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Abstract

In this paper first order theories for nonmonotone inductive definitions are
introduced, and a proof-theoretic analysis for such theories based on combined
operator forms à la Richter with recursively inaccessible and Mahlo closure
ordinals is given.

1 Introduction

Let Φ be an operator on the power set P (N) of the natural numbers, i.e. a mapping
from P (N) to P (N). Then Φ can be used to generate subsets IσΦ of the natural
numbers if we define

IσΦ := I<σΦ ∪ Φ(I<σΦ ) and I<σΦ :=
⋃
{IτΦ : τ < σ}

by transfinite recursion on the ordinals. Furthermore we let

I∞Φ :=
⋃
{IτΦ : τ an ordinal }

be the set of natural numbers inductively defined by Φ. Obviously there exists a least
ordinal ρ so that IρΦ = I<ρΦ . We call this ordinal the closure ordinal of the inductive
definition generated by Φ and know that I∞Φ is identical to IρΦ. The sets IσΦ are the
stages of the inductive definition generated by Φ. If K is a class of operators, then
the closure ordinal of K, denoted by cl(K), is the supremum of the closure ordinals
of the inductive definitions generated by operators from K.

A lot is known about inductive definitions. The situation is particularly well ana-
lyzed if Φ is monotone, i.e. if S1 ⊂ S2 implies Φ(S1) ⊂ Φ(S2) for all sets of natural
numbers S1 and S2. Good introductions into the recursion theory, definability the-
ory and proof theory of (special classes of) monotone inductive definitions are, for
example, provided by Moschovakis [17] and Buchholz, Feferman, Pohlers and Sieg
[6].

There exist also important recursion-theoretic results about various classes of non-
monotone inductive definitions, see e.g. Aczel and Richter [2], Richter [26] and the
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papers quoted in these articles. The proof theory of nonmonotone inductive defini-
tions, on the other hand, has not been developed to the same degree.

In the first part of this article we introduce first order theories FID(K) which are
tailored for representing arbitrary classes K of first order inductive definitions. Then
we turn to (the theories of) several specific nonmonotone inductive definitions which
are interesting in the context of recursively inaccessible and recursively Mahlo ordi-
nals. Not surprisingly, such theories are closely related to the corresponding theories
for iterated admissible sets.

We are particularly interested in the operator classes [Π0
1,Π

0
1], [Π0

1,Π
0
0], [POS,Π0

1]
and [POS,QF] according to the notation of Richter [26]; they are also defined in
Section 3 in full detail. The embeddings of the corresponding theories FID(K) and
some of their subsystems (which are obtained by restricting the induction principles)
into suitable systems of iterated admissible sets provide a perspicuous treatment of
interesting nonmonotone inductive definitions and simplify several proofs described
in the literature. Moreover, they also provide (sharp) upper bounds for the proof-
theoretic strength of these theories for nonmonotone inductive definitions.

Their lower proof-theoretic bounds are not explicitly analyzed in this article. How-
ever, they follow immediately from connections between specific theories for non-
monotone inductive definitions and systems of Feferman’s explicit mathematics (cf.
e.g. Feferman [7, 8]) such as T0 and some of its natural subsystems and extensions.

Actually, one of the main reasons for introducing theories for nonmonotone inductive
definitions is the desire to provide a natural and powerful framework for defining
canonical models of explicit mathematics. More in this direction can be found in
Jäger and Studer [16] and Studer [27].

2 Theories for first order inductive definitions

In this section we introduce adequate first order theories for representing first order
inductive definitions, no matter whether their definition clauses are are positive or
not. Such theories can be easily obtained if we have ordinals for representing the
stages of these inductive definitions at our disposal.

In the following we let L denote some standard language of first order arithmetic.
L includes number variables (x, y, z, x0, y0, z0, . . .) and symbols for all primitive re-
cursive functions and relations. The number terms (s, t, s0, t0, . . .) of L are defined
as usual. The atomic formulas of L are all expressions R(s1, . . . , sn) so that R is a
relation symbol of L. The formulas of L are generated from the atomic formulas of
L by closing under negations, disjunctions, conjunctions and numerical quantifica-
tions; the remaining logical connectives are abbreviated as expected.

If X is a fresh unary1 relation symbol, then L(X) is the extension of L by X. The
1For notational simplicity we restrict ourselves to a fresh unary relation symbol; however, it is

obvious how all following arguments can be generalized to arbitrary arities.
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definition of positive and negative occurrences of X within L(X) formulas A is as
always. If the L(X) formula A has no negative occurrences of X, then one speaks
of an X positive L(X) formula; the collection of all X positive L(X) formulas is
denoted by POS.

The QF formulas of L(X) are the quantifier-free L(X) formulas. Numerical quan-
tifiers are bounded if they occur in a context ∃x(x <N t ∧ . . .) or ∀x(x <N t→ . . .)
for the primitive recursive less relation <N and a number term t not containing x;
then we often write (∃x<N t)(. . .) and (∀x<N t)(. . .), respectively.2 The Π0

0 formulas
of L(X) are the L(X) formulas whose quantifiers are bounded, the Π0

1 formulas of
L(X) comprise the Π0

0 formulas of L(X) as well as all L(X) formulas of the form
∀xA(x) so that A(x) is a Π0

0 formula of L(X).

An L(X) formula which contains at most x free is called a (unary) operator form,
and we let A(X, x) range over such forms. Observe that operator forms are not
required to be X positive. Sometimes we simply write POS, QF, Π0

0 and Π0
1 for

the collections of all operator forms which are positive, QF, Π0
0 and Π0

1 formulas of
L(X), respectively.

Later we will turn to specific operator forms, but the following theories can be
formulated without imposing any syntactic restrictions. Hence let K be an arbitrary
collection of operator forms. Then we extend L to a new first order language LK by
adding a new sort of ordinal variables (α, β, γ, α0, β0, γ0, . . .), a new binary relation
symbol < for the less relation on the ordinals and a binary relation symbol PA for
each unary operator form A(X, x) from K. In addition, we write Pα

A(s) for PA(α, s).

