
Realization of analysis into Explicit Mathematics

Sergei Tupailo∗

Institut für Informatik und angewandte Mathematik
Universität Bern, Switzerland

sergei@iam.unibe.ch

September 24, 2000

Abstract

We define a novel interpretation R of second order arithmetic into Explicit
Mathematics. As a difference from standard D-interpretation, which was
used before and was shown to interpret only subsystems proof-theoretically
weaker than T0, our interpretation can reach the full strength of T0. The
R-interpretation is an adaptation of Kleene’s recursive realizability, and is
applicable only to intuitionistic theories.

Introduction

Systems of Explicit Mathematics were introduced by S. Feferman in the 70-es as
a logical framework for Bishop-style constructive mathematics (see [Fef75], [Fef79]).
In [Fef79] he gave an embedding of the basic theory T0 into a subsystem
∆1

2−CA+BI of 2-nd order arithmetic and conjectured that the converse also
holds. In [Jä83] G. Jäger carried out a necessary well-ordering proof in T0, which
together with [JP82] completed its proof-theoretical analysis and established proof-
theoretic equivalence of the system of Explicit Mathematics T0, system of anal-
ysis ∆1

2−CA+BI, and the set theory KPi. However, up to now, there were no
direct embeddings of strong conventional theories, e.g. analysis or set theory of
the strength of T0 and higher, into Explicit Mathematics. This also yielded that
the only method for establishing proof-theoretic lower bounds for T0 and stronger
systems of Explicit Mathematics remained to be well-ordering proofs carried out
directly in those theories.

The situation is quite different with Martin-Löf type theories, where, in addition
to well-ordering proofs (see [Se98]), we also have direct embeddings of constructive
set theory CZF, [Acz78], and its extensions, [Acz86, RaCZFM], or a subsystem of
analysis IARI, [GR94]. The possibility of such an embedding is often considered as
an evidence for constructivity of a given theory. The obstacle for similar embeddings
into Explicit Mathematics was its specific nature, where intuitionistic and classical
principles, set-theoretic and recursion-theoretic intuition can be combined. It is
sufficiently straightforward to do for “weak” theories (essentially up to Π1

1−CA);
however, for stronger systems with mathematical meaning, where adding the law of
excluded middle often results in dramatic increase in proof-theoretic strength (see,
e.g., [RGP98]), the distinction classical/intuitionistic must have played a promi-
nent role. The price for this universality of Explicit Mathematics is that, while in
ML type theories derivability simply means Kleene-type realizability, in EM these
notions are different. The reason for this is that a lot of realizable formulas, e.g.
∗Research supported by the Swiss National Science Foundation

1

Church’s thesis and axiom of choice in analysis, are incompatible with classical logic
without damaging consistency or consistency strength.

In this paper we develop a realizability interpretation into Explicit Mathemat-
ics. We have chosen here the simplest example, realization of analysis, which keeps
the amount of technical details at minimum, and demonstrates the method most
distinctly. For constructive set theory CZF and its extensions, one combines real-
izability with other methods of interpreting set theory. This is reserved for another
publication ([TurCZFM]).

The paper is organised as follows. For reader’s convenience in Sections 1 and 2
we briefly introduce the theory T0 and subsystems of analysis we are interested in.
In Section 3 we define two interpretations of analysis into T0, a direct interpreta-
tion D and a realizability interpretation R. A direct interpretation D means simply
that variables are interpreted as ranging over natural numbers and sets of natural
numbers and the meaning of logical connectives does not change. It’s this inter-
pretation which was used before, e.g. in [Fef79, Ch.V] and [BFPS, Ch.II, §1]. The
drawback of this translation is that it does not really exploit the axiom of Join of
Explicit Mathematics, the consequence of which being that the only systems which
have been interpreted via D are proof-theoretically weaker than T0.
Alternatively, we define a realizability interpretation R, which is a variant of Kleene
1945 recursive realizability. The general setting for realizing one language into
another was given already in [Fef79]; however, that paper studies in detail only
realization of Explicit Mathematics into itself. As to relationships between the in-
terpretations D and R, we prove that they are equivalent over an applicative part
App of T0 for first-order negative formulas, Theorem 2, and R(F) implies D(F)
for F from a certain CC-class, Theorem 3. Thus R-interpretation automatically
transfers proof-theoretic upper bounds from Explicit Mathematics to analysis, and
lower bounds vice versa. Axiom of Choice, on the contrary, is an example of a
formula for which D does not follow from R, and is much stronger in presence of
the law of excluded middle, Theorem 6. In Section 4 we finally build realizations
of various axioms, giving together the theory IARI of [GR94], which has the same
proof-theoretic strength as T0.

Acknowledgements. I am grateful to Prof. Gerhard Jäger and Dr. Thomas Strahm
for introducing me to the world of Explicit Mathematics.

1 Explicit Mathematics. The theory T0

We follow essentially the original type-free two-sorted formulation of Explicit Math-
ematics from [Fef75]. Alternative formulations are given in [Be85] and [Jä88].

Language LEM. The theory T0 is formulated in a two-sorted language: oper-
ations (individuals) and names (classifications). Names are thought of as a special
kind of operations, coding sets of operations. We use variables a, b, c, . . . as ranging
over operations, and α, β, γ, . . . as ranging over names. The operation constants
of the theory are the following: combinators k, s, pairing p and projections p0, p1,
zero 0, successor sN and predecessor pN, distinction by cases on natural numbers dN,
join j and inductive generation i. Additionally we have the following 8 operation
constants called name generators: nat, id, inv, and, or, imp, all, ex. Terms are
built from variables and constants by the following application clause: if s and t
are terms then s · t is a term, so that the application function symbol · accepts
arguments of both sorts and returns an operation. Atomic formulas are s = t
(s coincides with t) and s ε t (s belongs to the set named by t, s is classified under
t), where s and t are terms. Formulas are built from atomic formulas by ∧,∨,→
and two types of quantifiers, over operations and over names, e.g. ∀a,∃a,∀α, ∃α.
Finally, expression is a term or a formula.

