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0 Introduction

In this thesis we will introduce the theory PRON of primitive recursive op-
erations and numbers. It is more or less the same theory like PEA+ + (r)
introduced by Schlüter in [12]. But it will be very helpful to formulate the
axioms of PRON similar to the axioms of the well known applicative theory
BON. There are the following differences between PRON and BON:

1. In PRON we have the three constants i, a2, and b2 satisfying ia = a,
a2<a, b>c '<ac, bc>, and b2<a, b>c ' a(bc). But we do not have a
constant ŝ with ŝabc ' ac(bc) like in BON.

2. We define a function symbol<> instead of a constant p̂ for pairing. The
reason for this difference is that we will define a restricted λ abstraction
(λ∗x.t) by induction on the build-up of the term t. In this definition
we will have to distinct between a pair and an application.
The addition of the function symbol <> allows us to define one more
point differently: For n > 0 we will define a term t to be in (Nn → N),
if x0, . . . , xn−1 ∈ N implies t<x0, . . . , xn−1>∈ N.

3. In the axioms for primitive recursion we do not claim totality. This
is only necessary in section 5, when we will replace formula induction
(L-IN) by set induction (S-IN). In this case we will write PRONt instead
of PRON.

There are certain technical difficulties because of these differences: For in-
stance, the case n = 0 must always be handled separately, because an n-ary
function is not defined by iterated term application. It is also true that we
cannot define full λ abstraction, because we do not have the constant ŝ of
BON.

In section 2 we will give a total recursion theoretic model of PRON. We know
from Kahle [9] that this is not possible for BON, because there exists a term
notN so that BON proves notN /∈ N. The constants of PRON are going to
be interpreted as unary indices of primitive recursive functions. In section 4
we will enhance this model by the interpretations of the additional constants
µ and E1. Because of the choice of this kind of model, the axioms for the
non-constructive µ operator and the Suslin operator E1 will be defined in the
following way:

(µ.1) (∀x ∈ N)(f<a, x>∈ N)↔ µfa ∈ N

(µ.2) (∀x ∈ N)(f<a, x>∈ N)→
[(∃x ∈ N)(f<a, x>= 0)→ f<a,µfa>= 0]
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(E1.1) (∀x, y ∈ N)(f<a, x, y>∈ N)↔ E1fa ∈ N

(E1.2) (∀x, y ∈ N)(f<a, x, y>∈ N)→ [(∃g)[g ∈ (N→ N)∧
(∀x ∈ N)(f<a, g(sNx), gx>= 0)]↔ E1fa = 0]

Let n > 0. If a is an n-tuple of terms, then <a, x> is an (n+ 1)-tuple, so µ
can be applied to any term in (Nn+1 → N). The constant E1 can be applied
to every term in (Nn+2 → N) for the same reason. In section 2 we will also
give the exact axiomatization of BON. We will give several reasons why BON
must be the stronger theory than PRON. But PRON is strong enough to have
a term which represents an arbitrary primitive recursive function.

We will write PRON(µ) and PRONt(µ) for PRON and PRONt plus the axioms
about µ. Further, PRON(SUS) and PRONt(SUS) will denote the theories
PRON(µ) and PRONt(µ) extended by the axioms about E1. In this thesis
we will be able to show the following proof-theoretic results:

1. PRA ⊆ PRONt + (S-IN) ⊆ PRA− + (Σ1-IN)

2. PRON + (L-IN) ≡ PA

3. PRONt(µ) + (S-IN) ≡ ACA0

4. PRON(µ) + (L-IN) ≡ ACA

5. PRONt(SUS) + (S-IN) ≡ Π1
1-CA0

6. PRON(SUS) + (L-IN) ≡ Π1
1-CA

In section 3 we start with the embeddings of PRON, PRON(µ), and
PRON(SUS), always with formula induction. The lower proof-theoretic
bounds can be proved with a translation from arithmetic to the language
L of applicative theories. For this purpose, we profit by the possibility to
define a so-called characteristic term in L for every Π1

0 (Π1
1) formula. This

term represents a subset of N, so it is helpful to derive the translation of
the comprehension scheme. We can define a similar characteristic term in
section 5 where we embed the same theories but with set induction instead of
formula induction. Hereby, this characteristic term is also helpful to derive
set induction and induction for quantifier free formulas.

In section 4 we are going to determine the upper bounds of the mentioned
theories with formula induction. We will embed PRON + (L-IN) in BON +
(L̂-IN) and construct a model of PRON(µ) in second order arithmetic. Then
we will formalize a model of PRON(SUS) in Π1

1-CA. For this purpose the
crucial point is to prove that, given an e coding an (n+2)-ary Relation on N,
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the following equivalence holds: there exists a set-theoretic function which is
a descending chain for e, if and only if there exists a natural number coding a
total function which is also a descending chain for e. The upper bounds with
set induction in section 5 are easier, because we can embed PRONt + (S-IN)
with the additional axioms in BON+(S-IN), BON(µ̂)+(S-IN), and SUS+(S-IN).

I am grateful to Prof. Dr. Gerhard Jäger for introducing me to applicative
theories and PD Dr. Thomas Strahm for guiding me during my work. I
also thank Dieter Probst and Marc Heissenbüttel for their competent advise.
Further, I acknowledge the support I received from the entire research group.
Last but not least I would like to thank my girlfriend and my parents who
never ceased to motivate me.

David Steiner
Bern, October 1, 2001
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1 The formal frameworks

1.1 Functions and indices

In this section we are going to introduce the class PRIM of primitive re-
cursive functions as well as the extensions PRIM (µ) and PRIM (SUS ). We
will define the most relevant primitive recursive functions like the coding of
sequence numbers. Further, we will introduce a set of indices for every class
of functions and we are going to define the level of an index.

Definition 1.1.1

1. Let n, m, k, x0, . . . , xn−1 be arbitrary natural numbers. We define the
following basic functions:

(a) Successor. S(x0) := x0 + 1

(b) Constant functions. Csnm(~x) := m

(c) Projections. If k < n then Prnk (~x) := xk

2. Let n, m, x0, . . . , xn−1, y be arbitrary natural numbers and K be a
class of number theoretic functions. We define the following closure
characteristics of functions of K:

(a) Composition. If m > 0 and f is an m-ary function of K and
g0, . . . , gm−1 are n-ary functions of K, then the n-ary function

Compn(f, g0, . . . , gm−1)(~x) := f(g0(~x), . . . , gm−1(~x))

is an element of K.

(b) Primitive recursion. If f is an n-ary function of K and g is an
(n+ 2)-ary function of K, then the (n+ 1)-ary function

Recn+1(f, g)(~x, y) :=

{
f(~x) if y = 0
g(~x, y, Recn+1(f, g)(~x, y − 1)) if y > 0

is an element of K.

(c) µ operator. If f is an (n + 1)-ary function of K, then the n-ary
function

Zeron(f)(~x) :=


min{y | f(~x, y) = 0} if there is an y so

that f(~x, y) = 0
0 otherwise

is an element of K.
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(d) Suslin operator. If f is an (n + 2)-ary function of K, then the
n-ary function

Susn(f)(~x) :=


0 if there is a unary function g, so

that f(~x, g(S(z)), g(z)) = 0
for every natural number z

1 otherwise

is an element of K.

3. Now we can introduce the following classes of functions:

(a) The class PRIM of primitive recursive functions consists of the
basic functions and is closed under composition and primitive re-
cursion.

(b) The class PRIM (µ) consists of the basic functions and is closed
under composition, primitive recursion, and the µ operator.

(c) The class PRIM (SUS ) consists of the basic functions and is closed
under composition, primitive recursion, the µ operator, and the
Suslin operator.

Before we are going to introduce indices for the mentioned classes of func-
tions, we will define certain primitive recursive functions such as the coding
of sequence numbers and characteristic functions.
The reader should be familiar with primitive recursive functions and rela-
tions. We will never prove that a certain function or relation is primitive
recursive. A good book about recursion theory is Hinman [7], for example.

Definition 1.1.2 The following primitive recursive functions will be relevant
in the sequel:

x .− y :=

{
x− y if y < x
0 otherwise

min(x, y) := x .− (x .− y) = min{x, y}
p(x) := x-th prime number starting with p(0) = 2

Now we are ready to introduce a primitive recursive coding of sequence num-
bers. We chose this kind of coding, because it is very easy to understand and
the projections are also primitive recursive.

Definition 1.1.3 For all natural numbers n > 0, x0, . . . , xn−1 we define an
n-ary primitive recursive function νn from N

n to N by

νn(x0, . . . , xn−1) :=
∏
k<n

p(k)xk+1
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and we define the coding of sequence numbers as follows:

〈〉 := 1

〈x0, . . . , xn−1〉 := νn(x0, . . . , xn−1)

In addition, we define the primitive recursive functions lh (length) and π
(projections), as well as the primitive recursive relation Seq (sequence num-
bers) for an easy calculating with sequence numbers.

lh(s) := min{x ≤ s | p(x) 6 | s}
π(s, k) := min{x ≤ s | p(k)x+2 6 | s}
s ∈ Seq :⇔ s =

∏
k<lh(s)

p(k)π(s,k)+1

In the sequel we will abbreviate π(s, k) by (s)k and ((. . . (s)k0)k1 . . .)km−1 by
(s)k0,...,km−1 for every natural number m > 0.

Primitive recursive functions and relations can easily be translated into each
other.

Definition 1.1.4 For each n-ary primitive recursive relation R we define
its n-ary primitive recursive characteristic function chR by:

chR(~x) :=

{
0 if R(~x)
1 otherwise

for all natural numbers n > 0, x0, . . . , xn−1.
Conversely, given an n-ary primitive recursive function F , its graph GrF is
an (n+ 1)-ary primitive recursive relation,

GrF := {(~x, y) | ~x, y ∈ N and F(~x) = y}

for every natural number n.

Now we are going to define indices for functions of the classes PRIM ,
PRIM (µ), and PRIM (SUS ). We start with the indices for the primitive
recursive functions.

Definition 1.1.5 Prim is the set of indices for the primitive recursive func-
tions and is inductively defined as follows:
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s ∈ Prim ⇔
s ∈ Seq ∧ [[(s)0 = 0 ∧ lh(s) = 2 ∧ (s)1 = 1] ∨
[(s)0 = 1 ∧ lh(s) = 3] ∨ [(s)0 = 2 ∧ lh(s) = 3 ∧ (s)1 > (s)2] ∨
[(s)0 = 3 ∧ lh(s) = (s)2,1 + 3 ∧ (s)2 ∈ Prim ∧ (s)2,1 > 0 ∧

(∀k < (s)2,1)((s)k+3 ∈ Prim ∧ (s)k+3,1 = (s)1)] ∨
[(s)0 = 4 ∧ lh(s) = 4 ∧ (s)2 ∈ Prim ∧ (s)3 ∈ Prim ∧

(s)1 = (s)2,1 + 1 ∧ (s)3,1 = (s)1 + 1]]

Note that Prim is a primitive recursive set. We have to define which functions
are coded with the various indices.

Definition 1.1.6 Let s ∈ Prim be an index of a function of PRIM . The
function Φs is defined by induction on the build-up of s as follows:

Φ〈0,1〉 := S
Φ〈1,n,m〉 := Csnm
Φ〈2,n,k〉 := Prnk

Φ〈3,n,f,g0,...,gm−1〉 := Compn(Φf ,Φg0 , . . . ,Φgm−1)

Φ〈4,n+1,f,g〉 := Recn+1(Φf ,Φg)

We often write [s] instead of Φs.

The primitive recursion evaluation function PrimEv is calculating the func-
tion Φs, if s is a unary index of Prim.

Definition 1.1.7 PrimEv is the following recursive function on N 2:

PrimEv(x, y) :=

{
Φx(y) if x ∈ Prim ∧ (x)1 = 1
0 otherwise

Now we introduce the indices for every function of PRIM (µ).

Definition 1.1.8 µPrim is the set of indices for the primitive recursive func-
tions plus the non-constructive µ operator and is inductively defined as fol-
lows:
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s ∈ µPrim ⇔
s ∈ Seq ∧ [[(s)0 = 0 ∧ lh(s) = 2 ∧ (s)1 = 1] ∨
[(s)0 = 1 ∧ lh(s) = 3] ∨ [(s)0 = 2 ∧ lh(s) = 3 ∧ (s)1 > (s)2] ∨
[(s)0 = 3 ∧ lh(s) = (s)2,1 + 3 ∧ (s)2 ∈ µPrim ∧ (s)2,1 > 0 ∧

(∀k < (s)2,1)((s)k+3 ∈ µPrim ∧ (s)k+3,1 = (s)1)] ∨
[(s)0 = 4 ∧ lh(s) = 4 ∧ (s)2 ∈ µPrim ∧ (s)3 ∈ µPrim ∧

(s)1 = (s)2,1 + 1 ∧ (s)3,1 = (s)1 + 1] ∨
[(s)0 = 5 ∧ lh(s) = 3 ∧ (s)2 ∈ µPrim ∧ (s)2,1 = (s)1 + 1]]

Note that µPrim is a primitive recursive set and Prim ⊆ µPrim. We have
to define which function of PRIM (µ) is coded with an arbitrary index s of
µPrim.

Definition 1.1.9 Let s ∈ µPrim be an index of a function of PRIM (µ).
The function Ψs is defined by induction on the build-up of s as follows:

Ψ〈0,1〉 := S
Ψ〈1,n,m〉 := Csnm
Ψ〈2,n,k〉 := Prnk

Ψ〈3,n,f,g0,...,gm−1〉 := Compn(Ψf ,Ψg0 , . . . ,Ψgm−1)

Ψ〈4,n+1,f,g〉 := Recn+1(Ψf ,Ψg)

Ψ〈5,n,f〉 := Zeron(Ψf )

We also write [s] for Ψs if it is clear that we talk about PRIM (µ).

The evaluation function µPrimEv is calculating the function Ψs, if s is a
unary index of µPrim.

Definition 1.1.10 µPrimEv is the following function on N 2:

µPrimEv(x, y) :=

{
Ψx(y) if x ∈ µPrim ∧ (x)1 = 1
0 otherwise

Now we introduce the indices for every function of PRIM (SUS ).

Definition 1.1.11 SusPrim is the set of indices for the primitive recursive
functions with the non-constructive µ operator plus the indices for the Suslin
operator E1 and is inductively defined as follows:
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s ∈ SusPrim ⇔
s ∈ Seq ∧ [[(s)0 = 0 ∧ lh(s) = 2 ∧ (s)1 = 1] ∨
[(s)0 = 1 ∧ lh(s) = 3] ∨ [(s)0 = 2 ∧ lh(s) = 3 ∧ (s)1 > (s)2] ∨
[(s)0 = 3 ∧ lh(s) = (s)2,1 + 3 ∧ (s)2 ∈ SusPrim ∧ (s)2,1 > 0 ∧

(∀k < (s)2,1)((s)k+3 ∈ SusPrim ∧ (s)k+3,1 = (s)1)] ∨
[(s)0 = 4 ∧ lh(s) = 4 ∧ (s)2 ∈ SusPrim ∧ (s)3 ∈ SusPrim ∧

(s)1 = (s)2,1 + 1 ∧ (s)3,1 = (s)1 + 1] ∨
[(s)0 = 5 ∧ lh(s) = 3 ∧ (s)2 ∈ SusPrim ∧ (s)2,1 = (s)1 + 1] ∨
[(s)0 = 6 ∧ lh(s) = 3 ∧ (s)2 ∈ SusPrim ∧ (s)2,1 = (s)1 + 2]]

Note that SusPrim is a primitive recursive set and µPrim ⊆ SusPrim. We
have to define which function of PRIM (SUS ) is coded with an arbitrary
index s of SusPrim.

Definition 1.1.12 Let s ∈ SusPrim be an index of an arbitrary function of
PRIM (SUS ). The function Θs is defined by induction on the build-up of s
as follows:

Θ〈0,1〉 := S
Θ〈1,n,m〉 := Csnm
Θ〈2,n,k〉 := Prnk

Θ〈3,n,f,g0,...,gm−1〉 := Compn(Θf ,Θg0 , . . . ,Θgm−1)

Θ〈4,n+1,f,g〉 := Recn+1(Θf ,Θg)

Θ〈5,n,f〉 := Zeron(Θf )

Θ〈6,n,f〉 := Susn(Θf )

We again use the notation [s] for Θs if it is clear that we talk about
PRIM (SUS ).

The evaluation function SusPrimEv is calculating the function Θs, if s is a
unary index of SusPrim.

Definition 1.1.13 SusPrimEv is the following function on N 2:

SusPrimEv(x, y) :=

{
Θx(y) if x ∈ SusPrim ∧ (x)1 = 1
0 otherwise

For every index s of SusPrim we can define the Level Lev(s). The Level of
an index s is the number how many times s is nested.
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Definition 1.1.14 Let s ∈ SusPrim be an index of an arbitrary function of
PRIM (SUS ). The primitive recursive function Lev(s) is defined as follows:

Lev(s) :=

{
0 if (s)0 ≤ 2
max{Lev((s)2), . . . ,Lev((s)lh(s)

.−1)}+ 1 if (s)0 ≥ 3

Note that if s is an element of Prim or µPrim, then Lev(s) is also defined
and has the same meaning.

We will define models of PRON, PRON(µ), and PRON(SUS) where we only
have indices of unary functions. Therefore, we need to prove the existence
of some auxiliary functions which change the arity of an index in the desired
way.

