
Object-Oriented Programming

in
Explicit Mathematics:

Towards the Mathematics of Objects

Thomas Studer
von Werthenstein

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

Leiter der Arbeit:

Prof. Dr. G. Jäger
Institut für Informatik und angewandte Mathematik

Object-Oriented Programming

in
Explicit Mathematics:

Towards the Mathematics of Objects

Thomas Studer
von Werthenstein

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

Leiter der Arbeit:

Prof. Dr. G. Jäger
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 3. April 2001
Der Dekan
Prof. Dr. P. Bochsler

Contents

Prologue 1

1 Object-Oriented Programming 9
1.1 Overloading and Late-Binding 9
1.2 The λ{} Calculus . 12
1.3 Semantics . 19
1.4 Object Models . 22

2 Explicit Mathematics 25
2.1 The Logic of Partial Terms . 25
2.2 The Base Theory EETJ . 29

3 Predicative Overloading 37
3.1 Introduction . 37
3.2 Embedding λ

{}
str into Explicit Mathematics 39

3.3 Loss of Information . 53

4 Impredicative Overloading 57
4.1 Power Types in Explicit Mathematics 57
4.2 A Set-Theoretic Model for OTN + (Li-IN) 61
4.3 Impredicative Overloading in OTN 64
4.4 Discussion and Remarks . 67

5 Non-termination 71
5.1 Introduction . 71
5.2 Applicative Theories . 73
5.3 Least Fixed Point Operator 75
5.4 Conclusion . 83

6 Featherweight Java 85
6.1 The Definition of Featherweight Java 86
6.2 Evaluation Strategy and Typing 90

v

vi Contents

7 A Semantics for FJ 95
7.1 Fixed Point Types . 95
7.2 Interpreting Featherweight Java 100
7.3 Soundness results . 105
7.4 Discussion and Remarks . 113

Epilogue 115

Bibliography 119

Index 129

Prologue

Computer Science is no more about computers than as-
tronomy is about telescopes.

Edgar W. Dijkstra

Few persons care to study logic, because everybody con-
ceives himself to be proficient enough in the art of reason-
ing already.

Charles S. Pierce

This thesis deals with the mathematical meaning of object-oriented program-
ming languages. We study denotational semantics for type systems with
overloading and late-binding; and based on these investigations, we present
a recursion-theoretic interpretation of Featherweight Java. The main tool
for our research are systems of explicit mathematics with their recursion-
theoretic and set-theoretic models.

A lot of theoretical work has been carried out in order to gain a better insight
into the concepts of object-oriented languages, see for instance the collection
of papers edited by Gunter and Mitchell [50]. Over the past few years, many
different object models have been proposed, such as the recursive record
encoding (Cook, Hill and Canning [26] as well as Kamin and Reddy [69]), the
existential encoding (Pierce and Turner [78]), the matching-based encoding
(Bruce [11]) and several calculi which take “object” as a primitive notion
(Abadi and Cardelli [1]). All these object models are based on Cardelli’s [16]
“objects as records” analogy according to which an object is modeled by a
record encapsulating the methods which are defined for that object.

Our work is concerned with another approach to objects, taking overloading
and late-binding as basic rather than encapsulation. Theoretically speaking,
overloading denotes the possibility that several functions fi with respective
types Si → Ti may be combined to a new overloaded function f of type
{Si → Ti}i∈I . We then say fi is a branch of f .

If an overloaded function f is applied to an argument x, then the type of the
argument selects a branch fi, and the result of f(x) is fi(x), i.e. the chosen

1

2 Prologue

branch is applied to x. If the type at compile time selects the branch, then we
speak of early-binding. If the selection of the branch is based on the run-time
type, i.e. the type of the fully evaluated argument, then we call this discipline
late-binding. Postponing the resolution of overloaded functions to run-time
would not have any effect if types cannot change during the computation.
Therefore, we need the concept of subtyping in order to obtain the real power
of overloading. Then types can evolve during the execution of a program and
this may affect the final result.

Ghelli [46] first defined typed calculi with overloading and late-binding for
the study of object-oriented programming languages. This approach was
further developed by Castagna, Ghelli and Longo [24]. They introduce λ&,
a calculus for overloaded functions with subtyping. It was pointed out by
Castagna [21] that this calculus provides a foundation for both Simula’s and
CLOS’s style of programming.

In his Ph.D. Thesis, Tsuiki [99] introduces a typed λ calculus with subtyping
and a merge operator, which provides a way of defining overloaded functions.
However, it models just coherent overloading which has the restriction that
the definition of branches with related input types must be related. For
example, if we have an overloaded function with two branches M1 : Int→ T
and M2 : Real → T , then coherent overloading requires that for all N : Int
we have M1N = M2N , since Int is a subtype of Real.

The construction of a semantics for calculi with overloading and late-binding
turned out to be surprisingly difficult. Castagna, Ghelli and Longo [23]
presented a category-theoretical model for a predicative variant of λ& with
early-binding. However, there was no interpretation known for late-bound
overloaded functions.

Moreover, they could not solve the problem of impredicativity in λ&, either.
Consider a term M with type {{S → T} → T, S → T}. Since this type is
a subtype of {S → T}, the term M also belongs to {S → T}; and therefore
it is possible to apply M to itself, i.e. the type {{S → T} → T, S → T}
is a part of its own domain. Hence, the interpretation of that type refers
to itself. For this reason, it is not possible to give a semantics of λ& by
induction on the type structure and it was not known how to deal with this
form of impredicativity encountered in λ&.

Tsuiki also meets the problem of impredicativity in his merge calculus. He
can give a mathematical meaning to it thanks to the strong relation of the
various branches required by the coherence condition. In [100] he presents
a computationally adequate model for overloading via domain-valued func-
tors. However, he only deals with early-binding and a very restricted form

Prologue 3

of coherent overloading. Actually, he does not consider a subtype relation
between basic types like Int and Real and he states that it would be difficult
to extend his model so that it could deal with such a subtype relation.

In this thesis we employ systems of explicit mathematics, or theories of types
and names, to tackle the problems of late-binding and of impredicativity
occurring in λ&. Explicit mathematics has originally been introduced by
Feferman [29, 30, 31] to formalize Bishop style constructive mathematics.
In the sequel, these systems have gained considerable importance in proof
theory, particularly for the proof-theoretic analysis of subsystems of second
order arithmetic and set theory. More recently, theories of types and names
have been employed for the study of functional programming. In particular,
they have been shown to provide a unitary axiomatic framework for repre-
senting programs, stating properties of programs and proving properties of
programs. Important references for the use of explicit mathematics in this
context are Feferman [33, 34, 35], Stärk [88, 89] and Turner [101, 102]. Bee-
son [9] and Tatsuta [96] make use of realizability interpretations for systems
of explicit mathematics to prove theorems about program extraction.

Theories of explicit mathematics are formulated in a two sorted language.
The first-order part, consisting of so-called applicative theories, is based on
partial combinatory logic, cf. e.g. Jäger, Kahle and Strahm [60]. Types build
the second sort of objects. They are extensional in the usual set-theoretic
sense, but a special naming relation due to Jäger [56] allows us to deal with
names of the types on the first-order level. Hence, they can be used in com-
putations, which is the key to model overloading and late-binding. Moreover,
we will obtain a solution to the problem of loss of information for free in our
model.

This problem introduced by Cardelli [16] can be described as follows: when
we apply for example the identity function λx.x of type T → T to an ar-
gument a of type S, a subtype of T , then we can usually only derive that
(λx.x)a has type T . In many calculi with subtyping, the information that a
was of type S gets lost although we have only applied the identity function.
This is not the case in our model, as we will show later. At this point we
have to mention that Castagna [21] is developing a second order calculus
with overloading and late-binding in order to deal with the problem of loss
of information in the context of type dependent computations. Our work
is also a first step towards a better understanding of that system and the
integration of overloading and parametric polymorphism.

Furthermore, we show how the problem of impredicativity can be solved by
means of power types. They were introduced in explicit mathematics by

4 Prologue

Feferman [31], but their use has always been doubted. Glass [48] showed
that weak power types add nothing to the proof-theoretic strength of vari-
ous systems of explicit mathematics without join, and Jäger [59] proved the
inconsistency of strong power types with elementary comprehension. Our
work provides a first example of an application of power types in explicit
mathematics.

Recursive programs are usually modeled with fixed point combinators. Hence,
we need a powerful principle involving these combinators in order to prove
statements about the represented recursive programs. Probably the most fa-
mous such principle is fixed point induction introduced by Scott [86], which
is based on a CPO interpretation of terms. For a good overview of Scott’s in-
duction principle and its connection to CPO models see for example Mitchell
[72].

Looking at the untyped λ calculus, we find that in continuous λ-models, such
as Pω or D∞, fixed point combinators are interpreted by the least fixed point
operator in the model, cf. e.g. Amadio and Curien [4] or Barendregt [7]. This
fact makes it possible to prove semantically many properties of recursively
defined programs.

However, if we look at the purely syntactical side of formal frameworks which
are used to analyze programming languages, we often do not find any direct
account to least fixed points. In particular, the untyped λ calculus allows
to define a fixed point combinator, but there is no possibility to express the
leastness of a fixed point, cf. Curry, Hindley, Seldin [27], Hindley, Seldin [51]
or Barendregt [7]. Also in the typed λ calculus, we can have fixed point com-
binators, but the question of leastness, which corresponds to termination,
is answered from the outside by the use of normalization proofs. Compar-
ing this with functional programming languages, we see that in a type free
language, like Scheme, we can define a fixed point operator which “solves”
recursive equations; and in typed languages, like ML, such operators are usu-
ally built in. However, there is no way to guarantee on the syntactical level
that the solution produced by these operators will be the least fixed point.
This is only given by the semantical interpretation, see for example Reade
[82].

We are going to introduce an applicative theory with computability axioms,
which allows to define a least fixed point operator. Hence, it is possible to
prove in this theory that certain recursive programs will not terminate. Still,
our theory has a recursion-theoretic interpretation.

The question of the mathematical meaning of a program is usually asked to
gain more insight into the language the program is written in. This may be

Prologue 5

to bring out subtle issues in language design, to derive new reasoning princi-
ples or to develop an intuitive abstract model of the programming language
under consideration so as to aid program development. Moreover, a precise
semantics is also needed for establishing certain properties of programs (often
related to some aspects of security) with mathematical rigor.

As far as the Java language is concerned, most of the research on its seman-
tics is focused on the operational approach (see Börger, Schmid, Schulte and
Stärk [10], Cenciarelli, Knapp, Reus and Wirsing [25], Drossopoulou, Eisen-
bach and Khurshid [28], Nipkow and Oheimb [74], and Syme [95]). Notable
exceptions are Oheimb [77] who introduces a Hoare-style calculus for Java as
well as Alves-Foss and Lam [3] who present a denotational semantics which
is, as usual, based on domain-theoretic notions, cf. e.g. Fiore, Jung, Moggi,
O’Hearn, Riecke, Rosolini and Stark [43] for a recent survey on domains and
denotational semantics. Also, the projects aiming at a verification of Java
programs using modern CASE tools and theorem provers have to make use of
a formalization of the Java language (cf. e.g. the KeY approach by Ahrendt,
Baar, Beckert, Giese, Habermalz, Hähnle, Menzel and Schmitt [2] as well as
the LOOP project by Jacobs, van den Berg, Huisman, van Berkum, Hensel
and Tews [55]).

We will examine a recursion-theoretic denotational semantics for Feather-
weight Java, called FJ. Igarashi, Pierce and Wadler [54, 53] have proposed
this system as a minimal core calculus for Java, making it easier to un-
derstand the consequences of extensions and variations. For example, they
employ it to prove type safety of an extension with generic classes as well
as to obtain a precise understanding of inner classes. Ancona and Zucca [6]
present a module calculus where the module components are class declara-
tions written in Featherweight Java.

Often, models for statically typed object-oriented programming languages are
based on a highly impredicative type theory. Bruce, Cardelli and Pierce [13]
for example use Fω<: as a common basis to compare different object encodings,
all of them based on the “objects as records” analogy. We will see that only a
predicative variant of the overloading based object model is needed in order to
interpret object-oriented programming languages. This will be our starting
point for constructing a denotational semantics for Featherweight Java in a
theory of types and names.

Feferman [33] claims that impredicative comprehension principles are not
needed for applications in computational practice. Further evidence for this
is also given by Turner [102] who presents computationally weak but highly
expressive theories, which suffice for constructive functional programming.

6 Prologue

In the present thesis we provide constructive foundations for Featherweight
Java in the sense that our denotational semantics for FJ will be formalized
in a constructive theory of types and names using the predicative object
model of Castagna, Ghelli and Longo [24]. This supports Feferman’s the-
sis that impredicative assumptions are not needed. Although our theory is
proof-theoretically weak, we can prove the soundness of our semantics with
respect to subtyping, typing and reductions. Moreover, the theory of types
and names we use has a recursion-theoretic interpretation. Hence, compu-
tations in FJ will be modeled by ordinary computations. For example, a
non-terminating computation is not interpreted by a function which yields
⊥ as result, but by a partial function which does not terminate, either.

The plan of this thesis is as follows. We start with a chapter about object-
oriented programming, where the concepts of overloading and late-binding
are presented. In Chapter 2 we introduce our base system of explicit mathe-
matics with elementary comprehension and join. Then the thesis is divided
into four parts, which may be read independently. Chapter 3 is concerned
with a semantics for predicative overloading whereas impredicative overload-
ing is dealt with in Chapter 4. An applicative theory that allows us to
prove the non-termination of recursive programs is introduced in Chapter
5. The fourth part of this thesis consists of Chapter 6, where Featherweight
Java is discussed, and also of Chapter 7, where we construct a recursion-
theoretic denotational semantics for FJ. This part depends on the results
of non-termination obtained in Chapter 5. However, we will restate them
(without proofs) in order to keep the parts independent. We conclude the
thesis with an epilogue.

Finally, let us mention that throughout this thesis we make free use of the
papers by Kahle and Studer [67] as well as by Studer [92, 93, 94].

Acknowledgments

Gerhard Jäger really deserves the first position here. It was him who educated
me in logic and who taught me to work with formal systems. He introduced
me to explicit mathematics and he encouraged me to study the mathematics
of objects. His steady support contributed a lot to this thesis.

I am also grateful to Thomas Strahm. He was always there to discuss my
problems, even when he had to postpone his own work. This thesis owes many
things: he often helped me to find the right formulations of the theorems and
he corrected many little mistakes in the proofs.

Prologue 7

I benefited greatly from the conversations with Reinhard Kahle. We often
collaborated: in particular, Chapter 5 is based on joint work with him.

Without the discussions about λ calculi in Jürg Schmid’s workshops, Chapter
5 of this thesis and the papers by Kahle and Studer [67] as well as by Probst
and Studer [81] would not have been written.

Giorgio Ghelli pointed out an error in an early version of Chapter 3. More-
over, he and Luca Cardelli explained to me many important things about
type systems for object-oriented programming languages such as the prob-
lem of sound record update.

Great help in checking the last-minute changes of the thesis was provided by
Dieter Probst.

Geoff Ostrin reviewed this thesis with respect to the English language. All
elegant formulations are due to him. I am to blame for the rest.

The Swiss National Science Foundation financially supported my work on
the mathematics of objects.

Last but not least I would like to thank all my friends and colleagues who I
met over the past years for all the discussions about logic, computer science
and the world. Especially, I thank all the present and former members of our
research group and the people from the coffee break for the good time.

Thank you all!

Chapter 1

Object-Oriented Programming

The process of preparing programs for a digital computer
is especially attractive, not only because it can be eco-
nomically and scientifically rewarding, but also because it
can be an aesthetic experience much like composing po-
etry or music.

Donald E. Knuth

In this chapter we will not give an introduction to object-oriented program-
ming. We assume that the reader is familiar with a typed object-oriented
programming language like Java, C++ or Eiffel or else that she has some ex-
perience with type theory. The plan of this chapter is as follows: in the first
section we will show which aspects of object-oriented programming we are
most interested in, namely overloading and late-binding. Then we present
λ{} which is a typed λ calculus based on these two principles; and we discuss
the difficulties of giving a semantics for this calculus. The last section is con-
cerned with the overloading based object model. It explains the relationship
between object-oriented programming and the λ{} calculus.

1.1 Overloading and Late-Binding

Polymorphism is one of the concepts to which the object-oriented paradigm
owes its power. Since the early work of Strachey [90] the distinction is made
between parametric (or universal) and “ad hoc” polymorphism. Using para-
metric polymorphism, a function can be defined which takes arguments of a
range of types and works uniformly on them. “Ad hoc” polymorphism allows
the writing of functions that can take arguments of several different types
which may not exhibit a common structure. These functions may execute a
different code depending on the types of the arguments. The proof theory

9

10 Chapter 1. Object-Oriented Programming

and the semantics of parametric polymorphism have been investigated by
many researchers, while “ad hoc” polymorphism has had little theoretical
attention.

In object-oriented programming “ad hoc” polymorphism denotes the possi-
bility that two objects of different classes can respond differently to the same
message. Castagna, Ghelli and Longo [23] illustrate this by the following
example: the code executed when sending a message inverse to an object
of type matrix will be different from the code executed when the same mes-
sage is sent to an object representing a real number. Nevertheless, the same
message behaves uniformly on all objects of a certain class. This behavior
is known as overloading since we overload an operator (here inverse) by dif-
ferent operations. We say the function consists of several branches and the
selection of the actual operation depends on the types of the operands.

The real gain in power with overloading occurs only in programming lan-
guages which compute with types. They must be computed during the ex-
ecution of the program and this computation may affect the final result of
the computation. Selecting the branch to be executed at compile-time does
not involve any computation on types. Postponing the resolution of an over-
loaded function to run-time, would not have any effect if types cannot change
during the computation. Only if types can change, we obtain the real power
of overloading. Hence, we need the concept of subtyping in order to have
types that are able to evolve during the execution of a program. In such
languages, an expression of a certain type can be replaced by another one
of a smaller type. Thus, the type of an expression may decrease during
the computation. This can affect the final result of a computation if the
selection of the branch to be executed is based on the types at a specific
moment in the computation. We talk of early-binding if the selection of the
branch is based on the types at compile-time. If we use the types of the fully
evaluated arguments to decide which branch should be executed, then we
call this discipline late-binding. The introduction of overloading with early
binding does not significantly influence the underlying language. However,
overloaded functions combined with subtyping and late-binding show the real
benefits of object-oriented programming.

The following example will stress the importance of late-binding in the con-
text of object-oriented programming. Assume we have a program for a chess
computer. This program will include a class Piece which models the general
behavior of any piece of the chess game. The class Piece will have sev-
eral subclasses like King, Queen, Pawn, etc. which implement the specific
features of the different kinds of pieces. In particular, Piece will declare
a method move which will be employed to perform moves. However, since

1.1 Overloading and Late-Binding 11

different pieces move according to different rules, the method move will be
abstract in Piece and only be implemented in its subclasses, where we know
which kind of piece we are moving. Otherwise, it would not be possible for
this method to test whether it is a legal move that should be performed. Ob-
serve that it is important that move is already declared in Piece. During the
execution of the program, there will occur instructions like ‘take the piece on
C4 and move it to D5’. If this instruction gets executed, then the piece on
C4 is taken and we have to look at its run-time type in order to know which
kind of piece it is. Only then we can decide which move method has to be
called. Hence, only at run-time we can tell which method will be executed
and this is exactly where late-binding enters the stage.

One usually uses higher order lambda calculi to model parametric polymor-
phism. These systems allow abstraction with respect to types and applica-
tions of terms to types. However, computations in these systems do not truly
depend on types, i.e. the semantics of an expression does not depend on the
types appearing in it. This fact is nicely exposed in a forgetful interpreta-
tion of such calculi. Hence, parametricity allows us to define functions that
work on many different types, but always in the same way. On the other
hand, overloading characterizes the possibility of executing different codes
for different types. Thus, we have two different kinds of polymorphism.

The subject of higher order lambda calculus originates from the work of Gi-
rard [47] who introduced his system F for a consistency proof of analysis. For
this reason, system F is highly impredicative. Independently, Reynolds [83]
rediscovered it later and used it for applications in programming languages.
Historically, Girard [47] and Troelstra [97] were the first to discover a seman-
tic model for system F. Based on an abstract form of this model, Feferman
[33] gives an interpretation of system F in a theory of explicit mathematics
and he discusses in detail the advantages of representing programs in theories
of types and names.

Until now, there are only a few systems available featuring “ad hoc” poly-
morphism. Ghelli [46] first defined typed calculi with overloading and late-
binding in order to model object-oriented programming. This approach was
further explored in Castagna, Ghelli and Longo [24]. In the present thesis
we will use λ{} presented by Castagna [21, 22]. This calculus is designed for
the study of the main properties of programming languages with overloading
and late-binding. It is a minimal system, in which there is a unique opera-
tion of abstraction and a unique form of application. Hence, we only have
overloaded functions and consider ordinary functions as overloaded with only
one branch defined.

12 Chapter 1. Object-Oriented Programming

Castagna, Ghelli and Longo [23] present a category-theoretic semantics for
λ&−early which is a calculus with overloading and early-binding. In this
calculus the types of the arguments of an overloaded function are “frozen”;
the same goes for compile-time and run-time. Furthermore, its type system
is stratified in order to avoid the problem of impredicativity. In Chapter 3 we
will present a semantics for a stratified subsystem of λ{}, which can handle
not only overloading but also late-binding. Our model-construction will be
carried out in a predicative theory of explicit mathematics. Later we will
also investigate impredicative overloading in theories of types and names.

1.2 The λ{} Calculus

In this section we introduce Castagna’s λ{} calculus. This minimal system,
implementing overloading and late-binding, was first presented in [21, 22].
The goal was to use as few operators as possible. Terms are built up from
variables by abstraction and application. Types are generated from a set of
basic types by a constructor for overloaded types. Ordinary functions are
considered as overloaded functions with just one branch.

Pretypes. First we define the set of pretypes. Later we will select the types
from among the pretypes, meaning, a pretype will be a type if it satisfies
certain conditions on good type formation. We start with a set of atomic
types Ai, from which the pretypes are inductively defined as follows:

1. Every atomic type is a pretype.

2. If S1, T1, . . . , Sn, Tn are pretypes, then {S1 → T1, . . . , Sn → Tn} is also
a pretype. Often we will employ a notation with index sets and write
{Si → Ti}i∈I for {S1 → T1, . . . , Sn → Tn} where I is the set {1, . . . , n}.

Subtyping. We define a subtyping relation ≤ on the pretypes. This relation
will be used to define the types. We start with a predefined partial order ≤
on the atomic (pre)types and extend it to a preorder on all pretypes by the
following subtyping rule:

(∀i ∈ I)(∃j ∈ J)(Ui ≤ Sj and Tj ≤ Vi)

{Sj → Tj}j∈J ≤ {Ui → Vi}i∈I

If the subtyping relation ≤ is decidable on the atomic types, then it is de-
cidable on all pretypes. Note that ≤ is just a preorder and not an order.
For instance, U ≤ V and V ≤ U do not imply U = V . As an example,
assume S ′ ≤ S, then we have {S → T} ≤ {S ′ → T}, and thus, both
{S → T} ≤ {S → T, S ′ → T} and {S → T, S ′ → T} ≤ {S → T} hold.

1.2 The λ{} Calculus 13

We will give an example how this subtyping rule works. Assume we have
two basic pretypes Int and Real with Int ≤ Real since every integer is also
a real number. Let us first consider ordinary functions, that is overloaded
functions with just one branch. With the subtyping rule we obtain

{Real→ Int} ≤ {Int→ Real}.

Of course, this inference is sound since every function from the reals to the
integers maps an integer to a real number. Now let us look at the overloaded
function type {Real→ Real, Int→ Int}. This type is a subtype of {Int→ Int}
and also of {Real → Real} since it extends these types with an additional
branch. It is also a subtype of {Int → Real}. Further, the subtyping rule
implies that {Real→ Int} ≤ {Real→ Real, Int→ Int} since {Real→ Int} is a
subtype of every branch of the overloaded super-type.

Types. Although the selection of the branch is based on run-time types, the
static typing must ensure that no type-errors will occur during a computa-
tion. We define the set of types as follows: we call a pretype S a minimal
element of a set U of pretypes if S is an element of U and if there does not
exist a pretype T 6= S in U such that T ≤ S. The set of λ{} types con-
tains all atomic types of λ{} as well as all pretypes of the form {Si → Ti}i∈I
that satisfy the following three consistency conditions concerning good type
formation:

1. Si and Ti are types for all i, j ∈ I,

2. Si ≤ Sj implies Ti ≤ Tj for all i, j ∈ I,

3. if there exists i ∈ I and a pretype S such that S ≤ Si, then there exists
a unique z ∈ I such that Sz is a minimal element of {Sj |S ≤ Sj∧j ∈ I}.

The first condition simply states that every overloaded type is built up by
making use of other types. The second condition is a consistency condition
which ensures that a type may only decrease during a computation. If we
have an overloaded function f of type {U1 → V1, U2 → V2} with U1 ≤ U2

and we apply it to an argument n with type U2 at compile-time, then the
expression f(n) will have type V2 at compile-time; but if the run-time type
of n is U1, then the run-time type of f(n) will be V1. Therefore V1 ≤ V2

must hold. The third condition concerns the selection of the correct branch.
It assures the existence and uniqueness of a branch to be executed. If, for
example, we apply a function of type {Si → Ti}i∈I to a term of type U , then
the third condition states that there exists a unique z ∈ I such that Sz is a
minimal element of the set {Si | U ≤ Si}, i.e. Sz best approximates U and

14 Chapter 1. Object-Oriented Programming

the zth branch will be chosen. Hence, this condition deals with the problem
of multiple inheritance. It assures that there will be no ambiguity in the
selection of the branch.

Terms. Terms are built up from variables by λ abstraction and application:

M ::= x | λx(M1 : S1 ⇒ T1, . . . ,Mn : Sn ⇒ Tn) | M1M2,

where n ≥ 1 and S1, T1, . . . , Sn, Tn are types. Variables are not indexed by
types, because in a term for an overloaded function such as

λx(M1 : S1 ⇒ T1, . . . ,Mn : Sn ⇒ Tn),

the variable x should be indexed by different types. Thus, indexing is avoided
and in the typing rules typing contexts are introduced. A context Γ is a finite
set of typing assumptions x1 : T1, . . . , xn : Tn with no variable appearing
twice.

Type system. The following rules define the typing relation between terms
and types.

Γ, x : T ` x : T

Γ, x : S1 `M1 : U1 · · · Γ, x : Sn `Mn : Un
Γ ` λx(Mi : Si ⇒ Ti)i∈{1,... ,n} : {Si → Ti}i∈{1,... ,n}

where Ui ≤ Ti holds for all i ∈ {1, . . . , n}, and

Γ `M : {Si → Ti}i∈I Γ ` N : S Sj = mini∈I{Si | S ≤ Si}
Γ `MN : Tj

A term M is called well-typed, if there exists a typing context Γ and a type
T so that Γ `M : T is derivable.

Reduction. The notion of reduction in λ{} is quite complex. It was introduced
by Castagna [22] and is discussed in detail in his book [21]. There one also
finds all the proofs of the fundamental properties of this reduction relation
like Church-Rosser and strong normalization of some important sub-calculi.
Here, we confine ourselves to sketching only the main ideas of this reduction
relation and to stating some basic properties without proofs.

When we apply an overloaded function to an argument, then the argument
type selects the branch of the overloaded function which will be executed.
Since we work in a calculus with late-binding, it is the run-time type of
the argument which selects this branch. Hence, in each application we first
have to evaluate the argument in order to know its run-time type. The
reduction rules of λ{} therefore state that an application can only be reduced

1.2 The λ{} Calculus 15

if the argument is in normal form, that is fully evaluated, or when it is clear
which branch will be chosen. On the other hand, the definition of normal
form is based on the notion of reduction. Hence, we have to define the
notion of reduction and the terms in normal form by simultaneous recursion.
Reductions in λ{} will not only be performed when the argument is fully
evaluated but also when one is sure that however the computation evolves
the selected branch is always the same. That means an application can be
reduced if either the argument is closed and in normal form or it is clear
which branch will be chosen. This is stated in the following reduction rule.
Since the argument of an application may be an open term, that is it may
contain free variables, reduction will depend on a typing context Γ.

Before we can state our reduction rule, we have to define the set of free
variables FV(M) of a term M . This set is given by:

1. FV(x) = {x}, for any variable x,

2. FV(MN) = FV(M) ∪ FV(N), for two terms M and N ,

3. FV(λx(M1 : S1 ⇒ T1, . . . ,Mn : Sn ⇒ Tn)) is defined as

(FV(M1) ∪ . . . ∪ FV(Mn)) \ {x},

for a variable x and terms M1, . . . ,Mn.

A term M is closed if and only if FV(M) is empty. Otherwise we call M an
open term.

We define the reduction relation M .ΓN and the property of a term M being
in normal form with respect to Γ by simultaneous recursion on the term
structure of M .

1. We have the following notion of reduction:
Let M be λx(Mi : Si ⇒ Ti)i∈{1,... ,n} and Γ ` M : {Si → Ti}i∈{1,... ,n}
and Γ ` N : S, where Sj = mini∈I{Si | S ≤ Si}. If N is a closed term
in normal form with respect to Γ or {Si | i ∈ I, Si ≤ Sj} = {Sj}, then

λx(Mi : Si ⇒ Ti)i∈IN .Γ Mj[N/x],

where Mj[N/x] denotes the substitution of x in Mj by N . Then there
are rules for the compatible closure: let M be an application PN and
let Γ ` P : {Si → Ti}i∈I , Γ ` N : S and assume there exists an i ∈ I
with S ≤ Si, then

P .Γ P
′

PN .Γ P
′N

N .Γ N
′

PN .Γ PN
′

16 Chapter 1. Object-Oriented Programming

Let M be λx(Mi : Si ⇒ Ti)i∈I and Γ `M : {Si → Ti}i∈I , then

Mi .Γ,x:Si M
′
i

λx(· · ·Mi : Si ⇒ Ti · · ·) .Γ λx(· · ·M ′
i : Si ⇒ Ti · · ·)

2. A term M is in normal form with respect to Γ if there does not exist
a term N such that M .Γ N . That is one of the following cases holds.

