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Part I

The Modal µ-Calculus





Chapter 1

Introducing the Modal

µ-Calculus

“Aller Anfang ist leicht, und die letzten Stufen werden am seltensten er-

stiegen.” (J. W. von Goethe)

Modal µ-calculus is an extension of modal logics, with least and greatest

fixpoint constructors. The term ‘µ-calculus’ and the idea of extending modal

logics with fixpoint constructors appeared for the first time in a paper by

Scott and De Bakker [44], and was further developed, see for example, Hitch-

cock and Park [24], Park [39], De Bakker and De Roever [6] and De Roever

[42]. Nowadays, the term ‘modal µ-calculus’ stands for the formal system

introduced by Kozen in [31]. It is the system we study in this part of the

thesis.

As a modal logic, the semantics of the µ-calculus is usually given by tran-

sition systems, or equivalently Kripke-models. There are also other possible

interpretations of modal µ-formulae, such as in a topological context or in

an algebraic context [10, 3]. In this thesis, we deal with the usual semantics

given by transition systems.

Transition systems play an important role in computer science. If we anal-

yse systems or processes operationally, hence we are working in an opera-

tional semantics, it can be very convenient to model the ‘real world’ with

transition systems. In order to specify properties, mainly liveness and fair-

ness properties, of these transition systems various kinds of logics have been

introduced. Many of them belong to the family of modal logics (or some-
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times temporal logics, process logics), such as Floyd-Hoare Logics , HML

(Hennessey-Miller Logic), PDL (Propositional Dynamic Logic), CTL (Com-

putation Tree Logic), CTL∗ and PLTL (Propositional Linear Time Temporal

Logic) [41, 25, 21, 22].Many of these logics contain modalities which can be

interpretated as a least or greatest fixpoint of an operator based on other,

more basic, modalities. Therefore, the necessity of having a logic which rea-

sons about fixpoints in this modal context on a sufficiently abstract level

arised. The modal µ-calculus provides a formal framework where we can

study the role of fixpoints in transition systems, that is the role of fixpoints

in operational semantics.

Another example of modal logic where you have modalities which are inter-

pretated as fixpoints is the logic of common knowledge which will be studied

in detail in the second part of this thesis.

If we look to transition systems operationally, that is as a representation of

the behavior of a process, then we often do not want to distinguish between

bisimilar transition systems. This follows from the fact that bisimilarity is of-

ten regarded as an observational, and hence operational, equivalence. Thus,

a specification language should not distinguish between bisimilar transition

systems. First order logic can sometimes make this distinction whereas modal

logic can not. In fact, van Benthem proved in [48] that exactly the first order

properties on transition systems which are invariant under bisimulation are

expressible in modal logic. Thus, all first order properties which make sense

in operational semantics are modal properties. Unfortunately, many opera-

tional properties, such as liveness and safety properties, are not expressible

in first order language but only in a monadic second order (MSO) language.

Janin and Walukiewicz in [26] proved that the MSO properties, invariant

under bisimulation, are exactly the ones which are expressible by the modal

µ-calculus. Thus, the modal µ-calculus is the ‘operationally relevant’ part of

MSO logic, which itself, in most cases, is powerful enough in expressiveness.

The modal µ-calculus is further strongly connected with another important

area of computer science, the theory of automata (for an introduction see

Thomas [47]). The idea of translating temporal logics to automata, in order

to get a nice framework to study the algorithms, has a long tradition in sys-

tem verification. For example PLTL can be translated into Büchi automata,

since for each PLTL-formula we can find an equivalent Büchi automaton.

Thus, many model checking algorithms for PLTL are based on algorithmic
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tools provided by Büchi automata (see Vardi and Wolper [49]). The modal

µ-calculus is equivalent to alternating tree automata. Also here, many algo-

rithmic problems, such as the model checking problem or the satisfiability

problem, are solved efficiently by using this equivalence.

Recapitulating we get the following features which make the study of modal

µ-calculus both interesting and important:

• The modal µ-calculus is an abstract framework to reason about fix-

points in modal logic. Thus, it is a ‘meta’ formal system for many

logics used in computer science.

• From the point of view of operational semantics it is the ‘correct’ weak-

ening of second order logics, which itself has enough expressibility for

applications.

• The connection with another lively and successful area of computer

science: the theory of automata.

Finally, the reason which lead me to the subject:

• The beauty of its theory, the natural basic concepts and the variety of

results.

We conclude with an overview of the first part of the thesis. At the beginning

of each chapter a detailed abstract can be found, so here we just highlight

the important contents and results.

• In Chapter 2 we introduce basic syntactical and semantical notions and

results of the modal µ-calculus, including the ‘fundamental theorem’.

• In Chapter 3 the alternating tree automata are introduced and their

connection with the theory of parity games is highlighted.

• In Chapter 4 the first main result of the thesis is proven: The equiva-

lence of alternating tree automata and the modal µ-calculus.

• In Chapter 5 we use the results of the two previous chapters to give a

proof for the strictness of the modal µ-calculus hierarchy.

• In Chapter 6 we deal with the completeness of Kozen’s Axiomatisation

and provide two partial completeness results.

Chapters 4 and 5 are based the paper Alberucci [1].
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Chapter 2

Basic Definitions and Results

“Where do you want to go today?” (Microsoft)

The first section introduces the syntax of the modal µ-calculus. We begin

with the language and the formulae. The language does not contain labels for

the modalities, that is, it has only one kind of modality, as opposed to many,

all determined by a given set of labels. A non-labeled language is enough for

our purpose since we are mainly interested in the theoretical aspects of the

modal µ-calculus. On the other hand, if you are interested in applications,

mainly in a multi-agent context, in most cases a labeled language is required

since you have to distinguish between the single agents. After, we define the

syntactical modal µ-calculus hierarchy. An other chapter of this thesis will

then talk of the semantical side of this hierarchy and prove its strictness.

The section concludes by presenting the axiomatisation proposed by Kozen

in [31] for the calculus.

The second section deals with the semantics of the modal µ-calculus. Our

semantics is given by transition systems. It is the most common, and proba-

bly intuitive, semantics for this calculus. The semantical counterpart of the

modal µ-calculus hierarchy is then introduced, and some well known results

of fixpoint theory are applied to our context.

The final section presents Streett and Emerson’s [45] fundamental theorem,

an important result about modal µ-calculus. Its importance is due to the fact

that it helps understanding the structure of the models of a given formula

and that it will be very useful to prove some results later on in this thesis.
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2.1 Syntax

Let us first define the set of formulae of the modal µ-calculus. As men-

tioned above, we do not introduce a syntax with labels, since for our, mainly

theoretical, purposes it is enough to have an non-labeled language.

We start from a set of propositional variables P = {p, q, . . . , X, Y, Z, . . .},
and the symbols >,⊥,∧,∨,¬,�,3, µ and ν. The class of all µ-formulae Lµ,

denoted by ϕ, ψ, α, β, γ, . . ., is defined to be the smallest set such that

P ∪ {>,⊥} ⊆ Lµ,

and further that:

• if ϕ, ψ ∈ Lµ then (ϕ ∧ ψ) ∈ Lµ and (ϕ ∨ ψ) ∈ Lµ,

• if ϕ ∈ Lµ then ¬ϕ ∈ Lµ,�ϕ ∈ Lµ and 3ϕ ∈ Lµ.

In addition, for each ϕ ∈ Lµ such that each appearance of a propositional

variable X is in the scope of an even number of negations (that is X appears

only positively in ϕ), we have:

• if ϕ ∈ Lµ then νX.ϕ ∈ Lµ and µX.ϕ ∈ Lµ.

We omit the parentheses if no danger of confusion arises and often abbre-

viate ¬α ∨ β by α → β. The set of subformulae of a formula ϕ consists of

all formulae which are needed in the inductive definition of ϕ given above

(including ϕ itself). Given a formula of the form σX.ϕ, where σ is either µ

or ν, we say X is bounded by σX.ϕ. If σ is ν we say that X is a ν-variable, in

the other case it is a µ-variable. A variable X is bound in ϕ if it is bounded

by a subformula of ϕ, otherwise X is free in ϕ. By Free(ϕ) we denote all

the free propositional variables and by Bound(ϕ) the set of all bound propo-

sitional variables in ϕ. A formula is called fixpoint-free if it does not contain

a subformula of the form σX.ϕ (σ ∈ {µ, ν}).

Remark 1 Some authors introduce a language which, instead of having just

propositional variables, distinguishes between variables (X, Y, . . .) and prim-

itive propositions (p, q, . . .). In this case, you are only allowed to bound vari-

ables and not primitive propositions. The situation is similar to the one in

first order logic where you have constants and variables. We do not make

this distinction since it is not necessary from a purely technical point of view.
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However, our notation is such that it denotes a propositional variable with

p, q, . . . when it is used like a primitive proposition, and with X,Y. . . . when

used like a variable.

ϕ(X1, . . . , Xn) means that each Xi ∈ {X1, . . . , Xn} is not bound in ϕ. For

ϕ(X1, . . . , Xn)[ψ1/X1, . . . , ψn/Xn] we then often write ϕ(ψ1, . . . , ψn).

The negation normal form nnf(ϕ) of ϕ is defined by shifting negations inside

the formula ϕ as follows:

• nnf(p) ≡ nnf(¬¬p) ≡ p and nnf(¬p) ≡ ¬p for all p ∈ P,

• nnf(¬�ϕ) ≡ 3nnf(¬ϕ) and nnf(¬3ϕ) ≡ �nnf(¬ϕ),

• nnf(¬µX.ϕ) ≡ νX.nnf(¬ϕ[¬X/X]) and

• nnf(¬νX.ϕ) ≡ µX.nnf(¬ϕ[¬X/X]).

A formula ϕ is well-named if every variable is bounded at most once in ϕ and

free variables are distinct from bound. wn(ϕ) is a formula obtained from ϕ

by renaming the bounded variables, such that the requirements mentioned

above are fulfilled (for wn we choose one arbitrary but fixed renaming). Note

that for a variable X bound in a well-named formula ϕ there exists exactly

one subformula of ϕ of the form σX.ψ. A formula is in normal form if it is

both in negation normal form and well-named. Let ϕ be a formula in normal

form with X and Y two bound variables in it. We say that X is higher than

Y if and only if Y is bounded by a subformula of the one bounding X.

We introduce a hierarchy on the µ-formulae. It will be similar to the one

introduced on, so-called, fixpoint algebras by Niwinski in [37]. The various

levels of the hierarchy capture the alternation depth of a µ-formula, whereby

the alternation depth measures how many ‘relevant’ nestings of µ and ν occur

in the formula.

We first introduce two operators µ and ν on classes of µ-formulae. Let Φ be

a class of µ-formulae. We define µ(Φ) to be smallest class of formulae such

that the following requirements are fulfilled:

1. Φ ⊆ µ(Φ) and ¬Φ ⊆ µ(Φ), where ¬Φ := {¬ϕ |ϕ ∈ Φ}.

2. If ψ ∈ µ(Φ) then µX.ψ ∈ µ(Φ) (provided that each appearance of X

in ψ is positive).



16 Basic Definitions and Results

3. If ψ, ϕ ∈ µ(Φ) then ψ ∧ ϕ, ψ ∨ ϕ,�ψ,3ψ ∈ µ(Φ).

4. If ψ, ϕ ∈ µ(Φ) and X 6∈ Free(ψ), then ϕ[ψ/X] ∈ µ(Φ).

ν(Φ) is defined analogously to µ(Φ) with the only difference that line 2. is

substituted by:

2’. If ψ ∈ ν(Φ) then νX.ψ ∈ ν(Φ) (provided that each appearance of X in

ψ is positive).

The modal µ-calculus hierarchy on formulae consists of all Πµ
n and Σµ

n, which

are defined inductively for all natural numbers n as follows:

• Σµ
0 and Πµ

0 are equal and consist of all fixpoint-free µ-formulae.

• Σµ
n+1 = µ(Πµ

n).

• Πµ
n+1 = ν(Σµ

n).

It is obvious that we have

Lµ =
⋃
n∈ω

Σµ
n =

⋃
n∈ω

Πµ
n.

And moreover from the definitions above, we can easily prove

(Σµ
n ∪ Πµ

n) ( Πµ
n+1, and (Σµ

n ∪ Πµ
n) ( Σµ

n+1.

This clearly shows that the hierarchy is strict on the syntactical side, the

strictness of the semantical counterpart, first proven by Bradfield in [12],

will be a subject of Chapter 5. If a formula ϕ is in Σµ
n ∪ Πµ

n but not in

Σµ
n−1 ∪ Πµ

n−1 then the alternation depth of ϕ, ad(ϕ), is equal to n.

We present Kozen’s axiomatisation for the modal µ-calculus KOZ, which was

introduced by him in [31]. The axiomatisation is introduced in the Hilbert

style.

Axioms:

KOZ includes the axioms of the classical propositional calculus, the distribu-

tion axiom

�(ϕ→ ψ)→ (�ϕ→ �ψ),

the fixpoint axiom

νX.α↔ α(νX.α)
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and the duality axioms

¬�¬ϕ↔ 3ϕ and ¬µX.¬ϕ[X/¬X]↔ νX.ϕ

which are necessary since we did not define 3 as ¬�¬, and similarly for µ

and ν.

Inference rules:

In addition to the classical modus ponens (MP ), we have, as usual in modal

logic, the necessitation rule (Nec) and, for dealing with fixpoints, the induc-

tion rule (Ind). All the rules are described below as schemes:

ψ → ϕ ψ
ϕ (MP )

ϕ
�ϕ

(Nec)

ϕ→ α(ϕ)

ϕ→ νX.α
(Ind)

As usual if a formula ϕ is provable in KOZ, we write KOZ `ϕ, if ϕ is provable

without the use of the induction rule (Ind), we write KOZ−(Ind) `ϕ.

2.2 Semantics

In this section we introduce the ‘usual’ semantics for the modal µ-calculus.

As for all modal logics the semantics is given by transition systems, which

sometimes are called Kripke-Models.

A transition system S is a tupel of the form (S,R, λ), where:

• S is the set of states,

• R ⊆ S × S is a binary relation on S,

• λ : P → P(S) is the valuation, which assigns a subset of S to each

propositional variable p.

We sometimes want to specify an initial point in the transition system and

so introduce pointed transition systems. They are of the form (S, sI), where

S is a transition system and sI ∈ S a state of it.
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Given a valuation λ, a propositional variable p ∈ P and a set of states S ′

λ[p 7→ S ′] is defined as follows:

λ[p 7→ S ′](p′) =

{
S ′

λ(p′)

if p′ = p

if p′ 6= p.

If S = (S,R, λ) is a transition system then S[p 7→ S ′] denotes the transition

system (S,R, λ[p 7→ S ′]).

Given a µ-formula ϕ and a transition system S, the set ‖ϕ‖S ⊆ S denotes the

states where ϕ holds, and is called the denotation of ϕ in S. This is defined

inductively on the structure of ϕ simultaneously for all transition systems S,

as follows:

• ‖p‖S = λ(p) for all p ∈ P,

• ‖¬α‖S = S − ‖α‖S ,

• ‖α ∧ β‖S = ‖α‖S ∩ ‖β‖S ,

• ‖α ∨ β‖S = ‖α‖S ∪ ‖β‖S ,

• ‖�α‖S = {s ∈ S | (∀t ∈ R(s)) t ∈ ‖α‖S},

• ‖3α‖S = {s ∈ S | (∃t ∈ R(s)) t ∈ ‖α‖S},

• ‖νX.α‖S =
⋃
{S ′ ⊆ S | S ′ ⊆ ‖α(X)‖S[X 7→S′]},

• ‖µX.α‖S =
⋂
{S ′ ⊆ S | ‖α(X)‖S[X 7→S′] ⊆ S ′}.

Given a transition system S and a state s in it. If s ∈ ‖ϕ‖S and if it is clear

that we are referring to the transition system S we often write s |= ϕ, and

say ϕ is valid in s. We write S |= ϕ, and say ϕ is valid in S, if it is valid

in all states of S. Furthermore, we write |= ϕ, and say ϕ is valid, if it is

in all transition systems. If (S, sI) is a pointed transition system we write

(S, sI) ∈ ‖ϕ‖ if sI ∈ ‖ϕ‖S , and ‖ϕ‖ denotes the class of all pointed transition

systems (S, sI) such that (S, sI) ∈ ‖ϕ‖.

We are now able to define a semantical counterpart of the modal µ-calculus

hierarchy. It is an hierarchy on the class of all pointed transition systems,

which is named as TR. The semantical hierarchy consists of all Σµ
n

TR and

Πµ
n

TR, which are defined as

Σµ
n

TR = {‖ϕ‖ | ϕ ∈ Σµ
n} and Πµ

n
TR = {‖ϕ‖ | ϕ ∈ Πµ

n}.
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The following lemma connects the Σ and Π−levels of the semantical hierarchy

above.

Lemma 2 For all natural numbers n the following holds:

1. Σµ
n

TR = {‖¬ϕ‖ | ϕ ∈ Πµ
n} and Σµ

n
TR = {TR− ‖ϕ‖ | ϕ ∈ Πµ

n};

2. Πµ
n

TR = {‖¬ϕ‖ | ϕ ∈ Σµ
n} and Πµ

n
TR = {TR− ‖ϕ‖ | ϕ ∈ Σµ

n}.

Proof. By Lemma 98 in the appendix we have for all transition system S
and all formulae ϕ

‖¬νX.ϕ‖S = ‖µX.¬ϕ[¬X/X]‖S and ‖¬µX.ϕ‖S = ‖νX.¬ϕ[¬X/X]‖S .

From this fact the lemma is easily proved. 2

We continue by stating two propositions. The first establishes the equivalence

of a given formula with its negation normal form, and the existence of an

equivalent well-named formula. These follow easily from the definition of the

denotation. The second is the correctness result of KOZ which is proven by

induction on the length of the derivation.

Proposition 3 For all formulae ϕ and all transition systems S we have:

1. ‖ϕ‖S = ‖nnf(ϕ)‖S ,

2. ‖ϕ‖S = ‖wn(ϕ)‖S .

Proposition 4 For all formulae ϕ we have

KOZ `ϕ ⇒ |= ϕ.

Let ϕ(X1, . . . , Xn) be a µ-formula and let S1, . . . , Sn be sets of states of a

transition system S. We define

‖ϕ(S1, . . . , Sn)‖S = ‖ϕ(X1, . . . , Xn)‖S[X1 7→S1,...,Xn 7→Sn].

Furthermore, ‖ϕ(X1, . . . , Xn)‖S denotes the functional from (P(S))n to P(S),

which is defined as

‖ϕ(X1, . . . , Xn)‖S : (S1, . . . , Sn) 7→ ‖ϕ(S1, . . . , Sn)‖S .
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It can easily be seen, that if all occurrences of a variable Xi are positive,

then the functional is monotone in this variable. Hence, we know that for all

transition systems S, and formulae ϕ(X), with X appearing only positively,

the functional ‖ϕ(X)‖S has a greatest fixpoint, GFP(‖ϕ(X)‖S), and a least

fixpoint, LFP(‖ϕ(X)‖S).

The following proposition is a reformulation of the well-known Tarski-Knaster

Theorem 95, which is proven in the appendix.

Proposition 5 For all formulae ϕ(X), where X appears only positively, and

for all transition systems S we have:

1. GFP(‖ϕ(X)‖S) = ‖νX.ϕ(X)‖S ,

2. LFP(‖ϕ(X)‖S) = ‖µX.ϕ(X)‖S .

Greatest fixpoints can be approximated from above and least fixpoints from

below. To do that, we need to define the notion of approximant. Let ϕ(X)

be a formula, with X appearing only positively, and let S = (S,R, λ) by a

transition system, we define for all ordinals α, the α-approximant from above

‖ϕα(S)‖S and the α-approximant from below ‖ϕα(∅)‖S as follows:

For α = 0,

‖ϕ0(∅)‖S = ∅ and ‖ϕ0(S)‖S = S.

For α = β + 1, a successor ordinal,

‖ϕα(∅)‖S = ‖ϕ(‖ϕβ(∅)‖S)‖S and ‖ϕα(S)‖S = ‖ϕ(‖ϕβ(S)‖S)‖S .

For α a limit ordinal,

‖ϕα(∅)‖S =
⋃
β<α

{‖ϕβ(∅)‖S} and ‖ϕα(S)‖S =
⋂
β<α

{‖ϕβ(S)‖S}.

The following lemma is a translation of the Lemmata 96 and 97 in the ap-

pendix.

Lemma 6 Let S = (S,R, λ) be a transition systems of cardinality κ. For all

formulae ϕ(X), with X appearing only positively, we have:

1. ‖µX.ϕ(X)‖S = ‖ϕκ(∅)‖S ,

2. ‖νX.ϕ(X)‖S = ‖ϕκ(S)‖S .
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Remark 7 The approximation done in Lemma 6 can be done in a pure

syntactical way for finite transition systems. This follows from the following

observations, which can easily be verified. Let ϕ0(X) be defined as X and

for all natural numbers let ϕn+1(X) be ϕ[X/ϕn(X)]. Then we have for all

transition systems S and natural numbers n:

‖ϕn(X)[X/>]‖S = ‖ϕn(S)‖S and ‖ϕn(X)[X/⊥]‖S = ‖ϕn(∅)‖S .

2.3 The Fundamental Theorem

This section reviews the fundamental theorem due to Emerson and Streett

[45]. We use a slightly different notation and nomenclature than those intro-

duced by the two authors. The label ‘fundamental’ was, in my knowledge,

first used by Bradfield and Stirling in [11].

In the sequel we will assume that all the formulae are in normal form, that

is, in negation normal form and are well-named. This is no restriction by

Proposition 3. To define the notion of well-founded pre-model, we fist need

some preliminary definitions.

Let S = (S,R, λ) be a transition system and ϕ a formula:

1. An annotated structure for ϕ and S consists of states of the transition

system S annotated with subformulae of ϕ. If s ∈ S is annotated with

α we write α@s. Furthermore, we must have ϕ@s for at least one state

s.

2. A quasi-model (for ϕ and S) is an annotated structure (for ϕ and S),

which fulfills the following local consistency conditions.

• α ∧ β@s ⇒ α@s and β@s,

• α ∨ β@s ⇒ α@s or β@s,

• �α@s ⇒ α@t for all t ∈ R(s),

• 3α@s ⇒ α@t for a t ∈ R(s),

• p@s ⇒ s ∈ λ(p), if p is a free propositional variable in ϕ,

• ¬p@s ⇒ s 6∈ λ(p), if p is a free propositional variable in ϕ,

• X@s ⇒ σX.α@s, if X is a propositional variable bounded in ϕ

by σX.α (where σ ∈ {µ, ν}).
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Notice that the case ¬X@s, where X is a bounded variable, is not

possible, since X appears only positively.

3. A choice function on an annotated structure is a partial function f ,

such that either f(α ∨ β@s) = α or f(α ∨ β@s) = β and such that

f(3β@s) = t for a t ∈ R(s).

4. A pre-model (for ϕ and S) is a quasi-model (for ϕ and S) with a choice

function.

To define the notion of well-founded pre-model we moreover have to define a

dependency relation on annotated states of a pre-model. Given a pre-model

for ϕ and S with choice function f , we define the dependency relation �1 on

the annotated states of the pre-model as follows.

• α ∧ β@s �1 α@s and α ∧ β@s �1 β@s,

• α ∨ β@s �1 f(α ∨ β@s)@s,

• �α@s �1 α@t for all t ∈ R(s),

• 3α@s �1 α@f(3α@s),

• σX.α@s �1 α@s where σ is either µ or ν,

• X@s �1 σX.α@s where X is bounded by σX.α in ϕ.

A branch of a pre-model is a maximal chain of dependencies. A formula ψ

occurs in a branch if it contains an annotated state of the form ψ@s. In

order to define well-foundedness of a pre-model we need a lemma.

Lemma 8 Let ϕ be a formula and S a transition system. For each infinite

branch of a pre-model for ϕ and S there is a variable X ∈ Bound(ϕ), oc-

curring infinitely often, which is higher than all the other bound variables

occurring infinitely often.

Proof. It can easily be seen that in an infinite branch there must be variables

occurring infinitely often. So, only the uniqueness has to be proven. We

prove it by contraposition. Suppose there is a branch with two variables

X,Y ∈ Bound(ϕ), occurring infinitely often, such that all the other bound

variables occurring infinitely often are not higher than these. Furthermore,
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suppose that X is bounded by σX.α in ϕ and Y by σY.β. By definition of

higher we know that σX.α is not a subformula of σY.β and vice versa, and

hence we know that both X does not appear in σY.β and Y does not appear

in σX.α. For, if for example X appears free in σY.β then σY.β would be a

subformula of σX.α and if X appears bounded in σY.β then σX.α would be

a subformula of σY.β. Without loss of generality suppose that σX.α appears

earlier than σY.β in the infinite branch. Since Y can not appear in σX.α

in this branch we will never reach an annotated state of the form σY.β@s′.

This is a contradiction to the fact that Y occurs infinitely often. 2

A branch of a pre-model is closed, if the highest variable occurring infinitely

often is a ν-variable. The dependency relation of a pre-model is well-founded

if every branch is closed. A well-founded pre-model is then a pre-model, where

the dependency relation is well-founded.

As the nomenclature suggests, a (well-founded) pre-model for ϕ and S can be

described as a tree with root ϕ@s, the other vertices are all the ψ@t depend-

ing on ϕ@s (that is there is a branch containing ψ@s) and if ψ@t �1 ψ′@t′,

then there is an edge from ψ@t to ψ′@t′. This graph is called the (well-

founded) pre-model for S with root ϕ@s.

We now state the fundamental theorem of the µ-calculus, the proof can be

found in the paper of Street and Emerson [45].

Theorem 9 Let S be a transition system. For all states s in S and formulae

ϕ the following two conditions are equivalent:

1. s ∈ ‖ϕ‖S .

2. There is a well-founded pre-model for S with root ϕ@s.
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Chapter 3

Alternating Tree Automata

“Lerne die Regeln, damit du sie richtig brechen kannst.” (Dalai Lama)

Alternating tree automata where first introduced by Muller and Schupp in

[36] as an extension of automata on infinite trees, a subject previously well

studied, see for example Rabin in [40]. This chapter deals with the alternating

tree automata model introduced by Wilke in [53].

In Section 1 we first define our alternating tree automata model. Further,

we introduce the notion of run of an automaton over a transition system,

which is crucial for the definition of acceptance of a transition system by

an automaton. We then introduce a hierarchy of automata, based on the

notion of index of an automaton. The section ends with some lemmas and

an optional definition of acceptance.

The second section begins with some basic definitions of the theory of parity

games, such as strategy tree, game, strategy, winning strategy. The exis-

tence of a winning strategy on a certain strategy tree is then shown to be

equivalent to the acceptance of a transition system by a given automaton.

The section ends with the construction of a an automaton which is able to

test the existence of a winning strategy. As a consequence, we can reduce

the problem of acceptance of a transition system by a given automaton to

the problem of acceptance of a strategy tree by such a test automaton.

