
Formalizing non-termination of recursive
programs

Reinhard Kahle Thomas Studer∗

March 15, 2001

Abstract

In applicative theories the recursion theorem provides a term rec which
solves recursive equations. However, it is not provable that a solution
obtained by rec is minimal. In the present paper we introduce an
applicative theory in which it is possible to define a least fixed point
operator. Still, our theory has a standard recursion theoretic inter-
pretation.

1 Introduction

A recursively defined program is given by a recursion equation

f(~x) = t(f, ~x),

where the program f can be called in the body of its definition. Every higher
programming languages offers a syntactical construction to define programs
recursively. In general, there are several different solutions to such a recursive
definition, i.e. there are several functions satisfying the recursion equation.
In every introduction to the semantics of programming languages one finds
that the intended semantics is given by the least fixed point of the recursion
equation (with respect to the definedness order), cf. e.g. Manna [21], Schmidt
[26] or Jones [16].

Hence we need a powerful principle to prove statements about recursive pro-
grams. Probably the most famous such principle is fixed point induction
introduced by Scott [27] which is based on a CPO interpretation of terms.

∗Research supported by the Swiss National Science Foundation.

1

For a good overview of Scott’s induction principle and its connection to CPO
models see for example Mitchell [22]. Looking at the untyped λ calculus we
find that in continuous λ-models, e.g. Pω or D∞, fixed point combinators
are interpreted by the least fixed point operator in the model, cf. e.g. Ama-
dio and Curien [1] or Barendregt [2]. This fact makes it possible to prove
semantically many properties of recursively defined programs.

However, if we look at the purely syntactical side of formal frameworks which
are used to analyze programming languages, we often do not find any direct
account to least fixed points. In particular, the untyped λ calculus allows
to define a fixed point combinator, but there is no possibility to express the
leastness of a fixed point, cf. Curry, Hindley, Seldin [4], Hindley, Seldin [14]
or Barendregt [2]. Also in the typed λ calculus, we can have fixed point com-
binators, but the question of leastness, which corresponds to termination,
is answered from the outside by the use of normalization proofs. Compar-
ing this with functional programming languages we see that in a type free
language, like Scheme, we can define a fixed point operator which “solves”
recursive equations; and in typed languages, like ML, such operators are usu-
ally built in. However, there is no way to guarantee on the syntactical level
that the solution produced by these operators will be the least fixed point.
This is only given by the semantical interpretation, cf. e.g. Reade [25].

In this paper we will present an applicative theory which allows to define
a least fixed point operator. Applicative theories build the first order part
of Feferman’s systems of explicit mathematics [5, 6], which have originally
been designed to formalize Bishop style constructive mathematics. More
recently, these systems have been employed for the study of functional and
object-oriented programming languages. In particular, they have been shown
to provide a unitary axiomatic framework for representing programs, stat-
ing properties of programs and proving properties of programs. Important
references for the use of explicit mathematics in this context are Feferman
[7, 8, 9], Stärk [28, 29], Studer [32, 31, 33] and Turner [35, 36].

Applicative theories are based on type free combinatory logic, cf. Jäger, Kahle
and Strahm [15]. So we have the recursion theorem at our disposal which
provides a term rec (or Y) to solve recursive equations. However, it is not
provable that a solution obtained by rec is minimal. We will make use of
the fact that applicative theories are formulated in a partial logic, namely
Beeson’s logic of partial terms [3]. That means, we have an additional pred-
icate expressing the definedness of a term; and quantifiers and variables are
ranging over defined objects only. However, the term language is not re-
stricted, i.e. there may be undefined terms. Using the definedness predicate
we can introduce a definedness ordering on the terms. With respect to this

2

ordering relation, we can talk about leastness of fixed points. Since not every
recursion equation has a least fixed point, we additionally need the notion
of monotonicity which can be given using the definedness ordering. More-
over, we will introduce the concept of classes, which are similar to types in a
typed setting, in order to prove that our least fixed point belongs to a certain
function space.

Since there are in general total term models for applicative theories we often
cannot prove that there exist undefined terms or equivalently that the corre-
sponding programs loop forever. For this reason we strengthen the basic the-
ory by so-called computability axioms and we restrict the universe to natural
numbers. These additional axioms represent the recursion-theoretic view of
computations. They are motivated by Kleene’s T predicate which is a ternary
primitive recursive relation on the natural numbers so that {a}(~m) ' n holds
if and only if there exists a computation sequence u with T(a, 〈~m〉, u) and
(u)0 = n. The use of these computability axioms for the definition of a
least fixed point operator can be seen as a marriage of convenience of the
recursion-theoretic semantics and the least fixed point semantics for com-
puter programs, cf. e.g. Jones [16].

