
The proof-theoretic analysis of the
Suslin operator in applicative theories

Gerhard Jäger∗ Thomas Strahm∗

Abstract

In this article we introduce the Suslin quantification functional E1 into
the framework of Feferman’s explicit mathematics and analyze it from
the point of view of proof theory. More precisely, we work in the first
order part of explicit mathematics augmented by appropriate axioms
for E1. Then we establish the exact proof-theoretic relationship be-
tween these applicative theories and (subsystems of) the second order
theory (∆1

2-CA), depending on the induction principles permitted.

1 Introduction

During the last decades a series of interesting axiomatic frameworks for con-
structive mathematics have been proposed. Depending on the philosophical
position of their inventors, numerous routes have been pursued, some of
which are quite different in nature. Comprehensive surveys of many of these
approaches are given in the textbooks by Beeson [1] and Troelstra and Van
Dalen [23, 24].

In the seventies Feferman developed his own approach towards constructive
mathematics and was particularly interested in laying the logical foundations
of Bishop-style constructive mathematics. In his seminal paper Feferman [4]
he introduces the famous theory T0 and more generally the program of explicit
mathematics. Feferman [8] discusses the relationships between systems of
explicit mathematics and alternative approaches towards constructivism on
the one hand side and to subsystems of second order arithmetic on the other
hand. It soon turned out that T0 and its subsystems play an important role
in reductive proof theory and, in particular, in reducing classical systems to
constructively justifiable ones.

∗Research partly supported by the Swiss National Science Foundation.

1

Feferman’s development of explicit mathematics is strongly influenced by
his work on generalized recursion theory and also motivated by the idea of
abstract computations. It is one of the attractive features of explicit mathe-
matics that it possesses models in the sense of classical set theory as well as
models which are constructive/computational in flavor. As a consequence,
we can directly relate the classical meaning of a sentence provable in explicit
mathematics to its computational interpretation. This approach is brought
up and studied in Feferman [7].

A further philosophically interesting approach towards mathematics goes
back to work of Poincaré and Weyl and is generally referred to as the arith-
metical foundations of mathematics. Feferman’s logical analysis of this ap-
proach in Feferman [5, 9] reveals the crucial role of the so-called non-construc-
tive minimum operator µ in this context.

Later it turned out that this work also has its natural place in explicit math-
ematics. Since the operations of explicit mathematics can be regarded as
abstract computations, functionals of higher types can be added in a direct
and perspicuous way. In explicit mathematics we basically deal with first
and second order entities: operations which can be understood as abstract
computations and classifications or types which are collections of operations.
For the proof-theoretic analysis of functionals of higher types in this frame-
work already the first-order applicative core of explicit mathematics is of
significant interest. The corresponding axiomatic first order systems are of-
ten referred to as applicative theories. For a survey of this area see Jäger,
Kahle and Strahm [18].

A first important step in the proof-theoretic treatment of functionals of higher
types in the framework of applicative theories and explicit mathematics was
the analysis of the non-constructive µ operator over the basic theory BON
of operations and numbers in Feferman and Jäger [11]. In the subsequent
articles Feferman and Jäger [12] and Glaß and Strahm [13] type structures
which are closed under elementary comprehension and join have been added
to BON(µ).

The non-constructive µ operator is also very interesting from the point of
view of type two recursion theory and corresponds to the number quan-
tifier functional E0. The 1-section of µ and of E1 consists exactly of the
hyperarithmetic sets and, hence, provides the least standard model of ∆1

1

comprehension,

(N, 1-sec(µ), . . .) |= (∆1
1-CA).

Moreover, the least ordinal which is not recursive in E0 is the ordinal ωck
1 ,

the first admissible ordinal greater than ω.

2

It is common practice in applicative theories to represent subsets of the nat-
ural numbers as total function from natural numbers to {0, 1}. From the
recursion-theoretic results we can therefore immediately read off that the
sets of BON(µ) in its least standard model coincide with the hyperarithmetic
sets.

Proof-theoretically, however, BON(µ) is comparatively weak provided that
induction on the natural numbers is restricted to sets: BON(µ) plus set
induction (S-IN) is a conservative extension of Peano arithmetic PA and so
proof-theoretically equivalent to the theory (∆1

1-CA)�. If the schema (L-IN) of
complete induction for all formulas of the underlying language L is permitted
then BON(µ) becomes equivalent to (∆1

1-CA):

BON(µ) + (S-IN) ≡ (∆1
1-CA)�, BON(µ) + (L-IN) ≡ (∆1

1-CA).

According to the articles by Feferman, Jäger, Glaß and Strahm cited above,
even elementary comprehension and join may be added to BON plus set
induction without going beyond PA with respect to proof-theoretic strength.

BON(µ) plus set induction and with or without elementary comprehension
and join provides a solid logical basis for the Poincare-Weyl approach. It
is also an interesting system in connection with a series of other formalisms
introduced and studied in Feferman [6], where the problem of designing ad-
equate higher type formalisms for mathematical practice is addressed. In
this article Feferman also points out the relevance of the Suslin quantifier
functional E1.

This type two functional tests for wellfoundedness of binary relations and
thus has at least the power of Π1

1 comprehension. The 1-section of E1 coin-
cides with the sets of natural numbers in the constructible hierarchy up the
the first recursively inaccessible ordinal ι0. This ordinal is also the least or-
dinal not recursive in E1. According to a result of Gandy, one can also show
that the 1-section of E1 builds the least standard model of ∆1

2 comprehension,

(N, 1-sec(E1), . . .) |= (∆1
2-CA).