The final section states some decidability and complexity results about the

emptiness problem and the model checking problem for alternating tree au-

tomata.
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3.1 Basic Definitions

In this section we introduce alternating tree automata following the model

introduced by Wilke in [53]. Then we define the notions of acceptance of

a transition system by an alternating tree automaton. It will be done by

introducing the notion of run of an automaton over a transition system. We

first describe informally, what alternating tree automata are:

Alternating tree automata consist of a finite set of states. They accept or

reject a given pointed transition system. A run of an alternating tree automa-

ton on a pointed transition system can be seen as a computation tree. The

computation begins in the initial state of the automaton. At this stage the

automaton reads the emphasized state of the pointed transition system, and

then according to the, so-called, transition function, the automaton changes,

possibly in a non-deterministic way, its internal state and the state of the

transition system. The computation continues by reading the new state of

the transition system while being in its new internal state. Since the compu-

tation may last forever, we need a priority function to define acceptance of

the run produced by it. The priority function is a partial function with finite

range from the states of the automaton to the natural numbers. An infinite

branch of a run is accepted, if the maximal priority appearing is even, and a

run is accepted if all infinite branches are. Formally:

An alternating tree automaton A is a tuple A = (Q,P, qI, δ,Ω), where:

• Q is a finite set of states,

• P is a set of propositional variables,

• qI ∈ Q is the initial state,

• Ω : Q→ ω is a (partial) priority function and

• δ : Q→ TCQ∪P is a transition function, where TCQ∪P is the set of all

transition conditions over Q ∪ P defined inductively as:

– ⊥,> ∈ TCQ∪P ,

– p,¬p ∈ TCQ∪P for all p ∈ P ,

– if q ∈ Q then q,�q,3q ∈ TCQ∪P ,

– if q, q′ ∈ Q then q ∧ q′, q ∨ q′ ∈ TCQ∪P .
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Remark 10 Notice that a transition condition δ(q) can be interpreted as

a µ-formula over propositional variables in Q ∪ P . We sometimes write

δq(q1, . . . , qn) if δ(q) can be interpreted as a µ-formula whose variables are

among {q1, . . . , qn} ∪ P.

The definition of acceptance of a pointed transition system (S, sI) by an au-

tomaton A needs the notion of accepting run of an automaton over a transi-

tion system.

Let A be an automaton containing a state q0 and let S be a transition system

containing a state s0. We define % to be a q0-run on s0 of A on S if % is

a (S × Q)-vertex-labeled tree of the form (V,E, `), where V is the set of

vertices, E is a binary relation on V , and ` : V → (S × Q) is the labeling

function. If v0 is the root of V , then `(v0) must be (s0, q0). Further, for all

vertices v ∈ V , with label (s, q), the following requirements must be fulfilled:

• δ(q) 6= ⊥,

• if δ(q) = p then s ∈ ‖p‖S , and if δ(q) = ¬p then s 6∈ ‖p‖S ,

• if δ(q) = q′ then there is a v′ ∈ E(v) such that `(v′) = (s, q′),

• if δ(q) = 3q′, then there is a v′ ∈ E(v) such that `(v′) = (s′, q′) where

s′ ∈ R(s),

• if δ(q) = �q′ then for all s′ ∈ R(s) there is a v′ ∈ E(v) such that

`(v′) = (s′, q′),

• if δ(q) = q′ ∨ q′′ then there is a v′ ∈ E(v) such that `(v′) = (s, q′) or

`(v′) = (s, q′′),

• if δ(q) = q′ ∧ q′′ then there are v′, v′′ ∈ E(v) such that `(v′) = (s, q′)

and `(v′′) = (s, q′′).

An infinite branch of a run is accepting if the highest priority which appears

infinitely often is even. That is:

Suppose we have an infinite branch of the form (s0, q0), (s1, q1), . . . , (si, qi), . . ..

Define S to be the set consisting of all natural numbers n such there are in-

finitely many pairs (sj, qj) with Ω(qj) = n. If S is empty the branch is not

accepting otherwise max(S) must be even. Notice that for non-empty S,
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max(S) always exists. A run is accepting if all infinite branches are accept-

ing. Finally, an automaton A accepts a pointed transition system S = (S, sI)

if there is an accepting qI-run on sI of A on S (where qI is the initial state of

the automaton).

Our definition of transition conditions is restrictive since it does not allow

‘complex’ transition conditions. Nevertheless, this restriction can be cir-

cumvented by adding new states and extending the transition function ap-

propriately. For example, suppose we want a transition condition ϕ which

intuitively acts as: Change the inner state to q1 if p is true, otherwise change

the inner state to q2. Formally, we represent this by

ϕ ≡ (q1 ∧ p) ∨ (q2 ∧ ¬p).

Clearly, ϕ 6∈ TCQ∪P. On the other hand, by introducing the new states qϕ,

q(q1∧p), q(q2∧¬p), qp, q¬p, and extending the transition function δ such that

δ(qϕ) = q(q1∧p) ∨ q(q2∧¬p),

δ(q(q1∧p)) = q1 ∧ qp,
δ(q(q2∧¬p)) = q2 ∧ q¬p,

δ(qp) = p,

δ(q¬p) = ¬p,
we get a new automaton, with restricted transition conditions, which meets

the intended intuition. Using this method we can talk about automata with

complex transition conditions.

Let A be an automaton. ‖A‖S is the set of all states s of the transition

system S such that A accepts (S, s). ‖A‖ is the class of all pointed transition

systems accepted by an automaton A.

The index of an automaton is a measure of its complexity. Before we define

it, we first need the definition of transition graph of the automaton. The

transition graph of an automaton A has its states as vertices, and there is

an edge (q, q′) if q′ appears in δ(q). A strongly connected component of this

graph is a subset of the graph where all the vertices are pairwise reachable.

The index, ind(A), of an automaton A is then defined as

ind(A) = max
(
{|Ω(Q′)| |Q′ ⊆ Q,Q′ is strongly connected} ∪ {0}

)
.

We introduce a syntactical hierarchy for automata, consisting of the following

classes of alternating automata:
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• Σ0 = Π0 consists of all automata of index 0.

• Σn(n > 0) contains Σn−1∪Πn−1 and all automata of index n where the

maximal priority on a strongly connected component of the transition

graph of the automaton is odd.

• Πn(n > 0) contains Σn−1∪Πn−1 and all automata of index n where the

maximal priority on a strongly connected component of the transition

graph of the automaton is even.

Clearly this syntactical hierarchy strict. The semantical counterpart of this

hierarchy is defined naturally as follows:

ΣTR
n = {‖A‖ | A ∈ Σn} and ΠTR

n = {‖A‖ | A ∈ Πn}.

Strictness of the semantical hierarchy will be proved in the sequel.

A Σn-automaton is in normal form if the range of the priority function is

ΩΣn and a Πn-automaton is in normal form if the range is ΩΠn , whereby ΩΣn

and ΩΠn are defined by case distinction on n:

• If n = 0 we have

ΩΣn = ΩΠn = ∅.

• If n is an even positive natural number then

ΩΣn = {0, . . . , n− 1} and ΩΠn = {1, . . . , n}.

• If n is an odd natural number then

ΩΣn = {1, . . . , n} and ΩΠn = {0, . . . , n− 1}.

The following lemma claims the existence of an equivalent automaton in

normal form for all automata, and can easily be proven.

Lemma 11 For each automaton A ∈ Σn(∈ Πn) there is an automaton

A′ ∈ Σn(∈ Πn) in normal form, such that

‖A‖ = ‖A′‖.
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The next lemma is the complementation theorem for alternating tree au-

tomata. It claims that for all automata there is another that accepts exactly

the pointed transition systems, that were not accepted by the first. The

proof can be found in Kirsten [30].

Lemma 12 For each automaton A ∈ Σn(∈ Πn) there is an automaton

Â ∈ Πn(∈ Σn) such that

‖Â‖ = TR− ‖A‖.

We finish the section by giving alternative definition of run. This needs the

interpretation of transition conditions as µ-formulae over P ∪Q.

Let A = (Q,P, q1, δ,Ω) be an automaton, S = (S,R, λ) a transition system

and % = (V,E, `) a (S ×Q)-vertex-labeled tree. For all v ∈ V and q ∈ Q we

define

SE(v)|q = {s ∈ S | (∃v′ ∈ E(v)) (`(v) = (s, q))}.

The following lemma can be proven by unwinding the definitions.

Lemma 13 Let A = (Q,P, qI, δ,Ω) be an automaton, S = (S,R, λ) a transi-

tion system and % = (V,E, `) a (S ×Q)-vertex-labeled tree with root v0. For

all s0 ∈ S and q0 ∈ Q the following two sentences are equivalent:

• % = (V,E, `) is a q0-run on s0 of A on S,

• `(v0) = (s0, q0) and for all vertices v which are labeled by (s, q) we have

s ∈ ‖δq(SE(v)|q1 , . . . , SE(v)|qn)‖S .

3.2 Reduction of Acceptance

In this section we reduce the problem of acceptance of a transition system

by an automaton to the problem of acceptance of an other transition system

by a test automaton. This new transition system can be seen as a strategy

tree in a parity game. We avoid to introduce the whole formalism of parity

games, although we will borrow its terminology. For a detailed introduction

in the theory of parity games see Wilke [53].

Let (S, sI) be a pointed transition system, where S = (S,R, λ), and let A be

the automaton (Q,P, qI, δ,Ω). The strategy tree GA,S of A on S is defined as

follows:
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The root vI of the tree is (sI, qI). All the vertices v are finite sequences of the

form

v ≡ (sI, qI), (s1, q1), . . . , (sn, qn)

where si ∈ S and qi ∈ Q for all i ∈ {1, . . . , n}. Let v ≡ (sI, qI), . . . , (sn, qn)

be a vertex. We define the successors of v by case distinction on δ(qn):

1. If δ(qn) = ⊥,>, p,¬p then v has no successors,

2. if δ(qn) = q′ then v has as successor the sequence v, (sn, q
′),

3. if δ(qn) = q ∨ q′ then v has the successors v, (sn, q) and v, (sn, q
′),

4. if δ(qn) = 3q then v has a successor v, (s, q) for all s ∈ R(sn),

5. if δ(qn) = q ∧ q′ then v has the successors v, (sn, q) and v, (sn, q
′),

6. if δ(qn) = �q then v has a successor v, (s, q) for all s ∈ R(sn).

If δ(qn) falls under cases (2), (5),(6) and (7), then we call v a disjunctive vertex

(d-node), whereas if δ(qn) is one of (7) and (8), then we call v a conjunctive

vertex (c-node). Clearly, if a vertex has a successor in the strategy tree then

it must be either a c-node or a d-node.

Remark 14 Any run of A on (S, sI) can be seen as a ‘subtree’ of the strat-

egy tree GA,S . This is due to the fact that, starting from the strategy tree,

we can construct any run by taking all successors of the c-nodes we reach

and by selecting the adequate successor, that is the one which chooses the

run, at every d-node we reach. Thus, we can use the strategy tree to define

acceptance.

Let (S, sI) be a pointed transition system and let A be the automaton

(Q,P, qI, δ,Ω). We informally define a parity game on the strategy tree GA,S :

We have two players, the disjunctive player (player D) and the conjunctive

player (player C). The game begins at the root v of the strategy tree; if v is

a d-node, player D chooses a successor in the tree; if it is a c-node, player

C chooses one. Thus the game continues: Whenever a c-node is reached D

plays, whenever a c-node is reached C plays. Either the game continues for-

ever or a node is reached which has no successor. Let us define when player D

wins: If the game is finite we have a last position (sI, qI), . . . , (sn, qn). Player
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D wins if either the last position is a c-node, or if we have sn ∈ ‖δ(qn)‖S .

If the game lasts forever, we have an infinite branch of the strategy tree

(sI, qI), . . . , (si, qi) . . .. Player D wins if the maximum priority appearing in-

finitely often in the branch is even; that is, the maximum value appearing

infinitely often in the sequence of all Ω(qi), where qi appears in the branch,

must be even. In all the other cases player C wins.

A strategy for player D is a function that assigns to every d-node a successor

in the strategy tree. A winning strategy for player D is a strategy such that,

whenever D follows the strategy, no matter how C plays, D wins the game.

Similar concepts are defined for player C.

The following theorem relates winning strategies of player D to acceptance.

Theorem 15 Let A be an automaton and (S, sI) a pointed transition system.

A accepts (S, sI) if and only if player D has a winning strategy on GA,S .

Proof. By Remark 14 a run of A on (S, sI) and a strategy tree of A on (S, sI)

only differ in the fact, that there is branching at d-nodes. If we want to

construct an accepting run of A on S, we can choose a successor only when

we are at a d-node. In this sense, we have the same choice nodes as player

D. On the other hand, at a c-node, also the run is branching and we have

to test for acceptance all the branches, that is, no matter which branch we

take, it must be accepting. In this sense, the adversary, player C, can choose

an arbitrary branch which in every case must be accepted. Since the winning

conditions of player D are exactly the conditions of acceptance in a branch

of a run, the result follows naturally. 2

A strategy for player D is called memoryless if the choice of the next po-

sition in a d-node of the form (sI, qI), . . . , (si, qi) depends only on the last

pair (si, qi). Formally: Suppose we have two d-nodes (sI, qI), . . . , (si, qi) and

(sI, qI), . . . , (s
′
j, q
′
j). According to his memoryless strategy, player D moves

to the successors (sI, qI), . . . , (si, qi), (s, q) and (sI, qI), . . . , (s
′
j, q
′
j), (s

′, q′). A

memoryless strategy is such that, if we have (si, qi) ≡ (s′j, q
′
j) then we must

have (s, q) ≡ (s′, q′).

The next theorem claims the existence of a memoryless winning strategy

whenever there is any winning strategy, it is proven by Emerson and Jutla

in [13].

Theorem 16 Let GA,S be a strategy tree. Let Player D has a winning strat-

egy on GA,S if and only if it has a memoryless winning strategy on GA,S .
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Before we apply this result to accepting runs let us introduce the notion of

memoryless run: Let A be an automaton and S = (S,R, λ) a transition

system. A run (V,E, `) is called memoryless if any two vertices v, v′ ∈ V

with `(v) = `(v′) = (s, q) satisfy the following: If δ(q) = 3q′ or δ(q) = q′∨ q′′
then for all v̄ ∈ E(v) there is a v̄′ ∈ E(v′) such that and `(v̄) = `(v̄′), and

vice versa.

Corollary 17 Let A be an automaton and (S, sI) a pointed transition sys-

tem. There is an accepting run of A on (S, sI) if and only if there is a

memoryless accepting run of A on (S, sI).

Proof. The “if” direction is obvious. The “only if” direction can be seen as

follows. Suppose there is an accepting run. Then by Theorem 15 there is

a winning strategy for player D on the strategy tree GA,S . By Theorem 16

there is a memoryless winning strategy for player D on GA,S . Now we can

convert GA,S in an accepting run by choosing at all d-nodes the successor

resulting from the move of player D. The run must by memoryless, since

player D follows a memoryless strategy. 2

To end this section we now do the reduction of acceptance, that is we re-

duce the problem of acceptance of a pointed transition system (S, sI) by an

automaton A to the problem of acceptance of the strategy tree, seen as a

pointed transition system, by a test automaton.

Let A = (Q,P, qI, δ,Ω) be an automaton and (S, sI) a pointed transition

system where S = (S,R, λ). We define TA, the test automaton for A, which

tests the existence of a winning strategy on the strategy tree GA,S . Since an

automaton acts only on transition systems, starting from the strategy tree

GA,S , we also have to define a transition system S(GA,S) on which the test

automaton acts. We define

TA = (QT,PT, qT
u , δ

T,ΩT),

where

• QT = {qT
i | i ∈ Ω(Q)} ∪ {qT

u },

• PT = {cu, c1, c2, . . . , ci, . . .} ∪ {du, d1, d2, . . . , di, . . .}, where u is a new

symbol,

• ΩT(qT
j ) = j if j 6= u, and ΩT(qT

u ) ↑ and
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• for all states qT
j ∈ QT we have:

δT(qT
j ) =

∨
i∈QT

(ci ∧�qT
i ) ∨

∨
i∈QT

(di ∧3qT
i ).

S(GA,S) is of the form (GA,S , E, λ
′), where E is the edge relation on the

strategy tree GA,S ; and λ′ evaluates the set PT of variables (where PT is

defined as above), such that validity at a vertex v ≡ (sI, qI), . . . , (sn, qn) is

defined as follows:

• If v has a successor in the strategy tree GA,S

v ∈ λ′(p) iff


v is disjunctive, Ω(qn) ↑ and p ≡ du,

v is disjunctive, Ω(qn) = i and p ≡ di,

v is conjunctive, Ω(qn) ↑ and p ≡ cu,

v is conjunctive, Ω(qn) = i and p ≡ ci.

• If v is a leaf of GA,S for all p ∈ PT we have

v ∈ λ′(p) iff sn ∈ ‖δ(qn)‖S .

Remark 18 As the notation suggests, the construction of S(GA,S) depends

on the automaton A and the transition system S, whereas TA depends only

on A. In fact, from the definition it can be seen that TA depends only on

the range of the priority function of the automaton A. By Lemma 11 all

automata have a normal form where the range of the priority function is

fixed by their membership to a class in the hierarchy. So, if we assume all

automata of being in normal form, then we can talk of the Σn-test automaton

TΣn and the Πn-test automaton TΠn.

In the following the main theorem of this section, which shows us how the

reduction of acceptance is done.

Theorem 19 Let A be an automaton with initial state qI and (S, sI) a pointed

transition system:

1. TA accepts (S(GA,S), (sI, qI)) if and only if there is a winning strategy

of player D in GA,S .
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2. TA accepts (S(GA,S), (sI, qI)) iff A accepts (S, sI).

Proof. Part 1. is a consequence to the fact that an accepting run of TA on

S(GA,S) gives player D a winning strategy, and vice versa. Let us informally

explain this:

Let us analyze how the automaton TA works through S(GA,S) (which basi-

cally is GA,S). A run of TA must have the following structure: If it reaches

a c-node, which by construction is labeled with a c-variable, then by the

definition of the transition function δT, it has a branching to all successors

in GA,S . If it reaches a d-node, which by construction is labeled with a d-

variable, then by the definition of the transition function δT, the run goes to

one successor of the d-node in GA,S . In this sense in the construction of an

accepting run we have the same choice nodes as player D. Since the run is

accepting if all branches are, and since the branching happens exactly at the

c-nodes, the choice nodes of player C, the acceptance of the run corresponds

to the existence of a winning strategy of player D.

2. Follows from part 1. of the theorem and from Theorem 15. 2

3.3 Decidability and Complexity

This section states some results concerning the decidability and complexity

of the model checking problem and the emptiness problem for alternating

tree automata. For all definitions of the complexity classes we refer to the

literature (for example Papadimitriou [38]). Let us first formulate the two

problems.

The model checking problem:

Given an automaton A and a pointed transition system (S, sI), does A accept

(S, sI)?

The emptiness problem:

Given an automaton A, is there a pointed transition system (S, sI), such that

A accepts (S, sI)?

The following theorem gives the solution to the model checking problem

and shows its complexity. It has first been proven by Jurdzinski in [27] with

methods of game theory. Another nice proof is given by Wilke in [53]. Notice

that UP is the complexity class of all computations which can be done by a
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nondeterministic Turing machine in polynomial time, such that for any input

x there is at most one accepting computation. Note that UP ⊆ NP.

Theorem 20 Let A = (Q,P, qI, δ,Ω) be an alternating tree automaton and

(S, sI) be a finite pointed transition system, with set of states S and transition

relation R. Furthermore, let d be the index of A. Then:

1. There is an algorithm which computes whether A accepts (S, sI) in time

O
(
d |Q|

(
|R|+1

)( |Q||S|+ 1

dd/2e

)dd/2e)
and in space

O
(
d |Q| |S| log

(
|Q| |S|

))
.

2. The problem whether A accepts (S, sI) is in UP ∩ co−UP.

Finally, the solution to the emptiness problem due to Emerson and Jutla

[14].

Theorem 21 The emptiness problem for alternating tree automata is in

EXP, where EXP is the class of all exponential time decidable problems.



Chapter 4

Equivalence of µ-Calculus and

Automata

“Translation as a way of life.” (J. van Benthem)

This chapter deals with the equivalence of alternating tree automata and

modal µ-calculus. For each modal µ-formula ϕ there is an automaton which

accepts exactly those pointed transition systems where ϕ is true; and vice

versa.

In the first section we discuss a translation of the modal µ-calculus to au-

tomata. One possible translation has been presented by Wilke in [53], where

a direct proof that the constructed automaton is equivalent to the original

formula is given. We present an alternative proof method by applying the

fundamental theorem of the modal µ-calculus.

In the second section we translate automata to the modal µ-calculus. A very

similar result has been proven by Niwinski in [37]. He introduces automata

on semi-algebras and shows the equivalence with certain fixpoint terms on,

so-called, powerset algebras. By using the fact that on binary structures the

µ-calculus corresponds to a certain powerset algebra, this result can then

be applied to the modal µ-calculus to obtain the equivalence of alternating

automata to the calculus, on binary transition systems. By applying the same

proof techniques of Niwinski to the alternating tree automata of Wilke in [53]

we give a direct translation of automata to µ-formulae.1 The translation gives

us for every automaton a µ-formula which is equivalent to it on all transition

1At this point I thank Prof. Wilke for the hint.
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systems. In this sense, the new result we get is a generalization of the original

one by Niwinski, since we are not restricting ourselves to binary transition

systems.

The last section deals with the decidability and complexity of the satisfiability

and the model checking problem for the modal µ-calculus. Our results follow

from the analogous results for alternating tree automata using the previously

proven equivalence.

4.1 From µ-Calculus to Automata

In this section we assume that all µ-formulae are in normal form. Remember

that in this case all the negations appear in front of propositional variables

and that all bounded variables are distinct.

Let ϕ be a µ-formula in normal form. We construct an equivalent alternating

tree automaton Aϕ, that is, for all pointed transition systems (S, sI) the

automaton Aϕ satisfies

(S, sI) ∈ ‖ϕ‖ iff (S, sI) ∈ ‖Aϕ‖.

Let us first introduce Aϕ informally: The structure of the automaton Aϕ
reflects the one of ϕ in the following sense. For each subformula ψ of ϕ the

automaton has a state denoted by 〈ψ〉. The initial state is 〈ϕ〉 itself. A state

〈α〉 occurs in the transition condition δ(〈ψ〉) of the state 〈ψ〉 if and only if

α is a maximal subformula of ψ. In addition, the transition function reflects

the outermost connective of ψ. For example, δ(〈ψ1 ∧ ψ2〉) = 〈ψ1〉 ∧ 〈ψ2〉 and

δ(〈3ψ〉) = 3〈ψ〉. In the case that ψ = p for a p ∈ Free(ϕ) the automaton

has simply to check whether in the current state p is true. Thus, δ(〈p〉) = p.

More interesting is the case where we have a bounded variable X in ϕ. Let

ϕX = σX.ψ be the subformula of ϕ that bounds X. Then δ(〈X〉) = 〈ϕX〉.
The difference between the least and the greatest fixpoints will be expressed

by the priority function. Formally:

Let ϕ be a µ-formula in normal form over the set of propositional variables

P. For each X ∈ Bound(ϕ) let ϕX be the subformula of ϕ which bounds X.

We define the alternating tree automaton Aϕ as follows:

Aϕ = (Q,P, qI, δ,Ω),

where:
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• Q := {〈ψ〉 | ψ is subformula of ϕ},

• qI := 〈ϕ〉,

• δ : Q→ TCQ∪P is defined by:

δ(〈⊥〉) = ⊥, δ(〈>〉) = >,

δ(〈(¬)p〉) = (¬)p, where p ∈ Free(ϕ),

δ(〈X〉) = ϕX , where X ∈ Bound(ϕ),

δ(〈ψ ∧ χ〉) = 〈ψ〉 ∧ 〈χ〉, δ(〈ψ ∨ χ〉) = 〈ψ〉 ∨ 〈χ〉,

δ(〈2ψ〉) = 2〈ψ〉, δ(〈3ψ〉) = 3〈ψ〉,

δ(〈µX.ψ〉) = 〈ψ〉, δ(〈νX.ψ〉) = 〈ψ〉.

• The priority function Ω : Q → ω is defined only on states of the form

〈σX.ψ〉 in the following way:

Ω(〈µX.ψ〉) = the smallest odd number greater or equal to ad(ψ),

Ω(〈νX.ψ〉) = the smallest even number greater or equal to ad(ψ).

Remark 22 It follows from the construction, that Aϕ ∈ Σn if ϕ ∈ Σµ
n, and

that Aϕ ∈ Πn if ϕ ∈ Πµ
n.

The next theorem proves the equivalence of the automaton Aϕ to the formula

ϕ.

Theorem 23 For all modal µ-formulae ϕ we have

‖ϕ‖ = ‖Aϕ‖.

Proof. By Theorem 9, (S, sI) ∈ ‖ϕ‖ is equivalent to the fact that there is

a well-founded pre-model for S with root ϕ@sI. And (S, sI) ∈ ‖Aϕ‖ means

that there is an accepting qI-run on sI of Aϕ on S, where qI is the initial state

of Aϕ. So, for the equivalence, it is enough to show that an accepting qI-run

on sI of Aϕ on S can be transformed into a well-founded pre-model for S
with root ϕ@sI; and vice versa.

Let us first convert accepting runs into well-founded pre-models. Suppose we

have an accepting qI-run on sI ofAϕ on S, where S is of the form (S,R, λ). By



40 Equivalence of µ-Calculus and Automata

Corollary 17 we have a memoryless accepting run, which is a (S×Q)-vertex-

labeled tree of the form (V,E, `). From this run we construct a well-founded

pre-model as follows:

For each vertex v ∈ V , where `(v) = (s, 〈ψ〉), we take an annotated state

ψ@s in the pre-model. The relation �1 between the annotated states and

the choice function are then defined, by case distinction on ψ, as follows (p

denotes a free propositional variable in ϕ, and X a bounded one):

• ψ ≡ (¬)p: In this case the annotated state (¬)p@s has no successor.

• ψ ≡ X: Suppose that X is bounded by ϕX in ϕ. In this case in the

accepting run we have a successor (s, 〈ϕX〉), and so, by construction of

the pre-model, we have an annotated state ϕX@s. In this case we set

X@s �1 ϕX@s.

• ψ ≡ α ∧ β: In the accepting run we have two successors (s, 〈α〉) and

(s, 〈α〉). So we set α ∧ β@s �1 α@s and α ∧ β@s �1 β@s.

• ψ ≡ α ∨ β: We have a successor (s, 〈α〉) or (s, 〈β〉). Suppose the

successor is (s, 〈α〉). In this case we set α ∨ β@s �1 α@s. Obviously,

the choice function f must be defined such that f(α ∨ β@s) = α.