The atomic formulas of LK comprise the atomic formulas of L plus the expressions
of the form (α < β) and Pα

A(s) for all operator forms A(X, x) from K. The formulas
(A,B,C,A0, B0, C0, . . .) of LK are inductively generated as follows:

1. Each atomic formula of LK is an LK formula.

2. If A and B are LK formulas, then ¬A, (A ∨B) and (A ∧B) are LK formulas.

3. If A is an LK formula, then ∃xA and ∀xA are LK formulas.

4. If A is an LK formula, then ∃αA, ∀αA, (∃α < β)A and (∀α < β)A are LK
formulas.

Quantifiers of the form (Qα < β) are called bounded ordinal quantifier. Furthermore,
we write Aα to denote the LK formula which is obtained from A by replacing all
unbounded ordinal quantifiers Qβ in A by the bounded ordinal quantifier (Qβ < α).
Additional abbreviations are

P<α
A (s) := (∃β < α)P β

A(s) and P∞A (s) := ∃αP α
A(s).

2We write <N for the primitive recursive less relation since later a less relation on the ordinals
will also be used.
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For any L(X) formula A(X) and LK formula B(x), perhaps with other free vari-
ables, A(λx.B(x)), or simply A(B), denotes the result of substituting B(s) for each
occurrence of X(s) in A(X).

The ∆O

0 formulas of LK are the LK formulas which do not contain unbounded or-
dinal quantifiers. An LK formula is called a ΣO [ΠO] formula of LK if it does not
contain positive [negative] occurrences of unbounded universal ordinal quantifiers
and negative [positive] occurrences of unbounded existential ordinal quantifiers.

All theories which we will consider contain certain induction principles. In our
present context we distinguish between induction on the natural numbers and in-
duction on the ordinals. If F is a collection of LK formulas, then induction on the
natural numbers with respect to F consists of all formulas

(F -IN) A(0) ∧ ∀x(A(x)→ A(x′)) → ∀xA(x)

so that A(x) belongs to F . Induction on the ordinals with respect to F , on the
other hand, consists of all formulas

(F -IO) ∀α[(∀β < α)A(β)→ A(α)] → ∀αA(α)

where A(α) is in F . For us the induction schemas (∆O

0 -IN), (∆O

0 -IO), (LK-IN) and
(LK-IO) will be central; they provide induction on the natural numbers and ordinals
for all ∆O

0 formulas of LK and arbitrary LK formulas, respectively.

Now we are ready to present the theory FID(K) for the inductive definitions with
definition clauses from K. It is formulated in the language LK, and its axioms can
be divided into the following four groups.

I. Number-theoretic axioms. The axioms of Peano arithmetic PA with exception
of complete induction on the natural numbers.

II. Linearity axioms. They state that the binary relation symbols < provides a
linear ordering of the ordinals.

III. Operator axioms. For all operator forms A(X, x) from K we have the fol-
lowing axioms:

(Op.1) Pα
A(s) ↔ P<α

A (s) ∨ A(P<α
A , s),

(Op.2) A(P∞A , s) → P∞A (s).

IV. Induction principles. These consist of the schemas (LK-IN) and (LK-IO) for
full induction on the natural numbers and ordinals.

Next we introduce subsystems of FID(K) by weakening the principles of induction
which are permitted. FIDw(K) results from FID(K) by restricting induction on the
ordinals to (∆O

0 -IO), and FIDr(K) is obtained from FID(K) by restricting induction
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on the natural numbers and on the ordinals to ∆O

0 formulas of LK, i.e. to (∆O

0 -IN)
and (∆O

0 -IO).

The operator axioms stated above are tailored according to the usual treatment
of monotone or nonmonotone inductive definitions as described, for example, in
Richter [26]. First one formalizes that the sets Pα

A are the stages of the inductive
definition generated by the operator form A(X, x); then one says that P∞A is the set
inductively defined by A(X, x).

The axioms (Op.2) are closure properties which implicitly require that there are suf-
ficiently many ordinals in FID(K) and its subsystems so that the process of forming
the stages of the inductive definitions with clauses from K comes to an end. If we
put no restrictions on K this means asking for much (cf. e.g. Aczel and Richter [2]
and Richter [26]). On the other hand, if K is the collection of all X positive operator
forms A(X, x), then FID(K) is nothing but a variant of the well-known theory ID1

(cf. e.g. Buchholz, Feferman, Pohlers and Sieg [6]) which explicitly mentions the
stages of the inductive definitions.

3 Recursively inaccessible and Mahlo ordinals

Let Φ and Ψ be operators on the power set P (N) of the natural numbers, i.e.
mappings from P (N) to P (N). Following Richter [26], one can then define a new
operator [Φ,Ψ] by setting for all subsets S of N :

[Φ,Ψ](S) :=

{
Φ(S), if Φ(S) 6⊂ S,

Ψ(S), if Φ(S) ⊂ S.

Operators of this form are nonmonotone in general. In constructing the stages of
the inductive definitions generated by [Φ,Ψ], one applies Φ until closure under Φ is
reached; then there is one application of Ψ, and afterwards Φ is active again. This
process is continued until one has closure under Φ and Ψ.

Now let K1 and K2 be two classes of unary operator forms. Then [K1,K2] is the
class of all operators A(X, x) defined as

A(X, x) :=

[A1(X, x) ∧ ¬∀y(A1(X, y)→ X(y)) ] ∨ [A2(X, x) ∧ ∀y(A1(X, y)→ X(y)) ]

so that A1(X, x) belongs to K1 and, additionally, A2(X, x) to K2. This operator
form A(X, x) is called a combined operator form with first component A1(X, x) and
second component A2(X, x). Obviously, this definition follows the pattern of the
combination of operators à la Richter.

Richter [26] studies the closure ordinals of several classes of combined operator forms,
in particular those which have Π0

1 definable components. For this case he exhibits
the exact relationship to the first recursively Mahlo ordinal. According to Aczel [1]
and Richter [26] we have:
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(i) cl([Π0
0,Π

0
0]) = ω2.