Using the computability axioms we will define the least fixed point combina-
tor as a combinator iterating the functional operator associated with a given
recursive equation starting from the totally undefined function. To get the
desired properties we have to ensure that the functional operator is mono-
tone with respect to the definedness order. For this reason we will need the
notion of monotonicity mentioned above.

The given theory still has a standard recursion-theoretic model; and with
respect to the proof-theoretic strength we will not exceed Peano arithmetic.
There exists a standard theory to formalize least fixed points, namely the
theory ID1 of non-iterated positive arithmetical inductive definitions, cf.
Moschovakis [23] for an introduction to inductive definability or Kahle and
Studer [20] for a corresponding theory in the context of explicit mathematics.
However, our work essentially concerns Σ0

1 monotone inductive definitions
whereas ID1 deals with arbitrary arithmetically definable positive operators.
Hence ID1 belongs to a rather different “world” and with respect to its proof-
theoretic strength it is much stronger than Peano arithmetic, cf. Pohlers [24].

The structure of the present paper is as follows. In the next section we
introduce the theory LFP, an applicative theory including the computability
axioms. In Section 3 we define the least fixed point operator and prove the
required properties. In particular, we introduce the notion of monotonicity
which is needed for a meaningful definition of least fixed points. In the final

3

section we give some concluding remarks.

2 Applicative Theories

In this section we present the basic theory BON of operations and numbers
which has been introduced by Feferman and Jäger [11] and extend it with
axioms about computability and the statement that everything is a natural
number. These two additional principles make the definition of a least fixed
point operator possible.

Our applicative theory is formulated in the language L which contains the
individual variables a, b, c, f, g, h,m, n, x, y, z, The language L comprises
the constants k, s (combinators), p, p0, p1 (pairing and projections), 0 (zero),
sN (successor), pN (predecessor) and dN (definition by numerical cases). Fur-
ther we have the constant c (computation).

The terms (r, s, t, . . .) of L are built up from the variables and constants by
means of the function symbol · for (partial) application. We use (st) or st
as an abbreviation for (s · t) and adopt the convention of association to the
left, i.e. s1s2 . . . sn stands for (. . . (s1 · s2) . . . sn).

The atomic formulas of L are N(s), s↓ and s = t. Since we work with a logic
of partial terms, it is not guaranteed that all terms have values, and s↓ has
to be read as s is defined or s has a value. Moreover, N(s) says that s is a
natural number.
The formulas (A,B,C, . . .) of L are generated from the atomic formulas
by closing against the usual propositional connectives and quantifiers. As
abbreviations, we use:

s ' t := s↓ ∨ t↓ → s = t,

s 6= t := s↓ ∧ t↓ ∧ ¬(s = t),

s ∈ N := N(s),

(∃x ∈ N)F (x) := ∃x(x ∈ N ∧ F (x)),

(∀x ∈ N)F (x) := ∀x(x ∈ N→ F (x)),

f ∈ (N→ N) := (∀x ∈ N)fx ∈ N.

Moreover, we define general n-tupling by induction on n ≥ 2 as follows:
(s1, s2) := ps1s2 and (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

The logic for our applicative theories is Beeson’s classical logic of partial
terms, cf. Beeson [3] or Troelstra and van Dalen [34]. The non-logical axioms
of BON are

4

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0a↓ ∧ p1a↓,

(4) p0(a, b) = a ∧ p1(a, b) = b,

(5) 0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N),

(6) (∀x ∈ N)(sNx 6= 0 ∧ pN(sNx) = x),

(7) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ sN(pNx) = x),

(8) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

(9) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

It is a well-known result that we can introduce λ abstraction and recursion
using the combinator axioms (1) and (2).

Theorem 1.

1. For every variable x and every term t of L, there exists a term λx.t of
L whose free variables are those of t, excluding x, such that

BON ` λx.t↓ ∧ (λx.t)x ' t and BON ` s↓ → (λx.t) s ' t[s/x].

2. There exists a term rec of L such that

BON ` rec f↓ ∧ ∀x(rec f x ' f (rec f)x).

Proof. The definition of λ terms is standard in the context of partiality, cf.
Beeson [3] or Feferman [5]. Also, the definition of the recursion operator is a
standard adaptation from the fixed point combinator in type-free λ calculus:

rec := λf.(λy, x.f (y y)x) (λy, x.f (y y)x).

In the sequel we employ full induction on the natural numbers which is given
by the following scheme:

(L-IN) A(0) ∧ (∀x ∈ N)(A(x)→ A(sNx)) → (∀x ∈ N)A(x),

for all formulas A of L.

5

In BON + (L-IN) all the primitive recursive functions and relations are avail-
able. Particularly, we will use addition + and multiplication ∗ of natural
numbers (both also in infix notation) as well as the usual “less than” <
and “less or equal than” ≤ relations. Further, we can define a least number
operator µ so that the following holds, cf. [3].