(a) The term M is a variable.

(b) The term M is of the form λx(Mi : Si ⇒ Ti)i∈I and each Mi

(i ∈ I) is in normal form with respect to Γ, x : Si.

(c) The term M is an application λx(Mi : Si ⇒ Ti)i∈{1,... ,n}N , the
subterms λx(Mi : Si ⇒ Ti)i∈{1,... ,n} and N are both in normal
form with respect to Γ, and if

Γ ` λx(Mi : Si ⇒ Ti)i∈{1,... ,n} : {Si → Ti}i∈{1,... ,n},

Γ ` N : S and Sj = mini∈I{Si | S ≤ Si}, then N is not a closed
term and {Si | i ∈ I, Si ≤ Sj} 6= {Sj}.

If none of these conditions hold, then it is possible to reduce M since
one of the cases for reduction applies.

This is a recursive definition on the term structure of M . In order to decide
whether M can be reduced or whether it is in normal form, we have to know
whether certain subterms of M are in normal form or not. This works since
we employ recursion on the built up of M . Hence, when we decide whether
M is in normal form, we already know which subterms of M are in normal
form and which are not.

If we allowed reductions with open or non-normal arguments also in the cases
when we are not sure which branch will be chosen, then the system would not
be confluent. The reason is that the type of an open or non-normal argument
can be different in different phases of the computation. For example, consider
a term

λx(λx(P : V ⇒ V,M : U ⇒ U)x : V ⇒ V)N

and a typing context Γ implying x : V and N : U . Assume U ≤ V . If the
inner reduction were performed with the x argument (which is not closed),
then the first branch P would be chosen, while if the outer reduction is
performed first, then the term becomes λx(P : V ⇒ V,M : U ⇒ U)N and
the second branch M is (correctly) chosen. In short, the argument of an

1.2 The λ{} Calculus 17

overloaded application must be closed and in normal form to perform the
evaluation since this is the only case where its type can no longer decrease
and where its type describes the value as accurately as possible.

The above example also provides a non-trivial term which is in normal form.
Assume U ≤ V and V 6≤ U . If P is in normal form with respect to x : V
and M is in normal form with respect to x : U , then the term

λx(P : V ⇒ V,M : U ⇒ U)x

is in normal form with respect to x : V since x is not closed and

V = min{X | V ≤ X ∧ (X = U ∨X = V)}

and

{X |X ≤ V ∧ (X = V ∨X = U)} 6= {V }.

However, λx(P : V ⇒ V,M : U ⇒ U)x is not in normal form with respect
to x : U since then we have U = min{X | U ≤ X ∧ (X = U ∨X = V)} and
{X | X ≤ U ∧ (X = V ∨ X = U)} = {U}. That means there is a unique
branch to choose although the argument term is not in normal form. This
example also illustrates nicely the role of the typing context in the presence
of free variables in the argument of an application. If the typing context
guarantees that we can choose a unique branch of the overloaded function,
then the application gets reduced. If there are several possible branches, then
the reduction cannot be performed.

Stratification. In the sequel, we will also consider the stratified subsystem λ
{}
str

of λ{}. This calculus emerges from λ{} by restricting the subtype relation on
the types. First, we introduce the function rankλ on the pretypes by:

1. rankλ(Ai) = 0 (where Ai is an atomic type),

2. rankλ({Si → Ti}i∈I) = max{rankλ(Si), rankλ(Ti) | i ∈ I}+ 1.

With this function we define a new subtyping relation ≤− by adding the
condition rankλ({Sj → Tj}j∈J) ≤ rankλ({Ui → Vi}i∈I) to the subtyping rule.
The type S is called strict subtype of T if S ≤− T holds, see Castagna [21].
We still have S ≤− S for any type S and if S ≤− T , then T ≤− S is still
possible. However, if we have a term M of type S, a term N of type T , and
MN is a well-typed application, then rankλ(T) < rankλ(S). That is the rank
of the argument type is strictly smaller than the rank of the function type.

The stratified calculus λ
{}
str is defined by replacing ≤ with ≤− in the typing

and reduction rules of λ{}. Furthermore, in the consistency conditions for
good type formation we have to add

18 Chapter 1. Object-Oriented Programming

2′. Si ≤− Sj implies Ti ≤− Tj for all i, j ∈ I.

The calculi λ{} and λ
{}
str both satisfy Church-Rosser and subject reduction.

Proofs for these important properties can be found in Castagna [21].

Theorem 1. The calculi λ{} and λ
{}
str both satisfy that if Γ ` M : T and

M .Γ N , then Γ ` N : S ≤ T

Theorem 2. The calculi λ{} and λ
{}
str both satisfy that for all Γ the relation

.Γ is Church-Rosser.

However, λ{} is not normalizing. We will construct a term w so that ww is
well-typed but not normalizing, that is ww . ww. Let S be the type

{{T → T} → {T → T}, T → T}.

With the subtyping rule we immediately obtain

S ≤ {T → T}. (1.1)

Let w be the term

λx(xx : S ⇒ {T → T}, x : {T → T} ⇒ {T → T}, x : T ⇒ T).

We show that ww is well-typed. First, observe

x : S ` x : S. (1.2)

By (1.1) we get

{T → T} = min{X | S ≤ X ∧ (X = T ∨X = {T → T})}. (1.3)

By (1.2) and (1.3) we obtain by the typing rule for applications

x : S ` xx : {T → T}. (1.4)

Further we have

x : {T → T} ` x : {T → T} and x : T ` x : T. (1.5)

By the typing rule for λ abstraction, (1.4) and (1.5) we conclude

` w : {S → {T → T}, {T → T} → {T → T}, T → T}. (1.6)

1.3 Semantics 19

Let V be the type of w. By the subtyping rule we see V ≤ S since V extends
S by an additional branch. Therefore, we get

S = min{X | V ≤ X ∧ (X = S ∨X = {T → T} ∨X = T)}. (1.7)

By (1.6) and (1.7) we infer with the typing rule for applications

` ww : {T → T}.

Therefore, ww is well-typed.

Now we are going to show ww . ww. Note that w is closed and in normal
form with respect to the empty typing context. Hence by (1.7) we can apply
the reduction rule and get

ww = λx(xx : S ⇒ {T → T}, x : {T → T} ⇒ {T → T}, x : T ⇒ T)w

. xx[w/x] = ww.

This example will not work in the stratified subsystem λ
{}
str. We have

rankλ(S) 6≤ rankλ({T → T})

and therefore S 6≤− {T → T}. Hence, we cannot infer x : S ` xx : {T → T}.
In fact, it is provable that λ

{}
str is strongly normalizing, again a proof can be

found in Castagna [21].

Theorem 3. The calculus λ
{}
str is strongly normalizing.

1.3 Semantics

According to Castagna [22] the construction of a model for λ{} poses the
following problems: preorder, type dependent computation, late binding and
impredicativity.

• Preorder: as we have seen, the subtyping relation of λ{} is a pre-
order but not an order relation. If S ′ ≤ S holds, then we have both
{S → T} ≤ {S → T, S ′ → T} and {S → T, S ′ → T} ≤ {S → T}.
These two types are completely interchangeable from a semantic point
of view. Therefore, both types should have the same interpretation,
and the subtyping relation has to be modeled by an order relation on
the interpretations of the types.

20 Chapter 1. Object-Oriented Programming

• Type dependent computation: the types of the terms determine the
result of a computation. For this reason the interpretation of an over-
loaded function must not only take the interpretation of the value of
its argument as input but also the interpretation of its argument type.
Therefore, the semantics of an overloaded function type must take into
account the interpretations of the argument types of the functions it
consists of. Because we work in a calculus with subtyping, all interpre-
tations of subtypes of the argument types have to be regarded equally.

• Late-binding: the choice of the branch to be executed of an overloaded
function depends on the run-time types of its arguments and not on
the types at compile time. Hence, the branch to be executed cannot be
chosen at compile time, which means in the translation of the terms.
To determine the value of an overloaded application, first the inter-
pretations of its arguments need to be evaluated in order to know the
run-time types of the arguments and to select the branch which will be
applied.

• Impredicativity: the type system of λ{} is not stratified. This can be
seen in the following example: let T be a type of λ{}. We get

{{T → T} → T, T → T} ≤ {T → T}. (1.8)

However, {T → T} also is the domain of one the branches of the type
{T → T} → T, T → T}. Let M be a term and Γ a typing context so
that

Γ `M : {{T → T} → T, T → T}. (1.9)

By (1.8) we get

{T → T} = min{X | {{T → T} → T, T → T} ≤ X ∧
(X = T ∨X = {T → T})}. (1.10)

The premises of the rule for application are satisfied by (1.9) and (1.10),
that is M as function has an overloaded function type and the type of
M as argument selects the branch with the domain {T → T}. Hence,
we conclude by the application typing rule Γ ` MM : T . We see
that in λ{} self-application of M is meaningful, since the overloaded
function type {{T → T} → T, T → T} is a subtype of one of its
own domains. The consequence is that it is not possible to give a
semantics for the types by induction on the type-structure, as, in order
to give the interpretation of an overloaded type, we need to know the

1.3 Semantics 21

interpretations of the subtypes of its argument types. Therefore, the
interpretation of the type {{T → T} → T, T → T} refers to itself.

Again, as the example of non-normalization, this example will not work
if we stratify the type system. It is not possible to derive

{{T → T} → T, T → T} ≤− {T → T}

in λ
{}
str. In this calculus no impredicativity phenomena occur.

The λ&−early calculus is introduced in Castagna [21] and Castagna, Ghelli
and Longo [23]. This is a λ calculus with overloading and subtyping, but
without late-binding. For stratified subsystems of this calculus a category-
theoretical semantics (based on partial equivalence relations, a so-called PER
model) is presented, which focuses on the problems stemming from the pre-
order on the types and the type depended computation.

The problem of the preorder on the types is solved by a syntactic construction
called type completion. Intuitively, the completion of an overloaded type is
formed by adding all subsumed types. Hence, two equivalent types will be
transformed by completion to essentially the same type. For example the
completion of {S → T} will be something like {S → T, S1 → T, S2 → T, . . . },
where S1, S2, . . . are all (infinitely many) subtypes of S.

The problem of type dependent computation is handled by interpreting over-
loaded types as product types. If A is a type and for every x ∈ A we know
that Bx is a type, then the product type Πx∈ABx consists of all functions
f which map an element x of A to an element f(x) of Bx. Now, seman-
tic codes for types are introduced in order to define the interpretation of
an overloaded type as an indexed product. The interpretation of the type
{S1 → T1, S2 → T2} will be the product type consisting of functions f map-
ping a code d, for a subtype U of S1 or S2, to a function f(d) : Sn → Tn
if U selects the n-th branch of {S1 → T1, S2 → T2}. Hence, an overloaded
function λx(M1 : S1 ⇒ T1,M2 : S2 ⇒ T2) of type {S1 → T1, S2 → T2} will
be interpreted by a function f which is defined for every code d, for a type
U subtype of S1 or S2, in the following way:

f(d) =

{
λx.[[M1]] if U selects the first branch,
λx.[[M2]] if U selects the second branch.

In λ&−early an overloaded application demands an explicit coercion of its
arguments. Hence, the types of the arguments of overloaded functions are
“frozen”, and the same goes for compile-time and run-time. Therefore, the

22 Chapter 1. Object-Oriented Programming

problems of late-binding are avoided. Further, since only stratified subsys-
tems of λ&−early are modeled, there is no problem of impredicativity. No
type occurs strictly in itself, hence the definition of the semantics of a type
is not self-referential; and the interpretation of the types can be given by
induction on the type structure.

1.4 Object Models

In this section we present the object model of Castagna, Ghelli and Longo
[21, 24], which is based on overloading and late-binding. In object-oriented
programming languages the computation evolves on objects. These program-
ming items are grouped by classes and the class of an object defines its
behavior. An object has an internal state that may be accessed and modified
by sending messages to the object. When an object receives a message, it
invokes the method (i.e. the code) associated with that message. This asso-
ciation between messages and methods is given by the class of the object.

There are two possible ways to understand message-passing. The first is to
encapsulate the methods inside the objects. Therefore, when a message is
sent to an object, the associated method is retrieved in the receiving object.
This approach has been extensively studied and it corresponds to the “objects
as records” analogy of Cardelli [16]. According to this analogy, objects are
records whose labels are messages and whose fields contain the associated
methods. Hence, message-passing corresponds to field selection.

The second view on message-passing is to consider messages as identifiers
of overloaded functions and message-passing as their application. In the
sequel we will employ this second object model, in which the state of an
object is separated from its methods. Only the fields (containing the state)
of an object are bundled together as one unit, whereas the methods of an
object are not encapsulated inside it. Indeed, methods are implemented as
branches of global overloaded functions, so-called multi-methods. If a message
is sent to an object, then this message determines a function and this function
will be applied to the receiving object. However, messages are not ordinary
functions: if the same message is sent to objects of different classes, then
different methods may be retrieved, i.e. a different code may be executed.
Hence, messages represent overloaded functions: depending on the type of
the argument (the object the message is passed to), a different method is
chosen. Since this selection of the method is based on the dynamic type of
the object, i.e. its type at run-time, we also have to deal with late-binding.

If we interpret object-oriented programs using this object model, then we

1.4 Object Models 23

have to represent classes as types and messages as identifiers of overloaded
functions which execute a certain code, depending on the type (class) of
their argument (the object the message is being sent to). We see that the
classes of an object-oriented program can be modeled by atomic types in the
λ{} calculus. Therefore, all the methods will have the same rank (namely

1). Hence, the stratified subsystem λ
{}
str provides enough expressive power to

model the usual object-oriented programming languages.

Chapter 2

Explicit Mathematics

There may, indeed, be other applications of the system
than its use as a logic.

Alonzo Church

Logic is logic.
Isaac Asimov

Explicit Mathematics has been introduced by Feferman [29, 30, 31] for the
study of constructive mathematics. In the present thesis, we will not work
with Feferman’s original formalization of these systems; instead we treat
them as theories of types and names as developed by Jäger [56]. These
theories are built upon Beeson’s [8] logic of partial terms, which we will
discuss first. All the systems of explicit mathematics that will be used in the
subsequent chapters are variants or extensions of the base theory EETJ of
explicit elementary types and join presented in the second section.

2.1 The Logic of Partial Terms

We will employ explicit mathematics to reason about programs. Therefore,
it is important that in these theories we have the possibility to talk about the
termination of these programs. The usual formulations of first order predicate
calculus do not permit the formation of terms which do not necessarily denote
anything, such as a term which represents a non-terminating computation.
The purpose of this section is to introduce Beeson’s [8] logic of partial terms.
This is a version of the predicate calculus that does admit the formation of
non-denoting, or undefined, terms.

The logic of partial terms includes a special definedness predicate ↓ so that
for any term t the formula t↓ is read as “t is defined” or “t has a value”, i.e.

25

26 Chapter 2. Explicit Mathematics

t represents a terminating program. Among the main features of the logic
of partial terms are its strictness axioms stating that if a term has a value,
then all its subterms must be defined, too. This corresponds to a call-by-
value evaluation strategy, where all arguments of a function must first be
fully evaluated before the final result will be computed.

A language L for the logic of partial terms comprises the following symbols:

1. countably many individual variables a, b, c, f, g, h, x, y, z, . . . (possibly
with subscripts);

2. the unary symbol ↓ for definedness and the binary symbol = for equal-
ity;

3. the logical symbols ¬ (negation), ∨ (disjunction) and ∃ (existential
quantification);

4. for every natural number n countably many function symbols and re-
lation symbols of arity n.

We have brackets as auxiliary symbols. The 0-ary function symbols of L are
called the individual constants of L. From these constants and the variables
of L, the individual terms (r, s, t, r1, s1, t1, . . .) of L are inductively generated
as usual by means of the other function symbols.

The atomic formulas of L are t1↓, t1 = t2 and R(t1, . . . , tn) provided that
t1, . . . , tn are L terms and R is an n-ary relation symbol of L. The formulas
(A,B,C, . . .) of L are inductively defined as follows:

1. Every atomic formula of L is an L formula.

2. If A and B are fomulas of L, then ¬A and (A ∨B) are L formulas.

3. If A is an L formula and x is a variable of L, then ∃xA is a formula of
the language L, too.

In this thesis we are going to work within classical logic only. Hence, we can
introduce the following abbreviations:

(A ∧B) := ¬(¬A ∨ ¬B),

(A→ B) := (¬A ∨B),

(A↔ B) := ((A→ B) ∧ (B → A)),

∀xA := ¬∃x¬A.

In the sequel we will often omit brackets when there is no danger of confusion.
We adopt the convention that ¬ binds stronger than ∨ and ∧ and that these

2.1 The Logic of Partial Terms 27

two connectives bind stronger than → and ↔. Since we are in a context of
partiality, we introduce partial equality and a strong form of unequality by:

s ' t := s↓ ∨ t↓ → s = t,

s 6= t := s↓ ∧ t↓ ∧ ¬(s = t).

Moreover, the vector notation ~Z is sometimes used to denote finite sequences
Z1, . . .Zn of expressions. The length of such a sequence ~Z is either irrelevant
or otherwise given by the context. Suppose now that ~a = a1, . . . , an and
~s = s1, . . . , sn. Then A[~s/~a] is the formula which is obtained from A by
simultaneously replacing all free occurences of the variables ~a by the terms
~s; in order to avoid collision of variables, a renaming of bound variables may
be necessary. If the L formula A is written as B(~a), then we often write
B(~s) instead of A[~s/~a]. The substitution of terms for variables in L terms is
treated accordingly.

Now we present the logic of partial terms in form of a Hilbert calculus with
the following rules and axioms:

I. Propositional axioms and propositional rules. These comprise the axioms and
rules of some sound and complete Hilbert calculus for classical propositional
logic.

II. Quantifier axioms and quantifier rules. The axioms for the existential
quantifier consist of all L formulas

A(s) ∧ s↓ → ∃xA(x)

where s may be an arbitrary L term. The rules of inference for the existential
quantifier are all figures

A(a)→ B

∃xA(x)→ B

so that the variable a does not occur in the conclusion.

III. Definedness axioms.

(D1) r↓, provided that r is a variable or a constant of L,

(D2) F (t1, . . . , tn)↓ → t1↓ ∧ · · · tn↓ for all n-ary function symbols F of L.

(D3) s = t→ s↓ ∧ t↓,

(D4) R(t1, . . . , tn)→ t1↓ ∧ · · · tn↓ for all n-ary relation symbols R of L.

28 Chapter 2. Explicit Mathematics

IV. Equality axioms.

(E1) x = x,

(E2) s = t→ t = s,

(E3) r = s ∧ s = t→ r = t,

(E4) R(s1, . . . , sn) ∧ s1 = t1 ∧ · · · ∧ sn = tn → R(t1, . . . , tn) for all n-ary
relation symbols R of L,

(E5) s1 = t1 ∧ · · · ∧ sn = tn → F (s1, . . . , sn) ' F (t1, . . . , tn) for all n-ary
function symbols F of L.

In our language L the existential quantifier is taken as a primitive symbol,
whereas the universal quantifier is defined. Accordingly, the quantifier axioms
and rules are only formulated for ∃. However, we have the following expected
dual properties:

1. For each L term s we have

∀xA(x) ∧ s↓ → A(s). (2.1)

2. If A → B(a) is derivable and the variable a does not occur free in A,
then we can also derive A→ ∀xB(x).

The axioms (D2), (D3) and (D4) are often called strictness axioms. For
example, axiom (D2) requires that a compound term has a value only if all
its subterms are defined. Thus, the evaluation of a term follows a call-by-
value strategy. Stärk [88, 89] examines variants of the logic of partial terms
which also implement call-by-name evaluation.

Scott [87] has given a logic similar to the logic of partial terms. He writes
E(t) instead of t↓, which is now read “t exists”. This is not merely a variant
of notation, but reflects a deeper difference. Scott treats “existence” as a
predicate, i.e. as a property of objects. His semantics allows models in which
some elements of the model do not satisfy the predicate E. Beeson’s logic,
by contrast, treats “denoting” as a property of terms. The definedness axiom
(D1) specifically rules out “undefined objects”. For a further discussion about
the different approaches to partiality see Feferman [37] or Troelstra and van
Dalen [98].

2.2 The Base Theory EETJ 29

2.2 The Base Theory EETJ

Our theories of types and names are formulated in the two sorted language
Lp for individuals and types. It comprises individual variables a, b, c, f, g, h,
x, y, z, . . . as well as type variables A,B,C,X, Y, Z, . . . , both possibly with
subscripts. Additionally, Lp includes the individual constants k, s (combina-
tors), p, p0, p1 (pairing and projections), 0 (zero), sN (successor), pN (predeces-
sor) and dN (definition by numerical cases). There are additional individual
constants, called generators, which will be used for the uniform representa-
tion of types. Namely, we have a constant ce (elementary comprehension)
for every natural number e as well as the constant j (join). There is one bi-
nary function symbol · for (partial) application of individuals to individuals.
Further, Lp has unary relation symbols ↓ (defined) and N (natural numbers)
as well as three binary relation symbols ∈ (membership), = (equality) and
< (naming, representation).

The individual terms (r, s, t, r1, s1, t1, . . .) of Lp are built up from individual
variables and individual constants by means of the function symbol · for
application. In the following, we often abbreviate (s · t) simply as (st) or st
and adopt the convention of association to the left so that s1s2 . . . sn stands
for (. . . (s1 ·s2) . . . sn). Moreover, we define general n-tupling by induction on
n ≥ 2 as follows: (s1, s2) := ps1s2 and (s1, . . . , sn+1) := (s1, (s2, . . . , sn+1)).

The atomic formulas of Lp are s↓, N(s), s = t, s ∈ U and <(s, U). Since we
work with a logic of partial terms, it is not guaranteed that all terms have
values, and s↓ is read as s is defined or s has a value. Moreover, N(s) says
that s is a natural number, and the formula <(s, U) is used to express that
the individual s represents the type U or is a name of U .

The formulas (F,G,H, . . .) of Lp are generated from the atomic formulas
under closure with respect to the usual propositional connectives as well as
quantification in both sorts. A formula is called elementary if it contains
neither the relation symbol < nor bound type variables. The following table
contains a list of useful abbreviations, where F is an arbitrary formula of Lp:

s ∈ N := N(s),

(∃x ∈ A)F (x) := ∃x(x ∈ A ∧ F (x)),

(∀x ∈ A)F (x) := ∀x(x ∈ A→ F (x)),

f ∈ (A→ B) := (∀x ∈ A)fx ∈ B,
A ⊂ B := ∀x(x ∈ A→ x ∈ B),

A = B := A ⊂ B ∧ A ⊂ B,

f ∈ (AyB) := ∀x(x ∈ A ∧ fx↓ → fx ∈ B),

30 Chapter 2. Explicit Mathematics

x ∈ A ∩B := x ∈ A ∧ x ∈ B,
s ∈̇ t := ∃X(<(t,X) ∧ s ∈ X),

s ⊂̇ t := (∀x ∈̇ s)x ∈̇ t,
s =̇ t := s ⊂̇ t ∧ t ⊂̇ s,

(∃x ∈̇ s)F (x) := ∃x(x ∈̇ s ∧ F (x)),

(∀x ∈̇ s)F (x) := ∀x(x ∈̇ s→ F (x)),

<(s) := ∃X<(s,X),

f ∈ (< → <) := ∀x(<(x)→ <(fx)).

Again, we will use the vector notation ~Z to denote finite sequences Z1, . . .Zn
of expressions. For example, for ~U = U1, . . . , Un and ~s = s1, . . . , sn we write

<(~s, ~U) := <(s1, U1) ∧ . . . ∧ <(sn, Un),

<(~s) := <(s1) ∧ . . . ∧ <(sn).

Now we introduce the theory EETJ which provides a framework for explicit
elementary types with join. Its logic is the classical logic of partial terms for
individuals and classical logic for types. The non-logical axioms of EETJ can
be divided into the following groups.

I. Applicative axioms. These axioms formalize that the individuals build a
partial combinatory algebra, that we have paring and projections and the
usual closure conditions on the natural numbers as well as definition by
numerical cases. The theory consisting of the axioms of this group is called
basic theory of operations and numbers BON, cf. Feferman and Jäger [38].

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0a↓ ∧ p1a↓,

(4) p0(a, b) = a ∧ p1(a, b) = b,

(5) 0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N),

(6) (∀x ∈ N)(sNx 6= 0 ∧ pN(sNx) = x),

(7) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ sN(pNx) = x),

(8) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

(9) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

2.2 The Base Theory EETJ 31

II. Explicit representation and extensionality. The following are the usual
ontological axioms for systems of explicit mathematics. They state that
each type has a name, that there are no homonyms and that < respects the
extensional equality of types. Note that the representation of types by their
names is intensional, while the types themselves are extensional in the usual
set-theoretic sense.

(10) ∃x<(x,A),

(11) <(s, A) ∧ <(s, B)→ A = B,

(12) A = B ∧ <(s, A)→ <(s, B).

III. Basic type existence axioms.

In the following we assume that z1, z2, . . . and Z1, Z2, . . . are arbitrary but
fixed enumerations of the individual and type variables of our language, re-
spectively. If F is an elementary formula with no other individual vari-
ables than z1, . . . , zm and no other type variables than Z1, . . . , Zn and if
~a = a1, . . . , am and ~S = S1, . . . , Sn, then we write F [~a, ~S] for the formula
which results from F by a simultaneous replacement of zi by ai and Zj by
Sj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Elementary Comprehension. Let F be an elementary formula of Li with
no individual variables other than z1, . . . , z(m + 1) and no type variables
other than Z1, . . . , Zn and let e be the Gödel number of F for any fixed
Gödel numbering. Then we have the following axioms for all ~a = a1, . . . , am,
~b = b1, . . . , bn and ~T = T1, . . . , Tn:

(13) <(~b)→ <(ce(~a,~b)),

(14) <(~b, ~T)→ ∀x(x ∈̇ ce(~a,~b)↔ F [x,~a, ~T]).

Join

(15) <(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧ Σ(a, f, j(a, f)).

In this axiom the formula Σ(a, f, b) means that b names the disjoint union
of f over a, i.e.

Σ(a, f, b) := ∀x(x ∈̇ b↔ ∃y∃z(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

The theory EETJ consist of all the axioms (1)–(15). Later, we will consider
extensions of EETJ by two different induction principles on the natural num-
bers. We are also interested in a total version of EETJ, meaning that all terms
of Lp are defined in the sense of ↓. This can be achieved by the following
axiom:

32 Chapter 2. Explicit Mathematics

(Tot) ∀x∀y(xy↓).

The theory BON + (Tot) is called TON. Jäger and Strahm [62] formalize a
term model for TON and thereby, they show that the totality axiom adds
nothing to the proof-theoretic strength of various applicative theories.

There are two crucial principles following already from the axioms of a partial
combinatory algebra, i.e. the axioms (1) and (2) of BON: λ abstraction and
a recursion theorem, cf. e.g. Beeson [8] or Feferman, Jäger and Strahm [40].

Definition 4. We define the Lp term (λx.t) by induction on the complexity
of t as follows:

1. If t is the variable x, then λx.t is skk.

2. If t is a variable different from x or a constant, then λx.t is kt.

3. If t is an application (t1t2), then λx.t is s(λx.t1)(λx.t2).

Next we have the expected theorem about λ abstraction, whose proof is
standard. Using our definition of λx.t, the first assertion of the theorem
below is immediate by an easy inductive argument and by making use of
axioms (1) and (2) of BON. The second assertion follows from the first by
straightforward reasoning in the logic of partial terms.

Theorem 5 (λ abstraction). For each Lp term t and all variables x there
exists an Lp term (λx.t), whose variables are those of t, excluding x, so that

1. BON ` λx.t↓ ∧ (λx.t)x ' t;

2. BON ` s↓ → (λx.t)s ' t[s/x].

The definition of λ abstraction in the context of a partial combinatory algebra
differs from the well-known definition in the setting of total combinatory
logic: there one usually defines λ abstraction by:

λx.x :≡ skk,
λx.t :≡ kt, if x is not a free variable of t,

λx.(rs) :≡ s(λx.r)(λx.s), otherwise.

If, in the sequel, we are working in a total setting, i.e. in a theory with the to-
tality axiom (Tot), then we will implicitly use this definition of λ abstraction.
However, it is not suitable in the partial setting since it no longer guarantees
that (λx.t) is always defined.

2.2 The Base Theory EETJ 33

The slightly more complicated definition of (λx.t) in BON has the drawback
that it does not commute with substitutions: if x and y are distinct and x
does not occur in the term s, then the two terms (λx.t)[s/y] and (λx.t[s/y])
are in general not provably equal in BON. For a counterexample let t be
the variable y and s the term (zz) for some variable z. Then (λx.t)[s/y] is
the term k(zz) and (λx.t[s/y]) is s(kz)(kz). This is not the case in the total
theory TON.

However, in BON, a weaker form of the substitution principle for λ terms is
provable, which states that the substitution into λ expressions is not prob-
lematic if the result of the substitution is immediately applied.

Lemma 6. For all Lp terms s and t and different variables x and y of Lp
we have

BON ` (λx.t)[s/y]x ' t[s/y].

For a more detailed account to the problem of substitution in partial ap-
plicative theories see Strahm [91]. As usual, we generalize λ abstraction to
several arguments by iterating abstraction for one argument, i.e. λx1 . . . xn.t
abbreviates λx1.(. . . (λxn.t) . . .).

Using λ abstraction we can define a recursion combinator in our system of
explicit mathematics. Again, we have to distinguish whether we are in a
partial or in a total setting.

Theorem 7 (Recursion). There exist closed Lp terms recp and rect so that

1. BON ` recpf↓ ∧ recpfx ' f(recpf)x,

2. TON ` rectf = f(rectf).

Proof. We let r be the Lp term λyx.f(yy)x and then set recp := λf.rr. Let t
be the term λy.f(yy) and rect := λf.tt. Now the claims can be verified using

the theorem about λ abstraction.

