Together with (3) we can conclude that

$$(\forall X \dot{\in} O)\mathsf{TI}(\prec, X) \wedge \mathsf{LO}(\prec)$$

and since O comprises the set Z, we clearly have $\mathsf{TI}(\prec, Z) \land \mathsf{LO}(\prec)$ and therefore obtain with (4)

$$\mathsf{TI}(\prec, F^M[\vec{V}]) \land \mathsf{LO}(\prec)$$

Theorem 4.1.3 Let C be a Π_2^1 formula of \mathcal{L}_2 such that $ACA_0 + (BR) \vdash C[\vec{V}]$, then also $RFN_0 \vdash C[\vec{V}]$.

PROOF: $C[\vec{V}]$ is of the form $(\forall Y)(\exists Z)B[\vec{V},Y,Z]$ with $B \in \Pi^0_{\infty}$. From Lemma 4.1.2, we obtain

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V} \in M \to (\forall y)(\exists z)B[\vec{V}, (M)_y, (M)_z]$$

and therefore we can infer that

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V} \in M \to (\exists z) B[\vec{V}, (M)_u, (M)_z]$$

Since the class of the models of ACA_0 , which contain \vec{V} , clearly is a super class of the models of ACA_0 , which contain \vec{V} and any U, we can conclude that

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V}, U \in M \to (\exists z) B[\vec{V}, U, (M)_z]$$

but then it immediately follows that

$$\mathsf{RFN_0} \vdash F^M_{\mathsf{ACA_0}} \land \vec{V}, U \in M \to (\exists Z) B[\vec{V}, U, Z]$$

and obtain by a existential set quantification

$$\mathsf{RFN_0} \vdash (\exists Y)(F^Y_{\mathsf{ACA_0}} \land \vec{V}, U \in Y) \rightarrow (\exists Z)B[\vec{V}, U, Z]$$

By (RFN) we have

$$\mathsf{RFN_0} \vdash \exists Y(\vec{V}, U \dot{\in} Y \land F^Y_{\mathsf{ACA_0}})$$

and hence we finally obtain

$$\mathsf{RFN_0} \vdash (\exists Z) B[\vec{V}, U, Z]$$

which is in fact

$$\mathsf{RFN_0} \vdash (\forall Y)(\exists Z)B[\vec{V},Y,Z]$$

Corollary 4.1.4 The proof-theoretic ordinal of $ACA_0 + (BR)$ is $\leq \varphi 20$.

PROOF: By Theorem 4.1.3 we know that any Π_2^1 sentence provable in $\mathsf{ACA_0} + (\mathsf{BR})$ is also provable in $\mathsf{RFN_0}$. By Corollary 3.2.9 that $|\mathsf{RFN_0}| = \varphi 20$ and together with the fact that $(\forall X)\mathsf{TI}(\prec,X) \in \Pi_1^1$, the result follows easily.

In Section 6.1 we will see that Corollary 4.1.4 in fact determines the least upper bound for the proof-strength of $ACA_0 + (BR)$.

5 The proof-theoretic strength of ACA⁺ and RFN

5.1 The wellordering proof of RFN₀ and RFN

In this section we will analyze the proof-theoretic strength of RFN. Since we know from Section 3 that RFN and ACA⁺ are equivalent, the result therefore also holds for RFN. First we will determine a lower bound for the proof-theoretic ordinal by showing that any ordinal $\alpha < \varphi 2\varepsilon_0$ is provable in RFN. To show that this bound is strict, we embed ACA⁺ into the semi-formal system RA* of Schütte [9].

Small Greek letter $\alpha, \beta, \gamma, \delta, \ldots$, possibly with subscripts, will denote ordinals $<\Gamma_0$ We fix a primitive recursive standard wellordering \prec of order-type Γ_0 . Without loss of generality we may assume that the field of \prec is the set of all natural numbers (and that 0 is the least element with respect to \prec). Hence each natural number a codes an ordinal, say ord(a), less then Γ_0 , and each ordinal $\alpha < \Gamma_0$ is represented in our theories by an unique natural number, say $nr(\alpha)$ (we will denote this natural number often as $\overline{\alpha}$). The reader is assumed to be familiar with the Veblen functions φ_{α} , cf. Pohlers [6] or Schütte [9].

Further, we inductively define $\omega_n(\alpha)$ and $\varepsilon_n(\alpha)$.

Definition 5.1.1 For all ordinals α and natural numbers n, we define

$$\omega_0(\alpha) := \alpha \qquad \qquad \varepsilon_0(\alpha) := \alpha \omega_{n+1}(\alpha) := \omega^{\omega_n(\alpha)} \qquad \qquad \varepsilon_{n+1}(\alpha) := \varepsilon_{\varepsilon_n(\alpha)}$$

Moreover, there exist binary primitive recursive functions $\hat{+}, \hat{\omega}, \tilde{\omega}, \hat{\varepsilon}, \tilde{\varepsilon}, \hat{\varphi}$, which model the usual ordinal operations on these codes, i.e. for m and n natural numbers we have :

- 1. $\hat{+}(m,n) := nr(ord(m) + ord(n))$
- 2. $\hat{\omega}(m,n) := nr(\omega^{ord(m)} \cdot n)$
- 3. $\tilde{\omega}(m,n) := nr(\omega_m(ord(n)))$
- 4. $\tilde{\varepsilon}(m,n) := nr(\varepsilon_m(ord(n)))$
- 5. $\hat{\varphi}(m,n) := nr(\varphi(ord(m))(ord(n)))$

We use $\hat{+}, \hat{\omega}, \tilde{\omega}, \tilde{\varepsilon}, \hat{\varphi}$ as primitive symbols of our formal language; and in order to keep notation as simple as possible, we write:

In the sequel we also often write $\mathsf{PROG}(U)$ and $\mathsf{TI}(a,U)$ instead of $\mathsf{PROG}(\prec,U)$ and $\mathsf{TI}(\prec,a,U)$.

Further we make the following definitions.

Definition 5.1.2

$$\mathcal{I}(a) := (\forall X)\mathsf{TI}(\prec, a, X)$$

Definition 5.1.3 For any given set U, we define the set Sp(U), if this set exists, as follows:

$$Sp(U) := \{a : (\forall y)(y \subset U \to y + \hat{\omega}^a\} \subset U)\}$$

where $a \subset U$ abbreviates $(\forall x)(x \prec a \rightarrow x \in U)$.

Note that the existence of these sets become provable in a theory comprising ACA₀. This jump operator Sp enables us to jump from α to ω^{α} .

Lemma 5.1.4

$$ACA_0 \vdash \mathcal{I}(a) \land \mathcal{I}(b) \rightarrow \mathcal{I}(a + b)$$

Lemma 5.1.5

$$ACA_0 \vdash \mathcal{I}(a) \land b \prec a \rightarrow \mathcal{I}(b)$$

Lemma 5.1.6

$$ACA_0 \vdash (\forall x \prec a)\mathcal{I}(x) \rightarrow \mathcal{I}(a)$$

Lemma 5.1.7

$$\mathsf{ACA_0} \vdash \mathsf{PROG}(\prec, V) \to \mathsf{PROG}(\prec, Sp(V))$$

Lemma 5.1.8

$$ACA_0 \vdash TI(a, Sp(V)) \rightarrow TI(\hat{\omega}^a, V)$$

PROOF: For the proofs of these Lemmata compare Schütte [9] Lemma VIII.21.1, Lemma VIII.21.7, $(\mathcal{J}4)$ and Pohlers [6] Lemma 15.5, Lemma 15.6.

Lemma 5.1.9 We have that RFN₀ proves the following

$$\mathcal{I}(a) \to \mathcal{I}(\hat{\varepsilon}_a)$$

Proof: We have the supposition

$$(\forall X)\mathsf{TI}(a,X) \tag{5}$$

Now fix an arbitrary U and show that $\mathsf{TI}(\hat{\varepsilon}_a, U)$ holds. Because of the (RFN) axiom we have that for this fixed set U there exists a set W such that $U \in W$ and F_{ACA}^W . Further define a set V by arithmetical comprehension

$$(\forall z)(z \in V \leftrightarrow \mathcal{I}^W(\hat{\varepsilon}_z))$$

where \mathcal{I}^W is the relativization of \mathcal{I} to the set W, that is $\mathcal{I}^W(\hat{\varepsilon}_u) = (\forall X \in W) \mathsf{TI}(\hat{\varepsilon}_u, X)$. Under the supposition that

$$\mathsf{PROG}(\prec, V) \tag{6}$$

we have by (5)

$$(\forall x \prec a)(x \in V) \tag{7}$$

But since the following holds in RFN₀

$$\mathsf{PROG}(V) \land (\forall x \prec a)(x \in V) \rightarrow a \in V$$

we obtain by the supposition and (7) that $(a \in V)$. That is

$$(\forall X \dot{\in} W) \mathsf{TI}(\hat{\varepsilon}_a, X)$$

Since $U \dot{\in} W$ we have

$$\mathsf{TI}(\hat{\varepsilon}_a, U)$$

What remains to be proved is that this set V, from supposition (6), is progressive. In order to establish $PROG(\prec, V)$ it is equivalent to prove the following:

- 1. $\overline{0} \in V$
- 2. $b \in V \rightarrow b + \overline{1} \in V$

3. $Lim(b) \land (\forall x \prec b)(x \in V) \rightarrow b \in V$

where Lim(b) indicates that the natural number b codes a limit ordinal.

1. $\underline{b} = 0$:

The proof is completely analogous as where we prove (9), but in this case we prove the following formula in RFN_0 with induction on z

$$(\forall z)(\forall X \dot{\in} W) \mathsf{TI}(\tilde{\omega}_z(\overline{0}), X)$$

because if $c \prec \hat{\varepsilon}_{\overline{0}}$, then there already exists a natural number u such that $c \prec \tilde{\omega}_u(\overline{0})$, and therefore by Lemma 5.1.5 and Lemma 5.1.6, it is sufficient to prove the above.

2. *b* codes a successor ordinal:

We have the supposition $b \in V$, that is

$$(\forall X \dot{\in} W) \mathsf{TI}(\hat{\varepsilon}_b, X) \tag{8}$$

and have to show that $(b+1) \in V$ also holds, which is equivalent to

$$(\forall X \dot{\in} W) \mathsf{TI}(\hat{\varepsilon}_{(b \hat{+} \overline{1})}, X)$$

because, if $c \prec \hat{\varepsilon}_{(t+\bar{1})}$, then there already exists a natural number u such that $c \prec \tilde{\omega}_u(\hat{\varepsilon}_t+\bar{1})$, we only have to show by Lemma 5.1.5 and Lemma 5.1.6 that

$$(\forall z)(\forall X \in W)\mathsf{TI}(\tilde{\omega}_z(\hat{\varepsilon}_b + \overline{1}), X) \tag{9}$$

We prove this by arithmetical induction (IND_0) on z.

• u = 0:

We clearly have that $\mathsf{RFN_0} \vdash \mathcal{I}(\overline{1})$ and together with the supposition (8) and Lemma 5.1.4 we obtain

$$(\forall X \dot{\in} W) \mathsf{TI}(\hat{\varepsilon}_b \hat{+} \overline{1}, X)$$

• $u \rightarrow u + 1$:

We have the induction hypothesis

$$(\forall X \in W) \mathsf{TI}(\tilde{\omega}_u(\hat{\varepsilon}_b + \overline{1}), X)$$

and want to prove that

$$(\forall X \in W) \mathsf{TI}(\tilde{\omega}_{u+1}(\hat{\varepsilon}_b + \overline{1}), X)$$

First notice that Sp(U) is an arithmetical formula with set parameter U. Choose an arbitrary set $U \in W$. Since W is a model of ACA_0 , it is closed under arithmetical comprehension and therefore the set defined by Sp(U) is also an element of W (i.e. $Sp(U) \in W$). Hence by the induction hypothesis we have

$$\mathsf{TI}(\tilde{\omega}_u(\hat{\varepsilon}_b + \overline{1}), Sp(U))$$

Together with Lemma 5.1.8 we obtain

$$\mathsf{TI}(\hat{\omega}^{\tilde{\omega}_u(\hat{\varepsilon}_b\hat{+}\bar{1})}, U)$$

Since U was an arbitrary set of W and $\mathsf{RFN_0}$ proves that $\hat{\omega}^{\tilde{\omega}_u(\hat{\varepsilon}_b + \overline{1})} = \tilde{\omega}_{u+1}(\hat{\varepsilon}_b + \overline{1})$ we finally obtain

$$(\forall X \dot{\in} W) \mathsf{TI}(\tilde{\omega}_{u+1}(\hat{\varepsilon}_b \hat{+} \overline{1}), X)$$

completing the induction step.

3. b codes a limit ordinal:

We have the presupposition $(\forall x \prec b)(x \in V)$, that is

$$(\forall x \prec b)((\forall X \dot{\in} W)(\mathsf{PROG}(X) \to (\forall y \prec \hat{\varepsilon}_x)(y \in X)))$$

and want to show $(b \in V)$, which is

$$(\forall X \dot{\in} W)(\mathsf{PROG}(X) \to (\forall y \prec \hat{\varepsilon}_b)(y \in X))$$

We suppose that $\mathsf{PROG}(U)$ and have to show that $(\forall y \prec \hat{\varepsilon}_b)(y \in U)$. Since b codes a limit ordinal, we have for all $y \prec \hat{\varepsilon}_b$ there exists a $b_0 \prec b$ such that already $y \prec \hat{\varepsilon}_{b_0}$ and by the supposition we know therefore that $y \in U$.

With this Lemma 5.1.9 we immediately obtain the following Theorem.

Theorem 5.1.10 RFN₀ proves the formula $\mathcal{I}(\overline{\alpha})$ for all $\alpha < \varphi 20$.

PROOF: If $\alpha < \varphi 20$, then there is an $n < \omega$ such that $\alpha < \varepsilon_n(0)$. Since $\mathsf{RFN_0} \vdash (\forall x)(\neg x \prec 0)$, we clearly have

$$RFN_0 \vdash \mathcal{I}(0)$$

n-fold application of Lemma 5.1.9 leads to

$$\mathsf{RFN_0} \vdash \mathcal{I}(\tilde{\varepsilon}_{\overline{n}}(0))$$

which is

$$\mathsf{RFN_0} \vdash (\forall X)(\mathsf{PROG}(\prec, X) \to (\forall x \prec \tilde{\varepsilon}_{\overline{n}}(0))(x \in X)$$

Together with Lemma 5.1.5 this implies

$$\mathsf{RFN_0} \vdash (\forall X)(\mathsf{PROG}(\prec, X) \to (\forall x \prec \overline{\alpha})(x \in X))$$

which is in fact

$$\mathsf{RFN_0} \vdash \mathcal{I}(\overline{\alpha})$$

Corollary 5.1.11 For a lower bound of the proof-theoretic ordinal of RFN₀ we have

$$|\mathsf{RFN}_0| \ge \varphi 20$$

If the theory RFN_0 comprises in addition the full second order induction scheme (IND), we get another lower bound for the proof-theoretic ordinal of this theory RFN . First we want to show that

Lemma 5.1.12 RFN proves the following

$$\mathcal{I}(a) \to (\forall x) \mathcal{I}(\tilde{\varepsilon}_r(a))$$

PROOF: Assume that $\mathcal{I}(a)$ holds. We prove $(\forall x)\mathcal{I}(\tilde{\varepsilon}_x(a))$ also holds by induction (IND) on x.

$$\underline{u=0}$$
:

Clearly

$$\mathsf{RFN} \vdash \mathcal{I}(a) \to \mathcal{I}(a)$$

and hence it holds for u = 0.