• ψ ≡ �α: For all s′ ∈ R(s) we have a successor (s′, 〈α〉) in the accepting

run. In this case we set �α@s �1 α@s′ for all these s′ ∈ R(s).

• ψ ≡ 3α: There is a s′ ∈ R(s) such that we have a successor (s′, 〈α〉) in

the accepting run. In this case we set 3α@s �1 α@s′ for this s′ ∈ R(s).

The choice function f has to be defined such that f(3α@s) = s′.

• ψ ≡ µX.α: We have a successor (s, 〈α〉). So we set µX.α@s �1 α@s.

• ψ ≡ νX.α: Goes exactly as the case ψ ≡ µX.α.

Notice that the choice function f is well defined since we assumed a memo-

ryless accepting run.

Now it remains to show, that the constructed pre-model is well-founded.

Remember, that we started from an accepting run of Aϕ on (S, sI). Hence,

the local consistency conditions of a pre-model are all fulfilled (see definition

of a quasi-model). So it remains to show that the pre-model is well-founded.

Now, this is clear since all infinite branches of the pre-model were constructed
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by an infinite branch of the accepting run. And, since the priority function

of Aϕ was only defined on vertices of the form (s, 〈X〉), such that it is even if

X is a ν-variable and odd if it is a µ variable, the accepting condition of the

run corresponds exactly to the well-foundedness condition of the pre-model.

The conversion of a well-founded pre-model of ϕ on S to an accepting run of

Aϕ on S is basically the construction above made backwards and is left to

the reader. 2

4.2 From Automata to µ-Calculus

In this section we translate alternating tree automata into the modal µ cal-

culus. We assign to every automaton a µ-formula which is valid in exactly

the pointed transition systems accepted by the automaton.

Let us begin with a lemma which deals with simultaneous fixpoints of mono-

tone functionals. It is a reformulation of the Theorems 101 and 102 in the

Appendix, in terms of the modal µ-calculus.

Lemma 24 Let δ1(s1, . . . , sk), . . . , δk(s1, . . . , sk) be µ-formulae contained in

a class of formulae Φ such that all sj (j = 1, . . . , k) appear only positively.

Further, define for all transition systems S = (S,R, λ) a functional FS from

(P(S))k to (P(S))k as

FS : (S1, . . . , Sk) 7→ (‖δ1(S1, . . . , Sk)‖S , . . . , ‖δk(S1, . . . , Sk)‖S).

There are µ-formulae τ1, . . . , τk in ν(Φ) and ρ1, . . . , ρk in µ(Φ) such that for

all transition systems S we have

GFP(FS) = (‖τ1‖S , . . . , ‖τk‖S)

and

LFP(FS) = (‖ρ1‖S , . . . , ‖ρk‖S).

Example 25 We illustrate how we can construct these simultaneous fix-

points in the case k = 2, that is we have δ1(X, Y ) and δ2(X,Y ).

• τ1 ≡ νX.δ1(X,Y )[νY.δ2(X,Y )/Y ],

• τ2 ≡ νY.δ2(X, Y )[νX.δ1(X,Y )/X],
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• ρ1 ≡ µX.δ1(X, Y )[µY.δ2(X,Y )/Y ],

• ρ2 ≡ µY.δ2(X, Y )[µX.δ1(X,Y )/X].

Clearly, an automaton of index 0 can only have finite accepting runs. The

next lemma gives an equivalent µ-formula to an automaton which has a finite

accepting run. Thus, it gives already a translation of alternating automata

of index 0 into the modal µ-calculus.

Lemma 26 Let A be an alternating automaton. There is a µ-formula ρ in

Σµ
1 such that, for any pointed transition system (S, sI), we have

sI ∈ ‖ρ‖S iff there is a finite run of A on sI.

Proof. Suppose the automaton has states Q = {q1, . . . , qk} and transition

function δ. For all states qi we abbreviate δ(qi) by δi. Now, remember

that all δi can be interpreted as µ-formulae which can contain propositional

variables among q1, . . . , qk, that is, they are of the form δi(q1, . . . , qk). By

definition of the transition conditions we see that all δi are in Πµ
0 . So, by

Lemma 24 for all i ∈ {1, . . . , k} there are formulae ρi ∈ Σµ
1 such that for each

transition system S = (S,R, λ) the functional

FS : (S1, . . . , Sk) 7→ (‖δ1(S1, . . . , Sk)‖S , . . . , ‖δk(S1, . . . , Sk)‖S)

has the least fixpoint

LFP(FS) = (‖ρ1‖S , . . . , ‖ρk‖S).

For all transition systems S = (S,R, λ) and all i = 1, . . . , k, let AS∗i denote

the set of all s ∈ S such that there is a finite qi-run on s of A. To complete

the proof the lemma it is enough to show

(AS∗1 , . . . ,AS∗k ) = (‖ρ1‖S , . . . , ‖ρk‖S).

By the Tarski-Knaster Theorem 95 and since LFP(FS) = (‖ρ1‖S , . . . , ‖ρk‖S),

this can be shown by proving the two following things:

(i) FS(AS∗1 , . . . ,AS∗k ) ⊆ (AS∗1 , . . . ,AS∗k ) and

(ii) for all (S1, . . . , Sk) ⊆ Sk such that FS(S1, . . . , Sk) ⊆ (S1, . . . , Sk) we

have

(AS∗1 , . . . ,AS∗k ) ⊆ (S1, . . . , Sk).
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Let us first prove (i). Suppose that (s1, . . . , sk) ∈ FS(AS∗1 , . . . ,AS∗k ), so all si
are in ‖δi(AS∗1 , . . . ,AS∗k )‖S . By Lemma 13 there is the ‘beginning of a run’

with root (si, qi) and leaves of the form (s′j, qj), where j ∈ {1, . . . , k} and

s′j ∈ AS∗j . From this we get si ∈ AS∗i , which proves (i).

To prove (ii), let (S1, . . . , Sk) satisfy the premise of (ii) and suppose that

(s1, . . . , sk) ∈ (AS∗1 , . . . ,AS∗k ). This means that for each si there is a finite

qi-run. We set di to be the minimal depth of all the finite qi-runs on si. By

induction on d = max{di | 1 ≤ k} we prove (s1, . . . , sk) ∈ (S1, . . . , Sk).

• d = 1 : Since, for each i ∈ {1, . . . , k}, the root of the accepting qi-run

on si has no successor we must have si ∈ ‖δi(∅, . . . , ∅)‖ which gives us

(s1, . . . , sk) ∈ FS(∅, . . . , ∅).

Using the monotonicity of FS , we get

(s1, . . . , sk) ∈ FS(S1, . . . , Sn).

and with the premise of (ii) the desired result.

• d > 1 : For all i ∈ {1, . . . , k}, the root vi of the finite accepting qi-run

on si is labeled by `(vi) = (si, qi). Suppose, all the sons v′j of vi are

labeled by `(v′j) = (s′j, ql(v′j)), where l(v′j) ∈ {1 . . . , k}. By induction

hypothesis we have

s′j ∈ Sl(v′j).

So, by Lemma 13 we see, for all i, that si ∈ ‖δi(S1, . . . , Sk)‖S . This

means that si is in the i-component of FS(S1, . . . , Sk). Since si was an

arbitrary component of the tuple (s1, . . . , sk) we get

(s1, . . . , sk) ∈ FS(S1, . . . , Sk).

And with the premise of (ii) we get the desired result.

So the proof is completed. 2

Let us prove the main result of this section.

Theorem 27 For any alternating automaton A = (Q,P, δ, qI,Ω) there is a

µ-formula τA over propositional variables P ∪ Q such that, for all pointed

transition systems (S, sI), we have

A accepts (S, sI) iff sI ∈ ‖τA‖S .
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Further, if A is Σn, then τA can be chosen in Σµ
n+1; if A is Πn, then τA can

be chosen in Πµ
n+1.

Proof. The proof goes by induction on the index n of the automaton. We

assume for all alternating automata A that the priority function is defined

only on strongly connected components of the transition graph. Moreover,

we assume that the priority function of any automaton of index n has a range

of cardinality n. This is no real restriction since by Lemma 11 all automata

are equivalent to one fulfilling these assumptions. There will be two cases for

the induction step (n > 0):

Case 1: If the maximal priority m is even, we consider k auxiliary automata

of index ≤ n − 1, in which the states of Ω−1[m] are moved into variables.

Then we apply the greatest fixpoint operator.

Case 2: If the maximal priority m is odd, we consider the complement Â of

our automaton A. By Lemma 12, Â can be chosen to have the same index

as A, but with maximal priority even. Thus, if we assume that the induction

step for Case 1 has been made, we have a Πµ
n+1-formula τÂ representing the

complement. By Lemma 2 we know that there is a formula τA ∈ Σµ
n+1 which

is equivalent to ¬τÂ. It is easy to check that τA is the Σµ
n+1-formula fulfilling

the requirements of the theorem. So, only the induction step for Case 1 has

to be done.

The informal description above, shows that greatest fixpoints capture the

automata with even maximal priority and the least fixpoints, as negations of

greatest fixpoints, the automata with an odd maximal priority.

Before we do the induction, let us explain what means “moving states into

variables”. We need to define two transformations for automata:

The first takes an automaton A = (Q,P, δ, qI,Ω) and a set X ( Q, such that

qI 6∈ X and defines a new automaton

Afree(X) = (Q−X,P ∪X, δ′, qI,Ω
′)

where δ′ and Ω′ are the restrictions of δ (resp. Ω) to Q−X.

This is the transformation which converts states of the automaton into vari-

ables. Notice that the runs of Afree(X) are like the “beginning” of a run of

the automaton A. If we reach a point (s, q), where q ∈ X the run of Afree(X)

stops, whereas if it was a run of the automaton A it would go on.
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The second transformation on automata helps us to deal with the restriction

qI 6∈ X we had on the first transformation. It takes an automaton as above,

a state q ∈ Q and a new symbol q̂ 6∈ (Q ∪ P ) and defines a new automaton

Astart(q) = (Q ∪ {q̂}, P, δ′′, q̂,Ω)

where δ′′ is equal to δ on Q and δ′′(q̂) = δ(q).

It is clear, that Astart(q) accepts the same pointed transition systems as A
with initial state q. Moreover, note that for all X ⊆ Q, the introduction of q̂

makes possible for all automata to do the operation (Astart(q))free(X) (shorter

Astart(q)free(X)).

Let us do the induction on the index n of an automaton A = (Q,P, δ, qI,Ω).

n = 0 : In this case every run of an automaton must be finite, and so the

theorem follows from Lemma 26.

n > 0 : As shown before it is enough to do the induction step only for Case 1.

We define U to be the set of states Ω−1[m], where m is the maximal priority,

assuming that qI 6∈ U ; otherwise we consider the semantically equivalent

automaton Astart(qI). Suppose U = {q1, . . . , qk}. We consider the automata

Afree(U) and Astart(qi)free(U) for all i = 1, . . . , k. It is easy to see that all

these automata are of index ≤ n − 1. So by induction hypothesis there are

µ-formulae τ0(~q) and τ1(~q), . . . , τk(~q) in Σµ
n (where ~q ≡ (q1, . . . , qk)), such that

for all pointed transition systems (S, sI) we have

Afree(U) accepts (S, sI) ⇔ sI ∈ ‖τ0(~q)‖S

and

Astart(qi)free(U) accepts (S, sI) ⇔ sI ∈ ‖τi(~q)‖S ,

for all i = 1, . . . , k.

Now consider the functionals FS : (P(S))k → (P(S))k with

FS : (S1, . . . , Sk) 7→ (‖τ1(S1, . . . , Sk)‖S , . . . , ‖τk(S1, . . . , Sk)‖S).

By Lemma 24 there are µ-formulae ρ1, . . . , ρk in Πµ
n+1 such that for all tran-

sition systems S, (‖ρ1‖S , . . . , ‖ρk‖S) is the greatest fixpoint of FS . In order

to do the induction step let us make the following claim.

Claim:

For all pointed transition systems (S, sI) and for all i = 1. . . . , k we have the

two following facts:
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1. Astart(qi) accepts (S, sI) ⇔ sI ∈ ‖ρi‖S .

2. A accepts (S, sI) ⇔ sI ∈ ‖τ0[ρ1/q1, . . . , ρk/qk]‖S .

Since τ0[ρ1/q1, . . . , ρk/qk] ∈ Πµ
n+1 the claim completes the induction step for

Case 1.

We prove the claim by first showing that 1 implies 2, and then by showing

the correctness of 1.

• 1 implies 2: Let us remark, that by choice of τ0 and by 1 we have

sI ∈ ‖τ0[ρ1/q1, . . . , ρk/qk]‖S ⇔ Afree(U) accepts (S ′, sI)

where S ′ ≡ S[q1 7→ ASstart(q1), . . . , qk 7→ ASstart(qk)] and ASstart(qi) is the

set of states s in S such that Astart(qi) accepts (S, s). So it is enough

to show

A accepts (S, sI) ⇔ Afree(U) accepts (S ′, sI).

To prove the “only if” direction let us assume that % is a qI-run on sI

of the automaton A on S. We want to convert it into a qI-run on sI

of the automaton Afree(U) on S ′. Let us do the conversion for every

branch of %. If we have a branch where there is no state of U , then we

do not change anything; otherwise, by the first qi ∈ U appearing in the

branch, we cut it up. The new end point we get is of the form (s, qi),

where by assumption (S, s) is accepted by A with new initial state qi.

Using the fact that this automaton is equivalent to Astart(qi) and that

qi is now a variable, which by definition is true in s ∈ S (under the

new valuation for S ′), we get the desired result. The proof of the “if”

direction follows similar arguments.

• 1: As before AS is the set of all points s in S such that (S, s) is accepted

by A. By definition of ρi it is enough to prove that the greatest fixpoint

of FS is (ASstart(q1), . . . ,ASstart(qk)), and so by Tarski-Knaster we have to

prove:

(i) (ASstart(q1), . . . ,ASstart(qk)) ⊆ FS(ASstart(q1), . . . ,ASstart(qk))

(ii) For all (S1, . . . , Sk) ⊆ Sk such that (S1, . . . , Sk) ⊆ FS(S1, . . . , Sk)

we have

(S1, . . . , Sk) ⊆ (ASstart(q1), . . . ,ASstart(qk)).
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We first prove (i). Let remind ourselves that the i-th component of the

tuple FS(ASstart(q1), . . . ,ASstart(qk)) is of the form

‖τi(ASstart(q1)/q1, . . . ,ASstart(qk)/qk)‖S .

Since τi was the formula equivalent to the automaton Astart(qi)free(U) it

is enough to show the following, for all states s in S

Astart(qi) accepts (S, s) ⇒ Astart(qi)free(U) accepts (S ′, s),

where S ′ is S[q1 7→ ASstart(q1), . . . qk 7→ ASstart(qk)]. Since a very similar

result has been proven above, we omit the details.

We now prove (ii). Let (S1, . . . , Sk) satisfy the premise of (ii), and

let si ∈ Si. Since si ∈ ‖τi(S1, . . . , Sk)‖S , by hypothesis about τi we

have si ∈ AS
′

start(qi)
, where S ′ is S[q1 7→ S1, . . . , qk 7→ Sk] (remember

that τi is of the form τi(q1, . . . , qk)). So there is an accepting run of

Astart(qi)free(U) with the property that if it has a vertex (qj, sj) such

that qj ∈ U , then it is a leaf and we have sj ∈ Sj. Hence we can re

apply the premise of (ii) and construct a sj-run of Astart(qj)free(U), such

that for all leaves of the form (qj′ , sj′) with qj′ ∈ U the premise of (ii)

can be “re-”re applied. By the iteration of this process, in the limit

case, we get an accepting run of Astart(qi) for si, since the following

holds for all branches. If the branch is finite, then its end point is of

the form (σ, si), where σ 6∈ {q1, . . . , qk} = U . By assumption we have

si ∈ λ(σ) = λ′(σ) (where λ′ is the valuation of S ′ and λ the valuation

of S). For the infinite branches we have two cases. For the first case

the infinite branch contains only finitely many states q, which are in U ,

thus it easily follows, that from the last appearance of a q ∈ U on, this

branch is the same as a branch of an accepting run of an automaton

Astart(ql)free(U). So the highest priority appearing infinitely often must

be even, and the branch is accepted. For the other case, there are

infinitely many states of U in the branch, and since U is the set where

the priority function has its maximal value m and m is even, we have

an accepted branch.

So the proof is completed. 2

We end this section by giving an example of an automaton and an equivalent

µ-formula obtained with the construction described in the proof.
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Example 28 Given an automaton A = ({q0, q1, q2}, {p1}, δ, q0,Ω) such that

δ(q0) = �q1, δ(q1) = q2 ∨ 3q0 and δ(q2) = p1 ∧ �q1, and such that Ω(q0) ↑
and Ω(q1) = Ω(q2) = 0. We construct an equivalent µ-formula, following the

proof of Theorem 27 (we use trivial equivalences of µ-formulae to get more

compact representations).

We set U = {q1, q2}. By construction the formula ϕ equivalent to the au-

tomaton has the structure τ0[ρ1/q1, ρ2/q2], where the formulae τ0, ρ1, ρ2 are

defined as follows:

• τ0 is equivalent to Afree(U),

• ρ1, ρ2 are formulae such that for all S we have (‖ρ1‖, ‖ρ2‖) = GFP(F1),

where F1 is the functional

F1 : (S1, S2) 7→ ‖τ1(S1, S2), τ2(S1, S2)‖S ,

where τ1(q1, q2) is the formula equivalent to Astart(q1)free(U) and τ2(q1, q2)

is the formula equivalent to Astart(q2)free(U).

By construction we also have for all transition systems S:

• Afree(U) is equivalent to LFP(F2) with

F2 : S 7→ ‖�q1‖S .

• Astart(q1)free(U) is equivalent to the second component of LFP(F3) with

F3 : (S0, S1) 7→ ‖(�q1, q2 ∨3S0)‖S .

• Astart(q2)free(U) is equivalent to the second component of LFP(F4) with

F4 : (S0, S2) 7→ ‖(�q1, p1 ∧�q1)‖S .

Putting all this together we obtain (Example 25 may be useful for a better

understanding):

• τ0 ≡ �q1,

• τ1 ≡ q2 ∨3�q1,

• τ2 ≡ p1 ∧�q1.
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So, we get

F1 : (S1, S2) 7→ ‖S2 ∨3�S1, p1 ∧�S1‖S
which gives us

(ρ1, ρ2) ≡ (νX.((p1 ∧�X) ∨3�X), νY.(p1 ∧�νX.(p1 ∧�X)))

and so we have

ϕ ≡ �(νX.((p1 ∧�X) ∨3�X)).

4.3 Exhausting the Equivalence

In this section we give a solution to the satisfiability problem and the model

checking problem for the modal µ-calculus. Our solution uses the equivalence

with alternating tree automata, proved previously in this section, and the

strong connection of the satisfiability problem with the emptiness problem

for automata. Let us first formulate the satisfiability problem for the modal

µ-calculus.

The satisfiability problem:

Given a µ-formula ϕ. Is there a pointed transition system (S, sI), such that

(S, sI) ∈ ‖ϕ‖?
We first look to the model checking problem.

Theorem 29 Let ϕ be a µ-formula with ad(ϕ) = d and length |ϕ|. And let

(S, sI) be a finite pointed transition system, with set of states S and transition

relation R.

1. There is an algorithm which computes whether A accepts (S, sI) in time

O
(
d |ϕ|

(
|R|+1

)( |ϕ||S|+ 1

dd/2e

)dd/2e)
and in space

O
(
d |ϕ| |S| log

(
|ϕ| |S|

))
.

2. The problem whether ϕ accepts (S, sI) is in UP ∩ co−UP.

Proof. Given the µ-formula ϕ with ad(ϕ) = d we translate it in the equivalent

alternating tree automaton Aϕ, which by Remark 22 has index d. Since Aϕ
has basically all subformulae as states, and since there are O(|ϕ|) many

subformulae, the proof is a consequence of Theorem 20. 2

The next theorem deals with the satisfiability problem.
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Theorem 30 The satisfiability problem, hence the problem if a formula ϕ is

in EXP.

Proof. The proof follows easily from Theorem 21, since the satisfiability for

a µ-formula ϕ corresponds to the emptiness problem for Aϕ. 2



Chapter 5

Hierarchy Theorems

“Der moderne Klassenkampf spielt sich heute auf der linken Seite der Auto-

bahn ab.” (E. Schachtschnabel)

This chapter proves the strictness of the modal µ-calculus hierarchy. That

is, the fact that increasing the syntactical complexity of µ-formulae gives us

more expressiveness.

The strictness has first been proven by Bradfield in [12] by using methods of

descriptive set theory. Simultaneously, Lenzi in [32] has proven a strictness

theorem for the positive µ-calculus, that is, the fragment consisting of all

formulae such that the propositional variables appear only positively. Our

presentation follows the one of Arnold in [4] where the result follows from a

hierarchy theorem for alternating tree automata by using the equivalence to

the µ-calculus on binary structures established by Niwinski in [37].

In the first section we prove the strictness of the hierarchy on alternating

tree automata induced by the indices. The theorem is proven with a diago-

nalisation argument on a certain fixpoint. It is the fixpoint of the mapping

which assigns to an automaton and a transition system the corresponding

strategy tree. Contrary to Arnold, who establishes its existence by applying

the fixpoint theorem of Banach, we give a construction of it.

In the second section we apply the result previously established to the modal

µ-calculus using the equivalence proved in Chapter 4. Some additional corol-

laries then give a nice picture of the structure of the modal µ-calculus hier-

archy.
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5.1 A Hierarchy Theorem for Automata

In this section we prove a hierarchy theorem for alternating tree automata.

We assume that all automata are in normal form, which by Lemma 11 is no

restriction. Since the automata are in normal form we have the same range

of the priority function for two automata of the same complexity. That

is, all Σn automata have ΩΣn as the range of the priority function, and

analogously for all Πn automata the range is ΩΠn , where ΩΣn and ΩΠn were

introduced in Chapter 3. By Remark 18, if all automata are assumed to be

in normal form then we just have to distinguish the complexity classes when

we are introducing the test automaton. Let us repeat the notions of Σn-test

automaton TΣn and the Πn-test automaton TΠn since they are crucial for

this section. Contrary to Chapter 3 we introduce them directly.

Every Σn-test automaton TΣn is of the form (where u is a new symbol)

TΣn = (QΣn ,P
T, qu, δΣn ,Ω)

and every Πn-test automaton TΠn is of the form

TΠn = (QΠn ,P
T, qu, δΠn ,Ω),

where:

• QΣn = {qi | i ∈ ΩΣn} ∪ {qu},

• QΠn = {qi | i ∈ ΩΠn} ∪ {qu},

• PT = {cu, c1, c2, . . . , ci, . . .} ∪ {du, d1, d2, . . . , di, . . .},

• for all states qj ∈ QΣn we have

δΣn(qj) =
∨

qi∈QΣn

(ci ∧�qi) ∨
∨

qi∈QΣn

(di ∧3qi),

• for all states qj ∈ QΠn we have

δΠn(qj) =
∨

qi∈QΠn

(ci ∧�qi) ∨
∨

qi∈QΠn

(di ∧3qi),

• Ω(qj) = j if j 6= u and Ω(qu) ↑.
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In the following we restrict ourselves to binary transition systems, that is

systems whose underlying structure is a binary tree. Let us introduce a more

compact notation for these systems: In the sequel the symbols t1, t2, . . . stand

for binary trees, when no confusion arises we also use them to denote binary

transition systems. ε is the trivial binary tree (or transition system), that is

the one with no states. If t1 and t2 are two binary transition systems and

a is a subset of the propositional variables then a(t1, t2) denotes the binary

transition system with root v such that exactly the variables in a are valid

there and such that v has two sons v1, v2 which generate the sub-transition

systems t1 and t2. If a = {p} we write p(t1, t2). If v has only one son (resp.

no son) we write a(t1, ε) (resp. a(ε, ε)). Obviously, for any nontrivial binary

transition system there are a, t1, t2 such that it is of the form a(t1, t2).

In Chapter 3 we saw that the acceptance of a transition system S by an au-

tomaton A can be reduced to the acceptance of a transition system S(GA,S),

deduced from the strategy tree GA,S , by the test automaton TA (or if the

automata are assumed to be in normal form: TΣn or TΠn). For a binary

transition system S and an automaton A with initial state q the construc-

tion of the strategy tree S(GA,S) can be described by a transformation TA,q
from binary trees to binary trees such that

TA,q(S) ≡ S(GA,S).

TA,q is a procedure beginning at the root of a binary transition system which

substitutes the nodes it reaches with new ones, depending on the ‘actual’

internal state of the automaton A. It can be seen as an extension of rewriting

rules for words, in the sense that we have binary trees instead of words and

that the rewriting depends also on an internal state of the automaton.

Let A = (Q,P, qI, δ,Ω) be an automaton, q a state of A and let a(t1, t2) be a

binary transition system. TA,q(a(t1, t2)) is obtained by applying recursively

the appropriate rule of the following given below:

• If δ(q) = q′ ∧ q′′ and Ω(q) = i ∈ ω then

TA,q(a(t1, t2)) ≡ ci(TA,q′(a(t1, t2)), TA,q′′(a(t1, t2))),

• if δ(q) = q′ ∨ q′′ and Ω(q) = i ∈ ω then

TA,q(a(t1, t2)) ≡ di(TA,q′(a(t1, t2)), TA,q′′(a(t1, t2))),
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• if δ(q) = q′ and Ω(q) = i ∈ ω then

TA,q(a(t1, t2)) ≡ ci(TA,q′(a(t1, t2)), ε),

• if δ(q) = 3q′, Ω(q) = i ∈ ω and t1 6≡ ε or t2 6≡ ε then

TA,q(a(t1, t2)) ≡ di(TA,q′(t1), TA,q′′(t2)),

• if δ(q) = �q′, Ω(q) = i ∈ ω and t1 6≡ ε or t2 6≡ ε then

TA,q(a(t1, t2)) ≡ ci(TA,q′(t1), TA,q′′(t2)),

• if δ(q) = q′ ∧ q′′ and Ω(q) ↑ then

TA,q(a(t1, t2)) ≡ cu(TA,q′(a(t1, t2)), TA,q′′(a(t1, t2))),

• if δ(q) = q′ ∨ q′′ and Ω(q) ↑ then

TA,q(a(t1, t2)) ≡ du(TA,q′(a(t1, t2)), TA,q′′(a(t1, t2))),

• if δ(q) = q′ and Ω(q) ↑ then

TA,q(a(t1, t2)) ≡ cu(TA,q′(a(t1, t2)), ε),

• if δ(q) = 3q′, Ω(q) ↑ and t1 6≡ ε or t2 6≡ ε then

TA,q(a(t1, t2)) ≡ du(TA,q′(t1), TA,q′′(t2)),

• if δ(q) = �q′, Ω(q) ↑ and t1 6≡ ε or t2 6≡ ε then

TA,q(a(t1, t2)) ≡ cu(TA,q′(t1), TA,q′′(t2)),

• if δ(q) = 3q′ and t1 ≡ t2 ≡ ε then

TA,q(a(t1, t2)) ≡ ∅,

• if δ(q) = �q′ and t1 ≡ t2 ≡ ε then

TA,q(a(t1, t2)) ≡ PT,
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• if δ(q) = >, or δ(q) = p and p ∈ a then

TA,q(a(t1, t2)) ≡ PT,

• if δ(q) = ⊥, or δ(q) = p and p 6∈ a then

TA,q(a(t1, t2)) ≡ ∅.

