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Abstract
This paper deals with universes in explicit mathematics. After intro-
ducing some basic definitions, the limit axiom and possible ordering
principles for universes are discussed. Later, we turn to least universes,
strictness and name induction. Special emphasis is put on theories
for explicit mathematics with universes which are proof-theoretically
equivalent to Feferman’s T0.

1 Introduction

In some form or another, universes play an important role in many systems of
set theory and higher order arithmetic, in various formalizations of construc-
tive mathematics and in logics for computation. One aspect of universes
is that they expand the set or type formation principles in a natural and
perspicuous way and provide greater expressive power and proof-theoretic
strength.

The general idea behind universes is quite simple: suppose that we are given a
formal system Th comprising certain set (or type) existence principles which
are justified on specific philosophical grounds. Then it may be argued that
there should also exist a collection of sets (or types) – a so-called universe
– satisfying these closure conditions. This process can be iterated, thus
establishing stronger and stronger extensions of Th.

In classical set theory this process is related to what is inherent in the usual
reflection principles yielding the existence of certain large cardinals (cf. e.g.
Drake [4]). In theories for iterated admissible sets, admissibles act as uni-
verses and provide for recursive analogues of large cardinals (cf. e.g. Jäger
[11]). Universes in Martin-Löf type theory are generated by specific intro-
duction and (sometimes) elimination rules and can be regarded as the con-
structive versions of certain regular cardinals. See Martin-Löf [21], Palmgren
[25], Rathjen [26] and Setzer [27] for more information about this approach.

In the framework of explicit mathematics, universes have first been con-
sidered by Feferman [7] in connection with Hancock’s conjecture and by
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Marzetta [22] for designing an explicit analogue of Friedman’s theory ATR0 of
arithmetic transfinite recursion (cf. e.g. Friedman, McAloon and Simpson [9]
and Simpson [28]) and Jäger’s theory KPl0 of iterated admissible sets without
foundation (cf. e.g. Jäger [10, 11]). More about universes in explicit mathe-
matics can be found, for example, in Jäger and Strahm [15] and Strahm [29],
always in connection with theories of predicative or metapredicative strength.
Universes are also crucial for dealing with Mahloness in explicit mathemat-
ics, as shown in the forthcoming paper Jäger and Studer [16]. In Kahle [18],
universes are studied for Frege structures, i.e. truth theories corresponding
to explicit mathematics.

The purpose of this article is to clarify several principle aspects of universes in
explicit mathematics and to present them in compact form. After introducing
some basic definitions, the limit axiom and possible ordering principles for
universes are discussed. Later we turn to least universes, strictness and name
induction. Special emphasis is put on theories for explicit mathematics with
universes which are proof-theoretically equivalent to Feferman’s T0.

2 Explicit mathematics

Explicit mathematics has been introduced in Feferman [5] as a framework
for Bishop style constructive mathematics. The relationship between ex-
plicit mathematics, other formalizations of constructive mathematics and
subsystems of analysis and an interesting interplay between set-theoretic and
recursion-theoretic models of explicit mathematics have first been studied in
Feferman [5, 6].

In the following, we do not work with Feferman’s original formalization of
systems of explicit mathematics. Instead, we treat them as theories of types
and names as developed in Jäger [12].

Our theories of types and names are formulated in the second order language
L for individuals and types. It comprises individual variables a, b, c, f, u, v, w,
x, y, z, . . . as well as type variables S, T, U, V,W,X, Y, Z, . . . , both possibly
with subscripts. L also includes the individual constants k, s (combinators),
p, p0, p1 (pairing and projections), 0 (zero), sN (successor), pN (predecessor),
dN (definition by numerical cases). There are additional individual constants,
called generators, which will be used for the uniform naming of types, namely
nat (natural numbers), id (identity), co (complement), int (intersection), dom
(domain), inv (inverse image), j (join), i (inductive generation) and ` (universe
generator). There is one binary function symbol · for (partial) application of
individuals to individuals. Further, L has unary relation symbols ↓ (defined)
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and N (natural numbers) as well as the three binary relation symbols ∈
(membership), = (equality) and < (naming, representation).

The individual terms (r, s, t, r1, s1, t1, . . . ) of L are built up from individual
variables and individual constants by means of our function symbol · for
application. In the following, we often abbreviate (s · t) simply as (st) or st
and adopt the convention of association to the left so that s1s2 . . . sn stands
for (. . . (s1 · s2) . . . sn). Further we put t′ := sNt.

Usually, we write (s, t) instead of pst and define general n tupling by induc-
tion on n as follows:

(s1) := s1, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

The atomic formulas of L are the formulas N(s), s↓, s = t, s ∈ U and <(s, U).
Since we work with a logic of partial terms, it is not guaranteed that all terms
have values, and s↓ is read as s is defined or s has a value. Moreover, N(s)
says that s is a natural number, and the formula <(s, U) is used to express
that the individual s represents the type U or is a name of U .

The formulas of L (A,B,C,A1, B1, C1, . . . ) are generated from the atomic
formulas by closing against the usual connectives as well as quantification in
both sorts. The following table contains a useful list of abbreviations:

s ' t := s↓ ∨ t↓ → s = t,

s ∈ N := N(s),

(∃x ∈ N)A(x) := (∃x)(x ∈ N ∧ A(x)),

(∀x ∈ N)A(x) := (∀x)(x ∈ N→ A(x)),

U ⊂ V := (∀x)(x ∈ U → x ∈ V ),

U = V := U ⊂ V ∧ V ⊂ U,

s ∈̇ t := (∃X)(<(t,X) ∧ s ∈ X),

U ∈̃ V := (∃x)(<(x, U) ∧ x ∈ V ),

(∃x ∈̇ s)A(x) := (∃x)(x ∈̇ s ∧ A(x)),

(∀x ∈̇ s)A(x) := (∀x)(x ∈̇ s→ A(x)),

s =̇ t := (∃X)[<(s,X) ∧ <(t,X)],

s ⊂̇ t := (∃X, Y )[<(s,X) ∧ <(t, Y ) ∧X ⊂ Y ],

<(s) := (∃X)<(s,X).

The vector notation ~U and ~s is sometimes used to denote finite sequences
of type variables U1, . . . , Um and individual terms s1, . . . , sn, respectively,
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whose lengths are given by the context. For example, for ~U = U1, . . . , Un
and ~s = s1, . . . , sn we write:

<(~s, ~U) := <(s1, U1) ∧ · · · ∧ <(sn, Un),

<(~s) := <(s1) ∧ · · · ∧ <(sn).