Lemma 1.1.15 Let n > 1, x0, . . . , xn be arbitrary natural numbers. Fur-
ther, let e ∈ SusPrim be an n-ary index and f ∈ SusPrim be a unary index.
Then there exist primitive recursive functions ·′, ·̃, and · with the following
properties:

[ e′ ](〈. . . 〈〈x0, x1〉, x2〉, . . . , xn−1〉) = [e](x0, . . . , xn−1)

[ f̃ ](x0, x1) = [f ](〈x0, x1〉)
[ f ](x0, x1, x2) = [f ](〈〈x0, x1〉, x2〉)

Proof For all k < n let dnk be the index of the primitive recursive func-
tion 〈. . . 〈〈x0, x1〉, x2〉, . . . , xn−1〉 → xk. In addition, let c2 be the index of
the primitive recursive function (x, y) → 〈x, y〉. Then there are primitive
recursive functions ·′, ·̃, and · so that:

e′ = 〈3, 1, e, dn0 , . . . , dnn .−1〉
f̃ = 〈3, 2, f, 〈3, 2, c2, 〈2, 2, 0〉, 〈2, 2, 1〉〉〉
f = 〈3, 3, f, 〈3, 3, c2, 〈3, 3, c2, 〈2, 3, 0〉, 〈2, 3, 1〉〉, 〈2, 3, 2〉〉〉

It is an easy recursion theoretic exercise to prove that the three functions
have the mentioned properties. 2

Note that we can apply the three functions ·′, ·̃, and · to elements e, f of Prim
or µPrim because Prim ⊆ µPrim ⊆ SusPrim. In this case, the abbreviation
[·] stands for PrimEv or µPrimEv , respectively.

1.2 Arithmetics

In this section we will define the first order language L1 and the second order
language L2. We are working with a form of second order arithmetic with
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set and function variables. The reason for this choice is that theorem 3.3.1
(Π1

1 normal forms) is most suitable for our purposes.
Furthermore, we will introduce the two outstanding systems of first order
arithmetic, namely primitive recursive arithmetic PRA and Peano arithmetic
PA. The subsystems of second order arithmetic we are going to introduce
are ACA0, ACA, Π1

1-CA0, and Π1
1-CA.

Definition 1.2.1 The language L1 is a first order language with:

1. countably many number variables u, v, w, x, y, z, . . . (possibly with
subscripts).

2. an n-ary function symbol for every n-ary primitive recursive function
and every natural number n. The function symbols are denoted by F ,
G, H, . . . (possibly with subscripts). We sometimes write c, c0, c1, c2,
. . . for the 0-ary function symbols we call constants.

3. an n-ary relation symbol for every n-ary primitive recursive relation
and every natural number n > 0. We mostly write R, R0, R1, R2, . . .
for the relation symbols.

4. the logical symbols ¬ (negation), ∨ (disjunction), and ∃ (existential
quantifier), as well as useful symbols like (, [, ), ], and the comma for
a better readability of expressions.

The second order language L2 contains the language L1 plus:

5. countably many set variables U , V , W , X, Y , Z, . . . (possibly with
subscripts).

6. countably many function variables F , G, H, . . . (possibly with sub-
scripts).

7. the element relation ∈ between natural numbers and sets of natural
numbers.

In particular, we use the constant 0, the unary function symbol S for the
successor function, the binary (infix) relation symbol = for the equality re-
lation, and the binary (infix) relation symbol < for the less relation. Very
often we also write the same expression for a primitive recursive function
(relation) and the associated function (relation) symbol.
There is only a basic symbol for equality between numbers. Therefore, we
have to define two additional kinds of equality.
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Definition 1.2.2 Equality between sets of numbers and functions is defined
as follows:

U = V := (∀x)(x ∈ U ↔ x ∈ V )

F = G := (∀x)(F (x) = G(x))

The number terms and formulas of L1 and L2 are defined in the usual way.

Definition 1.2.3 The number terms r, s, t, . . . (possibly with subscripts)
of L1 (L2) are inductively generated as follows:

1. The number variables and constants are number terms of L1 (L2).

2. If t0, . . . , tn−1 are number terms of L1 (L2), then so also is
F(t0, . . . , tn−1) for every n-ary function symbol F and all natural num-
bers n > 0.

3. If t is a number term of L2, then so also is F (t) for every function
variable F .

The L1 (L2) formulas A, B, C, . . . (possibly with subscripts) are inductively
generated as follows:

1. If t0, . . . , tn−1 are number terms of L1 (L2), then R(t0, . . . , tn−1) is
an atomic L1 (L2) formula for every n-ary relation symbol R and all
natural numbers n > 0.

2. If t is a number term of L2, then (t ∈ U) is an atomic L2 formula for
every set variable U .

3. If A and B are L1 (L2) formulas, then so also are ¬A, (A ∨ B), and
(∃x)A.

4. If A and B are L2 formulas, then so also are (∃X)A, and (∃F )A.

Free and bound variables are defined as usual. We use the notation FV (A)
for the set of all free number variables which have no bound appearance in
the formula A. A sentence is a formula with no free variables. In addition, we
will use the notation A[~U, ~F ,~v] to express that a formula A contains the free
variables U0, . . . , Uk−1, F0, . . . , Fl−1, v0, . . . , vm−1 for all natural numbers
k, l, and m.

Definition 1.2.4 (Substitution) Let n > 0 be a natural number, t, s0,
. . . , sn−1 be arbitrary terms and A be an arbitrary formula. Further, let
u0, . . . , un−1 be variables in FV (A). We write t[s0, . . . , sn−1/u0, . . . , un−1]
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and A[s0, . . . , sn−1/u0, . . . , un−1] to express that we simultaneously replace in
t and A every appearance of uk by sk for all k < n. Sometimes we will
abbreviate this notation by t[~s/~u], A[~s/~u], or A(~s).

Definition 1.2.5 Let A and B be arbitrary L1 (L2) formulas, and let t be an
arbitrary number term of L1 (L2). Then we have the following abbreviations:

(A ∧B) := ¬(¬A ∨ ¬B)

(A→ B) := (¬A ∨B)

(A↔ B) := (A→ B ∧B → A)

(∀x)A := ¬(∃x)(¬A)

(∃!x)A := (∃x)[A ∧ (∀y)(A[y/x]→ y = x)]

(∃x < t)A := (∃x)(x < t ∧ A)

(∀x < t)A := (∀x)(x < t→ A)

Now, let A be an arbitrary L2 formula. We additionally define the following
abbreviations:

(∃x ∈ U)A := (∃x)(x ∈ U ∧ A)

(∀x ∈ U)A := (∀x)(x ∈ U → A)

(∀X)A := ¬(∃X)(¬A)

(∃!X)A := (∃X)[A ∧ (∀Y )(A[Y/X]→ Y = X)]

(∀F )A := ¬(∃F )(¬A)

(∃!F )A := (∃F )[A ∧ (∀G)(A[G/F ]→ G = F )]

We will be interested in systems of first and second order arithmetic, which
are based on induction and comprehension principles for classes of formulas
capturing levels of the arithmetic and the analytic hierarchy. We therefore
have to build two hierarchies for formulas, whose level depends on the number
of alternating quantifiers.

Definition 1.2.6 First, we define QF to be the collection of all quantifier-
free L1 formulas. Further, for all natural numbers n we generate the collec-
tions of Σn and Πn formulas of L1 according to the arithmetic hierarchy by
induction on n as follows:

1. The Σ0 and Π0 formulas of L1 are those L1 formulas which contain
only bounded number quantifiers.

2. The Σn+1 formulas of L1 comprise all Σn and Πn formulas of L1 as
well as all formulas of the form (∃x)A so that A is a Πn formula of L1.
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3. The Πn+1 formulas of L1 comprise all Σn and Πn formulas of L1 as
well as all formulas of the form (∀x)A so that A is a Σn formula of L1.

Π∞ denotes the collection of all L1 formulas. Now we generate for all natural
numbers n the collections of Σ1

n and Π1
n formulas of L2 according to the

analytic hierarchy by induction on n as follows:

1. The Σ1
0 and Π1

0 formulas of L2 are those L2 formulas which contain
only number quantifiers, i.e., which contain no set quantifier and no
function quantifier. They are called the arithmetic L2 formulas.

2. The Σ1
n+1 formulas of L2 comprise all Σ1

n and Π1
n formulas of L2 as

well as all formulas of the form (∃X)A so that A is a Π1
n formula of

L2.

3. The Π1
n+1 formulas of L2 comprise all Σ1

n and Π1
n formulas of L2 as

well as all formulas of the form (∀X)A so that A is a Σ1
n formula of

L2.

Π1
∞ denotes the collection of all L2 formulas.

Our rudimentary theory in arithmetic is PRA−, that is PRA without the
induction axiom. In the definitions of our arithmetic theories PRA− is always
the initial theory.

Definition 1.2.7 (PRA−) The axioms and rules of inference of PRA− are
divided into the following four groups:

i. Logical axioms

(1) every instance of an axiom of classical propositional logic

(2) x = x

(3) x = y ∧ x = z → y = z

(4) x0 = y0 ∧ . . . ∧ xn−1 = yn−1 → F(x0, . . . , xn−1) = F(y0, . . . , yn−1)
for every n-ary function symbol F and all natural numbers n > 0

(5) x0 = y0 ∧ . . . ∧ xn−1 = yn−1 → (R(x0, . . . , xn−1)↔ R(y0, . . . , yn−1))
for every n-ary relation symbol R and all natural numbers n > 0

(6) A[t/x]→ (∃x)A for every formula A and every term t

ii. Number theoretic axioms

(7) ¬(S(x) = 0)
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(8) S(x) = S(y)→ x = y

(9) ¬(x < 0)

(10) x < S(y)→ (x < y ∨ x = y)

iii. Defining equations

(11) Csnm(x0, . . . , xn−1) = m
for all natural numbers n, m

(12) Prnk (x0, . . . , xn−1) = xk
for all natural numbers n > 0 and k < n

(13) Compn(F ,G0, . . . ,Gm−1)(x0, . . . , xn−1) =
F(G0(x0, . . . , xn−1), . . . ,Gm−1(x0, . . . , xn−1))
for all m-ary function symbols F , all n-ary function symbols
G0, . . . , Gm−1, and all natural numbers n and m > 0

(14) Recn+1(F ,G)(x0, . . . , xn−1, 0) = F(x0, . . . , xn−1)
for all n-ary function symbols F , all (n+ 2)-ary function symbols G,
and all natural numbers n

(15) Recn+1(F ,G)(x0, . . . , xn−1,S(y)) =
G(x0, . . . , xn−1, y, Rec

n+1(F ,G)(x0, . . . , xn−1, y))
for all n-ary function symbols F , all (n+ 2)-ary function symbols G,
and all natural numbers n

iv. Rules of inference

(MP)
A A→ B

B
for every formula A and B

(∃) A[u/x]→ B

(∃x)A→ B
for every formula A and B so that u does not occur in B

We have to define several schemes and axioms before we can introduce the
mentioned theories.

Definition 1.2.8 Let K be a class of formulas. We define the following
schemes and axioms:

v. Induction scheme

(K-IN) A[0/u] ∧ (∀x)(A[x/u]→ A[S(x)/u])→ (∀x)A[x/u]
for all formulas A in K
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vi. Set induction for L2:

(IAN) (∀X)[0 ∈ X ∧ (∀y)(y ∈ X → S(y) ∈ X)→ (∀y)(y ∈ X)]

vii. Graph principle:

(GP) (∀X)[(∀y)(∃!z)(〈y, z〉 ∈ X)→ (∃F )(∀y)(〈y, F (y)〉 ∈ X)]

viii. Comprehension scheme

(K-CA) (∃X)(∀y)(y ∈ X ↔ A[y/u])
for all formulas A in K

Definition 1.2.9 We will work with the following L1 theories in the sequel:

PRA := PRA− + (QF-IN)

PA := PRA− + (Π∞-IN)

Further, we define the following L2 theories:

ACA0 := PRA− + (GP) + (IAN) + (Π1
0-CA)

ACA := PRA− + (GP) + (Π1
∞-IN) + (Π1

0-CA)

Π1
1-CA0 := PRA− + (GP) + (IAN) + (Π1

1-CA)

Π1
1-CA := PRA− + (GP) + (Π1

∞-IN) + (Π1
1-CA)

The relation ≡ denotes the usual notion of proof-theoretic equivalence as it
is defined in Feferman [4]. In this thesis, two theories are defined to have the
same proof-theoretic strength, if they prove (at least) the same Π2 sentences.

1.3 Applicative theories

It is the purpose of this section to introduce the basic applicative framework
as well as the precise axiomatizations of set and formula induction, the non-
constructive µ operator, and the Suslin operator E1. Further, we will define
additional axioms like the axioms of totality and extensionality.

Definition 1.3.1 The language L of our applicative theories is a first order
language of partial terms with:

1. individual variables a, b, c, d, f , g, h, u, v, w, x, y, z, . . . (possibly
with subscripts).

2. individual constants i, k, a2, b2 (combinators), p0, p1 (unpairing), 0
(zero), sN (numerical successor), pN (numerical predecessor), dN (defi-
nition by numerical cases), and r (primitive recursion).
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3. two unary relation symbols N (natural numbers) and ↓ (defined), and
one binary relation symbol = (equality).

4. two binary function symbols � (partial term application) and <>
(pairing).

5. the logical symbols ¬ (negation), ∨ (disjunction), and ∃ (existential
quantifier), as well as useful symbols like (, [, ), ], and the comma for
a better readability of expressions.

We define individual terms of L as we define terms of every other first order
language.

Definition 1.3.2 The individual L terms r, s, t, . . . (possibly with sub-
scripts) are inductively generated as follows:

1. The individual variables and individual constants are individual terms.

2. If s and t are individual terms, then so also are �(s, t) and <>(s, t).

In the following we will always abbreviate �(s, t) simply by (st), st or some-
times also s(t); the context will always ensure that no confusion arises. We
further adopt the convention of association to the left so that t0t1t2 . . . tn−1

stands for (. . . ((t0t1)t2) . . . tn−1).

Definition 1.3.3 We define general n-tupling of individual terms by induc-
tion on n > 1 as follows:

<t0> := t0

<t0, t1> := <>(t0, t1)

<t0, . . . , tn> := <<t0, . . . , tn−1>, tn>

Note that <t0, t1>=<<t0>, t1>.

We define L formulas in our applicative framework the same way as in every
other first order language.

Definition 1.3.4 The L formulas A, B, C, D, . . . (possibly with subscripts)
are inductively generated as follows:

1. If s and t are individual terms of L, then the atomic formulas N(t), t↓,
and (s = t) are L formulas.

2. If A and B are L formulas, then so also are ¬A, (A ∨B), and (∃x)A.
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Free variables and substitution like t[~s/~u] and A[~s/~u] are defined the same
way as in section 1.2. We will also use the abbreviations A[~u] and A(~s).
We do not have any abbreviation for the substitution in terms like t[s/u],
because the expression t(s) is already reserved for term application.

Definition 1.3.5 For every natural number n we define additional formulas
as follows:

(A ∧B) := ¬(¬A ∨ ¬B)

(A→ B) := (¬A ∨B)

(A↔ B) := (A→ B ∧B → A)

(∃!x)A := (∃x)[A ∧ (∀y)(A[y/x]→ y = x)]

(∃~x)A := (∃x0) . . . (∃xn−1)A

(∀~x)A := ¬(∃~x)(¬A)

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as “t is defined” or “t
has a value”.

Definition 1.3.6 We define the partial equality relation ' and the negation
of equality 6= as follows:

(s ' t) := s↓ ∨ t↓ → (s = t)

(s 6= t) := s↓ ∧ t↓ ∧ ¬(s = t)

If we want to describe n-ary total functions of natural numbers, we have to
write very long formulas. For this reason, it is more comfortable to define
additional abbreviations which help us writing shorter formulas.

Definition 1.3.7 Let n > 0 and m be natural numbers and t0, . . . , tm−1 be
arbitrary L terms. Then we use the following abbreviations concerning the
predicate N:

~t ∈ N := N(t0) ∧ . . . ∧ N(tm−1)

(∃~x ∈ N)A := (∃~x)(~x ∈ N ∧ A)

(∀~x ∈ N)A := (∀~x)(~x ∈ N→ A)

(∃!x ∈ N)A := (∃x ∈ N)[A ∧ (∀y ∈ N)(A[y/x]→ y = x)]

~t ∈ (Nn → N) := (∀~x ∈ N)(t0<x0, . . . , xn−1>∈ N ∧ . . . ∧
tm−1<x0, . . . , xn−1>∈ N)

We will always write ~t ∈ (N→ N) instead of ~t ∈ (N1 → N).
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Sometimes we need the existence of L terms which represent natural numbers.
It is a usual habit to define numerals for this reason.

Definition 1.3.8 For every natural number m we define the numeral m by
induction on m as follows:

0 := 0

(m+ 1) := sNm

We mostly write 0, 1 for the numerals 0, 1, respectively. Of course, every
numeral is a closed L term.

Let us define the notion of a subset of N. Sets of natural numbers are
represented via their characteristic functions which are total on N.

Definition 1.3.9 We define a subset t of N with the intention that a natural
number x belongs to the set t ∈ P(N) if and only if tx = 0.

t ∈ P(N) := (∀x ∈ N)(tx = 0 ∨ tx = 1)

If n is an arbitrary natural number and t0, . . . , tn−1 are arbitrary L terms,
then we sometimes write ~t ∈ P(N) for t0 ∈ P(N) ∧ . . . ∧ tn−1 ∈ P(N).

Now we are going to introduce the theory PRON of primitive recursive oper-
ations and numbers which has been treated in Schlüter [12] as PEA+ + (r).
Its underlying logic is the classical logic of partial terms due to Beeson [1],
which is also described in Feferman, Jäger, and Strahm [6] and corresponds
to E+ logic with strictness and equality of Troelstra and Van Dalen [16].