2

Abbreviations. We use the following standard abbreviations:
¬F :⇔ F → 0 = sN · 0;
F0 ↔ F1 :⇔ (F0 → F1) ∧ (F1 → F0);
t↓ :⇔ ∃x(t = x);
N [t] :⇔ ∃α(t = α);
s ' t :⇔ (s↓ ∨ t↓)→ s = t;
s ⊂̇ t :⇔ ∀x ε s(x ε t); s .= t :⇔ s ⊂̇ t ∧ t ⊂̇ s;
r :s 7→ t for ∀x ε s(rx ε t);
r :s1 7→ t for r :s 7→ t, r :sm+1 7→ t for ∀x ε s(rx :sm 7→ t);
t′ for sN · t; 1 for 0′; st for s · t; t(s1, . . . , sn) for (. . . (ts1) . . . sn); 〈s, t〉 for (ps)t; s 6= t
for ¬s = t, etc.

Syntactical conventions.
1. We use e[∗] for an expression e, possibly containing occurrences of a variable
∗ (of appropriate sort). In this context by e[t] we mean the result of substituting
expression t for all occurrences of ∗ in e.
2. Parentheses in terms are assumed to be associated to the left: e.g., s · t ·u is read
as (s · t) · u.
3. We adopt the following priority among propositional connectives and their ab-
breviations: ¬, ∧, ∨, →, ↔. For example, F1 ∨¬F2 ∧F3 → F4 ↔ F5 has to be read
as ((F1 ∨ ((¬F2) ∧ F3))→ F4)↔ F5.

Logic. Intuitionistic 2-sorted logic of partial terms with equality. See, e.g.,
[Be85, Ch.VI, 1] or [Tr98, 1.3].

Axioms. The axioms are divided in 6 groups, according to their nature.

I. Applicative axioms. These axioms formalise that operations form a partial
combinatory algebra, that we have pairing and projections, usual closure conditions
on natural numbers, as well as definition by numerical cases:

(1) kab = a;
(2) sab↓ ∧ sabc ' ac(bc);
(3) pab↓ ∧ p0a↓ ∧ p1a↓ ∧ p0(pab) = a ∧ p1(pab) = b;
(4) 0 ε nat ∧ ∀x ε nat(sNx ε nat);
(5) ∀x ε nat(sNx 6= 0 ∧ pN(sNx) = x);
(6) ∀x ε nat(x 6= 0→ pNx ε nat ∧ sN(pNx) = x);
(7) a ε nat ∧ b ε nat→ (a = b→ dNxyab = x) ∧ (a 6= b→ dNxyab = y).

II. Induction on nat.
ϕ[0] ∧ ∀x(ϕ[x]→ ϕ[sNx])→ ∀x ε natϕ[x]

for each formula ϕ.

The following lemmas 1.1 and 1.2 are provable using only applicative axioms I;
Lemma 1.3 in addition calls for induction on natural numbers II (see, for example,
[Fef79], [Be85], or a review [JKS99]).

Lemma 1.1 λ-abstraction
For every term t[x] there exists a term λx.t[x] such that λx.t[x]↓ and for every

term s
s↓→ (λx.t[x])s ' t[s]).

Lemma 1.2 Recursion Theorem
There exists a closed term rec such that

recf↓ ∧ recfx ' f(recf)x.

3

Lemma 1.3 Primitive recursion on natural numbers
There exists a closed term prim such that

f :nat 7→ nat ∧ g :nat3 7→ nat ∧ x ε nat ∧ y ε nat −→
primfg :nat2 7→ nat ∧ primfgx0 = fx ∧ primfgx(sNy) = gxy(primfgxy).

III. Explicit representation. This axiom states that each name is an opera-
tion:
∃x(x = α).

IV. Elementary comprehension (ECA). These axiomatise name genera-
tors:

(1) N [nat];
(2) N [id] ∧ ∀x(x ε id↔ x = 〈p0x, p1x〉 ∧ p0x = p1x);
(3) N [inv(f, α)] ∧ ∀x(x ε inv(f, α)↔ fx ε α);
(4) N [and(α, β)] ∧ ∀x(x ε and(α, β)↔ x ε α ∧ x ε β);
(5) N [or(α, β)] ∧ ∀x(x ε or(α, β)↔ x ε α ∨ x ε β);
(6) N [imp(α, β)] ∧ ∀x(x ε imp(α, β)↔ x ε α→ x ε β);
(7) N [allα] ∧ ∀x(x ε allα↔ ∀y(〈x, y〉 ε α));
(8) N [exα] ∧ ∀x(x ε exα↔ ∃y(〈x, y〉 ε α)).

Definition 1.1 Elementary formula
A formula is elementary iff it’s constructed from s = t and t ε α by means of
∧,∨,→,∀x,∃x only. (No occurrences of t ε s with s not a name variable and name
quantifiers are allowed.)

The following lemma is an intuitionistic analogue of reducing Elementary Com-
prehension as stated in [Fef75] to name generators nat, id, co, int, dom and inv,
which holds in classical setting (see [FJ96]); its proof requires only axioms I, III
and IV. For alternative intuitionistic reductions of Elementary Comprehension to a
finite number of its instances see [GR94, Sect.1] and [Tat98, Sect.3].

Lemma 1.4 ECA
If a formula F := F [x; ā; ᾱ] is elementary then there exists a term txF such that

FV(txF) = FV(F) \ {x} and

N [txF] ∧ ∀x(x ε txF ↔ F).

Proof. The term txF is built by recursion on F :

txF :=



inv(λx.〈s[x], t[x]〉, id) if F is s[x] = t[x];
inv(λx.s[x], α) if F is s[x] ε α;
inv(λx.〈s[x], s[x]〉, id) if F is s[x]↓;
and(txF0[x], t

x
F1[x]) if F is F0[x] ∧ F1[x];

or(txF0[x], t
x
F1[x]) if F is F0[x] ∨ F1[x];

imp(txF0[x], t
x
F1[x]) if F is F0[x]→ F1[x];

alltzG[p0z,p1z]
if F is ∀yG[x, y];

extzG[p0z,p1z]
if F is ∃yG[x, y].

Now the property of txF is proved by induction on F .
2

V. Join (J). This axiom states that if f is an operation from a set named by
α, each value of which is a name, then j(α, f) names a disjoint union of all fx for
x ε α:
∀x ε αN [fx]→

(
N [j(α, f)] ∧ ∀z(z ε j(α, f)↔ ∃x ε α∃y(z = 〈x, y〉 ∧ y ε fx))

)
.