Lemma 2. BON + (L-IN) proves:

1. f ∈ (N→ N)→ (µf ∈ N↔ (∃n ∈ N)fn = 0),

2. f ∈ (N→ N) ∧ µf ∈ N→ f(µf) = 0.

Now we introduce non-strict definition by cases (cf. Beeson [3] or Kahle [18]).
Observe that if dNrsuv↓, then r↓ and s↓ hold by strictness. However, we often
want to define a function by cases so that it is defined if one case holds, even
if the value that would have been computed in the other case is undefined.
Hence, we let dsrsuv stand for the term dN(λz.r)(λz.s)uv0 where the variable
z does not occur in the terms r and s. From now on, non-strict definition by
cases is denoted by the following notation:

dsrsuv '

{
r if u = v,

s otherwise.

Note that it already anticipates the axiom ∀xN(x), otherwise we should add
N(u)∧N(v) as a premise; and of course, strictness still holds with respect to u
and v. We have dsrsuv↓ → u↓∧v↓. If u or v is undefined, then dsrsuv is also
undefined. However, if r is a defined term and u and v are defined natural
numbers that are equal, then dsrsuv = r holds even if s is not defined.

We are interested in the extension of BON with axioms about computability
(Comp) and the assertion that everything is a number.

Computability. These axioms are intended to capture the idea that conver-
gent computations should converge in finitely many steps. In the formal
statement of the axioms the expression c(f, x, n) = 0 can be read as “the
computation fx converges in n steps.” The idea of these axioms is due to
Friedman (unpublished) and discussed in Beeson [3]. Note that these axioms
are satisfied in the usual recursion-theoretic model. The constant c can be
interpreted by the characteristic function of Kleene’s T predicate.

(Comp.1) ∀f∀x(∀n ∈ N)(c(f, x, n) = 0 ∨ c(f, x, n) = 1),

(Comp.2) ∀f∀x(fx↓ ↔ (∃n ∈ N)c(f, x, n) = 0).

6

In addition, we will restrict the universe to natural numbers. This axiom will
be needed to make use of the least number operator µ and the computability
term in the definition of the least fixed point operator, see below. Of course,
this axiom is absolutely in the spirit of a recursion-theoretic interpretation.

Everything is a number. Formally, this is given by the statement ∀xN(x).

Now we define the applicative theory for least fixed points LFP as the union
of all these axioms:

LFP := BON + (Comp) + ∀xN(x) + (L-IN).

Before we can go on and define the least fixed point operator we have to
introduce some auxiliary terms. With some coding provided by pairing and
projection, we can easily define a term c3 which behaves for ternary functions
like c does for unary functions, i.e.

1. ∀f∀x∀y∀z(∀n ∈ N)(c3(f, x, y, z, n) = 0 ∨ c3(f, x, y, z, n) = 1),

2. ∀f∀x∀y∀z(fxyz↓ ↔ (∃n ∈ N)c3(f, x, y, z, n) = 0).

The following lemma shows that there exists a function b which is never
defined. Later, we will define an order relation on our functions and there b
will play the role of the bottom element. Hence, we will be able the define
least fixed points of monotonic functionals by recursion starting from b.

Lemma 3. There exists a closed L term b so that LFP proves ∀x(¬bx↓).

Proof. We can define notN := rec (λf, x.dN 1 0 (f x) 0) 0. So it follows that
¬N(notN) holds, see Kahle [19]. Since we included ∀xN(x) to our list of
axioms we get ¬(notN↓). Thus, we can set b := λx.notN.

3 Least Fixed Point Operator

In this section we will show how to define a least fixed point operator l in the
theory LFP. As usual, in order to find the least fixed point of a monotonic
functional g, the operator l will iterate g starting from the bottom element
b. The stages of this inductive process are given by the term h, which will
be defined first.

Definition 4. We define the term h so that

hgn '

{
b if n = 0,

g(hg(pNn)) otherwise.

7

Let q be such that

qgxn '

{
0 if hg(p0n)x = p1n,

notN otherwise.

Then the term l is defined by

l := λgλx.p1(p0(µ(λy.c3(q, g, x, p0(y), p1(y))))).

The idea of this definition can be explained roughly as follows. We would
like to have that lgx = z implies that there exists a finite computation of z
by iterating the operator g starting from b. Formally, this is expressed by
∃n(hgnx = z), cf. the third claim of the following lemma. The definition of
l is somewhat clumsy because of the several codings. Let g and x be given,
then the µ operator is looking for an n so that

c3(q, g, x, p0(n), p1(n)) = 0. (1)

If there is no such natural number n, then µ(λy.c3(q, g, x, p0(y), p1(y))) will
be undefined. Assume we have found an n so that (1) holds. This means
that qgx(p0(n)) is terminating in p1(n) steps. By the definition of q, we
obtain that qgx(p0(n))↓ implies hg(p0(p0(n)))x = p1(p0(n)). Finally, the
outer projections are used to extract this value p1(p0(n)).