(ii) cl([Π0
1,Π

0
0]) = the first recursively inaccessible ordinal.

(iii) cl([Π0
1,Π

0
1]) = the first recursively Mahlo ordinal.

In connection with modeling Fefermans’s theory T0, also the class of operator forms
[POS,QF] is of interest. It is shown in Jäger and Studer [16] and Studer [27] that
FID([POS,QF]), FIDw([POS,QF]) and FIDr([POS,QF]) provide natural frameworks
for interpreting T0 and some of its restrictions.

Together with the results of the next section this implies that FID([POS,QF]) is
proof-theoretically equivalent to the theory of iterated admissible sets KPi, which
formalizes a recursively inaccessible universe. Hence FID([POS,QF]) is a further
first order theory reflecting the idea of recursive inaccessibility.

4 Theories for admissible sets

Theories for (iterated) admissible sets are generally based on Kripke-Platek set the-
ory KP, a famous subsystem of Zermelo-Fraenkel set theory ZF whose transitive
standard models are the admissible sets. Prominent extension of KP are the the-
ories KPi and KPm (cf. e.g. Jäger [13] and Rathjen [21]) which formalize that the
respective universes of sets are recursively inaccessible and recursively Mahlo.

In this paper we are interested in theories for admissible sets since they provide a
natural framework for dealing with several classes of nonmonotone inductive defi-
nitions in a very perspicuous way. For our purpose it is convenient, although not
necessary, to work with Kripke-Platek set theories above the natural numbers as
urelements. Then we have two forms of induction, namely induction on the natural
numbers and ∈ induction, which correspond exactly to induction on the naturals
and induction on the ordinals in the theories for inductive definitions.

In the following we repeat more or less the formalization of theories for admissible
sets as, for example, in Jäger [12, 13, 14] and refer to these publications for all
unexplained notions, technical details and further reading. Accordingly, our theories
for admissible sets are formulated in the extension L∗ = L(∈,N, S,Ad) of L by the
membership relation symbol ∈, the set constant N for the set of the natural numbers,
the unary relation symbol S in order to express that an object is a set and the unary
relation symbol Ad for stating that an object is an admissible set.

From now on we use x, y, z, f, g (possibly with subscripts) to range over the variables
of L∗. The terms (a, b, c, a0, b0, c0, . . .) and formulas (A,B,C,A0, B0, C0, . . .) of L∗ as
well as the ∆0, Σ, Π, Σn and Πn formulas of L∗ are defined as usual. The notation
~a is shorthand for a finite string a1, . . . , an whose length will be specified by the
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context. Equality between objects is not represented by a primitive symbol but
defined by

(a = b) :=

{
(a ∈ N ∧ b ∈ N ∧ (a =N b)) ∨
(S(a) ∧ S(b) ∧ (∀x ∈ a)(x ∈ b) ∧ (∀x ∈ b)(x ∈ a))

where =N is the symbol for the primitive recursive equality on the natural numbers.
The formula Aa is the result of replacing each unrestricted quantifier ∃x(. . .) and
∀x(. . .) in A by (∃x ∈ a)(. . .) and (∀x ∈ a)(. . .), respectively. In addition, we freely
make use of all standard set-theoretic notations and write, for example Tran(a) for
the ∆0 formula saying that a is a transitive set.

In L∗ one can easily formulate induction on the natural numbers and ∈ induction,
i.e. foundation. To this end let F be a collection of L∗ formulas. As in the case
of theories for inductive definitions we let induction on the natural numbers with
respect to F consist of all formulas

(F -IN) A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x)

so that A(x) belongs to F . Furthermore, ∈ induction with respect to F consists of
all formulas

(F -I∈) ∀x[(∀x ∈ y)A(y)→ A(x)] → ∀xA(x)

with A(x) in F . In analogy to theories for inductive definitions we will confine
ourselves to the induction schemas (∆0-IN), (∆0-I∈), (L∗-IN) and (L∗-I∈).

Now we introduce three main theories KPu, KPi and KPm for admissible sets which
differ in strength of their set existence axioms. Their logical axioms comprise the
usual axioms of classical first order logic with equality. The logical axioms of KPu
can be divided into the following four groups.

I. Ontological axioms. We have for all terms a, b and ~c of L∗, all function symbols
h and relation symbols R of L and all axioms A(~x) of group III whose free variables
belong to the list ~x:

(1) a ∈ N ↔ ¬S(a).

(2) ~c ∈ N → h(~c) ∈ N.

(3) R(~c) → ~c ∈ N.

(4) a ∈ b → S(b).

(5) Ad(a) → (N ∈ a ∧ Tran(a)).

(6) Ad(a) → (∀~x ∈ a)Aa(~x).
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II. Number-theoretic axioms. We have for all axioms A(~x) of Peano arithmetic
PA which are not instances of the schema of complete induction and whose free
variables belong to the list ~x:

(Number theory) (∀~x ∈ N)AN(~x).

III. Set-theoretic axioms. We have for all terms a and b and all ∆0 formulas
A(x) and B(x, y) of L∗:

(Pair) ∃x(a ∈ x ∧ b ∈ x).

(Transitive Hull) ∃x(a ⊂ x ∧ Tran(x)).

(∆0 Separation) ∃y(S(y) ∧ y = {x ∈ a : A(x)}).

(∆0 Collection) (∀x ∈ a)∃yB(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x, y).

IV. Induction axioms. These consist of the schemas (L∗-IN) and (L∗-I∈) for full
induction on the natural numbers and full ∈ induction.

KPu corresponds to Barwise’s theory KPU+ described in [5] with PA as theory for
the urelements. It says that its universe is an admissible set which contains the
set of natural numbers as an element. In our axiomatization we include the axiom
about the existence of transitive hulls rather the the more familiar axiom about the
existence of union sets since we often work with very restricted forms of ∈ induction.

