How to Normalize the Jay

Dieter Probst * Thomas Studer *

Abstract

In this note we give an elementary proof of the strong normalization property of the J combinator by providing an explicit bound for the maximal length of the reduction paths of a term. This result shows nicely that in the theorem of Toyama, Klop and Barendregt on completeness of unions of left linear term rewriting systems, disjointness is essential.

Keywords: Term rewriting systems; Combinatory logic; Strong normalization

1 Introduction

The combinators I and J with their reduction rules $|a \to a \text{ and } Jabcd \to ab(adc)$ were introduced by Rosser [2] in 1935. These two combinators are of particular interest since they form a basis for the λ I-calculus (cf. e.g. Barendregt [1]).

In combinatory logic, it is natural to ask whether a certain system is strongly normalizing, i.e. whether there exists no term with an infinite reduction path. Many standard combinators such as K, B, C and I are strongly normalizing, with the notable exception of S. But surprisingly, it appears to be unknown whether the reduction system generated by the combinator J is strongly normalizing.

In this note, we prove the strong normalization property of the J combinator by providing an explicit bound for the maximal length of the reduction paths of a term. Or, in the words of Smullyan [3], we show that binary trees with jaybirds sitting on their leaves strongly normalize.

^{*}Research supported by the Swiss National Science Foundation.

2 Notation

Let L_J denote the language containing countably many variables x_1, x_2, \ldots , the constant symbol J and the binary function symbol \cdot (application). As usual, the constant J and every variable are L_J -terms, and if s and t are L_J -terms then also $(s \cdot t)$. We write st for $(s \cdot t)$ and adopt the convention of association to the left, i.e. $s_1 \ldots s_n$ stands for $(\ldots (s_1 s_2) \ldots s_n)$. By C_J we denote the set of all L_J -terms, and by C_J^0 the set of all closed L_J -terms, i.e. the L_J -terms which contain no variables.

Definition 1. $\rightarrow \subseteq C_J \times C_J$ is the smallest relation satisfying

(1) $\mathsf{J}abcd \to ab(adc)$ for all L_{J} -terms a, b, c, d.

(2) If s, s', t are L_J-terms and $s \to s'$, then also $st \to s't$ and $ts \to ts'$.

If $s \to t$ holds for two terms s and t, we say that s reduces to t.

Definition 2. An *infinite reduction path* is an infinite sequence of L_J -terms $(t)_{n \in \mathbb{N}}$ such that $t_n \to t_{n+1}$ for all $n \in \mathbb{N}$.

Definition 3. An L_J -term t is strongly normalizable, if there is no infinite reduction path starting with t. An L_J -term t is said to be in normal form, if there is no L_J -term t' such that $t \to t'$.

Whenever $s \to t$ holds, there is a subterm s' of s of the form Jabcd which reduces to a subterm ab(adc) of t. The following definition gives us a tool to indicate the particular occurrence of the subterm s' which gets reduced.

Definition 4. Let \mathcal{W} be the set of all finite words over the alphabet $\{l, r\}$. The empty word is denoted by ϵ . For every $w \in \mathcal{W}$ we define a function $f_w : \mathcal{C}^0_{\mathsf{J}} \to \mathcal{C}^0_{\mathsf{J}} \cup \{\bot\}$ where $\bot \notin \mathcal{C}^0_{\mathsf{J}}$ by

$$\begin{array}{rcl}
f_{\epsilon}(t) & := & t, \\
f_{lw}(\mathsf{J}) & := & \bot, \\
f_{rw}(\mathsf{J}) & := & \bot, \\
f_{lw}(st) & := & f_w(s), \\
f_{rw}(st) & := & f_w(t).
\end{array}$$

In the sequel we often write $(t)_w$ for $f_w(t)$.

Definition 5. An L_J-term of the form Jabcd is called a redex with contractum ab(adc). If $w \in \mathcal{W}$, we write $t \to_w t'$ if there is a redex r with contractum r' such that $(t)_w \equiv r$ and $(t')_w \equiv r'$.

The following lemmas are trivial consequences of Definition 1.

Lemma 6. Every $t \in C_J$ is strongly normalizable if and only if every $t \in C_J^0$ is strongly normalizable.

Lemma 7. For every $r \in C^0_J$ we have: if there exist $r' \in C^0_J$ and $w \in W$ so that $r \to wr'$ and $w \neq \epsilon$, then there are $s, t, s', t' \in C^0_J$ and $w' \in W$ such that $r \equiv st$ and either

- (1) w = lw' and $s \rightarrow_{w'} s'$ and $r' \equiv s't$, or
- (2) w = rw' and $t \rightarrow_{w'} t'$ and $r' \equiv st'$.

3 Normalization

The next definition is the crucial step in our normalization proof. We introduce a weighting function $|\cdot|$ which assigns to every L_J -term an upper bound for the maximal length of its reduction paths.