Let S be a binary transition system with root s and let s′ be a state in S
which generates the sub-transition system S ′. We say that TA,q reaches s′ in

one step if there is a q′ such that TA,q′(S ′) appears on the right hand side of

the defining clause for TA,q(S). Notice, that s′ is either s or a son of s. All

the reachable states are then given by the transitive closure of the ‘reachable

in one step’ relation. The next lemma follows from the definitions above.

Lemma 31 Let S be a binary transition system whose underlying binary

tree has depth m and let A be an automaton with state q. If the procedure

TA,q reaches at least one leaf of S then TA,q(S) has at least depth m.

By definition, for all binary transition systems S, we see that TA,q(S) is

isomorphic to the transition system S(GA,S) if q is the initial state of A. The

next lemma is just a reformulation of Theorem 19.

Lemma 32 For any binary transition system S and any automaton A with

initial state q, we have:

• If A ∈ Σn:

S ∈ ‖A‖ ⇔ TA,q(S) ∈ ‖TΣn‖.

• If A ∈ Πn:

S ∈ ‖A‖ ⇔ TA,q(S) ∈ ‖TΠn‖.

The following example illustrates how this transformation on binary transi-

tion systems works.

Example 33 Figure 5.1 shows S, TA,q1(S) and TA,q1(TA,q1(S)) =: T 2
A,q1(S).

S is a binary transition system over a set of propositional variables {p1, p2}
of the form p1(t1, t2), where t1 ≡ p1(ε, ε) and t2 ≡ p2(ε, ε). Furthermore

A = ({q, q2, q3, q4}, {p1, p2}, δ, q1,Ω) is an alternating Π2-automaton with:

• δ(q1) = �q2,
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• δ(q2) = q4 ∨ q3,

• δ(q3) = p1,

• δ(q4) = 3q1,

• Ω(q1) = Ω(q4) = 1 and

• Ω(q2) = Ω(q3) = 2.

p1

p1 p2

c1

d2 d2

∅ PT ∅ ∅

c1

d2 d2

d1 ∅ d1 ∅

PT PT PT PT

Figure 5.1: S, TA,q1(S) and T 2
A,q1(S)

The proof of the next lemma needs the notion of limit tree . Suppose we have

a sequence of trees (tn)n∈ω which is monotone, that is, the following holds:

For all m ∈ ω there is a n(m) ∈ ω such that for all n′, n′′ ≥ n(m) the trees

tn′ and tn′′ are identical up to depth m.

In that case we can define the limit tree lim((tn)n∈ω) of the sequence (tn)n∈ω
such that for all natural numbers m the limit tree is identical to tn(m) up to

depth m. Notice that lim((tn)n∈ω) is well defined since (tn)n∈ω is monotone.
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Lemma 34 Let A ∈ Σn(∈ Πn) be an automaton. There is an automaton

A′ ∈ Σn(∈ Πn) with initial state q′ and a transition system FA′,q such that

‖A‖ = ‖A′‖ and TA′,q′(FA′,q′) ≡ FA′,q′ .

Proof. Let A be an automaton of the form (Q,P, qI, δ,Ω). For the semanti-

cally equivalent automaton A′ we take a new state q′ and set

A′ = (Q ∪ {q′},P, q′, δ′,Ω′)

where δ′ is equal to δ on Q and δ′(q′) = qI ∧ qI; and where Ω′ is equal to

Ω on Q and Ω′(q′) ↑. It can easily be seen that ‖A‖ = ‖A′‖ and that if

A ∈ Σn(∈ Πn) then A′ ∈ Σn(∈ Πn).

Claim: Given two binary transition systems S and S ′, which are identical

upto depth m, then TA′,q′(S) and TA′,q′(S ′) are identical up to depth m+ 1.

Let us prove the claim. The procedure TA′,q′ works down the two transition

systems beginning from the root, and since both systems are equal until depth

m, the same sub procedures are executed until then. If the procedure does

not reach a node with depth m then TA′,q′(S) and TA′,q′(S ′) are identical. And

and for this case we get the claim. In the second case the procedure reaches

a node with depth m. Then, by Lemma 31 we know that for the original

automaton A the trees TA,q(S) and TA,q(S ′) are identical up to depth m.

Further, if we look to the construction of A′ we see that for any transition

system of the form a(t1, t2)

TA′,q′(a(t1, t2)) ≡ cu(TA,q(a(t1, t2)), TA,q(a(t1, t2))).

Putting the last two remarks together we also get the claim for the second

case.

Let us now construct the fixpoint FA′,q′ . We first define a monotone sequence

(tn)n∈ω of binary transition systems: t1 is the binary transition system S of

the form cu(ε, ε) and

tn+1 ≡ TA′,q′(tn).

By induction on n, with the help of the claim, we can easily prove that for

all n the trees tn and tn+1 are identical up to depth n + 1. From that, the

monotonicity of (tn)n∈ω easily follows. We set

FA′,q′ ≡ lim((tn)n∈ω).
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By definition of the limit tree we see that FA′,q′ is a fixpoint of TA′,q′ , and

this completes the proof. 2

We now prove the hierarchy theorem for alternating tree automata.

Theorem 35 For all natural numbers n we have:

1. ΣTR
n+1 6= ΣTR

n ,

2. ΠTR
n+1 6= ΠTR

n .

Proof. 1. We prove the contrapositive. Suppose ΣTR
n+1 = ΣTR

n , by definition

it follows that ΠTR
n ⊆ ΣTR

n . With Lemma 12 we get

TR− ‖TΣn‖ ∈ ΣTR
n .

So, there exists a Σn-automaton A such that TR−‖TΣn‖ = ‖A‖. By Lemma

32 and Lemma 34 there is a semantically equivalent automaton A′ ∈ Σn and

a transition system FA′ such that

FA′ ∈ ‖TΣn‖ ⇔ FA′ ∈ ‖A′‖.

Since ‖A′‖ = ‖A‖ = TR− ‖TΣn‖ we get

FA′ ∈ ‖TΣn‖ ⇔ FA′ ∈ TR− ‖TΣn‖

and hence a contradiction, which proves part 1 of the theorem.

2. can be proven similarly to part 1. 2

5.2 A Hierarchy Theorem for the µ-Calculus

We apply Theorem 35 to the modal µ-calculus, by using the fact that the

index of an automaton corresponds to the alternation depth of a µ-formula,

and we get the following theorem.

Theorem 36 For all natural numbers n we have:

1. Σµ
n

TR 6= ΣµTR
n+1 ,

2. Πµ
n

TR 6= ΠµTR
n+1 .
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Proof. 1. We prove the contrapositive. Suppose Σµ
n

TR = ΣµTR
n+1 , since by

Lemma 2 we have for all natural numbers m

ΠµTR
m = {TR− ‖ϕ‖ | ‖ϕ‖ ∈ ΣµTR

m }

we get

Πµ
n

TR = ΠµTR
n+1 .

Then, since Σµ
n+2 = µ(Πµ

n+1) and Σµ
n+1 = µ(Πµ

n) we can derive ΣµTR
n+2 = ΣµTR

n+1

and we get

Σµ
n

TR = ΣµTR
n+1 = ΣµTR

n+2 .

Let A be an automaton such that ‖A‖ ∈ ΣTR
n+1 by Theorem 27 there is µ-

formula ϕ such that ‖A‖ = ‖ϕ‖ ∈ ΣµTR
n+2 and with the equivalence shown

above ‖A‖ = ‖ϕ‖ ∈ Σµ
n

TR. By Theorem 23 there is a Σn-automaton A′
equivalent to ϕ and so we get ‖A‖ = ‖ϕ‖ = ‖A′‖ ∈ ΣTR

n . Since A was

chosen arbitrary we get

ΣTR
n+1 ⊆ ΣTR

n .

Using the fact that the other inclusion is trivial we have

ΣTR
n = ΣTR

n+1

which contradicts Theorem 35.

2. is proven similarly to part 1. 2

The theorem shows us that no finite part of the modal µ-hierarchy has the

expressiveness of the hole calculus. In this sense, it can be seen as the

evidence that the modal µ-calculus hierarchy is strict. Let us prove two

corollaries before we illustrate the modal µ-calculus hierarchy.

Corollary 37 For all natural numbers n > 0 we have

Σµ
n

TR 6= ΠµTR
n .

Proof. We prove the contrapositive. Suppose that we have Σµ
n

TR = ΠµTR
n

for an n > 0. Now, let ‖ϕ‖ ∈ ΣµTR
n+1 . So there is a ψ ∈ Σµ

n+1 such that

‖ϕ‖ = ‖ψ‖. Since Σµ
n+1 = µ(Πµ

n), by definition of the operator µ there are

formulae ψ1, . . . , ψm,¬ψm+1, . . . ,¬ψm+k such that all ψi ∈ Πµ
n and such that

ψ is obtained from these formulae using ∧,∨, µ,�,3 and substitution. Using

this representation of ψ we show that the formula is equivalent to a formula
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ψ′ ∈ Σµ
n. Hence we have ψ ∈ Σµ

n
TR, which is a contradiction to Theorem 36,

since we have ‖ϕ‖ = ‖ψ‖.

So, let us show the equivalence of ψ to a ψ′ ∈ Σµ
n. In the construction

of ψ we started from formulae ψ1, . . . , ψm,¬ψm+1, . . . ,¬ψm+k such that all

ψi ∈ Πµ
n. Since by assumption Σµ

n
TR = ΠµTR

n for all i ∈ {1, . . . ,m} there

are formulae ψ′i ∈ Σµ
n which are equivalent to ψi. Further, by Lemma 2

for all i ∈ {m + 1, . . . ,m + k} there are formulae ψ′i ∈ Σµ
n equivalent to

¬ψi. Hence ψ is equivalent to a formula constructed analogously starting

from formulae ψ′1, . . . , ψ
′
m, ψ

′
m+1, . . . , ψ

′
m+k, where all ψ′i ∈ Σµ

n, that is ψ is

obtained from the ψ′i by using ∧,∨, µ,�,3 and substitution. Since n > 0 we

have Σµ
n = µ(Πµ

n−1), and, by definition of the operator µ, Σµ
n is closed under

composition with ∧,∨, µ,�,3 and substitution. That means that ψ′ ∈ Σµ
n.

Since ψ′ is equivalent to ψ the proof is completed. 2

Corollary 38 For all natural numbers n we have:

1. Σµ
n

TR
( ΠµTR

n+1 ,

2. Πµ
n

TR
( ΣµTR

n+1 .

Proof. 1. We prove the contrapositive. Suppose that Σµ
n

TR
( ΠµTR

n+1 does not

hold. Since it is clear that Σµ
n

TR ⊆ ΠµTR
n+1 holds we then have Σµ

n
TR = ΠµTR

n+1 .

Now, suppose we have ‖ϕ‖ ∈ ΣµTR
n+1 , by Lemma 2 we have ‖¬ϕ‖ ∈ ΠµTR

n+1 and

with our assumption we get ‖¬ϕ‖ ∈ ΣµTR
n and by Lemma 2 ‖ϕ‖ ∈ ΠµTR

n .

Since ϕ was arbitrary we have Πµ
n

TR = ΣµTR
n+1 . All together, this gives to us

Σµ
n

TR = ΠµTR
n+1 and Πµ

n
TR = ΣµTR

n+1 .

But then we easily get

ΣµTR
n+1 ⊆ ΠµTR

n+1 and ΠµTR
n+1 ⊆ ΣµTR

n+1

which is not the case by Corollary 37.

2. is proven similarly. 2

Figure 5.2 illustrates the structure of the modal µ-calculus hierarchy.
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ΣµTR
0 = ΠµTR

0
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1ΠµTR
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6

ΣµTR
2

I

6

ΠµTR
2

�

6= ΣµTR
3

I

ΠµTR
3

LTR
µ

Figure 5.2: The modal µ-calculus hierarchy. Notice that the arrows stand

for strict inclusion and that LTR
µ = {‖ϕ‖ | ϕ ∈ Lµ}.
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Chapter 6

Completeness

“I have a dream...” (Martin Luther King)

In this section we prove the completeness of Kozen’s axiomatisation KOZ for

two fragments of the modal µ-calculus. In this sense we supply two partial

completeness results.

When Kozen introduced his axiomatisation KOZ in [31] he proved complete-

ness for the fragment of the aconjunctive formulae. Completeness for the

whole µ-calculus remained as an open problem.

Ten years later Walukiewicz in [51] proposed another deduction system for

the modal µ-calculus and proved its completeness. And recently, in [52],

he proved the completeness of KOZ using deep results of automata theory.

Nevertheless, the question if there is a direct proof, that is, a proof which

does not use automata theory, still remained open.

In this chapter we present an attempt of finding a ‘more direct’ completeness

proof in form of two partial completeness results.

6.1 Partial Completeness Results for KOZ

In this section we prove completeness for two fragments of modal µ-calculus.

The results are established by construction of finite canonical models, ex-

tending the proof method used by Fagin, Halpern, Moses and Vardi in [15]

to prove completeness of the modal logic with a common knowledge operator.

Let us first define the two fragments:
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1. The fragment F1
µ consists of all formulae ϕ, with the property that if

ϕ has a subformula of the form νX.α then nnf(α) has no subformula

of the form 3β (that is nnf(α) has no diamonds).

2. The fragment F2
µ consists of all formulae ϕ, such that nnf(ϕ) doesn’t

contain a subformula of the form µX.ψ.

The following three examples show some basic differences of our fragments:

1. νX.µY.((3X ∧�Y ) ∨ P ) 6∈ F1
µ,F2

µ

2. νX.(�X ∨ (νY.3Y ∨ ¬µX.�X)) 6∈ F1
µ ∈ F2

µ

3. µX.(�ϕ ∨ νY.(Y ∨�(X ∨Q))) ∨3P ∈ F1
µ 6∈ F2

µ

The following corollary of Theorem 9 will be used to prove the results.

Corollary 39 Let S be a transition system of the form (S,R, λ) and S ′ ⊆ S.

Given a pre-model for S with root α(X)[β/X]@s such that for each branch

we have: If it contains a point X[β/X]@s′, then s′ ∈ S ′, if it does not contain

a point of the form X[β/X]@s′, then it is closed. In this case we have

s ∈ ‖α(S ′)‖S .

Proof. We define a new formula α(X)[p′/X] where p′ is a new propositional

variable. If we set

λ(p′) = S ′,

it is easy to see, that we can construct a well-founded pre-model with root

α(X)[p′/X], hence s ∈ ‖α(X)[p′/X]‖S and so by definition s ∈ ‖α(S ′)‖S . 2

We are now able to prove the completeness theorems. First for the fragment

F1
µ and then for the fragment F2

µ.

6.1.1 Completeness for the Fragment F1
µ

For the completeness of this fragment, we prove that for each consistent

formula ϕ ∈ F1
µ, that is a ϕ such that KOZ 6`¬ϕ, there is a model and a

state in the model which satisfies ϕ, by contraposition we get for all formulae

ϕ ∈ F1
µ

|= ϕ ⇒ KOZ `ϕ.
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Before we do the model construction, we introduce some basic notions: A

formula ϕ is called consistent (for the calculus KOZ) if KOZ 6`¬ϕ. A set of

formulae S is consistent if for all finite subsets {ϕ1, . . . , ϕn} ⊆ S the formula∨
i∈{1,...,n} ϕi is consistent. A set of formulae is maximal consistent , if it is

not a proper subset of an other consistent set.

Given a consistent set, the existence of a maximal consistent superset follows

from the following lemma.

Lemma 40 Given a consistent set of formulae M , there is a maximal con-

sistent set M ′ such that M ⊆M ′.

Proof. First we fix an enumeration {αi | i ∈ ω} of all formulae in Lµ. Then,

we construct a (non strict) ascending chain {Mi | i ∈ ω ∪ {0}} of consistent

sets of formulae such that M0 = M and for all i ∈ ω ∪ {0}

Mi+1 =

{
Mi ∪ {αi+1}
Mi

if Mi ∪ {αi+1} is consistent,

if Mi ∪ {αi+1} is not consistent.

Let us now show that M ′ =
⋃
i∈ωMi is a maximal consistent set fulfilling

the requirements. First, we show that M ′ is consistent: This follows from

the fact that each finite subset M ′′ of M ′ is consistent since M ′′ is already

contained in an Mi for an i ∈ ω. Secondly, we show that M ′ is maximal: For

if we assume that M ′ is not maximal there is a formula β 6∈ M ′ such that

M ′ ∪ {β} is consistent. Now, since we have an enumeration of the formulae,

there is an i ∈ ω such that β ≡ αi. By construction of M ′ we must have that

Mi−1 ∪ {αi} is not consistent, hence also M ′ cannot be consistent. Which is

a contradiction. This proves maximality and the lemma. 2

The following folklore lemma states basic facts about maximal consistent sets

of formulae.

Lemma 41 Let M be a maximal consistent set of formulae. For all formulae

ϕ and ψ we have:

• ϕ ∨ ψ ∈M ⇔ ϕ ∈M or ψ ∈M , • KOZ `ϕ ⇒ ϕ ∈M ,

• ϕ ∧ ψ ∈M ⇔ ϕ ∈M and ψ ∈M , • ϕ ∈M or ¬ϕ ∈M ,

• ϕ→ ψ ∈M and ϕ ∈M ⇒ ψ ∈M , • ϕ ∈M ⇔ ¬ϕ 6∈M .

The definition of the Fischer-Ladner closure is very close to the original one,

given by the two authors in [16]. Given a formula ϕ, we define the Fischer-

Ladner closure FL(ϕ) to be the smallest set containing ϕ such that:
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• If ψ ∈ FL(ϕ) and α is a subformula of ψ then α ∈ FL(ϕ),

• if α ∈ FL(ϕ) and α 6≡ ¬β for any β then ¬α ∈ FL(ϕ),

• if νX.α ∈ FL(ϕ) then α(νX.α) ∈ FL(ϕ),

• if µX.α ∈ FL(ϕ) then α(µX.α) ∈ FL(ϕ),

• if α ∈ FL(ϕ) then nnf(α) ∈ FL(ϕ).

The cardinality of the Fischer-Ladner closure |FL(ϕ)| is in O(|ϕ|) where |ϕ|
is the length of the formula, that is, the number of symbols in ϕ. Given

a consistent formula ϕ ∈ F1
µ we define a model, the canonical model for ϕ,

which satisfies it.

The canonical model CMϕ = (S,R, λ) for ϕ is given by S, R and λ defined

as follows:

• S = {M ∩ FL(ϕ) | M is a maximal consistent set of formulae},

• R = {(M,M ′) | M/� ⊆M ′}, where M/� = {ψ | �ψ ∈M},

• λ(p) = {M | p ∈M}.

Since FL(ϕ) is a finite set of formulae, each state consists of finitely many

formulae and so the constructed model consists of finitely many states M .

In the following for all states M we define ϕM as

ϕM ≡
∧
ψ∈M

ψ.

Further, if S ′ is a set of states of the canonical model then φS′ is defined as

φS′ ≡
∨
M∈S′

ϕM .

Now, some basic properties of the canonical model.

Lemma 42 Let CMϕ = (S,R, λ) be the canonical model for a formula ϕ.

We have:

1.

KOZ `φS
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2.

KOZ `ϕM → �φR(M).

Proof.1. Suppose KOZ 6`φS. Since φS ≡
∨
M∈S ϕM we have that

∧
M∈S ¬ϕM

is consistent. Let Mmax be a maximal consistent set containing
∧
M∈S ¬ϕM .

By Lemma 41, for all M ∈ S, Mmax contains ¬ψ, for a ψ ∈ M . But this

contradicts the fact that S consists of all intersections of a maximal consistent

set and FL(ϕ).

2. First we prove for all M ′′ 6∈ R(M)

KOZ `ϕM → (�¬ϕM ′′). (∗)

Let M ′′ 6∈ R(M), so there is a �ψ ∈ M with ψ 6∈ M ′′, by Lemma 41

¬ψ ∈M ′′. So we get KOZ `
∧
ψ∈M/� ψ → ¬ϕM ′′ . Hence

KOZ `�(
∧

ψ∈M/�

ψ)→ �¬ϕM ′′ ,

and since � distributes over conjunction, we have shown (∗). So, we easily

get

KOZ `ϕM → (�
∧

M ′′ 6∈R(M)

¬ϕM ′′).

Since by the first part of this lemma we have

KOZ `
∧

M ′′ 6∈R(M)

¬ϕM ′′ →
∨

M ′∈R(M)

ϕM ′

we get the desired result. 2

The next result is used essentially in the completeness theorem for the frag-

ment. It cannot be proven for the whole language.

Proposition 43 Let CMϕ = (S,R, λ) be the canonical model of a formula

ϕ, let α(X1, . . . , Xn) be a formula such that nnf(α) has no diamonds and let

S1, . . . , Sn be subsets of S. If M ∈ ‖α(S1, . . . , Sn)‖CMϕ then

KOZ `ϕM → α(φS1 , . . . , φSn).

Proof. Let us first define for all formulae α a rank rn(α). We assume that

CMϕ has N ∈ ω many states. rn(α) is defined inductively as follows:
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• If α ≡ p,>,⊥, where p is a propositional variable, then rn(α) = 0,

• if α ≡ β ∧ γ, β ∨ γ then rn(α) = max{rn(β), rn(γ)}+ 1,

• if α ≡ �β,3β then rn(α) = rn(β) + 1,

• if α ≡ νX.β then rn(α) = rn(
∧
n≤N β

n(X)[>/X]) + 1,

• if α ≡ µX.β then rn(α) = rn(
∨
n≤N β

n(X)[⊥/X]) + 1.

The proposition is proved by induction on rn(α). Since we have

KOZ `α↔ nnf(α)

we can assume, that α is in negation normal form.

rn(α) = 0: If α ≡ ⊥,> then the implication is trivial. If α ≡ p, where p is a

propositional variable, then M ∈ Si, and trivially

KOZ `ϕM → φSi .

rn(α) > 0: We do the induction step by case distinction on the structure of

α:

• α ≡ ¬p, β ∧ γ, β ∨ γ: These cases go through straightforward and are

left to the reader.

• α ≡ �β: By definition of validity for all M ∈ R(M) we have M ∈
‖β(S1, . . . , Sn)‖CMϕ . Since rn(β) < rn(α) we can apply the induction

hypothesis and we get

KOZ `ϕM → β(φS1 , . . . , φSn)

for all M ∈ R(M). That gives us

KOZ `φR(M) → β(φS1 , . . . , φSn)

and

KOZ `�φR(M) → �β(φS1 , . . . , φSn).

With Lemma 42.2 we get the desired result.
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• α ≡ µY.β(X1, . . . , Xn): We have M ∈ ‖µY.β(S1, . . . , Sn)‖CMϕ . Since

the canonical model has N many states by Lemma 24.2 we have a

natural number n ≤ N such that M ∈ ‖βn(Y )[⊥/Y ](S1, . . . , Sn)‖CMϕ .

We have rn(α) > rn(βn(Y )[⊥/Y ]) and so by induction hypothesis we

get

KOZ `ϕM → βn(Y )(φS1 , . . . , φSn)[⊥/Y ].

Since for all formulae α, with X appearing only positively, and all

n ∈ ω, we can prove

KOZ `αn(Y )[⊥/Y ]→ µY.α,

we get the desired result.

• α ≡ νY.β(X1, . . . , Xn): We abbreviate ‖νY.β(S1, . . . , Sn)‖CMϕ with S0.

By assumption we have M ∈ S0. By definition we get

M ∈ ‖β(S1, . . . , Sn, S0)‖CMϕ .

Since rn(α) > rn(β(X1, . . . , Xn, Y )) for all M ′′ ∈ S0 we have by induc-

tion hypothesis

KOZ `ϕM ′′ → β(φS1 , . . . , φSn , φS0)

and so

KOZ `φS0 → β(φS1 , . . . , φSn , φS0).

An application of the induction rule gives us

KOZ `φS0 → νY.β(φS1 , . . . , φSn)

and so

KOZ `ϕM → νY.β(φS1 , . . . , φSn).

2

We are now ready to prove the completeness theorem for the fragment F1
µ.

Theorem 44 Let ϕ be a formula of F1
µ. We have

|= ϕ ⇔ KOZ `ϕ
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Proof. As mentioned at the beginning of this chapter it is enough to show,

that all consistent ϕ of F1
µ are satisfied in the canonical model for ϕ. To do

that, we show for all ψ ∈ FL(ϕ) and all states M in the canonical model by

induction on the structure of ψ

ψ ∈M ⇔ M |= ψ.

ψ ≡ P : In this case the equivalence follows from the definition of the valua-

tion λ of the canonical model CMϕ.

ψ ≡ α ∧ β : Suppose we have α ∧ β ∈ M by Lemma 41 this is equivalent to

α ∈ M and β ∈ M , since α ∧ β ∈ FL(ϕ). By induction hypothesis this is

equivalent to M |= α and M |= β, which is equivalent to M |= α ∧ β.

ψ ≡ α ∨ β : This case is dual to the case where ψ ≡ α ∧ β.

ψ ≡ ¬α : By Lemma 41 and since ¬α, α ∈ FL(ϕ) we have

¬α ∈M ⇔ α 6∈M.

Since by definition we have

M |= ¬α ⇔ M 6|= α

this proves the equivalence.

ψ ≡ �α : First suppose �α ∈ M , hence for all M ′ ∈ R(M) by construction

of the canonical model we have α ∈ M ′. With the induction hypothesis we

get M ′ |= α for all M ′ ∈ R(M) and so also M |= �α.

For the other direction we show the contrapositive. Suppose �α 6∈M , hence

by Lemma 41 we have ¬�α ∈M . We claim that {¬α} ∪M/� is consistent.

If the claim is true then there exists a maximal consistent set of formulae

such that its intersection with FL(ϕ) contains {¬α} ∪ M/�. Now, this

intersection yields a world M ′ ∈ R(M) and by induction hypothesis M ′ 6|= α.

Hence, M 6|= �α. So, it remains to prove the claim: It follows from the fact

that if we have

KOZ `
∧

ψ∈M/�

ψ → α

then by necessitation rule and since � distributes over conjunction and im-

plication we have

KOZ `
∧
ψ∈M

ψ → �α.
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And from that we could deduce the inconsistency of M since by Lemma 41

from the implication proved above we can get �α ∈ M . So, we have

KOZ 6`
∧
ψ∈M ψ → �α and thus KOZ 6`

∧
ψ∈M/� ψ → α. And this is equiva-

lent to the fact that {¬α} ∪M/� is consistent.