The set theory KPi results from KPu by adding a further limit axiom which expresses
that every set is contained in an admissible set,

(Limit) ∀x∃y(x ∈ y ∧ Ad(y)).

Hence the transitive standard models of KPi are admissible limits of admissible sets,
the so called recursively inaccessible sets. Finally, the theory KPm is KPu augmented
by the schema of Π2 reflection on the admissible sets,

(Mahlo) ∀x∃yA(x, y,~a) → ∃z[Ad(z) ∧ ~a ∈ z ∧ (∀x ∈ z)(∃y ∈ z)A(x, y,~a)]

for all ∆0 formulas A(x, y,~a) whose parameters belong to the list x, y,~a. The tran-
sitive standard models of KPm are the recursively Mahlo sets. Furthermore, it is
easy to see that (Limit) follows from (Mahlo).

Let T be one of the systems KPu, KPi or KPm. Then Tw is obtained from T by
restricting (L∗-I∈) to (∆0-I∈), and Tr is T with (L∗-I∈) replaced by (∆0-I∈) and
(L∗-IN) replaced by (∆0-IN).

The proof-theoretic analysis of KPu, KPi and KPm and their just mentioned sub-
systems has been carried through several years ago and belongs to the general area
admissible proof theory. Relevant articles and sources for further reading are, for
example, Jäger [9, 10, 11, 13], Jäger and Pohlers [15], Pohlers [18, 19, 20] and Rath-
jen [21, 22, 23, 24]. Arai [3, 4] presents an alternative proof-theoretic approach to
dealing with Mahlo universes.
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5 Reductions to theories for admissible sets

Now we turn to some crucial connections between nonmonotone inductive definitions
and admissible sets, and this analysis then leads to straightforward interpretations
of several systems FID(K) into theories for admissible sets. We concentrate ourselves
on classes of combined operator forms whose first component is from POS or Π0

1 and
whose second component is from QF, Π0

0 or Π0
1.

The ordinals of the theories for inductive definitions will be represented as the ordi-
nals of the theories for admissible sets; the latter are defined in the language L∗ by a
∆0 formula Ord(x). We use α, β, γ (possibly with subscripts) to range over ordinals
and write α < β for α ∈ β.

Let A(X, x) be an arbitrary operator form. Then we want HA(α, f) to express that
f describes the iteration of A along α and set

HA(α, f) :=

 Fun(f) ∧ dom(f) = α ∧
(∀β < α) [ f(β) = {x ∈ N : AN(

⋃
γ<β

f(γ), x)} ∪
⋃
γ<β

f(γ) ] .

This formula HA(α, f) is used in a Σ definition of the stages of the inductive defi-
nition generated by A(X, x) which is given now. We are also interested in theories
with ∈ induction restricted to ∆0 formulas so that Σ recursion over the full universe
is not necessarily available. Locally in each admissible set, however, we can make
use of Σ recursion, and this is sufficient for our inductive definitions.

IαA(x) := ∃f [HA(α+1, f) ∧ x ∈ f(α)], I<βA (x) := (∃α < β)IαA(x),

I<aA (x) := (∃α ∈ a)IαA(x), I∞A (x) := ∃α IαA(x).

The next lemma provides some auxiliary results which are independent of the specific
form of the operator forms. Their proofs are straightforward and will be omitted.
In the following we could often replace KPir by weaker theories; however, in the end
we will be interested in KPir and some of its extensions so that there is no point in
being more restrictive now.

Lemma 1 KPir proves for all operator forms A(X, x):

1. HA(α, f) ∧ HA(β, g) ∧ α < β → (∀γ < α)(f(γ) = g(γ)).

2. Ad(a) → (∀α ∈ a)(∃f ∈ a)HA(α, f).

3. ∀α∃fHA(α, f).

4. Ad(a) ∧ α ∈ a ∧ b ∈ N → (IαA(b) ↔ (∃f ∈ a)[HA(α+1, f) ∧ b ∈ f(α)]).

5. a ∈ N → (IαA(a) ↔ (I<αA (a) ∨ AN(I<αA , a))).
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After these preparatory observations concerning general operator forms, we now
turn to the combined operator forms as introduced in Section 3. We begin with the
following simple property.

Lemma 2 Let A(X, x) be a combined operator form whose first component is the
L(X) formula B(X, x). Then we have:

KPir ` a ∈ N ∧ BN(I<αA , a) → IαA(a).

Proof. This assertion is shown by a distinction of cases which takes the specific
behaviour of combined operator forms with respect to their components into account.
We work informally in KPir.

Case 1. ¬(∀y ∈ N)(BN(I<αA , y) → I<αA (y)). Then the first component B(X, x) of
A(X, x) is active at stage α of the hierarchy generated by AN(X, x), yielding that
IαA(a).

Case 2. (∀y ∈ N)(BN(I<αA , y) → I<αA (y)). Then we are immediately done since I<αA
is contained in IαA. 2

Combined operator forms whose first components belong to POS have the expected
closure properties with respect to their first components. They are listed in the
following lemma.

Lemma 3 Let A(X, x) be a combined operator form whose first component is the
X positive L(X) formula B(X, x). Then we have:

1. KPir ` Ad(a) ∧ b ∈ N ∧ BN(I<aA , b) → I<aA (b).

2. KPir ` b ∈ N ∧ BN(I∞A , b) → I∞A (b).

Proof. In view of our assumption about the operator form A(X, x) we know that
it is of the form

[B(X, x) ∧ ¬∀y(B(X, y)→ X(y)) ] ∨ [ C(X, x) ∧ ∀y(B(X, y)→ X(y)) ]

for some L(X) formula C(X, x). Now we work informally in KPir and assume that
we have Ad(a), b ∈ N and BN(I<aA , b). Because of Lemma 1 this implies that

BN(λy.Ca(y), b)

for C(y) being the Σ formula ∃αIαA(y). Since B(X, x) is X positive we can apply
Σ reflection within a and obtain, after some intermediate steps, that there exists
an ordinal β in a so that BN(I<βA , b). Hence it follows from the previous lemma
that IβA(b), thus I<aA (b). This completes the proof of our first assertion; the second
assertion can be treated analogously. 2