In this article we will analyze the proof-theoretic strength of E1 in the context
of applicative theories. The theory BON(µ) with additional axioms for E1 is
baptized SUS in the following. Then we show the proof-theoretic equivalences

SUS + (S-IN) ≡ (∆1
2-CA)�, SUS + (L-IN) ≡ (∆1

2-CA).

We also obtain results concerning intermediate forms of induction and their
relationship to systems like (∆1

2-CR). Obviously, there is a striking analogy

3

concerning the relationship between proof-theoretic and recursion-theoretic
results for µ and E1.

The methods of proof, however, are rather different. For establishing the
upper bounds of, say, SUS +(S-IN) we make use of a very specific positive ∆1

2

inductive definition. We interpret the application operation by a Σ definable
fixed point of this inductive definition and have to exploit a delicate interplay
between proper set-theoretic functions and functions defined in terms of our
application relation, cf. Theorem 16 below.

The plan of the paper is a follows. In the next section we introduce the basic
applicative framework, the axiomatizations of µ and E1 and several forms
of complete induction on the natural numbers. In Section 3 we establish
proof-theoretic lower bounds of the various applicative theories by embed-
ding subsystems of analysis with (iterated) Π1

1 comprehension. Section 4
constitutes the central part of the paper. We obtain proof-theoretic upper
bounds for SUS plus various forms of induction in appropriate theories for
iterated admissible sets.

2 The applicative framework and E1

It is the purpose of this section to introduce the basic applicative framework
as well as the precise axiomatizations of the non-constructive µ operator and
the Suslin operator E1. Further, we will distinguish three forms of complete
induction on the natural numbers which will be relevant in the sequel.

The language of our applicative theories is a first order language L of par-
tial terms with individual variables a, b, c, f, g, h, u, v, w, x, y, z . . . (possibly
with subscripts). L includes individual constants k, s (combinators), p, p0, p1

(pairing and unpairing), 0 (zero), sN (numerical successor), pN (numerical
predecessor), dN (definition by numerical cases), rN (primitive recursion), µ
(non-constructive µ operator), and E1 (Suslin operator). Further, L has a bi-
nary function symbol · for (partial) term application, unary relation symbols
↓ (defined) and N (natural numbers), as well as a binary relation symbol =
(equality).

The individual terms (r, s, t, r1, s1, t1, . . .) of L are inductively generated as
follows:

1. The individual variables and individual constants are individual terms.

2. If s and t are individual terms, then so also is (s · t).

4

In the following we often abbreviate (s · t) simply as (st), st or sometimes
also s(t); the context will always ensure that no confusion arises. We further
adopt the convention of association to the left so that s1s2 . . . sn stands for
(. . . (s1s2) . . . sn). Further, we put t′ := sNt and 1 := 0′. We define general
n-tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

Finally, we also use quite frequently the vector notation ~Z for a finite string
of objects Z1, . . . ,Zn of the same sort. Whenever we write ~Z the length of
this string is either irrelevant or given by the context.

The formulas (A,B,C,A1, B1, C1, . . .) of L are inductively generated as fol-
lows:

1. Each atomic formula N(t), t↓, and (s = t) is a formula.

2. If A and B are formulas, then so also are ¬A, (A ∨ B), (A ∧ B), and
(A→ B).

3. If A is a formula, then so also are (∃x)A and (∀x)A.

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as “t is defined” or “t
has a value”. Accordingly, the partial equality relation ' is introduced by

s ' t := (s↓ ∨ t↓)→ (s = t).

In addition, we write (s 6= t) for (s↓ ∧ t↓ ∧ ¬(s = t)). Finally, we use the
following abbreviations concerning the predicate N:

t ∈ N := N(t),

(∃x ∈ N)A := (∃x)(x ∈ N ∧ A),

(∀x ∈ N)A := (∀x)(x ∈ N→ A),

t ∈ (N→ N) := (∀x ∈ N)(tx ∈ N),

t ∈ (Nm+1 → N) := (∀x ∈ N)(tx ∈ (Nm → N)).

Now we are going to recall the basic theory BON of operations and numbers
which has been introduced in Feferman and Jäger [11]. Its underlying logic
is the classical logic of partial terms due to Beeson [1]; it is also described
in Feferman [10] and corresponds to E+ logic with strictness and equality of
Troelstra and Van Dalen [23]. The non-logical axioms of BON are divided
into the following five groups.

5

I. Partial combinatory algebra.

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc).

II. Pairing and projection.

(3) p0(a, b) = a ∧ p1(a, b) = b.

III. Natural numbers.

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pNx
′ = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x).

IV. Definition by numerical cases.

(7) u ∈ N ∧ v ∈ N ∧ u = v → dNabuv = a,

(8) u ∈ N ∧ v ∈ N ∧ u 6= v → dNabuv = b.

V. Primitive recursion on N.

(9) f ∈ (N→ N) ∧ g ∈ (N3 → N) → rNfg ∈ (N2 → N),

(10) f ∈ (N→ N) ∧ g ∈ (N3 → N) ∧ a ∈ N ∧ b ∈ N ∧ h = rNfg →
ha0 = fa ∧ ha(b′) = gab(hab).

As usual the axioms of a partial combinatory algebra allow one to define λ
abstraction and to prove a recursion or fixed point theorem. For proofs of
these standard results the reader is referred to [1, 4]. For the second assertion
of the following lemma, which is a slight extension of the usual λ abstraction,
one makes in addition use of pairing and projections.

Lemma 1 1. For each L term t and all variables x there exists an L term
(λx.t) whose variables are those of t, excluding x, so that BON proves

(λx.t)↓ ∧ (λx.t)x ' t.