The logic of systems of explicit mathematics is Beeson’s classical logic of
partial terms (cf. Beeson [1] or Troelstra and van Dalen [30]) for individuals
and classical logic for types.

Now we introduce the theory EETJ which provides a framework for explicit
elementary types with join. The nonlogical axioms of EETJ can be divided
into the following groups.

I. Applicative axioms. These axioms formalize that the individuals form a
partial combinatory algebra, that we have pairing and projection and the
usual closure conditions on the natural numbers, as well as definition by
numerical cases.

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0(a, b) = a ∧ p1(a, b) = b,

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x),

(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

As usual, a theorem about λ abstraction and a form of the recursion theorem
can be derived from axioms (1) and (2).

II. Explicit representation and equality. The following axioms state that each
type has a name, that there are no homonyms and that < respects the
extensional equality of types.

(1) ∃x<(x, U),

(2) <(a, U) ∧ <(a, V )→ U = V ,

(3) U = V ∧ <(s, U)→ <(s, V ).
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III. Basic type existence axioms. In the following we provide a finite axioma-
tization of uniform elementary comprehension plus join.

Natural numbers

<(nat) ∧ ∀x(x ∈̇ nat↔ N(x)).

Identity

<(id) ∧ ∀x(x ∈̇ id↔ (∃y)(x = (y, y))).

Complements

<(a) → <(co(a)) ∧ ∀x(x ∈̇ co(a)↔ x /̇∈ a).

Intersections

<(a) ∧ <(b) → <(int(a, b)) ∧ ∀x(x ∈̇ int(a, b)↔ x ∈̇ a ∧ x ∈̇ b).

Domains

<(a) → <(dom(a)) ∧ ∀x(x ∈̇ dom(a)↔ ∃y((x, y) ∈̇ a)).

Inverse images

<(a) → <(inv(a, f)) ∧ ∀x(x ∈̇ inv(a, f)↔ fx ∈̇ a).

Joins

<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧ Σ(a, f, j(a, f)).

In this last axiom, the formula Σ(a, f, b) expresses that b names the disjoint
union of f over a, i.e.

Σ(a, f, b) := ∀x(x ∈̇ b↔ ∃y∃z(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

An L formula A is called elementary if it contains neither the relation symbol
< nor bound type variables. In the original formulation of explicit mathemat-
ics, elementary comprehension is not dealt with by a finite axiomatization,
but directly as an infinite axiom schema. According to a theorem in Fefer-
man and Jäger [8], reformulated in Lemma 1 below, this schema of uniform
elementary comprehension is provable from our finite axiomatization. Join
is not needed for this argument.

In the following we assume that z1, z2, . . . and Z1, Z2, . . . are arbitrary
but fixed enumerations of the individual and type variables of L, respec-
tively. If A is an elementary L formula with no other individual vari-
ables than z1, . . . , zm and no other type variables than Z1, . . . , Zn and if
~a = a1, . . . , am and ~S = S1, . . . , Sn, then we write A[~a, ~S] for the L formula
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which results from A by a simultaneous replacement of zi by ai and Zj by
Sj (1 ≤ i ≤ m, 0 ≤ j ≤ n).

Lemma 1 (Elementary comprehension) Let A be an elementary L for-
mula with no individual variables other than z1, . . . , z(m + 1) and no type
variables other than Z1, . . . , Zn. Then there exists a closed individual term t
of L, depending on A, so that EETJ proves for all ~a = a1, . . . , am,
~b = b1, . . . , bn and ~S = S1, . . . , Sn:

1. <(~b, ~S) → <(t(~a,~b)),

2. <(~b, ~S) → ∀x(x ∈̇ t(~a,~b)↔ A[x,~a, ~S]).

We often informally write {x : B(x)} for the collection of all individuals c
such that B(c). Hence, the previous lemma implies that for elementary L

formulas A[u,~v, ~W ] one has:

(i) {x : A[x,~a, ~S]} is a type;

(ii) this type can be named, via a closed individual term t of L, in a uniform
way depending on its individual parameters and the names of its type
parameters.

For many applications, however, this formulation of elementary comprehen-
sion is too restricted. Below, we therefore present a modified form. Before
doing this, however, we introduce some further convenient shorthand nota-
tions.

Let ~U = U1, . . . , Un and ~s = s1, . . . , sn be sequences of type variables and
individual terms of L, respectively, and let A(~U) be an elementary L formula.

Then we write A(~s) for the L formula which results from A(~U) by replacing
for i = 1, . . . , n each occurrence of t ∈ Ui by t ∈̇ si. In addition, given a
sequence ~r = r1, . . . , rm of individual terms of L, then ~r(~s) stands for the
sequence of individual terms r1(~s), . . . , rm(~s) of L.

Lemma 2 (Modified elementary comprehension) Let A be an elemen-
tary L formula with no individual variables other than z1, . . . , z(m+ 1) and
no type variables other than Z1, . . . , Zn, and let ~s = s1, . . . , sn be a sequence
of closed individual terms of L. Then there exists a closed individual term t
of L, depending on A and ~s, so that EETJ proves for all ~a = a1, . . . , am:

1. <(~s(~a)) → <(t(~a)),

2. <(~s(~a)) → ∀x(x ∈̇ t(~a)↔ A[x,~a,~s(~a)]).
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In the following we employ two forms of induction on the natural numbers,
type induction and formula induction. Type induction is the axiom

(T-IN) ∀X(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).

Formula induction, on the other hand, is the schema

(L-IN) A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x)

for each L formula A(u). Sometimes, we also want additional axioms which
guarantee that different generators create different names. This can be
achieved by adding, for example, axioms of the following kind.

Uniqueness of generators with respect to L is given by the collection (L-UG)
of the following axioms for all syntactically different generators r0 and r1 and
arbitrary generators s and t of L:

(1) r0 6= r1,

(2) ∀x(sx 6= nat ∧ sx 6= id),

(3) ∀x∀y(sx = ty → s = t ∧ x = y).

3 The limit axiom and basic properties of

universes

Now we are going to introduce universes in explicit mathematics. In short, a
universe is a type U so that: (i) U is closed under elementary comprehension
and join; (ii) all elements of U are names. This second condition (ii) is
crucial to avoid universes from being trivial since otherwise, for example, the
universal type V = {x : x = x} could act as the topmost universe.