ψ ≡ 3α : This case is dual to the case where ψ ≡ �α.

ψ ≡ νX.α: We first prove

νX.α ∈M ⇒ M |= νX.α.

Since νX.α ∈M ⇒ νX.nnf(α) ∈M , by Lemma 41 we can assume that α

is in negation normal form. First a claim:

Claim:

If we define SνX.α = {M ′ ∈ S | νX.α ∈M ′}, we have

M ∈ ‖α(SνX.α)‖CMϕ .

Let us first prove the claim. We have the following two facts:

�β ∈M and M ′ ∈ R(M) ⇒ β ∈M ′

and, since {β} ∪M/� is consistent, for all M there is a M ′ ∈ R(M) such

that

3β ∈M ⇒ β ∈M ′.

With the observations made above, using the induction hypothesis and the

fact that α(νX.α) ∈M we can construct a pre-model such that each branch

fulfills one of the following two conditions: If it contains a point of the form

νX.α@M ′′ then M ′′ ∈ SνX.α, and if it does not contain a point of the form

νX.α@M ′′, then the branch is closed. Since in this case we can apply Corol-

lary 39 we get the desired result. And so the claim is proved.

Since the claim holds for all M ∈ SνX.α we have

SνX.α ⊆ ‖α(SνX.α)‖CMϕ .

So we know, that M is in a pre-fixpoint of the functional ‖α(X)‖CMϕ , so M

is in the greatest fixpoint of the functional ‖α(X)‖CMϕ , hence M |= νX.α.

We now prove

M |= νX.α ⇒ νX.α ∈M.
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For all M ′ ∈ ‖α(‖νX.α‖CMϕ)‖CMϕ since by assumption α must be diamond

free, by Proposition 43 we get

KOZ `ϕM ′ → α(φ‖νX.α‖CMϕ
),

and since ‖α(‖νX.α‖CMϕ)‖CMϕ = ‖νX.α‖CMϕ

KOZ `φ‖νX.α‖CMϕ
→ α(φ‖νX.α‖CMϕ

).

We now apply the induction rule and get

KOZ `φ‖νX.α‖CMϕ
→ νX.α

and so, since M ∈ ‖νX.α‖CMϕ we get

KOZ `ϕM → νX.α.

Now, if ¬νX.α ∈M , then M would not be consistent, so we have νX.α ∈M .

2

6.1.2 Completeness for the Fragment F2
µ

As we did for the fragment F1
µ it is enough to show, that if ϕ is consistent,

there is a model and a state in the model, which satisfies ϕ. The model

construction goes analogously to the one made for F1
µ.

The definitions of consistent formula must be adapted to the deduction sys-

tem without induction. So, ϕ is consistent if KOZ−(Ind) 6`¬ϕ. Further, the

definitions for consistent and maximal consistent set of formulae are similar

to the definitions made for KOZ. The Fischer-Ladner closure of ϕ FL(ϕ)

and the canonical model for a consistent formula are defined as before. It is

now obvious, that the (new) maximal consistent sets of formulae fulfill the

conditions stated in Lemma 41.

We can now state the completeness theorem.

Theorem 45 Let ϕ be a formula of F2
µ. We have

|= ϕ ⇒ KOZ−(Ind) `ϕ.
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Proof. We show that all consistent ϕ of F2
µ are satisfied in the canonical

model for ϕ. To do that, we show for all ψ ∈ FL(ϕ) and all states M in the

canonical model by induction on ψ

ψ ∈M ⇒ M |= ψ.

Since ψ ∈M ⇒ nnf(ψ) ∈M , we can assume that ψ is in negation normal

form. For the induction, the cases where ψ ≡ P,¬P, α ∧ β,�α or νX.α are

treated like the part of Theorem 67, where we prove: ψ ∈M ⇒ M |= ψ.

In addition to that we have to prove the cases where ψ ≡ α ∨ β and where

ψ ≡ 3α. The first case goes with Lemma 41, the second follows from the

fact, that if M ∪ {3α} is consistent, so is M/� ∪ {α}. 2
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Part II

The Logic of Common

Knowledge





Chapter 7

Introducing Common

Knowledge

“So kann also die Mathematik definiert werden als diejenige Wissenschaft,

in der wir niemals das kennen, worüber wir sprechen, und niemals wissen,

ob das, was wir sagen, wahr ist.” (B. Russell)

The idea to formalize reasoning about knowledge in modal logic goes at least

back to the work of Wright [50] in the early fifties. Ten years later with

Hintikka’s seminal work, Knowledge and Belief [23], the logic of knowledge

became an important source of interest mainly for philosophers. The major

task was in trying to capture the inherent properties of knowledge and/or

belief. Axioms for knowledge were suggested, attacked and defended. More

recently, researchers in other areas have become interested in this area. Thus,

the first formal approaches to the notion of common knowledge came from

different fields, such as philosophy (see Lewis [33]), artificial intelligence and

theoretical computer science (see McCarthy, Sato, Hayashi and Igarishi [35])

and economics (see Aumann [5]).

In this thesis we work with the formal framework, based on multi-modal logic,

introduced by Halpern and Moses in [20] and developed in the well-known

book, Reasoning about Knowledge, by Fagin, Halpern, Moses and Vardi [15].

In this framework common knowledge is introduced as the iteration of the

more basic notion of ‘everybody knows’. Another possibility to formalize

the notion of common knowledge is given by Barwise’s Situation Semantics

(see [9, 8]) where common knowledge is introduced as the greatest fixpoint

of an operator, also based on the notion of ‘everybody knows’. It then comes
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out that in the Situation Semantics the fixpoint and the iterative approach

differ whereas in our multi-modal framework they coincide. More about the

relationship between these two formal frameworks can be found in Graf [19]

and Lismont [34].

There are many ‘real life’ examples, such as the unfaithful wives (see Gamow

and Stern [18]) or the muddy children puzzle (see Barwise [7]), which il-

lustrate the subtleties of common knowledge. Hence, we shall consider the

following card game:

We have two players Alice and Bob and the dealer. Both Alice and Bob get

exactly one card from the dealer, the task of the game is to find out whether

the other player holds an ace or not. The dealer gives both of them an ace.

Let p stand for the proposition: “At least Alice or Bob holds an ace.” Of

course, we have that both Alice knows p, KAp, and Bob knows p, KBp. Let

us analyze two scenarios:

Scenario 1: The dealer says nothing. Now, the dealer asks Bob in such a

way that everybody can hear it: “Do you know if Alice holds an ace?” Bob

denies, since he can not know. Then the dealer asks Alice whether she knows

if Bob holds an ace, and, of course, Alice also must deny. The dealer could

continue asking this question and he never will get a positive answer since

both have no chance to find out whether the other holds an ace or not.

Scenario 2: The dealer says p, that is, he says: “At least Alice or Bob holds

an ace.” At first sight the situation does not change since the dealer says

something that they already know. Now, the dealer asks Bob in such a way

that everybody can hear it: “Do you know whether Alice holds an ace?” Bob

must deny. Then the dealer asks Alice if she knows if Bob has an ace in his

hands. Alice replies: “Yes!”

What is the difference between scenarios 1 and 2? In the first scenario we

have KAp and KBp, and in the second the dealer makes a public announce-

ment of p, that is, he says what Alice and Bob already know. The situation

changes because the public announcement of p implies that p becomes com-

mon knowledge (Cp), and thus: ‘Alice knows that Bob knows p’ and ‘Bob

knows that Alice knows that Bob knows p’, and so on. Thus, since Bob an-

swers negatively to the first question of the dealer Alice now knows that he

must hold an ace. This follows from the fact that she now has information

concerning the knowledge of Bob. Hence she reasons that if Bob would not
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hold an ace he would answer with ‘yes’, since he knows that at least one of

them holds an ace.

This example shows that two apparently similar scenarios can evolve differ-

ently depending on whether there is common knowledge or not. How can

common knowledge, which raises from the public announcement, be formal-

ized? As previously said there are two main approaches: the iterative and

the fixpoint approach. The iterative one is based on the fact that once we

make an announcement of p, we immediately get that ‘everybody knows p’,

Ep, that ‘everybody knows that everybody knows p’, EEp, and so on, such

as EEEp. Formally, one could say:

Cp ≡
∧
i≥1

Eip.

The fixpoint approach is based on the fact that common knowledge of p, Cp,

is equivalent to the fact that ‘everybody knows p’ and that ‘everybody knows

that p is common knowledge’, E(Cp) ∧ Ep. Hence, common knowledge is a

fixpoint of the operator E(X) ∧ Ep. Barwise, in [8], argues that indeed it is

the greatest fixpoint. Formally one could say:

Cp ≡ νX.(E(X) ∧ Ep).

The relevance of common knowledge in computer science is mainly due to

its connection with coordination of agents in a system. For example, it is

common knowledge that a red traffic light means ‘stop’ and a green one

means ‘go’. Thus, most drivers feel safe when they cross a green traffic light.

Suppose that this fact is not common knowledge. Even if every car driver

knows that he can go when the light is green and must stop when it is red,

he will not feel safe any more. How can he know that the other drivers know

that too? Thus, a very safe driver will never pass a light when there are

other cars at a crossroad; there would be no coordination. This example

illustrates that common knowledge plays an important role for coordination,

and simultaneous actions, in a multi agent system. In fact, Fagin, Halpern,

Moses and Vardi in [15] prove formally that common knowledge and simul-

taneous actions are strongly related, in the sense that common knowledge is

a prerequisite for simultaneous actions.

In this thesis we study some proof-theoretic aspects of the multi-modal for-

malization of common knowledge. Let us highlight the main results; more

detailed abstracts can be found at the beginning of each chapter.
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• In Chapter 8 we introduce the syntax and semantics of the logics of

common knowledge in the multi-modal framework. We show, with an

embedding into the modal µ-calculus, that the iterative and the fixpoint

approach coincide.

• In Chapter 9 we introduce a Tait-style calculus for the logic of common

knowledge and provide our first completeness result.

• In Chapter 10 we present cut elimination results for various logics of

common knowledge. These results lead to proof systems which sat-

isfy a subformula property and are therefore convenient for decision

procedures.

• In Chapter 11 we introduce an infinitary cut-free calculus and show its

completeness. Further, we present partial finitisation results by provid-

ing finite cut-free systems for the positive and the negative fragments.

Chapters 9 to 11 are based on joint work with Jäger [2].



Chapter 8

Basic Definitions and Results

“For all p: KI¬KIp” (Socrates)

In the first section we introduce the syntax of the logic of common knowledge.

We begin by introducing the class of formulae whereby the negation is defined

in such a way that each formula is in negation normal form. Further, we

introduce complete axiomatic systems in the Hilbert-style for the logics of

common knowledge over K,T,S4 and S5, these axiomatic systems slightly

differ from the original ones introduced by Fagin, Halpern, Moses and Vardi

in [15] since we replace the fixpoint axiom with the co-closure axiom. The

last result shows that both axiomatisations, the one with fixpoint and the

one with co-closure axiom, are equivalent.

In the second section we introduce the semantics, given by labeled transition

systems which in an epistemic context are called Kripke-models. In our

multi-modal framework common knowledge of a fact ϕ, Cϕ, is the iteration

of the fact that everybody knows ϕ, that is, ‘everybody knows ϕ’ (Eϕ),

and ‘everybody knows that everybody knows ϕ’ (EEϕ), and so on. After

some basic results we state the completeness of the various logics of common

knowledge with respect to the corresponding classes of Kripke-models. These

completeness results are due to Fagin, Halpern, Moses and Vardi in [15].

In the last section, we compare the iterative approach, which was introduced

in the previous section, with the, so-called, fixpoint approach and establish

the equivalence of them in our semantics. In order to do that we embed the

logics of common knowledge into the modal µ-calculus by interpreting Cϕ as

νX.(EX ∧ Eϕ).
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8.1 Syntax

To define the formulae of the logic of common knowledge we start from a

set of primitive propositions P = {p, q, . . .}, the propositional connectives ∧
and ∨, the epistemic operators K1,K2, . . . ,Kn and the common knowledge

operator C; further, to define the negation on primitive propositions and on

epistemic operators, we introduce the connective ∼. The class of formulae

Ln
C, denoted by α, β, γ, ϕ, ψ, . . ., then is defined inductively as follows:

• p,∼p ∈ Ln
C for all p ∈ P,

• if α, β ∈ Ln
C then (α ∧ β) ∈ Ln

C and (α ∨ β) ∈ Ln
C,

• if α ∈ Ln
C then Kiα ∈ Ln

C and ∼Kiα ∈ Ln
C,

• if α ∈ Ln
C then Cα ∈ Ln

C and ∼Cα ∈ Ln
C.

We often omit the parentheses if there is no danger of confusion. With the

help of de Morgan’s laws and the law of double negation for each formula ϕ

we define recursively a negation ¬ϕ as follows:

• If ϕ is primitive proposition p then ¬α is the the formula ∼p; if ϕ is

∼p then ¬α is p.

• If ϕ is α∧ β then ¬α is (¬α∨¬β); if ϕ is α∨ β then ¬α is (¬α∧¬β).

• If ϕ is Kiα then ¬ϕ is ∼Kiα; if ϕ is ∼Kiα then ¬ϕ is Kiα.

• If ϕ is Cα then ¬ϕ is ∼Cα; if ϕ is ∼Cα then ¬ϕ is Cα.

Instead of ¬α∨β we often write α→ β. The formula Kiϕ will be interpreted

as ‘agent i knows ϕ’. To write efficiently statements as ‘everybody knows ϕ’

we introduce the abbreviation E defined as

Eα ≡ K1α ∧ . . . ∧ Knα.

To express things such as ‘everybody knows that everybody knows α’ we

introduce for all natural numbers m the iteration Em of E as

E0α ≡ α and Em+1α ≡ EEmα.

We end this section by presenting axiomatisatic system our multi-modal log-

ics, such as K,T,S4 and S5, with a common knowledge operator. The
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systems are presented in the Hilbert-style, the axioms and rules are pre-

sented as schemes. We start with logic of common knowledge over K , whose

presented axiomatic system is called HKC
n
.

Axioms of HKC
n
:

HKC
n

includes the axioms of the classical propositional calculus, for each Ki,

the distribution axiom

Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ),

and the co-closure axiom

Cϕ→ (Eϕ ∧ ECϕ).

Inference rules of HKC
n
:

In addition to the classical modus ponens (MP ), we have the necessitation

rule (Nec) and the induction rule (Ind). All the rules are described below

as schemes:

ψ → ϕ ψ
ϕ (MP )

ϕ

Kiϕ
(Nec)

ϕ→ (Eϕ ∧ Eψ)

ϕ→ Cψ
(Ind)

The calculus HTC
n

for the logic of common knowledge over T is obtained from

HKC
n

by adding the axiom scheme

Kiϕ→ ϕ.

The calculus HS4C
n

for the logic of common knowledge over S4 is obtained

from HTC
n

by adding the axiom scheme for positive introspection

Kiϕ→ KiKiϕ.

The calculus HS5C
n

for the logic of common knowledge over S5 is obtained

from HS4C
n

by adding the axiom scheme for negative introspection

¬Kiϕ→ Ki¬Kiϕ.
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Let H∗ be one of the theories HKC
n
,HTC

n
,HS4C

n
or HS5C

n
. If a formula ϕ is provable

in H∗ , we write

H∗ ` ϕ.

We end the section with a proposition which shows us that the co-closure

axiom could be substituted by a fixpoint axiom.

Proposition 46 Let H∗ be one of the theories HKC
n
,HTC

n
,HS4C

n
or HS5C

n
. For

all formulae ϕ we have

H∗ ` Cϕ↔ (Eϕ ∧ ECϕ).

Proof. Since one implication corresponds to the co-closure axiom we just

have to prove

H∗ ` (Eϕ ∧ ECϕ)→ Cϕ.

Let us prove this implication. It can easily be seen that we can prove

H∗ ` Cϕ→ Eϕ and H∗ ` Cϕ→ ECϕ.

With the rules (Nec) and with the distribution axiom we then get

H∗ ` ECϕ→ EEϕ and H∗ ` ECϕ→ EECϕ

and thus

H∗ ` ECϕ→ (EEϕ ∧ EECϕ).

With the distribution axiom we get

H∗ ` ECϕ→ E(Eϕ ∧ ECϕ)

and thus

H∗ ` (Eϕ ∧ ECϕ)→ E(Eϕ ∧ ECϕ).

Since we have the propositional axiom

H∗ ` (Eϕ ∧ ECϕ)→ Eϕ

we get

H∗ ` (Eϕ ∧ ECϕ)→ (E(Eϕ ∧ ECϕ) ∧ Eϕ).

With an application of the induction rule we get the desired result. 2
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8.2 Semantics

The semantics of the logics of common knowledge is given by Kripke-models,

which are the same as labeled transition systems.

A Kripke-model M is of the form (W,R1, . . . , Rn, λ), where:

• W is a nonempty set of worlds,

• all Ri are binary relations on W and

• λ : P→ P(W ) is the valuation, which assigns to each primitive propo-

sition p a subset λ(p) of W .

Given a formula ϕ and a Kripke-model M = (W,R1, . . . , Rn, λ), the set

‖ϕ‖M ⊆ W denotes the states where ϕ holds, and is called the denotation of

ϕ in M. It is defined inductively on the structure of ϕ, as follows:

• ‖p‖M = λ(p) and ‖ ∼ p‖M = W − ‖p‖M for all p ∈ P,

• ‖α ∧ β‖M = ‖α‖M ∩ ‖β‖M,

• ‖α ∨ β‖M = ‖α‖M ∪ ‖β‖M,

• ‖Kiα‖M = {w ∈ W | (∀w′ ∈ Ri(w)) w′ ∈ ‖α‖M},

• ‖∼Kiα‖M = W − ‖Kiα‖M,

• ‖Cα‖M =
⋂
i≥1 ‖Eiα‖M,

• ‖∼Cα‖M = W − ‖Cα‖M.

Let M be a Kripke-model and w a world in it. If w ∈ ‖ϕ‖M and if it is

clear from the context that we are referring to the model M we often write

w |= ϕ, and say ϕ is valid in w. We write M |= ϕ, and say ϕ is valid in M,

if it is valid in all worlds of M.

We now introduce for all modal logics K,T,S4 and S5 the corresponding

classes of models CK, CT, CS4 and CS5:

1. CK consists of all Kripke-models.

2. CT consists of all Kripke-models, where the relations are reflexive.
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3. CS4 consists of all Kripke-models, where the relations are reflexive and

transitive.

4. CS5 consists of all Kripke-models, where the relations are reflexive,

transitive and symmetric.

Let C∗ be one of the classes CK, CT, CS4 or CS5. We write C∗ |= ϕ, if ϕ is

valid in all models in C∗.

Given two worlds in a model w and w′, we say w′ is accessible in one step

from w if there is an i ∈ {1, . . . , n}, such that (w,w′) ∈ Ri. The accessibility

in n steps is the defined recursively as follows: w′ is accessible in n+ 1 steps

from w, if there is a world w′′ accessible in n steps from w, such that w′

is accessible in one step from w′′. Finally, w′ is accessible from w if there

is a natural number n, such that w′ is accessible in n steps from w. A(w)

denotes the set of all such w′. The next lemma can easily be proven with an

inductive argument.

Lemma 47 For all formulae ϕ, Kripke-models and worlds w we have

w |= Cϕ ⇔ w′ |= ϕ for all w′ ∈ A(w).

We end this section with a completeness and correctness result. The cor-

rectness part can easily be proven by induction on the proof-length, for the

completeness part we refer to Fagin, Halpern, Moses and Vardi [15].

Theorem 48 Let H∗ be one of the theories HKC
n
,HTC

n
,HS4C

n
or HS5C

n
, and let

C∗ be the corresponding class among CK, CT, CS4 or CS5. For all formulae

ϕ we have

H∗ ` ϕ ⇔ C∗ |= ϕ.

8.3 Common Knowledge as a Fragment of µ-

Calculus

In this section we embed the logics of common knowledge into the modal µ-

calculus. This embedding uses the fact that the common knowledge operator

can be seen as a greatest fixpoint of the basic modalities.

Let M = (W,R1, . . . , Rn, λ) be a Kripke-model, W ′ ⊆ W a subset of W

and ϕ(p) a formula in Ln
C containing a primitive proposition p. ‖ϕ(W ′)‖M
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denotes the set of worlds ‖ϕ(p)‖M′ where M′ = (W,R1, . . . , Rn, λ
′) and λ′

maps p to W ′ and otherwise is equal to λ. For each formula ϕ we define an

operator OM,ϕ from P(W ) to P(W ) such that for each W ′ ⊆ W we have

OM,ϕ(W ′) = ‖E(ϕ) ∧ E(W ′)‖M.

For each ordinal α we can define recursively a subset Oα
M,ϕ of the set of

worlds W as follows:

• O0
M,ϕ = W ,

• Oα+1
M,ϕ = OM,ϕ(Oα

M,ϕ) and

• Oλ
M,ϕ =

⋂
α<λO

α
M,ϕ for each limes ordinal λ.

Lemma 49 For all Kripke-models M = (W,R1, . . . , Rn, λ), formulae ϕ and

natural numbers n ≥ 1 we have

On
M,ϕ = ‖Eϕ ∧ . . . ∧ Enϕ‖M.

Proof. The proof goes by induction on n.

n = 1: O1
M,ϕ = ‖Eϕ ∧ E(W )‖M = ‖Eϕ‖M.

n = m + 1: Om+1
M,ϕ by definition is equal to OM,ϕ(Om

M,ϕ). By induction

hypothesis this is equal

‖Eϕ ∧ E(Eϕ ∧ . . . ∧ Emϕ)‖M.

Since E distributes over conjunction we get the equality with

‖Eϕ ∧ EEϕ ∧ . . . ∧ Em+1ϕ‖M.

2

It can easily be seen that OM,ϕ is a monotone operator on the powerset of the

worlds of M. The following lemma shows that the greatest fixpoint of this

operator, which exists by the Tarski-Knaster Theorem 95, is always reached

after ω-many approximations.

Lemma 50 For each Kripke-model M and formula ϕ we have

GFP(OM,ϕ) =
⋂

α∈ON

Oα
M,ϕ = Oω

M,ϕ.
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Proof. We show

GFP(OM,ϕ) ⊆
⋂

α∈ON

Oα
M,ϕ ⊆ Oω

M,ϕ ⊆ GFP(OM,ϕ).

The first inclusion follows from Tarski-Knaster Theorem 95 and the second

from the definition. To get the third one we show that Oω
M,ϕ is a fixpoint of

OM,ϕ, that is

OM,ϕ(Oω
M,ϕ) = Oω

M,ϕ.

⊇: The following four facts are equivalent:

1. w ∈ Oω
M,ϕ,

2. w ∈
⋂
n∈ω O

n
M,ϕ,

3. ∀n ∈ ω w ∈ ‖Eϕ ∧ . . . ∧ Enϕ‖M,

4. ∀w′ ∈ A(w) w′ ∈ ‖ϕ‖M.

The equivalence of 1. and 2. follows from definition, the one of 2. and 3. by

Lemma 49 and the equivalence of 3. and 4. can easily be verified.

Hence, if w ∈ Oω
M,ϕ then we have

for all w′ ∈ A(w) w′ ∈ ‖ϕ‖M.

From this we get that for all w′ which are accessible in one step from w we

have

for all w′′ ∈ A(w′) w′′ ∈ ‖ϕ‖M.

Using the equivalences above we get for all such w′

w′ ∈ Oω
M,ϕ.

This gives to us w ∈ ‖E(Oω
M,ϕ)‖M. Further, using the equivalences above, it

can easily be seen that w ∈ Oω
M,ϕ implies w ∈ ‖Eϕ‖M. With this we get

w ∈ Oω
M,ϕ ⇒ w ∈ ‖Eϕ ∧ E(Oω

M,ϕ)‖M

which proves the inclusion.

⊆: We show, by induction, for all ordinals α

OM,ϕ(Oα
M,ϕ) ⊆ Oα

M,ϕ.
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• α = 0: Follows from the definition.

• α = β + 1: OM,ϕ(Oα
M,ϕ) is equal to OM,ϕ(OM,ϕ(Oβ

M,ϕ)) by definition.

By induction hypothesis and since OM,ϕ is monotone we get

OM,ϕ(OM,ϕ(Oβ
M,ϕ)) ⊆ OM,ϕ(Oβ

M,ϕ).

And hence

OM,ϕ(Oα
M,ϕ) ⊆ Oα

M,ϕ.

• α = λ: By monotonicity for all ordinal γ < α we have

OM,ϕ(
⋂
β<α

Oβ
M,ϕ) ⊆ OM,ϕ(Oγ

M,ϕ).

And so we get for all γ < α

OM,ϕ(
⋂
β<α

Oβ
M,ϕ) ⊆ Oγ+1

M,ϕ

and thus

OM,ϕ(
⋂
β<α

Oβ
M,ϕ) ⊆

⋂
β<α

Oβ
M,ϕ

which is the desired inclusion.

2

We are now able to embed the logics of common knowledge into the modal

µ-calculus. Notice that the modal µ-calculus is over a multi-modal language

with modalities K1, . . . ,Kn. The embedding E takes a formula of the logics

of common knowledge and assigns to it a µ-formula. It is defined recursively

on the structure of the formula as follows:

1. E(q) = q and E(∼q) = ¬q,

2. E(α ∧ β) = E(α) ∧ E(β),

3. E(α ∨ β) = E(α) ∨ E(β),

4. E(Kiα) = KiE(α),

5. E(∼Kiα) = ¬KiE(α),
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6. E(Cα) = νX.E(Eα ∧ EX) (X is a new variable) and

7. E(∼Cα) = ¬νX.E(Eα ∧ EX) (X is a new variable).

Notice, that except for the common knowledge operator E preserves the struc-

ture of the formula. The following theorem holds.

Theorem 51 For all the Kripke-models M and formulae ϕ ∈ Ln
C we have

‖ϕ‖M = ‖E(ϕ)‖M.

Proof. The proof goes by induction on the structure of ϕ. The only case

which is not straightforward is when ϕ is of the form Cα. In this case we

have by definition ‖Cα‖M =
⋂
i≥1 ‖Eiα‖M and with Lemma 49 we get

‖Cα‖M = Oω
M,α.

With Lemma 50 we can deduce

‖Cα‖M = GFP(OM,α).

Remember that OM,α(W ′) was defined by ‖Eα ∧ E(W ′)‖M for all set of

worlds W ′. Using the induction hypothesis we can easily see that GFP(OM,α)

is the greatest fixpoint of the function which maps a set of worlds W ′ to

‖E(Eα ∧ E(W ′))‖M. This gives us

‖Cα‖M = ‖νX.E(Eα ∧ EX)‖M = ‖E(Cα)‖M.

