How to Normalize the Jay

Dieter Probst * Thomas Studer *

Abstract

In this note we give an elementary proof of the strong normalization
property of the J combinator by providing an explicit bound for the
maximal length of the reduction paths of a term. This result shows
nicely that in the theorem of Toyama, Klop and Barendregt on com-
pleteness of unions of left linear term rewriting systems, disjointness
is essential.

Keywords: Term rewriting systems; Combinatory logic; Strong normalization

1 Introduction

The combinators | and J with their reduction rules la — a and Jabed — ab(adc)
were introduced by Rosser [2] in 1935. These two combinators are of partic-
ular interest since they form a basis for the Al-calculus (cf. e.g. Barendregt
[1]).

In combinatory logic, it is natural to ask whether a certain system is strongly
normalizing, i.e. whether there exists no term with an infinite reduction path.
Many standard combinators such as K, B, C and | are strongly normalizing,
with the notable exception of S. But surprisingly, it appears to be unknown
whether the reduction system generated by the combinator J is strongly
normalizing.

In this note, we prove the strong normalization property of the J combinator
by providing an explicit bound for the maximal length of the reduction paths
of a term. Or, in the words of Smullyan [3], we show that binary trees with
jaybirds sitting on their leaves strongly normalize.

*Research supported by the Swiss National Science Foundation.

2 Notation

Let L; denote the language containing countably many variables xq, xs,. ..,
the constant symbol J and the binary function symbol - (application). As
usual, the constant J and every variable are L,-terms, and if s and ¢ are
L,-terms then also (s -t). We write st for (s-t) and adopt the convention
of association to the left, i.e. sy...s, stands for (... (s182)...s,). By C; we
denote the set of all Lj-terms, and by CJ the set of all closed L;-terms, i.e.
the Lj-terms which contain no variables.

Definition 1. — C C; x C; is the smallest relation satisfying

(1) Jabed — ab(adc) for all Lj-terms a, b, ¢, d.

(2) If 5,5t are Ly-terms and s — s, then also st — 't and ts — ts'.
If s — t holds for two terms s and ¢, we say that s reduces to t.

Definition 2. An infinite reduction path is an infinite sequence of Lj-terms
(t)nen such that t,, — ¢, for all n € N.

Definition 3. An Lj-term ¢ is strongly normalizable, if there is no infinite
reduction path starting with ¢. An Lj-term ¢ is said to be in normal form, if
there is no Lj-term ¢’ such that t — ¢'.

Whenever s — ¢ holds, there is a subterm s’ of s of the form Jabcd which
reduces to a subterm ab(adc) of t. The following definition gives us a tool to
indicate the particular occurrence of the subterm s’ which gets reduced.

Definition 4. Let W be the set of all finite words over the alphabet {l,r}.
The empty word is denoted by €. For every w € W we define a function
fuw:CY— CYU{L} where L& CY by

fe(t) = t,
flw(J) = 1,
frw(J) = 1,
flw(St) - f’w<8)7

frw(st) = fu(t).
In the sequel we often write (t),, for f,(t).

Definition 5. An L;-term of the form Jabed is called a redex with contractum
ab(ade). If w € W, we write t —,, t’ if there is a redex r with contractum 7’
such that (t), =r and (t'), =1

The following lemmas are trivial consequences of Definition 1.

Lemma 6. Everyt € C; is strongly normalizable if and only if every t € C§
15 strongly normalizable.

Lemma 7. For every r € C] we have: if there exist ' € CJ and w € W so
that r — ,r' and w # ¢, then there are s,t,s',t' € C{ and w' € W such that
r = st and either

(1) w=Iw" and s =, s and v’ = §'t, or

(2) w=rw andt —, t and r' = st'.

3 Normalization

The next definition is the crucial step in our normalization proof. We intro-
duce a weighting function |- | which assigns to every Lj-term an upper bound
for the maximal length of its reduction paths.

Definition 8. We define | - | : C) — N recursively by the following clauses:

1, ifr=J,
Ir| :={ [t] + 210l 4 |s|, if r = st and s # J,
it| + |sl, if r=stand s=J.