4

VI. Inductive Generation (IG). The first part of this axiom states that
i(α, β) names a well-founded part of a set named by α along an ordering named by
β; the second part allows induction over that set for an arbitrary formula:
N [i(α, β)] ∧ ∀x εα

(
∀y(〈y, x〉 ε β → y ε i(α, β))→ x ε i(α, β))

)
∧
(
∀x εα

(
∀y(〈y, x〉 ε β → φ[y])→ φ[x]

)
→ ∀x ε i(α, β))φ[x]

)
,

where φ ∈ LEM is an arbitrary formula.

The theory App is the one containing only applicative axioms I; EON has
axioms I–II. The theory EONN has axioms of the groups I–III. EET is EONN +
ECA, EETJ is EET + J and T0 is EETJ + IG1.
By TND (tetrium non datur), both in Explicit Mathematics and analysis, we mean
a schema consisting of all instances of the Law of Excluded Middle.

2 Subsystems of analysis

The basic theory EHA (Elementary Heyting Analysis) is formulated in a two-
sorted language L2: numbers and sets of numbers. We use variables a, b, c, . . .
as ranging over numbers, and A,B,C, . . . as ranging over sets. There is only one
individual constant 0. The function constants are: successor ′, pairing (∗, ∗)
and projections (∗)0, (∗)1, and also countably many function constants f1, f2, . . .
for primitive recursive functions. Terms are built as usual. Atomic formulas
are of the kinds s = t and s ∈ A (s and t are terms). Formulas are built from
atomic formulas by ∧,∨,→ and two types of quantifiers, over numbers and over
sets, e.g. ∀x,∃x,∀X,∃X. By FV(e) we denote the set of free variables occurring
in an expression e, and by FV0(e) and FV1(e) respectively the set of 1-st and 2-
nd order free variables of e. A formula is called negative iff it doesn’t contain ∨
or ∃. A formula is first-order iff it doesn’t contain second-order variables. A formula
is arithmetical iff it doesn’t contain second-order quantifiers. We use the same ab-
breviations and syntactical conventions as in the previous Section. The logic
is intuitionistic 2-sorted logic. Axioms are the following: equality axioms, Peano
axioms, prim.-rec. definitions for function symbols (∗, ∗), (∗)0, (∗)1, f1, f2, . . .
and mathematical induction schema. Note that we have no comprehension in
EHA, thus EHA being a conservative extension of Heyting arithmetic.

EHA is the basic theory of analysis in this paper. Additionally, we will consider
extensions of EHA by the following axioms.

Arithmetic comprehension (ACA):
∃X∀x(x ∈ X ↔ ψ[x])

for ψ arithmetical.
Axiom of Choice (AC):
∀x∃Y φ[x, Y]→ ∃Z∀xφ[x,Zx]

for all formulas φ.
Replacement (RP):
∀X(∀x∈X∃!Y φ[x, Y]→ ∃Z∀x∈Xφ[x,Zx])

for all formulas φ, where φ[x,Zx] arises from φ[x,Z] by replacing each occurrence
of s ∈ Z by (x, s) ∈ Z.

Inductive Generation (IGA):
∀X∀Y ∃Z(WPY [X,Z] ∧ TIY [X,Z, φ])

for all formulas φ, where we adopt the following abbreviations:
1In the literature the names EET and EETJ are also used for theories as defined here, but

with restricted induction II.

5

WPY [X,Z] denotes ProgY [X,Z] ∧ ∀U(ProgY [X,U]→ Z ⊆ U)
ProgY [X,Z] –”– ∀x∈X(∀y(y <Y x→ y ∈ Z)→ x ∈ Z)
ProgY [X,φ] –”– ∀x∈X(∀y(y <Y x→ φ[y])→ φ[x])
TIY [X,Z, φ] –”– ProgY [X,φ]→ ∀z∈Zφ[z]
y <Y x –”– (y, x) ∈ Y.

IARI of [GR94] is the theory EHA + ACA + RP + IGA. It’s shown there
that IARI is directly interpretable in Martin-Löf type theory ML1w and has the
same proof-theoretic strength as ML1w and T0.

3 Interpretations into Explicit Mathematics

In this section we define two interpretations of analysis into Explicit Mathematics, a
direct interpretation D and a realizability interpretation R, and study relationships
between them.

First, for each individual and function constant f ∈ L2 by Lemma 1.3 we can
define an operation N(f) presenting the same primitive-recursive function as f and
having the following property: if n is the arity of f then EET proves

n∧
i=1

xi ε nat→ N(f)x1 . . . xn ε nat.

We may assume that N(0) is 0 and N(sN) is ′. Now terms of L2 are translated
as follows:

Definition 3.1 N(t){
N(x) := x;
N(ft1 . . . tn) := N(f)N(t1) . . .N(tn).

For each second-order variable A ∈ L2 we assume a name variable αA ∈ LEM.
A direct interpretation D : L2 7→ LEM was introduced in [Fef79] and used later on
(see, for example, [BFPS, Ch.II] and [Gl93]). It’s defined as follows:

Definition 3.2 D-interpretation
D(s = t) := N(s) = N(t);
D(t ∈ A) := N(t) ε αA;
D(F0 ◦ F1) := D(F0) ◦ D(F1), for ◦ ∈ {∧,∨,→};
D(QxG) := Qxε natD(G), for Q ∈ {∀,∃};
D(QXG) := QαX ⊂̇ natD(G), for Q ∈ {∀,∃}.

The following lemma is straightforward (see [BFPS, Ch.II, §1]):

Lemma 3.1 For each theorem F of the theory EHA + ACA D(F) is provable in
EET.

Alternatively, we define a realizability interpretation R : L2 7→ LEM.

Definition 3.3 NN

NN[t] := N [t] ∧ ∀z ε t(z = 〈p0z, p1z〉 ∧ p0z ε nat).