$\underline{u \rightarrow u + 1}$:

By induction hypothesis we have

$$\mathcal{I}(\tilde{\varepsilon}_u(a))$$

and obtain by Lemma 5.1.9 that

$$\mathcal{I}(\hat{\varepsilon}_{\tilde{\varepsilon}_u(a)})$$

which is

$$\mathcal{I}(\tilde{\varepsilon}_{u+1}(a))$$

since RFN₀ proves $\hat{\varepsilon}_{\tilde{\varepsilon}_u(a)} = \tilde{\varepsilon}_{u+1}(a)$.

Lemma 5.1.13 We have that RFN proves

$$\mathsf{PROG}(\mathcal{I}(\hat{\varphi}\overline{2}a))$$

PROOF: Again in order to establish $\mathsf{PROG}(\mathcal{I}(\hat{\varphi}\overline{2}a))$ it is equivalent to prove the following.

- 1. $\mathcal{I}(\hat{\varphi}\overline{2}0)$
- 2. $\mathcal{I}(\hat{\varphi}\overline{2}a) \to \mathcal{I}(\hat{\varphi}\overline{2}(a+1))$
- 3. $Lim(a) \wedge (\forall x \prec a) \mathcal{I}(\hat{\varphi}\overline{2}x) \to \mathcal{I}(\hat{\varphi}\overline{2}a)$
- 1. a = 0:

Clearly

$$\mathsf{RFN} \vdash \mathcal{I}(\overline{0})$$

Together with Lemma 5.1.12 we get

$$\mathsf{RFN} \vdash (\forall z) \mathcal{I}(\tilde{\varepsilon}_z(\overline{0}))$$

and if $c \prec \hat{\varphi}\overline{20}$ then there exists a natural number u such that $c \prec \hat{\varepsilon}_u(\overline{0})$. Using Lemma 5.1.5 and Lemma 5.1.6 we obtain

$$\mathsf{RFN} \vdash \mathcal{I}(\hat{\varphi}\overline{20})$$

2. <u>a codes a successor ordinal:</u>

We have the supposition

$$\mathcal{I}(\hat{\varphi}\overline{2}a)$$

and have to show that

$$\mathcal{I}(\hat{\varphi}\overline{2}(a\hat{+}\overline{1}))$$

also holds. Clearly

$$\mathsf{RFN} \vdash \mathcal{I}(\overline{1}) \tag{10}$$

and with Lemma 5.1.4 we obtain from (10) and the supposition

$$\mathcal{I}(\hat{\varphi}\overline{2}a\hat{+}\overline{1}). \tag{11}$$

From (11) and Lemma 5.1.12 we obtain

$$(\forall z)\mathcal{I}(\hat{\varepsilon}_z(\hat{\varphi}\overline{2}a+\overline{1})).$$

Further, we have that if $c \prec \hat{\varphi}\overline{2}(a+\overline{1})$ then there exists a natural number u such that $c \prec \tilde{\varepsilon}_u(\hat{\varphi}\overline{2}a+\overline{1})$.

Using Lemma 5.1.5 and Lemma 5.1.6 we obtain

$$\mathcal{I}(\hat{\varphi}\overline{2}(a\hat{+}\overline{1}))$$

3. a codes a limit ordinal:

We have the supposition $(\forall x \prec a) \mathcal{I}(\hat{\varphi}\overline{2}a)$, that is

$$(\forall x \prec a)((\forall X)(\mathsf{PROG}(X) \to (\forall y \prec \hat{\varphi}\overline{2}x)(y \in X)))$$

and want to show $\mathcal{I}(\hat{\varphi}\overline{2}a)$, which is

$$(\forall X)(\mathsf{PROG}(X) \to (\forall y \prec \hat{\varphi}\overline{2}a)(y \in X))$$

We suppose $\mathsf{PROG}(U)$ and we need to show that $(\forall y \prec \hat{\varphi}\overline{2}a)(y \in U)$. Since a codes a limit ordinal, we have for all $y \prec \hat{\varphi}\overline{2}a$ there exists an $a_0 \prec a$ such that $y \prec \hat{\varphi}\overline{2}a_0$ and by the supposition we know therefore that $y \in U$.

Theorem 5.1.14 If $\alpha < \varphi 2\varepsilon_0$, then $\mathsf{RFN} \vdash \mathcal{I}(\overline{\alpha})$

PROOF: Letting $A(t) := \mathcal{I}(\hat{\varphi}\overline{2}t)$ we have by Lemma 5.1.13

$$\mathsf{RFN} \vdash (\forall x)(\forall y \prec xA(y) \to A(x))$$

Since we know by Schütte [9] Lemma VIII.21.6 that

$$\mathsf{ACA} \vdash (\forall x)(\forall y \prec xA(y) \to A(x)) \to (\forall x \prec \overline{\beta})A(x)$$

holds for every ordinal $\beta < \varepsilon_0$

$$\mathsf{RFN} \vdash A(\overline{\beta})$$

follows for all $\beta < \varepsilon_0$. If $\alpha < \varphi 2\varepsilon_0$, there exists $\beta < \varepsilon_0$ such that $\alpha < \varphi 2\beta$. Hence by Lemma 5.1.5 we obtain

$$\mathsf{RFN} \vdash \mathcal{I}(\overline{\alpha})$$

for all $\alpha < \varphi 2\varepsilon_0$.

Corollary 5.1.15 $|\mathsf{RFN}| \geq \varphi 2\varepsilon_0$ and $|\mathsf{ACA}^+| \geq \varphi 2\varepsilon_0$

PROOF: It is immediate from Theorem 5.1.14 and Lemma 3.2.10.

In the next section we will see that Corollary 5.1.15 determines in fact the greatest lower bound for the proof-strength of RFN, respectively ACA⁺.

5.2 An upper bound for the proof strength of ACA⁺

The purpose of the next subsection is to introduce the semi-formal system RA* (compare Schütte [9] for more details).

5.2.1 The semi-formal system RA*

In the language \mathcal{L}^* of RA* we have countably infinitely many bound number variables $(x, y, z, a, b, c \dots)$, as well as countably infinitely many free set variables of level α for each ordinal α $(U^{\alpha}, V^{\alpha}, W^{\alpha}, \dots)$ and countably infinitely many bound set variables of level β for each ordinal $\beta \neq 0$ $(X^{\beta}, Y^{\beta}, Z^{\beta}, \dots)$. Further, \mathcal{L}^* comprises the same function and relation symbols as \mathcal{L}_2 . That means there is a symbol for each n-ary primitive recursive function and n-ary primitive recursive relation. Number terms of \mathcal{L}^* (r, s, t, \dots) are exactly the closed number terms of \mathcal{L}_2 . The numerals of \mathcal{L}^* are inductively given by $\overline{0} := 0$ and $\overline{n+1} := \overline{n}+1$. The set terms of \mathcal{L}^* (S, T, R) are defined simultaneously with the formulas of \mathcal{L}^* (A, B, F, \dots) :

Definition 5.2.1

- 1. U^{α} is a set term.
- 2. If F is an \mathcal{L}^* -formula, then $\{x : F\}$ is a set term.
- 3. $R(t_1, \ldots, t_n)$ is an \mathcal{L}^* -formula for n-ary primitive recursive relation symbols R and number terms t_1, \ldots, t_n .
- 4. $(t \in S), (t \notin S)$ are \mathcal{L}^* -formulas for number terms t and set terms S.
- 5. Formulas are closed under \vee , \wedge , $(\exists x)$, $(\forall x)$, $(\exists X^{\alpha})$, $(\forall X^{\alpha})$ for $\alpha \neq 0$.

The negation $\neg F$ of an \mathcal{L}^* -formula F is defined as usual by applying the de Morgan's rules. We say two formulas F and G are numerically equivalent, if they differ only in (closed) number terms which have the same value. Further we use the same abbreviations as in \mathcal{L}_2 , that is e.g.: $S = T := (\forall x)(x \in S \leftrightarrow x \in T)$ and $(\forall x < r)A(x) := (\forall x)(x < r \to A(x))$.

The level of a set term S and a formula F of \mathcal{L}^* is defined by

Definition 5.2.2

```
lev(S) = max\{\alpha : a \ set \ variable \ X^{\alpha} \ or \ U^{\alpha} \ occurs \ in \ S\}
lev(F) = max\{\alpha : a \ set \ variable \ X^{\alpha} \ or \ U^{\alpha} \ occurs \ in \ F\}
```

otherwise the level of S, or of F respectively, is 0.

Now we define inductively the rank rk(A) for an \mathcal{L}^* -formulas A:

Definition 5.2.3 1. A is of the form $R(t_1, ..., t_n)$, then rk(A) = 0.

- 2. A is of the form $(F \wedge G)$ or $(F \vee G)$, then $rk(A) = max\{rk(F), rk(G)\} + 1$.
- 3. A is of the form $(\exists x)F(x)$ or $(\forall x)F(x)$, then $rk(A) = rk(F(\overline{0})) + 1$.
- 4. A is of the form $(t \in U^{\alpha})$ or $(t \notin U^{\alpha})$, then $rk(A) = \omega \alpha$.
- 5. A is of the form $(t \in \{x : F(x)\})$ or $(t \notin \{x : F(x)\})$, then rk(A) = rk(F(t)) + 1.
- 6. A is of the form $(\exists X^{\alpha})F(X^{\alpha})$ or $(\forall X^{\alpha})F(X^{\alpha})$, then $rk(A) = max\{\omega \cdot lev((\forall X^{\alpha})F(X^{\alpha})), rk(F(U^{0})) + 1\}$.

Notice that $rk(F) = rk(\neg F)$. We make the following observations:

- If $lev(F) = \alpha$, then $\omega \alpha \leq rk(F) < \omega(\alpha + 1)$.
- If $lev(S) < \alpha$, then $rk(F(S)) < rk((\exists X^{\alpha})F(X^{\alpha}))$.

Derivations in RA* are denoted in a Tait-style manner: Γ, Δ, \ldots denote a finite set of \mathcal{L}^* -formulas.

The axioms of RA* are given as follows:

I. Number-theoretic Axiom:

$$\Gamma, R(t_1, \ldots, t_n)$$
 (Ax1)

if R is primitive recursive relation symbol and $R(t_1, \ldots, t_n)$ is true.

II. Equality Axiom for set variables:

$$\Gamma, s \in U^{\alpha}, t \notin U^{\alpha}$$
 (Ax2)

for arbitrary set variables of level α and s,t (closed) number terms which have the same value.

The rules of RA* are divided into four groups:

III. Logical Rules:

$$\frac{\Gamma,A}{\Gamma,A\vee B} \quad (\vee 1), \qquad \frac{\Gamma,B}{\Gamma,A\vee B} \quad (\vee 2), \qquad \frac{\Gamma,A}{\Gamma,A\wedge B} \quad (\wedge).$$

IV. Set Term Rules:

$$\frac{\Gamma, F(t)}{\Gamma, t \in \{x : F(x)\}} \quad (\in 1), \qquad \frac{\Gamma, \neg F(t)}{\Gamma, t \notin \{x : F(x)\}} \quad (\in 2)$$

V. Quantifier Rules:

$$\frac{\Gamma, F(s)}{\Gamma, (\exists x) F(x)} \quad (\exists^0), \qquad \frac{\dots, \Gamma, F(s), \dots for \ all \ number \ terms \ s}{\Gamma, (\forall x) F(x)} \quad (\forall^0)$$

$$\frac{\Gamma, F(S) \quad lev(S) < \alpha}{\Gamma, (\exists X^{\alpha}) F(X^{\alpha})} \quad (\exists^{1}), \qquad \frac{\dots, \Gamma, F(S), \dots for \ all \ S, \ lev(S) < \alpha}{\Gamma, (\forall X^{\alpha}) F(X^{\alpha})} \quad (\forall^{1})$$

VI. Cut Rule:

$$\frac{\Gamma, F}{\Gamma} \frac{\Gamma, \neg F}{\Gamma} \quad (cut)$$

Definition 5.2.4 Inductive definition of RA* $\mid \frac{\alpha}{\rho} \mid F$

- 1. If F is an axiom of the system RA^* then $RA^* \vdash^{\alpha}_{\rho} F$ holds for all ordinals α and ρ .
- 2. If $\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha_i} F_i$ and $\alpha_i < \alpha$ for every premise F_i of an inference or a cut of rank $< \rho$ then $\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha} F$ holds for the conclusion F of that inference.

As an immediate consequence we obtain the following Lemmata by an easy transfinite induction on the length α of the derivation.

Corollary 5.2.5

If
$$RA^* \mid_{\alpha}^{\alpha} \Gamma$$
, $\alpha \leq \beta$ and $\rho \leq \sigma$, then $RA^* \mid_{\sigma}^{\beta} \Gamma$ also holds.

Corollary 5.2.6

$$\mathit{If}\ \mathsf{RA}^* \vdash^{\alpha}_{\overline{\rho}} \triangle \ \mathit{and}\ \triangle \subset \Gamma, \ \mathit{then}\ \mathsf{RA}^* \vdash^{\alpha}_{\overline{\rho}} \Gamma.$$

A formula F is said to be deducible in RA^* with order α and rank ρ if $\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha} F$ holds. Thus α is an upper bound for the orders of the inference which occur in the deduction of F while ρ says that every cut which occurs in the deduction of F has rank $< \rho$. If $\mathsf{RA}^* \mid_{\overline{0}}^{\alpha} F$ holds then the formula F has a cut-free deduction

with order α .

Further we also introduce the following notation. We write $\mathsf{RA}^* \models^{<\alpha}_{\overline{\rho}} \Gamma$ if there exists an $\alpha_0 < \alpha$ such that $\mathsf{RA}^* \models^{\alpha_0}_{\overline{\rho}} \Gamma$, and analogously $\mathsf{RA}^* \models^{\alpha}_{<\overline{\rho}} \Gamma$ if there exists a $\rho_0 < \rho$ such that $\mathsf{RA}^* \models^{\alpha}_{\overline{\rho_0}} \Gamma$.

In addition we have the following Lemmata for all ordinals α and ρ :

Lemma 5.2.7

$$\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha} A(\overline{n}) \iff \mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha} A(t) \quad \text{for all number terms } t \text{ with value } n$$

Lemma 5.2.8

$$\mathsf{RA}^* \vdash^{\alpha}_{\rho} \Gamma, (\forall x) A(x) \implies \mathsf{RA}^* \vdash^{\alpha}_{\rho} \Gamma, A(t) \quad \text{for all number terms } t$$

Lemma 5.2.9

$$\mathsf{RA}^* \vdash^{\alpha}_{\rho} \Gamma, A \wedge B \qquad \Longrightarrow \qquad \mathsf{RA}^* \vdash^{\alpha}_{\rho} \Gamma, A \quad and \quad \mathsf{RA}^* \vdash^{\alpha}_{\rho} \Gamma, B$$

PROOF: The proof of these Lemmata is an easy transfinite induction on the length α of the derivation in RA*.