2. For each L term t and all variables x1, . . . , xn(n ≥ 2) there exists an
L term s whose variables are those of t, excluding x1, . . . , xn, so that
BON proves

s↓ ∧ s(x1, . . . , xn) ' t.

6

3. There exists a closed L term rec so that BON proves

recf↓ ∧ recfx ' f(recf)x.

Let us now turn to the two type 2 functionals which will be relevant in the
sequel. The non-constructive or unbounded µ operator is characterized by
the following two axioms.

The non-constructive µ operator

(µ.1) f ∈ (N→ N) ↔ µf ∈ N,

(µ.2) f ∈ (N→ N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

A much stronger functional is the Suslin operator E1, which tests for the
wellfoundedness of a binary relation on N (given as a total operation from
N2 to N).

The Suslin operator E1

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →
[(∃g ∈ N→ N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

Since we want to study E1 also in the presence of very weak induction prin-
ciples, we include the non-constructive µ operator in our basic axiomatic
framework for the Suslin operator. Accordingly, we let SUS denote the L
theory which extends BON by the axioms about µ and E1,

SUS := BON + (µ.1) + (µ.2) + (E1.1) + (E1.2).

In the sequel we will be interested in three forms of complete induction
on the natural numbers N, namely set induction, N induction and formula
induction.

Let us first recall the notion of a subset of N from [5, 11]. Sets of natural
numbers are represented via their characteristic functions which are total on
N. Accordingly, we define

f ∈ P(N) := (∀x ∈ N)(fx = 0 ∨ fx = 1)

with the intention that an object x belongs to the set f ∈ P(N) if and only
if (fx = 0). The three relevant induction principles are now given as follows.

Set induction on N (S-IN).

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0→ fx′ = 0)→ (∀x ∈ N)(fx = 0).

7

N induction on N (N-IN).

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N→ fx′ ∈ N)→ (∀x ∈ N)(fx ∈ N).

Formula induction on N (L-IN). For all formulas A(x) of L:

A(0) ∧ (∀x ∈ N)(A(x)→ A(x′))→ (∀x ∈ N)A(x).

In the rest of this paper we will be concerned with the proof-theoretic analysis
of the three systems

SUS + (S-IN), SUS + (N-IN), SUS + (L-IN).

In the next section we will establish lower proof-theoretic bounds by embed-
ding suitable subsystems of analysis into these applicative systems.

3 Lower bounds

Lower bounds for the theory SUS plus various forms of induction on the
natural numbers will be established in this section by embedding suitable
systems of second order arithmetic. Actually, theories with Π1

1 comprehen-
sion and transfinitely iterated forms thereof will play a crucial role. More
precisely, we will show that SUS + (S-IN) contains (Π1

1-CA)�, SUS + (N-IN)
contains (Π1

1-CA)<ωω�, and SUS + (L-IN) contains (Π1
1-CA)<ε0�.

3.1 Second order arithmetic with Π1
1 comprehension

In the following we introduce the notions and results of second order arith-
metic which will be important for our embeddings. We deviate from the
usual conventions in working with a form of second order arithmetic with set
and function variables. The reason for this choice is that the following Π1

1

normal form theorem is most suitable for our purposes.

Let L2 denote a language of second order arithmetic with number variables
a, b, c, f, g, h, u, v, w, x, y, z, . . . , set variables U, V,W,X, Y, Z, and func-
tion variables F,G,H, . . . (all possibly with subscripts). In addition, L2

includes a constant 0 as well as function and relation symbols for all primi-
tive recursive functions and relations. The number terms (r, s, t, r1, s1, t1, . . .)
of L2 and the formulas (A,B,C,A1, B1, C1, . . .) of L2 are defined as usual.

An L2 formula is called arithmetic, if it does not contain bound set or function
variables; let Π1

0 denote the class of arithmetic L2 formulas. The Π1
1 [Σ1

1]

8

formulas of L2 are obtained from the arithmetic formulas by closing under
universal [existential] set and function quantification.

In the following we make use of the usual primitive recursive coding machin-
ery in L2: 〈. . .〉 is a standard primitive recursive function for forming n-tuples
〈t1, . . . , tn〉; Seq is the primitive recursive set of sequence numbers; lh(t) de-
notes the length of (the sequence number coded by) t; (t)i is the ith compo-
nent of (the sequence coded by) t if i < lh(t), i.e. t = 〈(t)0, . . . , (t)lh(t)

.−1〉 if
t is a sequence number. In addition, we write s ∈ (U)t for 〈s, t〉 ∈ U .

If F is a collection of L2 formulas, then F comprehension (F -CA) is the
schema

(∃X)(∀x)(x ∈ X ↔ A(x))

for all formulas A(u) in the collection F . The relationship between sets and
functions is given by the so-called graph principle (GP),

(∀X)[(∀x)(∃!y)〈x, y〉 ∈ X → (∃F)(∀x)〈x, F (x)〉 ∈ X].

Moreover, L2 induction on the natural numbers (L2-IN) comprises

A(0) ∧ (∀x)(A(x)→ A(x′)) → (∀x)A(x)

for all formulas A(u) of L2. Set induction (S-IN) with respect to L2, on the
other hand, is the axiom

(∀X)(0 ∈ X ∧ (∀x)(x ∈ X → x′ ∈ X) → (∀x)(x ∈ X)).