The next lemma is a preparatory step for dealing with the second components of
operator forms belonging to operator classes of the form [K,QF] or [K,Π0

0]. It is
tailored for handling negative occurrences of X in QF and Π0

0 formulas of L(X).
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Lemma 4 Let A(X, x) be an operator form, B(X,~z) a QF formula and C(X,~z) a
Π0

0 formula of L(X) and assume that all free variables of B(X,~z) and C(X,~z) are
from the list ~z. Then we have:

1. KPir ` ~a ∈ N ∧ BN(I∞A ,~a) → ∃α∀β(α ≤ β → BN(I<βA ,~a)).

2. KPiw ` ~a ∈ N ∧ CN(I∞A ,~a) → ∃α∀β(α ≤ β → CN(I<βA ,~a)).

Proof. Without loss of generality we can assume that B(X,~z) and C(X,~z) are
in negation normal form; i.e. all negation symbols are pushed inside the formula
as far as possible, and consecutive negation symbols of even number are removed
afterwards. We begin with proving the first assertion by induction on the length of
the formula B(X,~z).

(i) If X does not occur in B(X,~z), then the assertion is trivial. If B(X,~z) is of the
form X(t) or ¬X(t), then the assertion follows from the definition of the formulas
I∞A (t) and I<βA (t).

(ii) If B(X,~z) is a formula (B0(X,~z) ∨ B1(X,~z)), then the assertion follows imme-
diately from the induction hypothesis.

(iii) If B(X,~z) is a formula (B0(X,~z) ∧ B1(X,~z)), then the induction hypothesis
implies that

BN(I∞A ,~a) → [∃α0∀β(α0 ≤ β → BN
0 (I<βA ,~a)) ∧ ∃α1∀β(α1 ≤ β → BN

1 (I<βA ,~a))].

Choosing the larger witness for the two existential quantifiers yields the assertion.

Since B(X,~z) is quantifier-free, the proof of the first assertion is completed. The
second assertion is proved by following the same pattern but with two additional
cases for dealing with the bounded numerical quantifiers.

(iv) If C(X,~z) begins with a bounded existential numerical quantifier, we obtain the
assertion by a simple application of the induction hypothesis.

(v) If C(X,~z) is of the form (∀x<N t)C0(X,~z, x) for some number term t, the induc-
tion hypothesis implies

KPiw ` ~a ∈ N ∧ CN(I∞A ,~a) → (∀x<N t)∃α∀β(α ≤ β → CN
0 (I<βA ,~a, x)). (1)

At this stage we insert an auxiliary consideration. We write A(x, α) for the formula
∀β(α ≤ β → CN

0 (I<βA ,~a, x) and obtain by complete induction on the natural numbers
that

KPiw ` (∀y ∈ N)[(∀x<Ny)∃αA(x, α)→ ∃α(∀x<Ny)A(x, α)]. (2)

From (1) and (2) we conclude

KPiw ` ~a ∈ N ∧ CN(I∞A ,~a) → ∃α∀β(α ≤ β → (∀x<N t)C
N
0 (I<βA ,~a, x)).

Hence also bounded universal numerical quantifiers can be handled, and therefore
the second assertion is proved as well. 2

11



The proof of the second assertion of the previous lemma indicates that a bit more
than ∆0 induction on the natural numbers is necessary for treating bounded nu-
merical quantifiers. Thus it cannot be carried through in KPir, but KPiw is amply
sufficient.

Theorem 5 Let A(X, x) be an operator form from [POS,QF] and B(X, x) an op-
erator form from [POS,Π0

0]. Then we have:

1. KPir ` a ∈ N ∧ AN(I∞A , a) → I∞A (a).

2. KPiw ` a ∈ N ∧ BN(I∞B , a) → I∞B (a).

Proof. Since the operator form A(X, x) belongs to the class [POS,QF], it has to
be of the form

[ C(X, x) ∧ ¬∀y(C(X, y)→ X(y)) ] ∨ [D(X, x) ∧ ∀y(C(X, y)→ X(y)) ]

with C(X, x) an X positive and D(X, x) a quantifier-free formula of L(X). Now we
work informally in KPir and only have to show

CN(I∞A , a)→ I∞A (a) and DN(I∞A , a)→ I∞A (a)

for all a ∈ N in order to establish the first part of our theorem. However, the left
implication follows immediately from Lemma 3. Now suppose that DN(I∞A , a). Then
the first assertion of Lemma 4 implies that there exists an ordinal α so that

∀β(α ≤ β → DN(I<βA , a).

We use the axiom (Limit) of KPir to find an admissible set b which contains α as
an element. It follows that {x ∈ b : Ord(x)} is a set in KPir, namely an ordinal γ so
that α < γ. Hence we have DN(I<γA , a); in addition, Lemma 3 yields

(∀x ∈ N)(CN(I<γA , x)→ I<γA (x)).

This implies that DN(X, x) has to be active in defining the γth stage IγA of our
hierarchy. Because of DN(I<γA , a), we therefore obtain IγA(a) and consequently I∞A (a).

The second assertion of this theorem is proved analogously; we only have to use the
second assertion of Lemma 4 instead of its first. 2

Our next considerations refer to combined operator forms from the classes [Π0
1,QF]

and [Π0
1,Π

0
0]. In contrast to the previous cases, we now have to deal with nonmono-

tonicity already in the first components of these operator forms. For this purpose
we introduce a suitable form of Π2 reflection in our theories for admissibles. Global
Π2 reflection is the schema

(Π2 GRef) ∀x∃yA(x, y,~a) → ∃z[Tran(z) ∧ ~a ∈ z ∧ (∀x ∈ z)(∃y ∈ z)A(x, y,~a)]
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for all ∆0 formulas A(x, y,~a) whose parameters belong to the list x, y,~a. This is
global Π2 reflection since it refers to the full universe of sets. Of course it also makes
sense to claim that each admissible is closed under Π2 reflection. This we call the
schema of local Π2 reflection,

(Π2 LRef) Ad(a) → (∀~x ∈ a)Aa(~x)

for all instances A(~x) of (Π2 GRef) whose free variables belong to the list ~x. Finally,
(Π2 Ref) is the schema comprising all instances of (Π2 GRef) and (Π2 LRef). Al-
though very specific forms of Π2 reflection would be sufficient for our later purposes,
we decided to work with this general form since thus further notation can be avoided
and the proof-theoretic bounds are not affected.