Definition 1.3.10 (PRON I) The logical axioms and the rules of inference
of PRON are divided into the following four groups:

A. Propositional and quantifier axioms

(a) every instance of an axiom of classical propositional logic

(b) A[t/x] ∧ t↓ → (∃x)A for every term t

B. Definedness axioms

(c) r↓ , provided that r is a variable or a constant

(d) (st)↓ → s↓ ∧ t↓

(e) <s, t>↓ → s↓ ∧ t↓
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(f) s = t→ s↓ ∧ t↓

(g) N(t)→ t↓

C. Equality axioms.

(h) r = r, provided that r is a variable or a constant

(i) s0 = t0 ∧ . . . ∧ sn−1 = tn−1 ∧ A(s0, . . . , sn−1)→ A(t0 . . . , tn−1)
for all atomic formulas A[~v] and every natural number n

D. Rules of inference

(MP)
A A→ B

B
for every formula A and B

(∃) A[u/x]→ B

(∃x)A→ B
for every formula A and B so that u does not occur in B

Definition 1.3.11 (PRON II) The non-logical axioms of PRON are divided
into the following five groups:

I. Partial enumerative algebra

(1) ia = a

(2) kab = a

(3) a2<a, b>↓ ∧ a2<a, b>c '<ac, bc>

(4) b2<a, b>↓ ∧ b2<a, b>c ' a(bc)

II. Pairing and projection

(5) p0<a, b>= a ∧ p1<a, b>= b

III. Natural numbers

(6) 0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N)

(7) (∀x ∈ N)(sNx 6= 0 ∧ pN(sNx) = x)

(8) (∀x ∈ N)(x 6= 0→ pNx ∈ N ∧ sN(pNx) = x)

IV. Definition by numerical cases

(9) c ∈ N ∧ d ∈ N ∧ c = d→ dN<a, b, c, d>= a
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(10) c ∈ N ∧ d ∈ N ∧ c 6= d→ dN<a, b, c, d>= b

V. Primitive recursion

(11) r<f, g>↓ ∧ r<f, g><a, 0>' fa

(12) b ∈ N→ r<f, g><a, sNb>' g<a, b, r<f, g><a, b>>

In the sequel we will write PRON− for the theory PRON without the axioms
(11) and (12) about primitive recursion.

Let us now turn to the two type 2 functionals which will be relevant in
the sequel. For this purpose we add the two new constants µ and E1 to our
applicative framework. If n > 0 and f ∈ (Nn+1 → N), the non-constructive µ
operator is checking the existence of a zero in f . If n > 0 and f ∈ (Nn+2 → N)
represents an (n+ 2)-ary relation on N, the Suslin operator E1 is testing for
the wellfoundedness of f .

Definition 1.3.12 We define the following axioms about the additional con-
stants µ and E1:

VI. The non-constructive µ operator

(µ.1) (∀x ∈ N)(f<a, x>∈ N)↔ µfa ∈ N

(µ.2) (∀x ∈ N)(f<a, x>∈ N)→
[(∃x ∈ N)(f<a, x>= 0)→ f<a,µfa>= 0]

VII. The Suslin operator E1

(E1.1) (∀x, y ∈ N)(f<a, x, y>∈ N)↔ E1fa ∈ N

(E1.2) (∀x, y ∈ N)(f<a, x, y>∈ N)→ [(∃g)[g ∈ (N→ N)∧
(∀x ∈ N)(f<a, g(sNx), gx>= 0)]↔ E1fa = 0]

We are ready to define the two extensions PRON(µ) and PRON(SUS) of
PRON. We include the non-constructive µ operator in our basic axiomatic
framework for the Suslin operator, because we do not know if the axioms for
µ are derivable from the axioms of E1.

Definition 1.3.13 We define PRON(µ) to be the L theory PRON extended
by the axioms about µ, and we let PRON(SUS) denote the L theory which
extends PRON by the axioms about µ and E1.

PRON(µ) := PRON + (µ.1) + (µ.2)

PRON(SUS) := PRON(µ) + (E1.1) + (E1.2)
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Note that the axioms of µ and E1 differ from the axiomatizations in BON as
we can see in Feferman and Jäger [5] and in Jäger and Strahm [8]. The reason
is that there came up some problems by generating a model with indices.

Definition 1.3.14 We define two different induction schemes as follows:

VIII. Set induction on N

(S-IN) t ∈ P(N) ∧ t0 = 0 ∧ (∀x ∈ N)(tx = 0→ t(sNx) = 0)→
(∀x ∈ N)(tx = 0)

for every L term t

IX. Formula induction on N

(L-IN) A[0/u] ∧ (∀x ∈ N)(A[x/u]→ A[sNx/u])→ (∀x ∈ N)A[x/u]
for all L formulas A

We can define additional axioms which sometimes will extend our applicative
theories containing PRON. In this cases we have to add the new constants
dV, c=, cN, and iN to L.

Definition 1.3.15 We define the following additional axioms:

X. Various additional axioms

(Tot) (∀x, y)(xy↓)

(Ext) (∀f, g)[(∀x)(fx ' gx)→ f = g]

(Nat) (∀x)N(x)

(DV) (c = d→ dV<a, b, c, d>= a) ∧ (c 6= d→ dV<a, b, c, d>= b)

(Ch=) (x = y → c=<x, y>= 0) ∧ (x 6= y → c=<x, y>= 1)

(ChN) (x ∈ N→ cNx = 0) ∧ (x /∈ N→ cNx = 1)

(InjN) (∀x)(iNx ∈ N) ∧ (∀x, y)(x 6= y → iNx 6= iNy)

Finally, it will be useful to have abbreviations for the projections on tuples
of terms.

Definition 1.3.16 For all natural numbers n > 0 and k < n we define the
projections of an arbitrary L term t as follows:

(t)nk :=

{
p0(p0(. . . p0(p0t) . . .)) if k = 0
p1(p0(p0(. . . p0(p0t) . . .))) otherwise

where the constant p0 appears n− (k + 1) times.
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We have to check if the abbreviations (·)nk for projections of terms are cor-
rectly defined.

Lemma 1.3.17 For all natural numbers n > 0 and k < n we have

PRON ` (<x0, . . . , xn−1>)nk = xk

Proof We only need the axiom (5) of PRON and definition 1.3.3. 2
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2 Basic consequences and models

2.1 Restricted lambda abstraction

In BON we can express full λ abstraction because of the constant ŝ. This
is not possible in PRON, but there is a way to define a restricted form of
lambda abstraction. Therefore, we have to introduce a property of variables.

Definition 2.1.1 A variable x occurs in argument position in a term t, if
one of the following conditions is true:

1. t is a variable or a constant

2. t is the term <r, s> and x occurs in argument position in r and s

3. t is the term (rs) and x occurs in argument position in s, but does not
occur in r, i.e. x /∈ FV (r)

Now we are able to define restricted lambda abstraction provided by the
definition of PRON.

Definition 2.1.2 Let x occur in argument position in t. The term (λ∗x.t)
is defined by induction on the definition of t by:

(λ∗x.t) :=


i if t is the variable x
k t if t is a variable y 6= x

or a constant
a2<(λ∗x.r), (λ∗x.s)> if t is the term <r, s>
b2<r, (λ

∗x.s)> if t is the term (rs)

There are two fundamental properties of λ∗ abstraction we have to mention.

Lemma 2.1.3 Let x occur in argument position in t.

1. PRON ` (λ∗x.t)↓

2. FV (λ∗x.t) = FV (t) \ {x}

Proof These assertions are both easily proved by induction on the definition
of t. 2

It is not always easy to see, if the variable y is in argument position in (λ∗x.t).
For that reason we have to define another property of variables.

Definition 2.1.4 By induction on the build-up of t we define that Argyt (x)
holds if:
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1. t is a variable or a constant.

2. t is the term <r, s> and Argyr (x) and Argys (x) hold.

3. t is the term (rs), Argys (x) holds, and y is in argument position in r.

Now we have the desired tool to decide, if y is in argument position in (λ∗x.t).

Lemma 2.1.5 Argyt (x) holds ⇔ y is in argument position in (λ∗x.t).

Proof We can prove this lemma by induction on the definition of t:

1. t is the variable x: Argyt (x) holds and y is in argument position in
(λ∗x.t) = i.

2. t is a variable z 6= x or a constant: Argyt (x) holds and y is in argument
position in (λ∗x.t) = kt (no problem if t = y).

3. t is the term < r, s > : Argyt (x) holds ⇔ Argyr (x) and Argys (x) hold.
By induction hypothesis this is the fact⇔ y is in argument position in
(λ∗x.r) and in (λ∗x.s) ⇔ y is in argument position in
(λ∗x.t) = a2<(λ∗x.r), (λ∗x.s)>.

4. t is the term (rs): Argyt (x) holds ⇔ Argys (x) holds and y is in argu-
ment position in r. By induction hypothesis this is the fact ⇔ y is in
argument position in r and in (λ∗x.s) ⇔ y is in argument position in
λ∗x.t = b2<r, (λ

∗x.s)>. 2

The following lemma shows that Argyt (x) does not imply that y is in argument
position in t.

Lemma 2.1.6 Let x occur in argument position in t.

1. If y 6= x occurs in argument position in t, then y occurs in argument
position in (λ∗x.t).

2. If y 6= x occurs in argument position in (λ∗x.t), then y needs not occur
in argument position in t.

Proof The first assertion is easily proved by induction on the definition of
t. For the second assertion let t be the term p0y<x, p1yx>. We know that
x is in argument position in t, y is not in argument position in t, but y is in
argument position in (λ∗x.t), because Argyt (x) holds. 2

The next theorem is the reason why we have defined λ∗ abstraction this way.
It has almost the same application as λ abstraction in BON.
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Theorem 2.1.7 Let x occur in argument position in t. Then we can prove
the following assertions:

1. PRON ` (λ∗x.t)x ' t

2. PRON ` s↓ → (λ∗x.t)s ' t[s/x]

3. If Argyt (x) holds and x /∈ FV (r) then
PRON ` r↓ ∧ s↓ → (λ∗y.(λ∗x.t))rs ' t[r/y][s/x]

Proof These assertions are proved by induction on the definition of t. We
will prove the third one, the first two are a straightforward exercise. Suppose
that r↓ and s↓ .

1. If t is the variable x then (λ∗x.t) = i and (λ∗y.(λ∗x.t))rs '
(λ∗y.i)rs ' i[r/y]s ' is ' s ' x[r/y][s/x] ' t[r/y][s/x]

2. If t is the variable y then (λ∗x.t) = ky and (λ∗y.(λ∗x.t))rs '
(λ∗y.ky)rs ' (ky)[r/y]s ' krs ' r ' y[r/y][s/x] ' t[r/y][s/x]

3. If t is a variable z so that x 6= z 6= y or t is a constant then (λ∗x.t) = kt
and (λ∗y.(λ∗x.t))rs ' (λ∗y.kt)rs ' (kt)[r/y]s ' kts ' t ' t[r/y][s/x]

4. If t is the term <t0, t1> then (λ∗x.t) = a2<(λ∗x.t0), (λ∗x.t1)> and
(λ∗y.(λ∗x.t))rs ' (λ∗y.a2<(λ∗x.t0), (λ∗x.t1)>)rs '
(a2<(λ∗x.t0), (λ∗x.t1)>)[r/y]s ' a2<(λ∗x.t0)[r/y], (λ∗x.t1)[r/y]>s '
a2<(λ∗y.(λ∗x.t0))r, (λ∗y.(λ∗x.t1))r>s '
<(λ∗y.(λ∗x.t0))rs, (λ∗y.(λ∗x.t1))rs>'<t0[r/y][s/x], t1[r/y][s/x]>'
<t0, t1>[r/y][s/x] ' t[r/y][s/x]

5. If t is the term (t0t1) then (λ∗x.t) = b2<t0, (λ
∗x.t1)> and

(λ∗y.(λ∗x.t))rs ' (λ∗y.b2<t0, (λ
∗x.t1)>)rs '

(b2<t0, (λ
∗x.t1)>)[r/y]s ' b2<t0[r/y], (λ∗x.t1)[r/y]>s '

b2<t0[r/y], (λ∗y.(λ∗x.t1))r>s '
t0[r/y]((λ∗y.(λ∗x.t1))rs) ' t0[r/y](t1[r/y][s/x]) '
(t0t1)[r/y][s/x] because x /∈ FV (t0), so we have t[r/y][s/x] 2

Examples 2.1.8 We give two examples of forbidden λ∗ abstraction and an
example of an L term where λ∗ abstraction is possible.

1. We are not allowed to define a term like (λ∗x.(λ∗y.(λ∗z.xz(yz)))). Oth-
erwise we would be able to construct the constant ŝ of BON, which must
not be possible.
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2. We are not allowed to define a term like (λ∗x.(p0x)(p1x)). Otherwise we
would be able to construct the primitive recursion evaluation function
PrimEv, which must not be possible, because PrimEv is recursive and
not primitive recursive.

3. Let us remember the proof of lemma 2.1.6. We are allowed to define
the term r := (λ∗y.(λ∗x.p0y<x, p1yx>)). It is a nice result to have an
L term r with the property r<a, b>c = a<c, bc>, which follows from
theorem 2.1.7.

We are now able to prove a restricted version of the recursion theorem.

Theorem 2.1.9 There exists an L term rec so that:

PRON ` recf↓ ∧ recfx ' f<recf, x>

Proof Let s be the term s := (λ∗y.(λ∗z.p0y<p1y, z>)) with the intention
that s<a, b>c ' a<b, c>. Further, we define t to be the term
(λ∗f.(λ∗u.f<s<p0u, p0u>, p1u>)). Let now rec be the term
(λ∗f.s<tf, tf >). Note that recf ' s<tf, tf > and s<tf, tf >↓ by lemma
2.1.3, so we know that recf↓ . We can easily check that:

recfx ' s<tf, tf>x ' tf<tf, x>

' (λ∗u.f<s<p0u, p0u>, p1u>)<tf, x> ' f<s<tf, tf>, x>

' f<recf, x>

Surely, we have to check if it is allowed to define the terms s, t and rec because
the variables for the abstraction have to be in argument position: z is in
argument position in p0y<p1y, z> and Argyp0y<p1y,z>(z) holds. The variable u

is in argument position in f<s<p0u, p0u>, p1u> and Argff<s<p0u,p0u>,p1u>
(u)

holds. Finally, f is in argument position in s<tf, tf>. 2

The existence of the constant r with its axioms (11) and (12) allows us to
introduce L terms for all (names of) primitive recursive functions, so that the
defining equations and totality of these terms are derivable in PRON. In the
following inductive definition the corresponding terms are specified in detail.

Definition 2.1.10 For each (description of a) primitive recursive function
F we define a closed L term prF by induction on the build-up of F as follows:

1. If F = S then prF := (λ∗z.sNz)

2. If F = Csnm then prF :=

{
m if n = 0
(λ∗z.m) if n > 0
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3. If F = Prnk then prF := (λ∗z.(z)nk)

4. If F = Compn(G,H0, . . . ,Hm−1) then

prF :=

{
prG<prH0

, . . . , prHm−1
> if n = 0

(λ∗z.prG<prH0
z, . . . , prHm−1

z>) if n > 0

5. If F = Recn+1(G,H) then

prF :=

{
(λ∗z.r<(λ∗y.prG), (λ

∗y.prH<(y)3
1, (y)3

2>)><0, z>) if n = 0
(λ∗z.r<prG, prH>z) if n > 0

For the proof of the following theorem we need theorem 2.1.7, the axioms
(11) and (12) of PRON concerning r, and the induction scheme (L-IN) for
induction on N.

Theorem 2.1.11 (Primitive recursive functions) Let F be an arbitrary
primitive recursive function. The defining equations of F are derivable in
PRON + (L-IN) for prF . Moreover, we can prove the following assertions:

1. If F is a constant, then PRON + (L-IN) ` prF ∈ N.

2. If the arity of F is m > 0, then PRON + (L-IN) ` prF ∈ (Nm → N)

Proof We can prove this theorem by induction on the build-up of F . The
most interesting point is the case F = Recn+1(G,H). Hereby, we have to
distinct the two cases n = 0 and n > 0.
Let n = 0. By induction hypothesis there exist the terms prG ∈ N and
prH ∈ (N2 → N). We show that prF ∈ (N→ N) by induction on x0.

x0 = 0: prFx0 ' (λ∗z.r<(λ∗y.prG), (λ
∗y.prH<(y)3

1, (y)3
2>)><0, z>)0 '

r<(λ∗y.prG), (λ
∗y.prH<(y)3

1, (y)3
2>)><0, 0>'

(λ∗y.prG)0 ' prG ∈ N

x0 → sNx0: prF(sNx0) '
(λ∗z.r<(λ∗y.prG), (λ

∗y.prH<(y)3
1, (y)3

2>)><0, z>)(sNx0) '
r<(λ∗y.prG), (λ

∗y.prH<(y)3
1, (y)3

2>)><0, sNx0>'

(λ∗y.prH<(y)3
1, (y)3

2>)
<0, x0, r<(λ∗y.prG), (λ

∗y.prH<(y)3
1, (y)3

2>)><0, x0>>'

prH<x0, r<(λ∗y.prG), (λ
∗y.prH<(y)3

1, (y)3
2>)><0, x0>>'

prH<x0, prFx0>∈ N because prFx0 ∈ N by induction hypothesis.

Now let n > 0. By induction hypothesis there exist the terms prG ∈ (Nn → N)
and prH ∈ (Nn+2 → N). We show that prF ∈ (Nn+1 → N) by induction on
xn. In the following, let x0, . . . , xn−1 be in N.
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xn = 0: prF<x0, . . . , xn>' (λ∗z.r<prG, prH>z)<x0, . . . , xn−1, 0>'
r<prG, prH><<x0, . . . , xn−1>, 0>' prG<x0, . . . , xn−1>∈ N

xn → sNxn: prF<x0, . . . , xn−1, sNxn>'
(λ∗z.r<prG, prH>z)<x0, . . . , xn−1, sNxn>'
r<prG, prH><<x0, . . . , xn−1>, sNxn>'
prH<<x0, . . . , xn−1>, xn, r<prG, prH><<x0, . . . , xn−1>, xn>>'
prH<x0, . . . , xn, r<prG, prH><x0, . . . , xn>>'
prH<x0, . . . , xn, prF<x0, . . . , xn>>∈ N because
prF<x0, . . . , xn>∈ N by induction hypothesis. 2

Let us make an example to see how the term prF behaves.

Example 2.1.12 The index for the addition + is
〈4, 2, 〈2, 1, 0〉, 〈3, 3, 〈0, 1〉, 〈2, 3, 2〉〉〉.
The addition is the primitive recursive function
Rec2(Pr1

0, Comp
3(S, P r3

2)).
The L term pr+ is defined as
(λ∗x.r<(λ∗y.(y)1

0), (λ∗y.(λ∗z.sNz)((λ∗z.(z)3
2)y))>x).