In order to give the definition of universe in greater detail, we introduce
some auxiliary notation and let C(S, a) be the closure condition which is the
disjunction of the following L formulas:

(1) a = nat ∨ a = id,

(2) ∃x(a = co(x) ∧ x ∈ S),

(3) ∃x∃y(a = int(x, y) ∧ x ∈ S ∧ y ∈ S),

(4) ∃x(a = dom(x) ∧ x ∈ S),

(5) ∃f∃x(a = inv(f, x) ∧ x ∈ S),
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(6) ∃x∃f [a = j(x, f) ∧ x ∈ S ∧ (∀y ∈̇ x)(fy ∈ S)].

Thus the formula ∀x(C(S, x) → x ∈ S) describes that S is a type which is
closed under the type constructions of EETJ, i.e. elementary comprehension
and join. A universe is a type which consists of names only and satisfies this
closure condition.

Definition 3 1. We write U(S) to express that the type S is a universe,

U(S) := ∀x(C(S, x)→ x ∈ S) ∧ (∀x ∈ S)<(x).

2. U(t) means that the individual t is a name of a universe,

U(t) := ∃X(<(t,X) ∧ U(X)).

It follows immediately from this definition that one can work within universes
as in EETJ; in particular, there is an analogue of Lemma 1 relativized to all
universes.

Lemma 4 (Modified elementary comprehension in universes) Let A
be an elementary L formula with no individual variables other than
z1, . . . , z(m + 1) and no type variables other than Z1, . . . , Zn, and let
~s = s1, . . . , sn be a sequence of closed individual terms of L. Then there
exists a closed individual term t of L, depending on A and ~s, so that EETJ
proves for all ~a = a1, . . . , am:

1. U(S) ∧ ~s(~a) ∈ S → t(~a) ∈ S,

2. <(~s(~a)) → ∀x(x ∈̇ t(~a)↔ A[x,~a,~s(~a)]).

We now observe that universes do not contain their names; for a proof see
Marzetta [22]. This property of universes corresponds in a certain sense to
the set-theoretic fact that admissibles do not contain themselves, even if ∈
foundation is not available.

Lemma 5 In EETJ, one can prove that

U(S) ∧ <(a, S)→ a /∈ S.

Note that in explicit mathematics, the names of a type do not form a type.
This is proved in various places, for example in Cantini and Minari [3], Jäger
[13] and Jansen [17]; join is not needed for this argument. In connection with
universes, a stronger result is possible: each type has so many names that
not all of them can be contained in a single universe, or, in other words, no
universe is large enough to contain all names of a given type (see also Minari
[24]).
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Lemma 6 In EETJ, one can prove that

U(S)→ ∃x(<(x, T ) ∧ x /∈ S).

Proof Let S be a universe and choose a name a of S. Then j(a, λx.x) is a
name of the type

U = {(x, y) : x ∈ S ∧ y ∈̇ x}. (1)

The next step is to prove the equivalence

<(b, T )↔ ∀x(x ∈̇ b↔ x ∈ T ) (2)

for all b ∈ S. The direction from left to right is obvious. To establish the
converse direction, let b be an element of S. Then b is a name of a type V
since all elements of universes are names. Hence we have <(b, V ), and the
right hand side of (2) yields T = V . Thus we conclude <(b, T ).

For all b ∈ S, we derive from (1) and (2) that

<(b, T )↔ ∀x((b, x) ∈ U ↔ x ∈ T ).

Since the right hand side of this equivalence is elementary, elementary com-
prehension gives the type

W = {x : x ∈ S ∧ <(x, T )}.

If all names of T were contained in S, then W would be the type of all names
of T . But, in view of the remark above, this is not possible. 2

The theory EETJ does not prove the existence of universes. However, as in
the case of theories for admissible sets (cf. e.g. Jäger [11]), a so-called limit
axiom can easily be added. By making use of the generator `, one assigns to
each name x the name `x of a universe containing x, i.e.

(Lim) ∀x(<(x)→ U(`x) ∧ x ∈̇ `x).

The standard model constructions of Jäger and Strahm [15] for metapred-
icative and Jäger and Studer [16] for impredicative Mahlo provide natural
models for (Lim). The proof-theoretic strengths of (Lim) in the context of
elementary comprehension and join plus type or formula induction on the nat-
ural numbers have been analyzed in Kahle [19] and Strahm [29]. Although,
in many situations, (Lim) is proof-theoretically equivalent to its obvious non-
uniform version as studied in Marzetta [22] and Marzetta and Strahm [23],
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sometimes there are subtle differences between (Lim) and its nonuniform ver-
sion, which will be discussed elsewhere.

There are, of course, many universes which contain a given name a. The
universe named by `a can be regarded as the standard or normal universe
and `a as its normal name.

Definition 7 We write U`(t) to express that the individual t is a normal
name of a universe,

U`(t) := ∃x(<(x) ∧ t = `x).

A first simple observation concerning the generator ` says that for all names
a, the type named by a and the type named by `a have to be different.

Lemma 8 In EETJ + (Lim), one can prove that

∀x(<(x)→ x ˙6= `x).

Proof Let a be a name. Because of (Lim), we know that `a is a name of a
universe S which contains a. According to Lemma 5, this `a cannot be an
element of S. Hence a ˙6= `a. 2

Simple generators like co and int are extensional in the sense that a =̇ b and
u =̇ v imply co(a) =̇ co(b) and int(a, u) =̇ int(b, v). The following lemma
shows that such a form of extensionality is not the case for the generator `.

Lemma 9 In EETJ + (Lim), one can prove that

∃x∃y(<(x) ∧ <(y) ∧ x =̇ y ∧ `x ˙6= `y).

Proof Choose an arbitrary type T and a name a of T . Then `a is a name
of a universe S which contains a. Because of Lemma 6, there exists a name
b of T which does not belong to S, i.e. b /̇∈ `a. Now consider `a and `b. Both
are names of universes, but since b ∈̇ `b and b /̇∈ `a we have `a ˙6= `b. On the
other hand, a =̇ b since both are names of T . 2

Now we turn to possible “ordering principles” for universes. Motivated by
the familiar set-theoretic situation, we begin with considering linearity, tran-
sitivity and connectivity of universes which are formulated in our context as
follows:

(U-Lin) ∀X∀Y (U(X) ∧ U(Y )→ X ∈̃ Y ∨X = Y ∨ Y ∈̃ X),

(U-Tran) ∀X∀Y (U(X) ∧ U(Y ) ∧X ∈̃ Y → X ⊂ Y ),
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(U-Con) ∀X∀Y (U(X) ∧ U(Y )→ X ⊂ Y ∨ Y ⊂ X).

Although these three assertions may appear natural, they are problematic
in our context. For example, they are not valid in the standard model of
Jäger and Studer [16] and incompatible, as we will see now, with uniqueness
of generators.