In general, we cannot prove in the partial context of BON that rectf↓. Hence,
in order to prove in BON that recursively defined functions have a value, we
have to employ the slightly more complicated term recp. The price to pay is
that we obtain a weaker form of the recursion theorem where the recursion
equation holds pointwise only. As for λ abstraction, we will simply write rec
and the context will ensure that it is clear whether recp or rect is meant.

In the following we employ two forms of induction on the natural numbers,
type induction and formula induction. Type induction is the axiom

34 Chapter 2. Explicit Mathematics

(T-IN) ∀X(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → sNx ∈ X) → (∀x ∈ N)(x ∈ X)).

Formula induction, on the other hand, is the schema

(Lp-IN) F (0) ∧ (∀x ∈ N)(F (x)→ F (sNx)) → (∀x ∈ N)F (x)

for each Lp formula F (u).

Of course, one can consider extensions of EETJ with further type existence
principles such as, for example, universes. These are types which contain
names only and which are closed under elementary comprehension and join,
cf. Feferman [32] and Jäger, Kahle and Studer [61]. In the context of the
theory of programming languages, universes are closely related to the concept
of predicative polymorphism, cf. e.g. Nordström, Petersson and Smith [75] as
well as Mitchell [72].

Systems of explicit mathematics with the principle of name induction have
been studied by Kahle and Studer [68]. Name induction states that the names
of the types can be only built by the use of the generators. This means that
the naming relation < is least and that only those types exist which are
constructed by some generator. This induction principle provides a step into
the impredicative world, and it may be of use for modelling structural rules.
These rules occur, for example, in type systems dealing with record or object
types and they rely on the assumption that the universe of types consists of
record or object types only. For details, see Abadi and Cardelli [1]. Since
name induction guarantees that only certain types exist, we think that it is a
proper principle to study the semantics of structural rules. Another approach
to interpret these rules is presented in the discussion of Chapter 4.

There are simple inductive model constructions for systems of explicit math-
ematics. If we work in a partial context, then the first order part of EETJ
can be interpreted in the usual recursion-theoretic way, cf. Beeson [8]. This
means that applications a · b in Lp are translated into {a}(b), where {n} for
n = 1, 2, 3, . . . is a standard enumeration of the partial recursive functions.
If we work with total functions, then we can make use of the formalized total
term model of the theory TON provided by Jäger and Strahm [62]. For the
type existence axioms, we can inductively generate codes for the types, and
simultaneously we can also create a membership relation satisfying elemen-
tary comprehension and join. In order to establish a model, we need only
a fixed point of this inductive definition, whereas minimality of the fixed
point is not necessary, cf. Marzetta [71]. Hence, we obtain that the system
EETJ + (Tot) + (Lp-IN) is proof-theoretically equivalent to Martin-Löf’s type

theory with one universe ML1 and also to ÎD1, the theory of non-iterated

2.2 The Base Theory EETJ 35

positive arithmetical inductive definitions where only the fixed point prop-
erty is asserted, cf. Feferman [32]. More on inductive model construction for
systems of explicit mathematics (with universes) can be found in Jäger and
Studer [63].

Chapter 3

Predicative Overloading

Mathematics is an experimental science. It matters lit-
tle that the mathematician experiments with pencil and
paper while the chemist uses test-tube and retort, or the
biologist stains and the microscope. The only great point
of divergence between mathematics and the other sciences
lies in the circumstance that experience only whispers
‘yes’ or ‘no’ in reply to our questions, while logic shouts.

Norbert Wiener

Trust me, I am a doctor of logic.
Andrej Bauer

In the sequel we will present a model construction for λ
{}
str. Our model is

not based on category theory; but the construction is performed in a theory
of explicit mathematics. To handle late-binding, it is essential that there
are first-order values acting for types. It is one of the main features of
explicit mathematics that types are represented by names. These are first-
order values and hence, we can apply functions to them. This means that
computing with types is possible in such systems. Therefore, they are an
adequate framework to deal with overloading and late-binding.

3.1 Introduction

As in the semantics for λ&−early, we also define semantic codes for types,
i.e. every type T of λ

{}
str is represented by a natural number T ∗ in our theory

of types and names. T ∗ is called the symbol for the type T . In the language
of explicit mathematics, we find a term sub deciding the subtype relation
on the type symbols. Using these constructions we can solve the problems
mentioned by Castagna in the following way.

37

38 Chapter 3. Predicative Overloading

• Castagna [21] indicates that the key to model late-binding probably
consists of interpreting terms as pairs (symbol for the type, interpre-
tation of the computation). Then the computational part of the inter-
pretation [[MN]] of an application would be something of the form

(ΛX.(p1[[M]])[[X]])(p0[[N]])(p1[[N]]). (3.1)

This remark is the starting point for our construction. We show that
interpreting terms as pairs really does give a semantics for late-binding.
When a term, interpreted as such a pair, is used as an argument in an
application, its type is explicitly shown and can be used to compute
the final result. Hence, this representation enables us to manage late-
binding. We investigate how something of the form of (3.1) can be
expressed in theories of types and names in order to model overloaded
functions. As types are represented by names in explicit mathematics,
we do not need a second order quantifier as in (3.1) and we can directly
employ the symbol p0[[N]] for the type of the argument to select the
best matching branch.

• In our model, types of λ{} will be interpreted as types of EETJ. Using
join (disjoint unions) we can perform a kind of completion process
on the types, so that the subtype relation can be interpreted by the
standard subtype relation. Since types in explicit mathematics are
extensional in the usual set-theoretic sense, this relation is an order
relation and not just a preorder.

• An overloaded function type is interpreted as the type of functions
that map an element of the domain of a branch into the range of that
branch, for every branch of the overloaded function type. As the sub-
type relation is decidable and since an overloaded function consist only
of finitely many branches, there exists a function typap such that for
two types {Si → Ti}i∈I and S of λ

{}
str with Sj = mini∈I{Si | S ≤− Si}

we have
typap({Si → Ti}∗i∈I , S∗) = 〈S∗j , T ∗j 〉.

This means that typap yields symbols for the domain and the range of
the branch to be selected. With this term we define the computational
part f of the interpretation of a λ

{}
str function

M := λx(M1 : S1 ⇒ T1,M2 : S2 ⇒ T2)

such that:

f([[N]]) =

{
[[M1[N/x]]] if typap(p0[[M]], p0[[N]]) = 〈S∗1 , T ∗1 〉,
[[M2[N/x]]] if typap(p0[[M]], p0[[N]]) = 〈S∗2 , T ∗2 〉.

3.2 Embedding λ
{}
str into Explicit Mathematics 39

By means of the remark about late-binding, we know that p0[[M]] and
p0[[N]] are symbols for the types of M and N , respectively. This demon-
strates how types will affect the result of computations.

• We consider only the predicative version λ
{}
str of λ{}. The stratification

of the type system allows us to define the semantics of the types by
induction on the type structure.

3.2 Embedding λ
{}
str into Explicit Mathemat-

ics

In this section we are going to carry out the embedding of λ
{}
str into the

theory EETJ + (Tot) + (Lp-IN) of explicit mathematics. First we represent

each pretype T of λ
{}
str by a natural number T ∗, which will be called the

symbol for the pretype T . We presume that there exists a term asub deciding
the subtype relation on the symbols for atomic pretypes. Using this term we
will define terms ptyp, sub and sub− such that ptyp decides whether a natural
number is a symbol for a pretype and sub, sub− model the subtype relations
≤ and ≤−, respectively, on the pretype symbols.

We define the type OTS of all symbols for types of λ
{}
str with a well-ordering

≺ on it. Since we consider only a stratified type system, this can be done to
such an extent that if a represents the type {Si → Ti}i∈I and b is a symbol
for a strict subtype of any Si or Ti, then b ≺ a holds. Therefore, it is possible
to define by recursion a term type in such a way that applying this term to
the symbol of any λ

{}
str type T yields a name for its corresponding type in the

system of explicit mathematics. This type will contain all the computational
aspects of the interpretations of λ

{}
str terms with type T . Then we can define

the semantics for a type T of λ
{}
str as the disjoint union of all types type(S∗)

for strict subtypes S of T .

The interpretation of a λ
{}
str term M is a pair in Lp consisting of the interpre-

tation of the computational aspect of M and the symbol for its type. Hence,
the type information is explicitly shown and can be used to model overload-
ing and late-binding. To do so, we define a term typap which computes out
of the symbols a, b for types {Si → Ti}i∈I and S the term 〈S∗j , T ∗j 〉 such that
Sj = mini∈I{Si | S ≤− Si} holds. In other words typap can be employed to
select the best matching branch of an overloaded function. Hence, it allows
us to give the semantics for overloaded function terms of λ

{}
str using definition

by cases on natural numbers. We prove the soundness of our interpretation
with respect to subtyping, type-checking and reductions.

40 Chapter 3. Predicative Overloading

First we recall that in EETJ+(Lp-IN) we can represent every primitive recur-
sive function and relation as a closed term of Lp. The term sN0 is denoted
by 1 and we let < denote the usual “less than” relation on the natural
numbers. We will need to code finite sequences of natural numbers. Let
〈x1, . . . , xn〉 be the natural number which codes the sequence x1, . . . , xn in
any fixed coding. 〈〉 is the empty sequence. We have a length function len
that satisfies len〈〉 = 0 and len〈x1, . . . , xn〉 = n. Further, there exists a
projection function π so that πi〈x1, . . . , xi, . . . , xn〉 = xi for all natural num-
bers x1, . . . , xi, . . . , xn. We suppose that our coding satisfies the following
property: if a′i < ai, then 〈a1, . . . , a

′
i, . . . , an〉 < 〈a1, . . . , ai, . . . , an〉 holds.

We introduce a translation ∗ from pretypes of λ
{}
str to Lp terms. If T is a

pretype, then its type symbol T ∗ is defined as follows: let A1, A2, . . . be any
fixed enumeration of all atomic types of λ

{}
str, then we set A∗i := 〈0, 0, i〉 and

{S1 → T1, . . . , Sn → Tn}∗ is defined as

〈1, r, 〈S∗1 , T ∗1 〉, . . . , 〈S∗n, T ∗n〉〉,

where r = max{π2(S∗1), π2(T ∗1), . . . , π2(S∗n), π2(T ∗n)}+1. We coded the rank

of a pretype at the second position in its symbol. If T is a pretype of λ
{}
str,

then

EETJ + (Tot) + (Lp-IN) ` π2(T ∗) = n ⇐⇒ rankλ(T) = n.

We assume that there is a closed individual term asub available, which ade-
quately represents the subtype relation on the atomic type symbols, i.e.

1. EETJ + (Tot) + (Lp-IN) proves

(∀x ∈ N)(∀y ∈ N)(asub(x, y) = 0 ∨ asub(x, y) = 1), (3.2)

2. If S and T are pretypes of λ
{}
str, then we can prove in EETJ + (Tot) +

(Lp-IN) that

asub(S∗, T ∗) = 1 if and only if S ≤ T and S, T are atomic, (3.3)

3. EETJ + (Tot) + (Lp-IN) proves

(∀x ∈ N)(∀y ∈ N)(∀z ∈ N)
(asub(x, y) = 1 ∧ asub(y, z) = 1 → asub(x, z) = 1).

(3.4)

3.2 Embedding λ
{}
str into Explicit Mathematics 41

We find a closed individual term ptyp which decides whether a natural number
n is a symbol for a pretype. If n is of the form 〈0, 0, i〉, then ptyp(n) is
simply asub(n, n). Otherwise ptyp(n) is evaluated using primitive recursion
according to the definition of the ∗ translation. We define ptyp so that the
following holds.

ptyp(n) =



asub(n, n) if n = 〈0, 0, π3n〉,
1 if lenn > 2 ∧ π1n = 1 ∧

(∀i ∈ N)(2 < i ≤ lenn →
πin = 〈π1(πin), π2(πin)〉 ∧
ptyp(π1(πin)) = 1 ∧
ptyp(π2(πin)) = 1) ∧

(∃i ∈ N)(2 < i ≤ lenn ∧
(π2n = π2(π1(πin)) + 1 ∨
π2n = π2(π2(πin)) + 1)) ∧

(∀i ∈ N)(2 < i ≤ lenn →
π2n > π2(π1(πin)) ∧
π2n > π2(π2(πin))),

0 otherwise.

Similarly, we can define two closed individual terms sub and sub−, so that
these terms properly represent the subtype relations ≤ and ≤−, respectively,
on the symbols for pretypes. These definitions use the terms asub and ptyp
and they are again carried out by primitive recursion so that the following
holds.

sub(a, b) =



asub(a, b) if ptyp(a) ∧ ptyp(b) ∧ π1a = 0 ∧ π1b = 0,
1 if ptyp(a) ∧ ptyp(b) ∧ π1a = 1 ∧ π1b = 1 ∧

(∀i ∈ N)(2 < i ≤ lenb →
(∃j ∈ N)(2 < j < lena ∧

sub(π1(πib), π1(πja)) = 1 ∧
sub(π2(πja), π2(πib)) = 1)),

0 otherwise.

sub−(a, b) =



asub(a, b) if ptyp(a) ∧ ptyp(b) ∧ π1a = 0 ∧ π1b = 0,
1 if ptyp(a) ∧ ptyp(b) ∧ π1a = 1 ∧ π1b = 1 ∧

π2a ≤ π2b ∧
(∀i ∈ N)(2 < i ≤ lenb →

(∃j ∈ N)(2 < j < lena ∧
sub−(π1(πib), π1(πja)) = 1 ∧
sub−(π2(πja), π2(πib)) = 1)),

0 otherwise.

42 Chapter 3. Predicative Overloading

We get the following lemma concerning the terms sub and sub−.

Lemma 8. We can prove in EETJ + (Tot) + (Lp-IN) the following three for-
mulas:

1. (∀x ∈ N)(∀y ∈ N)(sub(x, y) = 0 ∨ sub(x, y) = 1),

2. (∀x ∈ N)(∀y ∈ N)(sub−(x, y) = 0 ∨ sub−(x, y) = 1),

3. (∀x ∈ N)(∀y ∈ N)(∀z ∈ N)
(sub−(x, y) = 1 ∧ sub−(y, z) = 1 → sub−(x, z) = 1).

Let S, T be pretypes of λ
{}
str. We have the following two facts:

1. EETJ + (Tot) + (Lp-IN) ` sub(S∗, T ∗) = 1 if and only if S ≤ T is

derivable in λ
{}
str,

2. EETJ + (Tot) + (Lp-IN) ` sub−(S∗, T ∗) = 1 if and only if S ≤− T is

derivable in λ
{}
str.

Proof. The first two formulas follow from the definitions of sub and sub−,
respectively. We employ (3.2) if a and b are symbols for atomic types.

The transitivity of sub− is proved by induction. Let F (n) be the formula

(∀x ∈ N)(∀y ∈ N)(∀z ∈ N)(n = x+ y + z ∧
sub−(x, y) = 1 ∧ sub−(y, z) = 1 → sub−(x, z) = 1).

We show (∀n ∈ N)F (n) by induction on n. Assume n ∈ N and

(∀m ∈ N)(m < n→ F (m)). (3.5)

Suppose n = x + y + z ∧ sub−(x, y) = 1 ∧ sub−(y, z) = 1. If x, y and z are
symbols for atomic types, then the claim follows by the transitivity of asub,
see (3.4). Otherwise we have

(∀i ∈ N)(2 < i ≤ lenz → (∃j ∈ N)(2 < j < leny ∧
sub−(π1(πiz), π1(πjy)) = 1 ∧ sub−(π2(πjy), π2(πiz)) = 1))

and

(∀j ∈ N)(2 < j ≤ leny → (∃k ∈ N)(2 < k < lenx ∧
sub−(π1(πjy), π1(πkx)) = 1 ∧ sub−(π2(πkx), π2(πjy)) = 1)).

Since we have

π1(πiz) + π1(πjy) + π1(πkx) < z + y + x

3.2 Embedding λ
{}
str into Explicit Mathematics 43

and

π2(πiz) + π2(πjy) + π2(πkx) < z + y + x,

for 2 < i ≤ lenz, 2 < j ≤ leny and 2 < k ≤ lenx, we can apply the induction
hypothesis (3.5) to verify our claim.

The “if” part of the last two claims is proved by induction on the length
of the derivation of S ≤ T and S ≤− T , respectively. Again, we have to
use the fact that asub is defined properly, see (3.3). The “only if” part is
proved by induction on the pretype structure. We have to employ that if S
the the overloaded function pretype {S1 → T1, . . . , Sn → Tn}, then Si and
Ti are also pretypes for all 1 ≤ i ≤ n and again, we use (3.3) for the atomic

types.

There is an elementary Lp formula F (a) expressing the fact that the type
represented by the symbol a satisfies the consistency conditions on good type
formation. Hence, we can define a type OTS consisting of all symbols for λ

{}
str

types. This is done as follows. Let minOTS(b, z, a) be the Lp formula

sub−(z, b) = 1 ∧ (∃i ∈ N)(2 < i ≤ lena ∧ b = π1(πia)) ∧
(∀i ∈ N)(2 < i ≤ lena →

(sub−(z, π1(πia)) = 1→ sub−(b, π1(πia)) = 1)).

That means minOTS(b, z, a) holds if and only if b is a minimal element of

{x | sub−(z, x) = 1 ∧ (∃i ∈ N)(2 < i ≤ lena ∧ x = π1(πia))}.

We introduce the abbreviation Cond(a) for

(∀i ∈ N)(∀j ∈ N)(2 < i ≤ lena ∧ 2 < j ≤ lena →
(sub(π1(πia), π1(πja)) = 1→ sub(π2(πia), π2(πja)) = 1) ∧
(sub−(π1(πia), π1(πja)) = 1→ sub−(π2(πia), π2(πja)) = 1) ∧
∀z(ptyp(z) = 1 ∧ sub(z, π1(πia)) = 1 →

(∃l ∈ N)(2 < l ≤ lena ∧minOTS(π1(πla), z, a) ∧
(∀k ∈ N)(2 < k ≤ lena ∧minOTS(π1(πka), z, a)→ k = l)))).

The formula Cond(a) states that if a is a symbol for a pretype, then is satisfies
the consistency conditions 2 and 3 concerning good type formation. Now
we can give the definition of the overloaded type symbols by the following

44 Chapter 3. Predicative Overloading

construction, which again just mimics the syntactic definition of λ
{}
str types.

AOTS(z, f) := Cond(f(z)) ∧
(∀i ∈ N)(2 < i ≤ len(f(z)) →

(∃r ∈ N)(∃s ∈ N)(r < z ∧ s < z ∧
π1(πi(f(z))) = f(r) ∧ π2(πi(f(z))) = f(s)

BOTS(y, f) := (∀z ∈ N)(z ≤ y →
ptyp(f(z)) = 1 ∧ (π1(f(z)) = 0 ∨ AOTS(z, f)))

COTS(x, y, f) := y ∈ N ∧ x = f(y) ∧ BOTS(y, f)

The type OTS of the overloaded type symbols is now given by

{x | ∃y∃fCOTS(x, y, f)}.

Since elementary comprehension is uniform, there are closed individual Lp
terms domain and range satisfying the following property: if {Si → Ti}i∈I is

an overloaded function type of λ
{}
str and a is its symbol, then

1. domain(a) is a name for the type containing all symbols x ∈ OTS for
which there is an i ∈ I such that sub−(x, S∗i) = 1 holds,

2. range(a) represents the type consisting of all symbols x ∈ OTS for
which there is an i ∈ I such that sub−(x, T ∗i) = 1 holds.

That is x ∈̇ domain(a) denotes a strict subtype of an Si and x ∈̇ range(a)
is a symbol for a strict subtype of a Ti for i ∈ I. This is achieved by the
following definitions.

Definition 9. The term domain(a) represents the type

{x ∈ OTS | π1a = 1 ∧ (∃i ∈ N)(3 ≤ i ≤ lena ∧ sub−(x, π1(πia)) = 1)}

and range(a) is a name for

{x ∈ OTS | π1a = 1 ∧ (∃i ∈ N)(3 ≤ i ≤ lena ∧ sub−(x, π2(πia)) = 1)}.

Now we define the well-ordering ≺ on the type symbols so that we can build
our types by induction along ≺. For this definition remember that the second
component π2m of a type symbol m codes its rank. For two types S and T
of λ

{}
str, we will have S∗ ≺ T ∗ if and only if rankλ(S) < rankλ(T).

Definition 10. The ordering ≺ is defined by

a ≺ b if and only if a ∈ OTS ∧ b ∈ OTS ∧ π2a < π2b.

3.2 Embedding λ
{}
str into Explicit Mathematics 45

With this definition, we immediately get the following lemma. Keep in mind
that the rank of the elements of domain(m) and range(m), respectively, is
strictly smaller than the rank of m for a type symbol m.

Lemma 11. We can prove in EETJ + (Tot) + (Lp-IN)

1. a ∈ OTS ∧ b ∈̇ domain(a)→ b ≺ a,

2. a ∈ OTS ∧ b ∈̇ range(a)→ b ≺ a,

3. (∀x ∈ OTS)((∀y ∈ OTS)(y ≺ x→ F (y))→ F (x))→
(∀x ∈ OTS)F (x), for arbitrary formulas F of Lp.

Proof. To prove the first claim, we assume a ∈ OTS∧ b ∈̇ domain(a). Hence,
b ∈ OTS and (∃i ∈ N)(3 ≤ i ≤ lena ∧ sub−(b, π1(πia)) = 1). For this i we
have π2(π1(πia)) < π2a by the definition of the overloaded type symbols
since the rank of an overloaded function type is strictly bigger than the rank
of its domains and ranges, respectively. For x ∈ OTS and y ∈ OTS we have
sub−(x, y)→ π2x ≤ π2y. We obtain π2b < π2a, which implies b ≺ a.

The second claim is proved similarly.

Now we prove the third claim. First, we define an auxiliary Lp term put2 so
that

put2(n, z) = 〈b1, n, b2, . . . , bl〉

if z = 〈b1, b2, . . . , bl〉 that is if z is a sequence number with lenz > 0. Other-
wise we can set put2(n, z) = 〈n〉. Assume

(∀x ∈ OTS)((∀y ∈ OTS)(y ≺ x→ F (y))→ F (x)), (3.6)

for an arbitrary Lp formula F . We have to show (∀x ∈ OTS)F (x). We define
an auxiliary formula G(n, z) by

put2(n, z) ∈ OTS→ F (put2(n, z)). (3.7)

We will show

(∀n ∈ N)((∀m ∈ N)(m < n→ (∀z ∈ N)G(m, z))→ (∀z ∈ N)G(n, z)). (3.8)

Then we obtain by induction on the natural numbers

(∀n ∈ N)(∀z ∈ N)G(n, z),

which implies (∀x ∈ OTS)F (x) since for all x in OTS we find natural numbers
n and z so that x = put2(n, z). To show (3.8), we let n ∈ N and assume

(∀m ∈ N)(m < n→ (∀z ∈ N)G(m, z)). (3.9)

46 Chapter 3. Predicative Overloading

It remains to show (∀z ∈ N)G(n, z)). Let z ∈ N and assume

put2(n, z) ∈ OTS.

Further we set x = put2(n, z). Hence, we have to show F (x). This follows
from (3.6) if we can show

(∀y ∈ OTS)(y ≺ x→ F (y)). (3.10)

So let y ∈ OTS with y ≺ x. We find natural numbers p and q so that p < n
and put2(p, q) = y. With (3.9) we obtain G(p, q), which implies F (y) by

(3.7). Hence, (3.10) is shown, which finishes this proof.

Since the subtype relation on the type symbols is decidable, i.e. we have the
Lp term sub− at our disposal, we find a closed individual term typap of Lp
selecting the best matching branch in an application. Assume {Si → Ti}i∈I
and S are types of λ

{}
str. Then we have

typap({Si → Ti}∗i∈I , S∗) = 〈S∗j , T ∗j 〉,

if Sj = mini∈I{Si | S ≤− Si}. We set typap({Si → Ti}∗i∈I , S∗) = 0 if such an
Sj does not exist. Hence, typap({Si → Ti}∗i∈I , S∗) = 〈S∗j , T ∗j 〉 means, that if

a λ
{}
str term M of type {Si → Ti}i∈I is applied to a λ

{}
str term N of type S,

then the jth branch of M will be applied to N . As a result of this, S is best
approximated by Sj.

We assume that there is term tG which assigns to each symbol for an atomic
type of λ

{}
str the name of its corresponding type in explicit mathematics. If,

for example, we have just one atomic type in λ
{}
str consisting exactly of the

natural numbers, then its symbol is 〈0, 1〉 and its assigned type is {a |N(a)}.
If t is a name for this type, then we can choose tG := λx.t. If there are two
symbols a, b with π1a = 0 and π1b = 0 and sub−(a, b) = 1 (e.g. symbols for

atomic types S, T of λ
{}
str with S ≤− T), then tG has to satisfy tG(a) ⊂̇ tG(b).

This means that tG has to respect the subtype hierarchy on the type symbols
given by sub. With reference to the recursion theorem we define a closed
individual term type of Lp satisfying

type m =

{
tG m if π1m = 0,
tO type m if π1m = 1,

where tO type m is a name for

{f | (∀a ∈̇ domain(m))(∀x ∈̇ type(a))
(p0(f(a, x)) ∈̇ range(m) ∧ p1(f(a, x)) ∈̇ type(p0(f(a, x))) ∧
sub−(p0(f(a, x)), π2(typap(m, a))) = 1)}.

(3.11)

3.2 Embedding λ
{}
str into Explicit Mathematics 47

This type depends on the terms type and m. Since in explicit mathematics
the representation of types by names is uniform in the parameters of the
types, there exists a term tO such that tO type m is a name for the above
type.

Now, we first will explain which individuals are contained in type m for a
type symbol m. Then we will give the technical definition of the term tO in
explicit mathematics and show that type m is a name for m ∈ OTS.

If A is an atomic type, then type(A∗) is a name for its corresponding type
defined by the term tG(A∗). Otherwise, if we are given an overloaded function
type {Si → Ti}i∈I , then type({Si → Ti}∗i∈I) contains all functions f satisfying

for every type S of λ
{}
str, every i ∈ I and every term x of Lp with S ≤− Si

and x ∈̇ type(S∗) the following:

1. p1(f(S∗, x)) ∈̇ type(p0(f(S∗, x)))

2. p0(f(S∗, x)) denotes a strict subtype of Tj, where

T ∗j = π2(typap({Si → Ti}∗i∈I , S∗)),

i.e. Sj = mini∈I{Si | S ≤− Si}.
In this definition of type, there is a kind of type completion built in. Assume
m is a symbol for an overloaded function type {S → T} and f ∈̇ type(m).
Then f(a, x) is defined for all a ∈̇ domain(m) and for all x ∈̇ type(a). Since
domain(m) contains all symbols S∗1 , S

∗
2 , . . . for strict subtypes of S, the term

type(m) represents in a sense the type {S → T, S1 → T, S2 → T, . . . }. In
this way, we make use of a form of type completion to handle the problem
of the preordering of the types.

Now we are going to present the technical definition of tO. Let ots be a name
for OTS. There are closed individual terms j1, j2, j3 and j4 of Lp so that

j1 := j(ots, domain), j2(m, t) := j(domain(m), t),
j3 := j(ots, range), j4(m, t) := j(range(m), t).

Let G(f,m, Jod, Jdt, Jor, Jrt) be the Lp formula

∀a∀x((m, a) ∈ Jod ∧ (a, x) ∈ Jdt →
(m, p0(f(a, x))) ∈ Jor ∧ (p0(f(a, x)), p1(f(a, x))) ∈ Jrt ∧
sub−(p0(f(a, x)), π2(typap(m, a))) = 1).

Since elementary comprehension is uniform, we find a closed individual term
g of Lp so that

<(jod, Jod) ∧ <(jdt, Jdt) ∧ <(jor, Jor) ∧ <(jrt, Jrt) →
<(g(m, jod, jdt, jor, jrt), {f | G(f,m, Jod, Jdt, Jor, Jrt)}).

(3.12)

48 Chapter 3. Predicative Overloading

Now we can define the term tO by

tO := λtλm.g(m, j1, j2(m, t), j3, j4(m, t)).

The term tO type m is indeed a name for the type given in (3.11). We
observe the following facts about the types represented by j1, j2(m, type), j3,
j4(m, type) for an overloaded function type symbol m ∈ OTS with π1m = 1.
We have

(m, a) ∈̇ j1 ↔ m ∈ OTS ∧ a ∈̇ domain(m),

(a, x) ∈̇ j2(m, type)↔ a ∈̇ domain(m) ∧ x ∈̇ type(a),

(m, b) ∈̇ j3 ↔ m ∈ OTS ∧ b ∈̇ range(m),

(b, z) ∈̇ j4(m, type)↔ b ∈̇ range(m) ∧ z ∈̇ type(b).

When we plug in these equivalences in the formula G, as it is done in (3.12),
we obtain by elementary comprehension the type given in (3.11).

Using Lemma 11 we can prove that for every type symbol m ∈ OTS the term
type(m) represents a type in explicit mathematics. We have the following
theorem.

Theorem 12. EETJ + (Tot) + (Lp-IN) proves: (∀m ∈ OTS)<(type(m)).

Proof. Let m be an arbitrary type symbol in OTS. We show

(∀y ∈ OTS)(y ≺ m→ <(type(y)))→ <(type(m)). (3.13)

Then the claim follows by induction on ≺ (see Lemma 11). So assume

(∀y ∈ OTS)(y ≺ m→ <(type(y))). (3.14)

We have to show <(type(m)). Now we distinguish two cases. First, if m is
a symbol for an atomic type, that is π1m = 0, then type(m) = tG(m) and
<(tG(m)) by the definition of tG. Second, if m is a symbol for an overloaded
function type, that is π1m = 1, then type(m) = tO type m and we have to
make use of the induction hypothesis (3.14). By Lemma 11 we get

p ∈̇ domain(m)→ p ≺ m and q ∈̇ range(m)→ q ≺ m.

Hence, (3.14) implies

p ∈̇ domain(m)→ <(type(p)) and q ∈̇ range(m)→ <(type(q)).

Therefore we obtain <(j2(m, type)) and <(j4(m, type)). Moreover, we have
<(j1) and <(j4). By (3.12) we conclude <(tO type m), that is <(type(m)) and

(3.13) is shown.