Namely, if T is the theory KPi or KPm, then it is not difficult to see that Tw+(Π2 Ref)
and Tw as well as T + (Π2 Ref) and T are pairwise proof-theoretically equivalent.
Moreover, by adapting an argument of Barwise [5], one can check that subforms of
Π2 reflection, for example Π2 reflection for ordinals, are provable in Tw. We also
want to mention that Tr + (Π2 Ref) is slightly stronger than Tr. A detailed proof-
theoretic analysis of Π2 reflection in theories for admissible sets with weak forms of
induction will be given elsewhere.

In the following we want to distinguish between the positive and negative occurrences
of the relation symbol X in L(X) formulas. This can be conveniently achieved by
choosing a fresh unary relation symbol Y and working in the extension L(X, Y ) of
L(X). Then for each L(X) formula A(X) there exists an L(X, Y ) formula B(X, Y )
which is positive in X and Y so that A(X) is logically equivalent to B(X,λy.¬X(y)).
The following lemma is needed for the proof of Lemma 7 below.

Lemma 6 Let A(X, x) be an operator form and B(X, Y, ~z) a Π0
1 formula of L(X, Y )

which is positive in X and Y ; assume also that all free variables of B(X, Y, ~z) are
from the list ~z. Then we have:

KPir ` ~a ∈ N ∧ γ 6= 0 ∧ (∀α < γ)(∃β < γ)BN(IβA,N \ I
α
A,~a) → BN(I<γA ,N \ I<γA ,~a).

Proof. By exploiting the X positivity of B(X, Y, ~z), a simple persistency argument
immediately shows that KPir proves the following implication:

~a ∈ N ∧ γ 6= 0 ∧ (∀α < γ)(∃β < γ)BN(IβA,N\I
α
A,~a) → (∀α < γ)BN(I<γA ,N\IαA,~a).

Hence it only remains to be shown in KPir that (∀α < γ)BN(I<γA ,N \ IαA,~a) implies
BN(I<γA ,N \ I<γA ,~a) under the given assumptions. As in the proof of Lemma 4 we
assume without loss of generality that B(X,Y, ~z) is in negation normal form and
proceed by induction on the length of B(X,Y, ~z).

(i) If Y does not occur in B(X, Y, ~z), then the assertion is trivial. If B(X, Y, ~z) is of
the form Y (t), then the assertion follows from the definition of the formula I<γA (t).
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(ii) If B(X, Y, ~z) is a disjunction, a conjunction or if it begins with a bounded or
unbounded universal numerical quantifier, then the assertion follows immediately
from the induction hypothesis and the Y positivity of B(X,Y, ~z).

(iii) If B(X,Y, ~z) is of the form (∃x<N t)B0(X,Y, ~z, x) for some number term t, then
the induction hypothesis implies that

~a ∈ N ∧ γ 6= 0 ∧ (∃x<N t)(∀α < γ)BN
0 ((I<γA ,N \ IαA,~a, x) → BN(I<γA ,N \ I<γA ,~a)

is provable in KPir. Now we proceed similar to the proof of Lemma 4 and use
complete induction on the natural numbers to exchange the universal and existen-
tial quantifiers in the left hand side of the previous formula. However, (∆0-IN) is
sufficient, and therefore also this argument can be carried through in KPir. 2

Lemma 7 Let A(X, x) be a combined operator form whose first component is the
Π0

1 formula B(X, x) of L(X). Then we have:

1. KPir + (Π2 LRef) ` Ad(a) ∧ b ∈ N ∧ BN(I<aA , b) → I<aA (b).

2. KPir + (Π2 GRef) ` b ∈ N ∧ BN(I∞A , b) → I∞A (b).

Proof. One only has to deal with the first assertion; the second can be proved
analogously. Hence we work informally in KPir and assume that we have Ad(a),
b ∈ N and BN(I<aA , b). First we choose a Π0

1 formula C(X,Y, x) of L(X, Y ) which
is positive in X and Y so that B(X, x) is logically equivalent to C(X,λy.¬X(y), x).
Then we have CN(I<aA ,N \ I<aA , b) so that

(∀α ∈ a)CN(I<aA ,N \ IαA, b)

follows because of persistency. Therefore Σ reflection within the admissible set a
implies that

(∀α ∈ a)(∃β ∈ a)CN(IβA,N \ I
α
A, b).

Now we are in the position to apply local Π2 reflection within a and conclude that
a contains an ordinal γ, which can be chosen to be greater than 0, so that

(∀α < γ)(∃β < γ)CN(IβA,N \ I
α
A, b).

Thus it follows from Lemma 6 that CN(I<γA ,N \ I<γA , b), i.e. BN(I<γA , b). In view of
Lemma 2 this means that IγA(b), hence I<aA (b) since γ is an element of a. 2

This lemma shows in which way Π2 reflection can be used in order to establish the
closure property of combined operator forms with respect to their first components
if these are Π0

1 formulas of L(X) with possibly negative occurrences of X. The
treatment of operator forms from [Π0

1,QF] and [Π0
1,Π

0
0] in the theories KPir+(Π2 Ref)

and KPiw + (Π2 Ref), respectively, is now straightforward.

Theorem 8 Let A(X, x) be an operator form from [Π0
1,QF] and B(X, x) an oper-

ator form from [Π0
1,Π

0
0]. Then we have:
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1. KPir + (Π2 Ref) ` a ∈ N ∧ AN(I∞A , a) → I∞A (a).