Lemma 5.2.10

$$\mathsf{RA}^* \vdash^{\alpha}_{\overline{\rho}} \Gamma, A \lor B \qquad \Longrightarrow \qquad \mathsf{RA}^* \vdash^{\alpha}_{\overline{\rho}} \Gamma, A, B$$

PROOF: The proof is by transfinite induction on α .

- If $A \vee B$ is not the main formula of the last inference, then either Γ is an axiom and so is Γ , A, B or we have the premises $\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha_i} \Gamma_i$, $A \vee B$. But then we have $\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha_i} \Gamma_i$, A, B by the induction hypothesis and obtain $\mathsf{RA}^* \mid_{\overline{\rho}}^{\alpha} \Gamma$, A, B by the same inference.
- If $A \vee B$ is the main formula of the last inference, then it is an (\vee)-inference whose premise is $\mathsf{RA}^* \models^{\alpha_0}_{\overline{\rho}} \Gamma, A \vee B, A$ or $\mathsf{RA}^* \models^{\alpha_0}_{\overline{\rho}} \Gamma, A$ from which we obtain by Corollary 5.2.6 also $\mathsf{RA}^* \models^{\alpha_0}_{\overline{\rho}} \Gamma, A \vee B, A$. By the induction hypothesis it follows $\mathsf{RA}^* \models^{\alpha_0}_{\overline{\rho}} \Gamma, A, B, A$ and by Corollary 5.2.5 $\mathsf{RA}^* \models^{\alpha}_{\overline{\rho}} \Gamma, A, B$, since the set $\{A, B, A\}$ and $\{A, B\}$ are equal.

Lemma 5.2.11 If A_0 and A_1 are two numerically equivalent \mathcal{L}^* -formulas with rank α , we have

$$\mathsf{RA}^* \mid_{0}^{\alpha \cdot 2} \neg A_0, A_1$$

Proof:

We prove the claim by induction on the rank of A_0 , resp. A_1 .

$$rk(A_0) = 0$$
:

Then the set $\{\neg A_0, A_1\}$ clearly is an axiom.

$$rk(A_0) > 0$$
:

 A_0 is a complex formula, then the claim follows immediately from the induction hypothesis.

- A_0 is of the form $s \in U^{\alpha}$, then clearly A_1 is of the form $t \in U^{\alpha}$ and hence the set $\{s \in U^{\alpha}, t \notin U^{\alpha}\}$ is an Axiom (Ax2).
- A_0 is of the form $B_0 \vee C_0$. Then we have by the induction hypothesis that

$$\mathsf{RA}^* \mid_{\frac{\alpha_0 \cdot 2}{0}}^{\alpha_0 \cdot 2} \neg B_0, B_1 \qquad \mathsf{RA}^* \mid_{\frac{\alpha_1 \cdot 2}{0}}^{\alpha_1 \cdot 2} \neg C_0, C_1$$

for $\alpha_0 = rk(B_0)$ and $\alpha_1 = rk(C_0)$ and where again B_0, B_1 and C_0, C_1 are numerically equivalent formulas.

With the $(\vee 1)$ and $(\vee 2)$ -inference we obtain

Because $\alpha_0 < \alpha, \alpha_1 < \alpha$ we have with an (\wedge)-inference

$$\mathsf{RA}^* \mid_{0}^{\alpha \cdot 2} \neg B_0 \wedge \neg C_0, B_1 \vee C_1$$

- The case that A_0 is of the form $B_0 \wedge C_0$ can be proven in the same way.
- If A_0 is of the form $(\exists x)B_0(x)$. Then we have by the induction hypothesis an $\alpha_0 = rk(B_0(s)) < \alpha$ such that

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2} \neg B_0(s), B_1(s)$$
 for all number terms s

where $B_0(s)$, $B_1(s)$ are numerically equivalent formulas.

With the (\forall^0) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2 + 1} (\forall x) \neg B_0(x), B_1(s)$$

and finally with an (\exists^0) -inference we have

$$\mathsf{RA}^* \mid_{0}^{\alpha \cdot 2} (\forall x) \neg B_0(x), (\exists x) B_1(x)$$

- For the case that A_0 is of the form $(\forall x)B_0(x)$ the proof is analogous.
- A_0 is of the form $(\exists X^{\gamma})B_0(X^{\gamma})$ then we have by the induction hypothesis that

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2} \neg B_0(S), B_1(S)$$
 for all set terms S of level $< \gamma$

with $\alpha_0 = rk(B_0(S)) < \alpha$ and where $B_0(S), B_1(S)$ are numerically equivalent formulas.

With the (\forall^1) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2 + 1} (\forall X^{\gamma}) \neg B_0(X^{\gamma}), B_1(S)$$

and finally with an (\exists^1) -inference we have

$$\mathsf{RA}^* \mid_{0}^{\alpha \cdot 2} (\forall X^\gamma) \neg B_0(X^\gamma), (\exists X^\gamma) B_1(X^\gamma)$$

- For the case that A_0 is of the form $(\forall X^{\gamma})B_0(X^{\gamma})$ the proof is analogous.
- A_0 is of the form $r \in \{x : F_0(x)\}$ then we obtain by the induction hypothesis an $\alpha_0 = rk(F_0(r)) < \alpha$ such that

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2} \neg F_0(r), F_1(s)$$
 for all terms r, s , which have the same value

where $F_0(r)$, $F_1(r)$ are numerically equivalent formulas. Together with $(\in 1)$ and $(\in 2)$ we obtain

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2 + 2} r \notin \{x : F_0(x)\}, s \in \{x : F_1(x)\}$$

• The case that A_0 is of the form $r \notin \{x : F_0(x)\}$ can be proven similarly.

Further we have that RA* proves the following equality lemma for arbitrary set terms.

Lemma 5.2.12 For S, T arbitrary set terms and $A_0(U^0)$ and $A_1(U^0)$ numerically equivalent formulas we have with $\alpha_0 = rk(A_0(S)), \alpha_1 = rk(A_1(T))$ that

$$\mathsf{RA}^* \mid ^{\max(\alpha_0,\alpha_1)\cdot 2+3}_{0} \neg (S=T), \neg A_0(S), A_1(T)$$

PROOF: We prove the claim by the complexity of the formula $A_0(U^0)$.

- If $A_0(U^0)$ is of the form $R(s_1, \ldots, s_n)$ then $A_1(T)$ is also of the form $R(t_1, \ldots, t_n)$ where s_i has the same value as t_i for all $i \in \{1, 2, \ldots, n\}$. Then clearly the set $\{\neg (S = T), \neg R(s_1, \ldots, s_n), R(t_1, \ldots, t_n)\}$ is an Axiom (Ax1) of RA^* .
- If $A_0(U^0)$ is of the form $s \in U^0$, then $A_1(T)$ is of the form $t \in T$, where s, t have the same value and we have to prove that

$$\mathsf{RA}^* \mid_{0}^{\max(\alpha_0,\alpha_1)\cdot 2+3} \neg (S=T), s \notin S, t \in T$$

We obtain from Lemma 5.2.11 that

$$\mathsf{RA}^* \mid_{0}^{\alpha_0 \cdot 2} s \notin S, t \in T, t \in S$$

$$\mathsf{RA}^* \mid_{0}^{\alpha_1 \cdot 2} s \notin S, t \in T, t \notin T$$

where again s and t have the same value.

By the (\land) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\max(\alpha_0,\alpha_1)\cdot 2+1} s \notin S, t \in T, t \in S \land t \notin T$$

and therefore by the $(\vee 1)$ -inference

$$\mathsf{RA}^* \mid_{0}^{\max(\alpha_0,\alpha_1)\cdot 2+2} s \notin S, t \in T, (t \in S \land t \notin T) \lor (t \notin S \land t \in T)$$

This is

$$\mathsf{RA}^* \mid_{0}^{\max(\alpha_0,\alpha_1)\cdot 2+2} s \notin S, t \in T, \neg(t \in S \leftrightarrow t \in T)$$

And finally by the (\exists^0) -rule

$$\mathsf{RA}^* \mid_{0}^{\max(\alpha_0,\alpha_1)\cdot 2+3} s \not\in S, t \in T, \neg(\forall x)(x \in S \leftrightarrow x \in T)$$

• If $A_0(U^0)$ is of the form $s \in \{x : B_0(x, U^0)\}$, then $A_1(T)$ is of the form $t \in \{x : B_1(x, T)\}$, where $B_0(0, U^0)$ and $B_1(0, U^0)$ are numerically equivalent formulas and we obtain by the induction hypothesis $\beta_0 = rk(B_0(0, S)) < \alpha_0$ and $\beta_1 = rk(B_1(0, T)) < \alpha_1$ such that

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+3} \neg (S=T), \neg B_0(s,S), B_1(t,T)$$

where s, t have the same value. Together with $(\in 1)$ and $(\in 2)$ we obtain

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+5} \neg (S=T), s \notin \{x : B_0(x,S)\}, t \in \{x : B_1(x,T)\}$$

• If $A_0(U^0)$ is of the form $B_0(U^0) \vee C_0(U^0)$, then $A_1(T)$ is of the form $B_1(T) \vee C_1(T)$, where again $B_0(U^0)$, $B_1(U^0)$ and $C_0(U^0)$, $C_1(U^0)$ are numerically equivalent formulas. By the induction hypothesis we obtain

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1) \cdot 2 + 3} \neg (S = T), \neg B_0(S), B_1(T)$$

$$\mathsf{RA}^* \mid_{0}^{\max(\gamma_0, \gamma_1) \cdot 2 + 3} \neg (S = T), \neg C_0(S), C_1(T)$$

with $\beta_0 = rk(B_0(S)) < \alpha_0, \gamma_0 = rk(C_0(S)) < \alpha_0, \beta_1 = rk(B_1(T)) < \alpha_1$ and $\gamma_1 = rk(C_1(T)) < \alpha_1$.

With the $(\vee 1)$ and $(\vee 2)$ -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+4} \neg (S=T), \neg B_0(S), B_1(T) \lor C_1(T)$$

$$\mathsf{RA}^* \mid_{0}^{\max(\gamma_0, \gamma_1) \cdot 2 + 4} \neg (S = T), \neg C_0(S), B_1(T) \lor C_1(T)$$

and have by the (\land) -inference

$$\mathsf{RA}^* \mid ^{\max(\beta_0,\beta_1,\gamma_0,\gamma_1) \cdot 2 + 5}_{0} \neg (S = T), \neg B_0(S) \wedge \neg C_0(S), B_1(T) \vee C_1(T)$$

- The case that $A_0(U^0)$ is of the form $B_0(U^0) \wedge C_0(U^0)$ can be proven in the same way.
- If $A_0(U^0)$ is of the form $(\exists x)B_0(x,U^0)$, then $A_1(T)$ is of the form $(\exists x)B_1(x,T)$, where $B_0(0,U^0)$, $B_1(0,U^0)$ are numerically equivalent formulas. Then we have by the induction hypothesis $\beta_0 = rk(B_0(0,S)) < \alpha_0$ and $\beta_1 = rk(B_1(0,T)) < \alpha_1$ such that

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+3} \neg (S=T), \neg B_0(s,S), B_1(s,T)$$
 for all number terms s

With the (\exists^0) -inference we have

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+4} \neg (S=T), \neg B_0(s,S), (\exists x) B_1(x,T)$$

and finally with the (\forall^0) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+5} \neg (S=T), (\forall x) \neg B_0(x,S), (\exists x) B_1(x,T)$$

• The case that $A_0(U^0)$ is of the form $(\forall x)B_0(x,U^0)$ can be proven similarly.

• If $A_0(U^0)$ is of the form $(\exists X^{\gamma})B_0(X^{\gamma}, U^0)$, then $A_1(T)$ is of the form $(\exists X^{\gamma})B_1(X^{\gamma}, T)$, where $B_0(V^0, U^0)$, $B_1(V^0, U^0)$ are numerically equivalent formulas. Then we have by the induction hypothesis $\beta_0 = rk(B_0(R, S)) < \alpha_0$ and $\beta_1 = rk(B_1(R, T)) < \alpha_1$ such that for all set terms R of level $< \gamma$

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+3} \neg (S=T), \neg B_0(R,S), B_1(R,T)$$

With the (\exists^1) -inference we have

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1) \cdot 2 + 4} \neg (S = T), \neg B_0(R,S), (\exists X^{\gamma}) B_1(X^{\gamma},T)$$

and finally with the (\forall^1) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\max(\beta_0,\beta_1)\cdot 2+5} \neg (S=T), (\forall X^\gamma) \neg B_0(X^\gamma,S), (\exists X^\gamma) B_1(X^\gamma,T)$$

Further standard proof-theoretic techniques can be applied for the system RA* to obtain the following cut elimination Theorems, cf. Pohlers [6] Theorem 12.3 and Theorem 18.4 or Schütte [9] Theorem 22.7 and Theorem 22.8

Theorem 5.2.13

$$\mathsf{RA}^* \mid_{\rho+1}^{\alpha} \Gamma \qquad \Longrightarrow \qquad \mathsf{RA}^* \mid_{\rho}^{2^{\alpha}} \Gamma$$

Theorem 5.2.14

$$\mathsf{RA}^* \mid_{\beta + \omega^{\rho}}^{\alpha} \Gamma \qquad \Longrightarrow \qquad \mathsf{RA}^* \mid_{\beta}^{\varphi \rho \alpha} \Gamma$$

5.2.2 Embedding of ACA⁺ into RA^{*}

In the next step we embed ACA⁺ into RA*. For that we have to make the following definition:

Definition 5.2.15 An \mathcal{L}^* -formula F^{α} is an α -instance of an \mathcal{L}_2 -formula F if F^{α} is obtained from F by

- 1. replacing all free number variables by arbitrary closed number terms.
- 2. free set variables are replaced by arbitrary set terms of \mathcal{L}^* with level $< \alpha$.
- 3. bound set variables get the superscript α .

Notice that if F^{α} is an α -instance of an \mathcal{L}_2 -formula, then $rk(F^{\alpha}) < \omega(\alpha + 1)$.

We want to prove that if $\mathsf{ACA}^+ \vdash F$, and F^ω is an ω -instance of F then there exists a natural number n such that $\mathsf{RA}^* \mid_{\frac{\omega^2 + n}{2}}^{\frac{<\varepsilon_0}{p^2 + n}} F^\omega$.

Lemma 5.2.16 Let $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ be one of the number-theoretic or logical axioms of ACA. Then we have for all α -instances A^{α} of A that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+3} A^{\alpha}(r_1,\ldots,r_n,S_1^{\gamma_1},\ldots,S_m^{\gamma_m})$$

(with $\gamma_i < \alpha$).