3.2 Embedding λ
{}
str into Explicit Mathematics 49

These types satisfy the following subtype property.

Lemma 13. EETJ + (Tot) + (Lp-IN) proves:

(∀a ∈ OTS)(∀b ∈ OTS)(sub−(a, b) = 1→ type(a) ⊂̇ type(b)).

Proof. By the definition of the term sub− we have either π1a = 0∧π1b = 0 or
π1a = 1 ∧ π1b = 1. That is either a and b are both symbols for atomic types
or both symbols represent an overloaded function type. Let us distinguish
these two cases. If π1a = 0∧π1b = 0, then the claim follows by the definition
of tG. This definition requires that tG has to respect the subtype hierarchy
on the symbols for pretypes given by sub−. If we are in the second case, then
assume f ∈̇ type(a). We have to show f ∈̇ type(b). So suppose p ∈̇ domain(b)
and x ∈̇ type(p). We get p ∈̇ domain(a) by sub−(a, b) = 1 and the definitions
of domain and sub−. Hence, by f ∈̇ type(a) we find p0(f(p, x)) ∈̇ range(a),

p1(f(p, x)) ∈̇ type(p0(f(p, x)) (3.15)

and

sub−(p0(f(p, x)), π2(typap(a, p))) = 1. (3.16)

By sub−(a, b) = 1 we obtain that there exists 2 < j ≤ lena so that

sub−(π1(typap(b, p)), π1(πja)) = 1

and

sub−(π2(πja), π2(typap(b, p))) = 1. (3.17)

By the definition of typap we get sub−(π1(typap(a, p)), π1(πja)) = 1. There-
fore, we have

sub−(π2(typap(a, p)), π2(πja)) = 1 (3.18)

by the consistency conditions concerning good type formation. Hence, we
get by (3.16), (3.18), (3.17) and the transitivity of sub−, see Lemma 8 that

sub−(p0(f(p, x)), π2(typap(b, p))) = 1. (3.19)

This also implies

p0(f(p, x)) ∈̇ range(b). (3.20)

Finally, we conclude by (3.20), (3.15) and (3.19) that f ∈ type(b).

50 Chapter 3. Predicative Overloading

Now we define a closed individual term type2 of Lp, so that for all a ∈ OTS
we have <(type2(a)) and

∀m∀f((m, f) ∈̇ type2(a)↔ m ∈ OTS ∧ sub−(m, a) = 1 ∧ f ∈̇ type(m)).

This is achieved with the following definition. Let h be a closed Lp term
satisfying <(h(a), {m | m ∈ OTS ∧ sub−(m, a) = 1}). Now, we can define
type2 := λx.j(h(x), type). Since sub− is transitive, see Lemma 8, the following
lemma about subtyping is just a corollary of the definition of the Lp term
type2.

Lemma 14. EETJ + (Tot) + (Lp-IN) proves:

(∀a ∈ OTS)(∀b ∈ OTS)(sub−(a, b) = 1→ type2(a) ⊂̇ type2(b)).

With the Lp term type2 we define the interpretation of λ
{}
str types as follows.

Definition 15. Interpretation [[T]] of a λ
{}
str type T

If T is a type of λ
{}
str, then [[T]] is the type represented by type2(T ∗).

As an immediate consequence of this definition and the previous lemmas
about subtyping, we obtain the soundness of our interpretation with respect
to subtyping.

Theorem 16. Let S, T be types of λ
{}
str with S ≤− T , then

EETJ + (Tot) + (Lp-IN) ` [[S]] ⊂ [[T]].

Terms of λ
{}
str will be interpreted as ordered pairs, where the first component is

a symbol for the type of the term and the second component models the com-
putational aspect of the term. To define the semantics for λ

{}
str terms we need

an injective translationˆfrom the variables of λ
{}
str to the individual variables

of Lp. Then the computational part of a λ
{}
str term λx.(Mi : Si ⇒ Ti)i∈I can be

interpreted by a function f as such that if typap({Si → Ti}∗i∈I , p0y) = 〈S∗j , T ∗j 〉
holds, then f satisfies

f(y) = (λx̂.[[Mj]])y.

Such a function exists, because an overloaded function is composed only of
finitely many branches and we have the Lp term typap available, which selects
the best matching branch. An application of two Lp terms MN is simply
modeled by applying the function p1[[M]] to [[N]].

3.2 Embedding λ
{}
str into Explicit Mathematics 51

Definition 17. Interpretation [[M]] of a λ
{}
str term M

We define [[M]] by induction on the term structure:

1. M ≡ x: [[M]] := x̂.

2. M ≡ λx.(Mi : Si ⇒ Ti)i∈{1,... ,n}: [[M]] := ({Si → Ti}∗i∈{1,... ,n}, f), where
f is defined as follows:

f(y) :=


(λx̂.[[M1]])y, typap({Si → Ti}∗i∈{1,... ,n}, p0y) = 〈S∗1 , T ∗1 〉,
...
(λx̂.[[Mn]])y, typap({Si → Ti}∗i∈{1,... ,n}, p0y) = 〈S∗n, T ∗n〉.

3. M ≡M1M2: [[M]] is defined as p1[[M1]][[M2]].

Employing definition by cases on natural numbers we can combine the inter-
pretations of the branches of a λ

{}
str term M defined by λ abstraction to one

overloaded function which serves as the interpretation of M . This definition
by cases is evaluated using the typap function and the type information which
is shown in M for each branch.

Before we can prove two of our main results, soundness of our interpretation
with respect to type-checking and to reductions, we have to mention the
following preparatory lemma.

Lemma 18. If M and N are terms of λ
{}
str, then EETJ + (Tot) + (Lp-IN)

proves:
[[M]][[[N]]/x̂] = [[M [N/x]]].

Proof. The proof proceeds by induction on the term structure of M . The
only critical case is when M is defined by λ abstraction. There, totality
in our system of explicit mathematics is essential since it guarantees that
substitution is compatible with λ abstraction.

We define the interpretation [[Γ]] of a context x1 : T1, . . . , xn : Tn as

[[x1]] ∈ [[T1]] ∧ . . . ∧ [[xn]] ∈ [[Tn]].

Our interpretation is sound with respect to type checking.

Theorem 19. If Γ ` M : T holds in λ
{}
str, then in EETJ + (Tot) + (Lp-IN)

one can prove:

[[Γ]]→ [[M]] ∈ [[T]].

52 Chapter 3. Predicative Overloading

Proof. The proof proceeds by induction on Γ `M : T .

1. M ≡ x: trivial.

2. M ≡ λx.(Mi : Si ⇒ Ti)i∈I : let f := p1[[M]]. The type T is of the form
{Si → Ti}i∈I . Therefore, we have to show (T ∗, f) ∈̇ type2(T ∗). That is
f ∈̇ type(T ∗), i.e.

(∀a ∈̇ domain(T ∗))(∀y ∈̇ type(a))
(p0(f(a, y)) ∈̇ range(T ∗) ∧ p1(f(a, y)) ∈̇ type(p0(f(a, y))) ∧
sub−(p0(f(a, y)), π2(typap(T ∗, a))) = 1).

(3.21)

Choose a ∈̇ domain(T ∗), y ∈̇ type(a) and let the natural number j be
such that typap(T ∗, a) = 〈S∗j , T ∗j 〉, then we obtain

f(a, y) = (λx̂.[[Mj]])(a, y)

by the definition of f . With the induction hypothesis we get

[[Γ]] ∧ [[x]] ∈ [[Sj]]→ [[Mj]] ∈ [[Vj]],

for a type Vj ≤− Tj. From Lemma 14 we infer type2(V ∗j) ⊂̇ type2(T ∗j).
Our choice of a, y and j yields (a, y) ∈ [[Sj]] and we conclude that
f(a, y) ∈̇ type2(T ∗j). That is p1(f(a, y)) ∈̇ type(p0(f(a, y))) as well
as p0(f(a, y)) ∈ OTS and sub−(p0(f(a, y)), T ∗j) = 1. Therefore, we
conclude that (3.21) holds.

3. M ≡ M1M2: in this case there are types {Si → Ti}i∈I and S of λ
{}
str

and j ∈ I, such that in λ
{}
str one can derive Γ ` M1 : {Si → Ti}i∈I and

Γ ` M2 : S, where Sj = mini∈I{Si | S ≤− Si} and T = Tj. By the
induction hypothesis we know

[[Γ]]→ [[M1]] ∈ [[{Si → Ti}i∈I]], (3.22)

[[Γ]]→ [[M2]] ∈ [[S]]. (3.23)

From (3.23) we infer p1[[M2]] ∈̇ type(p0[[M2]]) as well as

sub−(p0[[M2]], S∗) = 1. (3.24)

Let k be such that typap({Si → Ti}∗i∈I , p0[[M2]]) = 〈S∗k , T ∗k 〉. Using
(3.22) we get

p1(p1[[M1]][[M2]]) ∈̇ type(p0(p1[[M1]][[M2]]))

3.3 Loss of Information 53

and sub−(p0(p1[[M1]][[M2]]), T ∗k) = 1. From (3.24) and the consistency
conditions on good type formation we obtain sub−(T ∗k , T

∗
j). Therefore,

we conclude by Lemma 14 that p1[[M1]][[M2]] ∈ [[Tj]] holds.

In the sequel we will prove the soundness of our model construction with
respect to reductions. In contrast to the semantics for λ&−early presented
in Castagna, Ghelli and Longo [23], our interpretation of a term does not
change, when the term is reduced. We can show that if a term M reduces in
λ
{}
str to a term N , then the interpretations of M and N are equal.

Theorem 20. If P,Q are well-typed λ
{}
str terms and P.ΓQ, then the following

is provable in EETJ + (Tot) + (Lp-IN):

[[Γ]]→ [[P]] = [[Q]].

Proof. By induction on .Γ. The critical case is:
P :≡ M ·N , where we have M ≡ λx(Mi : Si ⇒ Ti)i∈I , Γ ` N : S as well as
Sj = mini∈I{Si | S ≤− Si}. Furthermore, {Si | i ∈ I, Si ≤− Sj} = {Sj} or N
is in closed normal form. Assuming that [[Γ]] holds, then we obtain in both
cases

typap({Si → Ti}∗i∈I , p0[[N]]) = 〈S∗j , T ∗j 〉.

Therefore, we conclude

[[P]] = p1[[M]][[N]] = (λx̂.[[Mj]])[[N]] = [[Mj]][[[N]]/x̂] = [[Mj[N/x]]] = [[Q]].

3.3 Loss of Information

Castagna [21] indicated a relationship between modeling late-binding and the
problem of loss of information. This is a problem in type-theoretic research on
object-oriented programming introduced by Cardelli [16]. It can be described

as follows: assume that we are given the λ
{}
str function λx(x : T ⇒ T) of type

{T → T}, i.e. the identity function on the type T . If we apply this function
to a term N of type S, where S is a strict subtype of T , then we can only infer
that λx(x : T ⇒ T)N has type T (rather than S). Thus, in the application,
we have lost some information: we no longer know that N is of type S after
having applied the identity function to it.

Usually, the solution to this problem is to use a second order calculus, which
was originally proposed in Cardelli and Wegner [19]. The identity function

54 Chapter 3. Predicative Overloading

is no longer considered to take an argument of a type smaller than or equal
to T and to return a result of type T . Instead, it is a function which takes
any argument smaller than or equal to T and returns a result of the same
type as that of the argument, i.e. it takes an argument of type X ≤− T and
returns a result of type X. In a second order calculus we can write the type
of this function as

(∀X ≤− T)(X → X). (3.25)

Recalling Castagna’s proposal how a semantics for late-binding might work,
we note the second order quantifier in the expression (3.1). This shows the
connection between late-binding and the problem of loss of information. In a
semantics for late-binding, we have to deal with functions which take types
as arguments. The same is the case in order to solve the problem of loss of
information.

This interplay of late-binding and solving the problem of loss of information
also appears in our semantics. Let M be the λ

{}
str term λx(x : T ⇒ T) of

type {T → T} and N be a term of type S ≤− T . Then we still can prove in
EETJ+(Tot)+(Lp-IN) that [[MN]] ∈ [[S]]. Thus, there is no loss of information

in our interpretation of λ
{}
str. After having applied the identity function M

to N , we still can prove that the interpretation of the result is an element of
the interpretation of the type S.

We have no loss of information in our semantics because the types of the terms
are explicitly shown. Hence, in an application the types of the arguments can
be employed to derive the type of the result. First the type information of
the argument types is used to select the best matching branch. Then, in λ

{}
str,

the type of the result is fixed by the type of this branch. The information
of the argument types is lost. Whereas in our model, once the branch to
be executed is chosen, the result type is computed from the types of the
arguments by the computational aspect of the function. Accordingly, the
type of the function will not be used in the computational process except for
selecting the branch to be executed. Therefore, all the information is still
available.

Of course, we do not have appropriate types in our model to express that
a certain function has no loss of information. This is not possible since we
only have elementary comprehension. Hence, quantification over types is not
available to express something like (3.25). However, there are impredicative
systems of explicit mathematics featuring stronger type existence principles,
which allow to define types involving bound type variables or quantification
over certain names; and it is easy to embed higher order λ calculi in them,
cf. Feferman[33] or the next chapter.

3.3 Loss of Information 55

Castagna [21] presents a higher order type system for late-bound overloading
in order to model functions without loss of information. Our work also is
a step towards a better understanding of such calculi combining parametric
polymorphism and type dependent computations. Since there is a strong
connection between loss of information and parametric polymorphism and
since we have obtained a solution to the problem of loss of information for
free in our model, we think that explicit mathematics is also an appropriate
framework to further explore parametric polymorphism in the context of
late-bound overloading.

More on the problem of loss of information can be found in the discussion
of Chapter 4. There, we will show its connection to the problem of sound
record update and hint at a solution for this second problem.

Chapter 4

Impredicative Overloading

Der Verdacht gegen die “Logik”, als deren folgerichtige
Ausartung die Logistik gelten darf, entspringt dem Wis-
sen von jenem Denken, das in der Erfahrung der Wahrheit
des Seins, nicht aber in der Betrachtung der Gegenständ-
lichkeit des Seienden, seine Quelle findet. Niemals ist das
exakte Denken das strengste Denken, wenn anders die
Strenge ihr Wesen aus der Art der Anstrengung empfängt,
mit der jeweils das Wissen den Bezug zum Wesenhaften
des Seienden innehält. Das exakte Denken bindet sich
lediglich in das Rechnen mit dem Seienden und dient aus-
schliesslich diesem.

Martin Heidegger

As we have seen before, overloading and late-binding in their full generality
demand for a highly impredicative type structure which seems to be very
different from known impredicative constructions. As Castagna [21] puts it
‘We are in the presence of a new form of impredicativity.’ This chapter is
concerned with the mathematical meaning of these impredicativity phenom-
ena.

4.1 Power Types in Explicit Mathematics

In this chapter we will not work with the base theory EETJ, but we will
introduce a system of explicit mathematics based on elementary separation,
join, product and weak power types.

This theory is formulated in the two-sorted language Li, which comprises
individual variables a, b, c, f, g, x, y, z as well as type variables S, T, U, V,X, Y

57

58 Chapter 4. Impredicative Overloading

(both possibly with subscripts). The language Li includes the individual
constants k, s (combinators), p, p0, p1 (pairing and projections), 0 (zero), sN

(successor), pN (predecessor), dN (definition by numerical cases) and the in-
dividual constant sub (subset decidability). There are additional individual
constants, called generators, which will be used for the uniform naming of
types, namely nat (natural numbers), for every natural number e a generator
sepe (elementary separation), un (union), j (join), prod (product) and pow
(power type).

Every individual variable and every individual constant is an individual term
of Li and the individual terms are closed under the binary function symbol ·
for (partial) application.

The formulas of Li are built up similarly to the formulas of Lp and we will
also use the same abbreviations. We introduce the theory OTN of over-
loading, types and names which will provide a framework for the study of
impredicative overloading. Its logic is the classical logic of partial terms for
individuals and classical logic for types. The non-logical axioms of OTN can
be divided into the following five groups.

I. Applicative axioms. As usual, these are the axioms (1)–(9) of BON.

II. Explicit representation and extensionality. These are the axioms (10)–(12)
of the theory EETJ.

III. Basic type existence axioms. These include axioms for the natural numbers,
elementary separation, unions, joins and product types.

Natural number type

(16) <(nat) ∧ ∀x(x ∈̇ nat↔ N(x)).

Elementary separation. Let F be an elementary formula of Li with no indi-
vidual variables other than z1, . . . , z(m+1) and no type variables other than
Z1, . . . , Zn and let e be the Gödel number of F for any fixed Gödel number-
ing. Then we have the following axioms for all ~a = a1, . . . , am, ~b = b1, . . . , bn
and ~T = T1, . . . , Tn:

(17) <(c,~b)→ <(sepe(~a, c,~b)),

(18) <(c,~b, S, ~T)→ ∀x(x ∈̇ sepe(~a, c,~b)↔ x ∈ S ∧ F [x,~a, ~T]).

Unions

(19) <(a) ∧ <(b) → <(un(a, b)) ∧ ∀x(x ∈̇ un(a, b)↔ x ∈̇ a ∨ x ∈̇ b).

4.1 Power Types in Explicit Mathematics 59

We will employ S ∪ T and S ∩ T to denote the union of S and T , and the
intersection of S and T , respectively. The same notation will also be used
for names.

Join. This is the usual join axiom given by (15).

Product

(20) <(a) ∧ (∀x ∈̇ a)<(fx) → <(prod(a, f)) ∧ Π(a, f, prod(a, f)).

Here the formula Π(a, f, b) says that b represents the product of all f(x) such
that x ∈̇ a, i.e.

Π(a, f, b) := ∀g(g ∈̇ b↔ (∀x ∈̇ a)gx ∈̇ fx).

The axioms (1)–(12) and (15)–(20) plus formula induction on the natural
numbers correspond to Feferman’s theory S0 (introduced in [31]) without
inductive generation. We are going to extend this system by axioms for weak
power types and for subset decidability operations on these power types.

IV. Power type axioms. These axioms state that weak power types exist and
that the generator pow is a monotone operation on names.

(21) <(a)→ <(pow(a)),

(22) <(a)→ ∀x(x ∈ pow(a)→ x ⊂̇ a),

(23) <(a)→ ∀x∃y(x ⊂̇ a→ y =̇ x ∧ y ∈̇ pow(a)),

(24) a ⊂̇ b→ pow(a) ⊂̇ pow(b).

V. Subset decidability on power types. We can decide the subtype relation
between elements of a power type.

(25) <(c) ∧ a ∈̇ pow(c) ∧ b ∈̇ pow(c)→ (subab = 0 ∨ subab = 1),

(26) <(c) ∧ a ∈̇ pow(c) ∧ b ∈̇ pow(c)→ (subab = 1↔ a ⊂̇ b),

(27) subab = 1→ a ∈̇ pow(b).

We will consider the extensions of OTN by complete induction on the natural
numbers. We introduce the schema of formula induction (full induction).

Formula induction on the natural numbers

(Li-IN) F (0) ∧ (∀x ∈ N)(F (x)→ F (sNx))→ (∀x ∈ N)F (x)

60 Chapter 4. Impredicative Overloading

for all formulas F of Li.
In the following we will discuss the axioms of OTN. Usually, theories of
explicit mathematics are based on elementary comprehension rather than
separation. Hence, there is a universal type available, which can be used,
together with join, to prove the product axiom. This is not possible with
elementary separation and therefore we have to add an axiom for product
types (see Feferman [31]).

The weak power type axiom states that for every type A there exists a type
B containing at least one name of every subtype of A and each element of B
is a name for a subtype of A. By a simple diagonalization argument we can
see that in the presence of join this axiom is inconsistent with the existence of
a universal type. Therefore, we dispense with the universal type and include
only elementary separation in our list of axioms.

Glass [48] provides a proof-theoretic analysis of the weak power type axiom
and shows that adding it to many systems of explicit mathematics without
join does not increase their proof-theoretic strength. In our system the pres-
ence of join makes the weak power type axiom much more effective. The
question of the proof-theoretic strength of systems of explicit mathematics
with join and a weak power type axiom was first asked by Feferman [31] and
still remains open.

Of course one can imagine also a strong power type axiom saying that for
every type A there is a type consisting of every name of every subtype of A.
Jäger [59] proved that this principle is inconsistent with uniform elementary
comprehension, but his argument does not work if we have only separation
at our disposal. Recently Cantini [15] presented a model for non-uniform
comprehension and a strong power type axiom using a variant of Quine’s
New Foundations.

We demand that our power type generator pow is a monotone operation
on names. With a strong power type axiom monotonicity can be proved,
but this is not the case if we have only weak power types. Moreover, the
constructions of Glass [48] do not respect our monotonicity axiom. Hence, it
is also an open question whether the monotonicity axiom for pow affects the
proof-theoretic strength of the underlying system of types and names.

Subset decidability on power types will turn out to be crucial for the devel-
opment of overloaded functions in OTN. The term sub may also be regarded
as very special quantification operations, since for a, b ∈ pow(c) we have
subab = 0 ↔ (∃x ∈̇ a)x 6∈̇ b. This point of view is supported by our model
construction in the next section, where the term sub are dealt with already
in the first-order part.

4.2 A Set-Theoretic Model for OTN + (Li-IN) 61

4.2 A Set-Theoretic Model for OTN + (Li-IN)

Starting with any model M of set theory we generate a model Gen(M) of
the applicative axioms so that the natural numbers are interpreted by ω and
every partial set-theoretic function F of M is represented in Gen(M). To
obtain Gen(M) we simply use pairing inM to build codes for the constants
k, s, p, p0, p1, sN, pN, dN, and we define a code F̂ for each partial set-theoretic
function F of M. We choose F̂ so that it is a set-theoretic pair whose first
component is the natural number 0. Further, we introduce a code sub for
the subset decidability operation and auxiliary codes subF for every func-
tion F and for the empty set ∅. Now we regard the applicative axioms as
closure conditions on the inductively generated relation App(x, y, z). This is
done so that pairing is interpreted by set-theoretic pairing and the natural
numbers are modeled by ω. Additionally, App(x, y, z) is closed under a con-
dition expressing that the code F̂ represents the function F as well as under
two clauses for the subset decidability operations. We confine ourselves to
showing only these closure conditions for the subset decidability operations.

• If F is a partial function ofM so that its range is a subset of {1}, and
if x = sub and y = F̂ as well as z = subF , then App(x, y, z) holds.

• If F and G are partial functions ofM so that their respective range is
a subset of {1} and x = subF and y = Ĝ as well as

∃a¬(F (a) = 1→ G(a) = 1),

then App(x, y, 0) holds.

• If F and G partial functions of M so that their respective range is a
subset of {1} and x = subF and y = Ĝ as well as

∀a(F (a) = 1→ G(a) = 1),

then App(x, y, 1) holds.

Hence, App(x, y, z) can be employed to interpret xy ' z. This is how the first
order part of OTN+(Li-IN) is modeled by Gen(M). This standard procedure
is carried through in greater detail for example in Feferman [31] or in Jäger
[58].

Feferman [31] presents a set-theoretic model for S0 plus a weak power type
axiom over Gen(M). We will modify this construction so that it satisfies all

62 Chapter 4. Impredicative Overloading

axioms of OTN + (Li-IN). First we assign to each generator of Li a code in
Gen(M), for example:

nat := (1, 0), sepe(~a) := (2, e, (~a)), un(a, b) := (3, a, b),

j(a, f) := (4, a, f), prod(a, f) := (5, a, f), pow(a) := (6, a).

These codes are chosen so that no conflicts arise with the representations F̂
of set-theoretic functions F . We define the relations Clα and ∈α by transfinite
induction on α. At stage α one has a structure (Gen(M),Clα,∈α) in which
the formulas of Li are interpreted by taking ∈α for ∈ and letting the names
range over Clα. We will not give the complete definition of Clα and ∈α, but
we will show only the cases relevant for the power type axioms. All other
cases are standard, see Feferman [31].

• For each partial function F inM so that the range of F is a subset of
{1} we have F̂ ∈ Cl0 and x ∈0 F̂ if and only if F (x) = 1.

• For each a ∈ Clα we have pow(a) ∈ Clα+1 and x ∈α+1 pow(a) if and

only if x is an F̂ such that the domain of F is a subset of {y | y ∈α a}.

The first condition ensures that the code of a partial functions whose range
is a subset of {1} is interpreted as a name. The code F̂ represents the type
of all x with F (x) = 1, that is F̂ represents its domain. This condition
guarantees that all elements of power types will indeed by names.

The second clause states that the power type of any type A is interpreted by
the collection of all partial functions F from A to {1} inM. In order to make
this work, we need the fact that the interpretation of a type of our system of
explicit mathematics is a set in M. This would not be the case if we allow
elementary comprehension since this implies the existence of the universal
type. Hence, we have to restrict our system to elementary separation.

As mentioned above, the first order part of OTN + (Li-IN) is interpreted over
Gen(M). In order to give the semantics of the type structure of OTN+(Li-IN)
we define the relations Cl :=

⋃
α Clα and ∈ :=

⋃
α ∈α. For a ∈ Cl the set of

all x ∈ a is denoted by ext(a). Hence, the second order quantifiers of Li will
range over all ext(a) for a ∈ Cl and the naming relation < will be interpreted
by the collection of all pairs (a, ext(a)) for a ∈ Cl. We get the following
soundness result.

Theorem 21. For every formula F of Li we have

OTN + (Li-IN) ` F =⇒ (Gen(M),Cl,∈) |= F.

4.2 A Set-Theoretic Model for OTN + (Li-IN) 63

Proof. The only critical axioms are the power type axioms and the axioms
for the subset decidability operations. All other axioms can be verified in a
straightforward way, see Feferman’s model for S0 [31]. Observe that ext(a) is
a set in M for all a ∈ Cl. Moreover, we have for all α, all a ∈ Clα and all x

x ∈ ext(a)↔ x ∈α a.

That is if a represents a type at stage α, then this type is completely defined
at that stage. Later, no new elements will be included to it. Now we can
check the power type axioms.

(21) If a ∈ Cl, then we immediately obtain pow(a) ∈ Cl.

(22) If x ∈ ext(pow(a)) and y ∈ ext(x), then App(x, y, 1) holds, and x rep-
resents a set-theoretic function whose domain is a subset of ext(a).
Therefore, we conclude y ∈ ext(a).

(23) Let a, x be elements of Cl such that ∀z(z ∈ ext(x)→ z ∈ ext(a)). Since
ext(x) is a set in M, there exists a function F := {(z, 1) | z ∈ ext(x)}
in M. Then F̂ ∈ ext(pow(a)). Moreover, F̂ ∈ Cl holds and z ∈ ext(F̂)

if and only if App(F̂ , z, 1). By the construction of F this is the case if
and only if z ∈ ext(x).

(24) Let a, b be in Cl such that ∀x(x ∈ ext(a) → x ∈ ext(b)) as well as
y ∈ ext(pow(a)). Hence, y represents a set-theoretic function whose
domain is a subset of ext(a). But then its domain is also a subset of
ext(b) and we conclude y ∈ ext(pow(b)).

Now we turn to the axioms for the subset decidability operations. As-
sume c ∈ Cl and a ∈ ext(pow(c)) and b ∈ ext(pow(c)). Hence, a and
b are representations of partial set-theoretic functions from ext(c) to {1}.
By the definition of ∈0 and App we obtain x ∈ ext(a) ↔ App(a, x, 1) and
x ∈ ext(b) ↔ App(b, x, 1) for all x. This yields that ext(a) ⊂ ext(b) holds
if and only if we have ∀x(App(a, x, 1) → App(b, x, 1)). Therefore, by the
definition of App and our interpretation of sub the first two axioms for sub-
set decidability are satisfied. In order to verify the last axiom about subset
decidability assume b ∈ ext(pow(c)) and App(subF , b, 1). In order to define
App, one takes the least fixed point of the inductively defined application.
Therefore, App(subF , b, 1) implies that b is the code of a partial set-theoretic
function G whose range is a subset of {1} and F is also such a function.
We get b ∈ Cl with ∀x(x ∈ ext(b) ↔ G(x) = 1). Moreover, we have
∀x(F (x) = 1 → G(x)). Hence, the domain of F is a subset of ext(b) and

therefore, we get F̂ ∈ pow(b).

64 Chapter 4. Impredicative Overloading

4.3 Impredicative Overloading in OTN

In this section we are going to develop a theory of impredicative overload-
ing and late-binding in OTN. Together with the model construction of the
previous section this yields a denotational semantics for these concepts of
object-oriented programming.

To implement overloading and late-binding it is necessary that terms carry
their run-time type information. This can be achieved if terms are ordered
pairs, where the first component shows the type information and the second
component is the computational aspect of the term. This way the run-time
type of a term is explicitly displayed and can be used to evaluate expressions
in the context of late-bound overloading, see Castagna [21] or the previous
chapter.

If t is a name in OTN, then we define t∗ to be the name j(pow(t), λx.x), and
if T is a type with name t, then T ∗ is the type represented by t∗, i.e. T ∗ is the
disjoint union of all subtypes of T . We have the following property of the type
named t∗ for any name t. If x ∈̇ t∗, then p0x ⊂̇ t and p1x ∈̇ p0x. Therefore,
p0x can be viewed as the run-time type of x and p1x as the computational
aspect of the term x.

Now we will define the overloaded function types. Let S1, T1, . . . , Sn, Tn be
types of OTN. Then we write {S1 → T1, . . . , Sn → Tn} for the overloaded
function type

{f | (∀x ∈ S∗1)fx ∈ T ∗1 ∧ . . . ∧ (∀x ∈ S∗n)fx ∈ T ∗n}.