Definition 3.4 r realizes F , r rn F
For each formula F ∈ L2 we define a formula rrnF ∈ LEM. r will always be treated

as a new free individual variable. The definition is given by the table below:

6

F r rn F

s = t N(s) = N(t)

t ∈ A 〈N(t), r〉 ε αA
F0 ∧ F1 p0r rn F0 ∧ p1r rn F1

F0 ∨ F1 p0r ε nat ∧ (p0r = 0→ p1r rn F0) ∧
(p0r 6= 0→ p1r rn F1)

F0 → F1 ∀x(x rn F0 → rx↓ ∧ rx rn F1)

∀xG[x] ∀x ε nat(rx↓ ∧ rx rnG[x])

∃xG[x] p0r ε nat ∧ p1r rnG[p0r]

∀XG[X] ∀αX(NN[αX]→ rαX↓ ∧ rαX rnG[αX])

∃XG[X] NN[p0r] ∧ p1r rnG[p0r]

Remark. According to our notation for substitution, p. 3, in the previous
definition p1r rnG[p0r] in the last clause, for example, stands for (r rnG[X])p1r,p0r

r,αX .

Definition 3.5 R-interpretation
For each F ∈ L2 we define R(F) := ∃x(x rn F).

Remark. An important difference of R-interpretation from D-interpretation is
that sets are translated not as (names of) sets of natural numbers, but as (names
of) sets of pairs, only first elements of which are natural numbers (see the clause
for t ∈ A). This is a standard effect in realizability interpretations of analysis, see
e.g. [Tr98, Sect.7.2]. The second element r of a pair 〈N(t), r〉 can be thought of as
a “proof” that t ∈ A.

Syntactical convention. We will often use the fractur font a, b, c, . . . to stress
that a given term plays a role as realization. Formally, this is not a new type of
objects; it’s just a substitution for a, b, c, . . . used for better readability.

Abbreviation. t↓ rn F will be used for t↓ ∧ t rn F .

Definition 3.6 Realization, realizable

1. A term t ∈ LEM is called realization for a formula F ∈ L2 in a theory
T ∈ LEM, App ⊂ T , iff

FV(t) ⊂ FV0(F)
⋃
{αA | A ∈ FV1(F)}

and

T `
∧

a∈FV0(F)

a ε nat ∧
∧

A∈FV1(F)

NN[αA]→ t rn F.

2. If there exists such a term t then F is called realizable in T . We call a theory
TA realizable in T iff every theorem of TA is realizable in T .

Note. If F is closed and realizable in T then T ` R(F).

Theorem 1 Each theorem of EHA is realizable in EONN.

7

The proof is standard and can be found, for example, in [TD88, Ch.IV, Sect.4].
Note. According to Theorem 1, to prove realizability of a theory TA ∈ L2,

EHA ⊂ TA, it’s sufficient to construct realizing terms for additional axioms of TA.
This is what we do in Section 4.

Now we turn to the relationship between D and R-interpretations. For first-
order negative formulas we can define canonical realizers as in [Tr98, Lemma 1.10].

Definition 3.7 Canonical realization, canF
For F ∈ L2 first-order negative we define a term canF ∈ LEM (canonical realization
of F) in the following way:

canF :=


0 if F is s = t;
〈canF0 , canF1〉 if F is F0 ∧ F1;
λx.canF1 if F is F0 → F1;
λx.canG[x] if F is ∀xG[x].

Note that for every F canF is closed and App ` canF↓.

Theorem 2 D(F)↔ R(F)
For F ∈ L2 being first-order negative in App we have:

(i) ∃x(x rn F)→ D(F);
(ii) D(F)→ canF rn F ;

(iii) D(F)↔ R(F).

Proof. We prove (i) and (ii) by simultaneous induction on F .
If F is atomic then it is of the form s = t and both D(F) and t rn F are of the

form N(s) = N(t).
Assume F is F0 ∧ F1 and the claim holds for F0 and F1.

Assume r rn (F0 ∧ F1). Then we have p0r rn F0 ∧ p1r rn F1. By IH(i) we get
D(F0) ∧ D(F1), i.e. D(F).
Assume D(F0 ∧ F1). Then we have D(F0) ∧ D(F1). By IH(ii) we get canF0 rn F0 ∧
canF1 rn F1, which by Definition 3.7 gives canF rn F .

Assume F is F0 → F1 and the claim holds for F0 and F1.
Assume r rn (F0 → F1) and assume D(F0). By IH(ii) we have canF0 rn F0. Then
rcanF0↓ rn F1 and by IH(i) D(F1).
Assume D(F0 → F1) and assume x rn F0. By IH(i) D(F0) and therefore D(F1). By
IH(ii) canF1 rn F1, which by Definition 3.7 gives canF rn F .

Assume F is ∀xG[x] and the claim holds for G[x].
Assume rrn(∀xG[x]). Then ∀x ε nat(rx↓rnG[x]). By IH(i) this yields ∀x ε natD(G[x]),
i.e. D(F).
Assume D(∀xG[x]). Then ∀x ε natD(G[x]). By IH(ii) this yields
∀x ε nat(canG[x] rnG[x]), which by Definition 3.7 gives canF rn F .

(iii) is an immediate consequence of (i) and (ii).
2

Definition 3.8 CC-class, cf. [Tr98, Sect.1.14]
A first-order formula F ∈ L2 belongs to the CC-class iff for every subformula
G→ H of it G is negative.

Theorem 3 R(F)→D(F)
If F ∈ CC then App ` R(F)→ D(F).

Proof. The claim is proved by induction on F .
If F is atomic then it is of the form s = t and both D(F) and t rn F are of the

form N(s) = N(t).

8

Assume F is F0 ∧ F1 and r rn (F0 ∧ F1). Then we have p0r rn F0 ∧ p1r rn F1. By
IH we get D(F0) ∧ D(F1), i.e. D(F).

Assume F is F0 ∨ F1 and r rn (F0 ∨ F1). Then we have p0r ε nat ∧ (p0r = 0→
p1r rn F0) ∧ (p0r 6= 0 → p1r rn F1). In the case p0r = 0 by IH D(F0); if p0r 6= 0
then similarly D(F1). In both cases D(F).

Assume F is F0 → F1 and r rn (F0 → F1). Then F0 is first-order negative.
Assume D(F0). By the previous Theorem(ii) canF0 rnF0. Then rcanF0↓ rnF1. Now
by IH D(F1).