In the proof of the following theorem, we exploit the fact that suitably con-
structed universes remain universes if certain elements are taken out. For
this sort of argument, it is important that we have a criterion for testing
whether a type is a universe. If universes were introduced by an implicit
definition, such an argument would hardly work.

Theorem 10 1. In EETJ, one can prove that

(U-Con)→ (U-Tran).

2. In EETJ + (Lim) + (L-UG), one can prove that

¬(U-Lin) ∧ ¬(U-Tran) ∧ ¬(U-Con).

Proof For the proof of the first assertion, take two universes S and T with
S ∈̃ T . Then T 6⊂ S since T contains a name of S which cannot be an
element of S by Lemma 5. Therefore, (U-Con) implies S ⊂ T , completing
the proof of the first assertion.

Now we work in the theory EETJ+(Lim)+(L-UG). In order to show ¬(U-Lin),
we let S be the universe named by `(`(nat)) and T the type S \ {`(nat)}.
Then T is properly contained in S. Moreover, because of the uniqueness of
generators, T is a universe. Now we apply Lemma 5 and derive S 6∈̃ T from
T ⊂ S. It only remains to check that T 6∈̃ S, or equivalently,

(∀x ∈ S)¬<(x, T ).

If a is in S, then co(co(a)) is also an element of S and a =̇ co(co(a)). The
uniqueness of generators and the definition of T therefore yield co(co(a)) ∈ T .
We apply Lemma 5 again and conclude that co(co(a)) is not a name of T .
But a and co(co(a)) name the same type so that a cannot be a name of T .
Hence we have T 6∈̃ S and therefore also ¬(U-Lin).

The proof of ¬(U-Tran) follows the same pattern. In this case we choose
R to be the universe named by `(`(nat)), S to be the universe named by
`(`(`(nat))) and T to be the type S \ {`(nat)}. It is `(nat) 6= `(`(nat))
according to Lemma 8. Hence `(`(nat)) ∈ T . Therefore R ∈̃ T . In addition,
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we have `(nat) ∈ R which implies R 6⊂ T . Therefore, ¬(U-Tran) is proved.
Owing to the first assertion of this theorem, we also have ¬(U-Con). 2

This lemma makes it clear that there are too many universes – universes that
are not generated by ` – which violate linearity, transitivity and connectivity.
As a consequence, we claim linearity, transitivity and connectivity only for
normal (names of) universes. These restricted versions are natural, sufficient
for all practical purposes and justified by the standard model construction
of Jäger and Studer [16]. Therefore our “official” formulations are:

(U`-Lin) ∀x∀y(U`(x) ∧ U`(y)→ x ∈̇ y ∨ x =̇ y ∨ y ∈̇ x),

(U`-Tran) ∀x∀y(U`(x) ∧ U`(y) ∧ x ∈̇ y → x ⊂̇ y),

(U`-Con) ∀x∀y(U`(x ∧ U`(y)→ x ⊂̇ y ∨ y ⊂̇ x).

According to the following lemma, (U`-Tran) is provable in every theory of
the form Th +(Lim)+(U`-Con), provided that Th comprises EETJ; therefore,
it need not be included in the list of axioms. To be more precise: EETJ +
(Lim) + (U`-Con) proves (U`-Tran), and EETJ + (Lim) + (U`-Lin) proves the
equivalence of (U`-Con) and (U`-Tran).

Lemma 11 In EETJ + (Lim) + (U`-Con), one can prove that

∀x∀y∀z(U`(x) ∧ U`(y) ∧ z =̇ x ∧ z ∈̇ y → x ⊂̇ y).

Since this formula is a (useful) generalization of (U`-Tran), (U`-Tran) is also
provable in EETJ + (Lim) + (U`-Con).

Proof Assume that a is a normal name of the universe S, b a normal name
of the universe T , a =̇ c and c ∈ T . Then c is also a name of S and,
therefore, we have c /∈ S according to Lemma 5. Hence T is not contained
in S. Because of (U`-Con), we thus have S ⊂ T . 2

The most famous system of explicit mathematics is the theory T0 introduced
in Feferman [5]. It is obtained from EETJ + (L-IN) by adding the principle
of inductive generation (IG). As a helpful abbreviation, we write

Closed(a, b, S) := (∀x ∈̇ a)[(∀y ∈̇ a)((y, x) ∈̇ b→ y ∈ S)→ x ∈ S].

Consider b as the code of a binary relation. Then this definition means that
S is a type which contains a c ∈̇ a if all predecessors of c in a with respect
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to b belong to S. Inductive generation (IG) is now given by the following
axioms:

(IG.1) <(a) ∧ <(b)→ ∃X(<(i(a, b), X) ∧ Closed(a, b,X)),

(IG.2) <(a) ∧ <(b) ∧ Closed(a, b, A)→ (∀x ∈̇ i(a, b))A(x)

for all L formulas A(u). Thus (IG), i.e. (IG.1) + (IG.2), states the existence
of accessible parts and, again, everything is uniform in the corresponding
names. As mentioned before, Feferman’s T0 is given by

T0 := EETJ + (L-IN) + (IG).

Space does not permit us to discuss the semantics of theories for explicit
mathematics with universes and to present some standard model construc-
tions. This issue is treated in some detail in Jäger and Studer [16] for im-
predicative systems and in Jäger and Strahm [15] for their (meta)predicative
variants. These articles also contain the proof-theoretic analysis of a series
of theories for explicit mathematics with universes.

Some relevant results are listed in the following theorem. Parts one and two
follow from Jäger and Studer [16]. For parts three and four, see Strahm

[29] and Kahle [19], respectively. The fixed point theory ÎD<ω is studied in
Feferman [7]. Transfinitely iterated fixed point theories are introduced and
analyzed in Jäger, Kahle, Setzer and Strahm [14].

Theorem 12 1. The theory T0 + (Lim) + (L-UG) + (U`-Lin) + (U`-Con) is
consistent and of the same proof-theoretic strength as T0.

2. This proof-theoretic equivalence remains true if, on both sides, inductive
generation or complete induction on the natural numbers plus inductive
generation are restricted to types.

3. The theory EETJ + (Lim) + (U`-Lin) + (U`-Con) + (L-IN) is proof-

theoretically equivalent to ÎD<ε0.

4. Moreover, if complete induction on the natural numbers in the pre-
vious system is restricted to types, then the resulting theory is proof-
theoretically equivalent to ÎD<ω and ATR0.