2. KPiw + (Π2 Ref) ` a ∈ N ∧ BN(I∞B , a) → I∞B (a).

Proof. We obtain a proof of this theorem from our proof of Theorem 5 simply by
using Lemma 7 instead of Lemma 3. 2

So far this section was concerned with the analysis of nonmonotone inductive def-
initions for the operator classes [POS,QF], [POS,Π0

0], [Π0
1,QF] and [Π0

1,Π
0
0]. Now

we make a comparatively big step and turn to the classes [POS,Π0
1] and [Π0

1,Π
0
1].

On the side of the theories for admissibles this means that we have to work within
theories for a recursively Mahlo universe. The following lemma is crucial for dealing
with combined operator forms whose second component is from Π0

1.

Lemma 9 Let A(X, x) be a combined operator and B(X, x) a Π0
1 formula of L(X).

Then we have:

KPmr ` a ∈ N ∧ BN(I∞A , a) → ∃x[Ad(x) ∧ BN(I<xA , a)].

Proof. We work informally in KPmr and assume that a ∈ N and BN(I∞A , a). As
in the proof of Lemma 7 we then choose a Π0

1 formula C(X, Y, x) of L(X, Y ) which
is positive in X and Y so that B(X, x) is logically equivalent to C(X,λy.¬X(y), x).
Then we have CN(I∞A ,N \ I∞A , a) and obtain, similar to the proof of Lemma 7, by
making use of persistency and Σ reflection that

∀α∃βCN(IβA,N \ I
α
A, a).

Now the Mahlo axiom of KPmr comes into action and provides an admissible set b
so that

(∀α ∈ b)(∃β ∈ b)CN(IβA,N \ I
α
A, a).

Essentially by Lemma 6 we thus obtain CN(I<bA ,N \ I<bA , a), i.e. BN(I<bA , a). Hence
our lemma is proved. 2

With this lemma and earlier results about the closure properties concerning the first
components of combined operators we can now treat all operators belonging to the
operator classes [POS,Π0

1] and [Π0
1,Π

0
1]. Local Π2 reflection is used for dealing with

first components which are Π0
1.

Theorem 10 Let A(X, x) be an operator form from [POS,Π0
1] and B(X, x) an op-

erator form from [Π0
1,Π

0
1]. Then we have:

1. KPmr ` a ∈ N ∧ AN(I∞A , a) → I∞A (a).

2. KPmr + (Π2 LRef) ` a ∈ N ∧ BN(I∞B , a) → I∞B (a).
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Proof. The first assertion follows from Lemma 3 and Lemma 9. For proving the
second assertion, we first recall that the operator form B(X, x) is of the form

[ C(X, x) ∧ ¬∀y(C(X, y)→ X(y)) ] ∨ [D(X, x) ∧ ∀y(C(X, y)→ X(y)) ]

with C(X, x) and D(X, x) Π0
1 formulas of L(X). Following the pattern of the proof

of Theorem 5, we show

CN(I∞B , a)→ I∞B (a) and DN(I∞B , a)→ I∞B (a)

for all a ∈ N, now working informally in KPmr + (Π2 LRef). Because of Lemma 9,
CN(I∞B , a) implies CN(I<bB , a) for some admissible set b and thus I∞B (a) by Lemma 2.
Hence I∞B is closed under C(X, x).

Next suppose that DN(I∞B , a). Then Lemma 9 yields DN(I<cB , a) for some admissible
set c. Now we make use of Lemma 7 to conclude that

(∀x ∈ N)(CN(I<cB , x)→ I<cB (x)),

i.e. I<cB is closed under C(X, x). Hence D(X, x) has to be active at stage γ := c∩Ord
of our inductive definition. Because of DN(I<γB , a), we therefore obtain IγB(a) and
consequently I∞B (a). 2

6 Proof-theoretic results

The previous section provides the crucial material for embedding our first order
theories for nonmonotone inductive definitions into suitable systems for iterated
admissible sets. These embeddings together with some other results about modeling
systems of explicit mathematics in theories for nonmonotone inductive definitions
are sufficient for determining the exact proof-theoretic bounds of those.

Let K be an arbitrary class of operator forms. Then the interpretation of the lan-
guage LK of the theory FID(K) into the language L∗ should be obvious. Both, LK
and L∗ extend the language L of first order arithmetic; the ordinals of LK are in-
terpreted as the ordinals of L∗, the less relation on the ordinal of LK goes over into
the less relation on the ordinals of L∗ and the atomic formulas Pα

A(r) of LK are
translated into the formulas IαA(r) of L∗. Now we describe this interpretation in
more detail

We first assume that the number and ordinal variables of LK are mapped into the
variables of L∗ so that no conflicts arise; if we want to be very precise, we write û and
α̂ for the variables of L∗ corresponding to the number variable u and ordinal variable
α of LK. Given an LK formula A, the L∗ formula A′ is then obtained as follows:
(i) All variables are replaced by their translations into variables of L∗; (ii) all LK
formulas of the form (α < β) are replaced by the L∗ formulas (α̂ < β̂); (iii) all LK
formulas of the form Pα

A(r) are replaced by the L∗ formulas I α̂A(r); (iv) all numerical
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quantifiers ∃x(. . .) and ∀x(. . .) are replaced by (∃x̂ ∈ N)(. . .) and (∀x̂ ∈ N)(. . .);
(v) all ordinal quantifiers ∃α(. . .) and ∀α(. . .) are replaced by ∃α̂(Ord(α̂)∧ . . .) and
∀α̂(Ord(α̂)→ . . .).

Finally let A be an LK formula whose free number and ordinal variables belong to
the lists x1, . . . , xm and α1, . . . , αn, respectively. Then we associate to A the L∗
formula FA,

FA := (x̂1 ∈ N ∧ . . . ∧ x̂m ∈ N ∧ Ord(α̂1) ∧ . . . ∧ Ord(α̂n) → A′).