2



Chapter 9

A Tait-Style Reformulation of

HKC
n

“ ‘Obviously’ is the most dangerous word in mathematics.” (E. T. Bell)

In this chapter we introduce the Tait-style calculus TKC
n

for the logic of com-

mon knowledge over K. We fix the notation for Tait-style calculi which will

be also used in the following chapters. After, we prove that the introduced

calculus with general cut is equivalent to the complete Hilbert-style calculus

introduced in the previous chapter and so immediately get the completeness

for TKC
n

+ (G−Cut). We end the chapter with the proof that our Tait-style

calculus does not allow complete cut elimination.

9.1 Definition and Completeness

As usual p, q, r, . . . stand for primitive propositions and small Greek letters for

arbitrary formulae. Further, the capital Greek letters Γ,∆,Σ, . . . (possibly

with subscripts) stand for finite subsets of Ln
C which are called sequents. For

any sequents Γ,∆ and formulae α, β the sequent Γ∪∆∪{α}∪{δ} is denoted

by Γ,∆, α, β. Let Γ be the sequent {α1, . . . , αm}, we often use the following

convenient abbreviations:

•
∨

Γ = {α1 ∨ . . . ∨ αm},

• ¬Γ = {¬α1, . . . ,¬αm},

• ¬KiΓ = {¬Kiα1, . . . ,¬Kiαm},
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• KiΓ = {Kiα1, . . . ,Kiαm},

• ¬EΓ = {¬Eα1, . . . ,¬Eαm},

• ¬CΓ = {¬Cα1, . . . ,¬Cαm} and

• Γ/Ki = {α | Kiα ∈ Γ}.

Further, for each formula α we define inductively a complexity measure me(α):

• me(p) = me(∼p) = 0 for all p ∈ P,

• me(α ∧ β) = me(α ∨ β) = max{me(α),me(β)}+ 1,

• me(Kiα) = me(∼Kiα) = me(α) + 1,

• me(Cα) = me(∼Cα) = me(α) + n+ 1.

Let us introduce the Tait-style calculus TKC
n

for the logic of common knowl-

edge over K. All the rules are represented as schemes.

Axiom of TKC
n
:

Γ, p,¬p (ID)

Basic inference rules of TKC
n
:

Γ, α, β

Γ, α ∨ β (∨)
Γ, α Γ, β

Γ, α ∧ β (∧)

¬C∆,¬Γ, α

¬C∆,¬KiΓ,Kiα,Σ
(Ki)

C-rules of TKC
n
:

¬CΓ,Eα
¬CΓ,Cα,Σ

(C.1)
Γ,¬Eα
Γ,¬Cα

(¬C)

The induction rule of TKC
n
:

¬α,Eα ¬α,Eβ
¬α,Cβ,Σ (Ind)

The designated formula of the (∧)-rule is α ∧ β, for the (∨)-rule it is α ∨ β,

for the (Ki)-rule it is Kiα, for the (C.1)- and the (Ind)-rules it is Cα and for
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the (¬C)-rule it is ¬Cα. We did not introduce any cut rules since we want

to distinguish TKC
n

with various additional cuts. Hence, we always mention

explicitly which cut rules are admitted. Let us introduce the most general

cut scheme, the general cut rule.

General cut:

Γ, α Γ,¬α
Γ

(G−Cut)

In this case the designated formulae α and ¬α are called the cut formulae of

(G−Cut).

For any inference rule (ρ) presented above, the sequents over the separating

line are called premises of (ρ) and the sequent under the separating line

is called conclusion of (ρ). The derivability in n steps is defined as usual:

The conclusions of (ID) are derivable in arbitrary many steps, and if all the

premises of an inference rule are derivable in n steps then the conclusion is

derivable in n+ 1 steps. We write

TKC
n

+ (∗1−Cut) + . . .+ (∗m−Cut) `n Γ

if Γ is derivable in n steps in the calculus TKC
n

with possible additional use of

cuts from (∗1−Cut), . . . , (∗m−Cut). If Γ is derivable in less than n steps we

write

TKC
n

+ (∗1−Cut) + . . .+ (∗m−Cut) `<n Γ.

If there is a natural number n such that Γ is derivable in n steps we write

TKC
n

+ (∗1−Cut) + . . .+ (∗m−Cut) ` Γ.

The next proposition states the correctness of TKC
n

with general cut and can

be proven by induction on the length of the proof.

Proposition 52 For all sequents Γ we have

TKC
n

+ (G−Cut) ` Γ ⇒ CK |=
∨

Γ.

Proposition 52 and Theorem 48 give us the following corollary.

Corollary 53 For all sequents Γ we have

TKC
n

+ (G−Cut) ` Γ ⇒ HKC
n
`
∨

Γ.
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Lemma 54 For all formulae α ∈ Ln
C and, possibly empty, sequents Γ we

have:

1. TKC
n
` Γ, α,¬α.

2. TKC
n
` ¬Cα,Eα ∧ ECα.

Proof. The proof of the first assertion goes by induction on me(α) and is

omitted. Let us prove the second one. By the first part of the lemma we

have

TKC
n
` ¬Eα,Eα

and so an application of (¬C) gives us

(1) TKC
n
` ¬Cα,Eα.

Again by the first part we have

TKC
n
` ¬Cα,Cα

and so by applying all the (Ki)-rules and the (∧) rule we get

(2) TKC
n
` ¬Cα,ECα.

An application of (∧) to (1) and (2) gives the desired result. 2

The next lemma can easily be proven with the help of the induction rule

(Ind) and some additional formula manipulations in the calculus.

Lemma 55 For any two formulae α, β ∈ Ln
C such that

TKC
n

+ (G−Cut) ` ¬β,Eα ∧ Eβ

we have

TKC
n

+ (G−Cut) ` ¬β,Cα.

Theorem 56 For all formulae α ∈ Ln
C we have

TKC
n

+ (G−Cut) ` α ⇔ HKC
n
` α.
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Proof. The direction from left to right follows from Corollary 53. For the

other direction we first observe that all the axioms of propositional logic and

the distribution axiom can be proven in TKC
n
. Since the co-closure axiom cor-

responds to Lemma 54.2 all the axioms of HKC
n

are provable in TKC
n
. Further,

observe that the (MP )-rule corresponds to (G−Cut), the (Nec)-rule to (Ki)

and that the induction rule corresponds to Lemma 55. Hence by a simple

induction on the proof length in HKC
n

we can prove the direction from right

to left. 2

In combination with Theorem 48 we immediately get the following corollary.

Corollary 57 For all formulae α ∈ Ln
C we have

TKC
n

+ (G−Cut) ` α ⇔ CK |= α.

The previous theorem shows that TKC
n

with general cut is complete. The ques-

tion if TKC
n
+(G−Cut) admits complete cut elimination is answered negatively

by the next proposition.

Proposition 58 Assume we have a language with two agents {1, 2} and let

α be the formula

¬K1(q ∧ Cp) ∨ ¬K2(p ∧ Cq) ∨ C(p ∨ q).

We have

TKC
n

+ (G−Cut) ` α and TKC
n
6` α.

Proof. It can easily be seen that α is valid, and so by Corollary 57 we have

TKC
n

+ (G−Cut) ` α.

On the other hand we do not have

TKC
n
` ¬K1(q ∧ Cp) ∨ ¬K2(p ∧ Cq) ∨ C(p ∨ q).

For, if this was the case then in the proof of α the subformula C(p∨ q) must

have been the distinguished formula of either (C.1) or of (Ind). If it was the

distinguished formula of (C.1) then we must have

TKC
n
` E(p ∨ q)

which can not be the case by Proposition 52 since E(p ∨ q) is not valid. If it

was the distinguished formula of (Ind) then we have two cases
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1. The conclusion of this application of (Ind) was

TKC
n
` ¬K1(q ∧ Cp),¬K2(p ∧ Cq),C(p ∨ q),

2. The conclusion of this application of (Ind) was

TKC
n
` ¬K1(q ∧ Cp) ∨ ¬K2(p ∧ Cq),C(p ∨ q).

In the first case one of premises of (Ind) is either

TKC
n
` ¬K1(q ∧ Cp),E(K1(q ∧ Cp)) or TKC

n
` ¬K2(p ∧ Cq),E(K2(p ∧ Cq)).

Since both sequents are not valid with Proposition 52 get a contradiction. In

the second case one premise is

TKC
n
` ¬K1(q ∧ Cp) ∨ ¬K2(p ∧ Cq),E(K1(q ∧ Cp) ∧ K2(p ∧ Cq)).

Since this sequent is not valid, too, with Proposition 52 get a contradiction

and thus the proof. 2



Chapter 10

Fischer-Ladner Cuts

“Die Kompliziertheit treibt uns an, die Einfachheit voran.” (E. Hablé)

The last chapter has shown that TKC
n

does not admit complete cut elimination.

In this chapter we provide partial cut elimination results for the logics of

common knowledge over K,T,S4 and S5.

In the first section we prove the partial cut elimination result for the Tait-style

calculus TKC
n

introduced in the previous chapter. We show that a formula ϕ

is provable in TKC
n

with general cut if and only if it is provable with the use

of cuts whose cut formulae represent subsets of the Fischer-Ladner closure

of ϕ. Thus, we get a proof system where proof-search becomes decidable.

The result is proven by adapting the proof-methods used by Fagin, Halpern,

Moses and Vardi in [15] for the Hilbert-style system to our context.

In the second section we extend the method developed in the first one to

prove partial cut elimination results for the logics of common knowledge over

T,S4 and S5.

10.1 Partial Cut Elimination for TKC
n

In order to define the notion of Fischer-Ladner cuts let us first introduce the

more general notion of Π-cut.

Let Π ⊆ Ln
C be a set of formulae which is closed under negation, that is, we

have ¬Π = Π. Then the Π-cuts are all cuts
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Γ, α Γ,¬α
Γ

(Π−Cut)

such that the cut formula α belongs to Π. The next lemma can easily be

proven by induction on the proof-length.

Lemma 59 Let Π ⊆ Ln
C be a set of formulae closed under negation. For all

sequents Γ and ∆ we have

TKC
n

+ (Π−Cut) ` Γ ⇒ TKC
n

+ (Π−Cut) ` Γ,∆.

Lemma 60 Let Π ⊆ Ln
C be a set of formulae closed under negation. For all

sequents Γ and all formulae α1 ∧ α2 ∈ Π and α ∨ β ∈ Π we have

1. TKC
n

+ (Π−Cut) ` Γ, α ∨ β ⇒ TKC
n

+ (Π−Cut) ` Γ, α, β,

2. TKC
n

+ (Π−Cut) ` Γ, α1 ∧ α2 ⇒ TKC
n

+ (Π−Cut) ` Γ, αi.

Proof. In TKC
n

we can easily derive

TKC
n
` ¬α ∧ ¬β, α, β and TKC

n
` ¬α1 ∨ ¬α2, αi

for i ∈ {1, 2}. Since both ¬α ∧ ¬β and ¬α1 ∨ ¬α2 belong to Π with two

applications of Π-cut we get the desired results. 2

We define what a Π-consistent set of formulae is. Contrary to the notion of

consistent set we always distinguish the cuts we admit in the proofs.

1. A set of Ln
C-formulae M is Π-consistent if for each finite subset Γ ⊆M

we have

TKC
n

+ (Π−Cut) 6` ¬Γ.

2. A set of Ln
C-formulae M is maximal Π-consistent if it is Π-consistent

and if no proper superset is Π-consistent, too.

The following lemma assures the existence of maximal consistent supersets

for each consistent set. The proof goes exactly as the one of Lemma 40.

Lemma 61 Given a Π-consistent set of formulae M , there is a maximal

Π-consistent set M ′ such that M ⊆M ′.

Lemma 62 Let Π ⊆ Ln
C be a set closed under negation and let M be maximal

Π-consistent. For all sequents Γ and formulae α we have:
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1. α ∈ Π ⇒ α ∈M or ¬α ∈M .

2. α ∈ Π ⇒ α ∈M iff ¬α 6∈M .

3. TKC
n

+ (Π−Cut) ` ¬Γ, α and Γ ⊆M and α ∈ Π ⇒ α ∈M .

Proof. Let us first prove assertion one. Suppose α 6∈ M and ¬α 6∈ M . By

the maximality of M there are finite subsets Γ,∆ of M such that

TKC
n

+ (Π−Cut) ` ¬Γ,¬α and TKC
n

+ (Π−Cut) ` ¬∆, α.

With Lemma 59 and an application of (Π−Cut) to α we get

TKC
n

+ (Π−Cut) ` ¬Γ,¬∆.

Hence Γ,∆ ⊂M is not consistent and so M is not consistent, too. This is a

contradiction to the assumption. The second assertion immediately follows

from the first one and from the consistency of M . For the third assertion,

suppose α 6∈ M . By part (1) we have ¬α ∈ M . But then, since M is

consistent, we would have

TKC
n

+ (Π−Cut) 6` ¬Γ, α

which is not the case. 2

Before we introduce the set Π which is relevant for our purposes we have to

define the Fischer-Ladner closure FLK(α) of a formula α ∈ Ln
C. It was first

introduced by Fischer and Ladner in [16] and is defined to be the smallest

set such that:

• α belongs to FLK(α),

• if β ∈ FLK(α), then ¬β ∈ FLK(α),

• if β ∨ γ ∈ FLK(α), then β, γ ∈ FLK(α),

• if β ∧ γ ∈ FLK(α), then β, γ ∈ FLK(α),

• if Kiβ ∈ FLK(α), then β ∈ FLK(α),

• if Cβ ∈ FLK(α), then Eβ ∧ ECβ ∈ FLK(α).
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According to [16], the number of elements of FLK(α) is of order O(|α|), where

|α| denotes the length of α.

The set Π, we want to use, is the conjunctive closure of FLK(α), introduced

as follows:

Given a formula α we fix an arbitrary enumeration

δ1, δ2, . . . , δn

of the elements of FLK(α). Each subset M of FLK(α) can then be written as

{δs(1), δs(2), . . . , δs(|M |)}

such that 1 ≤ s(1) < s(2) < . . . < s(|M |) ≤ |M |. And so for each subset M

we can define exactly one formula ϕM representing it

ϕM ≡ (. . . (δs(1) ∧ δs(2)) . . . ∧ δs(|M |)).

The conjunctive closure CFLK
(α) is now defined to be the set

CFLK
(α) = {ϕM | M ⊆ FLK(α)} ∪ {¬ϕM | M ⊆ FLK(α)}.

Lemma 63 Let α be a Ln
C-formula and M be a maximal CFLK

(α)-consistent

set of formulae. For all β ∨ γ, β ∧ γ ∈ FLK(α) we have:

1. If β ∨ γ ∈M then β ∈M or γ ∈M .

2. If β ∧ γ ∈M then β ∈M and γ ∈M .

Proof. It can easily be seen that we have

TKC
n

+ (CFLK
(α)−Cut) ` ¬(β ∨ γ), β, γ.

Since γ ∈ FLK(α) ⊂ CFLK
(α) by Lemma 62.1 we have that either γ ∈ M or

¬γ ∈M . If γ ∈M then we are finished. If ¬γ ∈M then, since β∨γ,¬γ ∈M ,

by Lemma 62.3 we have that β ∈M . This gives us the first part. The second

part is proven similarly. 2

For each formula ϕ ∈ Ln
C we now introduce the crucial notion of canonical

CFLK
(ϕ)-model. The canonical CFLK

(ϕ)-model

MFLK
ϕ = (W,R1, . . . , Rn, λ)

is given by W , Ri ⊆ W ×W and λ, defined as follows:
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• W = {M ∩ FLK(ϕ) | M is maximal CFLK
(ϕ)-consistent},

• Ri = {(M,M ′) | M/Ki ⊆M ′},

• λ(p) = {M | p ∈M}.

Clearly, any canonical CFLK
(ϕ)-model has only finitely many worlds. Thus,

for all sets of worlds W ′ ⊆ W we can define a formula φW ′ as follows:

We fix an enumeration

M1,M2, . . . ,M|W |

of all worlds M ∈ W . So, each set of worlds W ′ ⊆ W can be written as

{Mt(1),Mt(2), . . . ,Mt(N)}

such that 1 ≤ t(1) < t(2) < . . . < t(N) ≤ |W |. For each subset W ′ we can

define exactly one formula φW ′ representing it

φW ′ ≡ (. . . (ϕMt(1)
∨ ϕMt(2)

) ∨ . . .) ∨ ϕMt(N)
).

This representation of subsets of worlds has the substantial disadvantage that

we do not have φW ′ ∈ CFLK
(ϕ). However, we can get rid of this disadvantage

by introducing for each set of worlds W ′ the formula φ⋂W ′ as follows:

First we define for all W ′ ⊆ W a set
⋂
W ′ ⊆ FLK(ϕ) as⋂

W ′ = {α | (∀M ∈ W ′) α ∈M}.

By using the enumeration {δ1, . . . , δn} of FLK(ϕ),
⋂
W ′ can be written as⋂

W ′ = {δs(1), δs(2), . . . , δs(|
⋂
W ′|)}

such that 1 ≤ s(1) < s(2) < . . . < s(|
⋂
W ′|) ≤ |

⋂
W ′|. For each subset W ′

we can define exactly one formula φ⋂W ′ representing it

φ⋂W ′ ≡ (. . . (δs(1) ∧ δs(2)) ∧ . . .) ∧ δs(|⋂W ′|)).
Let MFLK

ϕ be a canonical model and let Γ be an arbitrary sequent. By Γ̂

we denote the sequent which is obtained by substituting, in all α ∈ Γ, the

subformulae of the form φW ′ , where W ′ is a set of worlds inMFLK
ϕ , by φ⋂W ′ .

The next lemma shows that the provability of a sequent Γ implies the prov-

ability of Γ̂. In this sense it allows us to reduce the complexity of a provable

sequent in such a way that we can cut off formulae of the form φW ′ although

they are not in the conjunctive closure. Remark 65, after the lemma, explains

this fact.
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Lemma 64 Let MFLK
ϕ be a canonical model. For all sequents Γ ⊂ Ln

C we

have

TKC
n

+ (CFLK
(ϕ)−Cut) `n Γ ⇒ TKC

n
+ (CFLK

(ϕ)−Cut) ` Γ̂.

Proof. The proof goes by induction on n. The case where n = 0 is trivial. If

n > 0 we do the induction step by case distinction on the last inference in

the proof of Γ, this goes through straightforward except for the case where

we have a last inference of the form
Γ, φW ′′ , ϕM

Γ, φW ′

where φW ′ ≡ φW ′′ ∨ ϕM and W ′ = W ′′ ∪ {M}. In this case we have

TKC
n

+ (CFLK
(ϕ)−Cut) `<n Γ, φW ′′ , ϕM

and by induction hypothesis (notice that ϕM ≡ φ{M})

TKC
n

+ (CFLK
(ϕ)−Cut) ` Γ̂, φ⋂W ′′ , ϕM .

Since it can easily be shown that for all subsets W̄ ⊆ W and all α ∈
⋂
W̄

we have

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φ⋂ W̄ , α

and since φ⋂ W̄ ∈ CFLK
(ϕ), with Lemma 59 and (CFLK

(ϕ)−Cut), we get for all

formulae αi ∈
⋂
W ′′ and αj ∈M

TKC
n

+ (CFLK
(ϕ)−Cut) ` Γ̂, αi, αj.

Thus, for all αi ∈
⋂
W ′ =

⋂
W ′′ ∩M we have

TKC
n

+ (CFLK
(ϕ)−Cut) ` Γ̂, αi.

And so we easily can derive

TKC
n

+ (CFLK
(ϕ)−Cut) ` Γ̂, φ⋂W ′

which completes the induction and proves the lemma. 2

Remark 65 The following simple example explains how the previous lemma

can be used. Suppose that the sequents Γ, φW ′ and Γ,¬φW ′ are provable, and

suppose that Γ = Γ̂. Since, in general, φW ′ 6∈ CFLK
(ϕ) we can not immediately

infer Γ. But with the Lemma 64 we get that Γ, φ⋂W ′ and Γ,¬φ⋂W ′ are

provable and, since φ⋂W ′ ∈ CFLK
(ϕ), we can infer Γ.
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Lemma 66 Let ϕ be a Ln
C-formula. For all formulae α ∈ FLK(ϕ) and all

worlds M of MFLK
ϕ we have

α ∈M ⇒ M |= α.

Proof. We prove the lemma by induction on me(α).

α ≡ (¬)p : Follows directly from the definition.

α ≡ β ∧ γ, α ≡ β ∨ γ : These two cases follow by Lemma 63.

α ≡ Kiβ : This fact follows easily from the induction hypothesis and the

definition of the accessibility relation Ri.

α ≡ ¬Kiβ : If ¬Kiβ ∈M then, since M is consistent, we know that

TKC
n

+ (CFLK
(ϕ)−Cut) 6` {¬Kiγ | Kiγ ∈M},Kiβ

and since we have that from

TKC
n

+ (CFLK
(ϕ)−Cut) ` {¬γ | Kiγ ∈M}, β

we can derive

TKC
n

+ (CFLK
(ϕ)−Cut) ` {¬Kiγ | Kiγ ∈M},Kiβ

we get

TKC
n

+ (CFLK
(ϕ)−Cut) 6` {¬γ | Kiγ ∈M}, β.

So, by Lemma 61 there exists a M̄ which is a maximal consistent extension of

{γ | Kiγ ∈M},¬β. Define M ′ = FLK(ϕ)∩ M̄ . By the induction hypothesis

we get M ′ 6|= β and since, by construction, (M,M ′) ∈ Ri we get M 6|= Kiβ.

α ≡ Cβ : By Lemma 54 and Lemma 60 we have

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬Cβ,ECβ and TKC

n
+ (CFLK

(ϕ)−Cut) ` ¬Cβ,Eβ.

By Lemma 62.3. ECβ ∈ M and Eβ ∈ M . Thus, if M ′ is accessible from M

in one step we get Cβ ∈ M ′ and β ∈ M ′. Since Cβ ∈ M ′ for all these M ′,

we get the same result for all worlds accessible in two steps. Inductively we

get β ∈ M ′′ for all worlds accessible from M , and by induction hypothesis

all these worlds fulfill β. This gives M |= CD.

α ≡ ¬Cβ : We have to show M |= ¬Cβ. Equivalently, by Lemma 62, we

show

M |= Cβ ⇒ Cβ ∈M.

To do that it is enough to show for the set of worlds W ′ = ‖Cβ‖MFLK
ϕ

:
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1. TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φW ′ ,Eβ,

2. TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φW ′ ,E(φW ′).

Let us first prove, that these two facts are enough to do the induction step.

If they are proven then by the (Ind)-rule we have

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φW ′ ,Cβ.

By Lemma 64 we have

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φ⋂W ′ ,Cβ

(notice that Cβ ∈ M ⊆ FLK(ϕ) can not contain a subformula of the form

φW ′). By Lemma 60, since ¬φ⋂W ′ ∈ CFLK
(ϕ), we get

TKC
n

+ (CFLK
(ϕ)−Cut) ` {¬α | α ∈

⋂
W ′},Cβ.

Since
⋂
W ′ ⊂M ′ for all worlds M ′ ∈ W ′ we easily can derive

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬M ′,Cβ

for all such M ′. By Lemma 62 we get Cβ ∈M ′ for all M ′ fulfilling Cβ, which

completes the induction.

So, it remains to prove the two assertions. The first follows easily from the

fact that for all M |= Cβ we have M |= Eβ and so by induction hypothesis

and Lemma 62 we have Eβ ∈M . This gives us for all such M

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬ϕM ,Eβ

and thus

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φW ′ ,Eβ.

Before we show the second assertion let us prove the following fact for all

states M

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬(M/Ki), {ϕM ′ | M ′ ∈ Ri(M)}.

Suppose not. Then we must have for all Mi ∈ Ri(M) a formula δMi
∈ Mi

such that

TKC
n

+ (CFLK
(ϕ)−Cut) 6` ¬(M/Ki), {δMi

| Mi ∈ Ri(M)}.
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Thus, M/Ki, {¬δMi
| Mi ∈ Ri(M)} is consistent. This is a contradiction,

since in this case, by Lemma 61, there would be a maximal consistent exten-

sion, which is in Ri(M) but which, by Lemma 62, is also different from all

M ′ ∈ Ri(M). So the fact is proven. From this fact we easily get

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬M,KiφRi(M).

Since for all M |= Cβ and all i we have Ri(M) ⊆ ‖Cβ‖MFLK
ϕ

= W ′ with the

previous assertion we get for all M |= Cβ

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬M,EφW ′ .

And so also the second assertion, namely

TKC
n

+ (CFLK
(ϕ)−Cut) ` ¬φW ′ ,EφW ′ .

2

Theorem 67 For all formulae ϕ ∈ Ln
C we have

CK |= ϕ ⇔ TKC
n

+ (CFLK
(ϕ)−Cut) ` ϕ.

Proof. The direction from right to the left is given by Proposition 52. For

the other direction we prove the contraposition. Suppose

TKC
n

+ (CFLK
(ϕ)−Cut) 6` ϕ,

thus, ¬ϕ is CFLK
(ϕ)-consistent and, by Lemma 61, there is a state M inMFLK

ϕ

containing ¬ϕ. By Lemma 66 we have M |= ¬ϕ and so we have

CK 6|= ϕ

which proves the theorem. 2

10.2 Not only TKC
n

In this section we apply the technique of Fischer-Ladner cuts to the logics of

common knowledge over T, S4 and S5. We will give a completeness result for

the Tait-style calculi TTC
n
, TS4C

n
and TS5C

n
with the respective Fischer-Ladner

cuts.
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10.2.1 Partial Cut Elimination for TTC
n

The calculus TTC
n

corresponds to TKC
n

with the only difference that we add

the rule (¬Ki) presented below.

Γ,¬α
Γ,¬Kiα

(¬Ki)

The notions of Π-consistent and maximal Π-consistent set of formulae are

defined analogously as they were defined for the calculus TKC
n
. The next

lemma is a reformulation of Lemma 62.3.

Lemma 68 Let Π ⊆ Ln
C be a set closed under negation and let M be maximal

Π-consistent. For all sequents Γ and formulae α we have

TTC
n

+ (Π−Cut) ` ¬Γ, α and Γ ⊆M and α ∈ Π ⇒ α ∈M.

Further, we define the Fischer-Ladner closure FLT to be the same as FLK and

the conjunctive closure CFLT
of FLT to be the same as the conjunctive closure

of FLK, too. Given an arbitrary formula ϕ ∈ Ln
C the canonical CFLT

(ϕ)-model

is given by

MFLT
ϕ = (W,R1, . . . , Rn, λ)

whereby W , Ri ⊆ W ×W and λ are defined as follows:

• W = {M ∩ FLT(ϕ) | M is maximal CFLT
(ϕ)-consistent},

• Ri = {(M,M ′) | M/Ki ⊆M ′},

• λ(p) = {M | p ∈M}.

The following lemma shows us that MFLT
ϕ is indeed a model in CT, that is,

the accessibility relations are reflexive.