By the definitions 1.3.16 and 2.1.2 we have
pr+ = b2<r<i, b2<b2<sN, i>, b2<b2<p1, i>, i>>>, i>.
Now we can easily verify that pr+<4, 1>= 5 :

b2<r<i, b2<b2<sN, i>, b2<b2<p1, i>, i>>>, i><4, 1>'
r<i, b2<b2<sN, i>, b2<b2<p1, i>, i>>>(i<4, 1>) '

b2<b2<sN, i>, b2<b2<p1, i>, i>>

<4, 0, r<i, b2<b2<sN, i>, b2<b2<p1, i>, i>>><4, 0>>'

b2<b2<sN, i>, b2<b2<p1, i>, i>><4, 0, i4>

b2<sN, i>(b2<b2<p1, i>, i><4, 0, 4>) '
b2<sN, i>(b2<p1, i>(i<4, 0, 4>)) '
b2<sN, i>(p1(i<4, 0, 4>)) ' b2<sN, i>4 ' sN(i4) ' 5

2.2 A recursion theoretic model

In this section we will define the intended recursion theoretic model M of
PRON. The universe of this model is the set N of all natural numbers and
the function symbol � is interpreted as the primitive recursion evaluation
function PrimEv . The constants are interpreted as indices of unary primitive
recursive functions. For a better understanding how the model works, we
define the interpretations of the various symbols in the order of their difficulty.
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Definition 2.2.1 M := (|M|, NM, ↓M, =M, �M, <>M, 0M, sN
M, iM,

kM, pN
M, p0

M, p1
M, dN

M, b2
M, a2

M, rM) is defined as follows:

|M| := N

NM := N

↓M := N

=M := {(x, x) ∈ N 2 | x ∈ N}
�M := PrimEv

<>M := the primitive recursive function (x, y)→ 〈x, y〉
0M := 0

sN
M := 〈0, 1〉

iM := 〈2, 1, 0〉
kM := index of the primitive recursive function x→ 〈1, 1, x〉

pN
M := index of the primitive recursive function x→ x .− 1

p0
M := index of the primitive recursive function x→ (x)0

p1
M := index of the primitive recursive function x→ (x)1

dN
M := index of the primitive recursive function

x→
{

(x)0,0,0 if (x)0,1 = (x)1

(x)0,0,1 otherwise

b2
M := 〈3, 1, s1, p0

M, p1
M〉 while s1 is the

index of the primitive recursive function

(x, y)→
〈3, 1, x, y〉 if x ∈ Prim ∧ (x)1 = 1∧

y ∈ Prim ∧ (y)1 = 1
〈3, 1, x, 〈1, 1, 0〉〉 if x ∈ Prim ∧ (x)1 = 1∧

(y /∈ Prim ∨ (y)1 6= 1)
〈1, 1, 0〉 otherwise
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a2
M := 〈3, 1, s2, 〈1, 1, <>M〉, p0

M, p1
M〉 while s2 is the

index of the primitive recursive function

(x, y, z)→

〈3, 1, x, y, z〉 if y ∈ Prim ∧ (y)1 = 1∧
z ∈ Prim ∧ (z)1 = 1

〈3, 1, x, y, 〈1, 1, 0〉〉 if y ∈ Prim ∧ (y)1 = 1∧
(z /∈ Prim ∨ (z)1 6= 1)

〈3, 1, x, 〈1, 1, 0〉, z〉 if (y /∈ Prim ∨ (y)1 6= 1)∧
z ∈ Prim ∧ (z)1 = 1

〈3, 1, x, 〈1, 1, 0〉, 〈1, 1, 0〉〉 otherwise

rM := index of the primitive recursive function

x→

〈4, 2, (x)0, (x)1〉′ if (x)0 ∈ Prim ∧ (x)0,1 = 1∧
(x)1 ∈ Prim ∧ (x)1,1 = 1

〈4, 2, (x)0, 〈1, 3, 0〉〉′ if (x)0 ∈ Prim ∧ (x)0,1 = 1∧
((x)1 /∈ Prim ∨ (x)1,1 6= 1)

〈4, 2, 〈1, 1, 0〉, (x)1〉′ if ((x)0 /∈ Prim ∨ (x)0,1 6= 1)∧
(x)1 ∈ Prim ∧ (x)1,1 = 1

〈1, 1, 0〉 otherwise

Theorem 2.2.2 M is a model of PRON + (Tot) + (Nat).

Proof The axiom (Tot) is satisfied because PrimEv is a total function and
the axiom (Nat) is satisfied because the universe ofM is N. The most axioms
of PRON are easy to verify. We only check the axioms about the constants
b2, a2, and r.

The axiom (4) about the combinator b2:
Suppose that aM and bM are indices of unary primitive recursive functions.
(b2<a, b>c)

M = [[b2
M](〈aM, bM〉)](cM) =

[[〈3, 1, s1, p0
M, p1

M〉](〈aM, bM〉)](cM) =
[[s1]([p0

M](〈aM, bM〉), [p1
M](〈aM, bM〉))](cM) = [[s1](aM, bM)](cM) =

[〈3, 1, aM, bM〉](cM) = [aM]([bM](cM)) = (a(bc))M

The axiom (3) about the combinator a2:
Suppose that aM and bM are indices of unary primitive recursive functions.
(a2<a, b>c)

M = [[a2
M](〈aM, bM〉)](cM) =

[[〈3, 1, s2, 〈1, 1, <>M〉, p0
M, p1

M〉](〈aM, bM〉)](cM) =
[[s2]([〈1, 1, <>M〉](〈aM, bM〉), [p0

M](〈aM, bM〉), [p1
M](〈aM, bM〉))](cM) =

[[s2](<>M, aM, bM)](cM) = [〈3, 1, <>M, aM, bM〉](cM) =
[<>M]([aM](cM), [bM](cM)) = 〈[aM](cM), [bM](cM)〉 =<ac, bc>M
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The axioms (11) and (12) about the constant r:
Suppose that fM and gM are indices of unary primitive recursive functions.

1. (r<f, g>)M = 〈4, 2, fM, gM〉′ ∈ N, so r<f, g>↓ is true in M.

2. (r<f, g><a, 0>)M =

[[rM](〈fM, gM〉)](〈aM, 0M〉) = [〈4, 2, fM, gM〉′ ](〈aM, 0〉) =

[〈4, 2, fM, gM〉](aM, 0) = [fM](aM) = (fa)M

3. (r<f, g><a, sNb>)M = [[rM](〈fM, gM〉)](〈aM, [sN
M](bM)〉) =

[〈4, 2, fM, gM〉′ ](〈aM, [〈0, 1〉](bM)〉) = [〈4, 2, fM, gM〉](aM,S(bM)) =

[ gM ](aM, bM, [〈4, 2, fM, gM〉](aM, bM)) =

[gM](〈〈aM, bM〉, [〈4, 2, fM, gM〉′ ](〈aM, bM〉)〉) =
[gM](〈〈aM, bM〉, [[rM](〈fM, gM〉)](〈aM, bM〉)〉) =
(g<<a, b>, r<f, g><a, b>>)M = (g<a, b, r<f, g><a, b>>)M

If at least one of the numbers fM, gM, aM, bM is not the index of a unary
primitive recursive function, then the proofs are similar and even easier. 2

We have chosen the interpretations of the constants a2 and b2 like that,
because we wanted to be able to prove that every interpretation of λ∗ ab-
straction is an index of a unary primitive recursive function.

Lemma 2.2.3 Let t be an individual L term and the variable x be in argu-
ment position in t. Then (λ∗x.t)M is a unary index of Prim.

Proof Induction on the build-up of t:

1. If t is the variable x then (λ∗x.t) = i and iM = 〈2, 1, 0〉.

2. If t is a variable y 6= x or a constant then (λ∗x.t) = kt and
(kt)M = [kM](tM) = 〈1, 1, tM〉.

3. If t is the term <r, s> then (λ∗x.t) = a2<(λ∗x.r), (λ∗x.s)> and
(a2<(λ∗x.r), (λ∗x.s)>)M = [s2](<>M, (λ∗x.r)M, (λ∗x.s)M) =
〈3, 1, <>M, (λ∗x.r)M, (λ∗x.s)M〉 because (λ∗x.r)M and (λ∗x.s)M are
unary indices of Prim by induction hypothesis.

4. If t is the term rs then (λ∗x.t) = b2<r, (λ
∗x.s)> and

(b2<r, (λ
∗x.s)>)M = [s1](rM, (λ∗x.s)M)

=

{
〈3, 1, rM, (λ∗x.s)M〉 if rM ∈ Prim ∧ (rM)1 = 1
〈1, 1, 0〉 otherwise

because (λ∗x.s)M is an index of a unary primitive recursive function
by induction hypothesis. 2
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The interpretation of numerals is very natural in M, but the interpretation
of tuples of terms in M is iterated pairing.

Lemma 2.2.4 Let m and n > 1 be natural numbers and t0, . . . , tn−1 be
arbitrary L terms. Then we can prove the following assertions:

1. (m)M = m

2. <t0, . . . , tn−1>
M= 〈. . . 〈〈(t0)M, (t1)M〉, (t2)M〉, . . . , (tn−1)M〉

Proof The reader should be able to prove this lemma as an exercise. 2

Note that (<t0, . . . , tn−1>
M)k = (tk)

M if and only if n = 2 because of the
different coding of sequence numbers.

Theorem 2.2.5 Let n be an arbitrary natural number, F be an n-ary prim-
itive recursive function, and t0, . . . , tn−1 be arbitrary L terms. Then the
interpretation of the L term prF behaves the same way as the function F :

n = 0 : (prF)M = F
n > 0 : (prF<t0, . . . , tn−1>)M = F((t0)M, . . . , (tn−1)M)

Proof This theorem can be proved by induction on the build-up of F . Due
to theorem 2.1.11 the proof is straightforward. 2

Corollary 2.2.6 Let n, x0, . . . , xn−1 be arbitrary natural numbers and F
be an n-ary primitive recursive function. Further, let f ∈ Prim denote the
index of F . Then we can prove the following equations:

n = 0 : (prF)M = [f ]
n = 1 : [(prF)M](x0) = [f ](x0)
n > 1 : [(prF)M](〈. . . 〈〈x0, x1〉, x2〉, . . . , xn−1〉) =

[f ′ ](〈. . . 〈〈x0, x1〉, x2〉, . . . , xn−1〉)

This can easily be proved with lemma 1.1.15 2

2.3 Comparison to BON

In this section we will define the language L̂ and the axioms of the basic the-
ory BON of operations and numbers. Then we will examine the consistency
of PRON with some of the additional axioms from definition 1.3.15 and will
compare the results to BON.

Definition 2.3.1 There are only little differences between L and L̂. We
define the first order language L̂ of partial terms by making the following
changes in L:
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1. The individual constants of L̂ are k̂, ŝ (combinators), p̂, p̂0, p̂1 (pair-
ing and unpairing), 0 (zero), ŝN (numerical successor), p̂N (numerical
predecessor), d̂N (definition by numerical cases), and r̂N (primitive re-
cursion on N).

2. The symbol � is the only function symbol of L̂.

Definition 2.3.2 (BON) The logical axioms and rules of inference of BON
are the same as of PRON. The theory BON consists of the following non-
logical axioms:

(1) k̂ab = a

(2) ŝab↓ ∧ ŝabc ' ac(bc)

(3) p̂0(p̂ab) = a ∧ p̂1(p̂ab) = b

(4) 0 ∈ N ∧ (∀x ∈ N)(̂sNx ∈ N)

(5) (∀x ∈ N)(̂sNx 6= 0 ∧ p̂N(̂sNx) = x)

(6) (∀x ∈ N)(x 6= 0→ p̂Nx ∈ N ∧ ŝN(p̂Nx) = x)

(7) c ∈ N ∧ d ∈ N ∧ c = d→ d̂Nabcd = a

(8) c ∈ N ∧ d ∈ N ∧ c 6= d→ d̂Nabcd = b

(9) (∀x, y ∈ N)(fxy ∈ N) ∧ a ∈ N→ (∀x ∈ N)(̂rNfax ∈ N) ∧ r̂Nfa0 = a

(10) (∀x, y ∈ N)(fxy ∈ N) ∧ a ∈ N ∧ b ∈ N→ r̂Nfa(sNb) = fb(̂rNfab)

We have to do some changes on several additional axioms because in L̂ the
constants have different names and we have no function symbol for pairing.
The abbreviations ~t ∈ N, ~t ∈ (N → N), and ~f ∈ P(N) are the same as in
PRON, but for n > 1 the abbreviation ~t ∈ (Nn → N) is not allowed in BON.

Definition 2.3.3 The axioms (Tot), (Ext), and (Nat) and the induction
scheme (S-IN) of set induction are defined the same way as in PRON. The
following additional axioms are different in L̂:

(D̂V) (c = d→ d̂Vabcd = a) ∧ (c 6= d→ d̂Vabcd = b)

(Ĉh=) (x = y → ĉ=xy = 0) ∧ (x 6= y → ĉ=xy = 1)

(ĈhN) (x ∈ N→ ĉNx = 0) ∧ (x /∈ N→ ĉNx = 1)

(̂InjN) (∀x)(̂iNx ∈ N) ∧ (∀x, y)(x 6= y → îNx 6= îNy)
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(µ̂.1) f ∈ (N→ N)↔ µ̂f ∈ N

(µ̂.2) f ∈ (N→ N)→ [(∃x ∈ N)(fx = 0)→ f(µ̂f) = 0]

(Ê1.1) (∀x, y ∈ N)(fxy ∈ N)↔ Ê1f ∈ N

(Ê1.2) (∀x, y ∈ N)(fxy ∈ N)→ [(∃g)(g ∈ (N→ N)∧
(∀x ∈ N)(f(g(̂sNx))(gx) = 0))↔ Ê1f = 0]

(L̂-IN) A[0/u] ∧ (∀x ∈ N)(A[x/u]→ A[̂sNx/u])→ (∀x ∈ N)A[x/u]

for all L̂ formulas A

Definition 2.3.4 Let BON− be the theory BON without the axioms (9) and
(10). In addition, we define the following theories:

BON(µ̂) := BON + (µ̂.1) + (µ̂.2)

SUS := BON(µ̂) + (Ê1.1) + (Ê1.2)

There are two important theorems of BON we will need in the sequel. The
existence of full λ abstraction and the fixed point theorem.

Theorem 2.3.5 (λ abstraction) For each L̂ term t and all variables x
there exists an L̂ term (λx.t) so that:

BON ` (λx.t)↓ ∧ (λx.t)x ' t

BON ` s↓ → (λx.t)s ' t[s/x]

Proof We define the L̂ term (λx.t) by induction on the build-up of t as
follows:

1. If t is the variable x, then (λx.t) is defined to be the term ŝk̂k̂.

2. If t is a variable different from x or a constant, then (λx.t) is defined
to be the term k̂t.

3. If t is an application (rs), then (λx.t) is defined to be the term
ŝ(λx.r)(λx.s).

It is an easy exercise to verify the two assertions above. 2

We can generalize λ abstraction to several arguments by simply iterat-
ing abstraction for one argument. For all natural numbers n > 0, all
L̂ terms t, and all variables x0, . . . , xn−1, we write (λx0 . . . xn−1.t) for
(λx0.(. . . (λxn−1.t) . . .)).
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Theorem 2.3.6 (Fixed point) There exists a closed L̂ term fix so that:

BON ` fixf↓ ∧ fixfx ' f(fixf)x

Proof We define fix to be the term

λx.(λyz.x(yy)z)(λyz.x(yy)z)

It is an easy exercise to verify the properties of fix. 2

The theory BON is much more powerful than PRON. It seems that PRON(µ)
is to weak to derive the axioms about µ̂ and that PRON(SUS) is to weak to
prove the axioms about Ê1. There are plenty of sentences that are derivable
in BON but not in PRON.

Remarks 2.3.7 In BON we can show the following facts:

1. There exists an L̂ term notN so that BON proves ¬N(notN).
This is not true in PRON because the model M of section 2.2 is a
model of PRON + (Tot) + (Nat).

2. There exists an L̂ term prim so that BON− + (L̂-IN) proves

(a) (∀x, y ∈ N)(fxy ∈ N) ∧ a ∈ N→
(∀x ∈ N)(primfax ∈ N) ∧ primfa0 = a

(b) (∀x, y ∈ N)(fxy ∈ N) ∧ a ∈ N ∧ b ∈ N→
primfa(̂sNb) = fb(primfab)

It seems that there is no such term in PRON− + (L-IN).

3. There exists an L̂ term fixt so that BON+(Tot) proves fixtf = f(fixtf).
It seems that there is no such term in PRON + (Tot).

4. We can represent the ω-jump for an arbitrary set in BON(µ̂) + (L̂-IN).
We will show in section 4.2 that PRON(µ) + (L-IN) is to weak to give
a representation of the ω-jump for an arbitrary set.

5. There exist L̂ terms which do not have a normal form, for example the
term (λx.xx)(λx.xx).
Note that (λ∗x.xx) is not a valid term in PRON.

It would be far beyond the scope of this thesis to prove all these assertions.
They can be looked up in Feferman, Jäger, and Strahm [6].

Now we will study additional principles about our applicative universe and
ask the question whether these new principles lead to consistent theories or
not.
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Theorem 2.3.8 The following theories are inconsistent:

1. BON + (Tot) + (Nat)

2. BON + (Tot) + (D̂V)

3. BON + (Tot) + (Ĉh=)

4. BON + (Tot) + (ĈhN)

5. BON + (Tot) + (̂InjN)

6. BON + (Ext) + (Nat)

7. BON + (Ext) + (D̂V)

8. BON + (Ext) + (Ĉh=)

9. BON + (Ext) + (ĈhN)

10. BON + (Ext) + (̂InjN)

Proof The ninth assertion is a result of Minari [10]. All the other assertions
can be found in Strahm [15].

The theory BON+(Tot)+(Ext) is consistent. There are total term models of
BON where extensionality is satisfied. This implies that PRON+(Tot)+(Ext)
is consistent, too.

Theorem 2.3.9 Let PRONc denote the following theory:

PRONc := PRON + (Tot) + (Nat) + (DV) + (Ch=) + (ChN) + (InjN)

Then the theory PRONc is consistent.