The model constructions in Kahle [19] and Strahm [29] employed for estab-
lishing the proof-theoretic upper bounds of EETJ+(Lim)+(U`-Lin)+(U`-Con)
plus type or formula induction on the natural numbers can easily be adapted
to satisfying (L-UG) as well. Hence, the addition of uniqueness of generators
with respect to L to these two theories does not increase their respective
proof-theoretic strength.
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4 Least universes

The limit axiom (Lim) claims that every name a is contained in a normal
universe named by `a. It does not claim, however, that this universe is a
minimal or least universe containing a. In this section we want more and
introduce the theory LUN which requires each name to be element of a least
universe. Then we deal with consequences of the existence of least universes.

In the following, we make a careful distinction between the normal universes
considered in the previous section and the least universes to be generated
now. Accordingly, LUN is formulated in the language L′ which is the variant
of L using the generator lt instead of the generator `; the generator i is not
needed in L′. The L′ formulas and other syntactic categories of L′ are defined
in analogy to those of L.

The axioms of LUN are the axioms of EETJ formulated for L′, uniqueness
of generators (L′-UG) with respect to the language L′, the schema (L′-IN)
of complete induction on the natural numbers for all L′ formulas plus the
following leastness axioms:

(L.1) ∀x(<(x)→ U(lt(x)) ∧ x ∈̇ lt(x)),

(L.2) ∀x[<(x) ∧ ∀y(C(A, y)→ A(y)) ∧ A(x)→ (∀y ∈̇ lt(x))A(y)]

for all L′ formulas A(u). The schema (L.2) is an induction principle establish-
ing that there are no definable proper subcollections of the type with name
lt(a) with the closure properties of a universe and a as an element.

The proof of the following lemma, which lists some further properties of the
generator lt, is straightforward and left to the reader. The uniqueness of
generators (L′-UG) with respect to L′ is used several times.

Lemma 13 In LUN, one can prove:

1. <(a) ∧ <(lt(a), S)→ ∀x[(C(S, x) ∨ x = a)↔ x ∈ S],

2. <(a) ∧ lt(b) ∈̇ lt(a)→ lt(b) = a,

3. a =̇ b→ lt(a) /̇∈ lt(b),

4. <(a)→ a ˙6= lt(a),

5. <(a) ∧ j(b, f) ∈̇ lt(a) ∧ a 6= j(b, f)→ b ∈̇ lt(a) ∧ (∀x ∈̇ b)(fx ∈̇ lt(a)).
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Taking up the arguments of the previous section one immediately sees that
(U-Lin), (U-Tran) and (U-Con) are inconsistent with LUN. However, the sit-
uation is even worse in LUN with reference to our ordering principles for
universes: even linearity, transitivity and connectivity for normal names are
inconsistent. In analogy to EETJ + (Lim), normal (names of) universes are
defined in LUN by

Ult(x) := ∃y(<(y) ∧ x = lt(y)).

Linearity (Ult-Lin), transitivity (Ult-Tran) and connectivity (Ult-Con) of nor-
mal names of universes are then formulated as expected.

Theorem 14 In LUN, one can prove that

¬(Ult-Lin) ∧ ¬(Ult-Tran) ∧ ¬(Ult-Con).

Proof Let a be the name lt(nat) and S the universe named by a. Now

choose a different name b of S. Then lt(a) /̇∈ lt(b) and lt(b) /̇∈ lt(a) follow
from the third part of Lemma 13. Since a is the term lt(nat), the second

part of this lemma yields a /̇∈ lt(b). Hence, we also have lt(a) ˙6= lt(b), and
¬(Ult-Lin) is proved.

We continue by defining c to be the name lt(a). This implies lt(a) ∈̇ lt(c).
Furthermore, in view of the second and the fourth part of Lemma 13, it is
also true that lt(nat) /̇∈ lt(c). From lt(nat) = a ∈̇ lt(a), we thus conclude that
lt(a) ˙6⊂ lt(c). Hence ¬(Ult-Tran).

To finish the proof of this theorem, we can proceed as in the proof of The-
orem 10 and derive ¬(Ult-Con) from the just shown ¬(Ult-Tran) and the fact
that (Ult-Con) implies (Ult-Tran). 2

Our next aim is to show that inductive generation (IG) can be handled in
LUN. The basic idea is to make use of the induction schema (L.2) of LUN
for dealing with the induction schema of inductive generation. Please keep
in mind the definition of the formula Closed(a, b,X) in the previous section.

Theorem 15 There exists a closed individual term acc of L′ so that LUN
proves for arbitrary L′ formulas A(u):

1. <(a) ∧ <(b)→ <(acc(a, b)),

2. <(a) ∧ <(b)→ Closed(a, b, acc(a, b)),

3. <(a) ∧ <(b) ∧ Closed(a, b, A)→ (∀x ∈̇ acc(a, b))A(x).
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Proof We begin by introducing some notation. Given two types U and V ,
we write U ] V for the disjoint union of U and V and Pred(U, V, w) for the
type of the predecessors of w in U with respect to V ,

U ] V := {(0, x) : x ∈ U} ∪ {(1, x) : x ∈ V },
Pred(U, V, w) := {x : x ∈ U ∧ (x,w) ∈ V }.

Elementary comprehension shows that U ] V and Pred(U, V, w) are types.
Moreover, because of Lemma 4, there are even closed terms du and pd for
which LUN proves:

<(u, U) ∧ <(v, V )→ <(du(u, v), U ] V ), (1)

U(W ) ∧ u ∈ W ∧ v ∈ W → du(u, v) ∈ W, (2)

<(u, U) ∧ <(v, V )→ <(pd(u, v, w),Pred(U, V, w)), (3)

U(W ) ∧ <(u) ∧ <(v) ∧ du(u, v) ∈ W → pd(u, v, w) ∈ W. (4)

Because of the uniqueness of generators du can even be chosen so that du(u, v)
is different from j(w, f) for arbitrary u, v, w and f .

The next step is an application of the recursion theorem for placing a closed
term t at our disposal with

t(u, v, w) ' j(pd(u, v, w), λz.t(u, v, z)) (5)

for all u, v and w. Making use of this term t and the generator lt, we can now
apply modified elementary comprehension (cf. Lemma 2) in order to obtain
a closed term acc so that acc(u, v) uniformly names the type

{x : x ∈̇ u ∧ t(u, v, x) ∈̇ lt(du(u, v))},

provided that u and v are names, i.e.