(Π1
0-CA) is the L2 theory which contains the usual axioms of Peano arithmetic

PA, all instances of Π1
0 comprehension, the graph principle (GP) as well as

formula induction (L2-IN). The restricted version (Π1
0-CA)� of (Π1

0-CA) is
obtained if we replace (L2-IN) by (S-IN). The theories (Π1

1-CA) and (Π1
1-CA)�

are defined accordingly.

We now state a version of the normal form theorem for Π1
1 formulas tailored

for our later purposes. Its proof is more or less folklore and can be found at
many places (for example in Simpson [22]).

Theorem 2 (Π1
1 normal forms) For every Π1

1 formula A there exists an
arithmetic formula BA(u, v) which contains the free variables of A plus two
fresh variables u and v so that (Π1

0-CA)� proves

A ↔ ¬(∃F)(∀x)BA(F (x+1), F (x)).

9

Now let ≺ be a standard wellordering of ordertype ε0. In addition we assume
that 0 is the least element with respect to ≺ and the field of ≺ is the set of
natural numbers. Furthermore, if n is a natural number, then we write ≺n
for the restriction of ≺ to the numbers m ≺ n.

For each Π1
1 formula A(U, v) with all its free variables in U, v, theA-hyperjump

hierarchy along ≺n starting with U is defined by the following transfinite
recursion,

(W)0 := U and (W)i := {〈m, j〉 : j ≺ i ∧ A((W)j,m)}

for all 0 ≺ i ≺ n. We write HierA(U,W, n) for the L2 formula which formalizes
this definition.

If α is an ordinal less than ε0, then (Π1
1-CA)<α� is the L2 theory which extends

(Π1
0-CA)� by the axioms

(∀X)(∃Y)HierA(X, Y, n)

for each natural number n so that ≺n has order type less than α and each
Π1

1 formula A(U, v) with all its free variables in U, v. Moreover, (Π1
1-CA)<α

denotes (Π1
1-CA)<α� plus (L2-IN).

Lemma 3 The theories (Π1
1-CA)<ωω and (Π1

1-CA)<ε0 are proof-theoretically
equivalent to (Π1

1-CA)<ωω� and (Π1
1-CA)<ε0�, respectively.

The proof of this lemma makes use of standard recursion-theoretic arguments.
Actually, the lemma holds for ordinals of the form ωλ with λ limit.

3.2 Modeling hyperjumps via E1

Recursion-theoretic arguments clearly indicate that E1 can be used to deal
with hyperjumps in an applicative framework. For this purpose, we work
with the natural embedding of L2 into L so that (i) the number variables of
L2 are interpreted as ranging over N, (ii) the set variables of L2 as ranging
over P(N), and (iii) the function variables as ranging over (N→ N).

In the following we assume that we have a translation of the number, set and
function variables of L2 into the variables of L so that no conflicts arise. For
convenience we often simply write, for example, a, x, f for the translations
of the number, set and function variable a,X, F , respectively. Furthermore,
we can use the recursion operator rN to associate a suitable L term to each
symbol for a primitive recursive function on the natural numbers and prove
the corresponding recursion equations in BON + (S-IN). Thus, every L2 term

10

t has a canonical translation tN in L. Similarly, each symbol for a primitive
recursive relation on N can be represented by an L term which represents its
characteristic function in the sense above.

Now let R be a symbol for an n-ary primitive recursive relation and tR
the corresponding L term. If s, t1, . . . , tn are terms of L2, then the atomic
formulas of L2 are translated into L formulas as follows:

(s ∈ U)N := ((usN) = 0); (t1 = t2)N := (tN1 = tN2);

R(t1, . . . , tn)N := (tRt
N
1 . . . t

N
n = 0).

We extend this translation in the usual way and associate to each L2 formula
A(~U, ~F ,~v) an L formula AN(~u, ~f,~v) such that

((∃X)A(X))N = (∃x ∈ P(N))AN(x),

((∃F)A(F))N = (∃f ∈ N→ N)AN(f),

((∃y)A(y))N = (∃y ∈ N)AN(y)

and similarly for universal quantifiers. A further convention is that we often
identify L2 terms and arithmetic L2 formulas with their translation in L as
long as no conflict arises.

Usual arguments as for example in Feferman [5] and Feferman and Jäger [11]
show that with help of the unbounded minimum operator µ each arithmetic
formula of L2 can be coded up by an L term in the sense of the following
lemma.

Lemma 4 For every arithmetic formula A(~U, ~F ,~v) of L2 with all its free

variables in ~U, ~F ,~v there exists a closed individual term tA of L so that
BON(µ) + (S-IN) proves

1. (∀~x ∈ P(N))(∀~f ∈ N→ N)(∀~y ∈ N)(tA(~x, ~f, ~y) = 0 ∨ tA(~x, ~f, ~y) = 1),

2. (∀~x ∈ P(N))(∀~f ∈ N→ N)(∀~y ∈ N)(A(~x, ~f, ~y) ↔ tA(~x, ~f, ~y) = 0).

This lemma is the crucial step for the interpretation of (Π1
0-CA)� modulo

the embedding described above. It is even the case that (Π1
0-CA)� and

BON(µ) + (S-IN) have the same proof-theoretic strength; cf. Feferman and
Jäger [11]. For the following, however, we only need that (Π1

0-CA)� is con-
tained in BON(µ) + (S-IN).

Lemma 5 Let A(~U, ~F ,~v) be an L2 formula with all its free variables in
~U, ~F ,~v and assume that (Π1

0-CA)� proves A(~U, ~F ,~v). Then we have

BON(µ) + (S-IN) ~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N → AN(~u, ~f,~v).