Assume F is ∀xG[x] and r rn (∀xG[x]). Then ∀x ε nat(rx↓ rn G[x]). By IH this
yields ∀x ε natD(G[x]), i.e. D(F).

Assume F is ∃xG[x] and r rn (∃xG[x]). Then we have p0r ε nat ∧ p1r rnG[p0r].
By IH D(G[p0r]), which implies D(F).

2

Remarks about proof-theoretic strength. We assume here that TA is
realizable in T .

1) Note that Consis(T) is Π0
1-formula for any theory T ∈ L2 with a decidable

predicate PrfT (a, b). Therefore, if TA ` Consis(T) then T ` D(Consis(T)).
2) Note that prenex formulas, in particular Π0

2-formulas, are CC. Therefore, if
TA proves totality of a function f , then so does T .

3) Let f≺ be a characteristic function of a standard prim.-rec. ordering ≺
on natural numbers (e.g. an initial part of some fixed standard ordering), i.e.
y ≺ x :⇔ f≺(y, x) = 0. For every first-order negative formula F [x] ∈ L2 we set:
Prog(≺, F) :⇔ ∀x(∀y(f≺(y, x) = 0→ F [y])→ F [x]),
Fund(≺, F) :⇔ Prog(≺, F)→ ∀xF [x].

We say that a theory TA proves well-foundedness of ≺ iff TA ` Fund(≺, F) for
every first-order negative formula F . Since Fund(≺, F) also is a negative formula,
by Theorem 2 we have that if TA proves well-foundedness of ≺, then so does T as
well.

4 Realizing subsystems of analysis

In this section we provide realizing terms for additional axioms of analysis listed in
the Section 2.

Theorem 4 Arithmetic comprehension
Every instance of ACA is realizable in EET.

Proof. Assume a formula ψ[a] ∈ L2 to be arithmetical. By ECA there exists a
term t such that

NN[t] ∧ ∀x ε nat∀x(〈x, x〉 ε t↔ x rn ψ[x]). (4.1)

We are to prove now that the pair 〈t, λx.〈λx.x, λx.x〉〉 is a realization of an instance
of ACA

∃X∀x(x ∈ X ↔ ψ[x]).

Indeed,
〈t, λx.〈λx.x, λx.x〉〉 rn ∃X∀x(x ∈ X ↔ ψ[x]) ≡
λx.〈λx.x, λx.x〉 rn ∀x(x ∈ t↔ ψ[x]) ≡
∀x ε nat

(
〈λx.x, λx.x〉 rn x ∈ t↔ ψ[x])

)
≡

∀x ε nat
(
λx.x rn (x ∈ t→ ψ[x]) ∧ λx.x rn (ψ[x]→ x ∈ t

)
),

(4.2)

which follows from 4.1.
2

9

Theorem 5 Axiom of Choice
Every instance of AC is realizable in EETJ.

Proof. Assume r rn ∀x∃Y φ[x, Y]. We then have
r rn ∀x∃Y φ[x, Y] ≡

∀x ε nat(rx↓ ∧ NN[p0(rx)] ∧ p1(rx) rn φ[x, p0(rx)]). (5.1)

By ECA and J (over nat) let t := t[r] be such that

NN[t] ∧
(
〈(x, x1), x1〉 ε t↔ 〈x1, x1〉 ε p0(rx)

)
. (5.2)

Claim. For every formula ψ[x, Y],

∀x ε nat∀u
(
u rn ψ[x, p0(rx)]↔ u rn ψ[x, tx]

)
. (5.3)

Proof: First we prove the most important case when ψ[x, Y] is of the form s ∈ Y .
We have

u rn s ∈ tx ≡ u rn (x, s) ∈ t ≡ 〈(x, s), u〉 ε t 5.2≡
〈s, u〉 ε p0(rx) ≡ u rn s ∈ p0(rx).

(5.4)

Now, the proof is completed by straightforward induction on ψ.
3

Using this claim, we have, for xεnat, p1(rx)rnφ[x, tx]. Therefore 〈t[r], λx.p1(rx)〉
is a realization of the conclusion and λr.〈t[r], λx.p1(rx)〉 is a realization of the in-
stance of AC

∀x∃Y φ[x, Y]→ ∃Z∀xφ[x,Zx].

2

Corollary. EHA + ACA + AC is realizable in EETJ and has proof-theoretic
strength bounded by ϕ(ε0, 0)2.
Proof. Realizability follows from Theorems 1, 4 and 5. The bound for proof-
theoretic strength follows from the Remarks in the end of Section 3 and the fact
|EETJ| = |Σ1

1−AC classical| = ϕ(ε0, 0) (see, e.g., [Fef79, Section V]). 2

The following theorem gives an example where D- and R-interpretations are
essentially different. While, according to the Theorem 5, T0 proves R(AC), it fails
to prove D(AC); the latter in the presence of the Law of Excluded Middle is at
least as strong as full second order arithmetic.

Theorem 6 (T0 /̀ D(AC))
1) T0 /̀ D(AC);
2) EET + TND +D(AC) has the strength of at least full analysis.

Proof. Obviously

EHA + ACA + TND is D-interpretable in EET + TND (6.1)

(see, e.g. [Gl93, Section 2]). Then we have

EHA + ACA + TND + AC is D-interpretable
in EET + TND +D(AC). (6.2)

But ACA+TND+AC implies full comprehension, so EHA+ACA+TND+
AC is full analysis. By 6.2 we have 2).

For 1), assume T0 ` D(AC). Then T0 + TND ` D(AC) and T0 + TND +
D(AC) = T0 + TND. By 2) T0 + TND is at least as strong as full analysis,
contradiction, since T0 + TND is known to have the strength of ∆1

2−CA+BI
(classical) (see [Fef79, Jä83]).

2

2In fact, as shown in [Be85, Ch.XIII,§2-3], this bound is exact.

10

Theorem 7 Replacement
Every instance of RP is realizable in EETJ.