<(u) ∧ <(v)→ <(acc(u, v)), (6)

<(u) ∧ <(v)→ ∀x[x ∈̇ acc(u, v)↔ x ∈̇ u ∧ t(u, v, x) ∈̇ lt(du(u, v))]. (7)

Thus, the first assertion of our theorem is obviously satisfied. To deal with
the second assertion, assume <(a), <(b) and <(acc(a, b), S); we have to show
Closed(a, b, S). To this end, take an individual c ∈̇ a with the property

(∀x ∈̇ a)((x, c) ∈̇ b→ x ∈ S).

From this we conclude that

∀x(x ∈̇ pd(a, b, c)→ t(a, b, x) ∈̇ lt(du(a, b))).
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Together with (4), the closure properties of universes and equation (5) we
obtain

t(a, b, c) ' j(pd(a, b, c), λz.t(a, b, z)) ∈̇ lt(du(a, b)).

Therefore, c is an element of S, and the proof of Closed(a, b, S) is complete.
Hence, the second assertion of our theorem is established as well.

Before turning to the proof of the third assertion, which requires a bit more
effort, we show two auxiliary assertions (A) and (B).

(A) <(u) ∧ <(v) ∧ w ∈̇ acc(u, v)→ (∀x ∈̇ pd(u, v, w))(x ∈̇ acc(u, v)).

Proof of (A). Let u and v be names. Then w ∈̇ acc(u, v) implies in view of
equation (5) and property (7) that

j(pd(u, v, w), λz.t(u, v, z)) ∈̇ lt(du(u, v)).

Remember that du(u, v) is different from j(pd(u, v, w), λz.t(u, v, z)) according
to our choice of du. Hence, assertion 5 of Lemma 13 yields

(∀x ∈̇ pd(u, v, w))(t(u, v, x) ∈̇ lt(du(u, v))).

Thus, we have (∀x ∈̇ pd(u, v, w))(x ∈̇ acc(u, v)), and the proof of the first
auxiliary assertion (A) is complete.

Depending on the closed terms t and acc and the parameters u and v, we
now define for each L′ formula A(w) an L′ formula BA(u, v, w) which helps to
reduce the closure principle of inductive generation to the closure condition
for universes,

BA(u, v, w) := ∀y(y ∈̇ acc(u, v) ∧ w = t(u, v, y)→ A(y)).

(B) <(u) ∧ <(v) ∧ Closed(u, v, A) ∧ C(BA(u, v, .), w)→ BA(u, v, w).

Proof of (B). Assuming the left hand side of this implication, we have to
show that A(c) follows from

c ∈̇ acc(u, v) ∧ w = t(u, v, c) (8)

for all c. So we also assume (8). Then equation (5) implies

w = j(pd(u, v, c), λz.t(u, v, z)).

Hence, the uniqueness of generators and C(BA(u, v, .), w) yield

(∀x ∈̇ pd(u, v, c))BA(u, v, t(u, v, x)),
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and the definition of BA therefore implies

(∀x ∈̇ pd(u, v, c))∀y(y ∈̇ acc(u, v) ∧ t(u, v, x) = t(u, v, y)→ A(y)).

From this we immediately obtain

(∀x ∈̇ pd(u, v, c))(x ∈̇ acc(u, v)→ A(x)).

Because of c ∈̇ acc(u, v), applying (A) gives (∀x ∈̇ pd(u, v, c))A(x) and,
therefore, A(c) follows from Closed(u, v, A). Thus (B) is proved.

Now we are ready for the third assertion of our theorem. Take an arbitrary
L
′ formula A(u) and assume <(a), <(b), <(acc(a, b), S) and Closed(a, b, A).

We apply the auxiliary assertion (B) and obtain

∀x(C(BA(a, b, .), x)→ BA(a, b, x)).

Because of the uniqueness of generators, we also have BA(a, b, du(a, b)). Thus,
the leastness principle (L.2) yields (∀x ∈̇ lt(du(a, b)))BA(a, b, x). Hence, by
the definition of BA, we conclude that

(∀x ∈̇ lt(du(a, b)))∀y(y ∈̇ acc(a, b) ∧ x = t(a, b, y)→ A(y)).

Since acc(a, b) is a name of S and t(a, b, c) ∈̇ lt(du(a, b)) for all elements c of
S, it follows (∀x ∈ S)A(x). This finishes the proof of the third assertion of
our theorem. 2

This theorem provides the desired reduction of T0 to LUN: (i) the language
L is translated into the language L′ by interpreting the generator i of L as
the closed individual term acc of L′ and leaving the remaining vocabulary
unchanged; (ii) then the translations of all instances of inductive generation
obtained in this way are provable in LUN according to the previous theorem;
(iii) the (translations of the) remaining axioms of T0 are obviously provable
in LUN. A careful inspection of the previous proof also establishes the second
part of the following corollary.

Corollary 16 The theory T0 is contained in LUN. Moreover, the subsys-
tems of T0 which are obtained by restricting inductive generation or com-
plete induction on the natural numbers plus inductive generation to types are
contained in the corresponding subsystems of LUN.

5 Embedding of LUN into T0 + (Lim) + (L-UG)

In the previous section, we have shown how T0 can be embedded into LUN.
Therefore, we have a lower bound for the proof-theoretic strength of LUN. It
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remains to be proved that this bound is sharp. This aim will be achieved by
interpreting LUN into the extension T0 +(Lim)+(L-UG) of T0 and by exploit-
ing a result of Jäger and Studer [16] implying the proof-theoretic equivalence
of T0 and T0 + (Lim) + (L-UG).

The crucial step in the interpretation of LUN into T0 + (Lim) + (L-UG) is to
construct a closed term lst of the language L so that for each name a the term
lst(a) names, provable in T0 + (Lim) + (L-UG), the least universe containing
a. In general, the generator ` will not do this job since the universe denoted
by `a may be too big. And we know more: according to Theorem 14, it is
inconsistent with T0 + (Lim) + (L-UG) and linearity, transitivity or connec-
tivity of normal names to assume that each `a is a name of the least universe
containing a.

For defining the closed term lst we proceed as follows: given a name a, we go
over to the normal universe provided by `a. Then we use inductive generation
on this universe in order to single out those names which are absolutely
needed for a universe containing a. This means we employ a binary relation
on the universe (named by) `a according to the “date of generation” of the
respective names. Because of the uniqueness of generators, the history of the
elements of `a relevant for this construction is well-determined in the theory
T0 + (Lim) + (L-UG).