Proof:

- If $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is one of the number-theoretic axioms or the equality axiom u = u, then $A^{\alpha}(r_1, \ldots, r_n, S_1^{\gamma_1}, \ldots, S_m^{\gamma_m})$ is an axiom (Ax1) of RA^* .
- If $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is of the form $B(t) \to (\exists x) B(x)$ then we have by Lemma 5.2.11 that $\mathsf{RA}^* \models^{\omega(\alpha+1)\cdot 2}_{0} B^{\alpha}(r), \neg B^{\alpha}(r)$. Applying first the (\exists^0) -inference $\mathsf{RA}^* \models^{\omega(\alpha+1)\cdot 2+1}_{0} (\exists x) B^{\alpha}(x), \neg B^{\alpha}(r)$ and then the (\lor) -inference twice we obtain $\mathsf{RA}^* \models^{\omega(\alpha+1)\cdot 2+3}_{0} B^{\alpha}(r) \to (\exists x) B^{\alpha}(x)$.
- If $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is of the form $(\forall x)B(x) \to B(t)$ then we have by Lemma 5.2.11 that $\mathsf{RA}^* \mid \frac{\omega(\alpha+1)\cdot 2}{0} B^{\alpha}(r), \neg B^{\alpha}(r)$. Applying first the (\exists^0) -inference $\mathsf{RA}^* \mid \frac{\omega(\alpha+1)\cdot 2+1}{0} (\exists x) \neg B^{\alpha}(x), B^{\alpha}(r)$ and then the (\lor) -inference we obtain $\mathsf{RA}^* \mid \frac{\omega(\alpha+1)\cdot 2+3}{0} (\forall x)B^{\alpha}(x) \to B^{\alpha}(r)$.
- If $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is of the form $B(U) \to (\exists X)B(X)$ then we have by Lemma 5.2.11 that $\mathsf{RA}^* \models \frac{\omega(\alpha+1)\cdot 2}{0} B^{\alpha}(S^{\gamma}), \neg B^{\alpha}(S^{\gamma})$ for arbitrary set terms S with level $\gamma < \alpha$.

 Applying the (\exists^1) -inference $\mathsf{RA}^* \models \frac{\omega(\alpha+1)\cdot 2+1}{0} (\exists X^{\alpha})B^{\alpha}(X^{\alpha}), \neg B^{\alpha}(S^{\gamma})$ and then the (\lor) -inference twice we obtain $\mathsf{RA}^* \models \frac{\omega(\alpha+1)\cdot 2+3}{0} B^{\alpha}(S^{\gamma}) \to (\exists X^{\alpha})B^{\alpha}(X^{\alpha})$.
- If $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is of the form $(\forall X)B(X) \to B(U)$ then we have by Lemma 5.2.11 that $\mathsf{RA}^* \models^{\omega(\alpha+1)\cdot 2}_0 B^{\alpha}(S^{\gamma}), \neg B^{\alpha}(S^{\gamma})$ for arbitrary set terms S with $\gamma < \alpha$.

 Applying the (\exists^1) -inference $\mathsf{RA}^* \models^{\omega(\alpha+1)\cdot 2+1}_0 (\exists X^{\alpha}) \neg B^{\alpha}(X^{\alpha}), B^{\alpha}(S^{\gamma})$ and then the (\lor) -inference we obtain $\mathsf{RA}^* \models^{\omega(\alpha+1)\cdot 2+3}_0 (\forall X^{\alpha})B^{\alpha}(X^{\alpha}) \to B^{\alpha}(S^{\gamma})$.

- $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is of the form $s(\vec{u}) = t(\vec{u}) \to (B(\vec{u}, s(\vec{u})) \to B(\vec{u}, t(\vec{u})))$ with $\vec{u} = u_1, \ldots, u_n$. We denote r_1, \ldots, r_n as \vec{r} and have to distinguish two cases.
 - 1. If $s(\vec{r})$ and $t(\vec{r})$ have not the same value. Then the formula $s(\vec{r}) \neq t(\vec{r})$ is an axiom (Ax1). Therefore we have that

$$\mathsf{RA}^* \mid_{0}^{0} s(\vec{r}) \neq t(\vec{r}), \neg B^{\alpha}(\vec{r}, s(\vec{r})), B^{\alpha}(\vec{r}, t(\vec{r}))$$

Applying four times the (\vee) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{4} s(\vec{r}) = t(\vec{r}) \to (B^{\alpha}(\vec{r}, s(\vec{r})) \to B^{\alpha}(\vec{r}, t(\vec{r})))$$

2. $s(\vec{r})$ and $t(\vec{r})$ have the same value. Hence

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2} \neg B^{\alpha}(\vec{r},s(\vec{r})), B^{\alpha}(\vec{r},t(\vec{r}))$$

by Lemma 5.2.11. With applying the (\vee)-inference three times we obtain RA* $\mid \frac{\omega(\alpha+1)\cdot 2+3}{0} s(\vec{r}) = t(\vec{r}) \to (B^{\alpha}(\vec{r},s(\vec{r})) \to B^{\alpha}(\vec{r},t(\vec{r})))$.

Therewith the proof of the Lemma is finished.

So now let us turn to the full second order induction scheme (IND).

Lemma 5.2.17 If $A^{\alpha}(0)$ is an \mathcal{L}^* -formula of level α , then we have for all natural numbers n that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2+2n} \neg A^{\alpha}(\overline{0}), \neg(\forall x)(A^{\alpha}(x) \to A^{\alpha}(x+1)), A^{\alpha}(\overline{n})$$

PROOF: We prove the claim with induction on n.

n = 0:

Holds obviously by Lemma 5.2.11.

 $n \rightarrow n+1$:

From the induction hypothesis we have

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2+2n} \neg A^{\alpha}(\overline{0}), \neg(\forall x)(A^{\alpha}(x) \to A^{\alpha}(x+1)), A^{\alpha}(\overline{n})$$

Moreover, we have again from Lemma 5.2.11 that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2} \neg A^{\alpha}(\overline{n+1}), A^{\alpha}(\overline{n+1})$$

By the (\land) -inference we obtain

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+2n+1} \neg A^\alpha(\overline{0}), \neg(\forall x)(A^\alpha(x) \to A^\alpha(x+1)), A^\alpha(\overline{n}) \land \neg A^\alpha(\overline{n+1}), A^\alpha(\overline{n+1}) \land \neg A^\alpha(\overline{n+1}$$

and then by applying the (\exists^0) -inference

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2+2n+2} \neg A^{\alpha}(\overline{0}), \neg(\forall x)(A^{\alpha}(x) \to A^{\alpha}(x+1)), A^{\alpha}(\overline{n+1})$$

Lemma 5.2.18 If F is an instance of the full second order induction scheme $A(0) \wedge (\forall x)(A(x) \rightarrow A(x+1)) \rightarrow (\forall x)A(x)$, and F^{α} is an α -instance of F then

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2+\omega+4} A^{\alpha}(\overline{0}) \wedge (\forall x)(A^{\alpha}(x) \to A^{\alpha}(x+1)) \to (\forall x)A^{\alpha}(x)$$

PROOF: By 5.2.17 we have

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2+2n} \neg A^{\alpha}(\overline{0}), \neg(\forall x)(A^{\alpha}(x) \to A^{\alpha}(x+1)), A^{\alpha}(\overline{n})$$

for all natural numbers n. With Lemma 5.2.7 and the (\forall^0) -inference of RA^* we obtain

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2+\omega} \neg A^{\alpha}(\overline{0}), \neg(\forall x)(A^{\alpha}(x) \to A^{\alpha}(x+1)), (\forall x)A^{\alpha}(x)$$

and by applying the (\vee) -inference four times we obtain the claim.

Now let us turn to the arithmetic comprehension scheme.

Lemma 5.2.19 If F is an instance of the arithmetic comprehension scheme $(\exists X)(\forall z)(z \in X \leftrightarrow A(z))$ and F^{α} is an α -instance of F (with $\alpha \neq 0$), then

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2} (\exists X^\alpha)(\forall z)(z \in X^\alpha \leftrightarrow A^\alpha(z))$$

PROOF: Notice that the level $A^{\alpha}(s)$ is $\alpha_0 < \alpha$ by definition, since A^{α} does not comprise any bound set variables. By Lemma 5.2.11 we have that for all number terms s that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha_0+1)\cdot 2} A^{\alpha}(s), \neg A^{\alpha}(s)$$

With $(\in 1)$ and $(\in 2)$ respectively we conclude

$$\mathsf{RA}^* \mid ^{\frac{\omega(\alpha_0+1)\cdot 2+1}{0}} A^\alpha(s), s \not \in \{x: A^\alpha(x)\} \qquad \mathsf{RA}^* \mid ^{\frac{\omega(\alpha_0+1)\cdot 2+1}{0}} \neg A^\alpha(s), s \in \{x: A^\alpha(x)\}$$

Now applying the (\vee) -inference twice and then the (\wedge) -inference we get

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha_0+1)\cdot 2+4} s \in \{x : A^{\alpha}(x)\} \leftrightarrow A^{\alpha}(s)$$

for all for all number terms s. Therefore we obtain by (\forall^0)

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha_0+1)\cdot 2+5} (\forall z)(z \in \{x : A^{\alpha}(x)\} \leftrightarrow A^{\alpha}(z))$$

Because $\{x: A^{\alpha}(x)\}$ is a set term of level $\alpha_0 < \alpha$, we obviously have by (\exists^1)

and since $\omega(\alpha_0 + 1) \cdot 2 + 6 < \omega(\alpha + 1) \cdot 2$ the claim follows easily.

Theorem 5.2.20 For all \mathcal{L}_2 -formulas $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ with

$$ACA \vdash A[u_1, \ldots, u_n, U_1, \ldots, U_m]$$

there exists an ordinal $\beta < \omega(\alpha+1) \cdot 2 + \omega \cdot 2$ and a natural number m such that for all α -instances of A

$$\mathsf{RA}^* \mid_{\frac{\beta}{\omega \cdot \alpha + m}}^{\beta} A^{\alpha}(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$

(with $\gamma_i < \alpha$).

PROOF: Proof by induction on the length n of the derivation of $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ in ACA.

n = 0:

 $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is an axiom of ACA. By Lemma 5.2.16, Lemma 5.2.18 and Lemma 5.2.19 we are done.

n > 0:

We will concentrate on two cases.

• First if the last inference was Modus Ponens, then we have $n_0 < n, n_1 < n$ such that

$$\mathsf{ACA} \vdash^{n_0} B[v_1,\ldots,v_p,V_1,\ldots,V_q]$$

$$\mathsf{ACA} \vdash^{n_1} B[v_1,\ldots,v_p,V_1,\ldots,V_q] \to A[u_1,\ldots,u_n,U_1,\ldots,U_m]$$

By the induction hypothesis we obtain ordinals $\beta_0 < \omega(\alpha + 1) \cdot 2 + \omega \cdot 2$, $\beta_1 < \omega(\alpha + 1) \cdot 2 + \omega \cdot 2$ and natural numbers m_0 and m_1 such that

$$\mathsf{RA}^* \mid_{\frac{\beta_0}{\omega \cdot \alpha + m_0}} B^{\alpha}(s_1, \dots, s_p, T_1^{\delta_1}, \dots, T_q^{\delta_q}) \tag{12}$$

$$\mathsf{RA}^* \mid_{\frac{\beta_1}{\omega \cdot \alpha + m_1}}^{\beta_1} B^{\alpha}(s_1, \dots, s_p, T_1^{\delta_1}, \dots, T_q^{\delta_q}) \to A^{\alpha}(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$
 (13)

(with $\gamma_i < \alpha, \delta_i < \alpha$).

By Lemma 5.2.10 it follows from (13) that

$$\mathsf{RA}^* \models^{\beta_1}_{\omega \cdot \alpha + m_1} \neg B^{\alpha}(s_1, \dots, s_p, T_1^{\delta_1}, \dots, T_q^{\delta_q}), A^{\alpha}(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$

and finally we obtain with (12) by applying the (cut)-inference, since $max(\omega \cdot \alpha + m_1, \omega \cdot \alpha + m_2, rk(B^{\alpha}(\vec{s}, \vec{R}))) < \omega(\alpha + 1)$, a natural number m such that

$$\mathsf{RA}^* \mid_{\frac{\omega \cdot \alpha + m}{\omega \cdot \alpha + m}}^{\max(\beta_0, \beta_1) + 1} A^{\alpha}(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$

with $max(\beta_0, \beta_1) + 1 < \omega(\alpha + 1) \cdot 2 + \omega \cdot 2$.

• If the last inference was an universal number quantification then $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is of the form $C(u_1, \ldots, u_n, U_1, \ldots, U_m) \to (\forall x) B(x, u_1, \ldots, u_n, U_1, \ldots, U_m)$, and we have an $n_0 < n$ such that

$$ACA \vdash^{n_0} C(u_1, \dots, u_n, U_1, \dots, U_m) \to B(u, u_1, \dots, u_n, U_1, \dots, U_m)$$

where u is pairwise disjoint from all u_i with $i \in \{1, ..., n\}$, and obtain by induction hypothesis an ordinal $\beta_0 < \omega(\alpha+1) \cdot 2 + \omega \cdot 2$ and a natural number m such that for number terms t

$$\mathsf{RA}^* \mid_{\underline{\omega}:\underline{\alpha}+\underline{m}}^{\beta_0} C(r_1,\ldots,r_n,S_1^{\gamma_1},\ldots,S_m^{\gamma_m}) \to B^{\alpha}(t,r_1,\ldots,r_n,S_1^{\gamma_1},\ldots,S_m^{\gamma_m})$$

(with $\gamma_i < \alpha$).

By Lemma 5.2.10 we obtain

$$\mathsf{RA}^* \mid_{\underline{\omega} \cdot \alpha + m}^{\beta_0} \neg C(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m}), B^{\alpha}(t, r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$

for all number terms t. By applying the (\forall^0) -inference of RA* we conclude

$$\mathsf{RA}^* \mid_{\underline{\omega \cdot \alpha + m}}^{\beta_0 + 1} \quad \neg C(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m}), \\ (\forall x) B^{\alpha}(x, r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$

and finally by applying the (\vee) -inference twice

$$\mathsf{RA}^* \mid_{\omega \cdot \alpha + m}^{\beta_0 + 3} \quad C(r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m}) \to (\forall x) B^{\alpha}(x, r_1, \dots, r_n, S_1^{\gamma_1}, \dots, S_m^{\gamma_m})$$

with
$$\beta_0 + 1 < \omega(\alpha + 1) \cdot 2 + \omega \cdot 2$$
.

If we restrict ourselves in Theorem 5.2.20 to ω -instances we immediately obtain the following corollary.

Corollary 5.2.21 For all \mathcal{L}_2 -formulas $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ with

$$ACA \vdash A[u_1, \ldots, u_n, U_1, \ldots, U_m]$$

there exists, if A^{ω} is an ω -instance of A, an ordinal $\alpha < \omega^2 \cdot 2 + \omega \cdot 4$ and and a natural number m such that

$$\mathsf{RA}^* \mid_{\omega^2 + m}^{\alpha} A^{\omega}(r_1, \dots, r_n, S_1^{l_1}, \dots, S_m^{l_m})$$

(with $l_i < \omega$).

Finally let us turn to $(\omega - \mathsf{Jump})$. Notice that we showed in Lemma 3.1.1 that the Turing jump hierarchy is unique, provable in ACA_0 . Therefore we know by Corollary 5.2.21, this is also provable in RA^* for every ω -instance, where the length of the derivation is restricted by $\omega^2 \cdot 2 + \omega \cdot 4$ and every formula has a rank $< \omega^2 + \omega$.

We make the following definitions:

Definition 5.2.22 1.
$$\mathcal{H}(U, V, a) := (V)_0 = U \wedge (\forall x < a)((V)_{x+1} = TJ((V)_x))$$

- 2. $(U)^c := \{\langle a, b \rangle : b < c \land \langle a, b \rangle \in U\}$
- 3. For all natural numbers n, we define set terms $TJ^n(S)$ inductively by $TJ^0(S) := S$ and $TJ^{n+1}(S) := \{\langle e,b \rangle : (\exists z)T^{TJ^n(S)}(e,b,z)\},$ denoted by $TJ(TJ^n(S))$, where T^U is Kleene's T-predicate, relativized to U.