The behavior of l can be also gathered from (the proof of) the following
lemma. Moreover, it also shows why we had to include the axiom ∀xN(x)
to LFP. Without this axiom the sophisticated interplay between the least
number operator µ, the computability term c3, and the coding machinery
provided by p0, p1 and p would hardly work. This proof also makes use of
the fact that the projection functions are total, see axiom (3) of BON.

Lemma 5. LFP proves:

1. lg↓,

2. lgx↓ ↔ ∃n(hgnx↓),

3. lgx = z → ∃n(hgnx = z).

Proof. The first claim is a consequence of the theorem about λ abstraction.

8

For the second claim we have:

lgx↓ ↔ p1(p0(µ(λy.c3(q, g, x, p0(y), p1(y)))))↓
↔ µ(λy.c3(q, g, x, p0(y), p1(y)))↓
↔ ∃n(c3(q, g, x, p0(n), p1(n)) = 0)

↔ ∃n(qgxn↓)
↔ ∃n(ds0notN(hg(p0n)x)(p1n)↓)
↔ ∃n(hgnx↓)

The third claim follows by:

lgx = z → p1(p0(µ(λy.c3(q, g, x, p0(y), p1(y))))) = z

→ ∃n(p1(p0n) = z ∧ µ(λy.c3(q, g, x, p0(y), p1(y))) = n)

→ ∃n(p1(p0n) = z ∧ c3(q, g, x, p0(n), p1(n)) = 0)

→ ∃n(p1(p0n) = z ∧ qgx(p0n)↓)
→ ∃n(p1(p0n) = z ∧ ds0notN(hg(p0(p0n))x)(p1(p0n))↓)
→ ∃n(p1(p0n) = z ∧ hg(p0(p0n))x = p1(p0n))

→ ∃n(hg(p0(p0n))x = z)

→ ∃n(hgnx = z)

We define the closed term a which will later serve at showing that we can
replace the term g(lg) by a “finite approximation” g(hgn) (cf. Lemma 12,
Claim 7).

Definition 6. Let t be such that

tfx '

{
c(λx.xx, f, x) if x = 0,

tf(pNx) ∗ c(λx.xx, f, x) otherwise.

We define the term a using λ abstraction so that

agfx '

{
notN if tfx = 0,

gx otherwise.

Lemma 7. LFP proves:

1. ∀g∀f(¬ff↓ → ∀n(agfn ' gn)),

2. ∀g∀f(ff↓ → ∃m∀n(agfn↓ → agfn = gn ∧ n < m)).

9

Proof. From the axioms about computability we obtain by induction:

∀f∀n(tfn = 0 ∨ tfn = 1)

and

∀f∀n∀m(m ≤ n ∧ tfm = 0→ tfn = 0).

Now, we get the first claim by:

¬ff↓ → ¬(λx.xx)f↓
→ ∀n(c(λx.xx, f, n) = 1)

→ ∀n(tfn = 1)

→ ∀n(dsnotN(gn)(tfn)0 ' gn)

→ ∀n(agfn ' gn)

The second claim follows with:

ff↓ → (λx.xx)f↓
→ ∃m(c(λx.xx, f,m) = 0)

→ ∃m(tfm = 0)

→ ∃m∀n(m ≤ n→ tfn = 0)

→ ∃m∀n(tfn 6= 0→ n < m)

→ ∃m∀n(agfn↓ → agfn = gn ∧ n < m)

Since there is not a least fixed point for every recursion equation, cf. Ex-
ample 10 below, we can only expect a meaningful solution for functionals
satisfying an additional property, namely monotonicity. To define this no-
tion, we will first introduce the concept of classes.

An L formula A containing exactly x as free variable will be called a class.
Let A and B be classes and let F be an arbitrary formula of L. We will
employ the following abbreviations:

t ∈ A := t↓ ∧ A[t/x],

A→ B := ∀y(y ∈ A→ xy ∈ B),

AyB := ∀y(y ∈ A ∧ xy↓ → xy ∈ B),

A ∩B := x ∈ A ∧ x ∈ B,
(∀x ∈ A)F (x) := ∀x(x ∈ A→ F (x)).

10

Note that t ∈ A has a strictness property built in. We have t ∈ A → t↓.
Next we are going to introduce the definedness ordering vT with respect to
a class T . The meaning of rv s is that if r has a value, then r equals s; and
f vAyB g says that for every x ∈ A if the computation fx terminates, then
gx also terminates and both computations yield the same result.