Observe that this function does not satisfy the replacement property, meaning
we find terms s,s’,¢ in CY so that both |s| > |s| and |st| < |s't| hold. For
example, choose s = J(J(J(J(JJ)))), s = JJJ and t = J. Then we obviously
have |s| = 6 > 5 = || but also |st| = 9 < 10 = |s't|. The reason is that
|(s))]| =1 < 2=](s)]. Please note that s — s’ does not hold in this example,
cf. Theorem 10.

Lemma 9. For all a,b,c,d € CY we have:
(1) |Jabed| > |ab(adc)).
(2) |Jabe| = |(Jabed),| > |(ab(adc)),| = |ab].
Proof. Let a # J. A straightforward calculation yields
| Jabed) = |d] 4 21P+2 a1 o) 4 2lal o jp| 42t 4]a] 41
and

|ab(adc)| = |c| + 2! +|d| + 2/ 4 |a| + 2lol + |b] 4 21@1] 4 |q).

3

Because of |(a),| < |a| and n < 2™ (Vn € N) we have
9. 9lel 9. ollal | |q| < a1 | glel | glal < glal+2)
therefore Claim (1) is verified. (2) clearly holds since
|Jabe| = |c| + 219 4 |b] + 2 4 |a] + 1,
and
|ab| = [b] + 2/ + [a].

In the case a = J the expressions 2!l do not appear in the above arguments
and both claims hold as well. O

Theorem 10. For every closed Ly-term r we have: if there is a closed L;-
term r' with r — 1, then |r| > |r'| and also |(r);| > |(")i].

Proof. First, we note that since r contains a redex, r must be of the form
st. Therefore we have (r); #.L. We prove the theorem by induction on the
definition of closed Lj-terms. Consider the closed Lj-term r = st and suppose
that the claim holds for s and ¢t. If » —. 7’ the claim follows by Lemma 9.
Otherwise, by Lemma 7, there exist w € W and ', € CY so that either

(1) r -y 7’ and s —,, ¢ and 7' = §'t, or

(2) r =" and t —,, ' and 1’ = st'.

Assume we are in the first case. By the induction hypothesis we get |s| > ||
and [(s),| = [(s")i], so that

r| = |st] = [t] + 21 + |s| > [t + 2/ 4 |&'| = |s't| = |r].

Further, we obtain
()i = 1s] = |s'] = [(r")ul.

In the second case the induction hypothesis yields |t| > |t/|, and we proceed
as in the first case.]

Corollary 11. FEwvery Lj-term is strongly normalizable.

4 Conclusion

In this note we have proved a strong normalization theorem for the combi-
natory system generated by the combinator J. Since | and J form a basis for
the Al-calculus our work shows that the following theorem of Toyama, Klop
and Barendregt [4] does not apply in the context of combinatory logic: given
two left-linear term rewriting systems R; and R,, then we have that R; and
Ry are complete (i.e. confluent and terminating) if and only if the disjoint
union of R; and R, is complete. The reason is that there is a hidden appli-
cation function in the two systems generated by | and J, respectively. In the
combinatory logic built up from | and J, these two functions are identified,
whereas in the disjoint union of the two system, these application functions
are distinct. Therefore, the above theorem cannot be applied.

References

[1] Hendrik Barendregt. The Lambda Calculus. North-Holland, revised edi-
tion, 1985.

[2] John B. Rosser. A mathematical logic without variables I. Annals of
Mathematics, 36(1):127-150, 1935.

[3] Raymond Smullyan. To Mock a Mockingbird. Alfred A. Knopf, Inc., 1985.

[4] Yoshihito Toyama, Jan W. Klop, and Hendrik P. Barendregt. Termi-
nation for direct sums of left-linear complete term rewriting systems.

Journal of the ACM, 42(6):1275-1304, 1995.

Address

Dieter Probst, Thomas Studer

Institut fiir Informatik und angewandte Mathematik, Universitat Bern
Neubriickstrasse 10, CH-3012 Bern, Switzerland
{probst,tstuder}@iam.unibe.ch