4. For all natural numbers n we define set terms \mathcal{R}_n^S as $\mathcal{R}_n^S := \{ \langle a, b \rangle : \bigvee_{i=0}^n b = i \land a \in TJ^i(S) \}$

Notice that $t \in TJ^n(S)$ is a finite formula of \mathcal{L}^* and \mathcal{R}_n^S is a finite set term of \mathcal{L}^* for all natural numbers n with $\mathbf{lev}(\mathcal{R}_{\mathbf{n}}^{\mathbf{S}}) = \mathbf{lev}(\mathbf{S})$.

First we prove the following Lemma.

Lemma 5.2.23 For all natural numbers n, we have that

$$\mathsf{RA}^* \! \mid \! ^{\frac{\omega(\alpha+1) \cdot 2 + n \cdot 10 + 11}{<\omega(\alpha+1)}} \mathcal{H}(S^\alpha, \mathcal{R}_n^{S^\alpha}, \overline{n})$$

PROOF: We show that with an induction on n.

n = 0:

We have by the definition of \mathcal{H} that

$$\mathcal{H}(S^{\alpha}, \mathcal{R}_0^{S^{\alpha}}, \overline{0}) := (\mathcal{R}_0^{S^{\alpha}})_0 = S^{\alpha} \wedge (\forall x < \overline{0})((\mathcal{R}_0^{S^{\alpha}})_{x+1} = TJ((\mathcal{R}_0^{S^{\alpha}})_x))$$

Since $(\mathcal{R}_0^{S^{\alpha}})_0 = S^{\alpha}$ is an abbreviation and together with the definition of \mathcal{R}_n^S this is

$$(\forall x)(\langle x,0\rangle \in \{y: (\exists z_1)(\exists z_2)(y=\langle z_1,z_2\rangle \land z_2=0 \land z_1 \in S^{\alpha})\} \leftrightarrow x \in S^{\alpha}) \land (\forall x < \overline{0})((\mathcal{R}_0^{S^{\alpha}})_{x+1} = TJ((\mathcal{R}_0^{S^{\alpha}})_x))$$

It is not difficult to show (though a little bit cumbersome) that this holds (for more details of this proof compare Appendix A1) for a cut-free deduction in RA*, where the length of the derivation is restricted by $\omega(\alpha+1)\cdot 2+10$.

 $n \rightarrow n+1$:

By the induction hypothesis we have that $\mathcal{H}(S^{\alpha}, \mathcal{R}_{n}^{S^{\alpha}}, \overline{n})$ holds. More formally

$$\mathsf{RA}^* \mid_{\frac{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 11}{<\omega(\alpha+1)}}^{\underline{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 11}} (\mathcal{R}_n^{S^\alpha})_0 = S^\alpha \wedge (\forall x < \overline{n}) ((\mathcal{R}_n^{S^\alpha})_{x+1} = TJ((\mathcal{R}_n^{S^\alpha})_x))$$

Together with Lemma 5.2.9 we obtain that

$$\mathsf{RA}^* \mid_{\substack{\omega(\alpha+1)\cdot 2+n\cdot 10+11\\ < \omega(\alpha+1)}}^{\underline{\omega(\alpha+1)\cdot 2+n\cdot 10+11}} (\mathcal{R}_n^{S^{\alpha}})_0 = S^{\alpha}$$

$$\mathsf{RA}^* \mid_{\substack{\omega(\alpha+1)\cdot 2+n\cdot 10+11\\ < \omega(\alpha+1)}}^{\underline{\omega(\alpha+1)\cdot 2+n\cdot 10+11}} (\forall x < \overline{n})((\mathcal{R}_n^{S^{\alpha}})_{x+1} = TJ((\mathcal{R}_n^{S^{\alpha}})_x))$$

$$\tag{15}$$

$$\mathsf{RA}^* \mid_{\frac{\langle \omega(\alpha+1)\cdot 2+n\cdot 10+11}{\langle \omega(\alpha+1) \rangle}} (\forall x < \overline{n})((\mathcal{R}_n^{S^{\alpha}})_{x+1} = TJ((\mathcal{R}_n^{S^{\alpha}})_x))$$
 (15)

From (15) we obtain with Lemma 5.2.8 and Lemma 5.2.10 for all natural numbers i

$$\mathsf{RA}^* \mid_{\frac{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 11}{<\omega(\alpha+1)}} \neg (\bar{i} < \bar{n}), ((\mathcal{R}_n^{S^{\alpha}})_{\bar{i}+1} = TJ((\mathcal{R}_n^{S^{\alpha}})_{\bar{i}}))$$

$$\tag{16}$$

In a first step we want to prove that this also hold for $\mathcal{R}_{n+1}^{S^{\alpha}}$ instead of $\mathcal{R}_{n}^{S^{\alpha}}$. We obtain the desired result by making use several times of Lemma 5.2.12. First we have to distinguish two cases depending on the value of i.

1. By the definition of $\mathcal{R}_n^{S^{\alpha}}$ we have that for all natural numbers i < n

(for more details compare also Appendix A2).

2. Further for all natural numbers $i \geq n$ we have

$$\mathsf{RA}^* \mid_{\overline{0}}^{0} \neg (\overline{i} < \overline{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}+1} = (\mathcal{R}_{n}^{S^{\alpha}})_{\overline{i}+1}$$

Therefore we have for all natural numbers i that

$$\mathsf{RA}^* \mid_{\substack{\omega(\alpha+1)\cdot 2+12\\0}}^{\underline{\omega(\alpha+1)\cdot 2+12}} \neg(\overline{i} < \overline{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}+1} = (\mathcal{R}_n^{S^{\alpha}})_{\overline{i}+1}$$
(17)

Completely analogously we obtain also for all natural numbers i

$$\mathsf{RA}^* \mid_{\substack{\omega(\alpha+1)\cdot 2+12\\0}}^{\underline{\omega(\alpha+1)\cdot 2+12}} \neg(\overline{i} < \overline{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}} = (\mathcal{R}_n^{S^{\alpha}})_{\overline{i}}$$
 (18)

By Lemma 5.2.12 and with $A(U^{\alpha}) := ((\mathcal{R}_n^{S^{\alpha}})_{\bar{i}+1} = TJ(U^{\alpha}))$ we have for all natural numbers i

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+3} \neg ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}} = (\mathcal{R}_{n}^{S^{\alpha}})_{\bar{i}}), \neg A((\mathcal{R}_{n}^{S^{\alpha}})_{\bar{i}}), A((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}})$$
(19)

Analogously by Lemma 5.2.12 and with $B(U^{\alpha}) := ((U^{\alpha} = TJ(\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}}))$ we have for all natural numbers i

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+3} \neg ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1} = (\mathcal{R}_{n}^{S^{\alpha}})_{\bar{i}+1}), \neg B((\mathcal{R}_{n}^{S^{\alpha}})_{\bar{i}+1}), B((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1})$$
(20)

We conclude from (16) and (19) by the (cut)-rule that

$$\mathsf{RA}^* \mid \frac{\omega(\alpha+1) \cdot 2 + n \cdot 10 + 12}{<\omega(\alpha+1)} \neg (\bar{i} < \overline{n}), \neg ((\mathcal{R}_{n+1}^{S^\alpha})_{\bar{i}} = (\mathcal{R}_n^{S^\alpha})_{\bar{i}}), A((\mathcal{R}_{n+1}^{S^\alpha})_{\bar{i}})$$

since $rk(A((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}})) < \omega(\alpha+1)$. By (18) we obtain with a cut for all natural numbers i

$$\mathsf{RA}^* \! \mid \! ^{\frac{\omega(\alpha+1)\cdot 2 + n \cdot 10 + 13}{<\omega(\alpha+1)}} \neg (\overline{i} < \overline{n}), A((\mathcal{R}_{n+1}^{S^\alpha})_{\overline{i}})$$

since $rk(\neg((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}} = (\mathcal{R}_{n}^{S^{\alpha}})_{\bar{i}})) < \omega(\alpha+1)$. With (20) we obtain by a cut that

$$\mathsf{RA}^* \mid_{\frac{-\omega(\alpha+1)\cdot 2 + n\cdot 10 + 14}{<\omega(\alpha+1)}}^{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 14} \neg (\bar{i} < \overline{n}), \neg ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1} = (\mathcal{R}_{n}^{S^{\alpha}})_{\bar{i}+1}), B((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1})$$

since also $rk(B((\mathcal{R}_n^{S^{\alpha}})_{\bar{i}+1})) < \omega(\alpha+1)$ and with (17) and a cut

$$\mathsf{RA}^* \mid ^{\frac{\omega(\alpha+1) \cdot 2 + n \cdot 10 + 15}{<\omega(\alpha+1)}} \neg (\overline{i} < \overline{n}), B((\mathcal{R}^{S^\alpha}_{n+1})_{\overline{i}+1})$$

and that is for all natural numbers i

$$\mathsf{RA}^* \mid_{\frac{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 15}{<\omega(\alpha+1)}}^{\underline{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 15}} \neg (\overline{i} < \overline{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}+1} = TJ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}}) \tag{21}$$

In a next step we have to show that (21) also holds for i = n. We can prove that if i = n then (for more details compare Appendix A3 and A4).

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+10} (\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1} = TJ^{n+1}(S^{\alpha})$$
 (22)

and

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+10} (\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}} = TJ^n(S^{\alpha})$$
 (23)

Further we have to distinguish two cases depending on the value of i.

1. For i = n and Lemma 5.2.12 we have with $A(U^{\alpha}) := (\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1} = TJ(U^{\alpha})$ that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+3} \neg ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}} = TJ^n(S^{\alpha})), \neg (A(TJ^n(S^{\alpha}))), A((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}})$$

Using (22), (23), and the definition that $TJ^{n+1}(S^{\alpha}) = TJ(TJ^{n}(S^{\alpha}))$ we obtain with applying twice the (*cut*)-inference for i = n that

since the level of $\mathcal{R}_{n+1}^{S^{\alpha}}$ and $TJ^{n}(S^{\alpha})$ is α , and finally we have by Corollary 5.2.6 for i=n that

$$\mathsf{RA}^* \underset{<\omega(\alpha+1)}{\overset{\omega(\alpha+1)\cdot 2+12}{|---|}} \neg (\bar{i}=\overline{n}), (\mathcal{R}_{n+1}^{S^\alpha})_{\bar{i}+1} = TJ((\mathcal{R}_{n+1}^{S^\alpha})_{\bar{i}})$$

2. Further we also have for all $i \neq n$ that

$$\mathsf{RA}^* \mid_{\overline{0}}^{0} \neg (\overline{i} = \overline{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}+1} = TJ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}})$$

Therefore we have for all natural numbers i that

$$\mathsf{RA}^* \mid_{\frac{\omega(\alpha+1)\cdot 2+12}{<\omega(\alpha+1)}}^{\frac{\omega(\alpha+1)\cdot 2+12}{<\omega(\alpha+1)}} \neg (\bar{i}=\bar{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1} = TJ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}})$$
 (24)

From (21) and (24) we obtain by the (\land)-rule of inference for all natural numbers i that

$$\mathsf{RA}^* \mid_{\frac{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 16}{<\omega(\alpha+1)}}^{\underline{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 16}} \neg (\overline{i} = \overline{n}) \wedge \neg (\overline{i} < \overline{n}), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}+1} = TJ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}}) \tag{25}$$

With (Ax1) we obtain for all natural numbers i that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{0}} \neg (\overline{i} < \overline{n} + 1), (\overline{i} = \overline{n}), (\overline{i} < \overline{n})$$

and applying the (\vee) -inference twice we obtain

$$\mathsf{RA}^* \mid_{\overline{0}}^2 \neg (\overline{i} < \overline{n} + 1), (\overline{i} = \overline{n}) \lor (\overline{i} < \overline{n})$$

and obtain by Corollary 5.2.6 and by a cut with (25) that for all natural numbers i

$$\mathsf{RA}^* \mid_{\substack{\omega(\alpha+1) \cdot 2 + n \cdot 10 + 17 \\ < \omega(\alpha+1)}}^{\underline{\omega(\alpha+1) \cdot 2 + n \cdot 10 + 17}} \neg (\overline{i} < \overline{n} + 1), (\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i} + 1} = TJ((\mathcal{R}_{n+1}^{S^{\alpha}})_{\overline{i}})$$

and by applying once more the (\vee) -inference twice we conclude by Lemma 5.2.7 and the (\forall^0) -inference that

$$\mathsf{RA}^* \mid ^{\frac{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 20}{<\omega(\alpha+1)}} (\forall x)(x < \overline{n} + 1 \rightarrow (\mathcal{R}_{n+1}^{S^\alpha})_{\overline{i}+1} = TJ((\mathcal{R}_{n+1}^{S^\alpha})_{\overline{i}}))$$

and obtain together with (14) by applying the (\land) -inference

$$\mathsf{RA}^* \mid_{\frac{\omega(\alpha+1)\cdot 2 + n\cdot 10 + 21}{<\omega(\alpha+1)}} (\mathcal{R}_n^{S^\alpha})_0 = S^\alpha \wedge (\forall x) (x < \overline{n} + 1 \to (\mathcal{R}_{n+1}^{S^\alpha})_{x+1} = TJ((\mathcal{R}_{n+1}^{S^\alpha})_x))$$

and therefore the length of derivation is $\omega(\alpha+1)\cdot 2+(n+1)\cdot 10+11$. This finishes the induction step.

Lemma 5.2.24 RA* proves all ω -instances of the $(\omega - \mathsf{Jump})$:

$$\mathsf{RA}^* \mid_{\leq \omega^2}^{\omega^2 + 2} (\exists X^\omega) \mathcal{H}_\omega(S^l, X^\omega)$$

(with $l < \omega$).

PROOF: We define a set term T^{l+1} as

$$T^{l+1} := \{ \langle a, b \rangle : (\exists Z^{l+1}) (\mathcal{H}(S^l, Z^{l+1}, b) \land a \in (Z^{l+1})_b) \}$$

with $lev(T^{l+1}) = lev(Z^{l+1}) = l + 1 < \omega$.

We can prove that there exists $\beta_0 < \omega^2$ such that for all natural numbers n

$$\mathsf{RA}^* \mid_{<\omega^2}^{\beta_0} \mathcal{R}_n^{S^l} = (T^{l+1})^{\overline{n}} \tag{26}$$

(for more details compare Appendix A5).

By Lemma 5.2.12 we have that there exists $\beta_1 < \omega^2$ such that for all natural numbers n

$$\mathsf{RA}^* \!\mid_{\overline{0}}^{\beta_1} \neg (\mathcal{R}_n^{S^l} = (T^{l+1})^{\overline{n}}), \neg \mathcal{H}(S^l, \mathcal{R}_n^{S^l}, \overline{n}), \mathcal{H}(S^l, (T^{l+1})^{\overline{n}}, \overline{n})$$

since $lev(\mathcal{H}(S^l, \mathcal{R}_n^{S^l}, \overline{n})) < \omega$ and $lev(\mathcal{H}(S^l, (T^{l+1})^{\overline{n}}, \overline{n})) < \omega$. With (26) we obtain by a cut that

$$\mathsf{RA}^* \mid_{\frac{-\omega^2}{<\omega^2}}^{\frac{max(\beta_0,\beta_1)+1}{<\omega^2}} \neg \mathcal{H}(S^l,\mathcal{R}_n^{S^l},\overline{n}), \mathcal{H}(S^l,(T^{l+1})^{\overline{n}},\overline{n})$$

since $rk(\mathcal{R}_n^{S^l} = (T^{l+1})^{\overline{n}}) < \omega^2$.

