
How to Normalize the Jay

Dieter Probst ∗ Thomas Studer ∗

Abstract

In this note we give an elementary proof of the strong normalization
property of the J combinator by providing an explicit bound for the
maximal length of the reduction paths of a term. This result shows
nicely that in the theorem of Toyama, Klop and Barendregt on com-
pleteness of unions of left linear term rewriting systems, disjointness
is essential.

Keywords: Term rewriting systems; Combinatory logic; Strong normalization

1 Introduction

The combinators I and J with their reduction rules Ia→ a and Jabcd→ ab(adc)
were introduced by Rosser [2] in 1935. These two combinators are of partic-
ular interest since they form a basis for the λI-calculus (cf. e.g. Barendregt
[1]).

In combinatory logic, it is natural to ask whether a certain system is strongly
normalizing, i.e. whether there exists no term with an infinite reduction path.
Many standard combinators such as K,B,C and I are strongly normalizing,
with the notable exception of S. But surprisingly, it appears to be unknown
whether the reduction system generated by the combinator J is strongly
normalizing.

In this note, we prove the strong normalization property of the J combinator
by providing an explicit bound for the maximal length of the reduction paths
of a term. Or, in the words of Smullyan [3], we show that binary trees with
jaybirds sitting on their leaves strongly normalize.

∗Research supported by the Swiss National Science Foundation.

1

2 Notation

Let LJ denote the language containing countably many variables x1, x2, . . . ,
the constant symbol J and the binary function symbol · (application). As
usual, the constant J and every variable are LJ-terms, and if s and t are
LJ-terms then also (s · t). We write st for (s · t) and adopt the convention
of association to the left, i.e. s1 . . . sn stands for (. . . (s1s2) . . . sn). By CJ we
denote the set of all LJ-terms, and by C0

J the set of all closed LJ-terms, i.e.
the LJ-terms which contain no variables.

Definition 1. → ⊆ CJ × CJ is the smallest relation satisfying

(1) Jabcd→ ab(adc) for all LJ-terms a, b, c, d.

(2) If s, s′, t are LJ-terms and s→ s′, then also st→ s′t and ts→ ts′.

If s→ t holds for two terms s and t, we say that s reduces to t.

Definition 2. An infinite reduction path is an infinite sequence of LJ-terms
(t)n∈N such that tn→ tn+1 for all n ∈ N.

Definition 3. An LJ-term t is strongly normalizable, if there is no infinite
reduction path starting with t. An LJ-term t is said to be in normal form, if
there is no LJ-term t′ such that t→ t′.

Whenever s→ t holds, there is a subterm s′ of s of the form Jabcd which
reduces to a subterm ab(adc) of t. The following definition gives us a tool to
indicate the particular occurrence of the subterm s′ which gets reduced.

Definition 4. Let W be the set of all finite words over the alphabet {l, r}.
The empty word is denoted by ε. For every w ∈ W we define a function
fw : C0

J → C0
J ∪ {⊥} where ⊥6∈ C0

J by

fε(t) := t,
flw(J) := ⊥,
frw(J) := ⊥,
flw(st) := fw(s),
frw(st) := fw(t).

In the sequel we often write (t)w for fw(t).

Definition 5. An LJ-term of the form Jabcd is called a redex with contractum
ab(adc). If w ∈ W , we write t→w t

′ if there is a redex r with contractum r′

such that (t)w ≡ r and (t′)w ≡ r′.

2

The following lemmas are trivial consequences of Definition 1.

Lemma 6. Every t ∈ CJ is strongly normalizable if and only if every t ∈ C0
J

is strongly normalizable.

Lemma 7. For every r ∈ C0
J we have: if there exist r′ ∈ C0

J and w ∈ W so
that r→ wr

′ and w 6= ε, then there are s, t, s′, t′ ∈ C0
J and w′ ∈ W such that

r ≡ st and either

(1) w = lw′ and s→w′ s
′ and r′ ≡ s′t, or

(2) w = rw′ and t→w′ t
′ and r′ ≡ st′.

3 Normalization

The next definition is the crucial step in our normalization proof. We intro-
duce a weighting function | · | which assigns to every LJ-term an upper bound
for the maximal length of its reduction paths.

Definition 8. We define | · | : C0
J → N recursively by the following clauses:

|r| :=


1, if r ≡ J,
|t|+ 2|(s)l| + |s|, if r ≡ st and s 6≡ J,
|t|+ |s|, if r ≡ st and s ≡ J.