Definition 8. Let A1, . . . , An, B1, . . . , Bn be classes. Further, let T be the
class (A1 y B1) ∩ · · · ∩ (An y Bn). Then T is called an arrow class. We
define:

r v s := r↓ → r = s,

f vT g :=
∧

1≤i≤n

(∀x ∈ Ai)fxv gx,

f ∼=T g := f vT g ∧ g vT f.

The formula rvs∧svr is equivalent to the standard partial equality relation
r ' s. Hence, our definedness ordering v is in accordance with the notion
of partiality of our applicative theory. Studer [30] employs a least fixed
point operator to define a denotational semantics for Featherweight Java.
This semantics features an overloading based object model. An overloaded
function models type-dependent computations and hence, it belongs to the
intersection of several function spaces. Therefore, we define arrow types to
be such intersections in order to prepare our setting for this application.

The relations v and vT are transitive.

Lemma 9. Let T be an arrow class as given in Definition 8. Then we can
prove in LFP:

1. r v s ∧ sv t→ r v t,

2. f vT g ∧ g vT h→ f vT h.

Proof. We have r↓ → r = s as well as s↓ → s = t. Obviously we get
r↓ → r = t proving Claim 1. Now we show the second claim. Assume x ∈ Ai
for some i. We have fxv gx and gxv hx. Therefore, we conclude fxv hx
by the first claim.

Using the rec term we will find a fixed point for every operation g. But as
mentioned before we cannot prove that this is a least fixed point; and of
course, there are terms g that do not have a least fixed point.

Example 10. Let f1 and f2 be closed terms so that

f1x '

{
1 if x = 1,

notN otherwise
and f2x '

{
notN if x = 1,

1 otherwise.

11

Now we let g be the operation

gx '

{
f1 if x = f1,

f2 otherwise.

Let V be the universal class x = x. Then we know g ∈ ((VyV)→ (VyV)),
and if f is a fixed point of g then we have either f = f1 or ∀x(fx ' f2x).
However, g does not have a least fixed point in the sense of v(VyV), for we
find ¬f1 v(VyV) f2 ∧ ¬f2 v(VyV) f1. That is f1 is not comparable with any
other fixed point of g and therefore, we do not have a least fixed point.

Only for monotonic g ∈ (T → T) we can show that lg is the least fixed point
of g.

Definition 11. Let T be an arrow class as given in Definition 8. A function
f ∈ (T → T) is called T monotonic, if

(∀g ∈ T)(∀h ∈ T)(g vT h→ fg vT fh).

Claims 1–5 of the following lemma correspond to the corollary in the ap-
pendix of Feferman [10]. Furthermore, in order to show that l yields a fixed
point we need the compactness property stated in the last claim of our lemma.

Lemma 12. Let T be the arrow class (A1 y B1) ∩ · · · ∩ (Am y Bm). We
can prove in LFP that if g ∈ (T → T) is T monotonic, then the following
claims hold for all i ≤ m.

1. ∀n(hgn ∈ T),

2. ∀n(hgnvT hg(n+ 1)),

3. lg ∈ T ,

4. ∀n(hgnvT lg),

5. lg vT g(lg),

6. ∀m∃n(∀x ∈ Ai)(x ≤ m→ lgxv hgnx),

7. (∀x ∈ Ai)∃n(g(lg)xv g(hgn)x).

Proof. 1. Proof by induction on the natural numbers. For n = 0 we have
hg0 = b. Since ∀x(¬bx↓) we obviously get hg0 ∈ T . Assume hgn ∈ T .
Then we have g(hgn) ∈ T and this yields hg(n+ 1) ∈ T .

12

2. We proceed by induction on the natural numbers. As above we get
∀x(¬hg0x↓). Hence we have (∀x ∈ Ai)(hg0xv hg1x) for any i. For the
induction step assume hgnvT hg(n + 1). Since g is T monotonic and
by the previous claim ∀n(hgn↓) holds, we get

g(hgn)vT g(hg(n+ 1)).

This yields hg(n+ 1)vT hg(n+ 2).

3. By Lemma 5 we find (∀x ∈ Ai)(lgx↓ → ∃n(hgnx = lgx)) for any i.
Then, by Claim 1 we get (∀x ∈ Ai)(lgx↓ → lgx ∈ Bi). Hence lg ∈ T .

4. We have to show (∀x ∈ Ai)(hgnxv lgx) for all i. So assume x ∈ Ai and
hgnx↓. We conclude lgx↓ by Lemma 5. Hence there exists a natural
number m with

hgmx = lgx. (2)

From Claim 2 we get by induction

∀n∀m(∀x ∈ Ai)(hgnx↓ ∧ hgmx↓ → hgnx = hgmx).