By Lemma 5.2.23 (with $\alpha = l$) we conclude by applying the (cut)-inference and with $\delta(n) = max(\beta_0, \beta_1, \omega(l+1) \cdot 2 + n \cdot 10 + 11) + 2 < \omega^2$ that

$$\mathsf{RA}^* \mid_{\underline{<\omega^2}}^{\delta(n)} \mathcal{H}(S^l, (T^{l+1})^{\overline{n}}, \overline{n}) \tag{27}$$

for all natural numbers n, since also $rk(\mathcal{H}(S^l, \mathcal{R}_n^{S^l}, \overline{n})) < \omega^2$.

Now we can also prove that (27) implies for all n, there exists $\gamma(n) < \omega^2$ with

$$\mathsf{RA}^* \mid_{\leq \omega^2}^{\gamma(n)} \mathcal{H}(S^l, T^{l+1}, \overline{n})$$

(for more details compare Appendix A6)

By Lemma 5.2.7 and the (\forall^0) -inference we obtain

$$\mathsf{RA}^* \models^{\omega^2}_{\leq \omega^2} (\forall x) \mathcal{H}(S^l, T^{l+1}, x) \tag{28}$$

Further notice that ACA proves the following

$$(\forall x)\mathcal{H}(U,V,x) \leftrightarrow \mathcal{J}_{\omega}(U,V)$$

and therefore we obtain by Lemma 5.2.20 for an l+2-instance (with $l<\omega$)

$$\mathsf{RA}^* \mid_{<\omega^2}^{<\omega^2} (\forall x) \mathcal{H}(S^l, T^{l+1}, x) \leftrightarrow \mathcal{J}_{\omega}(S^l, T^{l+1})$$

and with Lemma 5.2.9 and Lemma 5.2.10 also

$$\mathsf{RA}^* \mid_{\leq \omega^2}^{\leq \omega^2} \neg (\forall x) \mathcal{H}(S^l, T^{l+1}, x), \mathcal{J}_{\omega}(S^l, T^{l+1})$$

and together with (28) we obtain by a cut that

$$\mathsf{RA}^* \mid_{\leq \omega^2}^{\omega^2+1} \mathcal{J}_{\omega}(S^l, T^{l+1})$$

since also $rk((\forall x)\mathcal{H}(S^l,T^{l+1},x))<\omega^2$, and finally by an (\exists^1) -inference that

$$\mathsf{RA}^* \mid_{\leq \omega^2}^{\omega^2 + 2} (\exists X^\omega) \mathcal{J}_\omega(S^l, X^\omega)$$

since $lev(T^{l+1}) = l + 1 < \omega$.

Theorem 5.2.25 For all \mathcal{L}_2 -formulas $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ with

$$ACA^+ \vdash A[u_1, \ldots, u_n, U_1, \ldots, U_m]$$

there exists an ordinal $\alpha < \omega^2 \cdot 2 + \omega \cdot 4$ and and a natural number m such that for all ω -instances of A

$$\mathsf{RA}^* \mid_{\omega^2 + m}^{\alpha} A^{\omega}(r_1, \dots, r_n, S_1^{l_1}, \dots, S_m^{l_m})$$

(with $l_i < \omega$).

PROOF: The proof is completely analogous as for Theorem 5.2.20. The only difference is the case if $A[u_1, \ldots, u_n, U_1, \ldots, U_m]$ is the $(\omega - Jump)$ axiom. But by Lemma 5.2.24 we know that the claim also holds in this case.

Let \sqsubset be any primitive recursive wellordering. Then we denote the order type of \sqsubset with $| \sqsubseteq |$.

Further we have the following from Schütte [9] Theorem 23.2 and Pohlers [6] Theorem 13.10.

Theorem 5.2.26 For all primitive recursive wellorderings \sqsubseteq we have that

$$\mathsf{RA}^* \mid_{0}^{\delta} \mathsf{WF}^{\beta}(\square) \text{ where } \beta \neq 0 \text{ implies } | \square | \leq \omega \cdot \delta.$$

Therefore we obtain the following corollary.

Corollary 5.2.27

$$|\mathsf{ACA}^+| \le \varphi 2\varepsilon_0$$

PROOF: Suppose $\mathsf{ACA}^+ \vdash \mathsf{WF}(\sqsubseteq)$ holds. By Theorem 5.2.25 ACA^+ can be interpreted in RA^* where every formula has a rank $<\omega^2+\omega$ and the order of inference is restricted by $\omega^2 \cdot 2 + \omega \cdot 4$. Therefore it follows that the formula $\mathsf{WF}^\omega(\sqsubseteq)$ has a deduction in RA^* for a natural number n with

$$\mathsf{RA}^* \mid_{\frac{\omega^2 \cdot 2 + \omega \cdot 4}{\omega^2 + n}} \mathsf{WF}^{\omega}(\sqsubseteq)$$

It follows by applying the first cut elimination Theorem 5.2.13 n-times that there exists $\delta < \varepsilon_0$ such that

$$\mathsf{RA}^* \mid_{\omega^2}^{\delta} \mathsf{WF}^{\omega}(\sqsubseteq)$$

and then finally by the second cut elimination Theorem 5.2.14 we obtain

$$\mathsf{RA}^* \vdash^{\varphi 2\delta}_{0} \mathsf{WF}^{\omega}(\sqsubseteq)$$

By Theorem 5.2.26 we have $|\Box| \le \omega \cdot \varphi 2\delta = \varphi 2\delta < \varphi 2\varepsilon_0$. Consequently ACA⁺ has a proof-theoretic ordinal $\le \varphi 2\varepsilon_0$.

As a consequence of Corollary 5.1.15, Corollary 5.2.27, and the result of Section 3 we obtain the following theorem.

Theorem 5.2.28

$$|\mathsf{RFN}| = |\mathsf{ACA}^+| = \varphi 2\varepsilon_0$$

6 Additional Results

The notation follows that of subsection 5.1

6.1 The well-ordering proof of $ACA_0 + (BR)$

Lemma 6.1.1 We have for all ordinals α ,

$$\mathsf{ACA_0} + (\mathsf{BR}) \vdash (\forall X)\mathsf{TI}(\overline{\alpha}, X) \implies \mathsf{ACA_0} + (\mathsf{BR}) \vdash (\forall X)\mathsf{TI}(\hat{\varepsilon}_{\overline{\alpha}}, X)$$

PROOF: First notice that $ACA_0 + (BR)$ proves every instance of the full second order induction scheme (IND). Therefore the theories $ACA_0 + (BR)$ and ACA + (BR) are equivalent.

We have that $\mathsf{ACA_0} + (\mathsf{BR}) \vdash (\forall X)\mathsf{TI}(\overline{\alpha}, X)$ and can conclude by (BR) that $\mathsf{ACA_0} + (\mathsf{BR}) \vdash \mathsf{TI}(\overline{\alpha}, F)$ for all \mathcal{L}_2 -formulas F. We define F(a) to be the formula $(\forall X)\mathsf{TI}(\widehat{\varepsilon}_a, X)$. Hence we have

$$ACA_0 + (BR) \vdash PROG(\prec, F) \to (\forall x \prec \overline{\alpha})F(x)$$
 (29)

Further $ACA_0 + (BR)$ proves

$$\mathsf{ACA}_0 + (\mathsf{BR}) \vdash \mathsf{PROG}(\prec, F) \to ((\forall x \prec \overline{\alpha})F(x) \to F(\overline{\alpha}))$$
 (30)

By Schütte [9] Lemma 21.7. we know that F is progressive and hence we can conclude from (29) and (30) that $ACA_0 + (BR) \vdash F(\overline{\alpha})$ which is

$$\mathsf{ACA_0} + (\mathsf{BR}) \vdash (\forall X)\mathsf{TI}(\hat{\varepsilon}_{\overline{\alpha}}, X)$$

Theorem 6.1.2 ACA₀ + (BR) proves the formula $\mathcal{I}(\overline{\alpha})$ for all $\alpha < \varphi 20$.

PROOF: The proof is analogous as that of Theorem 5.1.10, only instead of applying Lemma 5.1.9 we use in this case here Lemma 6.1.1. \Box

Corollary 6.1.3 For a lower bound of the proof-theoretic ordinal of $ACA_0 + (BR)$ we have

$$|\mathsf{ACA}_0 + (\mathsf{BR})| \ge \varphi 20$$

7 Appendix

7.1 Details of the proof of Lemma 5.2.23

<u>A1:</u>

We have to show that the following holds.

$$\mathsf{RA}^* \mid_{0}^{\underline{\omega(\alpha+1)\cdot 2+10}} (\forall x)(\langle x,0\rangle \in \{y: (\exists z_1)(\exists z_2)(y=\langle z_1,z_2\rangle \land z_2=0 \land z_1 \in S^\alpha)\} \leftrightarrow x \in S^\alpha) \land (\forall x < \overline{0})((\mathcal{R}_0^{S^\alpha})_{x+1} = TJ((\mathcal{R}_0^{S^\alpha})_x))$$

By Lemma 5.2.11 and Axiom (Ax1), with $lev(s \in S^{\alpha}) = \alpha$, and therefore $rk(s \in S^{\alpha}) < \omega(\alpha + 1)$, we have for all number terms s that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2} s \not \in S^\alpha, s \in S^\alpha \qquad \mathsf{RA}^* \mid_{0}^{0} \langle s, 0 \rangle = \langle s, 0 \rangle \qquad \mathsf{RA}^* \mid_{0}^{0} 0 = 0$$

and obtain by applying the (\land) -inference twice that

$$\mathsf{RA}^*|_{0}^{\omega(\alpha+1)\cdot 2+2} s \notin S^\alpha, \langle s,0\rangle = \langle s,0\rangle \land 0 = 0 \land s \in S^\alpha$$

By an (\exists^0) -inference we have

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+3} s \notin S^{\alpha}, (\exists z_2)(\langle s,0\rangle = \langle s,z_2\rangle \land z_2 = 0 \land s \in S^{\alpha})$$

and obtain, again by an (\exists^0) -inference

$$\mathsf{RA}^* \mid_{\substack{\omega(\alpha+1)\cdot 2+4 \\ 0}} s \notin S^{\alpha}, (\exists z_1)(\exists z_2)(\langle s,0\rangle = \langle z_1,z_2\rangle \land z_2 = 0 \land z_1 \in S^{\alpha})$$

By an $(\in 1)$ -inference we have

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+5} s \notin S^{\alpha}, \langle s, 0 \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 = 0 \land z_1 \in S^{\alpha}) \}$$

and by applying the (\vee) -inference twice

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+7} s \notin S^{\alpha} \to \langle s, 0 \rangle \in \{ y : (\exists z_1)(\exists z_2)(\quad y = \langle z_1, z_2 \rangle \land z_2 = 0 \land z_1 \in S^{\alpha}) \}$$
(31)

Further we have to distinguish two cases depending on the values of the (arbitrary) number terms s and t.

1. If s and t have the same value, then we obtain from Lemma 5.2.11 that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2} t \notin S^{\alpha}, s \in S^{\alpha}$$

and by applying an (\vee) -inference twice we have for all number terms r that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+2} \langle s,0\rangle \neq \langle t,r\rangle \vee r \neq 0 \vee t \notin S^\alpha, s \in S^\alpha$$

2. If s and t have not the same value then we have from Axiom (Ax1) that for all number terms r

$$\mathsf{RA}^* \mid_{0}^{0} \langle s, 0 \rangle \neq \langle t, r \rangle, s \in S^{\alpha}$$

and obtain by applying an (\vee) -inference twice that

$$\mathsf{RA}^* \mid_{0}^{2} \langle s, 0 \rangle \neq \langle t, r \rangle \lor r \neq 0 \lor t \notin S^{\alpha}, s \in S^{\alpha}$$

Hence we conclude with an (\forall^0) -inference that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+3} (\forall z_2)(\langle s, 0 \rangle \neq \langle t, z_2 \rangle \lor z_2 \neq 0 \lor t \notin S^{\alpha}), s \in S^{\alpha}$$

and by another (\forall^0) -inference

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+4} (\forall z_1)(\forall z_2)(\langle s,0\rangle \neq \langle z_1,z_2\rangle \vee z_2 \neq 0 \vee z_1 \notin S^\alpha), s \in S^\alpha$$

but this is

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+4} \neg (\exists z_1)(\exists z_2)(\langle s,0\rangle = \langle z_1,z_2\rangle \land z_2 = 0 \land z_1 \in S^\alpha), s \in S^\alpha$$

and so we have by an $(\in 2)$ -inference that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+5} \langle s, 0 \rangle \notin \{y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 = 0 \land z_1 \in S^{\alpha})\}, s \in S^{\alpha}$$
 and finally by applying the (\vee)-inference twice

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+7} \langle s, 0 \rangle \in \{y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 = 0 \land z_1 \in S^\alpha)\} \to s \in S^\alpha$$

Together with (31) we obtain by an (\land) -inference

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+8} \langle s, 0 \rangle \in \{y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 = 0 \land z_1 \in S^{\alpha})\} \leftrightarrow s \in S^{\alpha}$$
 and finally obtain by an (\forall^0) -inference that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+9} (\forall x) (\langle x, 0 \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 = 0 \land z_1 \in S^{\alpha}) \} \leftrightarrow x \in S^{\alpha} \})$$

$$(32)$$

Moreover we have for all number terms t

$$\mathsf{RA}^* \! \mid_{\overline{0}}^{0} \neg (t < 0), (\mathcal{R}_0^{S^\alpha})_{\overline{n}+1} = TJ((\mathcal{R}_0^{S^\alpha})_{\overline{n}})$$

With $(\vee 1)$, $(\vee 2)$ and the (\forall^0) -inference we obtain

$$\mathsf{RA}^* \mid_{\overline{0}}^3 (\forall x) (x < 0 \to (\mathcal{R}_0^{S^\alpha})_{\overline{n}+1} = TJ((\mathcal{R}_0^{S^\alpha})_{\overline{n}}))$$

Together with (32) we obtain the claim by an (\land) -inference.

<u>A2:</u>

The proof is very similar to A3.