Considering Lemma 1 once more, it is easy to check that in KPir the ∆O

0 formulas
of L, modulo this translation, can be treated as ∆0 formulas of L∗, provided that
we have an admissible bound of their ordinal parameters,

KPir ` Ad(a) ∧ α̂1 ∈ a ∧ . . . ∧ α̂n ∈ a → (FA ↔ F a
A).

Based on this translation, we say that FID(K) is contained in the L∗ theory T if we
have T ` FA for every axiom A of FID(K).

If T is one of the theories KPi or KPm, then it is evident by the considerations of the
previous section that Tr proves FA for all number-theoretic axioms, linearity axioms
and (Op.1) axioms A of FID(K). For dealing with the induction principles of our
theories for inductive definitions, we only have to observe that (the translations of)
all instances of (∆O

0 -IN) and (∆O

0 -IO) are available in Tr. For proving all instances of
(LK-IN) and (LK-IO), on the other hand, the set theories require the schemes (L∗-IN)
and (L∗-I∈), respectively.

These observations make it clear that, with exception of the closure axioms (Op.2),
all axioms of the theories FID(K) and their restrictions create no problems when
interpreted into theories of admissibles. But in view of Theorem 5 we also know
how to deal with the closure properties of [POS,QF] and [POS,Π0

0] operator forms.

Theorem 11 1. FIDr([POS,QF]) is contained in KPir.

2. FIDw([POS,QF]) and FIDw([POS,Π0
0]) are contained in KPiw.

3. FID([POS,QF]) and FID([POS,Π0
0]) are contained in KPi.

The closure properties of combined operator forms with first Π0
1 components require

some form of Π2 reflection. According to Theorem 8, we thus have the following
embedding theorem.

Theorem 12 1. FIDr([Π0
1,QF]) is contained in KPir + (Π2 Ref).

2. FIDw([Π0
1,QF]) and FIDw([Π0

1,Π
0
0]) are contained in KPiw + (Π2 Ref).

3. FID([Π0
1,QF]) and FID([Π0

1,Π
0
0]) are contained in KPi + (Π2 Ref).
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The theories FIDr([POS,Π0
0]) and FIDr([Π0

1,Π
0
0]) are not mentioned in the previous

two theorems. Of course they would be contained in KPiw and KPiw + (Π2 Ref),
respectively, but we can certainly do better. The problem is to take care of the
second Π0

0 components with weak forms of induction on the natural numbers (cf.
Lemma 4). Exact bounds will be given in a forthcoming note.

The closure properties of the operator forms from [POS,Π0
1] and [Π0

1,Π
0
1] are con-

sidered in Theorem 10 and require a recursively Mahlo universe. We first turn
to the interpretation of the theory FID([POS,Π0

1]) and its subsystems and look at
FID([Π0

1,Π
0
1]) afterwards.

Theorem 13 1. FIDr([POS,Π0
1]) is contained in KPmr.

2. FIDw([POS,Π0
1]) is contained in KPmw.

3. FID([POS,Π0
1]) is contained in KPm.

As before (cf. Theorem 11 and Theorem 12) we add Π2 reflection in order to obtain
closure provided that the first component is Π0

1. Because of the Mahlo axiom, the
global form of Π2 reflection is not necessary, but the proof of Theorem 10 reveals at
which stage its local version is applied.

Theorem 14 1. FIDr([Π0
1,Π

0
1]) is contained in KPmr + (Π2 LRef).

2. FIDw([Π0
1,Π

0
1]) is contained in KPmw + (Π2 LRef).

3. FID([Π0
1,Π

0
1]) is contained in KPm + (Π2 LRef).

The previous four theorems furnish us with upper proof-theoretic bounds for a series
of first order theories for nonmonotone inductive definitions based on combined
operator forms. In fact, all these upper bounds are sharp, and each first order theory
for nonmonotone inductive definitions mentioned in these four theorems is proof-
theoretically equivalent to the theory of admissible sets in which it is embedded.

This can be seen, for example, by carrying through well-ordering proofs in the
first order theories for nonmonotone inductive definitions considered above and by
exploiting the ordinal analysis of the corresponding theories of admissible sets. Here
we follow a different rack and refer to Jäger and Studer [16]. In this article we
use theories FID(K) together with their restricted versions FIDr(K) and FIDw(K)
for suitable classes K of operator forms to obtain generic model constructions for
systems of explicit mathematics.

Among other things it is shown in [16] and [27] that Feferman’s famous theory
T0 can be modeled in FID([POS,QF]) and, naturally, its obvious subsystems in
FIDr([POS,QF]) and FIDw([POS,QF]). Because of well-known proof-theoretic re-
sults we immediately obtain the following theorem.
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Theorem 15 Each of the theories FID([POS,QF]), FID([POS,Π0
0]), FID([Π0

1,QF])
and FID([Π0

1,Π
0
0]) is proof-theoretically equivalent to the theory KPi and therefore

also to the theories KPi + (Π2 Ref), (∆1
2-CA) + (BI) and T0.

Here (∆1
2-CA) + (BI) is the usual system of second order arithmetic with ∆1

2 com-
prehension and bar induction. Analogous theorems can also be formulated for the
restricted versions of these systems, but we omit their tiring formulations.

It is more interesting that, as shown in [16], the theory FID([POS,Π0
1]) is an adequate

framework for generating a model of the theory T0(M) which extends T0 by a Mahlo
axiom tailored for explicit mathematics. A well-ordering proof for T0(M) has not
been published yet. However, it should yield that the proof-theoretic ordinals of
KPm and T0(M) agree. Then we also have the proof-theoretic equivalence of the
theories FID([POS,Π0

1]), FID([Π0
1,Π

0
1]), KPm, KPm + (Π2 Ref) and T0(M). Of course

one has also the corresponding equivalences for the restricted systems.
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[14] G. Jäger. Some proof-theoretic contributions to theories of sets. In The
Paris Logic Group, editor, Logic Colloquium ’85. North-Holland, 1987.
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