By x ∈ Ai and (2) we therefore finally obtain hgnxv lgx.

5. We have to show (∀x ∈ Ai)lgx v g(lg)x for all i. So let x ∈ Ai and
lgx↓. Then by Lemma 5 we get ∃n(lgx = hgnx). By the definition of
h we see ∀x(¬hg0x↓). Hence ∃n(lgx = hg(n+ 1)x). This is

∃n(lgx = g(hgn)x). (3)

For this natural number n we have by Claim 4 that hgnvT lg. Because
g is T monotonic we obtain g(hgn) vT g(lg) and since x ∈ Ai this
implies g(hgn)xv g(lg)x. Finally, we conclude by (3) that lgxv g(lg)x.

6. Proof by induction on m. For m = 0 the claim follows from Lemma 5.
For the induction step assume

∃n1(∀x ∈ Ai)(x ≤ m→ lgxv hgn1x).

Employing Lemma 5 we find

m+ 1 ∈ Ai ∧ lg(m+ 1)↓ → ∃n2(lg(m+ 1) = hgn2(m+ 1)).

Taken together this yields

∃n1∃n2(∀x ∈ Ai)
(x ≤ m+ 1 ∧ lgx↓ → (lgx = hgn1x ∨ lgx = hgn2x)).

13

By Claim 2 and Lemma 9 we get

∃n1∃n2(∀x ∈ Ai)
(x ≤ m+ 1 ∧ lgx↓ → lgx = hg(n1 + n2)x).

We finally conclude

∃n(∀x ∈ Ai)(x ≤ m+ 1→ lgxv hgnx).

7. Proof by contrapositive: suppose there exists an x ∈ Ai so that

∀n¬(g(lg)xv g(hgn)x). (4)

With this x ∈ Ai we define a term k by

k := λf.ds0notN(g(a(lg)f)x)(g(lg)x).

For the so defined k we will show that either assumption ¬kk↓ or kk↓
leads to a contradiction. As consequence we conclude that there cannot
exist an x ∈ Ai satisfying (4) and hence this claim is proved.

Now suppose ¬kk↓. As a direct consequence of Lemma 7 we obtain for
any j

∀f(¬ff↓ → (∀y ∈ Aj)a(lg)fy ' lgy).

Therefore, we get

(∀y ∈ Aj)a(lg)ky ' lgy

for any j. The term a is defined by λ abstraction. Hence by Theorem
1 and Claim 3 we find a(lg)k ∈ T . Therefore we obtain by the T
monotonicity of g and x ∈ Ai that g(a(lg)k)x ' g(lg)x. By (4) it is the
case that g(lg)x↓. Hence g(a(lg)k)x = g(lg)x. This implies

ds0notN(g(a(lg)k)x)(g(lg)x)↓,

i.e. (λf.ds0notN(g(a(lg)f)x)(g(lg)x))k↓ and kk↓. Contradiction.

Suppose kk↓. Hence ds0notN(g(a(lg)k)x)(g(lg)x)↓ and

g(a(lg)k)x = g(lg)x. (5)

By Lemma 7 kk↓ implies for any j

∃m(∀y ∈ Aj)(a(lg)ky↓ → a(lg)ky = lgy ∧ y < m). (6)

14

Using Claim 6 we get ∃n(∀y ∈ Aj)(a(lg)ky v hgny). for any j. Hence
∃n(a(lg)k vT hgn). Claim 3 together with (6) yields a(lg)k ∈ T . Since
g is T monotonic we therefore have

∃n(g(a(lg)k)vT g(hgn)).

Our assumption x ∈ Ai yields

∃n(g(a(lg)k)xv g(hgn)x). (7)

From (4) we know ∀n¬(g(lg)xv g(hgn)x). Using (7) we conclude

¬(g(lg)x = g(a(lg)k)x)

which contradicts (5).

The following theorem states that l indeed yields a fixed point of a monotonic
operation g.

Theorem 13. We can prove in LFP that if g ∈ (T → T) is T monotonic
for T given as in Definition 8, then

lg ∼=T g(lg).

Proof. By the previous lemma lg vT g(lg) holds. In order to show the other
direction let x ∈ Ai. By the last claim of the previous lemma we obtain

∃n(g(lg)xv g(hgn)x).

By the definition of h we get ∃n(g(lg)xv hg(n+ 1)x). Using Claim 4 of the
previous lemma we find ∀n(hg(n+ 1)xv lgx). Hence, by Lemma 9 we have
g(lg)xv lgx. Finally, we conclude g(lg)vT lg.

The next theorem states that lg is the least fixed point of g.

Theorem 14. We can prove in LFP that if g ∈ (T → T) is T monotonic
for T given as in Definition 8, then

f ∈ T ∧ gf ∼=T f → lg vT f.