Proof. Assume NN[α]. Assume also r rn ∀x∈α∃!Y φ[x, Y]). By Definition 3.4 we
have

r rn ∀x∈α∃!Y φ[x, Y] ≡ r rn ∀x(x ∈ α→ ∃!Y φ[x, Y]) ≡
∀x ε nat

(
rx↓ rn (x ∈ α→ ∃!Y φ[x, Y])

)
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
x rn x ∈ α→ rxx↓ rn ∃!Y φ[x, Y]

))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→ rxx↓ rn ∃!Y φ[x, Y]

))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→
rxx↓ rn (∃Y (φ[x, Y] ∧ ∀Z(φ[x,Z]→ Y = Z)))

))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
rxx↓ ∧ NN[p0(rxx)] ∧

p1(rxx) rn (φ[x, p0(rxx)] ∧ ∀Z(φ[x,Z]→ p0(rxx) = Z))
)))

≡
∀x ε nat

(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
NN[p0(rxx)] ∧

p0(p1(rxx)) rn φ[x, p0(rxx)] ∧
p1(p1(rxx)) rn ∀Z(φ[x,Z]→ p0(rxx) = Z)

)))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
NN[p0(rxx)] ∧

p0(p1(rxx)) rn φ[x, p0(rxx)] ∧
∀γ(NN[γ]→ (p1(p1(rxx))γ↓ rn (φ[x, γ]→ p0(rxx) = γ)))

)))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
NN[p0(rxx)] ∧

p0(p1(rxx)) rn φ[x, p0(rxx)]) ∧ ∀γ(NN[γ]→ (p1(p1(rxx))γ↓ ∧
∀q(q rn φ[x, γ]→ p1(p1(rxx))γq↓ rn p0(rxx) = γ)))

)))
.

(7.1)

Continuing 7.1,
r1 rn p0(rxx) = γ ≡

r1 rn ∀x1((x1 ∈ p0(rxx)→ x1 ∈ γ) ∧ (x1 ∈ γ → x1 ∈ p0(rxx))) ≡
∀x1 ε nat

(
r1x1↓ ∧

(
∀x0(〈x1, x0〉 ε p0(rxx)→ 〈x1, p0(r1x1)x0〉 ε γ) ∧
∀x1(〈x1, x1〉 ε γ → 〈x1, p1(r1x1)x1〉 ε p0(rxx))

))
.

(7.2)

Also, u rn ∀x∈αφ[x,Cx] ≡ u rn ∀x(x ∈ α→ φ[x,Cx]) ≡
∀x ε nat

(
ux↓ rn (x ∈ α→ φ[x,Cx])

)
≡

∀x ε nat
(
ux↓ ∧ ∀x

(
〈x, x〉 ∈ α→ uxx↓ rn φ[x,Cx]

))
.

(7.3)

By ECA there exists a term t := t[α, r] s.t.

NN[t[α, r]] ∧
(
〈(x, x1), y〉 ε t[α, r]↔

y = 〈p0y, p1y〉 ∧ 〈〈x, p0y〉, 〈x1, p1y〉〉 ε j(α, λy.p0(r(p0y)(p1y)))
)
.

(7.4)

If we had 〈x, x〉 ε α→
(
r2 rn φ[x, p0(rxx)]↔ r2 rn φ[x, tx]

)
, this would provide us

with a realization of the Axiom of Choice on α (instead of Replacement) (cf. proof
of Theorem 5). While this is not the case, by making use of uniqueness part of 7.1
we obtain a pair of operations, which map realizations of φ[x, p0(rxx)] and φ[x, tx]
into each other. This pair of operations is represented by a term rYφ defined below,
and is sufficient to build up a realization of Replacement.

For each formula ϕ := ϕ[x, Y] ∈ L2 such that x /∈ FV0(ϕ) and a predicate
variable Y ∈ L2 we define a term rYϕ := rYϕ [r, x, x,FV0(ϕ)] by recursion on ϕ in the
following way:

11

rYϕ :=



〈λx0.x0, λx1.x1〉 if ϕ is s1 = s2;
〈λx0.x0, λx1.x1〉 if ϕ is s ∈ D and D is not Y ;

〈λx0.〈x, x0〉, λx1.p1(r1[r, x, x, x1]s[x])(p1x1)〉


if ϕ is s[x] ∈ Y , where
r1 := p1(p1(rxx))γq,
γ := p0(rx(p0x1)),
q := p0(p1(rx(p0x1)));

〈λx0.〈p0r
Y
ϕ0

(p0x0), p0r
Y
ϕ1

(p1x0)〉,
λx1.〈p1r

Y
ϕ0

(p0x1), p1r
Y
ϕ1

(p1x1)〉〉

}
if ϕ is ϕ0 ∧ ϕ1;

〈λx0.〈p0x0, p0dN(p0x0, 0, rYϕ0
, rYϕ1

)(p1x0)〉,
λx1.〈p0x1, p1dN(p0x1, 0, rYϕ0

, rYϕ1
)(p1x1)〉〉

}
if ϕ is ϕ0 ∨ ϕ1;

〈λx0λz.p0r
Y
ϕ1

(x0(p1r
Y
ϕ0
z)),

λx1λz.p1r
Y
ϕ1

(x1(p0r
Y
ϕ0
z))〉

}
if ϕ is ϕ0 → ϕ1;

〈λx0λk.p0r
Y
ψ[k](x0k), λx1λk.p1r

Y
ψ[k](x1k)〉 if ϕ is ∀kψ[k];

〈λx0.〈p0x0, p0r
Y
ψ[p0x0](p1x0)〉,

λx1.〈p0x1, p1r
Y
ψ[p0x1](p1x1)〉〉

}
if ϕ is ∃kψ[k];

〈λx0λκ.p0r
Y
ψ[κ](x0κ), λx1λκ.p1r

Y
ψ[κ](x1κ)〉 if ϕ is ∀Kψ[K];

〈λx0.〈p0x0, p0r
Y
ψ[p0x0](p1x0)〉,

λx1.〈p0x1, p1r
Y
ψ[p0x1](p1x1)〉〉

}
if ϕ is ∃Kψ[K].

Claim. For every formula ϕ := ϕ[x, Y] ∈ L2 we have
〈x, x〉 ε α→ rYϕ [r, x, x] rn (ϕ[x, p0(rxx)]↔ ϕ[x, tx]). (7.5)

Proof: We check only the most important case (the only one which requires use
of uniqueness in the premise of Replacement axiom), when ϕ is of the form s[x] ∈ Y .
Other cases are proved by routine induction on ϕ.