This type exists by the product axiom and elementary separation. It can
be named uniformly in the names of S1, T1, . . . , Sn, Tn. As for λ{}, we will
often employ a notation with index sets and write {Si → Ti}i∈I for the type
{S1 → T1, . . . , Sn → Tn} where I is the set {1, . . . , n}.
Castagna, Ghelli and Longo [24] remark that overloaded types are strongly
related to intersection types: an intersection type T ∩ U is a type whose
elements can play both the role of an element of T and of an element of
U . This also holds for overloaded types. In the case of intersection types
a coherence condition is additionally imposed, which basically means that a
value can freely choose any of these roles without affecting the final result of
a computation. This is not the case with overloaded functions: there is no
such condition and it is essential that the type of an argument can affect the
result of a computation. The overloaded type {S1 → T1, . . . , Sn → Tn} is
simply defined as the intersection

{S∗1 → T ∗1 } ∩ . . . ∩ {S∗n → T ∗n}

4.3 Impredicative Overloading in OTN 65

without any condition being imposed. If we consider this type not as an
overloaded function type, but as an intersection type, then the additional
coherence condition states the following: let f be an element of this inter-
section type and let x be either an element of Si or Sj (1 ≤ i, j ≤ n), then
the result of fx must not depend on the type of x. If we drop this condition,
then the computation may depend on the argument type, which is the essen-
tial feature of overloaded function types. Hence, our model of overloading in
explicit mathematics reflects the relationship between intersection types and
overloaded function types.

We obtain the following result about subtyping which corresponds to the
subtyping rule of λ{}.

Theorem 22. Let {Uj → Vj}j∈J and {Si → Ti}i∈I be overloaded function
types. If for all i ∈ I there exists j ∈ J so that both Si ⊂ Uj and Vj ⊂ Ti
hold, then in OTN the following can be proven:

{Uj → Vj}j∈J ⊂ {Si → Ti}i∈I .

Proof. By the monotonicity of the power type generator pow we know that
the operation ∗ is monotone, i.e.

S ⊂ T → S∗ ⊂ T ∗. (4.1)

Assume now that f ∈ {Uj → Vj}j∈J and let x ∈ S∗i for an i ∈ I. Then there
exists j ∈ J so that Si ⊂ Uj and Vj ⊂ Ti hold. Hence, by (4.1) we get x ∈ U∗j
and therefore fx ∈ V ∗j . Again by (4.1) we conclude fx ∈ T ∗i and this finishes

the proof of our theorem.

Next we investigate overloaded function terms. In order to construct them,
we need a term that serves at selecting the best matching branch. Assume we
are given types S1, . . . , Sn. Then there are names s1, . . . , sn of S1, . . . , Sn,
respectively, so that s1, . . . , sn ∈ pow(s1 ∪ · · · ∪ sn). Let t be the name
pow(s1 ∪ · · · ∪ sn). Then sub satisfies subssi = 0 ∨ subssi = 1 as well as
subssi = 1 ↔ s ⊂̇ si for all s ∈̇ t and every si. Using sub we build for
each j ≤ n a term Minjs1,... ,sn of Li so that for all names s ∈̇ t we have

Minjs1,... ,sn(s) = 0 ∨Minjs1,... ,sn(s) = 1 and Minjs1,... ,sn(s) = 1 if and only if

subssj = 1
∧

1≤l≤n
l 6=j

(subssl = 1→ subslsj = 0).

If the name sj is a minimal element of the set {si | s ⊂̇ si for 1 ≤ i ≤ n},
then Minjs1,... ,sn(s) = 1 holds, otherwise Minjs1,... ,sn(s) = 0.

66 Chapter 4. Impredicative Overloading

Assume now that we are given two function terms f1 and f2 as well as names
s1, t1, s2, t2 so that f1 ∈̇ (s∗1 → t∗1) and f2 ∈̇ (s∗2 → t∗2). Using definition by
cases on natural numbers we can combine f1 and f2 to an overloaded function
f so that

fx '

{
f1x if Min1

s1,s2
(p0x) = 1,

f2x if Min2
s1,s2

(p0x) = 1 ∧Min1
s1,s2

(p0x) 6= 1.

Of course it is also possible to combine more than two functions. Let us
introduce the following notation for overloaded function terms. Assume
we have functions f1 ∈ (S∗1 → T ∗1), . . . , fn ∈ (S∗n → T ∗n), then the term
overS1,... ,Sn(f1 . . . , fn) denotes the overloaded function built up from the
branches f1, . . . , fn as above. Overloaded functions overS1,... ,Sn(f1 . . . , fn)
behave according to the reduction rule of λ{}, where the run-time type of the
argument selects the best matching branch.

In λ{} consistency conditions concerning good type formation have been in-
troduced, so that the static typing of a term can assure that the computation
will be type-error free although it is based on run-time types. Now we intro-
duce corresponding conditions for our system OTN of types and names. An
overloaded function type {Si → Ti}i∈I is called well-formed if and only if it
satisfies the following consistency conditions for all i, j ∈ I:

(1) Si ⊂ Sj → Ti ⊂ Tj,

(2) if the intersection of Si and Sj is nonempty, then there exists a unique
k ∈ I so that Sk = Si ∩ Sj.

Theorem 23. Let {S1 → T1, . . . , Sn → Tn} be a well-formed overloaded
function type, i.e. it satisfies the consistency conditions (1) and (2), and let
f1, . . . , fn be Li terms so that f1 ∈ (S∗1 → T ∗1), . . . , fn ∈ (S∗n → T ∗n). Then
in OTN the following can be proven:

overS1,... ,Sn(f1, . . . , fn) ∈ {S1 → T1, . . . , Sn → Tn}.

Proof. First, let s1, . . . , sn be names of S1, . . . , Sn, respectively, so that
s1, . . . , sn ∈ pow(s1∪· · ·∪sn). Assume we are given an x ∈ S∗i for 1 ≤ i ≤ n.
Then x = (p0x, p1x), p1x ∈̇ p0x and p0x is an element of the power type of
Si. By Condition (2) there is a unique j ∈ {1, . . . , n} so that

Minjs1,... ,sn(p0x) = 1. (4.2)

The uniqueness of j can be seen as follows: assume that Minjs1,... ,sn(p0x) = 1

and Minks1,... ,sn(p0x) = 1 hold. Then we have p0x ⊂̇ sj and p0x ⊂̇ sk. Since

4.4 Discussion and Remarks 67

p1x ∈̇ p0x holds we know that sj∩sk is non empty. Therefore by Consistency
Condition (2) there is a unique l so that sl =̇ sj ∩ sk. By the minimality of
sj and sk we obtain j = l = k. Hence, there is a unique j so that (4.2) holds.
Therefore we get overS1,... ,Sn(f1, . . . , fn)x = fjx. By (4.2) and the axioms for
subset decidability we find that p0x is an element of the power type of Sj
and therefore x ∈ S∗j . By our premise for fj we conclude

overS1,... ,Sn(f1, . . . , fn)x ∈ T ∗j . (4.3)

From x ∈ S∗i and Minjs1,... ,sn(p0x) = 1 we conclude as above by Consistency
Condition (2) that there exists a unique k so that Sk = Si ∩ Sj. The name
p0x represents a subset of Sk. Suppose Sj 6⊂ Si. This implies Sk (Sj which
contradicts Minjs1,... ,sn(p0x) = 1. Therefore we have Sj ⊂ Si and applying
Consistency Condition (1) yields Tj ⊂ Ti. By (4.3) and the monotonicity of
∗ we finally get

overS1,... ,Sn(f1, . . . , fn)x ∈ T ∗i .

4.4 Discussion and Remarks

First we will show that both consistency conditions are necessary premises in
Theorem 23. Then we are going to discuss an important difference between
our model of late-bound overloading in explicit mathematics and models for
second order λ calculi, which may be a good starting point for developing a
natural denotational semantics for operations on records.

Let s1, s2, t1, t2 be names for the types {1}, {1, 2}, {1} and {2}, respectively,
so that s1 ∈̇ pow(s2), t1 ∈̇ pow(t1) and t2 ∈̇ pow(t2). Therefore, we have
s1 ⊂̇ s2 but not t1 ⊂̇ t2, i.e. Condition (1) is not satisfied. Further, let
f1 := λx.(t1, 1) ∈̇ (s∗1 → t∗1) and f2 := λx.(t2, 2) ∈̇ (s∗2 → t∗2). However,
we find (s1, 1) ∈̇ s∗2 but overs1,s2(f1, f2)(s1, 1) yields (t1, 1) which is not an
element of t∗2. Hence, overs1,s2(f1, f2) does not belong to {s1 → t1, s2 → t2}.
Let s1, s2, s3, t2, t3 be names for {1}, {1, 2}, {1, 3}, {2} and {3}, respectively,
so that s1 ∈̇ pow(s1), t2 ∈̇ pow(t2) and t3 ∈̇ pow(t3). By the monotonicity
of the generator pow we get s1 ∈̇ pow(s2) and s1 ∈̇ pow(s3). Hence, the
type {s2 → t2, s3 → t3} does not satisfy Consistency Condition (2). We find
that f2 := λx.(t2, 2) ∈̇ (s∗2 → t∗2) as well as f3 := λx.(t3, 3) ∈̇ (s∗3 → t∗3)
hold. We get (s1, 1) ∈̇ s∗3, but overs2,s3(f2, f3)(s1, 1) yields (t2, 2) which is
not in t∗3. Hence, the type {s2 → t2, s3 → t3} does not contain the function
overs2,s3(f2, f3).

68 Chapter 4. Impredicative Overloading

In the previous chapter, we have seen that in order to solve the problem of
loss of information, one usually employs second order λ calculi. However,
in many natural models for such calculi we face the problem of “too many
subtypes”: the only closed term f of type (∀X ⊂ N)(X → X) is the identity
function on the natural numbers, cf. Bruce and Longo [14]. This is for the
following reason: consider the type {n} for each natural number n. Of course
{n} ⊂ N holds (hence the name of the problem) and therefore f : {n} → {n}
for each n. Since in these models the type of the argument affects only the
type of the result, but not its value, we obtain that the term f must be the
identity function.

This is not the case if we look at overloaded functions in explicit mathematics.
For example, choose names s1, s2, s3, n ∈ pow(nat) representing the types
{1}, {2}, {1, 2} and N, respectively. Now consider the term

t := overs1,s2,s3,n(λx.x, λx.x, λx.(s3, 1), λx.x).

This term is not the identity function since it maps (s3, 2) to (s3, 1). Never-
theless, the term t satisfies

(∀X ⊂ N)t ∈ (X∗ → X∗). (4.4)

If we restrict the universe of types to subtypes of the natural numbers, i.e.
to elements of the power type of N, and if we let function types contain
overloaded functions, then OTN provides a natural model for second order
λ calculi. As shown before, the identity function is not the only function
satisfying (4.4) in this model; but there are also many other functions of this
type. We think that this gives further evidence that it is very promising
to study the combination of overloading and parametric polymorphism from
the point of view of explicit mathematics.

For example, this approach may help to solve the problem of polymorphic
record update: typing rules for record update are only sound if the subtype
relation is very restricted, cf. Cardelli [17] and Cardelli and Mitchell [18]. If
one tries to build a denotational semantics of polymorphic update operations,
one has to use models with properties like “all subtypes of a record type
are record types”. This kind of invariant is easy to realize in operational
semantics, where there is no problem at all. However, standard domains
used in denotational semantics of subtyping (such as PER models) do not
have this property: there are always strange subsets that do not correspond
to subtypes. One can force these properties, but the techniques have a very
syntactic flavor; and up to now, there are no natural denotational semantics
known for polymorphic record update. Since this problem is strongly related

4.4 Discussion and Remarks 69

to the problem of the elements of the type ∀X(X → X), an alternative to
restricting the subtype relation may be to explore models for second order
overloading in theories of types and names.

Chapter 5

Formalizing Non-termination of
Recursive Programs

I wish to God these calculations had been executed by
steam.

Charles Babbage

A recursively defined program is given by a recursion equation

f(~x) = t(f, ~x),

where the program f can be called in the body of its definition. Every higher
programming language offers a syntactical construction to define programs
recursively. In general, there are several different solutions to such a recursive
definition, i.e. there are several functions satisfying the recursion equation.
In every introduction to the semantics of programming languages one finds
that the intended semantics is given by the least fixed point of the recursion
equation (with respect to the definedness order), see for instance Manna [70],
Schmidt [85] or Jones [64]. Hence, we need a least fixed point operator in
order to represent recursive programs. In this chapter we will present an
applicative theory which allows us to define such an operator.

5.1 Introduction

Applicative theories are based on a type free combinatory logic. Hence, we
have the recursion theorem at our disposal, which provides a term rec (or
Y) to solve recursive equations. However, it is not provable in BON that
a solution obtained by rec is minimal. In order to tackle this problem, we
will make use of the fact that applicative theories are formulated within a

71

72 Chapter 5. Non-termination

partial logic. This means that we have an additional predicate expressing
the definedness of a term; and quantifiers and variables are ranging over
defined objects only. Still, the term language is not restricted, i.e. there may
be undefined terms. Using the definedness predicate ↓, we can introduce a
definedness ordering on the terms, which allows us to talk about monotonic
functionals. Only these functionals will have a least fixed point. Moreover, we
will introduce the concept of classes, which are similar to types in a typed
setting, in order to prove that our least fixed point belongs to a certain
function space.

Since in general there are total term models for applicative theories, we
often cannot prove that there exist undefined terms or equivalently that
the corresponding programs loop forever. For this reason, we strengthen the
basic theory by so-called computability axioms and we restrict the universe to
natural numbers. These additional axioms represent the recursion-theoretic
view of computations. They are motivated by Kleene’s T predicate, which is a
ternary primitive recursive relation on the natural numbers so that {a}(~m) '
n holds if and only if there exists a computation sequence u with T(a, 〈~m〉, u)
and (u)0 = n. The usage of these computability axioms for the definition
of a least fixed point operator can be seen as a marriage of convenience
of the recursion-theoretic semantics and the least fixed point semantics for
computer programs, see Jones [64].

Using the computability axioms we will define the least fixed point combina-
tor as a combinator iterating the functional that is associated with a given
recursive equation starting from the function which never terminates. To
get the desired properties, we have to ensure that the functional operator
is monotone with respect to the definedness order. For this reason, we will
need the notion of monotonicity mentioned above.

The given theory still has a standard recursion-theoretic model; and with
respect to the proof-theoretic strength we will not exceed Peano arithmetic.
There exists a standard theory to formalize least fixed points, namely the
theory ID1 of non-iterated positive arithmetical inductive definitions, cf.
Moschovakis [73] for an introduction to inductive definability or Kahle and
Studer [68] for a corresponding theory in the context of explicit mathematics.
However, our work essentially concerns Σ0

1 monotone inductive definitions
whereas ID1 deals with arbitrary arithmetically definable positive operators.
Hence ID1 belongs to a rather different “world” and with respect to its proof-
theoretic strength it is much stronger than Peano arithmetic, see Pohlers
[79].

5.2 Applicative Theories 73

5.2 Applicative Theories

In this section we extend the basic theory of operations and numbers BON
with axioms about computability and the statement that everything is a
natural number. These two additional principles make the definition of a
least fixed point operator possible.

The applicative theory of this chapter is formulated in the language Lc which
contains the individual variables a, b, c, f, g, h,m, n, x, y, z, The language
Lc comprises the constants k, s (combinators), p, p0, p1 (pairing and projec-
tions), 0 (zero), sN (successor), pN (predecessor) and dN (definition by nu-
merical cases). Further, we have the constant c (computation).

The terms (r, s, t, . . .) of Lc are built up from the variables and constants
by means of the function symbol · for (partial) application. The atomic
formulas of Lc are N(s), s↓ and s = t. The formulas of Lc are generated from
the atomic formulas by closing against the usual propositional connectives
and quantifiers. We use the same abbreviations as for Lp.
In the sequel we will employ the theory BON formulated in the language Lc
extended with the schema of Lc formula induction on the natural numbers.
In this theory all the primitive recursive functions and relations are available.
Particularly, we will use addition + and multiplication ∗ of natural numbers
(both also in infix notation) as well as the usual “less than” < and “less than
or equal” ≤ relations. Further, we can define a least number operator µ so
that the following holds, see Beeson [8].

Lemma 24. BON + (Lc-IN) proves:

1. f ∈ (N→ N)→ (µf ∈ N↔ (∃n ∈ N)fn = 0),

2. f ∈ (N→ N) ∧ µf ∈ N→ f(µf) = 0.

This least number operator µ can be defined from the recursion theorem.
Note that it is not the same as the non-constructive quantification operator,
also called µ, which is studied by Feferman and Jäger in [38, 39].

Now we introduce non-strict definition by cases (cf. Beeson [8] or Kahle [66]).
Observe that if dNrsuv↓, then r↓ and s↓ hold by strictness. However, we often
want to define a function by cases so that it is defined if one case holds, even
if the value that would have been computed in the other case is undefined.
Hence, we let dsrsuv stand for the term dN(λz.r)(λz.s)uv0 where the variable
z does not occur in the terms r and s. From now on, non-strict definition by
cases is denoted by the following notation:

dsrsuv '

{
r if u = v,

s otherwise.

74 Chapter 5. Non-termination

Note that it already anticipates the axiom ∀xN(x), otherwise we should add
N(u)∧N(v) as a premise; and of course, strictness still holds with respect to u
and v. We have dsrsuv↓ → u↓∧v↓. If u or v is undefined, then dsrsuv is also
undefined. However, if r is a defined term and u and v are defined natural
numbers that are equal, then dsrsuv = r holds even if s is not defined.

We are interested in the extension of BON with axioms about computability
(Comp) and the assertion that everything is a number.

Computability. These axioms are intended to capture the idea that conver-
gent computations should converge in finitely many steps. In the formal
statement of the axioms the expression c(f, x, n) = 0 can be read as “the
computation fx converges in n steps.” The idea of these axioms is due to
Friedman (unpublished) and discussed in Beeson [8]. Note that these axioms
are satisfied in the usual recursion-theoretic model. The constant c can be
interpreted by the characteristic function of Kleene’s T predicate.

(Comp.1) ∀f∀x(∀n ∈ N)(c(f, x, n) = 0 ∨ c(f, x, n) = 1),

(Comp.2) ∀f∀x(fx↓ ↔ (∃n ∈ N)c(f, x, n) = 0).

In addition we will restrict the universe to natural numbers. Of course, this
axiom is absolutely in the spirit of a recursion-theoretic interpretation.

Everything is a number. Formally, this is given by the statement ∀xN(x).

Now we define the applicative theory for least fixed points LFP as the union
of all these axioms:

LFP := BON + (Comp) + ∀xN(x) + (Lc-IN).

Before we can go on and define the least fixed point operator we have to
introduce some auxiliary terms. With some coding provided by pairing and
projection, we can easily define a term c3 which behaves for ternary functions
like c does for unary functions, i.e.

1. ∀f∀x∀y∀z(∀n ∈ N)(c3(f, x, y, z, n) = 0 ∨ c3(f, x, y, z, n) = 1),

2. ∀f∀x∀y∀z(fxyz↓ ↔ (∃n ∈ N)c3(f, x, y, z, n) = 0).

The following lemma shows that there exists a function b which is never
defined. Later, we will define an order relation on our functions and there b
will play the role of the bottom element. Hence, we will be able the define
least fixed points of monotonic functionals by recursion starting from b.

Lemma 25. There exists a closed Lc term b so that LFP proves ∀x(¬bx↓).

Proof. We can define notN := rec (λf, x.dN 1 0 (f x) 0) 0. So it follows that
¬N(notN) holds. Since we included ∀xN(x) to our list of axioms, we get

¬(notN↓). Thus, we can set b := λx.notN.

5.3 Least Fixed Point Operator 75

5.3 Least Fixed Point Operator

In this section we will show how to define a least fixed point operator l in the
theory LFP. As usual, in order to find the least fixed point of a monotonic
functional g, the operator l will iterate g starting from the bottom element
b. The stages of this inductive process are given by the term h, which will
be defined first.

Definition 26. We define the term h so that

hgn '

{
b if n = 0,

g(hg(pNn)) else.

Let t be such that

tgxn '

{
0 if hg(p0n)x = p1n,

notN else.

Then the term l is defined by

l := λgλx.p1(p0(µ(λy.c3(t, g, x, p0(y), p1(y))))).

The idea of this definition can be explained roughly as follows. We would
like to have that lgx = z implies that there exists a finite computation of z
by iterating the operator g starting from b. Formally, this is expressed by
∃n(hgnx = z), cf. the third claim of the following lemma. The definition of
l is somewhat clumsy because of the several codings. Let g and x be given,
then the µ operator is looking for an n so that

c3(t, g, x, p0(n), p1(n)) = 0. (5.1)

If there is no such natural number n, then µ(λy.c3(t, g, x, p0(y), p1(y))) will
be undefined. Assume we have found an n so that (5.1) holds. This means
that tgx(p0(n)) is terminating in p1(n) steps. By the definition of t, we
obtain that tgx(p0(n))↓ implies hg(p0(p0(n)))x = p1(p0(n)). Finally, the
outer projections are used to extract this value p1(p0(n)).

The behavior of l can be also gathered from (the proof of) the following
lemma. Moreover, it also shows why we had to include the axiom ∀xN(x)
to LFP. Without this axiom the sophisticated interplay between the least
number operator µ, the computability term c3, and the coding machinery
provided by p0, p1 and p would hardly work. This proof also makes use of
the fact that the projection functions are total, see axiom (3) of BON.

76 Chapter 5. Non-termination

Lemma 27. LFP proves:

1. lg↓,

2. lgx↓ ↔ ∃n(hgnx↓),

3. lgx = z → ∃n(hgnx = z).

Proof. The first claim is a consequence of the theorem about λ abstraction.
For the second claim we have:

lgx↓ ↔ p1(p0(µ(λy.c3(t, g, x, p0(y), p1(y)))))↓
↔ µ(λy.c3(t, g, x, p0(y), p1(y)))↓
↔ ∃n(c3(t, g, x, p0(n), p1(n)) = 0)

↔ ∃n(tgxn↓)
↔ ∃n(ds0notN(hg(p0n)x)(p1n)↓)
↔ ∃n(hgnx↓)

The third claim follows by:

lgx = z → p1(p0(µ(λy.c3(t, g, x, p0(y), p1(y))))) = z

→ ∃n(p1(p0n) = z ∧ µ(λy.c3(t, g, x, p0(y), p1(y))) = n)

→ ∃n(p1(p0n) = z ∧ c3(t, g, x, p0(n), p1(n)) = 0)

→ ∃n(p1(p0n) = z ∧ tgx(p0n)↓)
→ ∃n(p1(p0n) = z ∧ ds0notN(hg(p0(p0n))x)(p1(p0n))↓)
→ ∃n(p1(p0n) = z ∧ hg(p0(p0n))x = p1(p0n))

→ ∃n(hg(p0(p0n))x = z)

→ ∃n(hgnx = z)

We define the closed term a which will later serve at showing that we can
replace the term g(lg) by a “finite approximation” g(hgn) (cf. Lemma 34,
Claim 7).

Definition 28. Let t be such that

tfx '

{
c(λx.xx, f, x) if x = 0,

tf(pNx) ∗ c(λx.xx, f, x) otherwise.

We define the term a using λ abstraction so that

agfx '

{
notN if tfx = 0,

gx otherwise.

5.3 Least Fixed Point Operator 77

Lemma 29. LFP proves:

1. ∀g∀f(¬ff↓ → ∀n(agfn ' gn)),

2. ∀g∀f(ff↓ → ∃m∀n(agfn↓ → agfn = gn ∧ n < m)).

Proof. From the axioms about computability we obtain by induction:

∀f∀n(tfn = 0 ∨ tfn = 1)

and

∀f∀n∀m(m ≤ n ∧ tfm = 0→ tfn = 0).

Now, we get the first claim by:

¬ff↓ → ¬(λx.xx)f↓
→ ∀n(c(λx.xx, f, n) = 1)

→ ∀n(tfn = 1)

→ ∀n(dsnotN(gn)(tfn)0 ' gn)

→ ∀n(agfn ' gn)

The second claim follows with:

ff↓ → (λx.xx)f↓
→ ∃m(c(λx.xx, f,m) = 0)

→ ∃m(tfm = 0)

→ ∃m∀n(m ≤ n→ tfn = 0)

→ ∃m∀n(tfn 6= 0→ n < m)

→ ∃m∀n(agfn↓ → agfn = gn ∧ n < m)

Since there is not a least fixed point for every recursion equation, cf. Ex-
ample 32 below, we can only expect a meaningful solution for functionals
satisfying an additional property, namely monotonicity. To define this no-
tion, we will first introduce the concept of classes.

An Lc formula A containing exactly x as free variable will be called a class.
Let A and B be classes and let F be an arbitrary formula of Lc. We will

78 Chapter 5. Non-termination

employ the following abbreviations:

t ∈ A := t↓ ∧ A[t/x],

A→ B := ∀y(y ∈ A→ xy ∈ B),

AyB := ∀y(y ∈ A ∧ xy↓ → xy ∈ B),

A ∩B := x ∈ A ∧ x ∈ B,
(∀x ∈ A)F (x) := ∀x(x ∈ A→ F (x)).

Note that t ∈ A has a strictness property built in. We have t ∈ A → t↓.
Next we are going to introduce the definedness ordering vT with respect to
a class T . The meaning of rv s is that if r has a value, then r equals s; and
f vAyB g says that for every x ∈ A if the computation fx terminates, then
gx also terminates and both computations yield the same result.

Definition 30. Let A1, . . . , An, B1, . . . , Bn be classes. Further, let T be the
class (A1 y B1) ∩ · · · ∩ (An y Bn). Then T is called an arrow class. We
define:

r v s := r↓ → r = s,

f vT g :=
∧

1≤i≤n

(∀x ∈ Ai)fxv gx),

f ∼=T g := f vT g ∧ g vT f.

The formula r v s ∧ s v r is equivalent to the standard partial equality
relation r ' s. Hence, our definedness ordering v is in accordance with
the notion of partiality of our applicative theory. In Chapter 7 we are going
to employ a least fixed point operator to get a denotational semantics for
Featherweight Java. There, it will be important that arrow classes are defined
as the intersection of several function spaces.

The relations v and vT are transitive.

Lemma 31. Let T be an arrow class as given in Definition 30. Then we
can prove in LFP:

1. r v s ∧ sv t→ r v t,

2. f vT g ∧ g vT h→ f vT h.

Proof. We have r↓ → r = s as well as s↓ → s = t. Obviously we get
r↓ → r = t proving Claim 1. Now we show the second claim. Assume x ∈ Ai
for some i. We have fxv gx and gxv hx. Therefore, we conclude fxv hx
by the first claim.

5.3 Least Fixed Point Operator 79

Using the rec term we will find a fixed point for every operation g. But as
mentioned before we cannot prove that this is a least fixed point; and of
course, there are terms g that do not have a least fixed point.

Example 32. Let f1 and f2 be closed terms so that

f1x '

{
1 if x = 1,

notN else
and f2x '

{
notN if x = 1,

1 else.

Now we let g be the operation

gx '

{
f1 if x = f1,

f2 else.

Let V be the universal class x = x. Then we know g ∈ ((VyV)→ (VyV)),
and if f is a fixed point of g then we have either f = f1 or ∀x(fx ' f2x).
However, g does not have a least fixed point in the sense of v(VyV), for we
find ¬f1 v(VyV) f2 ∧ ¬f2 v(VyV) f1. That is f1 is not comparable with any
other fixed point of g and therefore, we do not have a least fixed point.

Only for monotonic g ∈ (T → T) we can show that lg is the least fixed point
of g.

Definition 33. Let T be an arrow class as given in Definition 30. A function
f ∈ (T → T) is called T monotonic, if

(∀g ∈ T)(∀h ∈ T)(g vT h→ fg vT fh).

Claims 1–5 of the following lemma correspond to the corollary in the ap-
pendix of Feferman [36]. Furthermore, in order to show that l yields a fixed
point we need the compactness property stated in the last claim of our lemma.
Compare this with the proof of the Myhill-Shepherdson Theorem, for exam-
ple in Amadio and Curien [4], Rogers [84] or Odifreddi [76].

Lemma 34. Let T be the arrow class (A1yB1)∩ · · · ∩ (AkyBk). We can
prove in LFP that if g ∈ (T → T) is T monotonic, then the following claims
hold for all i ≤ k:

1. ∀n(hgn ∈ T),

2. ∀n(hgnvT hg(n+ 1)),

3. lg ∈ T ,

80 Chapter 5. Non-termination

4. ∀n(hgnvT lg),

5. lg vT g(lg),

6. ∀m∃n(∀x ∈ Ai)(x ≤ m→ lgxv hgnx),

7. (∀x ∈ Ai)∃n(g(lg)xv g(hgn)x).

Proof. 1. Proof by induction on the natural numbers. For n = 0 we have
hg0 = b. Since ∀x(¬bx↓) we obviously get hg0 ∈ T . Assume hgn ∈ T .
Then we have g(hgn) ∈ T and this yields hg(n+ 1) ∈ T .

2. We proceed by induction on the natural numbers. As above we get
∀x(¬hg0x↓). Hence we have (∀x ∈ Ai)(hg0xv hg1x) for any i. For the
induction step assume hgnvT hg(n + 1). Since g is T monotonic and
by the previous claim (∀n ∈ N)hgn↓ holds, we get

g(hgn)vT g(hg(n+ 1)).

This yields hg(n+ 1)vT hg(n+ 2).

3. By Lemma 27 we find (∀x ∈ Ai)(lgx↓ → ∃n(hgnx = lgx)) for any i.
Then, by Claim 1 we get (∀x ∈ Ai)(lgx↓ → lgx ∈ Bi). Hence lg ∈ T .

4. We have to show (∀x ∈ Ai)(hgnxv lgx) for all i. So assume x ∈ Ai and
hgnx↓. We conclude lgx↓ by Lemma 27. Hence there exists a natural
number m with

hgmx = lgx. (5.2)

From Claim 2 we get by induction

∀n∀m(∀x ∈ Ai)(hgnx↓ ∧ hgmx↓ → hgnx = hgmx).

By x ∈ Ai and (5.2) we therefore finally obtain hgnxv lgx.

5. We have to show (∀x ∈ Ai)lgx v g(lg)x for all i. So let x ∈ Ai and
lgx↓. Then by Lemma 27 we get ∃n(lgx = hgnx). By the definition of
h we see ∀x(¬hg0x↓). Hence ∃n(lgx = hg(n+ 1)x). This is

∃n(lgx = g(hgn)x). (5.3)

For this natural number n we have by Claim 4 that hgnvT lg. Because g
is T monotonic we obtain g(hgn)vT g(lg) and since x ∈ Ai this implies
g(hgn)xv g(lg)x. Finally, we conclude by (5.3) that lgxv g(lg)x.