Lemma 69 Let ϕ ∈ Ln
C be an arbitrary formula. We have

MFLT
ϕ ∈ CT.

Proof. We have to show that for each world M and each accessibility relation

Ri of MFLT
ϕ we have (M,M) ∈ Ri which is equivalent to

M/Ki ⊆M.
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Suppose Kiβ ∈M since it can easily be seen that we have

TTC
n
` ¬Kiβ, β

by Lemma 68 we get β ∈M and thus the lemma. 2

With the same techniques used in Lemma 66 we can prove the following

lemma.

Lemma 70 Let ϕ be a Ln
C-formula. For all formulae α ∈ FLT(ϕ) and all

worlds M of MFLT
ϕ we have

α ∈M ⇒ M |= α

Since Lemma 69 assures that MFLT
ϕ is in CT we get the completeness.

Theorem 71 For all formulae ϕ we have

CT |= ϕ ⇔ TTC
n

+ (CFLT
(ϕ)−Cut) ` ϕ.

10.2.2 Partial Cut Elimination for TS4C
n

The calculus TS4C
n

corresponds to TTC
n

whereby we replace (Ki) by (S4i).

¬C∆,¬KiΓ, α

¬C∆,¬KiΓ,Kiα,Σ
(S4i)

Again, we adapt the notions of Π-consistent and maximal Π-consistent to

the calculus TS4C
n

and state a lemma which is a reformulation of Lemma 62.3.

Lemma 72 Let Π ⊆ Ln
C be a set closed under negation and let M be maximal

Π-consistent. For all sequents Γ and formulae α we have

TS4C
n

+ (Π−Cut) ` ¬Γ, α and Γ ⊆M and α ∈ Π ⇒ α ∈M.

For each formula α ∈ Ln
C the Fischer-Ladner closure FLS4 is defined to be

FLS4(α) = FLK(α) ∪ {KiKiβ | Kiβ ∈ FLK(α) and 1 ≤ i ≤ n}.

Starting from FLS4 we use exactly the same techniques, as we used for FLK,

to define the conjunctive closure CFLS4
of FLS4. Given an arbitrary formula

ϕ ∈ Ln
C the canonical CFLS4

(ϕ)-model is given by

MFLS4
ϕ = (W,R1, . . . , Rn, λ)

whereby W , Ri ⊆ W ×W and λ are defined as follows:
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• W = {M ∩ FLS4(ϕ) | M is maximal CFLS4
(ϕ)-consistent},

• Ri = {(M,M ′) | M/Ki ⊆M ′},

• λ(p) = {M | p ∈M}.

Lemma 73 Let ϕ ∈ Ln
C be an arbitrary formula. We have

MFLS4
ϕ ∈ CS4.

Proof. We have to show that each relation Ri is reflexive and transitive. The

reflexivity is shown as in Lemma 69, for the transitivity it is enough to show

(1) Kiβ ∈M and (M,M ′′) ∈ Ri and (M ′′,M ′) ∈ Ri ⇒ β ∈M ′.

We distinguish two cases. In the first case we assume that Kiβ ∈ FLK(ϕ)

then by definition of FLS4(ϕ) we have KiKiβ ∈ FLS4(ϕ). It can easily be seen

that we have

(2) TS4C
n
` ¬Kiβ,KiKiβ

and with Lemma 72 we get

KiKiβ ∈M.

Thus, assertion (1) follows from the definition of Ri. For the second case we

assume that Kiβ 6∈ FLK(ϕ) but Kiβ ∈ FLS4(ϕ). By definition of FLS4(ϕ) we

get that β ≡ Kiγ. Suppose

Kiβ ∈M and (M,M ′′) ∈ Ri,

by definition of Ri we get β ∈ M ′′. Since β ≡ Kiγ with Lemma 72 and

assertion (2) we get

Kiβ ∈M ′′

and then we easily get assertion (1). 2

Again, we can adapt the proof of Lemma 66 to prove the following lemma.

Lemma 74 Let ϕ be a Ln
C-formula. For all formulae α ∈ FLS4(ϕ) and all

worlds M of MFLS4
ϕ we have

α ∈M ⇒ M |= α

Since Lemma 73 assures that MFLS4
ϕ is in CS4 we get the completeness.

Theorem 75 For all formulae ϕ we have

CS4 |= ϕ ⇔ TS4C
n

+ (CFLS4
(ϕ)−Cut) ` ϕ.
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10.2.3 Partial Cut Elimination for TS5C
n

The calculus TS5C
n

corresponds to TTC
n

whereby we replace (Ki) by (S5i).

¬C∆,¬KiΓ,KiΩ, α

¬C∆,¬KiΓ,KiΩ,Kiα,Σ
(S5i)

Also for TS5C
n

we define the appropriate notions of Π-consistent and maximal

Π-consistent sets of formulae and reformulate Lemma 62 as follows.

Lemma 76 Let Π ⊆ Ln
C be a set closed under negation and let M be maximal

Π-consistent. For all sequents Γ and formulae α we have:

1. α ∈ Π ⇒ α ∈M or ¬α ∈M .

2. α ∈ Π ⇒ α ∈M iff ¬α 6∈M .

3. TS5C
n

+ (Π−Cut) ` ¬Γ, α and Γ ⊆M and α ∈ Π ⇒ α ∈M .

For each formula α ∈ Ln
C the Fischer-Ladner closure FLS5 is defined to be

FLS5(α) = S(α) ∪ ¬S(α),

whereby

S(α) = FLK(α) ∪
{Ki¬Kiβ | ¬Kiβ ∈ FLK(α) and 1 ≤ i ≤ n} ∪
{KiKiβ | Kiβ ∈ FLK(α) and 1 ≤ i ≤ n}.

Again, we define the conjunctive closure CFLS5
of FLS5 analogously as we did

it for the other logics. Given an arbitrary formula ϕ ∈ Ln
C the canonical

CFLS5
(ϕ)-model is given by

MFLS5
ϕ = (W,R1, . . . , Rn, λ)

whereby W , Ri ⊆ W ×W and λ are defined as follows:

• W = {M ∩ FLS5(ϕ) | M is maximal CFLS5
(ϕ)-consistent},

• Ri = {(M,M ′) | M/Ki ⊆M ′},

• λ(p) = {M | p ∈M}.
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Lemma 77 Let ϕ ∈ Ln
C be an arbitrary formula. We have

MFLS5
ϕ ∈ CS5.

Proof. We have to show that each relation Ri is reflexive, transitive and

symmetric. The reflexivity is shown like in Lemma 69 and the transitivity

like in Lemma 73. To show symmetry we have to show that (M,M ′) ∈ Ri

implies (M ′,M) ∈ Ri. It is enough to show for all (M,M ′) ∈ Ri and all

Kiβ ∈ FLS5(ϕ)

Kiβ ∈M ′ ⇒ β ∈M.

By Lemma 76.2 this is equivalent to

¬β ∈M ⇒ ¬Kiβ ∈M ′.

We distinguish two cases. For the first case, suppose that Ki¬Kiβ ∈ FLS5(ϕ).

If (M,M ′) ∈ Ri and ¬β ∈M since we have

(1) TS5C
n
` ¬Kiβ, β

by Lemma 76.3 we get ¬Kiβ ∈M and since we have

(2) TS5C
n
` Kiβ,Ki¬Kiβ

by Lemma 76.3 we get

Ki¬Kiβ ∈M.

By the definition of Ri we get the desired result. For the second case suppose

that Ki¬Kiβ 6∈ FLS5(ϕ). By definition of FLS5(ϕ) we know that there is a γ

such that

• Kiβ ≡ KiKiγ or

• Kiβ ≡ Ki¬Kiγ.

Kiβ ≡ KiKiγ: With assertion (2), Lemma 76.3 and the definition of Ri we

get

¬Kiγ ∈M ⇒ ¬Kiγ ∈M ′.

With assertion (1) and Lemma 76.3 we obtain

¬KiKiγ ∈M ′



10.2 Not only TKC
n

111

and, since β ≡ Kiγ this case is proven.

Kiβ ≡ Ki¬Kiγ: By definition of Ri

Kiγ ∈M ⇒ γ ∈M ′.

With assertion (1) and Lemma 76.3 we obtain

¬Kiγ ∈M ′.

With assertion (1) and Lemma 76.3 we obtain

¬Ki¬Kiγ ∈M ′

and, since β ≡ ¬Kiγ, also this case is proven which gives us the lemma. 2

Again, we can adapt the proof of Lemma 66 to prove the following lemma.

Lemma 78 Let ϕ be a Ln
C-formula. For all formulae α ∈ FLS5(ϕ) and all

worlds M of MFLS5
ϕ we have

α ∈M ⇒ M |= α.

Since Lemma 77 assures that MFLS5
ϕ is in CS5 we get the completeness.

Theorem 79 For all formulae ϕ we have

CS5 |= ϕ ⇔ TS5C
n

+ (CFLS5
(ϕ)−Cut) ` ϕ.
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Chapter 11

An Infinitary Calculus

“Zwei Dinge sind unendlich: Das Universum und die menschliche Dummheit.

Aber bei dem Universum bin ich mir noch nicht ganz sicher.” (A. Einstein)

In this chapter we follow the iterative approach by presenting the infinitary

calculus Tω
KC

n
which reflects the fact that Cϕ can be interpreted as

∧
i≥1 Eiϕ.

In the first section, after introducing this infintary system for the logic of com-

mon knowledge over K, we prove the completeness for the system without

any cuts. Hence, we provide a cut free system with the subformula property,

where Eiϕ counts as subformula of Cϕ. This result is also interesting in con-

nection with the work of Kaneko and Nagashima ([28, 29]). They introduce

an other infinitary system and obtain a cut elimination result. However, the

cut-free system they obtain does not have the subformula property.

In the second section we start from this infinitary cut-free system to get fini-

tary ones for the positive and negative fragments. For the negative fragment

this result follows immediately from the fact that any proof of a negative

formula is finite. For the positive fragment we provide two results. The first

one states that each provable positive formula has a proof with finite length.

The second result is the completeness of a finite calculus obtained from the

infinitary one.

11.1 Completeness of Tω
KC

n

The infinitary calculus Tω
KC

n
has the same axioms and basic inference rules as

TKC
n
. The C-rules consist of (¬C) and the infinitary (Cω)-rule.
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Γ,Emα for all m ≥ 1

Γ,Cα
(Cω)

Further, we add a new rule to introduce the Ki operator, the (K∗i )-rule. For

any natural number m we have the following inference scheme.

α
KiE

mα,Σ
(K∗i )

Of course, from α we can derive the sequent ` KiE
mα,Σ without using the

(K∗i )-rule. In this sense the (K∗i )-rule seems to be superfluous. On the other

hand the use of this rule changes substantially the length of the proofs.

It can easily be seen that the use of the (Cω)-rule can lead to an infinite proof.

Thus, the ordinals, denoted by the small Greek letters σ, τ, η, ξ, . . . (possibly

with subscripts), are necessary to characterize the proof-length. The deriv-

ability in σ many steps is then defined analogously to the derivability for the

finitary proof system. Let us repeat that notion: The conclusions of (ID)

are derivable in arbitrary many steps, and if all the premises of an inference

rule are derivable in less than σ many steps then the conclusion is derivable

in σ many steps. Again, we write

Tω
KC

n
`σ Γ

if Γ is derivable in σ many steps, we write

Tω
KC

n
`<σ Γ

if it is derivable in less than σ many steps and we write

Tω
KC

n
` Γ

if there is an ordinal σ such that Γ is derivable in σ many steps. The following

lemma can easily be proven by induction on the proof-length.

Lemma 80 For all sequents Γ ⊂ Ln
C, formulae α, β ∈ Ln

C and ordinals σ we

have:

1. Tω
KC

n
`σ Γ, α ∨ β ⇒ Tω

KC
n
`σ Γ, α, β.

2. Tω
KC

n
`σ Γ, α ∧ β ⇒ Tω

KC
n
`σ Γ, α and Tω

KC
n
`σ Γ, β.

3. Tω
KC

n
`σ Kiα ⇒ Tω

KC
n
`σ α.
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Let α ∈ Ln
C be a formula, the depth of α, depth(α), is defined by induction

on the structure of the formula α:

• depth(P ) = depth(∼P ) = 0,

• depth(β ∧ γ) = depth(β ∨ γ) = max{depth(β), depth(γ)}+ 1,

• depth(Kiβ) = depth(∼Kiβ) = depth(β) + 1,

• depth(Cβ) = depth(∼Cβ) = sup{depth(Emβ) | m ≥ 1}.

It can easily be seen that each formula containing a subformula of the form

Cβ has an infinite depth. This definition emphasizes the fact that a formula

Cβ can be seen as the infinite conjunction
∧
m≥1 Emβ.

The following theorem, the correctness of the Tω
KC

n
, can be proven by induction

on the possibly transfinite proof-length.

Theorem 81 For all sequents Γ ⊂ Ln
C and all ordinals σ we have

Tω
KC

n
+ (G−Cut) `σ Γ ⇒ CK |=

∨
Γ.

The completeness of Tω
KC

n
with general cuts can be proven by showing that

each formula derivable in TKC
n

with general cut is derivable in the infinitary

system. Let us prove that result before we establish a much stronger one,

the completeness without cuts. First, we show that Tω
KC

n
admits the induction

rule.

Lemma 82 Let α and β be Ln
C-formulae and suppose that

Tω
KC

n
+ (G−Cut) ` ¬α,Eα and Tω

KC
n

+ (G−Cut) ` ¬α,Eβ.

Then we have

Tω
KC

n
+ (G−Cut) ` ¬α,Cβ.

Proof. From the two premises we can deduce for all natural numbers m by

several applications of all the (Ki)-rules and the (∧)-rule

Tω
KC

n
+ (G−Cut) ` ¬Emα,Em+1α(1)

Tω
KC

n
+ (G−Cut) ` ¬Emα,Em+1β.(2)
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By applying the appropriate cuts to (1) and (2) and the two premises of the

lemma we get for all natural numbers m ≥ 1

Tω
KC

n
+ (G−Cut) ` ¬α,Emβ.

Thus, by applying the (Cω)-rule, we get the desired result. 2

The lemma states that we can prove the induction (Ind) in our infinitary

calculus where this rule is replaced by (Cω). Thus every formula provable in

TKC
n

with general cut is provable in the infinitary calculus. From this fact,

from Theorem 81 and from Corollary 57 we get the following theorem.

Theorem 83 Let α ∈ Ln
C be a formula. We have

Tω
KC

n
+ (G−Cut) ` α ⇔ CK |= α.

As said before we can even prove the completeness of the calculus without

the use of cuts. In order to do this completeness proof we need some new

notions.

A sequent Γ ⊂ Ln
C is called saturated if the following conditions are satisfied:

1. Tω
KC

n
6` Γ.

2. For all formulae α ∨ β ∈ Ln
C we have

α ∨ β ∈ Γ ⇒ α ∈ Γ and β ∈ Γ.

3. For all formulae α ∧ β ∈ Ln
C we have

α ∧ β ∈ Γ ⇒ α ∈ Γ or β ∈ Γ.

4. For all formulae ¬Cα ∈ Ln
C we have

¬Cα ∈ Γ ⇒ ¬Eα ∈ Γ.

5. For all formulae Cα ∈ Ln
C we have

Cα ∈ Γ ⇒ Emα ∈ Γ for some m ≥ 1.

For any non provable sequent Γ there is a saturated sequent Σ ⊇ Γ. It can be

constructed by adding systematically formulae such that also the conditions

2 to 5 become satisfied. The next lemma assures that this process of adding

formulae really works, that is, it terminates.
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Lemma 84 For each non provable sequent Γ ⊂ Ln
C there is a saturated se-

quent Σ which contains Γ.

Proof. We fix an enumeration δ0, δ1, . . . of all the Ln
C-formulae. If the for-

mula α is the formula δi in this enumeration then we call i the index of α.

Depending on this enumeration for each non-provable sequent ∆ we define a

sequent ∆′ ⊇ ∆:

1. If ∆ is saturated then ∆ = ∆′.

2. If ∆ is not saturated then we take the formula α ∈ ∆ with the smallest

index for which one of the conditions 2 to 5 of the definition of saturated

sequent is violated. Depending on the structure of this α we define ∆′.

2.1. If α is of the form β ∨ γ then

∆′ = ∆ ∪ {β, γ}.

2.2. If α is of the form β ∧ γ then since ∆ is not provable we know that

Tω
KC

n
6` ∆, β or Tω

KC
n
6` ∆, γ.

We set

∆′ =

{
∆ ∪ {β} if Tω

KC
n
6` ∆, β,

∆ ∪ {γ} if Tω
KC

n
6` ∆, γ.

2.3. If α is of the form Cβ. Since ∆ is not provable we know that there is a

natural number m ≥ 1 such that

Tω
KC

n
6` ∆,Emβ.

We take the least such m and set

∆′ = ∆ ∪ {Emβ}.

2.4. If α is of the form ¬Cβ then we set

∆′ = ∆ ∪ {¬Eβ}.

Observe that this construction assures that ∆′ is not provable, too. We

now show that with a finite iteration of this process for any non provable Γ

we reach the saturated superset Σ. In order to show the termination of this
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process for each non provable ∆ we introduce the notion of deficiency-number

dn(∆).

If ∆ is saturated then we set dn(∆) = 0. Otherwise, let {α1, α2, . . . , αk} be

the set of all elements of ∆ which violate one of the conditions 2 to 5 of the

definition of saturated sequent. In this case we set

dn(∆) = ωdepth(α1) # ωdepth(α2) # . . .# ωdepth(αk)

where we make use of the natural sum of ordinals as introduced, for example,

in Schütte [43].

Given a non-provable sequent Γ we define a sequence Γ0,Γ1, . . . of sequents

such that

Γ0 = Γ and Γm+1 = Γ′m

for all natural numbers m. Clearly, we have for all m:

• Γ ⊆ Γm,

• Tω
KC

n
6` Γm,

• if dn(Γm) 6= 0 then dn(Γm+1) < dn(Γm).

Since there are no infinite decreasing sequences of ordinals there exists a

number m such that dn(Γm) = 0. If we set Σ = Γm we get the saturated

sequent we wanted. 2

Let us now introduce the modelMω which will play an important role in the

completeness proof for our infinitary calculus. Mω is of the form

(W ω, Rω
1 , . . . , R

ω
n , λ)

where W ω, Rω
i ⊆ W ω ×W ω and λ are specified as follows:

• W ω consists of all saturated sequents.

• For any two saturated sequences Γ,∆ and all relation Rω
i we have

(Γ,∆) ∈ Rω
i if and only if the following conditions hold:

– {¬α | ¬Kiα ∈ Γ} ⊆ ∆,

– {¬Cα | ¬Cα ∈ Γ} ⊆ ∆.

• λ(P ) = {Γ | P 6∈ Γ}.
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Lemma 85 For all formulae ϕ ∈ Ln
C and all Γ ∈ W ω we have

ϕ ∈ Γ ⇒ Γ 6|= ϕ.

Proof. The proof goes by induction on the depth of the formula ϕ, depth(ϕ).

ϕ ≡ P : This case follows from the definition of the valuation λ.

ϕ ≡ α∧β, α∨β,Cα : These cases follow from the the definition of saturated

set with an application of the induction hypothesis.

ϕ ≡ Kiα : Since Γ is saturated we know that Tω
KC

n
6` Γ. Hence, we have

Tω
KC

n
6` α, {¬β | ¬Kiβ ∈ Γ}, {¬Cβ | ¬Cβ ∈ Γ}

since the provability of this sequent would imply the provability of Γ by the

(Ki)-rule. By Lemma 84 there is a saturated sequent ∆ such that

α, {¬β | ¬Kiβ ∈ Γ}, {¬Cβ | ¬Cβ ∈ Γ} ⊆ ∆.

By induction hypothesis we have

∆ 6|= α

and by definition of Rω
i we have

(Γ,∆) ∈ Rω
i .

With these two things we get the induction step.

ϕ ≡ ¬Kiα : By definition of Rω
i , for all worlds ∆ such that (Γ,∆) ∈ Rω

i since

¬Kiα ∈ Γ we have

¬α ∈ ∆.

By induction hypothesis we get

∆ 6|= ¬α

for all ∆ ∈ Rω
i (Γ). And thus each such ∆ fulfills α and we get

Γ |= Kiα

which completes this induction step.
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ϕ ≡ ¬Cα : If ¬Cα ∈ Γ then by definition of the relations Rω
i we have for all

accessible ∆

¬Cα ∈ ∆.

Since each of these ∆ is saturated we get

(1) ¬Eα ∈ ∆ and ¬Kiα ∈ ∆ for all i

and since Γ is saturated we also get

(2) ¬Eα ∈ Γ and ¬Kiα ∈ Γ for all i.

With the same argument used in the case where ϕ ≡ ¬Kiα applied to (1)

and (2) we can easily see that for all accessible ∆ we have

¬α ∈ ∆.

With the induction hypothesis and Lemma 47 we get this induction step and

thus the proof. 2

Theorem 86 For all formulae ϕ ∈ Ln
C we have

Tω
KC

n
` ϕ ⇔ CK |= ϕ.

Proof. The direction from left to right follows from Theorem 81. For the

other direction we prove the contrapositive. Suppose that ϕ is not provable

by Lemma 84 there is a saturated sequent Γ containing ϕ. By Lemma 85 the

world Γ of the model Mω does not satisfy ϕ, thus ϕ is not valid. 2

The previous theorem and Theorem 83 immediately provide the following

complete cut elimination result.

Corollary 87 For all formulae ϕ ∈ Ln
C we have

Tω
KC

n
` ϕ ⇔ Tω

KC
n

+ (G−Cut) ` ϕ.

11.2 Partial Finitisation

In the previous section we have seen that by introducing infinitary derivation

we get a cut-free deductive system for the logic of common knowledge over

K. In this section we start from this infinitary system and show that both
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for the negative fragment and for the positive fragment a finite part of the

deduction system still suffices. Before we introduce these two fragments we

need a preliminary definition.

The proof closure pc(Γ) of a sequent Γ is the minimal set containing Γ such

that:

• If α ∧ β, α ∨ β ∈ pc(Γ) then α, β ∈ pc(Γ),

• if Kiα,Cα ∈ pc(Γ) then α ∈ pc(Γ),

• if ∼Kiα,∼Cα ∈ pc(Γ) then ¬α ∈ pc(Γ).

The positive fragment Ln
C

+ is the subclass of all formulae α such that pc(α)

does not contain a formula of the form ∼Cβ; the negative fragment Ln
C
− is

the subclass of all formulae α such that pc(α) does not contain a formula of

the form Cβ.

Remark 88 It can easily be seen that in a derivation of a formula in the

negative fragment no formula of the form Cα can appear. Thus, this deriva-

tion does not use the (Cω)-rule. Analogously, any derivation of a formula in

the positive fragment can not use the (¬C)-rule.

Theorem 89 For each sequent Γ ⊂ Ln
C
− and all ordinals σ we have

Tω
KC

n
`σ Γ ⇒ Tω

KC
n
`<ω Γ.

Proof. By Remark 88 we know that any derivation of a formula ϕ ∈ Ln
C
−

can not use the (Cω)-rule. Using this fact the proof can easily be done by

induction on σ. 2

Notice, that the previous theorem implies that the proofs for the negative

fragment are finite, in the sense that not only the length of the proofs is

bounded but also the branching of them. For the positive fragment we pro-

vide two finitisation results the first one provides a proofs of finite length

for each provable positive formula, for the second one we slightly modify the

calculus and provide a proof system where both the proof-length and the

branching is finite.

For each formula ϕ ∈ Ln
C

+ we define the measure ∂(ϕ) inductively as follows:

• ∂(p) = ∂(∼p) = 0,
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• ∂(α ∧ β) = ∂(α ∨ β) = max{∂(α), ∂(β)},

• ∂(Cα) = ∂(Kiα) = ∂(α),

• ∂(∼Kiα) = ∂(¬α) + 1.

For any sequent Γ ⊂ Ln
C

+ we then define

∂(Γ) = max{∂(α) | α ∈ Γ}.

From the definition we immediately get for all sequents Γ,¬∆ ⊂ Ln
C

+

¬Ki∆ ⊆ Γ and ∆ 6= ∅ ⇒ ∂(¬∆) < ∂(Γ).

Lemma 90 Let Γ ⊂ Ln
C

+ be a sequent and α ∈ Ln
C

+ a formula. For all

ordinals σ, all natural numbers l,m with ∂(Γ) ≤ l ≤ m and all i ∈ {1, . . . , n}
we have

Tω
KC

n
`σ KiE

lα,Γ ⇒ Tω
KC

n
`nσ KiE

mα,Γ.

Proof. The proof goes by induction on σ. We distinguish the following cases

for the last inference in the proof of KiE
lα,Γ:

1. KiE
lα,Γ is an axiom. In this case also KiE

mα,Γ is an axiom.

2. KiE
lα,Γ is the conclusion of (∧), (∨) or (Cω). In these cases we just apply

the induction hypothesis to the premise(s) and get the desired result.

3. KiE
lα,Γ is the conclusion of the (K∗j)-rule. This case goes through straight-

forward since the premise is either

α or β, where KjE
sβ ∈ Γ.

In both cases we apply the (K∗j)-rule with the appropriate weakening and get

the desired result.

4. KiE
lα,Γ is of the form

KiE
lα,Kjβ,¬Kj∆,Σ

and was obtained by the (Kj)-rule applied to the premise

β,¬∆.

In this case we apply the (Kj)-rule with the appropriate weakening and get

the desired result.



11.2 Partial Finitisation 123

5. KiE
lα,Γ is of the form

KiE
lα,¬Ki∆,Σ

and was obtained by the (Ki)-rule applied to the premise

Elα,¬∆.

We distinguish two sub-cases: If ∆ = ∅ then by Lemma 80 there is an ordinal

τ < σ such that

Tω
KC

n
`τ α,

by applying the (K∗i )-rule we get the desired result. For the second case we

assume that ∆ 6= ∅. In this case by a previous remark we have ∂(¬∆) < ∂(Γ),

and thus l = k+ 1 for some k. Further, by Lemma 80.2 there is a τ < σ such

that for all j ∈ {1, . . . , n} we have

Tω
KC

n
`τ KjE

kα,¬∆.

Since k > ∂(¬∆) we can apply the induction hypothesis and get

Tω
KC

n
`nτ KjE

rα,¬∆

for all natural numbers r ≥ k and all j ∈ {1, . . . , n}. By applying n−1 times

the (∧)-rule we conclude

Tω
KC

n
`nτ+(n−1) Emα,¬∆

for all natural numbers m ≥ k+ 1 = l. One application of the (Ki)-rule then

gives (notice that ¬Ki∆ ⊂ Γ)

Tω
KC

n
`nτ+n KiE

mα,Γ

for all natural m ≥ l. Since nτ + n ≤ nσ we have completed the induction

step for this case and thus the proof. 2

Theorem 91 For all sequents Γ ⊂ Ln
C

+ and all ordinals σ we have

Tω
KC

n
`σ Γ ⇒ Tω

KC
n
`<ω Γ.