Proof The recursion theoretic model M is total and the universe of M is
the set N of natural numbers. We can extend it to a model of PRONc by
adding the interpretations of the constants dV, c=, cN, and iN.

dV
M := dN

M

c=
M := index of the primitive recursive function x→ ch=((x)0, (x)1)

cN
M := 〈1, 1, 0〉

iN
M := sN

M

It is now easy to verify that M is a model of PRONc 2

In the recursion theoretic model M we do not have extensionality because
every function has infinitely many indices. The next theorem tells us that it
is not possible to have a model in N with extensionality.
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Theorem 2.3.10 The following theories are inconsistent:

1. PRON + (Ext) + (DV)

2. PRON + (Ext) + (Nat)

3. PRON + (Ext) + (Ch=)

4. PRON + (Ext) + (InjN)

Proof For the first assertion we define s to be the L term
rec(λ∗y.dV<1, 0, p0y, (λ

∗z.0)>), which immediately leads to a contradiction:
From theorem 2.1.9 we know that s↓ and we have

sx ' (λ∗y.dV<1, 0, p0y, (λ
∗z.0)>)<s, x>

' dV<1, 0, s, (λ∗z.0)> '
{

1 if s = (λ∗z.0)
0 otherwise

The other three assertions immediately follow from the first one. 2

We do not know if the theory PRON + (Ext) + (ChN) is consistent or not,
because we cannot apply the arguments of P. Minari to PRON.
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3 Lower proof-theoretic bounds

3.1 PRON + (L-IN) contains PA

In this section we interpret the system PA of first order arithmetic into ap-
plicative theories. A crucial step for this embedding has already been done in
Definition 2.1.10 and Theorem 2.1.11 by assigning to each primitive recursive
function F a closed L term prF which represents F in PRON.
First we have to define a translation ·� from L1 terms and formulas to terms
and formulas of L. Every variable u of L1 has its corresponding variable in
L and we mostly choose the individual variable u for the translation u� of
the number variable u.

Definition 3.1.1 The individual L term t� is defined by induction on the
build-up of the term t.

1. If t is a number variable of L1, then t� is the corresponding individual
variable of L.

2. If t is a constant of L1, then t� is the corresponding numeral of L.

3. If n > 0 and t is the L1 term F(s0, . . . , sn−1) for the n-ary function
symbol F , then t� is the L term{
<(s0)�, (s1)�> if t = 〈s0, s1〉
prF<(s0)�, . . . , (sn−1)�> otherwise

Definition 3.1.2 The L formula A� is defined by induction on the build-up
of the L1 formula A.

1. If n > 0 and A = R(t0, . . . , tn−1) for the n-ary relation symbol R, then

A� :=

{
(t0)� = (t1)� if A = (t0 = t1)
prchR<(t0)�, . . . , (tn−1)�>= 0 otherwise

2. If A = ¬B, then A� := ¬B�.

3. If A = B ∨ C, then A� := B� ∨ C�.

4. If A = (∃x)B, then A� := (∃x ∈ N)B�.

Finally, we have to ensure that the individual variables of the translated
formulas A� range over N, because the number variables of L1 are interpreted
as natural numbers.
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Definition 3.1.3 (L translation of L1 formulas) Let A[~v] be an L1 for-
mula. Then the L translation A�N of A is defined as follows:

A�N(~v) := ~v ∈ N→ A�(~v)

Due to the complete induction scheme (L-IN) we can embed the theory PA
in PRON + (L-IN) directly without any problems.

Theorem 3.1.4 (Embedding of PA) Let B[~v] be an L1 formula so that
PA proves B(~v). Then we have

PRON + (L-IN) ` B�N(~v)

Proof We can prove this theorem by induction on the length of derivation.
We only need to check the non-logical axioms because the logical axioms and
the rules of inference are easy to verify.

1. The number theoretic axioms can be verified with the term prch< and
the axioms (6) and (7) of PRON about the constant sN.

2. With prF we can derive the defining equation of every primitive recur-
sive function F due to theorem 2.1.11.

3. The L translation of the induction scheme (Π∞-IN) is
~v ∈ N→
[A�(~v, 0) ∧ (∀x ∈ N)(A�(~v, x)→ A�(~v, prSx))→ (∀x ∈ N)A�(~v, x)].
Suppose, that ~v ∈ N. Then we have exactly the induction scheme
(L-IN) because PRON proves prSx = sNx by definition 2.1.10. 2

3.2 PRON(µ) + (L-IN) contains ACA

For a precise formulation of the embedding result of this section we have to
extend the translation ·� of section 3.1 to the language L2. We write ·◦ for this
extended translation. In the following we assume that we have a translation
of the number, set, and function variables of L2 into the variables of L so
that no conflicts arise. For convenience we often simply write, for example,
u, x, f for the translations of the number, set, and function variables u, X,
F , respectively.

Definition 3.2.1 The individual L term t◦ is defined by induction on the
build-up of the term t.

1. If t is a number variable of L2, then t◦ is the corresponding individual
variable of L.
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2. If t is a constant of L2, then t◦ is the corresponding numeral of L.

3. If n > 0 and t is the L2 term F(s0, . . . , sn−1) for the n-ary function
symbol F , then t◦ is the L term{
<(s0)◦, (s1)◦> if t = 〈s0, s1〉
prF<(s0)◦, . . . , (sn−1)◦> otherwise

4. If t is the L2 term F (s) for the function variable F , then t◦ is the L
term f(s◦).

Definition 3.2.2 The L formula A◦ is defined by induction on the build-up
of the L2 formula A.

1. If n > 0 and A = R(t0, . . . , tn−1) for the n-ary relation symbol R, then

A◦ :=

{
(t0)◦ = (t1)◦ if A = (t0 = t1)
prchR<(t0)◦, . . . , (tn−1)◦>= 0 otherwise

2. If A = (s ∈ X) for the set variable X, then A◦ := (x(s◦) = 0).

3. If A = ¬B, then A◦ := ¬B◦.

4. If A = B ∨ C, then A◦ := B◦ ∨ C◦.

5. If A = (∃x)B, then A◦ := (∃x ∈ N)B◦.

6. If A = (∃X)B, then A◦ := (∃x)[x ∈ P(N) ∧B◦].

7. If A = (∃F )B, then A◦ := (∃f)[f ∈ (N→ N) ∧B◦].

As in the embedding of PA we have to ensure, that the translations of the
number variables range over N. In addition, we have to make sure that the
translations of the set and function variables range over P(N) and (N→ N),
respectively.

Definition 3.2.3 (L translation of L2 formulas) Let A be an arbitrary

L2 formula. The L translation AN of A[~U, ~F ,~v] is the following formula:

AN(~u, ~f,~v) := ~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N→ A◦(~u, ~f,~v)

Lemma 3.2.4 (Characteristic term I) Let n be a natural number and
A[~U, ~F ,~v] be a Π1

0 formula. Then there exists an individual L term tA[~u, ~f ]
without the free variables v0, . . . , vn−1 so that PRON(µ) proves the following
formulas:
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n = 0 : (∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→ tA = 0 ∨ tA = 1]

(∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→ (A◦(~u, ~f)↔ tA = 0)]

n > 0 : (∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→
(∀~v ∈ N)(tA<v0, . . . , vn−1>= 0 ∨ tA<v0, . . . , vn−1>= 1)]

(∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→
(∀~v ∈ N)(A◦(~u, ~f,~v)↔ tA<v0, . . . , vn−1>= 0)]

Proof We define the term tA by induction on the build-up of A.

1. If m > 0 and A = R(s0, . . . , sm−1) then tA is defined to be the term{
prchR<(s0)◦, . . . , (sm−1)◦> if n = 0
(λ∗z.prchR<(s0)◦, . . . , (sm−1)◦> [(z)n0 , . . . , (z)nn−1/~v]) if n > 0

2. If A = (s ∈ X) then tA is defined to be the term{
prch=

<x(s◦), 0> if n = 0
(λ∗z.prch=

<x(s◦), 0> [(z)n0 , . . . , (z)nn−1/~v]) if n > 0

3. If A = ¬B then tA is defined to be the term{
pr .−<1, tB> if n = 0
(λ∗z.pr .−<1, tBz>) if n > 0

4. (a) If A = B ∨ C and B has the m > 0 free variables vk0 , . . . , vkm−1

and C has the l > 0 free variables vkm , . . . , vkm+l−1
, then tA is

defined to be the term
(λ∗z.prmin<tB<(z)nk0

, . . . , (z)nkm−1
>, tC<(z)nkm , . . . , (z)nkm+l−1

>>).

(b) If A = B ∨ C and at least one of the formulas B and C does not
have any free variable, then tA is defined to be the term

prmin<tB, tC> if n = 0
(λ∗z.prmin<tB, tCz>) if n > 0 and B has no free variables
(λ∗z.prmin<tBz, tC>) if n > 0 and C has no free variables

5. If A = (∃x)B[x/vn] then tA is defined to be the term{
(λ∗y.tB(p1y))<0,µ(λ∗y.tB(p1y))0> if n = 0
(λ∗z.tB<z,µtBz>) if n > 0

Note that for n > 0 the term tB is in (Nn+1 → N) by induction hypoth-
esis, because B has one more free variable than A. That is the reason
why we can apply the µ operator to tB.
For n = 0 the term tB is in (N → N) by induction hypothesis, so we
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cannot apply the µ operator to tB. By taking 0 as a dummy parameter,
we can apply µ to (λ∗y.tB(p1y)).

It is an easy exercise to prove by induction on the build-up ofA that PRON(µ)
proves the two formulas above. 2

Theorem 3.2.5 (Embedding of ACA) Let B[~U, ~F ,~v] be an L2 formula so

that ACA proves B(~U, ~F ,~v). Then we have

PRON(µ) + (L-IN) ` BN(~u, ~f,~v)

Proof We can prove this theorem by induction on the length of derivation.

1. Because ·◦ is an extension of ·�, we can say that the logical axioms, the
rules of inference, and the axioms of PRA− have already been verified
in the proof of theorem 3.1.4.

2. The L translation of the induction scheme (Π1
∞-IN) is

~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N→
[A◦(~u, ~f,~v, 0) ∧ (∀x ∈ N)(A◦(~u, ~f,~v, x)→ A◦(~u, ~f,~v, prSx))→
(∀x ∈ N)A◦(~u, ~f,~v, x)].

Suppose, that ~u ∈ P(N), ~f ∈ (N → N), and ~v ∈ N. Then we have
exactly the induction scheme (L-IN) because PRON proves (prSx = sNx)
by definition 2.1.10.

3. The L translation of the comprehension scheme (Π1
0-CA) is

~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N→
(∃x)[x ∈ P(N) ∧ (∀y ∈ N)(xy = 0↔ A◦(~u, ~f,~v, y))].

Suppose, that ~u ∈ P(N), ~f ∈ (N → N), and ~v ∈ N, and define x to be
the term (λ∗z.tA<v0, . . . , vn−1, z>). Then we can prove x ∈ P(N) and

for y ∈ N we have xy = 0 ↔ tA<v0, . . . , vn−1, y>= 0 ↔ A◦(~u, ~f,~v, y)
by lemma 3.2.4.

4. The L translation of the graph principle axiom (GP) is
(∀x)[x ∈ P(N)→ [(∀y ∈ N)(∃!z ∈ N)(x<y, z>= 0)→
(∃f)(f ∈ (N→ N) ∧ (∀y ∈ N)(x<y, fy>= 0))]].
Suppose, that x is in P(N) and PRON(µ) + (L-IN) proves
(∀y ∈ N)(∃!z ∈ N)(x<y, z>= 0). Now let y be in N. Then we define t
to be the term (λ∗u.x<y, u>), which is in (N→ N). We cannot apply
the µ operator to t, so we have to define another term s in (N2 → N)
by (λ∗v.t(p1v)). Now we can define f := (λ∗w.µsw) =
(λ∗w.µ(λ∗v.x<y, p1v>)w), which is in (N → N) by the axiom (µ.1).
Finally, we can prove x<y, fy>) = x<y,µsy>= s<0,µsy>= 0 by
the axiom (µ.2).
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The difficulty of this proof is the case of the graph principle axiom, because
we cannot apply the µ operator to any t ∈ (N → N). Therefore we have to
define the convenient s ∈ (N2 → N). 2

This theorem shows that PRON(µ) + (L-IN) is at least as strong as ACA. It
is the purpose of section 4.2 to show that it has the same strength.

3.3 PRON(SUS) + (L-IN) contains Π1
1-CA

Theorem 3.3.1 (Π1
1 normal forms) For every Π1

1 formula A there exists
an arithmetic formula BA which contains the free variables of A plus two
fresh variables w0 and w1 so that:

ACA0 ` A(~U, ~F ,~v)↔ ¬(∃G)(∀x)BA(~U, ~F ,~v,G(S(x)), G(x))

Proof The proof of this theorem is more or less basic and can be found at
many places (for example in Simpson [14]). 2

We are now ready for the preparation of our next embedding. Note that
we can use the translation ·◦ from definition 3.2.1 and definition 3.2.2. In
addition, the L translation AN for every L2 formula A is the same as in
definition 3.2.3.

Lemma 3.3.2 (Characteristic term II) Let n be a natural number and
A[~U, ~F ,~v] be an arbitrary Π1

1 formula. Then there exists an individual L
term ctA[~u, ~f ] without the free variables v0, . . . , vn−1 so that PRON(SUS)
proves the following formulas:

n = 0 : (∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→ ctA = 0 ∨ ctA = 1]

(∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→ (A◦(~u, ~f)↔ ctA = 0)]

n > 0 : (∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→
(∀~v ∈ N)(ctA<v0, . . . , vn−1>= 0 ∨ ctA<v0, . . . , vn−1>= 1)]

(∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→
(∀~v ∈ N)(A◦(~u, ~f,~v)↔ ctA<v0, . . . , vn−1>= 0)]

Proof From theorem 3.3.1 we know that there is an arithmetic formula BA

so that ACA0 proves A(~U, ~F ,~v)↔ ¬(∃G)(∀x)BA(~U, ~F ,~v,G(S(x)), G(x)).
By lemma 3.2.4 we get the existence of an L term tBA so that PRON(µ) +
(L-IN) proves the two following formulas (no problem if n = 0):
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(∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→ (∀~v, w0, w1 ∈ N)

(tBA<v0, . . . , vn−1, w0, w1>= 0 ∨ tBA<v0, . . . , vn−1, w0, w1>= 1)]

(∀~u, ~f)[~u ∈ P(N) ∧ ~f ∈ (N→ N)→ (∀~v, w0, w1 ∈ N)

(A◦(~u, ~f,~v, w0, w1)↔ tBA<v0, . . . , vn−1, w0, w1>= 0)]

Now we define the term ctA by:

ctA :=

{
pr .−<1,E1(λ∗y.tBA<(y)3

1, (y)3
2>)0> if n = 0

(λ∗z.pr .−<1,E1tBAz>) if n > 0

Note that for n > 0 the term tBA is in (Nn+2 → N) by lemma 3.2.4, because
BA has two more free variables than A. That is the reason why we can apply
the Suslin operator to tBA .
For n = 0 the term tBA is in (N2 → N) by lemma 3.2.4, so we cannot apply
the Suslin operator to tBA . By taking 0 as a dummy parameter, we can apply
E1 to (λ∗y.tBA<(y)3

1, (y)3
2>).

We will show the proof of this lemma for n > 0. Given ~u ∈ P(N),
~f ∈ (N→ N), and ~v ∈ N, we have to show that PRON(SUS) + (L-IN) proves
the following equation:

ctA<v0, . . . , vn−1> =

{
0 if A◦(~u, ~f,~v)
1 otherwise

We can prove in PRON(SUS) + (L-IN) that:

ctA<v0, . . . , vn−1>=

{
1 if E1tBA<v0, . . . , vn−1>= 0
0 otherwise

=

{
1 if (∃g)[g ∈ (N→ N) ∧ (∀x ∈ N)(tBA<v0, . . . , vn−1, g(sNx), gx>= 0)]
0 otherwise

=

{
1 if (∃g)[g ∈ (N→ N) ∧ (∀x ∈ N)B◦A(~u, ~f,~v, g(sNx), gx)]
0 otherwise

=

{
1 if ¬A◦(~u, ~f,~v)
0 otherwise

2

Theorem 3.3.3 (Embedding of Π1
1-CA) Let B[~U, ~F ,~v] be an L2 formula

so that Π1
1-CA proves B(~U, ~F ,~v). Then we have

PRON(SUS) + (L-IN) ` BN(~u, ~f,~v)
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Proof We can prove this theorem by induction on the length of derivation.
We only need to check the axiom (Π1

1-CA), because this is the only change
from ACA to Π1

1-CA and we have the translation ·◦ from section 3.2.

The L translation of the comprehension scheme (Π1
1-CA) is

~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N→
(∃x)[x ∈ P(N) ∧ (∀y ∈ N)(xy = 0↔ A◦(~u, ~f,~v, y))].

Suppose, that ~u ∈ P(N), ~f ∈ (N → N), and ~v ∈ N, and define x to be
the term (λ∗z.ctA < v0, . . . , vn−1, z >). Then we can prove x ∈ P(N) and

for y ∈ N we have xy = 0 ↔ ctA<v0, . . . , vn−1, y>= 0 ↔ A◦(~u, ~f,~v, y) by
lemma 3.3.2. 2

This theorem shows that PRON(SUS)+(L-IN) is at least as strong as Π1
1-CA.

It is the purpose of section 4.3 to show that it has the same strength.
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4 Upper proof-theoretic bounds

4.1 PA contains PRON + (L-IN)

We already know that BON+(L̂-IN) ⊆ PA from Feferman [3]. The only thing
we have to show yet is that PRON + (L-IN) ⊆ BON + (L̂-IN).
The embedding of PRON in BON is straightforward. We only have to define
a convenient translation of L terms and L formulas to the language L̂ of
BON.

Definition 4.1.1 In the translation ·. of L terms we express the terms with
use of full λ abstraction we have in BON. We define ·. by induction on the
definition of L terms.