Proof. Let f be such that gf ∼=T f . First, we show by induction on N that

∀n(hgnvT f). (8)

We obviously have hg0vT f . Suppose hgnvT f for a natural number n. By
the T monotonicity of g we get hg(n+1) = g(hgn)vT gf∼=T f . Therefore, by

15

Lemma 9 we obtain hg(n+ 1)vT f and (8) is shown. By g(hgn) = hg(n+ 1)
this implies

∀n(g(hgn)vT f). (9)

It remains to show (∀x ∈ Ai)(lgxv fx) for each i. So let x ∈ Ai. By Claim
5 of Lemma 12 we get lgx v g(lg)x. By Claim 7 of the same lemma we
obtain ∃n(g(lg)xv g(hgn)x). Therefore with (9) and Lemma 9 we conclude
lgxv fx.

4 Conclusion

For the conclusion let us look at the following recursively defined method
written in a Java like language.

A m (B x) {

return m(x);

}

Of course, any program calling m with some argument s is non-terminating.
The semantics of the method m is usually given as the least fixed point of the
functional λfλx.fx. If we model this fixed point by rec(λfλx.fx), then we
cannot prove in BON that ¬(rec(λfλx.fx)s↓) for any argument s. This is
simply because one can build total term models of the theory BON in which
every term has a value.

On the other hand, defining the semantics of the method m using our least
fixed point operator l enables us to prove non-termination in LFP. Let V be
the universal class x = x and ∅ the empty class x 6= x. Then the functional
λfλx.fx is an element of (Vy∅)→ (Vy∅) and is of course Vy∅ monotonic.
Therefore, by Lemma 12 we have l(λfλx.fx) ∈ (V y ∅) and this implies
∀y(¬l(λfλx.fx)y↓). Hence we have proved in LFP that the method m loops
forever.

The theory LFP can be interpreted in the usual recursion-theoretic way, cf.
Beeson [3] or Kahle [17]. This means applications a · b in L are translated
into {a}(b), where {n} for n = 0, 1, 2, 3, . . . is a standard enumeration of the
partial recursive functions. In fact, the computability axioms are inspired by
Kleene’s T predicate, which therefore can be used to verify the axioms. So we
can reduce LFP to Peano arithmetic. This will be important for obtaining
expressively strong but proof-theoretically weak systems for the study of
object-oriented programming languages, cf. Studer [30, 33].

16

The investigation of a least fixed point operator in [17] was motivated by
defining an applicative theory with proof-theoretic strength of Peano arith-
metic for studying the interactive proof system LAMBDA [12, 13]. This proof
system was designed for proving properties of ML programs. Up to Release
3.2 it was based on a partial logic and it was generating minimality rules
for recursive function definitions. The theory defined in [17] was capturing
a large part of this proof system, in particular, the minimality rules were
modeled using the least fixed point operator.

We will finish this paper by addressing two related approaches. First, Fe-
ferman [10] develops a form of generalized recursion theory in which compu-
tational procedures on domains that are contained in the natural numbers
reduce to ordinary computations. There he shows how to obtain a uniform
index for the least fixed point operator in the intensional recursion-theoretic
model of computation. In fact, the construction of our least fixed point
combinator is inspired by this approach.

Secondly, Stärk [29] introduces a typed logic of partial terms which incorpo-
rates a least fixed point operator and a schema for computational induction.
One may question why we do not axiomatize our fixed point operator in a
similar way as a primitive operator instead of using the computability ax-
ioms. The reason is that formulating Theorem 14 as an axiom would require
to introduce the notions of monotonicity and classes before. In our opinion,
this would be a rather inelegant approach since the axioms would already
depend on complex, abbreviated notions. Beside the difference of a typed
and an untyped approach, there is also a second difference between Stärk’s
theory and our LFP. He is giving a domain-theoretic interpretation of his
theory, while LFP allows of a recursion-theoretic model.

Acknowledgments. The idea of the given treatment of a least fixed point
operator in applicative theories was suggested by Peter Päppinghaus when
he supervised the diplom thesis of the first author [17]. We are also grateful
to Thomas Strahm and an anonymous referee for valuable comments and
suggestions.

References

[1] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-
Calculi. Cambrigde University Press, 1998.

[2] Hendrik Barendregt. The Lambda Calculus. North-Holland, revised
edition, 1984.

17

[3] Michael J. Beeson. Foundations of Constructive Mathematics: Meta-
mathematical Studies. Springer, 1985.

[4] Haskell Curry, James Hindley, and Jonathan Seldin. Combinatory Logic,
volume II. North-Holland, 1972.

[5] Solomon Feferman. A language and axioms for explicit mathematics. In
J.N. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in
Mathematics, pages 87–139. Springer, 1975.