5.3 Least Fixed Point Operator 81

6. Proof by induction on m. For m = 0 the claim follows from Lemma
27. For the induction step assume

∃n1(∀x ∈ Ai)(x ≤ m→ lgxv hgn1x).

Employing Lemma 27 we find

m+ 1 ∈ Ai ∧ lg(m+ 1)↓ → ∃n2(lg(m+ 1) = hgn2(m+ 1)).

Taken together this yields

∃n1∃n2(∀x ∈ Ai)
(x ≤ m+ 1 ∧ lgx↓ → (lgx = hgn1x ∨ lgx = hgn2x)).

By Claim 2 and Lemma 31 we get

∃n1∃n2(∀x ∈ Ai)
(x ≤ m+ 1 ∧ lgx↓ → lgx = hg(n1 + n2)x).

We finally conclude

∃n(∀x ∈ Ai)(x ≤ m+ 1→ lgxv hgnx).

7. Proof by contrapositive: suppose there exists an x ∈ Ai so that

∀n¬(g(lg)xv g(hgn)x). (5.4)

With this x ∈ Ai we define a term k by

k := λf.ds0notN(g(a(lg)f)x)(g(lg)x).

For the so defined k we will show that either assumption ¬kk↓ or kk↓
leads to a contradiction. As consequence we conclude that there cannot
exist an x ∈ Ai satisfying (5.4) and hence this claim is proved.

Now suppose ¬kk↓. As a direct consequence of Lemma 29 we obtain
for any j

∀f(¬ff↓ → (∀y ∈ Aj)a(lg)fy ' lgy).

Therefore, we get

(∀y ∈ Aj)a(lg)ky ' lgy

for any j. The term a is defined by λ abstraction. Hence by Theorem
5 and Claim 3 we find a(lg)k ∈ T . Therefore we obtain by the T

82 Chapter 5. Non-termination

monotonicity of g and x ∈ Ai that g(a(lg)k)x ' g(lg)x. By (5.4) it is
the case that g(lg)x↓. Hence g(a(lg)k)x = g(lg)x. This implies

ds0notN(g(a(lg)k)x)(g(lg)x)↓,

i.e. (λf.ds0notN(g(a(lg)f)x)(g(lg)x))k↓ and kk↓. Contradiction.

Suppose kk↓. Hence ds0notN(g(a(lg)k)x)(g(lg)x)↓ and

g(a(lg)k)x = g(lg)x. (5.5)

By Lemma 29 kk↓ implies for any j

∃m(∀y ∈ Aj)(a(lg)ky↓ → a(lg)ky = lgy ∧ y < m). (5.6)

Using Claim 6 we get ∃n(∀y ∈ Aj)(a(lg)ky v hgny). for any j. Hence
∃n(a(lg)kvT hgn). Claim 3 together with (5.6) yields a(lg)k ∈ T . Since
g is T monotonic we therefore have

∃n(g(a(lg)k)vT g(hgn)).

Our assumption x ∈ Ai yields

∃n(g(a(lg)k)xv g(hgn)x). (5.7)

From (5.4) we know ∀n¬(g(lg)xv g(hgn)x). Using (5.7) we conclude

¬(g(lg)x = g(a(lg)k)x)

which contradicts (5.5).

The following theorem states that l indeed yields a fixed point of a monotonic
operation g.

Theorem 35. We can prove in LFP that if g ∈ (T → T) is T monotonic
for T given as in Definition 30, then

lg ∼=T g(lg).

Proof. By the previous lemma lg vT g(lg) holds. In order to show the other
direction let x ∈ Ai. By the last claim of the previous lemma we obtain

∃n(g(lg)xv g(hgn)x).

By the definition of h we get ∃n(g(lg)xv hg(n+ 1)x). Using Claim 4 of the
previous lemma we find ∀n(hg(n+ 1)xv lgx). Hence, by Lemma 31 we have

g(lg)xv lgx. Finally, we conclude g(lg)vT lg.

5.4 Conclusion 83

The next theorem states that lg is the least fixed point of g.

Theorem 36. We can prove in LFP that if g ∈ (T → T) is T monotonic
for T given as in Definition 30, then

f ∈ T ∧ gf ∼=T f → lg vT f.

Proof. Let f be such that gf ∼=T f . First, we show by induction on N that

∀n(hgnvT f). (5.8)

We obviously have hg0vT f . Suppose hgnvT f for a natural number n. By
the T monotonicity of g we get hg(n+1) = g(hgn)vT gf∼=T f . Therefore, by
Lemma 31 we obtain hg(n+1)vT f and (5.8) is shown. By g(hgn) = hg(n+1)
this implies

∀n(g(hgn)vT f). (5.9)

It remains to show (∀x ∈ Ai)(lgx v fx) for each i. So let x ∈ Ai. By
Claim 5 of Lemma 34 we get lgxv g(lg)x. By Claim 7 of the same lemma we
obtain ∃n(g(lg)xvg(hgn)x). Therefore with (5.9) and Lemma 31 we conclude

lgxv fx.

5.4 Conclusion

For the conclusion let us look at the following recursively defined method
written in a Java like language.

A m (B x) {

return m(x);

}

Of course, any program calling m with some argument s is non-terminating.
The semantics of the method m is usually given as the least fixed point of
the functional λfλx.fx. If we model this fixed point by rec(λfλx.fx), then
we cannot prove in BON that ¬(rec(λfλx.fx)s↓) for any argument s. This
is simply because one can build total term models for the theory BON, in
which every term has a value.

On the other hand, defining the semantics of the method m employing our
least fixed point operator l enables us to prove non-termination in LFP. Let
V be the universal class x = x and ∅ be the empty class x 6= x. Then the
functional λfλx.fx is an element of (V y ∅) → (V y ∅) and it is of course

84 Chapter 5. Non-termination

V y ∅ monotonic. Therefore, by Lemma 34 we have l(λfλx.fx) ∈ (V y ∅)
and this implies ∀y(¬l(λfλx.fx)y↓). Hence, we have proved in LFP that the
method m loops forever.

Like BON, the theory LFP can also be interpreted in the usual recursion-
theoretic way, cf. Beeson [8] or Kahle [65]. In fact, the computability axioms
are inspired by Kleene’s T predicate, which therefore can be used to verify the
axioms. So we can reduce LFP to Peano arithmetic. This will be important
for obtaining an expressively strong but proof-theoretically weak system for
the study of Featherweight Java.

The investigation of a least fixed point operator in [65] was motivated by
defining an applicative theory with the proof-theoretic strength of Peano
arithmetic for studying the interactive proof system LAMBDA [42, 45]. This
proof system was designed for proving properties of ML programs. Up to
Release 3.2 it was based on a partial logic and it was generating minimality
rules for recursive function definitions. The theory defined in [65] was cap-
turing a large part of this proof system, in particular, the minimality rules
were modeled using the least fixed point operator.

We will finish this chapter by addressing two related approaches. First,
Feferman [36] develops a form of generalized recursion theory in which com-
putational procedures on domains that are contained in the natural numbers
reduce to ordinary computations. There he shows how to obtain a uniform
index for the least fixed point operator in the intensional recursion-theoretic
model of computation. The construction of our least fixed point combinator
is inspired by this approach.

Secondly, Stärk [89] introduces a typed logic of partial terms which incorpo-
rates a least fixed point operator and a schema for computational induction.
One may question why we do not axiomatize our fixed point operator in a
similar way as a primitive operator instead of using the computability ax-
ioms. The reason is that formulating Theorem 36 as an axiom would require
to introduce the notions of monotonicity and classes before. In our opinion,
this would be a rather inelegant approach since then the axioms would al-
ready depend on complex abbreviated notions. A further difference between
Stärk’s theory and our LFP is that he gives a domain-theoretic interpretation
whereas LFP has a recursion-theoretic model.

Chapter 6

Featherweight Java

Because we do not understand the brain very well we are
constantly tempted to use the latest technology as a model
for trying to understand it. In my childhood we were al-
ways assured that the brain was a telephone switchboard.
(‘What else could it be?’) I was amused to see that Sher-
rington, the great British neuroscientist, thought that the
brain worked like a telegraph system. Freud often com-
pared the brain to hydraulic and electro-magnetic sys-
tems. Leibniz compared it to a mill, and I am told some
of the ancient Greeks thought the brain functions like a
catapult. At present, obviously, the metaphor is the dig-
ital computer.

John R. Searle

Featherweight Java, called FJ, is a minimal core calculus for Java proposed
by Igarashi, Pierce and Wadler [54] for the formal study of an extension of
Java with parameterized classes. Further, Igarashi and Pierce [53] employed
Featherweight Java also to obtain a precise understanding of inner classes. FJ
is a minimal core calculus in the sense that as many features of Java as pos-
sible are omitted while maintaining the essential flavor of the language and
its type system. Nonetheless, this fragment is large enough to include many
useful programs. In particular, most of the examples in Felleisen and Fried-
man’s text [41] are written in the purely functional style of Featherweight
Java. In the next section we will present the formulation of Featherweight
Java given in [53].

85

86 Chapter 6. Featherweight Java

6.1 The Definition of Featherweight Java

Syntax. The abstract syntax of FJ class declarations, constructor declara-
tions, method declarations and expressions is given by:

CL ::= class C extends C {C f; K M}
K ::= C (C f) {super(f); this.f = f; }
M ::= C m(C x) {return e; }
e ::= x

| e.f

| e.m(e)

| new C(e)

| (C)e

The meta-variables A,B,C,D,E range over class names, f and g range over
field names, m ranges over method names, x ranges over variable names and
d,e range over expressions (all possibly with subscripts). CL ranges over
class declarations, K ranges over constructor declarations and M ranges over
method declarations. We assume that the set of variables includes the special
variable this, but that this is never used as the name of an argument to a
method.

We write f as shorthand for f1, . . . , fn (and similarly for C, x, e, etc.) and we
use M for M1 . . . Mn (without commas). The empty sequence is written as • and
](x) denotes the length of the sequence x. Operations on pairs of sequences
are abbreviated in the obvious way, e.g. “C f” stands for “C1 f1, . . . , Cn fn”
and “C f;” is a shorthand for “C1 f1; . . . ; Cn fn;” and similarly “this.f = f;”
abbreviates “this.f1 = f1; . . . ; this.fn = fn;”. We assume that sequences
of field declarations, parameter names and method declarations contain no
duplicate names.

A class table CT is a mapping from class names C to class declarations CL. A
program is a pair (CT, e) of a class table and an expression. In the following
we always assume that we have a fixed class table CT which satisfies the
following conditions:

1. CT (C) = class C . . . for every C in the domain of CT , i.e. the class
name C is mapped to the declaration of the class C,

2. Object is not an element of the domain of CT ,

6.1 The Definition of Featherweight Java 87

3. every class C (except Object) appearing anywhere in CT belongs to
the domain of CT ,

4. there are no cycles in the subtype relation induced by CT , i.e. the <:
relation is antisymmetric.

Subtyping. The following rules define the subtyping relation <: which is
induced by the class table. Note that every class defined in the class table
has a super class, declared with extends.

C <: C

C <: D D <: E
C <: E

CT (C) = class C extends D {. . . }
C <: D

Computation. These rules define the reduction relation −→ which models
field accesses, method calls and casts. In order to look up fields and method
declarations in the class table we use some auxiliary functions that will be
defined later on. We write e0[d/x, e/this] for the result of simultaneously
replacing x1 by d1, . . . , xn by dn and this by e in the expression e0.

fields(C) = C f

new C(e).fi −→ ei

mbody(m, C) = (x, e0)

new C(e).m(d) −→ eo[d/x, new C(e)/this]

C <: D
(D)new C(e) −→ new C(e)

We say that an expression e is in normal form if there is no expression d so
that e −→ d.

Now we present the typing rules for expressions, method declarations and
class declarations. An environment Γ is a finite mapping from variables to
class names, written x : C. Again, we employ some auxiliary functions which
will be given later. There are three rules for type casts: in an upcast the
subject is a subclass of the target, in a downcast the target is a subclass of
the subject, and in a stupid cast the target is unrelated to the subject. Stupid
casts are included only for technical reasons, see Igarashi, Pierce and Wadler

88 Chapter 6. Featherweight Java

[54]. The Java compiler will reject expressions containing stupid casts as ill
typed. This is expressed by the hypothesis stupid warning in the typing rule
for stupid casts.

Expression typing.

Γ ` x ∈ Γ(x)

Γ ` e0 ∈ C0 fields(C0) = C f

Γ ` e0.fi ∈ Ci

Γ ` eo ∈ C0
mtype(m, C0) = D→ C

Γ ` e ∈ C C <: D

Γ ` e0.m(e) ∈ C

fields(C) = D f

Γ ` e ∈ C C <: D

Γ ` new C(e) ∈ C

Γ ` e0 ∈ D D <: C

Γ ` (C)e0 ∈ C

Γ ` e0 ∈ D C <: D C 6= D

Γ ` (C)e0 ∈ C

Γ ` e0 ∈ D C 6<: D D 6<: C
stupid warning

Γ ` (C)e0 ∈ C

Method typing.

x : C, this : C ` e0 ∈ E0 E0 <: C0
CT (C) = class C extends D {. . . }

if mtype(m,D) = D→ D0, then C = D and C0 = D0

C0 m (C x) {return e0; } OK in C

Class typing.

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK

6.1 The Definition of Featherweight Java 89

We define the auxiliary functions which are used in the rules for computation
and expression typing.

Field lookup.
fields(Object) = •

CT (C) = class C extends D {C f; K M} fields(D) = D g

fields(C) = D g, C f

Method type lookup.

CT (C) = class C extends D {C f; K M}
B m (B x) {return e;} belongs to M

mtype(m, C) = B→ B

CT (C) = class C extends D {C f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

Method body lookup.

CT (C) = class C extends D {C f; K M}
B m (B x) {return e; } belongs to M

mbody(m, C) = (x, e)

CT (C) = class C extends D {C f; K M} m is not defined in M

mbody(m, C) = mbody(m, D)

We call a Featherweight Java expression e well-typed if Γ ` e ∈ C can be
derived for some environment Γ and some class C.

Igarashi, Pierce and Wadler [54] prove that if an FJ program is well-typed,
then the only way it can get stuck is if it reaches a point where it cannot
perform a downcast. This is stated in the following theorem about progress,
which is proved in [54].

Theorem 37. Suppose e is a well-typed expression.

1. If e is of the form new C0(e).f or contains such a subexpression, then
fields(C0) = D f and f ∈ f.

2. If e is of the form new C0(e).m(d) or contains such a subexpression, then
mbody(m, C0) = (x, e0) and](x) =](d).

90 Chapter 6. Featherweight Java

6.2 Evaluation Strategy and Typing

Now we study some examples written in Featherweight Java which will mo-
tivate our semantics for FJ as presented in the next chapter. We will focus
on Java’s evaluation strategy and on typing issues. In the last example the
interplay of free variables, static types and late-binding is investigated.

Java features a call-by-value evaluation strategy, cf. the Java language spec-
ification by Gosling, Joy and Steele [49]. This strategy corresponds to the
strictness axioms of the logic of partial terms upon which explicit mathemat-
ics is built. These axioms imply that an application only has a value, i.e. is
terminating if all its arguments have a value.

In Java we not only have non-terminating programs we also have run-time
exceptions, for example when an illegal down cast should be performed. With
respect to these features, Featherweight Java is much more coarse grained.
There is no possibility to state that a program terminates and exceptions
are completely ignored. For good reasons, as we should say, since FJ is in-
tended as a minimal core calculus for modeling Java’s type system. However,
this lack of expressiveness has some important consequences, which will be
studied in the sequel. Let us first look at the following example.

Example 38.
class A extends Object {

A () { super(); }

C m() {

return this.m();

}

}

class C extends Object {

int x;

A y;

C (int a,A b) {

super();

this.x = a;

this.y = b;

}

}

Of course, new A().m() is a non-terminating loop. Although, if it is eval-
uated on an actual Java implementation, then we get after a short while

6.2 Evaluation Strategy and Typing 91

a java.lang.StackOverflowError because of too many recursive method
calls. In Featherweight Java new A().m() has no normal form, which reflects
the fact that it loops forever.

Now let e be the expression new C(5,new A().m()).x. Due to Java’s call-
by-value evaluation strategy, the computation of this expression will not ter-
minate either since new A().m() is a subexpression of e and has therefore
to be evaluated first.

Featherweight Java’s operational semantics uses a non-deterministic small-
step reduction relation which does not enforce a call-by-value evaluation
strategy. Hence, we have two different possibilities for reduction paths start-
ing from e. If we adopt a call-by-value strategy, then we have to evaluate
new A().m() first and we obtain an infinite reduction path starting from e.
Since FJ’s reduction relation is non-deterministic, we also have the possibil-
ity to apply the computation rule for field access. If we decide to do so, then
e reduces to 5, which is in normal form.

In theories of types and names we have the possibility to state that a compu-
tation terminates. The formula t↓ expresses that t has a value, meaning the
computation represented by t is terminating. Let [[e]] be the interpretation of
e. In our mathematical model Java’s call-by-value strategy is implemented
by the strictness axioms and ¬[[e]]↓ will be provable. Since 5 surely has a
value we obtain [[e]] 6' 5 although 5 is the normal form of e. That means
that in our interpretation we cannot model the non-deterministic reduction
relation of Featherweight Java.

Non-terminating programs are not the only problem in modeling computa-
tions of Java. A second problem is the lack of a notion of run-time exception
in Featherweight Java. For example, if a term is in normal form, then we
cannot tell whether this is the case because the computation has finished
properly or because an illegal down-cast should be performed. It may even
be the case that the final expression does not contain any down-casts at all,
but earlier during the computation an exception should have been thrown.
Let us illustrate this fact with the following example, where the class C is as
in Example 38.

Example 39.
class main extends Object{

public static void main (String arg[]) {

System.out.println(new C(5,(A)(new Object())).x);

}

}

If we run this main method, then Java throws the following exception:

92 Chapter 6. Featherweight Java

java.lang.ClassCastException: java.lang.Object

at main.main(main.java:4)

Whereas in Featherweight Java the expression

new C(5,(A)(new Object())).x

reduces to 5. This is due to the fact that the term (A)(new Object()), which
causes the exception in Java, is treated as final value in Featherweight Java
and therefore, it can be used as argument in further method calls.

In our model we will introduce a special value ex to denote the result of
a computation which throws an exception. An illegal down cast produces
(ex, 0) as result and we can check every time an expression is used as argument
in a method or constructor call whether its value is (ex, 0) or not. If it is
not, then the computation can continue; but if an argument value represents
an exception, then the result of the computation is this exception value.
Therefore, in our model we can distinguish whether an exception has occurred
or not. For example, the above expression evaluates to (ex, 0). We will have

[[(A)(new Object())]] = cast A∗ [[new Object()]]

= cast A∗ (Object∗, 0)

= (ex, 0)

since sub(Object∗, A∗) 6= 1, i.e. Object is not a subclass of A. By the defi-
nition of the terms new and proj, modeling object creation and field access,
respectively, the term (ex, 0) will be propagated through the remaining com-
putation and (ex, 0) will also be the final result in our semantics.

From these considerations it follows that we cannot prove soundness of our
model construction with respect to reductions as formalized in Featherweight
Java. However, we are going to equip FJ with a restricted reduction relation
−→′ which enforces a call-by-value evaluation strategy as it is used in the
Java language and which also respects illegal down casts. With respect to
this new notion of reduction, we will be able to prove that our semantics
adequately models FJ computations.

In Featherweight Java we cannot talk about termination of programs. As
usual in type systems for programming languages the statement “expression
e has type T” has to be read as “if the computation of e terminates, then
its result is of type T”. Let A be the class of Example 38. Then in FJ
new A().m() ∈ C is derivable although the expression new A().m() denotes
a non-terminating loop. Hence, in our model we will have to interpret e ∈ C

as [[e]]↓ → [[e]] ∈ [[C]].

6.2 Evaluation Strategy and Typing 93

As we have seen before, the computation of e may result in an exception.
In this case we have [[e]] = (ex, 0), which is a defined value. Hence, by
our interpretation of the typing relation, we have to include (ex, 0) to the
interpretation of every type. Alternatively, interpreting e ∈ C as

[[e]]↓ ∧ [[e]] 6= (ex, 0)→ [[e]] ∈ [[C]]

would also be possible, but then the soundness proofs would be more com-
plicated.

In the following we consider a class B which is the same as A except that the
result type of the method m is changed to D.

class B extends Object {

B () { super(); }

D m() {

return this.m();

}

}

Since the method bodies for m are the same in both classes A and B, we can
assume that the interpretations of new A().m() and new B().m() will be the
same, i.e. [[new A().m()]] ' [[new B().m()]]. In this example the classes C and
D may be chosen arbitrarily. In particular, they may be disjoint, i.e. perhaps
there is no object belonging to both of them. Hence, if our modeling of the
typing relation is sound, it follows that we are in the position to prove that
the computation of new B().m() is non-terminating, i.e. ¬[[new B().m()]]↓.
Usually, in lambda calculi such recursive functions are modeled using a fixed
point combinator. In continuous λ-models, such as Pω or D∞, these fixed
point combinators are interpreted by least fixed point operators and hence,
one can semantically show that certain functions do not terminate. In ap-
plicative theories on the other hand, recursive equations are solved with the
rec term provided by the recursion theorem. Unfortunately, one cannot prove
that this operator yields a least fixed point. Therefore, we have to employ
the special term l to define the semantics of FJ expressions. Since this term
provides a least solution to certain fixed point equations, it will be possible
to show ¬[[new B().m()]]↓, which is needed in order to prove soundness of
our interpretation with respect to typing.

Now we are going to examine the role of free variables in the context of static
types and late-binding. In the following example let C be an arbitrary class
with no fields.

94 Chapter 6. Featherweight Java

Example 40.
class A extends Object{

A () { super(); }

C m() {

return this.m();

}

}

class B extends A{

B () { super(); }

C m() {

return new C();

}

}

As in Example 38 class A defines the method m, which does not terminate.
Class B extends A, hence it is a subclass of A and it overrides the method m.
Here m creates a new object of type C and returns it to the calling object.

Let x be a free variable with (static) type A. The rules for method typing
guarantee that the return type of m cannot be changed by the overriding
method; and by the typing rules of FJ we can derive x:A ` x.m() ∈ C. As
we have seen before this means “if x.m() yields a result, then it belongs
to C.” Indeed, as a consequence of Java’s late-binding evaluation strategy,
knowing only the static type A of x we cannot tell whether in x.m() the
method m defined in class A or the one of class B will be executed. Hence, we
do not know whether this computation terminates or not. Only if we know
the object which is referenced by x, we can look at its dynamic type and
then decide by the rules of method body lookup which method actually gets
called.

This behavior has the consequence that there are FJ expressions in normal
form whose interpretation will not have a value. For example, x.m() is in
normal form, but maybe x references an object of type A and in this case the
interpretation of x.m() will not have a value. Therefore, only if we have a
closed term in normal form , we can be sure that its interpretation is defined.

Chapter 7

A Semantics for Featherweight
Java

Und ausserhalb der Logik ist alles Zufall.
Ludwig Wittgenstein

There is nothing more practical than a good theory.
Albert Einstein

In this chapter we present a recursion-theoretic denotational semantics for
Featherweight Java. Our interpretation is based on a formalization of the
object model of Castagna, Ghelli and Longo in a predicative theory of types
and names. Although this theory is proof-theoretically weak, it allows us
to prove many properties of programs written in Featherweight Java. This
underpins Feferman’s thesis that impredicative assumptions are not needed
for computational practice. Moreover, the present work is also a contribution
to the ongoing research on unifying functional and object-oriented program-
ming. It shows that these two paradigms fit well together and that their
combination has a sound mathematical model.

7.1 Fixed Point Types

We will add the principle of dependent choice to the base theory EETJ and
show that this extension is sufficient to prove the existence of certain fixed
points. The theory of types and names which we will consider in the sequel
is formulated in the two sorted language Lj about individuals and types. It
comprises individual variables a, b, c, f, g, h, x, y, z, . . . as well as type variables
A,B,C,X, Y, Z, . . . (both possibly with subscripts).

95

96 Chapter 7. A Semantics for FJ

The language Lj includes the individual constants k, s (combinators), p, p0, p1

(pairing and projections), 0 (zero), sN (successor), pN (predecessor), dN (def-
inition by numerical cases) and the constant c (computation). There are
additional individual constants, called generators, which will be used for the
uniform representation of types. Namely, we have a constant ce (elementary
comprehension) for every natural number e, as well as the constants j (join)
and dc (dependent choice).

The individual terms (r, s, t, r1, s1, t1, . . .) of Lj are built up from the variables
and constants by means of the function symbol · for (partial) application.
Again, the Lj formulas are built up like the formulas of Lp and we will make
use of the same abbreviations. In the following we will consider extensions
of the theory EETJ + (T-IN) formulated in the language Lj.
The classes of Java will be modeled by types in explicit mathematics. Since
the Java classes may be defined by mutual recursion, i.e. class A may contain
an attribute of class B and vice versa, their interpretations have to be given
as a fixed point type in our theory of types and names. From a recursion-
theoretic perspective, we see that a fixed point of a Σ1 positive operator
form is needed in order to model these classes and such a fixed point can
be obtained by iterating the operator form ω many times, cf. Hinman [52].
Dependent choice (dc) is a principle which allows us to perform this construc-
tion in explicit mathematics. These axioms have been proposed by Jäger and
their proof-theoretic analysis has been carried out by Probst [80].

Dependent choice.

(dc.1) <(a) ∧ f ∈ (< → <)→ dc(a, f) ∈ (N→ <),

(dc.2) <(a) ∧ f ∈ (< → <)→
dc(a, f)0 ' a ∧ (∀n ∈ N)dc(a, f)(n+ 1) ' f(dc(a, f)n).

First, let us introduce some notation. By primitive recursion we can define
in EETJ + (T-IN) the usual relations < and ≤ on the natural numbers. The
ith section of U is defined by (U)i := {y | (i, y) ∈ U}. If s is a name for U ,
then (s)i represents the type (U)i. By abuse of notation, we let the formula
(s)i ∈ U stand for p0s = i∧ p1s ∈ U . The context will ensure that it is clear
how to read (s)i. Product types are defined according to the definition of
n-tupling by S1 × S2 := {(x, y) | x ∈ S1 ∧ y ∈ S2} and

S1 × S2 × · · · × Sn+1 := S1 × (S2 × · · · × Sn+1).

We define projection functions πki for k ≥ 2 and 1 ≤ i ≤ k so that

πki (s1, . . . , sk) ' si.

7.1 Fixed Point Types 97

A fixed point specification is a system of formulas of the form

(X)1 = Y11 × · · · × Y1m1

...

(X)n = Yn1 × · · · × Ynmn

where each Yij may be any type variable other than X or of the form

{x ∈ X | p0x = k1} ∪ · · · ∪ {x ∈ X | p0x = kl} ∪ {c}

for ki ≤ n and an arbitrary Lj term c. Those Yij which are just a type
variable other than X are called parameters of the specification.

Our aim is to show that for every fixed point specification there exists a
fixed point satisfying it and this fixed point can be named uniformly in the
parameters of its specification.

Assume we are given a fixed point specification as above with parameters
~Y . Then we find by elementary comprehension that there exists a closed
individual term t of Lj such that EETJ proves for all ~a whose length is equal
to the number of parameters of the specification:

1. <(~a) ∧ <(b) → <(t(~a, b)),

2. <(~a, ~Y)∧<(b,X) → ∀x(x ∈̇ t(~a, b)↔ (x)1 ∈ Y11 × · · · × Y1m1 ∨ . . .∨
(x)n ∈ Yn1 × · · · × Ynmn).

In the following we assume <(~a) and let aij denote that element of ~a which
represents Yij. The term λx.t(~a, x) is an operator form mapping names to
names. Note that it is monotonic, i.e.

b ⊂̇ c→ t(~a, b) ⊂̇ t(~a, c). (7.1)

Starting from the empty type, represented by ∅, this operation can be iterated
in order to define the stages of the inductive definition of our fixed point. To
do so, we define a function f by:

f(~a, n) ' dc(∅, λx.t(~a, x))n.

As a direct consequence of (dc.1) we find (∀n ∈ N)<(f(~a, n)). Hence, we let
J be the type represented by j(nat, λx.f(~a, x)). Making use of (T-IN) we can
prove

(∀n ∈ N)∀x((n, x) ∈ J → (n+ 1, x) ∈ J)

98 Chapter 7. A Semantics for FJ

and therefore

(∀m ∈ N)(∀n ∈ N)(m ≤ n → f(~a,m) ⊂̇ f(~a, n)). (7.2)

We define the fixed point FP := {x | (∃n ∈ N)(n, x) ∈ J}. By the uniformity
of elementary comprehension and join there exists a closed individual term
fp so that fp(~a) is a name for FP, i.e. the fixed point can be represented
uniformly in its parameters. A trivial corollary of this definition is

(∃n ∈ N)(x ∈̇ f(~a, n))↔ x ∈̇ fp(~a). (7.3)

The following theorem states that FP is indeed a fixed point of t. We employ
(s)ij ∈ U as abbreviation for p0s = i ∧ πmij (p1s) ∈ U .

Theorem 41. It is provable in EETJ + (dc) + (T-IN) that FP is a fixed point
satisfying the fixed point specification, i.e.

<(~a)→ ∀x(x ∈̇ fp(~a)↔ x ∈̇ t(~a, fp(~a))).