11

Proof All axioms of Peano arithmetic PA without the schema of complete
induction obviously create no problems. Set induction of (Π1

0-CA)� directly
translates into set induction in the applicative context. The schema of arith-
metic comprehension follows from the lemma above. So there only remains
the graph principle (GP). Hence, let a be an element of P(N) so that

(∀x ∈ N)(∃y ∈ N)(a(〈x, y〉) = 0).

Then we define f to be the term (λx.µ(λy.a(〈x, y〉))). As a consequence,
we have (λy.a(〈x, y〉)) ∈ (N → N) and therefore µ(λy.a(〈x, y〉)) ∈ N for all
x ∈ N. This implies f ∈ (N→ N) and, moreover,

(∀x ∈ N)(a(〈x, fx〉) = 0).

Hence, also the graph principle has been established. Straightforward induc-
tion on the length of the proof in (Π1

0-CA)� now yields our result. 2

One important consequence of this lemma is that our Π1
1 normal form the-

orem is available in BON(µ) + (S-IN). Based on these normal forms, we can
now employ the Suslin operator E1 in order to lift Lemma 4 from arithmetic
to Π1

1 formulas of L2.

Lemma 6 For every Π1
1 formula A(~U, ~F ,~v) of L2 with all its free variables

in ~U, ~F ,~v there exists a closed individual term tA of L so that SUS + (S-IN)
proves

1. (∀~x ∈ P(N))(∀~f ∈ N→ N)(∀~y ∈ N)(tA(~x, ~f, ~y) = 0 ∨ tA(~x, ~f, ~y) = 1),

2. (∀~x ∈ P(N))(∀~f ∈ N→ N)(∀~y ∈ N)(AN(~x, ~f, ~y) ↔ tA(~x, ~f, ~y) = 0).

Proof Let A(~U, ~F ,~v) be a Π1
1 formula of L2 with its free variables as indi-

cated. In view of Theorem 2 there exists an arithmetic formula BA with the
free variables of A plus the two new variables a and b so that

AN(~u, ~f,~v) ↔ ¬(∃g ∈ N→ N)(∀z ∈ N)BA(~u, ~f,~v, g(z + 1), g(z))

for all ~u ∈ P(N), all ~f ∈ (N → N) and all ~v ∈ N. Due to Lemma 4 there
exists a closed L term t representing BA. Then the term

(λa, b.t(~u, ~f,~v, a, b))

is a total operation from N2 to N for all ~u ∈ P(N), all ~f ∈ (N → N) and all
~v ∈ N. If we now define s to be the term

1 .− E1(λa, b.t(~u, ~f,~v, a, b)),

12

then we can finally take tA to be the closed L term which is associated to
s according to Lemma 1(2). It is easy to check that tA has the properties
stated in the lemma. 2

This lemma together with Lemma 5 immediately implies our first result,
namely that (Π1

1-CA)� is contained in SUS + (S-IN).

Theorem 7 Let A(~U, ~F ,~v) be an L2 formula with all its free variables in
~U, ~F ,~v and assume that (Π1

1-CA)� proves A(~U, ~F ,~v). Then we have

SUS + (S-IN) ~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N → AN(~u, ~f,~v).

Now we turn to transfinite hyperjump hierarchies. We first consider the
system SUS + (L-IN) and show that it contains (Π1

1-CA)<ε0 . We simply have
to follow the argument in Feferman and Jäger [11] and replace ordinary jump
hierarchies by hyperjump hierarchies, which is possible since E1 is available
in SUS.

Lemma 8 Let A(U, v) be a Π1
1 formula of L2 with all its free variables in

U, v and assume that n is an arbitrary natural number. Then there exists a
closed L term hA so that SUS + (L-IN) proves:

1. u ∈ P(N) → hAu ∈ P(N),

2. u ∈ P(N) → HierA(u, hAu, n).

Proof Utilizing Lemma 6 we choose closed L terms tA and tB for represent-
ing the Π1

1 formula A(U, v) and the arithmetic formula B(u, v),

B(u, v) := (u = 〈(u)0, (u)1〉 ∧ (u)1 ≺ v ∧ v ≺ n).

Then we apply the recursion theorem in order to obtain a closed term s with
the property

suvw '

uw, if v = 0,
tA(su(w)1, (w)0), if tBwv = 0,
1, otherwise

for all u ∈ P(N) and v, w ∈ N. Then the following three implications are
provable in SUS + (S-IN):

u ∈ P(N) ∧ w ∈ N → su0w = uw,(1)

u ∈ P(N) ∧ v ∈ N ∧ w ∈ N ∧ tBwv = 0 → suvw ' tA(su(w)1, (w)0),(2)

u ∈ P(N) ∧ v ∈ N ∧ w ∈ N ∧ 0 ≺ v ∧ tBwv = 1 → fuvw = 1.(3)

13

Since full formula induction is available in SUS + (L-IN) and the order type
of ≺n is less than ε0, we can show by transfinite induction along ≺n that

v ∈ N ∧ v ≺ n → suv ∈ P(N)(4)

for all u ∈ P(N). Finally, we let hA be the term (λu, v.su(v)1(v)0). It is now
easy to verify that hA has all the desired properties. 2

This lemma basically states that arbitrary hyperjumps can be iterated in
SUS + (L-IN) along all ordinals less than ε0. In view of Lemma 5 we can
therefore conclude that SUS + (L-IN) contains (Π1

1-CA)<ε0 .

Theorem 9 Let A(~U, ~F ,~v) be an L2 formula with all its free variables in
~U, ~F ,~v and assume that (Π1

1-CA)<ε0 proves A(~U, ~F ,~v). Then we have

SUS + (L-IN) ~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N → AN(~u, ~f,~v).