1. If t is a variable of L or the constant 0, then t. is defined to be the L̂
term t. Further, the following translations are also straightforward:
k. := k̂
p0
. := p̂0

p1
. := p̂1

sN
. := ŝN

pN
. := p̂N

2. i. := ŝk̂k̂

3. a2
. := (λxy.p̂(p̂0xy)(p̂1xy))

4. b2
. := (λxy.p̂0x(p̂1xy))

5. dN
. := (λx.d̂N(p̂0(p̂0(p̂0x)))(p̂1(p̂0(p̂0x)))(p̂1(p̂0x))(p̂1x))

6. r. := (λu.fix(tu)) while
t = (λuhx.[d̂N(λz.p̂0u(p̂0x))(λz.p̂1u(p̂(sx)(h(sx))))(p̂1x)0]0)
and s = (λy.p̂(p̂0y)(p̂N(p̂1y)))

7. If t is the L term rs, then t. is defined to be the L̂ term r.s..

8. If t is the L term <r, s>, then t. is defined to be the L̂ term p̂r.s..

The translation ·. for L formulas is canonical. The most difficult work has
been done in the previous definition.

Definition 4.1.2 Let us define the translation ·. by induction on the defini-
tion of L formulas.

(N(t)). := N(t.)

(t↓). := t.↓
(s = t). := (s. = t.)
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(¬A). := ¬A.

(A ∨B). := A. ∨B.

((∃x)A). := (∃x)A.

Theorem 4.1.3 Let A be an L formula and PRON + (L-IN) ` A. Then we
can show that:

BON + (L̂-IN) ` A.

Proof We can prove this theorem by induction on the length of derivation.
We are in the logic of partial terms and in BON we have the same logical
axioms and the same rules of inference as in PRON. In addition, the trans-
lation of the induction scheme (L-IN) is an instance of (L̂-IN). So we have to
care only about the non-logical axioms. We show the proof for the axioms
of the recursor r. The translations of the axioms (11) and (12) of PRON are
the following L̂ formulas:

(11). r.(p̂fg)↓ ∧ r.(p̂fg)(p̂a0) ' fa

(12). b ∈ N→ r.(p̂fg)(p̂a(̂sNb)) ' g(p̂(p̂ab)(r.(p̂fg)(p̂ab)))

1. We have r.(p̂fg) ' fix(t(p̂fg)) and due to theorem 2.3.6 we know that
fix r↓ for every L̂ term r, so we have r.(p̂fg)↓.

2. r.(p̂fg)(p̂a0) ' fix(t(p̂fg))(p̂a0) ' t(p̂fg)(fix(t(p̂fg)))(p̂a0) '
t(p̂fg)(r.(p̂fg))(p̂a0) ' (λz.fa)0 ' fa

3. Suppose, that b is in N. Then we can prove
r.(p̂fg)(p̂a(̂sNb)) ' fix(t(p̂fg))(p̂a(̂sNb)) '
t(p̂fg)(fix(t(p̂fg)))(p̂a(̂sNb)) ' t(p̂fg)(r.(p̂fg))(p̂a(̂sNb)) '
(λz.g(p̂(s(p̂a(̂sNb)))(r

.(p̂fg)(s(p̂a(̂sNb))))))0 '
(λz.g(p̂(p̂ab)(r.(p̂fg)(p̂ab))))0 ' g(p̂(p̂ab)(r.(p̂fg)(p̂ab))) 2

Corollary 4.1.4 PRON + (L-IN) ≡ PA with theorem 3.1.4. 2

4.2 ACA contains PRON(µ) + (L-IN)

In this section, we will formalize a model of PRON(µ) in ACA. To realize
this model we only have to change the interpretations of the function sym-
bol � and the constants b2, a2, and r in the recursion theoretic model M.
Additionally, we have to define the interpretation of the constant µ.

Definition 4.2.1 Let M0 be the model M with the following changes and
addition:
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�M0 := µPrimEv

b2
M0 := 〈3, 1, s1, p0

M, p1
M〉 while s1 is the

index of the primitive recursive function

(x, y)→
〈3, 1, x, y〉 if x ∈ µPrim ∧ (x)1 = 1∧

y ∈ µPrim ∧ (y)1 = 1
〈3, 1, x, 〈1, 1, 0〉〉 if x ∈ µPrim ∧ (x)1 = 1∧

(y /∈ µPrim ∨ (y)1 6= 1)
〈1, 1, 0〉 otherwise

a2
M0 := 〈3, 1, s2, 〈1, 1, <>M〉, p0

M, p1
M〉 while s2 is the

index of the primitive recursive function

(x, y, z)→

〈3, 1, x, y, z〉 if y ∈ µPrim ∧ (y)1 = 1∧
z ∈ µPrim ∧ (z)1 = 1

〈3, 1, x, y, 〈1, 1, 0〉〉 if y ∈ µPrim ∧ (y)1 = 1∧
(z /∈ µPrim ∨ (z)1 6= 1)

〈3, 1, x, 〈1, 1, 0〉, z〉 if (y /∈ µPrim ∨ (y)1 6= 1)∧
z ∈ µPrim ∧ (z)1 = 1

〈3, 1, x, 〈1, 1, 0〉, 〈1, 1, 0〉〉 otherwise

rM0 := index of the primitive recursive function

x→

〈4, 2, (x)0, (x)1〉′ if (x)0 ∈ µPrim ∧ (x)0,1 = 1∧
(x)1 ∈ µPrim ∧ (x)1,1 = 1

〈4, 2, (x)0, 〈1, 3, 0〉〉′ if (x)0 ∈ µPrim ∧ (x)0,1 = 1∧
((x)1 /∈ µPrim ∨ (x)1,1 6= 1)

〈4, 2, 〈1, 1, 0〉, (x)1〉′ if ((x)0 /∈ µPrim ∨ (x)0,1 6= 1)∧
(x)1 ∈ µPrim ∧ (x)1,1 = 1

〈1, 1, 0〉 otherwise

µM0 := index of the primitive recursive function

x→
{
〈5, 1, x̃〉 if x ∈ µPrim ∧ (x)1 = 1
〈1, 1, 0〉 otherwise

Theorem 4.2.2 M0 is a model of PRON(µ) + (Tot) + (Nat).

Proof The proof of this theorem is almost the same as of theorem 2.2.2.
We only have to check the axioms about the constant µ. The axiom (µ.1)
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is satisfied because the universe of M0 is the set N of all natural numbers.
We show that the axiom (µ.2) is satisfied, as well:
Suppose, that fM0 is the index of a unary function of PRIM (µ). Then we

can prove (µfa)M0 = [[µM0 ](fM0)](aM0) = [〈5, 1, f̃M0〉](aM0) =

Zero1(f̃M0)(aM0). If there exists a natural number x so that

[fM0 ](〈aM0 , x〉) = 0, we immediately know that [f̃M0 ](aM0 , x) = 0 and
(µfa)M0 = min{y | [fM0 ](〈aM0 , y〉) = 0}, so we have
[fM0 ](〈aM0 , (µfa)M0〉) = 0.
If fM0 /∈ µPrim or (fM0)1 6= 1 then (µfa)M0 = [〈1, 1, 0〉](aM) = 0 and
µPrimEv(fM0 , x) = 0 for every natural number x, which implies
µPrimEv(fM0 , 〈aM0 , (µfa)M0〉) = 0. 2

Let n, b0, . . . , bn−1, c be arbitrary natural numbers and e be an n-ary index
of µPrim. Our next goal is to formalize the expression [e](~b) = c in ACA. For
this purpose, we will construct triples s := 〈e, 〈b0, . . . , bn−1〉, c〉 and for every
natural number l we will define a set X so that (X)l contains all triples with
Lev(e) ≤ l. The slices (X)l of X are defined by s ∈ (X)l ↔ 〈s, l〉 ∈ X.
In the case of BON(µ̂) a hierarchy with finite levels is not sufficient. This is
witnessed by the fact that the ω-jump (and much more) is definable in models
of BON(µ̂). This latter fact is due to the presence of the ŝ combinator, which
allows for diagonalisation at limit ordinals; this diagonalisation, however,
cannot be obtained by primitive recursive means. For the model construction
in the case of BON(µ̂), cf. Feferman and Jäger [5].
The following formulas A and B will prepare the construction of the intended
hierarchy.

Definition 4.2.3 For triples s with indices of level 0 we define the Π0 for-
mula A[s] as follows:

A := A0 ∧ (s)0 ∈ µPrim ∧ A1

A0 := s ∈ Seq ∧ lh(s) = 3 ∧ (s)1 ∈ Seq ∧ lh((s)1) = (s)0,1

A1 := [(s)0,0 = 0 ∧ (∃b ≤ s)((s)1,0 = b ∧ (s)2 = b+ 1)] ∨
[(s)0,0 = 1 ∧ (s)2 = (s)0,2] ∨ [(s)0,0 = 2 ∧ (s)2 = (s)1,(s)0,2 ]

Definition 4.2.4 For triples s with indices of level l+ 1 we define the arith-
metic L2 formula B[U, s, l] as follows:

B := s ∈ U ∨ [B0 ∧ (s)0 ∈ µPrim ∧ (B1 ∨B2 ∨B3)]

B0 := s ∈ Seq ∧ lh(s) = 3 ∧ (s)1 ∈ Seq ∧ lh((s)1) = (s)0,1 ∧
Lev((s)0) = l + 1
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B1 := (s)0,0 = 3 ∧ (∃c0, . . . , clh((s)0)
.−4)

[〈(s)0,2, 〈c0, . . . , clh((s)0)
.−4〉, (s)2〉 ∈ U ∧

(∀d < lh((s)0) .− 3)(〈(s)0,d+3, (s)1, ck〉 ∈ U)]

B2 := (s)0,0 = 4 ∧ (∃b)[b ∈ Seq ∧ lh(b) = (s)1,lh((s)1)
.−1 + 1 ∧

〈(s)0,2, 〈(s)1,0, . . . , (s)1,lh((s)1)
.−2〉, (b)0〉 ∈ U ∧

(s)2 = (b)lh(b)
.−1 ∧ (∀d < lh(b) .− 1)

(〈(s)0,3, 〈(s)1,0, . . . , (s)1,lh((s)1)
.−2, d, (b)d〉, (b)d+1〉 ∈ U)]

B3 := (s)0,0 = 5 ∧
[[(∃b)(〈(s)0,2, 〈(s)1,0, . . . , (s)1,lh((s)1)

.−1, b〉, 0〉 ∈ U ∧ (s)2 = b) ∧
(∀b)(〈(s)0,2, 〈(s)1,0, . . . , (s)1,lh((s)1)

.−1, b〉, 0〉 ∈ U → b ≥ (s)2)] ∨
[(∀b)(〈(s)0,2, 〈(s)1,0, . . . , (s)1,lh((s)1)

.−1, b〉, 0〉 /∈ U) ∧ (s)2 = 0]]

Now we are able to define the hierarchy H0 which collects all the triples
s = 〈e, 〈~b〉, c〉 satisfying [e](~b) = c up to a certain level.

Definition 4.2.5 H0[W,u] is the formula which tests if the slices (W )l con-
tain the triples with indices of level l for all l ≤ u:

H0 := (∀s)[(s ∈ (W )0 ↔ A(s)) ∧
(∀l < u)(s ∈ (W )l+1 ↔ B((W )l, s, l))]

Note that H0 is an arithmetic L2 formula.

If we want to show in ACA the existence of a set X so that H0(X, z) for a
given z, we have to verify that (X)l is a set in ACA for every l < u.

Lemma 4.2.6 ACA proves (∀z)(∃X)H0(X, z)

Proof With Σ1
1 induction on z.

z = 0: (∃Y )(∀s)(s ∈ Y ↔ A(s)) is an instance of arithmetic comprehen-
sion, because A is Π0, so we get the desired set X with arithmetic
comprehension by (∃X)(∀p)[p ∈ X ↔ (∃s ∈ Y )(p = 〈s, 0〉)].

z → z + 1: by induction hypothesis we have (∃Y )H0(Y, z), that is we know
that (Y )z is a set. (∃Z)(∀s)(s ∈ Z ↔ B((Y )z, s, z)) is an instance of
arithmetic comprehension, because B is an arithmetic L2 formula, so
we get the desired set X with arithmetic comprehension by
(∃X)(∀p)[p ∈ X ↔ p ∈ Y ∨ (∃s ∈ Z)(p = 〈s, z + 1〉)].
It is easy to see that H0(X, z + 1). 2
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We have constructed the hierarchy H0 like that to make sure that it is unique
and increasing. We will prove the first property in the following lemma, the
second one is very easy to see.

Lemma 4.2.7 ACA proves

H0(W0, u0) ∧H0(W1, u1) ∧ u0 ≤ u1 → (∀l ≤ u0)((W0)l = (W1)l)

Proof With arithmetic induction on l.

l = 0: Given H0(W0, u0) and H0(W1, u1) we know that
(∀s)(s ∈ (W0)0 ↔ A(s)) and (∀s)(s ∈ (W1)0 ↔ A(s)), so we have
(W0)0 = (W1)0.

l→ l + 1: If l+ 1 ≤ u0 then l < u0 and we have (W0)l = (W1)l by induction
hypothesis. Given H0(W0, u0) and H0(W1, u1) we know that
(∀s)(s ∈ (W0)l+1 ↔ B((W0)l, s, l)) and
(∀s)(s ∈ (W1)l+1 ↔ B((W1)l, s, l)), so we have (W0)l+1 = (W1)l+1. 2

We are now ready to define the Application for the embedding of PRON(µ)+
(L-IN) in ACA. It must be a formula functional in the third argument and it
must contain every triple of our hierarchy H0 with a unary index. In fact, the
following definition is the precise formalization of µPrimEv in arithmetics.

Definition 4.2.8 We define µApp[u, v, w] to be the following formula:

µApp := [u ∈ µPrim ∧ (u)1 = 1 ∧
(∃X)(H0(X,Lev(u)) ∧ 〈u, 〈v〉, w〉 ∈ (X)Lev(u))] ∨

[(u /∈ µPrim ∨ (u)1 6= 1) ∧ w = 0]

Note that µApp is equivalent to a Σ1
1 formula, because H0 is an arithmetic

L2 formula. It is even equivalent to a Π1
1 formula.

We have made sure that we have in our application µApp every triple with
a unary index of µPrim. It is also true that the application is functional in
the third argument.

Lemma 4.2.9 ACA proves

(∀x, y, z0, z1)(µApp(x, y, z0) ∧ µApp(x, y, z1)→ z0 = z1)

Proof If x /∈ µPrim or (x)1 6= 1 then µApp(x, y, z) implies z = 0 and we
have finished the proof.
If x is a unary index of µPrim, we can prove this lemma by induction on the
level l := Lev(x) of x:
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l = 0: We have the three cases (x)0 = 0 (successor), (x)0 = 1 (constant
function), and (x)0 = 2 (projections), which are easy to prove.

l→ l + 1: In the cases (x)0 = 3 (composition) and (x)0 = 5 (non-
constructive µ operator) the proof immediately follows by induction
hypothesis. In the case (x)0 = 4 (primitive recursion) we need induc-
tion on the argument. 2

We are going to define a translation ·? of formulas from L to L2. First, we
will define a translation from L terms to L2 formulas. The translation of a
constant c is the numeral m, if m is the interpretation cM0 of c in M0.

Definition 4.2.10 For every L term t we define the L2 formula V ?
t [x], so

that the variable x does not occur in t, by induction on the build-up of t as
follows:

1. If t is a variable of L then V ?
t := (x = t)

2. If t is a constant of L then V ?
t := (x = tM0)

3. If t is the L term <r, s> then
V ?
t := (∃z0, z1)[V ?

r (z0) ∧ V ?
s (z1) ∧ x = 〈z0, z1〉]

4. If t is the L term (rs) then
V ?
t := (∃z0, z1)[V ?

r (z0) ∧ V ?
s (z1) ∧ µApp(z0, z1, x)]

Note that every formula V ?
t is equivalent to a Σ1

1 (Π1
1) formula, because µApp

is Σ1
1 (Π1

1), as well.

Remark 4.2.11 Let t be an arbitrary L term. Then ACA proves (∃!x)V ?
t (x)

by a simple induction on the build-up of t.

Definition 4.2.12 For every L formula A we define the L2 formula A? by
induction on the build-up of A as follows:

1. If A = N(t) or A = t↓ then A? := (∃x)V ?
t (x)

2. If A = (s = t) then A? := (∃x)(V ?
s (x) ∧ V ?

t (x))

3. If A = ¬B then A? := ¬B?

4. If A = B ∨ C then A? := B? ∨ C?

5. If A = (∃x)B then A? := (∃x)B?
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The following lemma shows that we have defined a convenient translation.

Lemma 4.2.13 Let A be an arbitrary L1 formula. Then we can prove the
following assertion:

ACA ` A↔ (A◦)?

Proof This is verified by a straightforward induction on the build-up of A
with remark 4.2.11. 2

Now we can show that ACA proves the translation of an L formula provable
in PRON(µ) + (L-IN).

Theorem 4.2.14 Let A be an L formula and PRON(µ)+(L-IN) ` A. Then
we can derive A? in ACA.

Proof We can prove this theorem by induction on the length of derivation.
The logical axioms are easy to verify and in ACA we have the same rules of
inference as in PRON(µ). Because A? is an L2 formula, the translation of
the induction scheme (L-IN) can be derived with (Π1

∞-IN).
Now let A be a non-logical axiom of PRON(µ). This axiom is satisfied in the
model M0 as we have proved in theorem 4.2.2. We have defined µApp in a
way that the properties of indices are satisfied. Finally, the definition of the
translation ·? guarantees that A? is derivable in ACA.
As an example we have written the exact translations of (µ.1) and (µ.2) in
appendix B. 2

We know the strength of PRON(µ)+(L-IN) because we have done embeddings
in both directions.

Corollary 4.2.15 PRON(µ) + (L-IN) ≡ ACA with theorem 3.2.5. 2

4.3 Π1
1-CA contains PRON(SUS) + (L-IN)

For the last embedding we will formalize a model of PRON(SUS) in Π1
1-CA.