[6] Solomon Feferman. Constructive theories of functions and classes. In
M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium ’78,
pages 159–224. North Holland, 1979.

[7] Solomon Feferman. Polymorphic typed lambda-calculi in a type-free ax-
iomatic framework. In W. Sieg, editor, Logic and Computation, volume
106 of Contemporary Mathematics, pages 101–136. American Mathe-
matical Society, 1990.

[8] Solomon Feferman. Logics for termination and correctness of functional
programs. In Y. N. Moschovakis, editor, Logic from Computer Science,
volume 21 of MSRI Publications, pages 95–127. Springer, 1991.

[9] Solomon Feferman. Logics for termination and correctness of functional
programs II: Logics of strength PRA. In P. Aczel, H. Simmons, and S. S.
Wainer, editors, Proof Theory, pages 195–225. Cambridge University
Press, 1992.

[10] Solomon Feferman. A new approach to abstract data types II: com-
putation on ADTs as ordinary computations. In E. Börger, G. Jäger,
H. Kleine Büning, and M. M. Richter, editors, Computer Science Logic
’91, volume 626 of Lecture Notes in Computer Science, pages 79–95.
Springer, 1992.

[11] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part I. Annals of Pure and Applied
Logic, 65(3):243–263, 1993.

[12] Simon Finn and Michael P. Fourman. Logic Manual for the LAMBDA
System 3.2. Abstract Hardware Ltd., November 1990.

[13] Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the
LAMBDA System 3.2. Abstract Hardware Ltd., 1990.

18

[14] James Hindley and Jonathan Seldin. Introduction to Combinators and
λ-calculus. Cambridge University Press, 1986.

[15] Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative
theories. In A. Cantini, E. Casari, and P. Minari, editors, Logic and
Foundations of Mathematics, pages 83–92. Kluwer, 1999.

[16] Neil Jones. Computability and Complexity. MIT Press, 1997.

[17] Reinhard Kahle. Einbettung des Beweissystems Lambda in eine Theorie
von Operationen und Zahlen. Diploma thesis, Mathematisches Institut
der Universität München, 1992.

[18] Reinhard Kahle. Applikative Theorien und Frege-Strukturen. PhD the-
sis, Institut für Informatik und angewandte Mathematik, Universität
Bern, 1997.

[19] Reinhard Kahle. N-strictness in applicative theories. Archive for Math-
ematical Logic, 39(2):125–144, 2000.

[20] Reinhard Kahle and Thomas Studer. A theory of explicit mathematics
equivalent to ID1. In P. Clote and H. Schwichtenberg, editors, Computer
Science Logic CSL 2000, volume 1862 of Lecture Notes in Computer
Science, pages 356–370. Springer, 2000.

[21] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill,
1974.

[22] John C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[23] Yiannis Moschovakis. Elementary Induction on Abstract Structures.
North-Holland, 1974.

[24] Wolfram Pohlers. Proof Theory, volume 1407 of Lecture Notes in Math-
ematics. Springer, 1989.

[25] Chris Reade. Elements of Functional Programming. Addison-Wesley,
1989.

[26] David Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[27] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Manuscript, 1969. Later published in Theoretical Computer
Science, 121:411–440,1993.

19

[28] Robert Stärk. Call-by-value, call-by-name and the logic of values. In
D. van Dalen and M. Bezem, editors, Computer Science Logic ’96,
volume 1258 of Lecture Notes in Computer Science, pages 431–445.
Springer, 1997.

[29] Robert Stärk. Why the constant ‘undefined’? Logics of partial terms
for strict and non-strict functional programming languages. Journal of
Functional Programming, 8(2):97–129, 1998.

[30] Thomas Studer. Constructive foundations for Featherweight Java.
Preprint.

[31] Thomas Studer. Impredicative overloading in explicit mathematics. Sub-
mitted.

[32] Thomas Studer. A semantics for λ
{}
str: a calculus with overloading and

late-binding. To appear in Journal of Logic and Computation.

[33] Thomas Studer. The Mathematics of Objects. PhD thesis, Institut für
Informatik und angewandte Mathematik, Universität Bern, 2001.

[34] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathemat-
ics, vol II. North Holland, 1988.

[35] Raymond Turner. Constructive Foundations for Functional Languages.
McGraw Hill, 1991.

[36] Raymond Turner. Weak theories of operations and types. Journal of
Logic and Computation, 6(1):5–31, 1996.

Addresses
Reinhard Kahle, WSI, Universität Tübingen, Sand 13, D-72076 Tübingen,
Germany, kahle@informatik.uni-tuebingen.de
Thomas Studer, Institut für Informatik und angewandte Mathematik,
Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland,
tstuder@iam.unibe.ch

20