Proof. Assume x ∈̇ fp(~a). By (7.3) there exists a natural number n so that
x ∈̇ f(~a, n). By (7.2) we find x ∈ f(~a, n + 1) and by the definition of f we
get f(~a, n + 1) = t(~a, f(~a, n)). By (7.3) we obtain f(~a, n) ⊂̇ fp(~a) and with
(7.1) we conclude x ∈ t(~a, fp(~a)).
Next, we show ∀x(x ∈̇ t(~a, fp(~a)) → x ∈̇ fp(~a)). Let x ∈̇ t(~a, fp(~a)), i.e. we
have for all i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ mi either (x)ij ∈̇ aij or by (7.3)

(x)ij ∈ {y | (∃n ∈ N)y ∈̇ f(~a, n) ∧ p0y = k1} ∪ · · · ∪
{y | (∃n ∈ N)y ∈̇ f(~a, n) ∧ p0y = kl} ∪ {c}

depending on the specification. Since f is monotonic there exists a natural
number n so that for all i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ mi we have either
(x)ij ∈̇ aij or

(x)ij ∈ {y | y ∈̇ f(~a, n) ∧ p0y = k1} ∪ · · · ∪ {y | y ∈̇ f(~a, n) ∧ p0y = kl} ∪ {c}

depending on the specification and this implies x ∈̇ f(~a, n + 1). Hence we

conclude by (7.3) that x ∈̇ fp(~a) holds.

As we have seen in the previous chapter, we will need a least fixed point
operator in order to model Featherweight Java programs. Hence, we include
the computability axioms and the statement that everything is a natural
number to our list of axioms. The theory PTN about programming with
types and names is defined as the union of all these axioms:

PTN := EETJ + (dc) + (Comp) + ∀xN(x) + (T-IN).

7.1 Fixed Point Types 99

We adapt the definition of a monotonic operation to the typed context of
PTN. First, we are going to define order relations vT for certain types T .
As before, the meaning of s vT t is that s is smaller than t with respect to
the usual pointwise ordering of functions, e.g. we have

f vAyB g → (∀x ∈ A)(fx↓ → fx = gx).

Definition 42. Let A1, . . . , An, B1, . . . , Bn be types. Further, let T be the
type (A1 yB1) ∩ · · · ∩ (AnyBn). We define:

f v g := f↓ → f = g,

f vT g :=
∧

1≤i≤n

(∀x ∈ Ai)fxv gx,

f ∼=T g := f vT g ∧ g vT f.

Definition 43. Let T be as given in Definition 42. A function f ∈ (T → T)
is called T monotonic, if

(∀g ∈ T)(∀h ∈ T)(g vT h→ fg vT fh).

The following theorem summarizes the results of Chapter 5 in the context of
the theory PTN.

Theorem 44. There exists a closed individual term l of Lj such that we
can prove in PTN that if g ∈ (T → T) is T monotonic for T given as in
Definition 42, then

1. lg ∈ T ,

2. lg ∼=T g(lg),

3. f ∈ T ∧ gf ∼=T f → lg vT f .

Probst [80] presents a recursion-theoretic model for the system EETJ+(dc)+
(T-IN) and shows that the proof-theoretic ordinal of this theory is ϕω0, i.e.
it is slightly stronger than Peano arithmetic but weaker than Martin-Löf
type theory with one universe ML1 or the system EETJ + (Lp-IN) of explicit
mathematics with elementary comprehension, join and full induction on the
natural numbers.

It is no problem to combine this construction with the recursion-theoretic in-
terpretation of the computability axioms. Therefore, we get a model for PTN
such that computations in PTN are modeled by ordinary recursion-theoretic
functions. Moreover, this construction shows that PTN is proof-theoretically

100 Chapter 7. A Semantics for FJ

still equivalent to EETJ + (dc) + (T-IN). Hence, PTN is a predicative the-
ory, which is proof-theoretically much weaker than all the systems that are
usually used to talk about object-oriented programming, for most of these
calculi are extensions of system F, which already contains full analysis, cf.
e.g. Bruce, Cardelli and Pierce [13]. Nevertheless, PTN is sufficiently strong
to model Featherweight Java and to prove many properties of the represented
programs. In PTN we can also prove soundness of our interpretation with
respect to subtyping, typing and reductions.

7.2 Interpreting Featherweight Java

Assume we are given a program written in Featherweight Java. This consists
of a fixed class table CT and an expression e. In this section we will show
how to translate such a program into the language of types and names. This
allows us to state and prove properties of FJ programs in the theory PTN of
explicit mathematics.

We generally assume that all classes and methods occurring in our fixed class
table CT are well-typed. This means for every class C of CT we can derive
class C . . . OK by the rules for class typing and for every method m defined
in this class we can derive . . . m . . . OK IN C by the rules for method typing.

The basic types of Java such as boolean, int, . . . are not included in FJ.
However, EETJ provides a rich type structure which is well-suited to model
these basic data types, see Feferman [33] and Jäger [57]. Hence, we will
include them in our modeling of Featherweight Java.

Let ∗ be an injective mapping from all the names for classes, basic types,
fields and methods occurring in the class table CT into the numerals of Lj.
This mapping will be employed to handle the run-time type information of
FJ terms as well as to model field access and method selection.

First, we show how objects will be encoded as sequences in our theory of
types and names. Let C be a class of our class table CT with fields(C) =
D1 g1, . . . , Dn gn and let mC be the least natural number such that for all field
names gj occurring in fields(C) we have gj

∗ < mC. An object of type C will be
interpreted by a sequence (C∗, (s1, . . . , smC

)), where si is the interpretation
of the field gj if i = gj

∗ and si = 0 if there is no corresponding field. In
particular, we always have smC

= 0. Note that in this model the type of an
object is encoded in the interpretation of the object.

7.2 Interpreting Featherweight Java 101

In order to deal with the subtype hierarchy of FJ, we define a term sub such
that for all a, b ∈ N we have:

1. If a or b codes a basic type, i.e. a = A∗ for a basic type A, and a = b,
then sub(a, b) = 1.

2. If C <: D can be derived for two classes C and D, and C∗ = a as well as
D∗ = b hold, then sub(a, b) = 1.

3. Otherwise we set sub(a, b) = 0.

Since CT is finite, sub can be defined using definition by cases on the natural
numbers; recursion is not needed.

In the following, we will define a semantics for expression of Featherweight
Java. In a first step, this semantics will be given only relative to a term
invk which is used to model method invocations. Then we can define invk
in a second step as the least fixed point of a recursive equation involving all
methods occurring in our fixed class table.

We have to find a way for dealing with invalid down-casts. What should be
the value of (A) new Object() in our model, when A is a class different from
Object? In FJ the computation simply gets stuck, no more reductions will
be performed. In our model we choose a natural number ex which is not in
the range of ∗ and set the interpretation of illegal down casts to (ex, 0). This
allows us to distinguish them from other expressions using definition by cases
on the natural numbers. Hence, every time an expression gets evaluated we
can check whether one of its arguments is the result of an illegal cast. If this
is the case, then (ex, 0) will also be the value of the whole expression.

This is the reason why we will have to add run-time type information to
elements of basic types. Let us look, for example, at the constant 17 of Java
which is of type int. If it is simply modeled by the numeral 17 of Lj, then
it might happen that 17 = (ex, 0) and we could not decide whether this Lj
term indicates that an illegal down cast has occurred or whether it simply
denotes the constant 17 of Java. On the other hand, if the Java constant
17 is modeled by (int∗, 17), i.e. with run-time type information, then it is
provably different from (ex, 0).

Of course, if at some stage of a computation an invalid down cast occurs
and we obtain (ex, 0) as intermediate result, then we have to propagate it to
the end of the computation. Therefore, all of the following terms are defined
by distinguishing two cases: if none of the arguments equals (ex, 0), then
the application will be evaluated; if one of the arguments is (ex, 0), then the
result is also (ex, 0).

102 Chapter 7. A Semantics for FJ

In order to model field access, we define a term proj so that

proj i x '

{
x p0x = ex,

p0(tail i (p1x)) otherwise,

where tail is defined by primitive recursion such that

tail 1 s ' s tail (n+ 1) s ' p1(tailn s)

for all natural numbers n ≥ 1. Hence for i ≤ n and t 6= ex we have

proj i (t, (s1, . . . , sn, sn+1)) ' si.

Next, we show how to define the interpretation of the keyword new. For
every class C of our class table CT with fields(C) = D1 g1, . . . , Dn gn we find
a closed Lj term tC such that:

1. If ai↓ holds for all ai (i ≤ n) and if there is a natural number j such
that p0aj = ex, then we get tC(a1, . . . , an) = aj where j is the least
number satisfying p0aj = ex.

2. Else we find tC(a1, . . . , an) ' (C∗, (b1, . . . , bmC
)), where bi ' aj if there

exists j ≤ n with i = gj
∗ and bi = 0 otherwise.

Using definition by cases on the natural numbers we can build a term new
so that new C∗ (~s) ' tC(~s) for every class C in CT .

Again, using definition by cases we build a term cast satisfying

cast a b '

{
(ex, 0) sub(p0b, a) = 0,

b otherwise.

Now we give the translation [[e]]h of a Featherweight Java expression e into
an Lj term relative to a term h for method invocations. For a sequence
e = e1, . . . , en we write [[e]]h for [[e1]]h, . . . , [[en]]h. We assume that for every
variable x of Featherweight Java there exists a corresponding variable x of
Lj such that two different variables of FJ are mapped to different variables
of Lj. In particular, we suppose that our language Lj of types and names
includes a variable this so that [[this]]h = this.

[[x]]h := x

[[e.f]]h := proj f∗ [[e]]h

[[e.m(f)]]h := h(m∗, [[e]]h, [[f]]h)

[[new C(e)]]h := new C∗([[e]]h)

[[(C)e]]h := cast C∗ [[e]]h

7.2 Interpreting Featherweight Java 103

In the following we are going to define the term invk which models method
invocations. To this aim, we have to deal with overloading and late-binding
in explicit mathematics as in the previous chapters. Assume we are given
n natural numbers s1, . . . , sn. Using sub we build for each j ≤ n a term
minjs1,... ,sn such that for all s ∈ N we have minjs1,... ,sn(s) = 0∨minjs1,... ,sn(s) = 1

and minjs1,... ,sn(s) = 1 if and only if

sub(s, sj) = 1 ∧
∧

1≤l≤n
l 6=j

(sub(s, sl) = 1→ sub(sl, sj) = 0).

Hence, minjs1,... ,sn(s) = 1 holds if sj is a minimal element (with respect to
sub) of the set {si | sub(s, si) = 1 ∧ 1 ≤ i ≤ n}; and otherwise we have
minjs1,... ,sn(s) = 0.

We can define a term overs1,... ,sn which combines several functions f1, . . . , fn
to one overloaded function overs1,... ,sn(f1, . . . , fn) such that

overs1,... ,sn(f1, . . . , fn) (x, ~y) '



f1(x, ~y) min1
s1,... ,sn

(p0x) = 1,
...

fn(x, ~y)
minns1,... ,sn(p0x) = 1∧
i<n minis1,... ,sn(p0x) 6= 1,

x p0x = ex.

Next, we define the term r which gives the recursive equation which will
be solved by invk. Assume the method m is defined exactly in the classes
C1, . . . , Cn and mbody(m, Ci) = (xi, ei) for all i ≤ n. Assume further that xi
is x1, . . . , xz, then we can define a term ghei of Lj so that we can prove in

PTN for ~b = b1, . . . , bz:

1. If a↓ and ~b↓ hold and there exists a natural number j so that p0bj = ex,

then we get ghei(a,
~b) = bj where j is the least natural number satisfying

p0bj = ex.

2. Else we find ghei(a,
~b) ' (λthis.λ[[xi]]h.[[ei]]h)a~b.

We see that the terms ghei depend on h. Now we let the Lj term r be such
that for every method m in our class table CT we have

r h(m∗, x, ~y) ' overC∗1 ,... ,C∗n (g
h
e1
, . . . , ghen)(x, ~y). (7.4)

We define invk to be the least fixed point of r, i.e. we set invk := l · r. In
the following the interpretation of an FJ expression e will be its translation

104 Chapter 7. A Semantics for FJ

[[e]]r·invk and we will only write [[e]] for this translation of an expression e

relative to the term r · invk.

It remains to give the interpretation of Featherweight Java classes. Let
us begin with the basic types. The example of the type boolean will show
how we can use the type structure of explicit mathematics to model the
basic types of Java. If we let 0 and 1 denote “false” and “true”, then the
interpretation [[boolean]] of the basic type boolean is given by

{(boolean∗, b) | b = 0 ∨ b = 1}.

Here we see that an element x ∈ [[boolean]] is a pair whose first component
carries the run-time type information of x, namely boolean∗, and whose
second component is the actual truth value. For the Java expressions false
and true we can set

[[false]] = (boolean∗, 0) [[true]] = (boolean∗, 1).

We will interpret the classes of FJ as fixed point types in explicit mathemat-
ics satisfying the following fixed point specification. If the class table CT
contains a class named C with C∗ = i, then the following formula is included
in our specification:

(X)i = Yi1 × · · · × YimC
,

where mC is again the least natural number such that for all field names
f occurring in fields(C) we have f∗ < mC. Yij is defined according to the
following three clauses:

1. If there is a basic type D and a field name f such that D f belongs to
fields(C), then Yif∗ is equal to the interpretation of D.

2. If there is a class D and a field name f such that D f belongs to fields(C)
and E1, . . . , En is the list of all classes Ej in CT for which Ej <: D is
derivable, then

Yif∗ = {(E∗1, x) | x ∈ (X)E∗1} ∪ · · · ∪ {(E
∗
n, x) | x ∈ (X)E∗n} ∪ {(ex, 0)}.

3. If there is no field name f occurring in fields(C) such that f∗ = j, then
Yij is the universal type V, in particular we get YimC

= V.

As we have shown before, in PTN there provably exists a fixed point FP
satisfying the above specification. Since our fixed class table CT contains
only finitely many classes, we can set up the following definition for the

7.3 Soundness results 105

interpretation [[C]] of a class C: if E1, . . . , En is the list of all classes Ei in CT
for which Ei <: C is derivable, then

[[C]] = {(E∗1, x) | x ∈ (FP)E∗1} ∪ · · · ∪ {(E
∗
n, x) | x ∈ (FP)E∗n} ∪ {(ex, 0)}.

We include the value (ex, 0) to the interpretation of all classes because this
simplifies the presentation of the proofs about soundness with respect to
typing. Of course, we could exclude (ex, 0) from the above types, which
would be more natural, but then we would have to treat it as a special case
in all of the proofs.

7.3 Soundness results

In this section we will prove that our model for Featherweight Java is sound
with respect to subtyping, typing and reductions. We start with a theorem
about soundness with respect to subtyping, which is an immediate conse-
quence of the interpretation of classes.

Theorem 45. For all classes C and D of the class table with C <: D it is
provable in PTN that [[C]] ⊂ [[D]].

The soundness of the semantics with respect to the subtype relation does not
depend on the fact that a type is interpreted as the union of all its subtypes.
As the next theorem states, our model is sound with respect to subtyping if we
allow to coerce the run-time type of an object into a super type. Coercions
are operations which change the type of an object. In models of object-
oriented programming, these constructs can be used to give a semantics for
early-bound overloading, cf. Castagna, Ghelli and Longo [21, 23] or Chapter
1 of this thesis. This is achieved by coercing the type of an object into its
static type before selecting the best matching branch. In Java for example,
we find that if there are several methods with the same name but different
signatures defined in one class, then the selection of the method to be invoked
is based on the static types of the arguments, i.e. on early-binding. Note that
in Featherweight Java this form of overloading is not included.

Theorem 46. For all classes C and D with C <: D the following is provable
in PTN:

x ∈ [[C]] ∧ p0x 6= ex → (D∗, p1x) ∈ [[D]].

Proof. By induction on the length of the derivation of C <: D we show that
(FP)C∗ ⊂ (FP)D∗ . The only non-trivial case is when the following rule has

106 Chapter 7. A Semantics for FJ

been applied
CT (C) = class C extends D {. . . }

C <: D .

So we assume CT (C) = class C extends D {. . . }. By our definition of FP
we obtain

(FP)C∗ = YC∗1 × · · · × YC∗mC

and (FP)D∗ is of the form YD∗1 × · · · × YD∗mD
. By the rules for field lookup

we know that if fields(D) contains E g, then E g also belongs to fields(C).
Therefore, we have mD ≤ mC and for all i < mD we get YC∗i ⊂ YD∗i by the
fixed point specification for FP and our general assumption that class typing
is OK. Moreover, we obviously have

YC∗mD
× · · · × YC∗mC

⊂ YD∗mD
= V.

Therefore, we conclude that the claim holds.

Before proving soundness with respect to typing, we have to show some
preparatory lemmas.

Definition 47. If D is the list D1, . . . , Dn, then [[D]] stands for [[D1]]×· · ·× [[Dn]];
and if e = e1, . . . en, then [[e]]h ∈ [[D]] means

([[e1]]h, . . . , [[en]]h) ∈ [[D1]]× · · · × [[Dn]].

For Γ = x1 : D1, . . . , xn : Dn we set

[[Γ]]h := [[x1]]h ∈ [[D1]] ∧ · · · ∧ [[xn]]h ∈ [[Dn]].

Definition 48. We define the type T to be the intersection of all the types

({m∗} × [[C]]× [[D]])y [[B]]

for all methods m and for all classes C occurring in CT with mtype(m, C) =
D→ B.

Lemma 49. If Γ ` e ∈ C is derivable in FJ, then we can prove in PTN that
h ∈ T implies

[[Γ]]h ∧ [[e]]h↓ → [[e]]h ∈ [[C]].

Proof. Proof by induction on the length of the derivation of Γ ` e ∈ C. We
assume [[Γ]]h∧ [[e]]h↓ and distinguish the different cases for the last rule in the
derivation of Γ ` e ∈ C:

7.3 Soundness results 107

1. Γ ` x ∈ Γ(x): trivial.

2. Γ ` e.fi ∈ Ci: [[e.fi]]h↓ implies [[e]]h↓ by strictness. Hence, we get
by the induction hypothesis [[e]]h ∈ [[C0]] and fields(C0) = C f. By the
definition of [[C0]] this yields proj f∗i [[e]]h ∈ [[Ci]]. Finally we conclude by
proj f∗i [[e]]h ' [[e.fi]]h that the claim holds.

3. Γ ` e0.m(e) ∈ C: by the induction hypothesis and Theorem 45 we
obtain [[e]]h ∈ [[C]] ⊂ [[D]] and [[e0]]h ∈ [[C0]]. Moreover, we have

mtype(m, C0) = D→ C.

Hence, we conclude by h ∈ T and [[e0.m(e)]]h ' h(m∗, [[e0]]h, [[e]]h) that
the claim holds.

4. Γ ` new C(e) ∈ C: by the induction hypothesis and Theorem 45 we
have [[e]]h ∈ [[C]] ⊂ [[D]]. Further we know fields(C) = D f. Therefore, the
claim holds by the definition of new.

5. If the last rule was an upcast, then the claim follows immediately from
the induction hypothesis, the definition of the term cast and Theorem
45.

6. Assume the last rule was a downcast or a stupid cast. By the induction
hypothesis we get [[e]]h ∈ [[D]]. Then D 6<: C implies sub(p0[[e]]h, C

∗) = 0
and by the definition of cast we get [[(C)e]]h ' (ex, 0). Hence, the claim

holds.

Lemma 50. If Γ ` e ∈ C is derivable in FJ, then we can prove in PTN that
g, h ∈ T and g vT h imply [[Γ]]g ∧ [[e]]g↓ → [[e]]g = [[e]]h.

Proof. Proof by induction on the length of the derivation of Γ ` e ∈ C.
Assume [[Γ]]g and [[e]]g↓ hold. We distinguish the following cases:

1. Γ ` x ∈ Γ(x): trivial.

2. Γ ` e0.fi ∈ Ci: we know Γ ` e0 ∈ C0. Hence, we get by the induction
hypothesis [[e0]]g = [[e0]]h and therefore the claim holds.

3. Γ ` e0.m(e) ∈ C: we get Γ ` e0 ∈ C0, Γ ` e ∈ C and

mtype(m, C0) = D→ C as well as C <: D. (7.5)

Because of [[e]]g↓ we get [[e0]]g↓ and [[e]]g↓. Hence, the induction hypoth-
esis yields [[e0]]g = [[e0]]h as well as [[e]]g = [[e]]h. By Lemma 49 we get

108 Chapter 7. A Semantics for FJ

[[Γ]]g ` [[e0]]g ∈ [[C0]], [[Γ]]g ` [[e]]g ∈ [[C]] as well as [[Γ]]g ` [[e]]g ∈ [[C]]. With
(7.5), g ∈ T , h ∈ T and g vT h we conclude

[[e0.m(e)]]g = g(m∗, [[e0]]g, [[e]]g)

= h(m∗, [[e0]]h, [[e]]h)

= [[e0.m(e)]]h

4. Γ ` new C(e) ∈ C: as in the second case, the claim follows immediately
from the induction hypothesis.

5. If the last rule was a cast, then again the claim is a direct consequence
of the induction hypothesis.

Lemma 51. In PTN it is provable that r ∈ (T → T).

Proof. Assume h ∈ T and let (m∗, c, ~d) ∈ ({m∗} × [[C0]]× [[D]]) for a method m

and classes C0, D, C with mtype(m, C0) = D→ C. We have to show

rh(m∗, c, ~d)↓ → rh(m∗, c, ~d) ∈ [[C]].

So assume rh(m∗, c, ~d)↓. By (7.4) we find

rh(m∗, c, ~d) = overC∗1 ,... ,C∗n (g
h
e1
, . . . , ghen)(c, ~d).

Hence, if c = (ex, 0) then we obtain rh(m∗, c, ~d) = (ex, 0) and the claim holds.
If c 6= (ex, 0) then we get sub(p0c, C0) = 1. By our interpretation of classes,
there exists a class B such that B <: C0, p0c = B∗ as well as c ∈ [[B]]. Let
mbody(m, B) = (xi, ei). Hence we have

r h (m∗, c, ~d) = ghei(c,
~d) = [[ei]]h[c/this, ~d/~xi]. (7.6)

By the rules for method body lookup there is a class A such that B <: A <: C0

and the method m is defined in A by the expression ei. By our general
assumption that method typing is OK we obtain

x : D, this : A ` ei ∈ E0 E0 <: C. (7.7)

By Theorem 45 we get c ∈ [[A]] and therefore, we conclude by h ∈ T , (7.6),

Lemma 49 and (2.1) that rh(m∗, c, ~d) ∈ [[C]] holds.

7.3 Soundness results 109

Lemma 52. In PTN it is provable that invk ∈ T .

Proof. We have defined invk as l·r. Lemma 51 states r ∈ (T → T). Therefore
it remains to show that r is T monotonic. Let g, h ∈ T such that g vT h.
We have to show r g vT r h. That is we show for all methods m and classes
C0, D and C with mtype(m, C0) = D→ C

(∀x ∈ {m∗} × [[C0]]× [[D]])r g xv r hx.

Let (m∗, c, ~d) ∈ {m∗} × [[C0]]× [[D]] and r g (m∗, c, ~d)↓. It remains to show

r g(m∗, c, ~d) = r h (m∗, c, ~d). (7.8)

As in Lemma 51 we find r g (m∗, c, ~d) = [[ei]]g[c/this, ~d/~xi] for some i and

we have to show that this is equal to [[ei]]h[c/this, ~d/~xi]. By (7.7), which
was a consequence of our general assumption that method typing is OK and
Lemma 50 we find x ∈ [[D]] ∧ this ∈ [[C0]]→ [[ei]]g = [[ei]]h. Hence, by (2.1) we
obtain

[[ei]]g[c/this, ~d/~xi] = [[ei]]h[c/this, ~d/~xi]

and we finally conclude that (7.8) holds.

The next theorem states that our model is sound with respect to typing.

Theorem 53. If Γ ` e ∈ C is derivable in FJ, then in PTN it is provable
that

[[Γ]] ∧ [[e]]↓ → [[e]] ∈ [[C]].

Proof. By the previous lemma we obtain invk ∈ T and therefore r · invk ∈ T
by Lemma 51. Then we apply Lemma 49 in order to verify our claim.

As we have seen in Example 38 we cannot prove soundness with respect to
reductions of our model construction for the original notion of reduction of
Featherweight Java. The reason is that FJ does not enforce a call-by-value
evaluation strategy whereas theories of types and names adopt call-by-value
evaluation via their strictness axioms. Moreover, Examples 39 and 40 show
that we also have to take care of exceptions and the role of late-binding.
Let −→′ be the variant of the reduction relation −→ with a call-by-value
evaluation strategy which respects exceptions.

Definition 54. Let a and b be two FJ expressions. We define the reduction
relation −→′ by induction on the structure of a: a −→′ b if and only if
a −→ b, where all subexpressions of a are in closed normal form with respect
to −→′ and a does not contain subexpressions like (D)new C(e) with C 6<: D.

110 Chapter 7. A Semantics for FJ

As shown in Example 40 the following lemma can only be established for
closed expressions in normal form.

Lemma 55. Let e be a well-typed Featherweight Java expression in closed
normal form with respect to −→′. Then in PTN it is provable that [[e]]↓.
Moreover, if e is not of the form (D)new C(e) with C 6<: D and does not contain
subexpressions of this form, then it is provable in PTN that p0[[e]] 6= ex.

Proof. Let e be a well-typed closed FJ expression in normal form. First, we
prove by induction on the structure of e that one of the following holds: e

itself is of the form (D)new C(e) with C 6<: D or it contains a subexpression of
this form or e does not contain such subexpressions and e is new C(e) for a
class C and expressions e. We distinguish the five cases for the structure of
e as given by the syntax for expressions.

1. x. This is not possible since e is a closed term.

2. e0.f. The induction hypothesis applies to e0. In the first two cases we
obtain that e contains a subexpression of the form (D)new C(e) with
C 6<: D. In the last case we get by Theorem 37 that e cannot be in
normal form.

3. e0.m(e). Similar to the previous case.

4. new C(e). The induction hypothesis applies to e. Again, we obtain
in the first two cases that e contains a subexpression of the form
(D)new C(e) with C 6<: D. In the last case we also see that e fulfils
the conditions of the last case.

5. (C)e0. We apply the induction hypothesis and infer that e must satisfy
condition one or two since it is in normal form.

Now, we know that e satisfies one of the three conditions above. In the first
two cases we obtain by induction on the structure of e that [[e]] = (ex, 0). If
the first two cases do not apply, then e is only built up of new expressions and
we can prove by induction on the structure of e that [[e]]↓ and p0[[e]] 6= ex.

Lemma 56. For all FJ expressions e, d and variables x it is provable in
PTN that [[e]][[[d]]/[[x]]] ' [[e[d/x]]].

Proof. We proceed by induction on the term structure of e. The following
cases have to be distinguished.

1. e is a variable, then the claim obviously holds.

7.3 Soundness results 111

2. e is of the form e0.g. We have [[e0.g]][[[d]]/[[x]]] ' (proj g∗ [[e0]])[[[d]]/[[x]]].
Since none of the variables of [[x]] occur freely in proj or g∗ we get
proj g∗ ([[e0]][[[d]]/[[x]]]). This is equal to proj g∗ ([[e0[d/x]]]) by the induc-
tion hypothesis and we finally obtain [[e0.g[d/x]]].

3. e is of the form e0.m(e). We have

[[e0.m(e)]][[[d]]/[[x]]] ' (r invk (m∗, [[e0]], [[e]]))[[[d]]/[[x]]].

Again, since none of the variables of [[x]] occur freely in r invk or in m∗

this is equal to r invk (m∗, [[e0]][[[d]]/[[x]]], [[e]][[[d]]/[[x]]]). By the induction
hypothesis we obtain r invk (m∗, [[e0[d/x]]], [[e[d/x]]]), and finally we get
[[e0.m(e)[d/x]]].

4. e is of the form new C(e). We have

[[new C(e)]][[[d]]/[[x]]] ' (new C∗([[e]]))[[[d]]/[[x]]].

Again this is equal to new C∗([[e]][[[d]]/[[x]]]) which is by the induction
hypothesis new C∗([[e[d/x]]]). Finally we obtain [[new C(e)[d/x]]].

5. e is of the form (C)e0. We obtain

[[(C)e0]][[[d]]/[[x]]] ' cast C∗([[e0]][[[d]]/[[x]]]).

By the induction hypothesis this is equal to

cast C∗ [[e0[d/x]]] ' [[(C)e0[d/x]]].

Now we prove soundness with respect to call-by-value reductions.

Theorem 57. Let g, h be two FJ expressions so that g is well-typed and
g −→′ h is derivable in FJ, then in PTN it is provable that [[g]] ' [[h]].

Proof. We distinguish the three different rules for computations.

1. g is of the form (new C(e)).fi and fields(C) = C f. We obtain

[[(new C(e)).fi]] ' proj f∗i [[new C(e)]].

By the definition of new this is equal to proj f∗i (tC[[e]]). For g −→′ h,
we know that all subexpressions of g are closed, fully evaluated and not
of the form (D)new C(e) with C 6<: D. Hence we obtain by the Lemma
55 that p0[[e]] 6= ex holds and therefore proj f∗i (tC[[e]]) ' [[ei]].

112 Chapter 7. A Semantics for FJ

2. g is of the form (new C(e)).m(d) and mbody(m, C) = (x, e0). Assume that
the method m is defined in the classes C1, . . . , Cn and not defined in any
other class. Now we show by induction on the length of the derivation
of mbody(m, C) = (x, e0) that there exists a k such that 1 ≤ k ≤ n,

minkC∗1,... ,C∗n(C∗) = 1
∧
l<k

minlC∗1,... ,C∗n(C∗) 6= 1 (7.9)

and

mbody(m, C) = mbody(m, Ck). (7.10)

If m is defined in C, then there exists a k in 1, . . . , n so that C = Ck.
Hence (7.9) and (7.10) trivially hold. If m is not defined in C, then
C extends a class B with mbody(m, B) = (x, e0). In this case we have
mbody(m, C) = mbody(m, B). Therefore (7.9) and (7.10) follow by the
induction hypothesis.

We have assumed that (new C(e)).m(d) is well-typed. Therefore we
get that new C(e) and d are well-typed. Let B be the type satisfying
mbody(m, C) = mbody(m, B) so that m is defined in B. We find C <: B.
Furthermore, let the types D be such that d ∈ D. The expressions e, d
are in closed normal form and hence we obtain by Lemma 55, Theorem
53 and Theorem 45

[[new C(e)]]r invk ∈ [[B]] [[d]]r invk ∈ [[D]]. (7.11)

By our general assumption that method typing is OK we obtain

x : D, this : B ` e0 ∈ E0.