This time, we only have to change the interpretations of the function sym-
bol � and the constants b2, a2, r, and µ in the model M0 of PRON(µ).
Additionally, we have to define the interpretation of the constant E1.

Definition 4.3.1 Let M1 be the model M0 with the following changes and
addition:
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�M1 := SusPrimEv

b2
M1 := 〈3, 1, s1, p0

M, p1
M〉 while s1 is the

index of the primitive recursive function

(x, y)→
〈3, 1, x, y〉 if x ∈ SusPrim ∧ (x)1 = 1∧

y ∈ SusPrim ∧ (y)1 = 1
〈3, 1, x, 〈1, 1, 0〉〉 if x ∈ SusPrim ∧ (x)1 = 1∧

(y /∈ SusPrim ∨ (y)1 6= 1)
〈1, 1, 0〉 otherwise

a2
M1 := 〈3, 1, s2, 〈1, 1, <>M〉, p0

M, p1
M〉 while s2 is the

index of the primitive recursive function

(x, y, z)→

〈3, 1, x, y, z〉 if y ∈ SusPrim ∧ (y)1 = 1∧
z ∈ SusPrim ∧ (z)1 = 1

〈3, 1, x, y, 〈1, 1, 0〉〉 if y ∈ SusPrim ∧ (y)1 = 1∧
(z /∈ SusPrim ∨ (z)1 6= 1)

〈3, 1, x, 〈1, 1, 0〉, z〉 if (y /∈ SusPrim ∨ (y)1 6= 1)∧
z ∈ SusPrim ∧ (z)1 = 1

〈3, 1, x, 〈1, 1, 0〉, 〈1, 1, 0〉〉 otherwise

rM1 := index of the primitive recursive function

x→

〈4, 2, (x)0, (x)1〉′ if (x)0 ∈ SusPrim ∧ (x)0,1 = 1∧
(x)1 ∈ SusPrim ∧ (x)1,1 = 1

〈4, 2, (x)0, 〈1, 3, 0〉〉′ if (x)0 ∈ SusPrim ∧ (x)0,1 = 1∧
((x)1 /∈ SusPrim ∨ (x)1,1 6= 1)

〈4, 2, 〈1, 1, 0〉, (x)1〉′ if ((x)0 /∈ SusPrim ∨ (x)0,1 6= 1)∧
(x)1 ∈ SusPrim ∧ (x)1,1 = 1

〈1, 1, 0〉 otherwise

µM1 := index of the primitive recursive function

x→
{
〈5, 1, x̃〉 if x ∈ SusPrim ∧ (x)1 = 1
〈1, 1, 0〉 otherwise

E1
M1 := index of the primitive recursive function

x→
{
〈6, 1, x〉 if x ∈ SusPrim ∧ (x)1 = 1
〈1, 1, 0〉 otherwise
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Remark 4.3.2 We are not yet able to show that M1 is a model of
PRON(SUS), because we have quantifiers over arbitrary functions in the eval-
uation function. Suppose, that fM1 is a unary index of SusPrim. Then we

can prove the following equation: (E1fa)M1 = [〈6, 1, f〉](aM1)

=

{
0 if (∃G)(∀z)([ f ](aM1 , G(S(z)), G(z)) = 0)
1 otherwise

It was not possible to define [〈6, n, f〉](~x) as{
0 if (∃g ∈ SusPrim)(∀z)([f ](~x, [g](S(z)), [g](z)) = 0)
1 otherwise

because definition 1.1.12 is inductive. After having formalized the application
function in Π1

1-CA, we will show that both conditions are equivalent and that
M1 is a model of PRON(SUS) + (Tot) + (Nat).

Let n, b0, . . . , bn−1, c be arbitrary natural numbers and e be an n-ary index
of SusPrim. Our next goal is to formalize the expression [e](~b) = c in Π1

1-CA.
For this purpose, we will construct triples s := 〈e, 〈b0, . . . , bn−1〉, c〉 and for
every natural number l we will define a set X so that (X)l contains all triples
with Lev(e) ≤ l.
In the case of SUS a hierarchy with finite levels is not sufficient for similar
reasons as in the case of BON(µ̂). In this case the ω-hyperjump (and much
more) is definable in models of SUS. For the model construction in the case
of SUS, cf. Jäger and Strahm [8].
The following formulas C and D will prepare the construction of the intended
hierarchy.

Definition 4.3.3 For triples s with indices of level 0 we define the Π0 for-
mula C[s] as follows:

C := A0 ∧ (s)0 ∈ SusPrim ∧ A1

The formulas A0 and A1 are the same as in definition 4.2.3.

Definition 4.3.4 For triples s with indices of level l+1 we define the formula
D[U, s, l] as follows:

D := s ∈ U ∨ [B0 ∧ (s)0 ∈ µPrim ∧ (B1 ∨B2 ∨B3 ∨D0 ∨D1)]

D0 := (s)0,0 = 6 ∧ (s)2 = 0 ∧ (∃G)(∀b)
(〈(s)0,2, 〈(s)1,0, . . . , (s)1,lh((s)1)

.−1, G(S(b)), G(b)〉, 0〉 ∈ U)

D1 := (s)0,0 = 6 ∧ (s)2 = 1 ∧ (∀G)(∃b)
(〈(s)0,2, 〈(s)1,0, . . . , (s)1,lh((s)1)

.−1, G(S(b)), G(b)〉, 0〉 /∈ U)
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The formulas B0, B1, B2, and B3 are the same as in definition 4.2.4. Note
that D is equivalent to a Σ1

2 (Π1
2) formula.

Now we are able to define the hierarchy H1 which collects all the triples
s = 〈e, 〈~b〉, c〉 satisfying [e](~b) = c up to a certain level.

Definition 4.3.5 H1[W,u] is the formula which tests if the slices (W )l con-
tain the triples with indices of level l for all l ≤ u:

H1 := (∀s)[(s ∈ (W )0 ↔ C(s)) ∧
(∀l < u)(s ∈ (W )l+1 ↔ D((W )l, s, l))]

As a preparation for the next step, we have to prove that we can apply the
comprehension scheme (Σ1

1-CA) in Π1
1-CA.

Lemma 4.3.6 Let A be an arbitrary Σ1
1 formula. Then Π1

1-CA proves the
following formula:

(∃X)(∀y)[y ∈ X ↔ A(y)]

Proof The formula ¬A is Π1
1 and we can prove the existence of a set X

satisfying (∀y)(y ∈ X ↔ ¬A(y)) with the (Π1
1-CA) comprehension scheme.

Let us now take the formula ¬(u ∈ X) which is arithmetic in X. With
arithmetic comprehension we get the existence of a set Y satisfying
(∀z)(z ∈ Y ↔ ¬(z ∈ X)) and we can easily see that (∀z)(z ∈ Y ↔ A(z)). 2

If we want to show in Π1
1-CA the existence of a set X so that H1(X, z) for a

given z, we have to verify that (X)l is a set in Π1
1-CA for every l < u.

Lemma 4.3.7 Π1
1-CA proves (∀z)(∃X)H1(X, z).

Proof With induction on z.

z = 0: (∃Y )(∀s)(s ∈ Y ↔ C(s)) is an instance of arithmetic comprehen-
sion, because C is Π0, so we get the desired set X with arithmetic
comprehension by (∃X)(∀p)[p ∈ X ↔ (∃s ∈ Y )(p = 〈s, 0〉)].

z → z + 1: by induction hypothesis we have (∃Y )H1(Y, z), that is we know
that (Y )z is a set. The formula D is Σ1

2, but we only have Π1
1 and Σ1

1

comprehension. So we have to use the fact thatD is provably equivalent
to D2 ∨D3, if we define D2 and D3 to be the following formulas:
D2 := s ∈ U ∨ (B0 ∧ (s)0 ∈ µPrim ∧ (B1 ∨B2 ∨B3 ∨D0))
D3 := s ∈ U ∨ (B0 ∧ (s)0 ∈ µPrim ∧D1)
We can immediately see that D2 is Σ1

1 and D3 is Π1
1. Now we can prove
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the existence of two sets Y0, Y1 so that (∀s)(s ∈ Y0 ↔ D2((Y )z, s, z))
and (∀s)(s ∈ Y1 ↔ D3((Y )z, s, z)). The formula (u ∈ Y0) ∨ (u ∈ Y1) is
arithmetic in Y0 and Y1, so we get a set Z by
(∀s)(s ∈ Z ↔ (u ∈ Y0) ∨ (u ∈ Y1) with arithmetic comprehension
and we know that (∀s)(s ∈ Z ↔ D((Y )z, s, z)). The desired set X is
obtained by (∃X)(∀p)(p ∈ X ↔ p ∈ Y ∨ (∃s ∈ Z)(p = 〈s, z+ 1〉)) with
arithmetic comprehension, too. It is now clear that H1(X, z + 1). 2

We have constructed the hierarchy H1 like that to make sure that it is unique
and increasing like the hierarchy H0 from definition 4.2.5.

Lemma 4.3.8 Π1
1-CA proves

H1(W0, u0) ∧H1(W1, u1) ∧ u0 ≤ u1 → (∀l ≤ u0)((W0)l = (W1)l)

Proof The proof is exactly the same as the proof of lemma 4.2.7, with
arithmetic induction on l. 2

We are ready to define the Application for the embedding of PRON(SUS) +
(L-IN) in Π1

1-CA. It must be a formula functional in the third argument and it
must contain every triple of our hierarchy H1 with a unary index. In fact, the
following definition is the precise formalization of SusPrimEv in arithmetics.

Definition 4.3.9 We define SusApp[u, v, w] to be the following formula:

SusApp := [u ∈ SusPrim ∧ (u)1 = 1 ∧
(∃X)(H1(X,Lev(u)) ∧ 〈u, 〈v〉, w〉 ∈ (X)Lev(u))] ∨

[(u /∈ SusPrim ∨ (u)1 6= 1) ∧ w = 0]

We have made sure that we have in our application SusApp every triple with
a unary index of SusPrim. It is also true that the application is functional
in the third argument.

Lemma 4.3.10 Π1
1-CA proves

(∀x, y, z0, z1)(SusApp(x, y, z0) ∧ SusApp(x, y, z1)→ z0 = z1)

Proof The proof is almost the same as of lemma 4.2.9. We only have
additional indices s with (s)0 = 6. 2

Before we can begin with the embedding, we have to prove that it is the
same if we find a descending chain with an arbitrary function from outside
the theory PRON(SUS) or with an index of SusPrim. For this purpose, we
define the formalization of finding a descending chain.
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Definition 4.3.11

[[e]](b) = c := SusApp(e, b, c)

CDC := (∀x)([[e]](〈〈a, [[c]](S(x))〉, [[c]](x)〉) = 0)

FDC := (∀x)([[e]](〈〈a, F (S(x))〉, F (x)〉) = 0)

Furthermore, we will need for every index a set which collects all the zeros
of this index with respect to SusApp.

Lemma 4.3.12 Π1
1-CA proves

(∃X)(∀y)(y ∈ X ↔ [[e]](y) = 0)

In the following we call this set ext(e).

Proof Nevertheless we only have Π1
1 comprehension, we can prove the ex-

istence of ext(e) due to lemma 4.3.7. 2

We prepare our proof of the equivalence of CDC and FDC with two technical
lemmas.

Lemma 4.3.13 Let A[R, a, u, v0, v1] be an arithmetic L2 formula. Then
there exist primitive recursive functions F and G so that Π1

1-CA proves:

A(ext(e), a, u, v0, v1) ↔ [[F(e)]](〈〈〈a, u〉, v0〉, v1〉) = 0

[[〈6, 1,F(e)〉]](〈a, u〉) = 0 ↔ [[G(e)]](〈a, u〉) = 0

Lemma 4.3.14 Let B[R, S, a, u, v] be an arithmetic L2 formula. Further,
assume that

Π1
1-CA ` (∀U, V )(∀x, y)(∃!z)B(U, V, x, y, z)

and let FB denote the (class) function of B. Then there exists a primitive
recursive function H, so that Π1

1-CA proves:

[[H(e, f, a, u)]](0) = u

[[H(e, f, a, u)]](v + 1) = FB(ext(e), ext(f), a, [[H(e, f, a, u)]](v))

The proofs of these two lemmas are straightforward, although a bit tedious.
We are now ready to turn to the theorem about the inside-outside property
mentioned above.

Theorem 4.3.15 (Inside-outside property) Π1
1-CA proves

(∃c)CDC(c, e, a) ↔ (∃F )FDC(F, e, a)
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Proof Let us first prove the direction from the left to the right. Given a
natural number c with CDC(c, e, a) we immediately have
(∀x)(∃!y)([[c]](x) = y). Then we have to distinct the two following cases:

1. c /∈ SusPrim∨(c)1 6= 1 leads to (∀x)([[c]](x) = 0) and FDC(F, e, a) holds
for F := Cs1

0.

2. c ∈ SusPrim ∧ (c)1 = 1 leads to (∃X)H1(X,Lev(c)) and
(∀x)(∃!y)(〈c, 〈x〉, y〉 ∈ XLev(c)), so we know that XLev(c) is a set. If we
define the arithmetic formula ϕ[u, v] by
ϕ := (∃x, y)(〈u, 〈x〉, y〉 ∈ XLev(u) ∧ v = 〈x, y〉), we get
(∃Z)(∀z)(z ∈ Z ↔ ϕ(c, z)) by arithmetic comprehension, so we have
(∀x)(∃!y)(〈x, y〉 ∈ Z). Using the graph principle we get
(∃F )(∀x)(〈x, F (x)〉 ∈ Z) and (∀x)(F (x) = [[c]](x)). It immediately
follows that the function F satisfies the condition FDC(F, e, a).

The other direction is much more complicated and makes use of the two
technical lemmas 4.3.13 and 4.3.14. Given a Function F with FDC(F, e, a)
we can construct an index c satisfying CDC(c, e, a) with a very intuitive
leftmost branch argument.
Let us first define the formula A[R, a, u, v0, v1] as follows:

A := (∃x, y)[x ∈ Seq ∧ lh(x) = y ∧ (x)0 = u ∧ (x)y .−1 = v1 ∧
(∀z < y .− 1)(〈〈a, (x)z+1〉, (x)z〉 ∈ R)] ∧ 〈〈a, v0〉, v1〉 ∈ R

A(R, a, u, v0, v1) expresses that 〈〈a, v0〉, v1〉 ∈ R and v1 is accessible from u
by means of R. From lemma 4.3.13 we know about the existence of two
primitive recursive functions F and G so that

A(ext(e), a, u, v0, v1) ↔ [[F(e)]](〈〈〈a, u〉, v0〉, v1〉) = 0

[[〈6, 1,F(e)〉]](〈a, u〉) = 0 ↔ [[G(e)]](〈a, u〉) = 0

Further, we define the formula B[R, S, a, u, v] as follows:

B := [〈〈a, v〉, u〉 ∈ R ∧ 〈a, v〉 ∈ S ∧
(∀w < v)(〈〈a, w〉, u〉 /∈ R ∨ 〈a, w〉 /∈ S)] ∨

[(∀w)(〈〈a, w〉, u〉 /∈ R ∨ 〈a, w〉 /∈ S) ∧ v = 0]

We can immediately see that (∀U, V )(∀x, y)(∃!z)B(U, V, x, y, z).

From lemma 4.3.14 we get a primitive recursive function H so that

[[H(e, f, a, u)]](0) = u

[[H(e, f, a, u)]](v + 1) = FB(ext(e), ext(f), a, [[H(e, f, a, u)]](v))
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We can finish the construction of the index c by defining
c := H(e,G(e), a, F (0)) and we can prove the following defining equations of
[[c]] in Π1

1-CA:

[[c]](0) = F (0)

[[c]](v + 1) = FB(ext(e), ext(G(e)), a, [[c]](v))

We can prove with induction on x that CDC(e, a, c), that is
(∀x)([[e]](〈〈a, [[c]](S(x))〉, [[c]](x)〉) = 0). 2

Due to this theorem we can prove that M1 is a model of PRON(SUS).

Theorem 4.3.16 M1 is a model of PRON(SUS) + (Tot) + (Nat).

Proof The proof of this theorem is almost the same as of theorem 4.2.2.
We only have to check the axioms about the constant E1. The axiom (E1.1)
is satisfied because the universe of M1 is the set N of all natural numbers.
We show that the axiom (E1.2) is satisfied, as well:
Suppose, that fM1 is the unary index of a function of PRIM (SUS ). Then

we can prove that (E1fa)M1 = [[E1
M1 ](fM1)](aM1) = [〈6, 1, fM1〉](aM1) =

Sus1(fM1)(aM1). Due to theorem 4.3.15 we know that Sus1(fM1)(aM1) = 0
if and only if there exists a unary index c ∈ SusPrim so that

[fM1 ](x, [c](S(x)), [c](x)) = 0 for every natural number x. This is equivalent
to the existence of a g so that [fM1 ](〈〈aM1 , [gM1 ](S(x))〉, [gM1 ](x)〉) = 0 for
all a.
If fM1 /∈ SusPrim or (fM1)1 6= 1 then (E1fa)M1 = [〈1, 1, 0〉](aM1) = 0
and SusPrimEv(fM1 , x) = 0 for every natural number x, so we have
SusPrimEv(fM1 , 〈〈aM1 , SusPrimEv(c,S(x))〉, SusPrimEv(c, x)〉) = 0 for ev-
ery natural number c and x. 2

We are going to define a translation ·∗ of formulas from L to L2. First, we
will define a translation from L terms to L2 formulas. The translation of a
constant c is the numeral m, if m is the interpretation cM1 of c in M1.

Definition 4.3.17 For every L term t we define the L2 formula V ∗t [x], so
that the variable x does not occur in t, by induction on the build-up of t as
follows:

1. If t is a variable of L then V ∗t := (x = t)

2. If t is a constant of L then V ∗t := (x = tM1)

3. If t is the L term <r, s> then
V ∗t := (∃z0, z1)[V ∗r (z0) ∧ V ∗s (z1) ∧ x = 〈z0, z1〉]
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4. If t is the L term (rs) then
V ∗t := (∃z0, z1)[V ∗r (z0) ∧ V ∗s (z1) ∧ SusApp(z0, z1, x)]

Remark 4.3.18 Let t be an arbitrary L term. Then Π1
1-CA proves

(∃!x)V ∗t (x) by a simple induction on the build-up of t.