This embedding of (Π1
1-CA)<ε0 into SUS + (L-IN) is rather standard. The

situation is more complicated, however, in the case of the system SUS+(N-IN),
i.e. if full induction is restricted to (N-IN).

In SUS + (N-IN) one can show transfinite induction with respect to formulas
of the form ta ∈ (N → N) up to ωk for all k less than ω. This argument
requires some technical effort, but all details are carried through in Jäger
and Strahm [20], even for the theory BON(µ) + (N-IN).

As soon as these transfinite inductions are made available, we can step back
and follow the pattern of the proof of Lemma 8 and show that hyperjump
hierarchies up to each ordinal ωk for k less than ω can be constructed in
SUS + (N-IN). Therefore, we have the following embedding theorem.

Theorem 10 Let A(~U, ~F ,~v) be an L2 formula with all its free variables in
~U, ~F ,~v and assume that (Π1

1-CA)<ωω� proves A(~U, ~F ,~v). Then we have

SUS + (N-IN) ~u ∈ P(N) ∧ ~f ∈ (N→ N) ∧ ~v ∈ N → AN(~u, ~f,~v).

4 Upper bounds

A natural way for computing the upper proof-theoretic bounds of SUS with
set, N and formula induction is to embed them in suitable set theories. For
dealing with µ and especially E1 we need an admissible universe which is
in addition a limit of admissibles. Hence, the theory KPi or more precisely
some of its subsystems, all described for example in Jäger [17], are appro-
priate for our purpose. By referring to known results about the relationship
between these set theories and the subsystems of second order arithmetic of
the previous section we will obtain exact proof-theoretic characterizations.

14

4.1 Set theories for a recursively inaccessible universe

Let L1 be the first order part of our language L2 from above. The theory KPi
is formulated in the extension L∗ = L1(∈,N, S,Ad) of L1 by the membership
relation symbol ∈, the set constant N for the set of natural numbers and the
unary relation symbols S and Ad for sets and admissibles, respectively.

The terms (r, s, t, r1, s1, t1, . . .) of L∗ are the terms of L1 plus the set constant
N. The formulas (A,B,C,A1, B1, C1, . . .) of L∗ as well as the ∆0, Σ, Π, Σn

and Πn formulas of L∗ are defined as usual. Equality between objects is not
represented by a primitive symbol but defined by

(s = t) :=

{
(s ∈ N ∧ t ∈ N ∧ (s =N t)) ∨
(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s))

where =N is the symbol for the primitive recursive equality on the natu-
ral numbers. The formula As is the result of replacing each unrestricted
quantifier (∃x)(. . .) and (∀x)(. . .) in A by (∃x ∈ s)(. . .) and (∀x ∈ s)(. . .),
respectively. In addition, we freely make use of all standard set-theoretic
notations and write, for example (s : N→ N) to express that s is a function
from N to N, Tran(s) for the ∆0 formula saying that s is a transitive set and
Ord(s) for ∆0 formula stating that s is an ordinal; in the following small
Greek letters range over ordinals.

Let F be a collection of L∗ formulas. Induction on the natural numbers with
respect to F consist of all formulas

A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x),(F -IN)

so that A(a) belongs to F . Accordingly, ∈ induction with respect to F
comprises for all A(a) from F the formulas

(∀x)[(∀y ∈ x)A(y)→ A(x)] → (∀x)A(x).(F -I∈)

Now we introduce the theory KPi for a recursively inaccessible universe. Its
logical axioms comprise the usual axioms of classical first order logic with
equality. The non-logical axioms of KPi can be divided into the following five
groups.

I. Ontological axioms. We have for all terms r, ~s and t of L∗, all function
symbols H and relation symbols R of L1 and all axioms A(~a) of group III
whose free variables belong to the list ~a:

(1) r ∈ N ↔ ¬S(r).

15

(2) ~s ∈ N → H(~s) ∈ N.

(3) R(~s) → ~s ∈ N.

(4) r ∈ t → S(t).

(5) Ad(t) → (N ∈ t ∧ Tran(t)).

(6) Ad(t) → (∀~x ∈ t)At(~x).

(7) Ad(r) ∧ Ad(t) → r ∈ t ∨ r = t ∨ t ∈ r.

II. Number-theoretic axioms. We have for all axioms A(~a) of Peano arithmetic
PA which are not instances of the schema of complete induction and whose
free variables belong to the list ~a:

(Number theory) (∀~x ∈ N)AN(~x).

III. Kripke Platek axioms. We have for all terms s and t and all ∆0 formulas
A(a) and B(a, b) of L∗:

(Pair) ∃x(s ∈ x ∧ t ∈ x).

(Tran) ∃x(s ⊂ x ∧ Tran(x)).

(∆0-Sep) ∃y(S(y) ∧ y = {x ∈ s : A(x)}).

(∆0-Coll) (∀x ∈ s)∃yB(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)B(x, y).

IV. Limit axiom. It is used to formalize that each set is element of an admis-
sible set, hence we claim:

(Lim) (∀x)(∃y)(x ∈ y ∧ Ad(y)).

V. Induction axioms. These consist of the schemas (L∗-IN) of complete induc-
tion on the natural numbers and (L∗-I∈) of ∈ induction, both for arbitrary
L∗ formulas.

The theory KPi without the limit axiom corresponds to the usual system
of Kripke-Platek set theory above the natural numbers as urelements; its
typical models are the structures L(α)N with α an admissible ordinal greater
than ω. Hence, the least standard model of KPi is the structure L(ι)N for ι
being the least recursively inaccessible ordinal.