Observe that this function does not satisfy the replacement property, meaning
we find terms s, s′, t in C0

J so that both |s| > |s′| and |st| < |s′t| hold. For
example, choose s ≡ J(J(J(J(JJ)))), s′ ≡ JJJ and t ≡ J. Then we obviously
have |s| = 6 > 5 = |s′| but also |st| = 9 < 10 = |s′t|. The reason is that
|(s)l| = 1 < 2 = |(s′)l|. Please note that s→ s′ does not hold in this example,
cf. Theorem 10.

Lemma 9. For all a, b, c, d ∈ C0
J we have:

(1) |Jabcd| > |ab(adc)|.

(2) |Jabc| = |(Jabcd)l| > |(ab(adc))l| = |ab|.

Proof. Let a 6≡ J. A straightforward calculation yields

|Jabcd| = |d|+ 2|b|+21+|a|+1 + |c|+ 2|a|+1 + |b|+ 21 + |a|+ 1

and

|ab(adc)| = |c|+ 2|a| + |d|+ 2|(a)l| + |a|+ 2|a| + |b|+ 2|(a)l| + |a|.

3

Because of |(a)l| < |a| and n < 2n (∀n ∈ N) we have

2 · 2|a| + 2 · 2|(a)l| + |a| < 2|a|+1 + 2|a| + 2|a| ≤ 2|a|+2,

therefore Claim (1) is verified. (2) clearly holds since

|Jabc| = |c|+ 2|a|+1 + |b|+ 21 + |a|+ 1,

and
|ab| = |b|+ 2|(a)l| + |a|.

In the case a ≡ J the expressions 2|(a)l| do not appear in the above arguments
and both claims hold as well.

Theorem 10. For every closed LJ-term r we have: if there is a closed LJ-
term r′ with r→ r′, then |r| > |r′| and also |(r)l| ≥ |(r′)l|.

Proof. First, we note that since r contains a redex, r must be of the form
st. Therefore we have (r)l 6=⊥. We prove the theorem by induction on the
definition of closed LJ-terms. Consider the closed LJ-term r ≡ st and suppose
that the claim holds for s and t. If r→ε r

′ the claim follows by Lemma 9.
Otherwise, by Lemma 7, there exist w ∈ W and s′, t′ ∈ C0

J so that either

(1) r→lw r
′ and s→w s

′ and r′ ≡ s′t, or

(2) r→rw r
′ and t→w t

′ and r′ ≡ st′.

Assume we are in the first case. By the induction hypothesis we get |s| > |s′|
and |(s)l| ≥ |(s′)l|, so that

|r| = |st| = |t|+ 2|(s)l| + |s| > |t|+ 2|(s
′)l| + |s′| = |s′t| = |r′|.

Further, we obtain
|(r)l| = |s| ≥ |s′| = |(r′)l|.

In the second case the induction hypothesis yields |t| > |t′|, and we proceed
as in the first case.

Corollary 11. Every LJ-term is strongly normalizable.

4

4 Conclusion

In this note we have proved a strong normalization theorem for the combi-
natory system generated by the combinator J. Since I and J form a basis for
the λI-calculus our work shows that the following theorem of Toyama, Klop
and Barendregt [4] does not apply in the context of combinatory logic: given
two left-linear term rewriting systems R1 and R2, then we have that R1 and
R2 are complete (i.e. confluent and terminating) if and only if the disjoint
union of R1 and R2 is complete. The reason is that there is a hidden appli-
cation function in the two systems generated by I and J, respectively. In the
combinatory logic built up from I and J, these two functions are identified,
whereas in the disjoint union of the two system, these application functions
are distinct. Therefore, the above theorem cannot be applied.

References

[1] Hendrik Barendregt. The Lambda Calculus. North-Holland, revised edi-
tion, 1985.

[2] John B. Rosser. A mathematical logic without variables I. Annals of
Mathematics, 36(1):127–150, 1935.

[3] Raymond Smullyan. To Mock a Mockingbird. Alfred A. Knopf, Inc., 1985.

[4] Yoshihito Toyama, Jan W. Klop, and Hendrik P. Barendregt. Termi-
nation for direct sums of left-linear complete term rewriting systems.
Journal of the ACM, 42(6):1275–1304, 1995.

Address
Dieter Probst, Thomas Studer
Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
{probst,tstuder}@iam.unibe.ch

5