Hence applying Lemma 50 with r invk∼=T invk yields

[[x]]invk ∈ [[D]] ∧ [[this]]invk ∈ [[B]]→ [[e0]]invk ' [[e0]]r invk. (7.12)

Summing up, we get by (7.11), (7.12) and (2.1)

[[(new C(e)).m(d)]]r invk ' r invk (m∗, [[new C(e)]]r invk, [[d]]r invk)

' [[e0]]invk[[[new C(e)]]r invk/this, [[d]]r invk/[[x]]]

' [[e0]]r invk[[[new C(e)]]r invk/this, [[d]]r invk/[[x]]].

In view of Lemma 56 this is partially equal to

[[e0[new C(e)/this, d/x]]]r invk.

3. g is of the form (D)(new C(e)) and C <: D. We have sub(C∗, D∗) = 1 and
therefore

[[(D)(new C(e))]] ' [[new C(e)]].

7.4 Discussion and Remarks 113

7.4 Discussion and Remarks

Usually, denotational semantics are given in domain-theoretic notions. In
such a semantics one has to include to each type an element ⊥ which de-
notes the result of a non-terminating computation of this type, see for in-
stance Alves-Foss and Lam [3]; whereas our recursion-theoretic model has
the advantage that computations are interpreted as ordinary computations.
This means we work with partial functions, which possibly do not yield a
result for certain arguments, i.e. computations may really not terminate. In
our opinion this model is very natural and captures well our intuition about
non-termination.

In this section we have presented a predicative model of Featherweight Java.
To be more precise, we have interpreted FJ in the theory PTN of explicit
mathematics. As mentioned before, PTN is only slightly stronger than Peano
arithmetic. However, we have completely left open the question whether we
really need its full power. A careful analysis of our interpretation might re-
veal that this is not the case. In our construction we employ type-induction
to prove Theorem 44 about the least fixed point operator as well as to
prove that there are fixed points satisfying our specifications, cf. Theorem 41.
Hence, comprehension is used in these induction arguments; and moreover it
is needed to model the basic types of Java.

There are two interesting questions in this context: how much induction
really is necessary for our construction and is it essential that we have full
elementary comprehension and dependent choice available? Maybe one could
rebuild our model with a restricted form of elementary comprehension, for
example with some kind of Σ+ comprehension. This could lead to an in-
terpretation of FJ in a system with the proof-theoretic strength of Peano
arithmetic or even primitive recursive arithmetic.

As already pointed out by Castagna, Ghelli and Longo [24] the dynamic def-
inition of new classes is one of the main problems when overloaded functions
are used to define methods. Indeed, in our semantics we assumed a fixed
class table, i.e. the classes are given from the beginning and they will not
change. An important goal would be to investigate an overloading based
semantics for object-oriented programs with dynamic class definitions.

One approach to solve this problem is to consider an object model with
encapsulated multi-methods, cf. Bruce, Cardelli, Castagna, the Hopkins Ob-
jects Group, Leavens and Pierce [12]. In this model, multi-methods are not
defined as global functions, but the idea is to use them to define the bodies of
some methods in a class definition, cf. Castagna [20]. Hence, this model can

114 Chapter 7. A Semantics for FJ

be seen as a marriage of the “object as records” analogy and an overloading
based object model: an object is modeled by a record which encapsulates all
the methods defined for this object. However, these methods are not modeled
by ordinary functions, but by overloaded ones. Hence, overriding a method
in a subclass is basically achieved by adding a new branch to the correspond-
ing multi-method (which is encapsulated in the subclass). Unfortunately, it
seems that this object model has not been further analyzed, although we
think that it offers a very elegant and promising way to deal with covariant
method specialization.

Epilogue

It would appear that we have reached the limits of what
is possible to achieve with computer technology although
one should be careful with such statements, as they tend
to sound pretty silly in 5 years.

John von Neuman

Grau, teurer Freund, ist alle Theorie,
Und grün des Lebens goldner Baum.

Mephistopheles in Goethe’s Faust

At the start of this thesis, we had a new object model which was based
on overloading and late-binding instead of encapsulation. The question of its
mathematical meaning is rather subtle and it was not known how a semantics
for late-bound overloading looks like. We have investigated these questions
using systems of explicit mathematics. Although originally designed for the
study of constructive mathematics, these systems turned out to be a powerful
and highly expressive tool for analyzing programming language concepts.

Castagna [21] proposed to interpret terms as pairs (type symbol, compu-
tation) in order to get a denotational semantics for overloading and late-
binding. However, it was not known how to actually construct such a model.
We have solved this problem by means of theories of types and names. In
such systems, the types are represented by names, which are first order values.
Hence, they can be used as arguments to functions and therefore, theories
of types and names have type dependent computations naturally built in.
In their most general form, overloading and late-binding imply a new form
of impredicativity. We have analyzed these impredicativity phenomena us-
ing power types in explicit mathematics. Additionally, this provides a first
example of an application of power types in systems of explicit mathematics.

Our investigation of overloading and late-binding has illuminated some deli-
cate issues. One of those issues is the relationship between late-binding and
the problem of loss of information. We have found that our explicit model-
ing of type-dependent computations yields a solution to this problem for free.

115

116 Epilogue

Moreover, we have seen that overloading in explicit mathematics gives rise
to new models for second order λ calculi. They solve the problem of “too
many subtypes” not by restricting the universe of types but by including
overloaded functions. This indicates that systems of types and names are an
appropriate framework for a further study of parametric polymorphism in
the context of type-dependent computations.

We have applied our mathematical work on overloading and late-binding
also to get a semantics for Featherweight Java. Usually, the research on
Java’s semantics takes an operational approach; and if a denotational se-
mantics for object-oriented principles is presented, then it is often given in
domain-theoretic notions. In contrast to that work, we have investigated a
denotational semantics for Featherweight Java which is based on recursion-
theoretic concepts. Hence, we look at models for Java, and object-oriented
programming languages in general, from a new and more mathematical point
of view.

To this aim, an applicative theory which allows to define a least fixed point
operator had to be developed. We have obtained a proof-theoretically weak
but highly expressive theory for representing object-oriented programs and
for stating and proving many properties of them. Our theory is similar to the
systems studied by Feferman [33, 34, 35] and Turner [101, 102] for functional
programming. However, due to the fact that a least fixed point operator is
definable in our theory, it is provable that certain recursive programs will not
terminate. This is not the case in the systems of Feferman and Turner.

We have formalized our semantics in a predicative theory of types and names,
thereby providing constructive foundations for Featherweight Java. This
gives further evidence for Feferman’s claim that impredicative assumptions
are not needed for computational practice, a claim which has, up to now,
only been verified for polymorphic functional programs. Our work shows that
Feferman’s claim also holds in the context of object-oriented programming.

Since Featherweight Java is the functional core of the Java language, this
thesis also contributes to the ongoing research on extensions of Java com-
bining aspects of functional and object-oriented programming. The concept
of mixins or parametric heir classes, for example, originates from Common
Lisp. Variants of Java featuring mixins have been recently studied by An-
cona, Lagorio and Zucca [5] as well as by Flatt, Krishnamurthi and Felleisen
[44]. We think that it is worthwhile to study the mathematical meaning of
such new combinations of programming language concepts from the point of
view of explicit mathematics.

Taking this all together, we see that Mephistopheles (see page 115) was com-

Epilogue 117

pletely misled in his statement about theory. We believe that our work is a
good starting point for further investigations on the semantics of program-
ming language concepts, and that the use of theories of types and names will
remain a fruitful approach to understanding object-oriented programming.

Bibliography

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese,
Elmar Habermalz, Reiner Hähnle, Wolfram Menzel, and Peter H.
Schmitt. The KeY approach: integrating object oriented design and
formal verification. In Gerhard Brewka and Lúıs Moniz Pereira, edi-
tors, Proc. 8th European Workshop on Logics in AI (JELIA), Lecture
Notes in Artificial Intelligence. Springer, 2000.

[3] Jim Alves-Foss and Fong Shing Lam. Dynamic denotational semantics
of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
volume 1523 of Lecture Notes in Computer Science, pages 201–240.
Springer, 1999.

[4] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-
Calculi. Cambrigde University Press, 1998.

[5] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam: A smooth
extension of Java with mixins. In E. Bertino, editor, ECOOP 2000
- 14th European Conference on Object-Oriented Programming, volume
1850 of Lecture Notes in Computer Science. Springer, 2000.

[6] Davide Ancona and Elena Zucca. A module calculus for Featherweight
Java. Submitted.

[7] Hendrik Barendregt. The Lambda Calculus. North-Holland, revised
edition, 1984.

[8] Michael J. Beeson. Foundations of Constructive Mathematics: Meta-
mathematical Studies. Springer, 1985.

[9] Michael J. Beeson. Proving programs and programming proofs. In
R. Barcan Marcus, G.J.W. Dorn, and P. Weingartner, editors, Logic,
Methodology and Philosophy of Science VII, pages 51–82. North-
Holland, 1986.

119

120 Bibliography

[10] Egon Börger, Joachim Schmid, Wolfram Schulte, and Robert Stärk.
Java and the Java Virtual Machine. Lecture Notes in Computer Sci-
ence. Springer, 2000. to appear.

[11] Kim B. Bruce. A paradigmatic object-oriented programming language:
design, static typing and semantics. Journal of Functional Program-
ming, 4(2):127–206, 1994.

[12] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Ob-
jects Group, Gary T. Leavens, and Benjamin C. Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3):221–242, 1996.

[13] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing
object encodings. Information and Computation, 155:108–133, 1999.

[14] Kim B. Bruce and Giuseppe Longo. A modest model of records, inher-
itance, and bounded quantification. In C. Gunter and J. Mitchell, edi-
tors, Theoretical Aspects of Object-Oriented Programming, pages 151–
195. MIT Press, 1994. First appeared in Information and Compuation,
87:196–240, 1990.

[15] Andrea Cantini. Relating Quine’s NF to Feferman’s EM. Studia Logica,
62:141–163, 1999.

[16] Luca Cardelli. A semantics of multiple inheritance. Information and
Computation, 76(2–3):138–164, 1988.

[17] Luca Cardelli. Operationally sound update, 1995. Slides to the HOOTS
’95 talk, available via http://www.luca.demon.co.uk/Slides.html.

[18] Luca Cardelli and John C. Mitchell. Operations on records. In
C. Gunter and J. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming, pages 295–350. MIT Press, 1994. First ap-
peared in Mathematical Structures in Computer Science, 1:3–48, 1991.

[19] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. Computing Surveys, 17(4):471–522,
1985.

[20] Giuseppe Castagna. Covariance and contravariance: conflict without
a cause. ACM Transactions on Programming Languages and Systems,
17(3):431–447, 1995.

[21] Giuseppe Castagna. Object-Oriented Programming: A Unified Foun-
dation. Birkhäuser, 1997.

Bibliography 121

[22] Giuseppe Castagna. Unifying overloading and λ-abstraction: λ{}. The-
oretical Computer Science, 176:337–345, 1997.

[23] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A seman-
tics for λ&-early: a calculus with overloading and early binding. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and Ap-
plications, volume 664 of Lecture Notes in Computer Science, pages
107–123. Springer, 1993.

[24] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for
overloaded functions with subtyping. Information and Computation,
117(1):115–135, 1995.

[25] Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin
Wirsing. An event-based structural operational semantics of multi-
threaded Java. In J. Alves-Foss, editor, Formal Syntax and Semantics
of Java, volume 1523 of Lecture Notes in Computer Science, pages
157–200. Springer, 1999.

[26] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is
not subtyping. In Proc. 17th ACM Symp. Principles of Programming
Languages. ACM Press, New York, 1990.

[27] Haskell Curry, James Hindley, and Jonathan Seldin. Combinatory
Logic, volume II. North-Holland, 1972.

[28] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is the
Java type system sound? Theory and practice of object systems, 5(1):3–
24, 1999.

[29] Solomon Feferman. A language and axioms for explicit mathematics.
In J.N. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes
in Mathematics, pages 87–139. Springer, 1975.

[30] Solomon Feferman. Recursion theory and set theory: a marriage of
convenience. In J. E. Fenstad, R. O. Gandy, and G. E. Sacks, edi-
tors, Generalized Recursion Theory II, Oslo 1977, pages 55–98. North
Holland, 1978.

[31] Solomon Feferman. Constructive theories of functions and classes. In
M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium
’78, pages 159–224. North Holland, 1979.

122 Bibliography

[32] Solomon Feferman. Iterated inductive fixed-point theories: applica-
tion to Hancock’s conjecture. In G. Metakides, editor, Patras Logic
Symposion, pages 171–196. North Holland, 1982.

[33] Solomon Feferman. Polymorphic typed lambda-calculi in a type-free
axiomatic framework. In W. Sieg, editor, Logic and Computation,
volume 106 of Contemporary Mathematics, pages 101–136. American
Mathematical Society, 1990.

[34] Solomon Feferman. Logics for termination and correctness of functional
programs. In Y. N. Moschovakis, editor, Logic from Computer Science,
volume 21 of MSRI Publications, pages 95–127. Springer, 1991.

[35] Solomon Feferman. Logics for termination and correctness of functional
programs II: Logics of strength PRA. In P. Aczel, H. Simmons, and S. S.
Wainer, editors, Proof Theory, pages 195–225. Cambridge University
Press, 1992.

[36] Solomon Feferman. A new approach to abstract data types II: com-
putation on ADTs as ordinary computations. In E. Börger, G. Jäger,
H. Kleine Büning, and M. M. Richter, editors, Computer Science Logic
’91, volume 626 of Lecture Notes in Computer Science, pages 79–95.
Springer, 1992.

[37] Solomon Feferman. Definedness. Erkenntnis, 43:295–320, 1995.

[38] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part I. Annals of Pure and Applied
Logic, 65(3):243–263, 1993.

[39] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part II. Annals of Pure and Applied
Logic, 79(1):37–52, 1996.

[40] Solomon Feferman, Gerhard Jäger, and Thomas Strahm. Explicit
Mathematics. In preparation.

[41] Matthias Felleisen and Daniel P. Friedman. A Little Java, A Few
Patterns. MIT Press, 1998.

[42] Simon Finn and Michael P. Fourman. Logic Manual for the LAMBDA
System 3.2. Abstract Hardware Ltd., November 1990.

Bibliography 123

[43] Marcello Fiore, Achim Jung, Eugenio Moggi, Peter O’Hearn, Jon
Riecke, Giuseppe Rosolini, and Ian Stark. Domains and denotational
semantics: history, accomplishments and open problems. Bulletin of
the European Association for Theoretical Computer Science, 59:227–
256, 1996.

[44] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A
programmer’s reduction semantics for classes and mixins. Technical
report, Rice University, 1999. Corrected Version, original in J. Alvess-
Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of
Lecture Notes in Computer Science, pages 241–269, Springer, 1999.

[45] Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the
LAMBDA System 3.2. Abstract Hardware Ltd., 1990.

[46] Giorgio Ghelli. A static type system for late binding overloading. In
A. Paepcke, editor, Proc. of the Sixth International ACM Conference
on Object-Oriented Programming Systems and Applications, pages 129–
145. Addison-Wesley, 1991.

[47] Jean-Yves Girard. Interpretation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse de doctorad d’état,
Université de Paris VII, 1972.

[48] Thomas Glass. On power set in explicit mathematics. The Journal of
Symbolic Logic, 61(2):468–489, 1996.

[49] James Gosling, Bill Joy, and Guy Steele. The Java Lan-
guage Specification. Addison Wesley, 1996. Also available via
http://java.sun.com/docs/.

[50] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-
Oriented Programming. MIT Press, 1994.

[51] James Hindley and Jonathan Seldin. Introduction to Combinators and
λ-calculus. Cambridge University Press, 1986.

[52] Peter G. Hinman. Recursion-Theoretic Hierarchies. Springer, 1978.

[53] Atsushi Igarashi and Benjamin Pierce. On inner classes. In Informal
Proceedings of the Seventh Internatianal Workshop on Foundations of
Object-Oriented Languages (FOOL), 2000.

124 Bibliography

[54] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In Object Oriented
Programming: Systems, Languages and Applications (OOPSLA ’99),
volume 34 of ACM SIGPLAN Notices, pages 132–146, 1999.

[55] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van
Berkum, Ulrich Hensel, and Hendrik Tews. Reasoning about Java
classes (preliminary report). In Object Oriented Programming: Sys-
tems, Languages and Applications (OOPSLA ’98), volume 33 of ACM
SIGPLAN Notices, pages 329–340, 1998.

[56] Gerhard Jäger. Induction in the elementary theory of types and names.
In E. Börger, H. Kleine Büning, and M.M. Richter, editors, Computer
Science Logic ’87, volume 329 of Lecture Notes in Computer Science,
pages 118–128. Springer, 1988.

[57] Gerhard Jäger. Type theory and explicit mathematics. In H.-D.
Ebbinghaus, J. Fernandez-Prida, M. Garrido, M. Lascar, and M. Ro-
driguez Artalejo, editors, Logic Colloquium ’87, pages 117–135. North-
Holland, 1989.

[58] Gerhard Jäger. Applikative Theorien und explizite Mathematik. Tech-
nical Report IAM 97-001, Institut für Informatik und angewandte
Mathematik, Universität Bern, 1997.

[59] Gerhard Jäger. Power types in explicit mathematics? The Journal of
Symbolic Logic, 62(4):1142–1146, 1997.

[60] Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative
theories. In A. Cantini, E. Casari, and P. Minari, editors, Logic and
Foundations of Mathematics, pages 83–92. Kluwer, 1999.

[61] Gerhard Jäger, Reinhard Kahle, and Thomas Studer. Universes in
explicit mathematics. To appear in Annals of Pure and Applied Logic.

[62] Gerhard Jäger and Thomas Strahm. Totality in applicative theories.
Annals of Pure and Applied Logic, 74:105–120, 1995.

[63] Gerhard Jäger and Thomas Studer. Extending the system T0 of explicit
mathematics: the limit and Mahlo axioms. Submitted.

[64] Neil Jones. Computability and Complexity. MIT Press, 1997.

Bibliography 125

[65] Reinhard Kahle. Einbettung des Beweissystems Lambda in eine The-
orie von Operationen und Zahlen. Diploma thesis, Mathematisches
Institut der Universität München, 1992.

[66] Reinhard Kahle. Applikative Theorien und Frege-Strukturen. PhD the-
sis, Institut für Informatik und angewandte Mathematik, Universität
Bern, 1997.

[67] Reinhard Kahle and Thomas Studer. Formalizing non-termination of
recursive programs. Submitted.

[68] Reinhard Kahle and Thomas Studer. A theory of explicit mathematics
equivalent to ID1. In P. Clote and H. Schwichtenberg, editors, Computer
Science Logic CSL 2000, volume 1862 of Lecture Notes in Computer
Science, pages 356–370. Springer, 2000.

[69] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-
oriented languages. In C. A. Gunter and J. C. Mitchell, editors, The-
oretical Aspects of Object-Oriented Programming, pages 463–496. MIT
Press, 1994.

[70] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill,
1974.

[71] Markus Marzetta. Predicative Theories of Types and Names. PhD the-
sis, Institut für Informatik und angewandte Mathematik, Universität
Bern, 1993.

[72] John C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[73] Yiannis Moschovakis. Elementary Induction on Abstract Structures.
North-Holland, 1974.

[74] Tobias Nipkow and David von Oheimb. Java`ight is type-safe — def-
initely. In Proc. 25th ACM Symp. Principles of Programming Lan-
guages. ACM Press, New York, 1998.

[75] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming
in Martin-Löf ’s Type Theory. Oxford University Press, 1990.

[76] Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland,
1989.

126 Bibliography

[77] David von Oheimb. Axiomatic semantics for Java`ight. In
S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller, and
A. Poetzsch-Heffter, editors, Formal Techniques for Java Programs.
Fernuniversität Hagen, 2000.

[78] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foun-
dations for object-oriented programming. Journal of Functional Pro-
gramming, 4(2):207–247, 1994.

[79] Wolfram Pohlers. Proof Theory, volume 1407 of Lecture Notes in Math-
ematics. Springer, 1989.

[80] Dieter Probst. Dependent choice in explicit mathematics. Diploma the-
sis, Institut für Informatik und angewandte Mathematik, Universität
Bern, 1999.

[81] Dieter Probst and Thomas Studer. How to normalize the jay. To appear
in Theoretical Computer Science.

[82] Chris Reade. Elements of Functional Programming. Addison-Wesley,
1989.

[83] John C. Reynolds. Towards a theory of type structure. In Programming
Symposium: Proc. of Colloque sur la Programmation, volume 19 of
Lecture Notes in Computer Science, pages 408–425. Springer, 1974.

[84] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, 1967.

[85] David Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[86] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Manuscript, 1969. Later published in Theoretical Computer
Science, 121:411–440,1993.

[87] Dana S. Scott. Identity and existence in intuitionistic logic. In M. Four-
man, C. Mulvey, and D. Scott, editors, Applications of Sheaves, volume
753 of Lecture Notes in Mathematics, pages 660–696. Springer, 1979.

[88] Robert Stärk. Call-by-value, call-by-name and the logic of values. In
D. van Dalen and M. Bezem, editors, Computer Science Logic ’96,
volume 1258 of Lecture Notes in Computer Science, pages 431–445.
Springer, 1997.

Bibliography 127

[89] Robert Stärk. Why the constant ‘undefined’? Logics of partial terms
for strict and non-strict functional programming languages. Journal of
Functional Programming, 8(2):97–129, 1998.

[90] Christopher Strachey. Fundamental concepts in programming lan-
guages, 1967. Notes for the International Summer School in Computer
Programming, Copenhagen.

[91] Thomas Strahm. Partial applicative theories and explicit substitutions.
Journal of Logic and Computation, 6(1):55–77, 1996.

[92] Thomas Studer. A semantics for λ
{}
str: a calculus with overloading and

late-binding. To appear in Journal of Logic and Computation.

[93] Thomas Studer. Impredicative overloading in explicit mathematics.
Submitted.

[94] Thomas Studer. Constructive Foundations for Featherweight Java.
Submitted.

[95] Don Syme. Proving Java type soundness. In J. Alves-Foss, editor,
Formal Syntax and Semantics of Java, volume 1523 of Lecture Notes
in Computer Science, pages 83–118. Springer, 1999.

[96] Makoto Tatsuta. Realizability for constructive theory of functions and
classes and its application to program synthesis. In Proceedings of
Thirteenth Annual IEEE Symposium on Logic in Computer Science,
LICS ’98, pages 358–367, 1998.

[97] Anne Sjerp Troelstra. Metamathematical Investigations of Intuition-
istic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathe-
matics. Springer, 1973.

[98] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathe-
matics, vol I. North Holland, 1988.

[99] Hideki Tsuiki. A Record Calculus with a Merge Operator. PhD thesis,
Keio University, 1992.

[100] Hideki Tsuiki. A computationally adequate model for overloading via
domain-valued functors. Mathematical Structures in Computer Science,
8:321–349, 1998.

[101] Raymond Turner. Constructive Foundations for Functional Languages.
McGraw Hill, 1991.

128 Bibliography

[102] Raymond Turner. Weak theories of operations and types. Journal of
Logic and Computation, 6(1):5–31, 1996.

Index

BON, 30, 71, 83
(Comp), see computability axioms
D∞, 4
(dc), see dependent choice
EETJ, 29
ex, 92, 101
ID1, 72
ÎD1, 34
λ abstraction, 32
λ&, 2
λ&−early, 21
λ{}, 9, 12
λ
{}
str, 17, 23, 37

l, 75, 93, 99
L, 26
Lc, 73
Li, 57
(Li-IN), 59
Lj, 95
Lp, 29
(Lp-IN), 34
LFP, 74, 84
ML1, 34, 99
µ, see least number operator
OTN, 58
Pω, 4
PTN, 98
<, see naming relation
rankλ, 17
rec, see fixed point combinator
S0, 59
T predicate, 72, 84
(T-IN), 33

TON, 32
(Tot), see totality axiom
∀xN(x), 74
⊥, 113
↓, see definedness predicate
≤−, see strict subtype
6=, see strong unequality
', see partial equality
<:, see subtyping in FJ

abbreviations, 26, 29, 78
ad hoc polymorphism, see

polymorphism, ad hoc
applicative axioms, 30
applicative theory, 3, 71, 73, 116
arrow class, 78

basic type of Java, 100
best matching branch, 39
branch, 2, 10

call-by-name, 28
call-by-value, 28, 90–92, 109
cast, 87
Church-Rosser, 18
class, 22, 96
class table, 86
CLOS, 2
closed term, 15
coercion, 105
coherence condition, 64
coherent overloading, 2
combinatory logic, 3, 30, 71
compile-time, 10

129

130 Index

comprehension, 31, 113
computability axioms, 4, 72, 74
computation in FJ, see reduction

of FJ
consistency condition, 13, 43, 66,

67
covariance, 114
CPO, 4
CT, see class table

definedness axioms, 27
definedness ordering, 72, 78
definedness predicate, 25, 72
definition by cases

non-strict, 73
denotational semantics, 5, 95, 113,

115, 116
dependent choice, 95, 96, 113
domain-theoretic model, 3, 5, 84,

113, 116
down-cast, 87, 91, 92, 101
dynamic definition of classes, 113

early-binding, 2, 10
elementary comprehension, see

comprehension
elementary formula, 29
elementary separation, see separa-

tion
encapsulation, 1, 22, 113, 115
equality axioms, 28
evaluation strategy, 90
exception, 90, 91, 109
explicit mathematics, 3, 25, 54, 67,

90, 115
explicit representation, 31
extensionality, 31

Featherweight Java, 5, 85
Feferman’s thesis, 6, 95, 116
field lookup, 89
fixed point combinator, 4, 33, 71

fixed point induction, 4
fixed point specification, 97
fixed point type, 95, 96, 98, 104,

113
FJ, see Featherweight Java
free variable, 15, 93

generator, 29

illegal down-cast, see down-cast
impredicative overloading, see

overloading, impredicative
impredicativity, 2, 5, 20, 54, 57,

115
induction

name, 34
on the natural numbers, 33, 113

intensionality, 31
interpretation

of λ
{}
str terms, 51

of λ
{}
str types, 50

of basic types of Java, 104
of FJ classes, 104
of FJ expressions, 102, 104

intersection type, 64

Java, 5, 85, 116
join, 31

LAMBDA, 84
late-binding, 1, 9, 10, 20, 22, 53,

67, 94, 103, 109, 115
least fixed point operator, 4, 71, 75,

93, 103, 113, 116
least number operator, 73
logic of partial terms, 25, 84, 90
loss of information, 3, 53, 68, 115

merge operator, 2
message, 22
method, 22

abstract, 11

Index 131

method body lookup, 89
method type lookup, 89
mixin, 116
ML, 4, 84
model

for λ
{}
str, 37

for OTN + (Li-IN), 61
for explicit mathematics, 34, 61

monotonic functional, 72, 77, 79,
99

monotonicity
of power type generator, 59, 60

multi-method, 22, 113

n-tupling, 29, 96
name induction, see induction,

name
naming relation, 3, 29, 31
natural number type, 58
New Foundations, 60
non-strict definition by cases, see

definition by cases,
non-strict

non-termination, see termination
normal form, 16, 87, 94, 110

object, 22
object model, 22, 114, 115
object-oriented programming, 1, 9,

10, 23, 53, 116
objects as records, 1, 22, 114
open term, 15
operations on records, see record

update
overloaded function type, 13, 20,

38, 65, 66
well-formed, 66

overloading, 1, 9, 10, 22, 67, 103,
113, 115

coherent, 2
impredicative, 57, 64

predicative, 37

parametric polymorphism, see
polymorphism, parametric

partial equality, 27
partiality, 6, 28, 72, 113
Peano arithmetic, 72, 84, 99
PER model, 21, 68
polymorphic record update, see

record update
polymorphism, 9, 11, 116

ad hoc, 9
parametric, 4, 9, 116
predicative, 34

power type, 4, 57, 59, 60, 62, 68,
115

predicative overloading, see over-
loading, predicative

predicative polymorphism, see
polymorphism, predicative

preorder, 19
pretype, 12
primitive recursive function, 40, 73
product type, 59, 96
program extraction, 3
program of FJ, 86

quantifier axioms, 27
quantifier rules, 27

realizability interpretation, 3
record update, 55, 67, 68
recursion theorem, 33, 71
recursion-theoretic model, 5, 34, 72,

84, 95, 99, 113, 116
recursive program, 4, 71, 83, 93
reduction

of λ{}, 14
of FJ, 87, 92, 109

run-time, 10, 11

Scheme, 4

132 Index

second order calculus, 53, 67, 116
section, 96
semantics, 2

for λ{}, 19, 39, 64
for FJ, 95, 116

separation, 58, 60
Simula, 2
sound record update, see record

update
soundness

for λ
{}
str, 50, 51, 53

for OTN + (Li-IN), 62
for FJ, 92, 93, 105, 109, 111

stratification, 17, 23
strict subtype, 17
strictness axioms, 26, 28, 90
strong unequality, 27
structural rule, 34
stupid cast, 87
stupid warning, 88
subject reduction, 18
subset decidability, 59–61
substitution, 27, 33
subtyping, 2

in λ{}, 12
in FJ, 87

symbol for a type, see type symbol
syntax of FJ, 86
system F, 11, 100

term of λ{}, 14
termination, 25, 71, 83, 90, 92–94,

113, 116
theories of types and names, see

explicit mathematics
too many subtypes, 68, 116
total term model, 34, 72, 83
totality axiom, 31
tuple, see n-tupling
type

of EETJ, 31

of λ{}, 13
of OTN, 58
of PTN, 96
of FJ, 88

type completion, 21
type dependent computation, see

overloading
type symbol, 37, 40
typing rule

of λ{}, 14
of FJ, 88, 94

union axiom, 58
universe, 34
up-cast, 87

well-formed overloaded function
type, see overloaded func-
tion type, well-formed

well-typed expression of FJ, 89
well-typed term of λ{}, 14