Definition 8. We define $|\cdot|: \mathcal{C}^0_1 \to \mathbb{N}$ recursively by the following clauses:

$$|r| := \begin{cases} 1, & \text{if } r \equiv J, \\ |t| + 2^{|(s)_l|} + |s|, & \text{if } r \equiv st \text{ and } s \neq J, \\ |t| + |s|, & \text{if } r \equiv st \text{ and } s \equiv J. \end{cases}$$

Observe that this function does not satisfy the replacement property, meaning we find terms s, s', t in C_J^0 so that both |s| > |s'| and |st| < |s't| hold. For example, choose $s \equiv J(J(J(J(JJ))))$, $s' \equiv JJJ$ and $t \equiv J$. Then we obviously have |s| = 6 > 5 = |s'| but also |st| = 9 < 10 = |s't|. The reason is that $|(s)_l| = 1 < 2 = |(s')_l|$. Please note that $s \to s'$ does not hold in this example, cf. Theorem 10.

Lemma 9. For all $a, b, c, d \in C^0_1$ we have:

- (1) $|\mathsf{J}abcd| > |ab(adc)|$.
- (2) $|\mathsf{J}abc| = |(\mathsf{J}abcd)_l| > |(ab(adc))_l| = |ab|.$

Proof. Let $a \not\equiv J$. A straightforward calculation yields

$$|Jabcd| = |d| + 2^{|b|+2^{1}+|a|+1} + |c| + 2^{|a|+1} + |b| + 2^{1} + |a| + 1$$

and

$$|ab(adc)| = |c| + 2^{|a|} + |d| + 2^{|(a)_l|} + |a| + 2^{|a|} + |b| + 2^{|(a)_l|} + |a|.$$

Because of $|(a)_l| < |a|$ and $n < 2^n$ ($\forall n \in \mathbb{N}$) we have

$$2 \cdot 2^{|a|} + 2 \cdot 2^{|(a)_l|} + |a| < 2^{|a|+1} + 2^{|a|} + 2^{|a|} \le 2^{|a|+2},$$

therefore Claim (1) is verified. (2) clearly holds since

$$|Jabc| = |c| + 2^{|a|+1} + |b| + 2^1 + |a| + 1,$$

and

$$|ab| = |b| + 2^{|(a)_l|} + |a|.$$

In the case $a \equiv \mathsf{J}$ the expressions $2^{|(a)_l|}$ do not appear in the above arguments and both claims hold as well.

Theorem 10. For every closed L_J -term r we have: if there is a closed L_J -term r' with $r \to r'$, then |r| > |r'| and also $|(r)_l| \ge |(r')_l|$.

Proof. First, we note that since r contains a redex, r must be of the form st. Therefore we have $(r)_l \neq \bot$. We prove the theorem by induction on the definition of closed L_J -terms. Consider the closed L_J -term $r \equiv st$ and suppose that the claim holds for s and t. If $r \to_{\epsilon} r'$ the claim follows by Lemma 9. Otherwise, by Lemma 7, there exist $w \in W$ and $s', t' \in \mathcal{C}_J^0$ so that either

- (1) $r \rightarrow_{lw} r'$ and $s \rightarrow_{w} s'$ and $r' \equiv s't$, or
- (2) $r \rightarrow_{rw} r'$ and $t \rightarrow_{w} t'$ and $r' \equiv st'$.

Assume we are in the first case. By the induction hypothesis we get |s| > |s'|and $|(s)_l| \ge |(s')_l|$, so that

$$|r| = |st| = |t| + 2^{|(s)_l|} + |s| > |t| + 2^{|(s')_l|} + |s'| = |s't| = |r'|.$$

Further, we obtain

$$|(r)_l| = |s| \ge |s'| = |(r')_l|.$$

In the second case the induction hypothesis yields |t| > |t'|, and we proceed as in the first case.

Corollary 11. Every L_J-term is strongly normalizable.

4 Conclusion

In this note we have proved a strong normalization theorem for the combinatory system generated by the combinator J. Since I and J form a basis for the λ I-calculus our work shows that the following theorem of Toyama, Klop and Barendregt [4] does not apply in the context of combinatory logic: given two left-linear term rewriting systems R₁ and R₂, then we have that R₁ and R₂ are complete (i.e. confluent and terminating) if and only if the disjoint union of R₁ and R₂ is complete. The reason is that there is a hidden application function in the two systems generated by I and J, respectively. In the combinatory logic built up from I and J, these two functions are identified, whereas in the disjoint union of the two system, these application functions are distinct. Therefore, the above theorem cannot be applied.

References

- Hendrik Barendregt. The Lambda Calculus. North-Holland, revised edition, 1985.
- [2] John B. Rosser. A mathematical logic without variables I. Annals of Mathematics, 36(1):127–150, 1935.
- [3] Raymond Smullyan. To Mock a Mockingbird. Alfred A. Knopf, Inc., 1985.
- [4] Yoshihito Toyama, Jan W. Klop, and Hendrik P. Barendregt. Termination for direct sums of left-linear complete term rewriting systems. *Journal of the ACM*, 42(6):1275–1304, 1995.

Address

Dieter Probst, Thomas Studer Institut für Informatik und angewandte Mathematik, Universität Bern Neubrückstrasse 10, CH-3012 Bern, Switzerland {probst,tstuder}@iam.unibe.ch