A3:

The proof is also similar to the one of A1. We have to prove that for i = n

$$\mathsf{RA}^*|_{0}^{\omega(\alpha+1)\cdot 2+10 \atop 0} (\mathcal{R}_{n+1}^{S^{\alpha}})_{\bar{i}+1} = TJ^{n+1}(S^{\alpha})$$

which is

$$(\forall x)(\quad x \in TJ^{n+1}(S^{\alpha}) \leftrightarrow \langle x, \overline{i} + 1 \rangle \in \{y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land ((z_2 = 0 \land z_1 \in S^{\alpha}) \lor (z_2 = 1 \land z_1 \in TJ(S^{\alpha})) \lor \ldots \lor (z_2 = \overline{n} + 1 \land z_1 \in TJ^{n+1}(S^{\alpha})))\})$$

<u>"'→":</u>

From Lemma 5.2.11 and Axiom (Ax1) respectively we obtain

$$\mathsf{RA}^* \mid_{\overline{0}}^{\omega(\alpha+1)\cdot 2} s \notin TJ^{n+1}(S^\alpha), s \in TJ^{n+1}(S^\alpha) \qquad \mathsf{RA}^* \mid_{\overline{0}}^{\overline{0}} \overline{i} + 1 = \overline{n} + 1$$

since $lev(TJ^{n+1}(S^{\alpha})) = \alpha$ and i = n. Hence we obtain by an (\land) -inference that

$$\mathsf{RA}^* \mathop{\mid}^{\omega(\alpha+1)\cdot 2+1}_0 s \not\in TJ^{n+1}(S^\alpha), \overline{i}+1 = \overline{n}+1 \wedge s \in TJ^{n+1}(S^\alpha)$$

and by an (\vee) -rule of inference we get

$$\mathsf{RA}^* \mid_{0}^{\frac{\omega(\alpha+1)\cdot 2+2}{0}} \quad s \notin TJ^{n+1}(S^\alpha), \bar{i}+1 = 0 \land s \in S^\alpha \lor \bar{i}+1 = 1 \land s \in TJ(S^\alpha) \lor \ldots \lor \bar{i}+1 = \overline{n}+1 \land s \in TJ^{n+1}(S^\alpha)$$

Further we have by Axiom (Ax1)

$$\mathsf{RA}^* \mid_{0}^{0} \langle s, \overline{i} + 1 \rangle = \langle s, \overline{i} + 1 \rangle$$

Therefore we conclude by an (\land) -inference that

$$\begin{split} \mathsf{R}\mathsf{A}^* \, | & \overset{\omega(\alpha+1)\cdot 2+3}{\underset{0}{\longrightarrow}} \quad s \not\in TJ^{n+1}(S^\alpha), \\ & \langle s, \overline{i}+1 \rangle = \langle s, \overline{i}+1 \rangle \wedge (\overline{i}+1=0 \wedge s \in S^\alpha \vee \\ & \overline{i}+1=1 \wedge s \in TJ(S^\alpha) \vee \ldots \vee \overline{i}+1=\overline{n}+1 \wedge s \in TJ^{n+1}(S^\alpha)) \end{split}$$

By applying twice the (\exists^0) -inference we get

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+5} \quad s \notin TJ^{n+1}(S^\alpha), \\ (\exists z_1)(\exists z_2)(\langle s, \overline{i}+1\rangle = \langle z_1, z_2\rangle \land (z_2 = 0 \land z_1 \in S^\alpha \lor z_2 = 1 \land z_1 \in TJ(S^\alpha) \lor \ldots \lor z_2 = \overline{n} + 1 \land z_1 \in TJ^{n+1}(S^\alpha)))$$

And finally by an $(\in 1)$ - and two (\vee) -inferences we have

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+8} \quad s \in TJ^{n+1}(S^{\alpha}) \to \langle s, \overline{i}+1 \rangle \in \{ y : \\ (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land (z_2 = 0 \land z_1 \in S^{\alpha} \lor \\ z_2 = 1 \land z_1 \in TJ(S^{\alpha}) \lor \ldots \lor z_2 = \overline{n} + 1 \land z_1 \in TJ^{n+1}(S^{\alpha}))) \}$$
(33)

 $"\leftarrow"$:

We have to distinguish several cases depending on the value of the (arbitrary) number terms s, t and r.

• If s and t have not the same value or the value of r is not i + 1 then we have the following Axiom (Ax1).

$$\mathsf{RA}^* \mid_{0}^{0} \langle s, \overline{i} + 1 \rangle \neq \langle t, r \rangle, s \in TJ^{n+1}(S^{\alpha})$$

and obtain by an (\vee) -inference that

$$\mathsf{RA}^* \mid_{0}^{1} \quad s \in TJ^{n+1}(S^\alpha), \\ \langle s, \overline{i} + 1 \rangle \neq \langle t, r \rangle \vee ((r \neq 0 \vee t \notin S^\alpha) \wedge \\ (r \neq 1 \vee t \notin TJ(S^\alpha)) \wedge \ldots \wedge (r \neq \overline{n} + 1 \vee t \notin TJ^{n+1}(S^\alpha)))$$

• If s and t have the same value and the value of r is i + 1 then we have the following by Axiom (Ax1).

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{0}} r \neq 0 \qquad \mathsf{RA}^* \mid_{\overline{0}}^{\overline{0}} r \neq 1 \qquad \dots \qquad \mathsf{RA}^* \mid_{\overline{0}}^{\overline{0}} r \neq \overline{n}$$

and obtain by an (\vee) -inference

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{1}} r \neq 0 \lor t \notin S^{\alpha}$$
 ... $\mathsf{RA}^* \mid_{\overline{0}}^{\overline{1}} r \neq \overline{n} \lor t \notin TJ^n(S^{\alpha})$

and by applying the (\land) -inference n times

$$\mathsf{RA}^* \mid_{0}^{n+1} (r \neq 0 \lor t \notin S^{\alpha}) \land \dots (r \neq \overline{n} \lor t \notin TJ^n(S^{\alpha}))$$
 (34)

Further we have by Lemma 5.2.11

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2} t \notin TJ^{n+1}(S^\alpha), s \in TJ^{n+1}(S^\alpha)$$

since $lev(s \in TJ^{n+1}(S^{\alpha})) = \alpha$ and obtain by an (\vee) -inference

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+1} r \neq \overline{n} + 1 \lor t \notin TJ^{n+1}(S^\alpha), s \in TJ^{n+1}(S^\alpha)$$

Together with (34) we obtain by an (\land) -inference

$$\mathsf{RA}^* \, | \frac{\omega(\alpha+1)\cdot 2+2}{0} \quad s \in TJ^{n+1}(S^\alpha), \\ (r \neq 0 \lor t \not\in S^\alpha) \land \quad (r \neq 1 \lor t \not\in TJ(S^\alpha)) \land \\ \dots \\ (r \neq \overline{n} + 1 \lor t \not\in TJ^{n+1}(S^\alpha)))$$

and by an (\vee) -inference this yields

$$\mathsf{RA}^* \! \mid^{\frac{\omega(\alpha+1)\cdot 2+3}{0}} \quad s \in TJ^{n+1}(S^\alpha), \\ \langle s, \overline{i}+1 \rangle \neq \langle t, r \rangle \vee ((r \neq 0 \vee t \notin S^\alpha) \wedge \\ (r \neq 1 \vee t \notin TJ(S^\alpha)) \wedge \ldots \wedge (r \neq \overline{n}+1 \vee t \notin TJ^{n+1}(S^\alpha)))$$

So we conclude by two (\forall^0) -inferences

$$\mathsf{RA}^*|_{0}^{\omega(\alpha+1)\cdot 2+5} \quad s \in TJ^{n+1}(S^\alpha), \\ (\forall z_1)(\forall z_2)(\langle s, \overline{i}+1 \rangle \neq \langle z_1, z_2 \rangle \vee ((z_2 \neq 0 \vee z_1 \notin S^\alpha) \wedge \\ (z_2 \neq 1 \vee z_1 \notin TJ(S^\alpha)) \wedge \ldots \wedge (z_2 \neq \overline{n}+1 \vee z_1 \notin TJ^{n+1}(S^\alpha))))$$

but this is

$$\mathsf{RA}^* | \overset{\omega(\alpha+1)\cdot 2+5}{\underset{0}{\longrightarrow}} \quad s \in TJ^{n+1}(S^\alpha), \\ \neg (\exists z_1)(\exists z_2)(\langle s, \overline{i}+1 \rangle = \langle z_1, z_2 \rangle \land (z_2 = 0 \land z_1 \in S^\alpha \lor z_2 = 1 \land z_1 \in TJ(S^\alpha) \lor \ldots \lor z_2 = \overline{n} + 1 \land z_1 \in TJ^{\overline{n}+1}(S^\alpha)))$$

and obtain by $(\in 2)$ and two (\vee) -inferences

$$\mathsf{RA}^* \! \mid_{0}^{\omega(\alpha+1)\cdot 2+8} \! \langle s, \overline{i}+1 \rangle \in \{ y: (\exists z_1)(\exists z_2)(y=\langle z_1, z_2 \rangle \land (z_2=0 \land z_1 \in S^\alpha \lor z_2=1 \land z_1 \in TJ(S^\alpha) \lor \ldots \lor z_2=\overline{n}+1 \land z_1 \in TJ^{n+1}(S^\alpha)) \} \to s \in TJ^{n+1}(S^\alpha)$$

So we obtain together with (33) by an (\land) -inference that

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+9} \quad s \in TJ^{n+1}(S^{\alpha}) \leftrightarrow \langle s, \overline{i}+1 \rangle \in \{ y : \\ (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land (z_2 = 0 \land z_1 \in S^{\alpha} \lor \\ z_2 = 1 \land z_1 \in TJ(S^{\alpha}) \lor \ldots \lor z_2 = \overline{n} + 1 \land z_1 \in TJ^{n+1}(S^{\alpha}))) \}$$

and finally by an (\forall^0) -inference

$$\mathsf{RA}^* \mid_{0}^{\omega(\alpha+1)\cdot 2+10} (\forall x)(x \in TJ^{n+1}(S^\alpha) \leftrightarrow \langle x, \overline{i}+1 \rangle \in \{y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land (z_2 = 0 \land z_1 \in S^\alpha \lor z_2 = 1 \land z_1 \in TJ(S^\alpha) \lor \ldots \lor z_2 = \overline{n} + 1 \land z_1 \in TJ^{n+1}(S^\alpha)))\}$$

A4:

The proof is also completely analogous to A3.

7.2 Details of the proof of Lemma 5.2.24

A5:

First notice that ACA proves the following for all natural numbers n

$$a = \langle b, c \rangle \land c \leq \overline{n} \land (\exists Z) (\mathcal{H}(U, Z, c) \land b \in (Z)_c) \leftrightarrow a = \langle b, c \rangle \land (\bigvee_{i=0}^n c = \overline{i} \land b \in TJ^i(U))$$

Therefore using Theorem 5.2.20 we obtain $\eta_0 < \omega^2$ such that for an l+1-instance (with $l < \omega$) and all natural numbers n

$$\mathsf{RA}^* \mid_{<\omega^2}^{\eta_0} \quad r = \langle s, t \rangle \land t \leq \overline{n} \land (\exists Z^{l+1})((S^l, Z^{l+1}, t) \land s \in (Z^{l+1})_t) \leftrightarrow r = \langle s, t \rangle \land (\bigvee_{i=0}^n t = \overline{i} \land s \in TJ^i(S^l))$$

Together with Lemma 5.2.9 and Lemma 5.2.10 we obtain that

$$\mathsf{RA}^* \mid_{<\omega^2}^{\eta_0} \quad \neg (r = \langle s, t \rangle \land t \leq \overline{n} \land (\exists Z^{l+1})((S^l, Z^{l+1}, t) \land s \in (Z^{l+1})_t)),$$

$$r = \langle s, t \rangle \land (\bigvee_{i=0}^n t = \overline{i} \land s \in TJ^i(S^l))$$

$$\begin{array}{ll} \mathsf{RA^*} \vdash^{\eta_0}_{<\omega^2} & r = \langle s,t \rangle \land t \leq \overline{n} \land (\exists Z^{l+1})((S^l,Z^{l+1},t) \land s \in (Z^{l+1})_t), \\ & \neg (r = \langle s,t \rangle \land (\bigvee_{i=0}^n t = \overline{i} \land s \in TJ^i(S^l))) \end{array}$$

Hence we obtain by $(\in 1)$ and $(\in 2)$ that for all natural numbers n

$$\mathsf{RA}^* \mid_{<\omega^2}^{\eta_0+2} \quad r \notin \{x : x = \langle s, t \rangle \land t \leq \overline{n} \land (\exists Z^{l+1})((S^l, Z^{l+1}, t) \land s \in (Z^{l+1})_t)\}, \\ \quad r \in \{x : x = \langle s, t \rangle \land (\bigvee_{i=0}^n t = \overline{i} \land s \in TJ^i(S^l))\}$$

$$\mathsf{RA}^*|_{\prec\omega^2}^{\eta_0+2} \quad r \in \{x: x = \langle s, t \rangle \land t \leq \overline{n} \land (\exists Z^{l+1})((S^l, Z^{l+1}, t) \land s \in (Z^{l+1})_t)\}, \\ r \notin \{x: x = \langle s, t \rangle \land (\bigvee_{i=0}^n t = \overline{i} \land s \in TJ^i(S^l))\}$$

and by the $(\vee 1), (\vee 2)$ and (\wedge) -inference

$$\mathsf{RA}^* \mid_{<\omega^2}^{\eta_0+5} \quad r \in \{x : x = \langle s, t \rangle \land t \leq \overline{n} \land (\exists Z^{l+1})((S^l, Z^{l+1}, t) \land s \in (Z^{l+1})_t)\} \leftrightarrow r \in \{x : x = \langle s, t \rangle \land \bigvee_{t=0}^n TJ^t(S)\}$$

Since r is an arbitrary closed number term, we finally obtain by Lemma 5.2.7 and the (\forall^0) -inference that

$$\begin{aligned} \mathsf{R}\mathsf{A}^* \mid_{<\omega^2}^{\eta_0+6} (\forall z) (& z \in \{x : x = \langle s, t \rangle \wedge t \leq \overline{n} \wedge \\ & (\exists Z^{l+1}) ((S^l, Z^{l+1}, t) \wedge s \in (Z^{l+1})_t) \} \leftrightarrow \\ & z \in \{x : x = \langle s, t \rangle \wedge (\bigvee_{i=0}^n t = \overline{i} \wedge s \in TJ^i(S^l)) \}) \end{aligned}$$

and this is the assertion (since $\eta_0 + 6 < \omega^2$).

<u>A6:</u>

With the definition of \mathcal{H} we obtain from (27) that

$$\mathsf{RA}^* \mid_{\leq \omega^2}^{\delta(n)} ((T^{l+1})^{\overline{n}})_0 = S^l \wedge (\forall x < \overline{n})(((T^{l+1})^{\overline{n}})_{x+1} = TJ(((T^{l+1})^{\overline{n}})_x))$$

By Lemma 5.2.9 we have

$$\mathsf{RA}^* \,|_{S^{2}}^{\delta(n)} \,((T^{l+1})^{\overline{n}})_0 = S^l \tag{35}$$

$$\mathsf{RA}^* \mathop{\mid}_{<\omega^2}^{\delta(n)} (\forall x < \overline{n}) (((T^{l+1})^{\overline{n}})_{x+1} = TJ(((T^{l+1})^{\overline{n}})_x))$$

and by Lemma 5.2.8 and Lemma 5.2.10 we obtain for all natural numbers i

$$\mathsf{RA}^* \mid_{\underline{<\omega^2}}^{\underline{\delta(n)}} \neg (\overline{i} < \overline{n}), ((T^{l+1})^{\overline{n}})_{\overline{i}+1} = TJ(((T^{l+1})^{\overline{n}})_{\overline{i}}) \tag{36}$$

Using Lemma 5.2.12 we obtain $\eta_0 < \omega^2$ with

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{\eta_0}} \neg (((T^{l+1})^{\overline{n}})_0 = (T^{l+1})_0), \neg (((T^{l+1})^{\overline{n}})_0 = S^l), (T^{l+1})_0 = S^l$$
 (37)

since $lev(((T^{l+1})^{\overline{n}})_0 = S^l) = l < \omega$.