By Definition 3.4 we have
x0 rn s[x] ∈ p0(rxx) ≡ 〈s[x], x0〉 ε p0(rxx), (7.6)

x1 rn s[x] ∈ tx ≡ x1 rn (x, s[x]) ∈ t ≡ 〈(x, s[x]), x1〉 ε t
7.4⇔

〈〈x, p0x1〉, 〈s[x], p1x1〉〉 ε j(α, λy.p0(r(p0y)(p1y))).
(7.7)

By J 7.6 and 7.7 immediately yield
〈x, x〉 ε α→ λx0.〈x, x0〉 rn (s[x] ∈ p0(rxx)→ s[x] ∈ tx). (7.8)

For the opposite direction, assume 〈x, x〉 ε α and x1 rn s[x] ∈ tx, i.e.
〈〈x, p0x1〉, 〈s[x], p1x1〉〉 ε j(α, λy.p0(r(p0y)(p1y))). Then by J

〈x, p0x1〉 ε α ∧ 〈s[x], p1x1〉 ε p0(rx(p0x1)). (7.9)

By 7.1 we have

NN[p0(rx(p0x1))] ∧ p0(p1(rx(p0x1))) rn φ[x, p0(rx(p0x1))]. (7.10)

Now by the uniqueness part of 7.1 we obtain
p1(p1(rxx))γq↓ rn p0(rxx) = γ, (7.11)

where γ := p0(rx(p0x1)) and q := p0(p1(rx(p0x1))). Taking
r1 := p1(p1(rxx))γ[r, x, x1]q[r, x, x1], from 7.2 and 7.9 we have

〈s[x], p1(r1s[x])(p1x1)〉 ε p0(rxx). (7.12)

Equation 7.12 shows that

〈x, x〉 ε α→ λx1.p1(r1[r, x, x, x1]s[x])(p1x1) rn (s[x] ∈ tx → s[x] ∈ p0(rxx)), (7.13)

q.e.d.
3

12

The previous Claim and equation 7.1 together prove that

〈x, x〉 ε α→
(

p0r
Y
φ[x,Y][r, x, x](p0(p1(rxx)))↓ rn φ[x, (t[α, r])x]

)
, (7.14)

which is to say that
r rn ∀x∈α∃!Y φ[x, Y]→

λxλx.p0r
Y
φ[x,Y][r, x, x](p0(p1(rxx))) rn ∀x∈αφ[x, (t[α, r])x]. (7.15)

Last equation shows that an operation
λαλr.〈t[α, r], λxλx.p0r

Y
φ[x,Y][r, x, x](p0(p1(rxx)))〉 is a realization for an instance of

RP
∀X(∀x∈X∃!Y φ[x, Y]→ ∃Z∀x∈Xφ[x,Zx]).

2

Theorem 8 Inductive Generation
Every instance of IGA is realizable in EET + IG.

Proof. Assume NN[α]∧NN[β]. Assume also rrn∀x εα
(
∀y(y <β x→ φ[y])→ φ[x]

)
.

By Definition 3.4 we have:

r rn ∀x εα
(
∀y(y <β x→ φ[y])→ φ[x]

)
≡

r rn ∀x
(
x ε α→ (∀y(y <β x→ φ[y])→ φ[x])

)
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

rxx↓ rn
(
∀y(y <β x→ φ[y])→ φ[x]

)))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
rxx↓ ∧

∀u
(
u rn ∀y(y <β x→ φ[y])→ rxxu↓ rn φ[x]

))))
≡

∀x ε nat
(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
rxx↓ ∧ ∀u

(
∀y ε nat(uy↓ ∧

∀v(v rn (y, x) ε β → uyv↓ rn φ[y]))→ rxxu↓ rn φ[x]
))))

≡
∀x ε nat

(
rx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
rxx↓ ∧ ∀u

(
∀y ε nat(uy↓ ∧

∀v(〈(y, x), v〉 ε β → uyv↓ rn φ[y]))→ rxxu↓ rn φ[x]
))))

.

(8.1)

By recursion theorem for a function f := λzλxλx.rxx(λyλy.zyy) there exists a
term R := recf such that

Rxx ' rxx(λyλv.Ryv). (8.2)

By ECA there exists a term β∗ := β∗[β] s.t.
N [β∗] ∧

(
u ε β∗ ↔ u = 〈p0u, p1u〉 ∧

p0u = 〈p0p0u, p1p0u〉 ∧ p1u = 〈p0p1u, p1p1u〉 ∧
p0p0u ε nat ∧ p0p1u ε nat ∧ 〈(p0p0u, p0p1u), p1p0u〉 ε β

)
.

(8.3)

We want to prove Progβ∗(α,Ryv↓ rn φ[y]), i.e.

〈x, x〉 ε α→(
∀y ε nat∀v

(
〈〈y, v〉, 〈x, x〉〉 ε β∗ → Ryv↓ rn φ[y]

)
→ Rxx↓ rn φ[x]

)
.

(8.4)

Assume 〈x, x〉 ε α ∧ ∀y ε nat∀v
(
〈〈y, v〉, 〈x, x〉〉 ε β∗ → Ryv↓ rn φ[y]

)
. Then by 8.3

we have

∀y ε nat∀v
(
〈(y, x), v〉 ε β → Ryv↓ rn φ[y]

)
. (8.5)

Therefore for the operation u := λyλv.Ryv by 8.1 we have rxxu↓ rn φ[x], i.e.
rxx(λyλv.Ryv)↓ rn φ[x]. From this fact and equation 8.2 we obtain 8.4.