For modeling SUS with various forms of induction, however, we do not need
the full strength of KPi. So let KPir be the subsystem of KPi in which com-
plete induction on the natural numbers and ∈ induction are restricted to

16

∆0 formulas, i.e. (L∗-IN) and (L∗-I∈) are replaced by (∆0-IN) and (∆0-I∈),
respectively. Moreover, KPiw is defined to be KPir plus (L∗-IN).

The proof-theoretic analysis of these set theories has been established a long
time ago and their relationship to subsystems of second order arithmetic is
well-known. In the following theorem (∆1

2-CA) and (∆1
2-CR) are the usual

subsystems of analysis with ∆1
2 comprehension axiom and rule, respectively;

(BI) denotes the standard schema of bar induction.

Theorem 11 We have the following proof-theoretic equivalences:

1. (Π1
1-CA)� ≡ (∆1

2-CA)� ≡ KPir,

2. (Π1
1-CA)<ωω ≡ (∆1

2-CR) ≡ KPir + (Σ1-IN),

3. (Π1
1-CA)<ε0 ≡ (∆1

2-CA) ≡ KPiw,

4. (∆1
2-CA) + (BI) ≡ KPi.

For the proof of assertions (1), (3) and (4) of this theorem consult e.g. Buch-
holz et. al. [2], Jäger [14, 16] and Jäger and Pohlers [19]. The second assertion
can be obtained by making use of similar techniques.

4.2 Modeling SUS in KPir

Now we turn to the central part of this paper, namely to construct a model
of SUS in KPir. The crucial idea is to make use of a very specific positive
∆1

2 inductive definition for interpreting the application relation (rs ' t) of
SUS. The comparative strength of this inductive definition is needed in order
to handle E1; additional difficulties arise since everything has to be carried
through within KPir. However, the syntactic structure of our ∆1

2 inductive
definition makes this possible.

An additional technical complication is created by representing the primitive
recursion operator rN as well as the non-constructive µ operator. Both have
been treated in detail in Feferman and Jäger [11] so that we confine ourselves
to repeating some basic notations.

Let A(a, b, c) be an L∗ formula with at most a, b, c free and n a natural
number greater than 0. Then we define for each natural number n greater
than 0 and each vector ~b = b1, . . . , bn an L∗ formula ApnA(a,~b, c) by induction
on n, and from that, an L∗ formula TotnA(a):

Ap1
A(a, b1, c) := a, b1, c ∈ N ∧ A(a, b1, c),

Apn+1
A (a,~b, bn+1, c) := (∃x ∈ N)(ApnA(a,~b, x) ∧ A(x, bn+1, c)),

TotnA(a) := (∀~x ∈ N)(∃y ∈ N)ApnA(a, ~x, y).

17

Later we will choose an appropriate formula A(a, b, c) as interpretation of
(ab ' c). Then ApnA(a, b1, . . . , bn, c) translates the formula (ab1 . . . bn ' c) of
SUS. In this sense, TotnA(a) means that a is (the code of) a n-ary total oper-

ation on N. Observe that ApnA(a,~b, c) and TotnA(a) are Σ formulas provided
that A(a, b, c) is a Σ formula.

Further, if a is (a code of) a unary function on N in the sense of A and b (a
code of) a ternary function on N in the sense of A, then the following formula
RcA(a, b, u, v, w) describes the graph of the function which is defined from a
and b by primitive recursion in the sense of A:

RcA(a, b, u, v, w) :=

(∃x ∈ N)[Seq(x) ∧ lh(x) = v+1 ∧ A(a, u, (x)0)

∧ (∀y ∈ N)(y < v → Ap3
A(b, u, y, (x)y, (x)y+1))

∧ w = (x)v].

Recall that Seq is the primitive recursive predicate for sequence numbers.
We also set for all natural numbers n

Seqn(t) := Seq(t) ∧ lh(t) = n

and assume that our coding of sequences is so that ¬(Seqm(t) ∧ Seqn(t)) if
the natural numbers m and n are different.

Finally, we are approaching the interpretation of L in L∗. First we choose
pairwise different numerals k̂, ŝ, p̂, p̂0, p̂1, ŝN, p̂N, d̂N, r̂N, µ̂ and Ê1 (the values
of) which do not belong to the set {0} ∪ {x ∈ N : Seq(x)}; they will serve
as codes of the corresponding constants of L. The treatment of compound L
terms will be described below.

For the purpose of the following inductive definition we choose a fresh ternary
relation symbol R and define A(R, a, b, c) to be the L∗(R) formula which is
the disjunction of the following formulas (1)–(24):

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Seq2(a) ∧ (a)0 = k̂ ∧ c = (a)1,