Now we define an L formula <a which says that b and c are elements of the
universe `a and b comes before c in the inductive build up of the least universe
containing a. Let Bef(a, b, c) be the disjunction of the following formulas:

(1) c = co(b),

(2) ∃x(c = int(b, x) ∨ c = int(x, b)),

(3) c = dom(b),

(4) ∃f(c = inv(f, b)),

(5) ∃f(c = j(b, f)),

(6) ∃x∃y∃f(c = j(x, f) ∧ (x, y) ∈̇ j(`a, λz.z) ∧ b = fy).

Then we set

b <a c := b ∈̇ `a ∧ c ∈̇ `a ∧ c 6= a ∧ Bef(a, b, c).

Remember that the subformula (x, y) ∈̇ j(`a, λz.z) in clause (6) is equivalent
to x ∈̇ `a ∧ y ∈̇ x. Hence (6) is the same as the more familiar

∃x∃y∃f(c = j(x, f) ∧ x ∈̇ `a ∧ y ∈̇ x ∧ b = fy),
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saying that b is one of the “predecessors” of c in the case that c is generated
by join. The name a itself is considered as an urelement of the least universe
containing a; therefore we have the condition c 6= a in the definition of b <a c
for ruling out the possibility that a has <a predecessors.

The candidates for the least universe containing a are a itself, the constants
nat as well as id and all names b with at least one element before b and all
such belonging to `a,

Cand(a, b) :=

{
(b = a ∨ b = nat ∨ b = id) ∨
(∃xBef(a, x, b) ∧ ∀x(Bef(a, x, b)→ x ∈̇ `a)).

All other individuals cannot belong to the least universe containing a. When
applying inductive generation, this can be achieved by postulating that the
corresponding accessibility relation is reflexive on the non-candidates. A
candidate, on the other hand, goes into the intended inductively generated
type whenever all its <a predecessors are elements of this type.

From Lemma 2 about modified elementary comprehension, we conclude that,
for every name a, there exists a type coding the intended accessibility relation,

Ar(a) := {(x, y) : (x = y ∧ ¬Cand(a, y)) ∨ (x <a y ∧ Cand(a, y))}.

This lemma also implies that in EETJ, there is a closed individual term ar of
L which uniformly describes this assignment of the type Ar(a) to the name
a, i.e. EETJ proves

<(a)→ <(ar(a),Ar(a)).

We finish the uniform construction of the least universe containing the name
a in T0 + (Lim) + (L-UG) by carrying through inductive generation on the
type with name `a along the relation coded by Ar(a),

lst := λz.i(`z, ar(z)).

Thus lst(a) is i(`a, ar(a)). The following theorem shows that the closed term
lst produces for each name a the least universe containing a.

Theorem 17 For each L formula A(u) one can prove in T0+(Lim)+(L-UG):

1. <(a)→ U(lst(a)) ∧ a ∈̇ lst(a),

2. <(a) ∧ ∀x(C(A, x)→ A(x)) ∧ A(a)→ (∀x ∈̇ lst(a))A(x).
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Proof In view of the preceding remarks, the proof of the first assertion
should be more or less obvious. For showing the second assertion, suppose
<(a), ∀x(C(A, x) → A(x)) and A(a). Then some intermediate calculations
yield Closed(`a, ar(a), A). From this we conclude (∀x ∈̇ lst(a))A(x) by the
induction principle of inductive generation. 2

We simply translate the language L′ of LUN into the language L of T0 +
(Lim) + (L-UG) by interpreting the generator lt of L′ by the closed term lst
of L. Hence, the previous theorem yields the translation of the axioms (L.1)
and (L.2). The treatment of the other axioms of LUN in T0 + (Lim) + (L-UG)
is unproblematic.

Corollary 18 The theory LUN is contained in T0 + (Lim) + (L-UG). More-
over, the subsystems of LUN which are obtained by restricting (L.2) or com-
plete induction on the natural numbers plus (L.2) to types are contained in
the corresponding subsystems of T0 + (Lim) + (L-UG).

6 Name strictness

When considering the predicate < in the theory EETJ + (Lim), we see that
names are built up by the use of the generators nat, id, co, int, dom, inv, j
and the universe generator `. However, there is no restriction on whether
other terms can belong to < as well. For example, if co(a) is a name, then
there is in general no need for a being a name, too.

In this section, we discuss the notion of name strictness of types stating that
the (appropriate) arguments s1, . . . , sn of a generator r have to be elements
of the name strict type W , provided that r(s1, . . . , sn) belongs to W . This
notion is analogue to the strictness of definedness, implemented in the logic
of partial terms, and the so-called N-strictness for the natural numbers, dis-
cussed in Kahle [20]. By reflecting name strictness on universes, one obtains
name strict universes. In the next section, we introduce a form of name
induction saying that all names have to be constructed by the use of gener-
ators. Adding name induction to the theory of name strict universes proves
inductive generation and yields, thereby, an alternative to LUN.

Name strictness depends on the generators which are available in the under-
lying language. But since we discuss name strictness only in connection with
the language L, we do not mention this dependence and simply write Str(W )
for the conjunction of the following formulas:

(1) ∀x(co(x) ∈ W → x ∈ W ),
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(2) ∀x∀y(int(x, y) ∈ W → x ∈ W ∧ y ∈ W ),

(3) ∀x(dom(x) ∈ W → x ∈ W ),

(4) ∀f∀x(inv(f, x) ∈ W → x ∈ W ),

(5) ∀x∀f(j(x, f) ∈ W → x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W )),

(6) ∀x∀y(i(x, y) ∈ W → x ∈ W ∧ y ∈ W ),

(7) ∀x(`(x) ∈ W → x ∈ W ).

Accordingly, a type W is called a strict universe if it is a universe and if it
satisfies the condition Str(W ).

Definition 19 1. We write SU(W ) to express that the type W is a name
strict universe,

SU(W ) := U(W ) ∧ Str(W ).

2. We write SU(t) to express that the individual t is a name of a name
strict universe,

SU(t) := ∃X(<(t,X) ∧ SU(X)).

Our old limit axiom (Lim) postulates that every name a belongs to a universe
which is named `a. In the context of name strictness, this axiom is now
replaced by the corresponding limit axiom for name strict universes,

(sLim) ∀x(<(x)→ SU(`(x)) ∧ x ∈̇ `(x)).

Our definition of universe is too general for requiring that all universes are
name strict. Following the pattern of the proof of Theorem 10 it is easy to
see that, at least in the presence of (L-UG), there are universes that are not
name strict.

Lemma 20 In EETJ + (sLim) + (L-UG), one can prove that

∃X(U(X) ∧ ¬SU(X)).