Proof. The proof goes by induction on σ. We distinguish the following cases

for the last inference in the proof of Γ:



124 An Infinitary Calculus

1. Γ is an axiom. In this case the assertion is trivial.

2. Γ is the conclusion of a rule (∧), (∨), (Ki) or (K∗i ). For each of these infer-

ence rules we have only finitely many premises. By applying the induction

hypothesis we get a finite derivation for each of these premises and since in

each case there are only finitely many we easily get the desired result.

3. Γ is of the form

Cα,∆

and was obtained with an application of (Cω). In this cases there are ordinals

σ1, σ2, . . . smaller than σ such that for each k ≥ 1 we have

Tω
KC

n
`σk Ekα,∆.

Let l be the natural number ∂(∆), by induction hypothesis for all k ≤ l + 1

we get natural numbers r1, . . . , rl+1 such that

(1) Tω
KC

n
`rk Ekα,∆.

With Lemma 80 applied to the case where k = l + 1 in addition we get for

all i ∈ {1, . . . , n}
Tω

KC
n
`rl+1 KiE

lα,∆.

An application of Lemma 90 then gives us for all natural numbers m ≥ l and

all i ∈ {1, . . . , n}
Tω

KC
n
`nrl+1 KiE

mα,∆.

By applying n− 1 times the (∧)-rule we have for all natural numbers m ≥ l

(2) Tω
KC

n
`nrl+1+(n−1) Em+1α,∆.

Define r = max{r1, . . . , rl+1, nrl+1 + (n − 1)}. With the equations (1) and

(2) we can easily see that for all natural numbers k ≥ 1 we have

Tω
KC

n
`r Ekα,∆.

One application of the (Cω)-rule gives us the desired result. 2

We end this section by proving the completeness for the calculus T<ω
KC

n
which

is obtained from Tω
KC

n
by restricting the (Cω)-rule such that we have only a

finite branching. Hence we always get finite proofs.

The calculus T<ω
KC

n
is equal to the calculus Tω

KC
n

where we replace the (Cω)-rule

by the (C<ω)-rule.
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Γ,Emα for all m ∈ {1, . . . , ∂(Γ) + 1}
Γ,Cα

(C<ω)

It can easily be seen that any sequent Γ provable in Tω
KC

n
is provable in T<ω

KC
n

.

For the positive fragment also the other direction holds.

Theorem 92 For any sequent Γ ⊂ Ln
C

+ we have

T<ω
KC

n
` Γ ⇔ Tω

KC
n
` Γ.

Proof. The direction from right to left can easily be proven by induction on

the proof-length in Tω
KC

n
, for the other direction we do an induction on the

proof-length in the calculus T<ω
KC

n
. The only non trivial induction step is the

one where the last inference rule was (C<ω). In this case Γ is of the form

∆,Cα

with premises

∆,Emα

for all m ∈ {1, . . . , ∂(∆) + 1}. By induction hypothesis we have for all these

m

(1) Tω
KC

n
` ∆,Emα.

With Lemma 80 we get

Tω
KC

n
` ∆,KiE

∂(∆)α,

thus, with Lemma 90 we get for all l ≥ ∂(∆) and all i ∈ {1, . . . , n}

Tω
KC

n
` ∆,KiE

lα.

By applying the (∧)-rule we get for all l > ∂(∆)

(2) Tω
KC

n
` ∆,Elα.

By equation (1) and (2) we get for all natural numbers m ≥ 1

Tω
KC

n
` ∆,Emα

and one application of the (Cω)-rule gives the desired result. 2

The following corollary follows immediately from the previous theorem and

from Theorem 83.

Corollary 93 For all formulae α ∈ Ln
C

+ we have

T<ω
KC

n
` α ⇔ CK |= α.
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Appendix A

Fixpoints

This chapter gives a short survey of basic fixpoint theory it is based on an

article of Fritz [17]. The main theorems stated and proved are the Knaster-

Tarski Theorem [46] (Theorem 95), and Theorems 101 and 102, the main

theorems for the characterisation of simultaneous fixpoints.

A.1 Preliminaries

A complete lattice L is of the form L = (L,≤,>,⊥), where

1. L is a non-empty set,

2. ≤⊆ L× L is a partial order on L such that every subset M ⊆ L has a

supremum sup(M) and an infimum inf(M),

3. >,⊥ ∈ L are the greatest and least elements, respectively, of L, i.e.,

for every x ∈ L, ⊥ ≤ x ≤ > holds.

Note that inf(∅) = >, sup(∅) = ⊥. For us, the most interesting kind of

complete lattice is the power set lattice (P(A),⊆, A, ∅) of an arbitrary set A.

Note that for any subset M ⊆ P(A) we have inf(M) =
⋂
M , sup(M) =

⋃
M .

If M is a sequence of the form {xβ | β ≤ α ∧ β, α ∈ ON} we will write

infβ≤αxβ resp. supβ≤αxβ instead of inf(M) resp. sup(M).

Let ON be the class of ordinal numbers. For any set S, card(S) denotes its

cardinality. For any ordinal number α, let α+ be the least ordinal number

such that card(α+) is greater than card(α).
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We define some basic notions referring to functions on complete lattices. Let

L = (L,≤,>,⊥) be a complete lattice and f : L→ L be a function on it.

1. x ∈ L is a fixpoint of f iff f(x) = x.

2. x is the least (greatest) fixpoint of f iff x is a fixpoint of f and x ≤ y

(y ≤ x) holds for all fixpoints y of f .

3. f is monotone iff for all x, y ∈ L, x ≤ y implies f(x) ≤ f(y).

4. We inductively define a sequence (fα)α∈ON of subsets of L by

f 0 := ⊥,(1)

fα+1 := f(fα),(2)

fλ := supα<λf
α for limit ordinals λ.(3)

The following lemma connects these notions.

Lemma 94 1. If f is a monotone function on L then for all ordinals α

and β such that β ≤ α we have

fβ ⊆ fα.

2. If f is monotone, there is an α ∈ ON such that card(α) ≤ card(L) and

fα+1 = fα (i.e., fα is a fixed point of f).

3. If L is the power set lattice of a set A and f is monotone, there is an

α ∈ ON such that card(α) ≤ card(A) and fα+1 = fα (i.e., fα is a

fixpoint of f).

Proof.

1. Follows easily from the monotonicity of f and from the definition of

the sequence (fα)α∈ON by induction on ordinals.

2. Assume that there is no such α. Then, for every α < β < card(L+),

fα 6= fβ. But then the set {fα ∈ L | α < (card(L))+} ⊆ L and more-

over has cardinality card(card(L)+) > card(L), which is a contradiction.

3. Follows from 2.

2

The least α ∈ ON such that fα+1 = fα is called the closure ordinal cl(f) of

f . Clearly, any monotone f has a closure ordinal. In the following for any

monotone f we abbreviate f cl(f) by f cl.
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A.2 Least and Greatest Fixpoints

The Knaster-Tarski Theorem [46] asserts the existence of a least and a great-

est fixpoint of a monotone function on a complete lattice. More precisely,

these fixpoints are the infimum and supremum, respectively, of certain sub-

sets of the complete lattice and can be generated inductively.

Theorem 95 Let f : L → L be monotone. Then there is a least fixpoint

LFP(f) and a greatest fixpoint GFP(f) of f . Furthermore, we have

LFP(f) = inf{x ∈ L | f(x) ≤ x} and GFP(f) = sup{x ∈ L | x ≤ f(x)}.

Proof. We will only prove the equation for the least fixpoint, the proof for

the greatest goes similarly. Let Φ := {x ∈ L | f(x) ≤ x} and y := inf(Φ).

We first show that y is a fixpoint of f . To do that, we show f(y) ≤ y and

y ≤ f(y). First f(y) ≤ y. For all x ∈ Φ, y ≤ x holds. Since f is monotone,

using the definition of Φ, for all x ∈ Φ we have f(y) ≤ f(x) ≤ x. Thus

f(y) ≤ inf(Φ) = y. Now y ≤ f(y). Using f(y) ≤ y and the monotonicity

of f , we have f(f(y)) ≤ f(y), that is, f(y) ∈ Φ. Thus y = infΦ ≤ f(y).

Since y is the infimum of Φ, in particular y ≤ x holds for all x ∈ L such that

f(x) = x. Thus y is the least fixpoint of f . 2

Now we show that the least fixpoint of a monotone f : L → L is contained

in the sequence (fα)α∈ON and can thus be generated inductively.

Lemma 96 Let f : L→ L be a monotone function. Then LFP(f) = f cl.

Proof. Again, let Φ := {x ∈ L | f(x) ≤ x}. By definition, f cl is a fixpoint,

thus LFP(f) ≤ f cl. For the reverse we show by induction on α that for all

ordinals α and all x ∈ Φ we have

fα ≤ x.

α = 0: f 0 = ⊥ ≤ x for all x ∈ L.

α = β + 1: Let x ∈ Φ. By induction hypothesis, fβ ≤ x. Thus we have

fβ+1 = f(fβ) ≤ f(x) ≤ x, using the monotonicity of f .

α is a limit ordinal: By induction hypothesis, fβ ≤ x holds for all β < α,

x ∈ Φ, which implies fα = supβ<αf
β ≤ x. 2
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To generate the greatest fixpoint in the same fashion, we introduce a dual

sequence (f̃α)α∈ON .

For a function f : L → L, the sequence (f̃α)α∈ON of elements f̃α ∈ L is

defined inductively as follows:

f̃ 0 = >
f̃α+1 = f(f̃α)

f̃λ = infα<λf̃
α for limit ordinals λ.

Note that (f̃α)α∈ON is a decreasing sequence for monotone f . We define

f̃ cl := f̃α for the least α such that f̃α+1 = f̃α.

Lemma 97 Let f : L→ L be monotone. Then GFP(f) = f̃ cl.

Proof. Dual to the proof of Lemma 96. 2

In the case of power set lattices – which is our main interest – we can exploit

the duality of generation of least and greatest fixpoint by infering the greatest

fixpoint from the least fixpoint (and vice versa). For the remainder of this

section, let L be the power set lattice of a set A.

We define, for every function f : P(A)→ P(A), a dual function f ′. For every

function f : P(A) → P(A), let f ′ : P(A) → P(A) be the dual function of

f , defined by

f ′(X) := f(X), where X := A \X

Note that f ′′ = f .

Lemma 98 Let f : P(A)→ P(A) be monotone. We have

1. f ′ is monotone, and

2. GFP(f) = LFP(f ′) and LFP(f) = GFP(f ′)

Proof.

1. Let X,Y ∈ P(A), X ⊆ Y . Thus Y ⊆ X, and f(Y ) ⊆ f(X) by the

monotonicity of f , which implies f(X) ⊆ f(Y ).



A.3 Simultaneous Fixpoints 131

2. To prove the first claim, we show by induction that fα = f̃ ′
α

holds for

all α ∈ ON .

α = 0: f 0 = ∅ = A = f̃ ′
0
.

α = β + 1: We have

fβ+1 = f(fβ)

= f(f̃ ′
β
) (Ind. Hyp.)

= f ′(f̃ ′
β
) (by Definition)

= f̃ ′
β+1

. (by Definition)

α a limit ordinal: Here we have

fα =
⋃
β<α

fβ

=
⋂
β<α

fβ

=
⋂
β<α

f̃ ′
β

(Ind. Hyp.)

= f̃ ′
α
.

The second claim is proven similarly.

2

A.3 Simultaneous Fixpoints

Let n be a natural number and let

L0 = (L0,≤0,>0,⊥0), . . . ,Ln−1 = (Ln−1,≤n−1,>n−1,⊥n−1)

be complete lattices. We define L := L0 × . . .× Ln−1 and

L := (L,≤, (>0, . . . ,>n−1), (⊥0, . . . ,⊥n−1)),
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where ≤ is defined by

(x0, . . . , xn−1) ≤ (y0, . . . , yn−1) iff xi ≤i yi for all i ∈ {0, . . . , n− 1}.

It is easy to see that L is a complete lattice, the product lattice of L0, . . . ,Ln−1.

Sometimes we write L = L0 × . . .× Ln−1.

Now let f0 : L→ L0, . . . , fn−1 : L→ Ln−1 be monotone functions. Obviously,

f : L→ L, (x0, . . . , xn−1) 7→ (f0(x0, . . . , xn−1), . . . , fn−1(x0, . . . , xn−1))

is a monotone function (or functional) as well and thus has a least and a

greatest fixpoint by Theorem 95. They are called the simultaneous (least

and greatest) fixpoints of f0, . . . , fn−1.

For the remainder of this chapter we will show how to compute the least and

greatest fixpoints of f by generating nested fixpoints of monotone functions

defined on the lattices L0, . . . , Ln−1. For the sake of brevity (and clarity), we

restrict ourselves to the case n = 2 and the computation of the least fixpoint,

but the generalization is straightforward. The exact statement an its proof

in all its generality can be seen in [37].

Let n = 2, let g : L → L0, h : L → L1 be monotone functions, and let

f : L→ L, (x0, x1) 7→ (g(x0, x1), h(x0, x1)). Let LFP(f) := (f cl
0 , f

cl
1 ) ∈ L0×L1

denote the least fixpoint of f , that is, f cl
i := pri+1f

cl (i = 0, 1), where prj is

the projection to the j-th component. For α ∈ ON , we define fαi := pri+1f
α

(i = 0, 1).

For every x ∈ L0, we define hx : L1 → L1, y 7→ h(x, y). The monotonicity of

h implies the monotonicity of hx, so we can generate, for every x ∈ L0, the

least fixpoint LFP(hx) = hcl
x ∈ L1 (cf. Lemma 96).

Lemma 99 Let e : L0 → L0, x 7→ g(x, hcl
x ). e is monotone and (ecl, hcl

ecl) =

(f cl
0 , f

cl
1 ).

Proof. We first show e to be monotone. To do that, it suffices to show that

x 7→ hcl
x is monotone: If x 7→ hcl

x is monotone we get

x ≤0 x
′ ⇒ e(x) = g(x, hcl

x ) ≤0 g(x′, hcl
x′) = e(x′)

since g is monotone.
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Hence we show for all ordinals α and all x, x′ ∈ L0

(x ≤0 x
′ =⇒ hαx ≤1 h

α
x′)

by induction on α:

The case where α = 0 is trivial.

α = β + 1: Let x ≤0 x
′. We have hβ+1

x = h(x, hβx) ≤1 h(x′, hβx′) = hβ+1
x′ .

α a limit ordinal: Let x ≤0 x
′. hαx = supβ<αh

β
x ≤1 supβ<αh

β
x′ = hαx′ .

Next, we show that f cl
1 is a fixpoint of hf cl

0
, which implies hcl

f cl
0
≤1 f

cl
1 . But that

follows from the fact that (f cl
0 , f

cl
1 ) is a fixpoint of f and since the following

holds

hf cl
0
(f cl

1 ) = h(f cl
0 , f

cl
1 )

= pr2f(f cl
0 , f

cl
1 )

= f cl
1 .

Now, we show ecl ≤0 f
cl
0 . This implies hcl

ecl ≤1 h
cl
f cl
0
, since x 7→ hcl

x is monotone.

Using hcl
f cl
0
≤1 f

cl
1 , we have

e(f cl
0 ) = g(f cl

0 , h
cl
f cl
0
)

≤0 g(f cl
0 , f

cl
1 ) (g monotone)

= pr1f(f cl
0 , f

cl
1 )

= f cl
0 ,

i.e., f cl
0 ∈ {x ∈ L0 | e(x) ≤0 x}. Now since ecl = inf{x ∈ L0 | e(x) ≤ x}, we

have ecl ≤0 f
cl
0 .

Recapitulating, we have hcl
ecl ≤1 h

cl
f cl
0
≤1 f

cl
1 and ecl ≤0 f

cl
0 .

To show that f cl = (f cl
0 , f

cl
1 ) ≤ (ecl, hcl

ecl) and hence (ecl, hcl
ecl) = LFP(f), it

suffices to establish for all ordinals α

fα ≤ (ecl, hcl
ecl).

As usual, we do it by induction on α.

The case where α = 0 is trivial.
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α = β + 1:

fβ+1 = f(fβ0 , f
β
1 )

= (g(fβ0 , f
β
1 ), h(fβ0 , f

β
1 ))

≤ (g(ecl, hcl
ecl), h(ecl, hcl

ecl)) (Ind. Hyp.)

= (e(ecl), hecl(hcl
ecl)) (Defs. of ecl, hecl)

= (ecl, hcl
ecl)

α a limit ordinal:

fα = supβ<α(fβ0 , f
β
1 )

= (supβ<αf
β
0 , supβ<αf

β
1 ) (Def. of ≤)

≤ (ecl, hcl
ecl) (Ind. Hyp.)

2

In other words we have

pr1LFP(f) = LFP(x 7→ g(x, LFP(y 7→ h(x, y)))).

In the same manner, we can show

Lemma 100 Let gy : L0 → L0, x 7→ g(x, y), for every y ∈ L1, and let

e : L1 → L1, y 7→ h(gcl
y , y). gy and e are monotone, and (f cl

0 , f
cl
1 ) = (gcl

ecl , e
cl).

These lemmata imply

Theorem 101 Let L = L0 × L1 be the product lattice of the lattices L0 =

(L0,≤0,>0,⊥0) and L1 = (L1,≤1,>1,⊥1), and let g : L→ L0, h : L→ L1 be

monotone functions. Let f : L→ L, (x0, x1) 7→ (g(x0, x1), h(x0, x1)). Then

pr1LFP(f) = LFP(x 7→ g(x, LFP(y 7→ h(x, y)))),

pr2LFP(f) = LFP(y 7→ h(LFP(x 7→ g(x, y)), y)).

And analogously we get

Theorem 102 Let L = L0 × L1 be the product lattice of the lattices L0 =

(L0,≤0,>0,⊥0) and L1 = (L1,≤1,>1,⊥1), and let g : L→ L0, h : L→ L1 be

monotone functions. Let f : L→ L, (x0, x1) 7→ (g(x0, x1), h(x0, x1)). Then

pr1GFP(f) = GFP(x 7→ g(x,GFP(y 7→ h(x, y)))),

pr2GFP(f) = GFP(y 7→ h(GFP(x 7→ g(x, y)), y)).
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(2002), E. Grädel, W. Thomal, and T. Wilke, Eds. to appear.

[2] Alberucci, L., and Jäger, G. About cut elimination for logics of

common knowledge. Tech. rep., Universität Bern, 2002.

[3] Ambler, S., Kwiatkowska, M., and Measor, N. Duality and the

completeness of the modal mu-calculus. Theoretical Computer Science

151, 1 (1995), 3–27.

[4] Arnold, A. The µ-calculus alternation-depth hierarchy is strict on

binary trees. Theoretical Informatics and Applications, 33 (1999).

[5] Aumann, R. Agreeing to disagree. Annals of Statistics 4, 6 (1976),

1236–1239.

[6] Bakker, J. D., and Roever, W. D. A calculus for recurive program

schemes. In Proceedings 1st International Colloquium on Automata,

Languages and Programming (1972), pp. 167–197.

[7] Barwise, J. Scenes and other situations. Journal of Philosophy 78, 7

(1981), 369–397.

[8] Barwise, J. The Situation in Logic, vol. 17. CSLI Lecture Notes, 1989.

[9] Barwise, J. K. Three views of common knowledge. In 2nd Conference

on Theoretical Aspects of Reasoning about Knowledge (1988), M. Y.

Vardi, Ed., pp. 365–379.

[10] Bonsangue, M., and Kwiatkowska, M. Re-interpreting the modal

mu-calculus. In Modal Logic and Process Algebra (1995), A. Ponse,

M. de Rijke, and Y.Venema, Eds., CSLI Lecture Notes, pp. 65–83.



136 BIBLIOGRAPHY

[11] Bradfield, J., and Stirling, C. Modal logic and mu-calculi. In

Handbook of Process Algebra, J.Bergstra, A.Ponse, and S.Smolka, Eds.

Elsevier, North Holland, 2001, pp. 293–332.

[12] Bradfield, J. C. The modal mu-calculus alternation hierarchy is

strict. In STACS ’98 (1996), U. Montanari and V.Sassone, Eds.,

vol. 1373 of LNCS, pp. 39–49.

[13] Emerson, A., and Jutla, C. Tree automata, mu calculus and deter-

minacy. In FOCS 91 (1991).

[14] Emerson, E. A., and Jutla, C. S. The complexity of the tree

automata and the logics of programs. In 29th Annual Symposium on

Foundations of Computer Science (1998), pp. 328–337.

[15] Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. Rea-

soning about Knowledge. MIT-Press, 1995.

[16] Fischer, M. J., and Ladner, R. E. Propositional Dynamic Logic

of Regular Programs. Journal of Computer and System Sciences, 18

(1979), 194–211.

[17] Fritz, C. Some fixed points basics. In Proceedings of the Dagstuhl

Seminar: ”Automata, Logic and infinite Games.” (2002), E. Grädel,
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Symbols of Part 1

(Ind), 17

(MP ), 17

(Nec), 17

(S, sI), 17

FL(), 65

FA, 57

FA,q, 57

M/�, 66

ON , 127

TCQ∪P , 26

GFP, 20

KOZ, 16

LFP, 20

Lµ, 14

Ω, 26

ΩΠn , 29

ΩΣn , 29

P, 14

Π, 29

Πµ
n, 16

ΠTR
n , 29

Σ, 29

Σµ
n, 16

ΣTR
n , 29

TΠn , 34, 52

TΣn , 34, 52

TA, 33

ad(), 16

@, 21

A, 26

Aϕ, 38

Bound(), 14

CMϕ, 66

cl(), 128

EXP, 36

F1
µ, 64

F2
µ, 64

Free(), 14

S, 17

S(GA,S), 33

S[p 7→ S ′], 18

lim, 56

NP, 36

|=, 18

nnf(), 15

µ, 15

ν, 15

φS, 66

rn, 67

GA,S , 30

�1, 22

TA,q, 53

UP, 35

ϕn+1(X), 21

%, 27

KOZ `, 17, 84

KOZ−(Ind) `, 17

wn(), 15

Πµ
n

TR, 18

Σµ
n

TR, 18

AS∗i , 42

Afree(X), 44

Astart(q), 45

TR, 18

ind(), 28
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Notions of Part 1

µ-formula, 14

acceptance

infinite branch, 27

pointed transition system, 27,

28

reduction of, 33

run, 27, 28

alternating tree automaton, 26

annotated structure, 21

approximant, 20

automata

complementation, 30

normal form, 29

c-node, 31

canonical model, 66, 72

choice function, 22

class of ordinal numbers, 127

closure ordinal, 128

conjunctive player, 31

conjunctive vertex, 31

consistent, 65, 72

maximal, 65

set, 65

d-node, 31

dependency relation, 22

disjunctive player, 31

disjunctive vertex, 31

distribution axiom, 16

duality axioms, 17

emptiness problem, 35

Fischer-Ladner closure, 65

fixpoint, 128

greatest, 20, 128

least, 20, 128

fixpoint axiom, 16

fixpoints

simultaneous, 132

formula

alternation depth, 16

denotation, 18

fixpoint-free, 14

negation normal form, 15

normal form, 15

provable, 17

valid, 18

well-named, 15

function

monotone, 128

hierarchy

µ-formulae

semantical, 18

syntactical, 16

automata

semantical, 29

syntactical, 28

index, 28

induction rule, 17

Kozen’s axiomatisation, 16

Kripke-Models, 17

labeling function, 27

lattice

complete, 127

power set, 127
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product, 132

limit tree, 56

local consistency conditions, 21

modal µ-calculus

fragments, 63

model checking problem, 35

modus ponens, 17

moving states into variables, 44

necessitation rule, 17

player C, 31

player D, 31

pre-model, 22

branch, 22

closed, 23

priority function, 26

propositional variable, 14, 26

quasi-model, 21

run

memoryless, 33

satisfiability problem, 49

strategy, 32

memoryless, 32

strategy tree, 30

parity game on, 31

strongly connected, 28

subformula, 14

test automaton, 33

Πn-, 52

Σn-, 52

Πn-, 34

Σn-, 34

transition condition, 26

complex, 28

transition function, 26

transition graph, 28

transition system, 17

binary, 53

pointed, 17

reachable state, 55

states, 17

valuation, 17

variable

µ, 14

ν, 14

bound in, 14

bounded by, 14

free, 14

higher, 15

well-founded pre-model, 23
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Symbols of Part 2

(Ind), 83

(K), 83

(MP ), 83

(Nec), 83

(C<ω), 124

(K∗i ), 114

(S5i), 109

(S4i), 107

(¬Ki), 106

C∗ |=, 86

CK, 85

CS5, 85

CS4, 85

CT, 85

Oα
M,ϕ, 87

OM,ϕ, 87

C, 82

Cω), 113

E, 82

Em, 82

FLK, 99

FLS5, 109

FLS4, 107

Γ/Ki, 92

Ki, 82

KiΓ, 92

HKC
n
, 83

Tω
KC

n
, 113

T<ω
KC

n
, 124

TKC
n
, 92

Ln
C, 82

Ln
C

+, 121

Ln
C
−, 121

P, 82

HS5C
n
, 83

TS5C
n
, 109

HS4C
n
, 83

TS4C
n
, 107

HTC
n
, 83

TTC
n
, 106

A, 86⋂
W ′, 101∨
Γ, 91

MFLK
ϕ , 100

MFLS5
ϕ , 109

MFLS4
ϕ , 107

MFLT
ϕ , 106

dn, 118

E , 89

Γ̂, 101

Mω, 118

M, 85

me, 92

|=, 85

¬, 82

¬CΓ, 92

¬EΓ, 91

¬Γ, 91

¬KiΓ, 92

∂, 121

pc, 121

φW ′ , 101

φ⋂W ′ , 101

∼, 82
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Notions of Part 2

Π-consistent, 98

Π-cuts, 97

accessible, 86

in n steps, 86

in one step, 86

canonical CFLK
(ϕ)-model, 100

canonical CFLS5
(ϕ)-model, 109

canonical CFLS4
(ϕ)-model, 107

canonical CFLT
(ϕ)-model, 106

co-closure axiom, 83

complexity measure, 92

conclusion, 93

conjunctive closure, 100

cut

formula, 93

general, 93

deficiency-number, 118

derivability, 93

distribution axiom, 83

epistemic operators, 82

Fischer-Ladner closure, 99

formula

denotation, 85

depth, 115

designated, 92

provable, 84

valid, 85

index, 117

induction rule, 83

Kripke-model, 85

logic of common knowledge

formulae, 82

logic of common knowledge over

K, 83

S5, 83

S4, 83

T, 83

maximal Π-consistent, 98

modus ponens, 83

necessitation rule, 83

negative fragment, 121

negative introspection, 83

positive fragment, 121

positive introspection, 83

premise, 93

primitive propositions, 82

proof closure, 121

sequent, 91

saturated, 116