By IG we obtain

∀x ε nat∀x(〈x, x〉 ε i(α, β∗)→ Rxx↓ rn φ[x]), (8.6)

or

13

λxλx.Rxx rn ∀x∈ i(α, β∗)φ[x]. (8.7)

This shows that an operation λrλxλx.Rxx is a realization of a “part” of IGA

∀x εα
(
∀y(y <β x→ φ[y])→ φ[x]

)
→ ∀z ε i(α, β∗)φ[z]. (8.8)

Applying the above considerations to the formula x ∈ U in place of φ[x], we see
that λγλrλxλx.Rxx is a realization of

∀U(Progβ [α,U]→ i(α, β∗) ⊆ U), (8.9)

Last, we have to find a realization of

Progβ [α, i(α, β∗)]. (8.10)

By 8.1 with x ∈ i(α, β∗) in place of φ[x], we have

q rn Progβ [α, i(α, β∗)] ≡
q rn ∀x εα

(
∀y(y <β x→ y ∈ i(α, β∗))→ x ∈ i(α, β∗)

)
≡

∀x ε nat
(
qx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
qxx↓ ∧ ∀u

(
∀y ε nat(uy↓ ∧

∀v(〈(y, x), v〉 ε β → uyv↓ rn y ∈ i(α, β∗)))→
qxxu↓ rn x ∈ i(α, β∗)

))))
≡

∀x ε nat
(
qx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
qxx↓ ∧ ∀u

(
∀y ε nat(uy↓ ∧

∀v(〈(y, x), v〉 ε β → 〈y, uyv〉 ε i(α, β∗)))→
〈x, qxxu〉 ε i(α, β∗)

)))) 8.3⇔
∀x ε nat

(
qx↓ ∧ ∀x

(
〈x, x〉 ε α→

(
qxx↓ ∧ ∀u

(
∀y ε nat(uy↓ ∧

∀v(〈〈y, v〉, 〈x, x〉〉 ε β∗ → 〈y, uyv〉 ε i(α, β∗)))→
〈x, qxxu〉 ε i(α, β∗)

))))
.

(8.11)

Assume now 〈x, x〉εα∧∀y ε nat(uy↓ ∧ ∀v(〈〈y, v〉, 〈x, x〉〉εβ∗ → 〈y, uyv〉εi(α, β∗))).
Note that from the definition 8.3 of β∗ it follows that

∃v(〈〈y0, v0〉, 〈y1, v〉〉 ε β∗)↔ ∀v(〈〈y0, v0〉, 〈y1, v〉〉 ε β∗) (8.12)

and therefore by IG

∃v(〈y, v〉 ε i(α, β∗))↔ ∀v(〈y, v〉 ε i(α, β∗)). (8.13)

So, we also have ∀y ε nat∀v(〈〈y, v〉, 〈x, x〉〉 ε β∗ → 〈y, v〉 ε i(α, β∗)). By IG we
obtain 〈x, x〉 ε i(α, β∗). This demonstrates that an operation q := λxλxλu.x is a
realization of 8.10.

Bringing realizations of 8.8–8.10 together shows that an operation

λαλβ.〈i(α, β∗[β]), 〈〈λxλxλu.x, λγλrλxλx.Rxx〉, λrλxλx.Rxx〉〉

is a realization of an instance of IGA

∀X∀Y ∃Z
(

WPY [X,Z] ∧
(
∀x∈X

(
∀y(y <Y x→ φ[y])→ φ[x]

)
→ ∀z∈Zφ[z]

))
.

2

Corollary. IARI is realizable in T0; its proof-theoretic strength is bounded by
that of T0.
Proof. This follows from Theorems 1, 4, 7 and 8. 2

14

References

[Acz78] P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory. In:
A. MacIntyre, L. Pacholski, J. Paris (eds.), Logic Colloquium ’77 : 55-66, 1978

[Acz86] P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory: induc-
tive definitions. In: R.B. Marcus et al. (eds), Logic, Methodology and Philosophy of
Science VII : Amsterdam, 1986

[Be85] M. Beeson. Foundations of Constructive Mathematics. Springer, 1985

[BFPS] W. Buchholz, S. Feferman, W. Pohlers, W. Sieg. Iterated Inductive Definitions
and Subsystems of Analysis. LNM 897, Springer, 1981

[Fef75] S. Feferman. A language and axioms for explicit mathematics. In: Algebra and
Logic, LNM 450: 87–139, 1975

[Fef79] S. Feferman. Constructive theories of functions and classes. In: Logic Colloquium
’78, 159–224, 1979

[FJ96] S. Feferman, G. Jäger. Systems of explicit mathematics with non-constructive µ-
operator. Part II. APAL 79,1: 37–52, 1996

[Gl93] T. Glass. Standardstrukturen für Systeme Expliziter Mathematik. PhD disserta-
tion, Münster, 1993

[GR94] E. Griffor, M. Rathjen. The strength of some Martin-Löf type theories. Arch.
Math. Logic, 33:347–385, 1994

[Jä83] G. Jäger. A well-ordering proof for Feferman’s theory T0. Arch. Math. Logic, 23:65–
77, 1983

[Jä88] G. Jäger. Induction in elementary theory of types and names. Computer Science
Logic ’87, LNCS 329:118–128, 1988

[JKS99] G. Jäger, R. Kahle, T. Strahm. On applicative theories. In: A. Cantini, E. Casari,
P.L. Minari (eds.), Logic and Foundations of Mathematics, 83–92, 1999

[JP82] G. Jäger, W. Pohlers. Eine beweistheoretische Untersuchung von ∆1
2 − CA + BI

und verwandter Systeme. Sitz. Beyer. Akad. der Wissen., Math.-Natur. Klasse:
1–28, 1982

[RaCZFM] M. Rathjen. Interpreting Mahlo set theory in Mahlo type theory. Preprint,
1999

[RGP98] M. Rathjen, E.R. Griffor, E. Palmgren. Inaccessibility in constructive set theory
and type theory. APAL, 94:181–200, 1998

[Se98] A. Setzer. Well-ordering proof for Martin-Löf Type Theory with W-type and one
Universe. APAL, 92:113–159, 1998

[Tat98] M. Tatsuta. Realizability for Constructive Theory of Functions and Classes and Its
Application to Program Synthesis. Proceedings of Thirteenth Annual IEEE Sympo-
sium on Logic in Computer Science, 1998: 358–367

[Tr98] A. Troelstra. Realizability. In: S. Buss, ed., Handbook of Proof Theory. North Hol-
land, 1998: 407–474

[TD88] A. Troelstra, D. van Dallen. Constructivism in Mathematics, v. I. North Holland,
1988

[TurCZFM] S. Tupailo. Realization of Constructive Set Theory into Explicit Mathematics:
a lower bound for impredicative Mahlo universe. Technical report IAM-00-004,
Institute for Informatics, University of Bern, Switzerland. Submitted for publication

15