Proof Let S be the universe which is named by `(`(`(nat))), and let T be
the type S \ {`(nat)}. As in the proof of Theorem 10, we realize that T
is a universe. However, T obviously does not contain the element `(nat),
although it contains `(`(nat)). Hence T is not name strict. 2

The model construction of Jäger and Studer [16] shows that all proof-theoretic
equivalences mentioned in the first two parts of Theorem 12 remain true if
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we replace the limit axiom (Lim) by our new axiom (sLim). The same should
be the case for parts three and four of that theorem.

We end this section with a simple example which illustrates the usefulness of
name strict universes. Suppose that we want a universe which contains two
given names a and b. In the presence of (sLim) we can proceed as follows.
We first select the name du(a, b) of the disjoint union of the types named
by a and b (cf. proof of Theorem 15). Then we form `(du(a, b)). Because of
name strictness, it is easy to check that the universe with this name contains
a and b. If only the axiom (Lim) is available, then `(du(a, b)) can be formed
as well, but now we cannot conclude that a ∈̇ `(du(a, b)) and b ∈̇ `(du(a, b)).
It merely follows that there are names a′, b′ ∈̇ `(du(a, b)) so that a′ =̇ a and
b′ =̇ b.

7 Name induction

As an alternative to least universes, we can add name induction to the theory
EETJ + (sLim) + (L-UG) to obtain inductive generation. Name induction
claims that the elements of < are built up by the use of generators only. In a
certain sense it can be understood as an intensional version of ∈ induction.

In order to state the axiom schema of name induction, we introduce the clo-
sure condition C`(S, a) which extends C(S, a) by a new clause for the universe
generator `,

C`(S, a) := C(S, a) ∨ ∃x(a = `x ∧ x ∈ S).

The type existence axioms of EETJ+(Lim) and EETJ+(sLim) guarantee that
the names are closed under this closure condition,

∀x(C`(<, x)→ <(x)).

The schema of name induction on the other hand, is the principle that there
are no definable subcollections of the names with this closure property. It is
given by

(L-I<) ∀x(C`(A, x)→ A(x))→ ∀x(<(x)→ A(x))

for all L formulas A(u). This form of name induction will be considered now
in the context of EETJ with the strict limit axiom, uniqueness of generators
and the schema of complete induction on the natural numbers,

NAI := EETJ + (sLim) + (L-UG) + (L-IN) + (L-I<).

23



As an immediate consequence of name induction we obtain the name strict-
ness of the predicate <(u). The proof of the following lemma is routine work;
name strictness of the limit axiom and complete induction on the natural
numbers are not needed.

Lemma 21 In NAI, one can prove that Str(<).

In the proof of Theorem 15 which provides for inductive generation in the
theory LUN, we made essential use of the fifth assertion of Lemma 13. Work-
ing in the theory NAI, an even slightly stronger property follows immediately
from the name strictness of normal universes.

Lemma 22 In NAI, one can prove that

<(a) ∧ j(b, f) ∈̇ `a→ b ∈̇ `a ∧ (∀x ∈̇ b)(fx ∈̇ `a).

With this lemma available, we can now simulate inductive generation in the
theory NAI in the same way as we did it in LUN.

Theorem 23 There exists a closed individual term ig of L so that NAI
proves for arbitrary L formulas A(u):

1. <(a) ∧ <(b)→ <(ig(a, b)),

2. <(a) ∧ <(b)→ Closed(a, b, ig(a, b)),

3. <(a) ∧ <(b) ∧ Closed(a, b, A)→ (∀x ∈̇ ig(a, b))A(x).

Proof This proof is literally the same as the proof of Theorem 15, provided
that we make the following changes: instead of the generator lt, we use
the generator ` and instead of the induction schema (L.2), we apply name
induction (L-I<). 2

Since the generator i does not play any role in the theory NAI, it has no
function for the embedding of T0 + (sLim); the part of the generator i in
T0 + (sLim) is taken over by the just defined closed term ig. Hence, if A∗ is
the L formula which results from the L formula A by replacing all occurrences
of i by ig, we see that NAI proves A∗ for all axioms A of T0 + (sLim).

Corollary 24 The theory T0 + (sLim) is contained in NAI. Moreover, the
subsystems of T0 +(sLim) which are obtained by restricting inductive genera-
tion or complete induction on the natural numbers plus inductive generation
to types are contained in the corresponding subsystems of NAI.
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For determining the upper proof-theoretic bounds of NAI, we refer again to
the model construction in Jäger and Studer [16]. It follows that NAI, together
with the axioms (U`-Lin) and (U`-Con), is valid in this model. The results of
[16] thus show that the proof-theoretic strength of NAI + (U`-Lin) + (U`-Con)
cannot be greater than that of T0.

We conclude this article by recapitulating several results concerning theories
of explicit mathematics with universes. One important aspect is that the ad-
dition of (Lim) or (sLim) plus certain ordering principles for normal universes
does not increase the proof-theoretic strength of T0; another observation says
that inductive generation can be replaced by leastness of universes or name
induction.

Conclusion 25 The following theories with universes have the same proof-
theoretic strength as the theory T0:

1. T0 + (Lim) and T0 + (Lim) + (U`-Lin) + (U`-Con),

2. T0 + (sLim) and T0 + (sLim) + (U`-Lin) + (U`-Con),

3. LUN, NAI and NAI + (U`-Lin) + (U`-Con).

Name induction added to EETJ + (L-UG) + (L-IN) yields a theory of explicit
mathematics which is proof-theoretically equivalent to ID1. The lower bound
is established by embedding the theory ID1(acc) of accessible parts (cf. e.g.
Buchholz, Feferman, Pohlers and Sieg [2]). For the upper bound, the treat-

ment of EETJ in ÎD1, cf. Beeson [1] or Marzetta [22], can easily be modified
using the leastness condition of ID1 to handle name induction.
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[16] Jäger, G., and Studer, T. Extending the system T0 of explicit
mathematics: the limit and Mahlo axioms. Submitted.

[17] Jansen, D. Ontologische Aspekte expliziter Mathematik. Diploma
thesis, Institut für Informatik und angewandte Mathematik, Universität
Bern, 1997.

[18] Kahle, R. Applikative Theorien und Frege-Strukturen. PhD thesis,
Institut für Informatik und angewandte Mathematik, Universität Bern,
1997.

[19] Kahle, R. Uniform limit in explicit mathematics with universes. Tech.
Rep. IAM 97-002, Institut für Informatik und angewandte Mathematik,
Universität Bern, 1997.

[20] Kahle, R. N-strictness in applicative theories. To appear in Archive
for Mathematical Logic.
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Tübingen, Sand 13, D-72076 Tübingen, Germany,
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