Definition 4.3.19 For every L formula A we define the L2 formula A∗ by
induction on the build-up of A as follows:

1. If A = N(t) or A = t↓ then A∗ := (∃x)V ∗t (x)

2. If A = (s = t) then A∗ := (∃x)(V ∗s (x) ∧ V ∗t (x))

3. If A = ¬B then A∗ := ¬B∗

4. If A = B ∨ C then A∗ := B∗ ∨ C∗

5. If A = (∃x)B then A∗ := (∃x)B∗

The following lemma shows that we have defined a convenient translation.

Lemma 4.3.20 Let A be an arbitrary L1 formula. Then we can prove the
following assertion:

Π1
1-CA ` A↔ (A◦)∗

Proof This is verified by a straightforward induction on the build-up of A
with remark 4.3.18. 2

Now we can show that Π1
1-CA proves the translation of an L formula provable

in PRON(SUS) + (L-IN).

Theorem 4.3.21 Let A be an L formula and PRON(SUS) + (L-IN) ` A.
Then we can derive A∗ in Π1

1-CA.

Proof We can prove this theorem by induction on the length of derivation.
The logical axioms are easy to verify and in Π1

1-CA we have the same rules
of inference as in PRON(SUS). Because A∗ is an L2 formula, the translation
of the induction scheme (L-IN) can be derived with (Π1

∞-IN).
Now let A be a non-logical axiom of PRON(SUS). This axiom is satisfied in
the modelM1 as we have proved in theorem 4.3.16. We have defined SusApp
in a way that the properties of indices are satisfied. Finally, the definition of
the translation ·∗ guarantees that A∗ is derivable in Π1

1-CA.
As an example we have written the exact translations of (E1.1) and (E1.2) in
appendix B. 2

We know the strength of PRON(SUS) + (L-IN) because we have done embed-
dings in both directions.

Corollary 4.3.22 PRON(SUS) + (L-IN) ≡ Π1
1-CA with theorem 3.3.3. 2
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5 Set induction

5.1 Lower bounds

It is obvious that formula induction is stronger than set induction: we can
easily derive (S-IN) from (L-IN). The induction scheme (S-IN) is even to weak
to prove the existence of terms with the properties of prF , so we have to
add totality to the axioms of primitive recursion. That is the reason why we
replace the constant r by a new constant rN in our applicative framework.

Definition 5.1.1 (PRONt) We define PRONt to be the L theory PRON−

plus the two following axioms about the new constant rN.

XI. Primitive recursion on N

(rN.1) f ∈ (N2 → N) ∧ a ∈ N→ rN<f, a>∈ (N→ N) ∧ rN<f, a>0 = a

(rN.2) f ∈ (N2 → N) ∧ a ∈ N ∧ b ∈ N→
rN<f, a>(sNb) = f<b, rN<f, a>b>

In PRONt we can prove the existence of terms prt
F with the properties of prF .

Due to the axioms about rN we do not need induction for this proof.

Theorem 5.1.2 Let F be an arbitrary primitive recursive function. Then
there exists a closed L term prt

F so that the defining equations of F are deriv-
able in PRONt for prt

F . Moreover, we can prove the following assertions:

1. If F is a constant, then PRONt ` prt
F ∈ N.

2. If the arity of F is l > 0, then PRONt ` prt
F ∈ (Nl → N).

Proof We define the L term prt
F by induction on the build-up of F as

follows:

1. If F is one of the functions S, Csnm, Prnk , Compn(G,H0, . . . ,Hm−1),
then prt

F is defined the same way as prF .

2. If F = Recn+1(G,H) and n = 0 then prt
F := (λ∗z.rN<prt

G, prt
H>z)

3. If F = Recn+1(G,H) and n > 0 then
prt
F := (λ∗z.rN<prt

G(p0z), (λ∗y.prt
H<p0z, p0y, p1y>)>(p1z))

The proof of the two assertions above is straightforward and left as an
exercise. 2

We define the extensions of PRONt the same way as the extensions of PRON.
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Definition 5.1.3 Like in definition 1.3.13 we add the same axioms to our
basic theory with the same additional constants µ and E1.

PRONt(µ) := PRONt + (µ.1) + (µ.2)

PRONt(SUS) := PRONt(µ) + (E1.1) + (E1.2)

In this case it is necessary to include the axioms about µ in PRONt(SUS),
because there is no possibility to derive them from the axioms about E1.

Theorem 5.1.4 We have the following lower bounds:

PRA ⊆ PRONt + (S-IN)

ACA0 ⊆ PRONt(µ) + (S-IN)

Π1
1-CA0 ⊆ PRONt(SUS) + (S-IN)

Proof For the first assertion, the translation ·� from L1 terms and formulas
to L must be modified. We replace every occurrence of prF by prt

F in both
definitions 3.1.1 and 3.1.2.
We can define a characteristic term t�A for every quantifier-free L1 formula
A. We can omit the sixth point and replace every occurrence of prF by prt

F
in the proof of lemma 3.2.4.
There is only one axiom that has not been proved in theorem 3.1.4, the in-
duction scheme (QF-IN). The L translation of (QF-IN) is
~v ∈ N→ [A�(~v, 0) ∧ (∀x ∈ N)(A�(~v, x)→ A�(~v, prt

Sx))→ (∀x ∈ N)A�(~v, x)].
Suppose, that ~v ∈ N. Then we define t to be the term
(λ∗y.t�A<v0, . . . , vn−1, y >). We can prove t ∈ P(N) and A(~v, x) ↔ tx = 0
by lemma 3.2.4. With set induction we can now derive the L translation of
(QF-IN).

For the second assertion, the translation ·◦ from L2 terms and formulas to L
must be modified. We replace again every occurrence of prF by prt

F in both
definitions 3.2.1 and 3.2.2.
We can define a characteristic term t◦A for every arithmetic L2 formula A by
replacing every occurrence of prF by prt

F in the proof of lemma 3.2.4.
There is only one axiom that has not been proved in theorem 3.2.5, the in-
duction scheme (IAN). The L translation of (IAN) is
(∀x)[x ∈ P(N)→ [x0 = 0 ∧ (∀y ∈ N)(xy = 0→ x(prt

S) = 0)→
(∀y ∈ N)(xy = 0)]].
Suppose, that x is in P(N). Then we have exactly the induction scheme
(S-IN) because PRON proves (prSx = sNx) by definition 2.1.10.

For the third assertion, we can use the modified translation ·◦ and the char-
acteristic term t◦A. For every Π1

1 formula A we can define a characteristic
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term ct◦A the same way as in the proof of lemma 3.3.2. Then we have proved
everything we need in the proof of theorem 3.3.3. 2

5.2 Upper bounds

Let us now continue the embeddings with the upper bounds.

Theorem 5.2.1 We have the following upper bounds:

PRONt + (S-IN) ⊆ PRA− + (Σ1-IN)

PRONt(µ) + (S-IN) ⊆ ACA0

PRONt(SUS) + (S-IN) ⊆ Π1
1-CA0

Proof Due to the work of Feferman and Jäger [5], and Jäger and Strahm
[8], it is only necessary to show the following assertions:

1. PRONt + (S-IN) ⊆ BON + (S-IN)

2. PRONt(µ) + (S-IN) ⊆ BON(µ̂) + (S-IN)

3. PRONt(SUS) + (S-IN) ⊆ SUS + (S-IN)

Remember the translation ·. of section 4.1. The translation of the scheme
(S-IN) is an instance of (S-IN).
All we have to do for the first assertion yet, is to replace the translation r.

of r by the new translation rN
. of rN:

rN
. := (λw.̂rN(λuv.p̂0w(p̂uv))(p̂1w))

The translations of the axioms about rN must be derivable in BON:

(rN.1). (∀x, y ∈ N)(f(p̂xy) ∈ N) ∧ a ∈ N→
rN
.(p̂fa) ∈ (N→ N) ∧ rN

.(p̂fa)0 = a

(rN.2). (∀x, y ∈ N)(f(p̂xy) ∈ N) ∧ a ∈ N ∧ b ∈ N→
rN
.(p̂fa)(̂sNb) = f(p̂b(rN

.(p̂fa)b))

1. Suppose, that (∀x, y ∈ N)(f(p̂xy) ∈ N) and a ∈ N. Then we can prove
(∀x, y ∈ N)((λuv.f(p̂uv))xy ∈ N), so rN

.(p̂fa) = r̂N(λuv.f(p̂uv))a is in
(N→ N) and rN

.(p̂fa)0 = r̂N(λuv.f(p̂uv))a0 = a

2. Suppose, that (∀x, y ∈ N)(f(p̂xy) ∈ N), a ∈ N, and b ∈ N. Then
we can prove (∀x, y ∈ N)((λuv.f(p̂uv))xy ∈ N) and rN

.(p̂fa)(̂sNb) =
r̂N(λuv.f(p̂uv))a(̂sNb) = (λuv.f(p̂uv))b(̂rN(λuv.f(p̂uv))ab) =
(λuv.f(p̂uv))b(rN

.(p̂fa)b = f(p̂b(rN
.(p̂fa)b))
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For the second assertion we can just take this embedding of PRONt in BON
and add the translation µ. of µ:

µ. := (λfa.µ̂(λu.f(p̂au)))

The translations of the axioms about µ must be derivable in BON(µ̂):

(µ.1). (∀x ∈ N)(f(p̂ax) ∈ N)↔ µ.fa ∈ N

(µ.2). (∀x ∈ N)(f(p̂ax) ∈ N)→
[(∃x ∈ N)(f(p̂ax) = 0)→ f(p̂a(µ.fa)) = 0]

1. (∀x ∈ N)(f(p̂ax) ∈ N)↔ (λu.f(p̂au)) ∈ (N→ N)↔
µ̂(λu.f(p̂au)) ∈ N↔ µ.fa ∈ N

2. Suppose, that (∀x ∈ N)(f(p̂ax) ∈ N) and (∃x ∈ N)(f(p̂ax) = 0). Then
we can prove (λu.f(p̂au)) ∈ (N→ N) and (∃x ∈ N)[(λu.f(p̂au))x = 0],
so we have f(p̂a(µ.fa)) = (λu.f(p̂au))(µ.fa) =
(λu.f(p̂au))(µ̂(λu.f(p̂au))) = 0

For the third assertion we can again take this embedding of PRONt(µ) in
BON(µ̂) and add the translation E1

. of E1:

E1
. := (λfa.Ê1(λuv.f(p̂(p̂au)v)))

The translations of the axioms about E1 must be derivable in SUS:

(E1.1). (∀x, y ∈ N)(f(p̂(p̂ax)y) ∈ N)↔ E1
.fa ∈ N

(E1.2). (∀x, y ∈ N)(f(p̂(p̂ax)y) ∈ N)→ [(∃g)[g ∈ (N→ N)∧
(∀x ∈ N)(f(p̂(p̂a(g(̂sNx)))(gx)) = 0)]↔ E1

.fa = 0]

1. (∀x, y ∈ N)(f(p̂(p̂ax)y) ∈ N)↔
(∀x, y ∈ N)((λuv.f(p̂(p̂au)v))xy ∈ N)↔
Ê1(λuv.f(p̂(p̂au)v)) ∈ N↔ E1

.fa ∈ N

2. Suppose, that (∀x, y ∈ N)(f(p̂(p̂ax)y) ∈ N). Then we can prove
(∀x, y ∈ N)((λuv.f(p̂(p̂au)v))xy ∈ N) and
(∃g)[g ∈ (N→ N) ∧ (∀x ∈ N)(f(p̂(p̂a(g(̂sNx)))(gx)) = 0)]↔
(∃g)[g ∈ (N→ N) ∧ (∀x ∈ N)((λuv.f(p̂(p̂au)v))(g(̂sNx))(gx) = 0)]↔
Ê1(λuv.f(p̂(p̂au)v)) = 0↔ E1

.fa = 0 2

Corollary 5.2.2 Together with theorem 5.1.4 we have proved that:
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1. PRA ⊆ PRONt + (S-IN) ⊆ PRA− + (Σ1-IN)

2. PRONt(µ) + (S-IN) ≡ ACA0

3. PRONt(SUS) + (S-IN) ≡ Π1
1-CA0 2

Remark 5.2.3 Due to Parsons [11] we know that PRA and PRA−+(Σ1-IN)
prove the same Π2 sentences. So, if we restrict the relation ≡ to Π2 sen-
tences, we can say that PRONt + (S-IN) ≡ PRA.
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A Overview

The following table gives a short survey of proof-theoretic equivalences.

Applicative theories Equivalent theories Ordinal

PRONt + (S-IN) PRA 1 ωω

BON + (S-IN) 1 PRA + (Σ1-IN) 1

BON + (V̂-IN) 2,8 PEA+ + (r) + (S-IN) 3

PRON + (L-IN) PA 4 ε0

BON + (L̂-IN) 4 ACA0
1

PRONt(µ) + (S-IN) PAr
Ω

1

BON(µ̂) + (S-IN) 1 EPSON + (r) 3

PRON(µ) + (L-IN) ACA εε0
5

BON(µ̂) + (L̂-IN) 1 ACA<ε0
1 ϕε00 1

PAw
Ω

1

ÎD1
1

PRONt(SUS) + (S-IN) Π1
1-CA0

6 Ψ0Ωω
7

SUS + (S-IN) 6 ∆1
2-CA0

6

KPir 6

PRON(SUS) + (L-IN) Π1
1-CA Ψ0(Ωω · ε0) 7

SUS + (V̂-IN) 6,8 (Π1
1-CA)<ωω

6 Ψ0Ωωω
7

∆1
2-CR 6

KPir + (Σ1-IN) 6

SUS + (L̂-IN) 6 (Π1
1-CA)<ε0

6 Ψ0Ωε0
7

∆1
2-CA 6

KPiw 6

1introduced and proved by Feferman and Jäger [5]
2a proof can be found in Strahm [15]
3introduced by Schlüter [12]
4introduced and proved by Feferman [3]
5proved by Schütte [13]
6introduced and proved by Jäger and Strahm [8]
7proved by Buchholz and Schütte [2]
8(V̂-IN) : f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N→ f (̂sNx) ∈ N)→ (∀x ∈ N)(fx ∈ N)
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B Translations of some axioms

Translation ·? of the axioms about µ:

(µ.1)? (∀x)[(∃y)(y = x)→ (∃y, z0, z1)[z0 = f ∧ (∃z2, z3)(z2 = a∧
z3 = x ∧ z1 = 〈z2, z3〉) ∧ µApp(z0, z1, y)]]↔

(∃x, z0, z1)[(∃z2, z3)(z2 = µM0 ∧ z3 = f ∧ µApp(z2, z3, z0))∧
z1 = a ∧ µApp(z0, z1, x)]

(µ.2)? (∀x)[(∃y)(y = x)→ (∃y, z0, z1)[z0 = f ∧ (∃z2, z3)(z2 = a∧
z3 = x ∧ z1 = 〈z2, z3〉) ∧ µApp(z0, z1, y)]]→

[(∃x)[(∃y)(y = x)→ (∃y)[(∃z0, z1)[z0 = f ∧ (∃z2, z3)(z2 = a∧
z3 = x ∧ z1 = 〈z2, z3〉) ∧ µApp(z0, z1, y)] ∧ y = 0]]→

(∃x)[(∃z0, z1)[z0 = f ∧ (∃z2, z3)[z2 = a ∧ (∃z4, z5)[(∃z6, z7)

(z6 = µM0 ∧ z7 = f ∧ µApp(z6, z7, z4)) ∧ z5 = a∧
µApp(z4, z5, z3)] ∧ z1 = 〈z2, z3〉] ∧ µApp(z0, z1, x)] ∧ x = 0]]

Translation ·∗ of the axioms about E1:

(E1.1)∗ (∀x, y)[(∃z)(z = x) ∧ (∃z)(z = y)→ (∃z, z0, z1)[z0 = f ∧
(∃z2, z3)[(∃z4, z5)(z4 = a ∧ z5 = x ∧ z2 = 〈z4, z5〉) ∧ z3 = y ∧
z1 = 〈z2, z3〉] ∧ SusApp(z0, z1, z)]]↔

(∃x, z0, z1)[(∃z2, z3)(z2 = E1
M1 ∧ z3 = f ∧ SusApp(z2, z3, z0))∧

z1 = a ∧ SusApp(z0, z1, x)]

(E1.2)∗ (∀x, y)[(∃z)(z = x) ∧ (∃z)(z = y)→ (∃z, z0, z1)[z0 = f ∧
(∃z2, z3)[(∃z4, z5)(z4 = a ∧ z5 = x ∧ z2 = 〈z4, z5〉) ∧ z3 = y ∧
z1 = 〈z2, z3〉] ∧ SusApp(z0, z1, z)]]→

[(∃g)[(∀x)[(∃y)(y = x)→ (∃y, z0, z1)(z0 = g ∧ z1 = x∧
SusApp(z0, z1, y))] ∧ (∀x)[(∃y)(y = x)→ (∃y)[(∃z0, z1)[z0 = f ∧
(∃z2, z3)[(∃z4, z5)[z4 = a ∧ (∃z6, z7)[z6 = g ∧ (∃z8, z9)

(z8 = sN
M1 ∧ z9 = x ∧ SusApp(z8, z9, z7)) ∧ SusApp(z6, z7, z5)]∧

z2 = 〈z4, z5〉] ∧ (∃z4, z5)(z4 = g ∧ z5 = x ∧ SusApp(z4, z5, z3))∧
z1 = 〈z2, z3〉] ∧ SusApp(z0, z1, y)] ∧ y = 0]]]↔

(∃x)[(∃z0, z1)[(∃z2, z3)(z2 = E1
M1 ∧ z3 = f ∧ SusApp(z2, z3, z0))∧

z1 = a ∧ SusApp(z0, z1, x)] ∧ x = 0]]
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[6] Feferman, S., Jäger, G., and Strahm, T. Explicit Mathematics.
In preparation.

[7] Hinman, P. G. Recursion-Theoretic Hierarchies. Springer, Berlin,
1978.
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