It is not difficult to prove that there exists $\eta_1 < \omega^2$ such that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_1} ((T^{l+1})^{\overline{n}})_0 = (T^{l+1})_0$$

(for more details compare Appendix A7).

Together with (35) we obtain from (37) by two cuts that

$$\mathsf{RA}^* \mid^{\max(\eta_0, \eta_1, \delta(n)) + 1}_{\leq \omega^2} (T^{l+1})_0 = S^l \tag{38}$$

since clearly $rk((T^{l+1})^{\overline{n}})_0 = (T^{l+1})_0 < \omega^2$ and also $rk(((T^{l+1})^{\overline{n}})_0 = S^l) < \omega^2$.

Again we have to distinguish two cases depending on the value of i.

1. We have for all $i \geq n$ that

$$\mathsf{RA}^* \mid_{\overline{0}}^{0} \neg (i < \overline{n}), (T^{l+1})_{\overline{i}+1} = TJ((T^{l+1})_{\overline{i}})$$

2. Using Lemma 5.2.12 we have $\eta_0 < \omega^2$ for all i < n, since $lev(((T^{l+1})^{\overline{n}})_{\overline{i}+1} = TJ(((T^{l+1})^{\overline{n}})_{\overline{i}})) = l < \omega$, such that

$$\mathsf{RA}^* \, |_{\overline{0}}^{\underline{\eta_0}} \quad \neg (((T^{l+1})^{\overline{n}})_{\overline{i}} = (T^{l+1})_{\overline{i}}), \neg (((T^{l+1})^{\overline{n}})_{\overline{i}+1} = TJ(((T^{l+1})^{\overline{n}})_{\overline{i}})), \\ ((T^{l+1})^{\overline{n}})_{\overline{i}+1} = TJ((T^{l+1})_{\overline{i}})$$

and also again $\eta_1 < \omega^2$ for all i < n such that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_1} ((T^{l+1})^{\overline{n}})_{\overline{i}} = (T^{l+1})_{\overline{i}}$$

(again for more details compare Appendix A7). So we conclude by using the (cut)-inference

$$\mathsf{RA}^* \mid_{\substack{-<\omega^2\\ <\omega^2}}^{\max(\eta_0,\eta_1)+1} \quad \neg(\bar{i}<\bar{n}), \neg(((T^{l+1})^{\overline{n}})_{\bar{i}+1} = TJ(((T^{l+1})^{\overline{n}})_{\bar{i}})), \\ ((T^{l+1})^{\overline{n}})_{\bar{i}+1} = TJ((T^{l+1})_{\bar{i}})$$

since $rk(((T^{l+1})^{\overline{n}})_{\overline{i}} = (T^{l+1})_{\overline{i}}) < \omega^2$. and by (36) and another cut we obtain

$$\mathsf{RA}^* \mid_{\frac{-\infty}{<\omega^2}}^{\max(\eta_0,\eta_1,\delta(n))+2} \neg (\bar{i} < \overline{n}), ((T^{l+1})^{\overline{n}})_{\bar{i}+1} = TJ((T^{l+1})_{\bar{i}}) \tag{39}$$

since also $rk(((T^{l+1})^{\overline{n}})_{\bar{i}+1} = TJ(((T^{l+1})^{\overline{n}})_{\bar{i}})) < \omega^2$.

Using again Lemma 5.2.12 we obtain $\eta_0 < \omega^2$ for all i < n, since $lev(((T^{l+1})^{\overline{n}})_{\overline{i+1}} = TJ(((T^{l+1})^{\overline{n}})_{\overline{i}})) = l < \omega$, such that

$$\mathsf{RA}^* |_{\overline{0}}^{\eta_0} \neg (((T^{l+1})^{\overline{n}})_{\overline{i}+1} = (T^{l+1})_{\overline{i}+1}), \neg (((T^{l+1})^{\overline{n}})_{\overline{i}+1} = TJ((T^{l+1})_{\overline{i}})),$$

$$((T^{l+1})^{\overline{n}})_{\overline{i}+1} = TJ((T^{l+1})_{\overline{i}})$$

$$(40)$$

and also $\eta_1 < \omega^2$ for all i < n such that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\underline{\eta_1}} ((T^{l+1})^{\overline{n}})_{\overline{i}+1} = (T^{l+1})_{\overline{i}+1} \tag{41}$$

(again for more details compare Appendix A7).

So we conclude by two cuts from (40) with (39) and (41) that

$$\mathsf{RA}^* \mid^{\underbrace{\max(\eta_0, \eta_1, \delta(n)) + 4}_{<\omega^2}} \neg (\bar{i} < \overline{n}), (T^{l+1})_{\bar{i}+1} = TJ((T^{l+1})_{\bar{i}})$$

So we obtain by two (\vee) -inferences that for all natural numbers i

$$\mathsf{RA}^* \! \mid^{\underbrace{\max(\eta_1, \eta_2, \delta(n)) + 6}_{<\omega^2}} \bar{i} < \overline{n} \to (T^{l+1})_{\bar{i}+1} = TJ((T^{l+1})_{\bar{i}})$$

and finally by an (\forall^0) -inference that yields

$$\mathsf{RA}^* \, |^{\max(\eta_1, \eta_2, \delta(n)) + 7 \atop <\omega^2} \, (\forall x < \overline{n}) ((T^{l+1})_{\overline{x}+1} = TJ((T^{l+1})_{\overline{x}}))$$

and together with (38) and an (\land) -inference

$$\mathsf{RA}^* \mid^{\max(\beta_1,\beta_2,\delta(n))+8}_{\leq \omega^2} (T^{l+1})_0 = S^l \wedge (\forall x < \overline{n})((T^{l+1})_{\overline{x}+1} = TJ((T^{l+1})_{\overline{x}}))$$

and hence, this is for all n, with $\gamma(n) = max(\beta_1, \beta_2, \delta(n)) + 8 < \omega^2$

$$\mathsf{RA}^* \mid_{\underline{\omega^2}}^{\underline{\gamma(n)}} \mathcal{H}(S^l, T^{l+1}, \overline{n})$$

A7:

We want to prove that $((T^{l+1})^{\overline{n}})_{\overline{i}} = (T^{l+1})_{\overline{i}}$ holds for all natural numbers n and all natural numbers $i \leq n$. That is

$$\mathsf{RA}^* \vdash^{<\omega^2}_{\overline{0}} (\forall x) (\quad \langle x, \overline{i} \rangle \in \{ y : (\exists z_1) (\exists z_2) (y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \} \leftrightarrow \langle x, \overline{i} \rangle \in \{ y : (\exists z_1) (\exists z_2) (y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \})$$

We again have to distinguish several cases depending on the value of the (arbitrary) number terms s, t and r.

• If s and t have not the same value or the value of r is not i then we have the following from Axiom (Ax1).

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{0}} \langle s, \overline{i} \rangle \neq \langle t, r \rangle, \langle s, \overline{i} \rangle = \langle t, r \rangle \land r \leq \overline{n} \land t \in T^{l+1}$$

and obtain by an (\vee) -inference that

$$\mathsf{RA}^* \mid_{\overline{0}}^{1} \langle s, \overline{i} \rangle \neq \langle t, r \rangle \vee t \not \in T^{l+1}, \langle s, \overline{i} \rangle = \langle t, r \rangle \wedge r \leq \overline{n} \wedge t \in T^{l+1}$$

• If s and t have the same value and the value of r is i (and $i \le n$) then we have the following Axioms (Ax1).

$$\mathsf{RA}^* \mid_{\overline{0}}^{0} \langle s, \overline{i} \rangle = \langle t, r \rangle \qquad \mathsf{RA}^* \mid_{\overline{0}}^{0} r \leq \overline{n}$$

and obtain with an (\land) -inference that

$$\mathsf{RA}^* \mid_{\overline{0}}^{1} \langle s, \overline{i} \rangle = \langle t, r \rangle \land r \le \overline{n} \tag{42}$$

Further we have from Lemma 5.2.11 that there exists $\eta_0 < \omega^2$ such that for all number terms t

$$\mathsf{RA}^* \mid_{0}^{\eta_0} t \in T^{l+1}, t \notin T^{l+1}$$

since $lev(t \in T^{l+1}) = l+1$ and therefore $rk(t \in T^{l+1}) < \omega^2$.

So we obtain by an (\land) -inference using (42) that

$$\mathsf{RA}^* \mid_{0}^{\eta_0+1} \langle s, \overline{i} \rangle = \langle t, r \rangle \land r \leq \overline{n} \land t \in T^{l+1}, t \notin T^{l+1}$$

and by an (\vee) -inference

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{\eta_0}+2} \langle s, \overline{i} \rangle = \langle t, r \rangle \land r \leq \overline{n} \land t \in T^{l+1}, \langle s, \overline{i} \rangle \neq \langle t, r \rangle \lor t \notin T^{l+1}$$

So we conclude by using the (\exists^0) -inference twice that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_0+4} (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}), \langle s, \overline{i} \rangle \neq \langle t, r \rangle \lor t \notin T^{l+1}$$
 and by two (\forall^0) -inferences

$$\mathsf{RA}^* \mid_{0}^{\overline{\eta_0 + 6}} (\exists z_1) (\exists z_2) (\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}), (\forall z_1) (\forall z_2) (\langle s, \overline{i} \rangle \neq \langle z_1, z_2 \rangle \lor z_1 \notin T^{l+1})$$

and this is

$$\mathsf{RA}^* \mid_{0}^{\eta_0+6} (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}), \\ \neg (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1})$$

and hence we obtain by $(\in 1)$ and $(\in 2)$

$$\mathsf{RA}^* \mid_{0}^{\eta_0 + 8} \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \}$$
$$\langle s, \overline{i} \rangle \notin \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \}$$

and by two (\vee) -inferences we get

$$\mathsf{RA}^* \mid_{0}^{\eta_0 + 10} \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \} \rightarrow \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \}$$

$$(43)$$

<u>"→":</u>

We again have to distinguish several cases depending on the value of the (arbitrary) number terms s, t and r.

• If s and t have not the same value or the value of r is not i then we have the following from Axiom (Ax1).

$$\mathsf{RA}^* \mathop{\mid}_{0}^{0} \langle s, \overline{i} \rangle \neq \langle t, r \rangle, \langle s, \overline{i} \rangle = \langle t, r \rangle \land t \in T^{l+1}$$

and obtain by an (\vee) -inference that

$$\mathsf{RA}^* \mid_{\overline{0}}^{1} \langle s, \overline{i} \rangle \neq \langle t, r \rangle \vee \neg (r \leq \overline{n}) \vee t \notin T^{l+1}, \langle s, \overline{i} \rangle = \langle t, r \rangle \wedge t \in T^{l+1}$$

• If s and t have the same value and the value of r is i then we have the following Axiom (Ax1).

$$\mathsf{RA}^* \mid_{0}^{0} \langle s, \overline{i} \rangle = \langle t, r \rangle$$

Further we obtain from Lemma 5.2.11 again $\eta_0 < \omega^2$ such that for all number terms t

$$\mathsf{RA}^* \mid_{0}^{\eta_0} t \in T^{l+1}, t \notin T^{l+1}$$

since $lev(t \in T^{l+1}) = l+1$ and therefore $rk(t \in T^{l+1}) < \omega^2$.

So we obtain by an (\land) -inference

$$\mathsf{RA}^* \!\mid_{0}^{\eta_0+1} \langle s, \overline{i} \rangle = \langle t, r \rangle \land t \in T^{l+1}, t \not\in T^{l+1}$$

and by an (\vee) -inference

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_0+2} \langle s, \overline{i} \rangle = \langle t, r \rangle \land t \in T^{l+1}, \langle s, \overline{i} \rangle \neq \langle t, r \rangle \lor \neg (r \leq \overline{n}) \lor t \not\in T^{l+1}$$

So we conclude by using the (\exists^0) -inference twice that

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_0+4} (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}), \langle s, \overline{i} \rangle \neq \langle t, r \rangle \lor \neg (r \leq \overline{n}) \lor t \notin T^{l+1}$$
 and by two (\forall^0)-inferences

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_0+6} \quad (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}), \\ (\forall z_1)(\forall z_2)(\langle s, \overline{i} \rangle \neq \langle z_1, z_2 \rangle \lor \neg (z_2 \leq \overline{n}) \lor z_1 \notin T^{l+1})$$

and this is

$$\mathsf{RA}^* \mid_{\overline{0}}^{\overline{\eta_0}+6} \quad (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}), \\ \neg (\exists z_1)(\exists z_2)(\langle s, \overline{i} \rangle = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1})$$

and hence we obtain by $(\in 1)$ and $(\in 2)$

$$\mathsf{RA}^* \mid_{0}^{\eta_0+8} \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \}$$
$$\langle s, \overline{i} \rangle \notin \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \}$$

and by two (\vee) -inferences we get

$$\mathsf{RA}^* \mid_{\overline{0}}^{\eta_0 + 10} \quad \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \} \rightarrow \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \}$$

Together with (43) we obtain by an (\land) -inference

$$\mathsf{RA}^* \mid_{0}^{\eta_0 + 11} \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \} \leftrightarrow \langle s, \overline{i} \rangle \in \{ y : (\exists z_1)(\exists z_2)(y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \} \to$$

and finally by an (\forall^0) -inference

$$\mathsf{RA}^* \! \mid_{0}^{\eta_0 + 12} \! (\forall x) (\langle x, \overline{i} \rangle \in \{ y : (\exists z_1) (\exists z_2) (y = \langle z_1, z_2 \rangle \land z_2 \leq \overline{n} \land z_1 \in T^{l+1}) \} \leftrightarrow \langle x, \overline{i} \rangle \in \{ y : (\exists z_1) (\exists z_2) (y = \langle z_1, z_2 \rangle \land z_1 \in T^{l+1}) \}) \to \langle x, \overline{i} \rangle = \langle x, \overline{i}$$

(with $\eta_0 + 12 < \omega^2$).

References

- [1] Friedman, H. Some systems of second order arithmetic and their use. Proceedings of the International Congress of Mathematicians, Vancouver 1974(1975), vol. 1, Canadian Mathematical Congress, pp. 235-242.
- [2] Glass, T., and Strahm, T. Systems of explicit mathematics with non-constructive μ -operator and join. Annals of Pure and Applied Logic 82 (1996), pp.193-219
- [3] Hinman, Peter G., Recursion-theoretic hierarchies, Springer Verlag, Berlin 1978
- [4] Jäger, G., and Strahm, T. Bar induction and ω model reflection. Annals of Pure and Applied Logic 97, 1999
- [5] Jäger, G., and Strahm, T. Some theories with positive induction of ordinal strength $\varphi\omega 0$. The Journal of Symbolic Logic 61 (3), pp. 818-842
- [6] Pohlers, W. Proof Theory: An Introduction, vol. 1407 of Lecture Notes in Mathematics. Springer, Berlin, 1988.
- [7] Rathjen, M. The role of parameters in bar rule and bar induction. The Journal of Symbolic Logic, Volume 56, Number 2, June 1991, pp. 715-730.
- [8] Rogers, H. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.
- [9] Schütte, K. Proof Theory. Springer Verlag, Berlin 1977
- [10] Simpson, S. G. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin, 1999

Address

Marc Heissenbüttel, Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland, heissen@iam.unibe.ch