(3) a = ŝ ∧ c = 〈ŝ, b〉,

(4) Seq2(a) ∧ (a)0 = ŝ ∧ c = 〈ŝ, (a)1, b〉,

(5) Seq3(a) ∧ (a)0 = ŝ ∧
(∃x, y ∈ N)[R((a)1, b, x) ∧R((a)2, b, y) ∧R(x, y, c)],

(6) a = p̂ ∧ c = 〈p̂, b〉,

18

(7) Seq2(a) ∧ (a)0 = p̂ ∧ c = 〈(a)1, b〉,

(8) a = p̂0 ∧ (∃x ∈ N)(b = 〈c, x〉),

(9) a = p̂1 ∧ (∃x ∈ N)(b = 〈x, c〉),

(10) a = ŝN ∧ c = b+1,

(11) a = p̂N ∧ b = c+1,

(12) a = d̂N ∧ c = 〈d̂N, b〉,

(13) Seq2(a) ∧ (a)0 = d̂N ∧ c = 〈d̂N, (a)1, b〉,

(14) Seq3(a) ∧ (a)0 = d̂N ∧ c = 〈d̂N, (a)1, (a)2, b〉,

(15) Seq4(a) ∧ (a)0 = d̂N ∧ (a)1 = (a)2 ∧ c = (a)3,

(16) Seq4(a) ∧ (a)0 = d̂N ∧ (a)1 6= (a)2 ∧ c = b,

(17) a = r̂N ∧ c = 〈̂rN, b〉,

(18) Seq2(a) ∧ (a)0 = r̂N ∧ c = 〈̂rN, (a)1, b〉,

(19) Seq3(a) ∧ (a)0 = r̂N ∧ c = 〈̂rN, (a)1, (a)2, b〉,

(20) Seq4(a) ∧ (a)0 = r̂N ∧ RcR((a)1, (a)2, (a)3, b, c),

(21) a = µ̂ ∧ c = 0 ∧ (∀x ∈ N)(∃y ∈ N)(y 6= 0 ∧R(b, x, y)),

(22) a = µ̂ ∧R(b, c, 0) ∧
(∀x ∈ N)[x < c→ (∃y ∈ N)(y 6= 0 ∧R(b, x, y))],

(23) a = Ê1 ∧ c = 0 ∧ Tot2
R(b) ∧

(∃f : N→ N)(∀x ∈ N)Ap2
R(b, f(x+1), f(x), 0),

(24) a = Ê1 ∧ c = 1 ∧ Tot2
R(b) ∧

(∀f : N→ N)(∃x ∈ N)(∃y ∈ N)(0 < y ∧ Ap2
R(b, f(x+1), f(x), y).

We want to remark that the clauses (1)–(22) are identical to the clauses of the
inductive definition in Feferman and Jäger [11] and suffice for the treatment
of BON(µ). The additional clauses (23) and (24) are needed for coping with
E1. Clearly, the L∗(R) formula A(R, a, b, c) is positive in R.

Observe that we quantify in these two clauses over proper set-theoretic func-
tions from N to N, not over codes for total functions on N in the sense of

19

R. Although formulated in the language of set theory, A(R, a, b, c) is easily
reformulated in the language of second order arithmetic. Then it is a very
special R positive ∆1

2 formula, more precisely arithmetical in Π1
1.

We now employ A(R, a, b, c) as a definition clause of a positive ∆1
2 inductive

definition and show several other properties needed for interpreting SUS.
Since KPir is much too weak in order to deal with positive ∆1

2 inductive
definitions in general, some extra efforts have to be made.

In the following we freely replace the relation variable R in the formula
A(R, a, b, c) by sets or L∗ formulas. So, for example, A(u, a, b, c) is obtained
from A(R, a, b, c) by replacing all subformulas R(r, s, t) by ((r, s, t) ∈ u).

Lemma 12 There are a Σ formula B(u, a, b, c) and a Π formula C(u, a, b, c)
of the language L∗ with exactly the free variables u, a, b, c so that KPir proves:

1. u ⊂ N3 ∧ a, b, c ∈ N → (A(u, a, b, c)↔ B(u, a, b, c)),

2. u ⊂ N3 ∧ a, b, c ∈ N → (A(u, a, b, c)↔ C(u, a, b, c)).

This lemma is an immediate consequence of the quantifier theorem in Jäger
[14] (see also, e.g., [15, 17]); it says that Σ1

2 formulas of L2 are provably
equivalent in KPir to Σ1 formulas of L∗.

Since Σ recursion is not available in KPir and because of the complexity of our
definition clause A(R, a, b, c) we introduce hierarchies to describe the stages
of the corresponding inductive definition. Accordingly, we set

H(f, α) :=

 Fun(f) ∧ dom(f) = α ∧
(∀β < α)[f(β) = {(x, y, z) ∈ N3 : A(

⋃
γ<β

f(γ), x, y, z)}].

Straightforward ∈ induction for ∆0 formulas yields that these hierarchies are
unique and increasing. Following the argument in Feferman and Jäger [11]
concerning the clauses (1)–(22) of the formula A(R, a, b, c) and by a simple
inspection of clauses (23) and (24) it is also clear that we have functionality
in the third argument. I.e. we can prove in KPir that

(i) H(f, α) ∧ H(g, β) ∧ γ < min(α, β) → f(γ) = g(γ),

(ii) H(f, α) ∧ γ < β < α → f(γ) ⊂ f(β),

(iii) H(f, α) ∧ β < α ∧ (a, b, c1) ∈ f(β) ∧ (a, b, c2) ∈ f(β) → c1 = c2.

20

In view of the preceding lemma it is immediate that H(f, α) is provably
equivalent in KPir to a Σ formula, with which we often identify it in the
sequel. Thus the following predicate S(a, b, c) can be regarded as a Σ formula,

S(a, b, c) := (∃f)(∃α)[H(f, α+1) ∧ (a, b, c) ∈ f(α)].

Since only weak ∈ induction is available in KPir, we cannot prove there that
for all ordinals α there is a function f so that H(f, α). Nevertheless, we can
show that S is a fixed point of A(R, a, b, c) which is functional in its third
argument.

Theorem 13 We can prove in KPir that

1. (∀x, y, z ∈ N)[S(x, y, z) ↔ A(S, x, y, z)],

2. (∀x, y, z1, z2 ∈ N)[S(x, y, z1) ∧ S(x, y, z2) → z1 = z2].

Proof Because of the properties (i)–(iii) of our hierarchies the second as-
sertion is completely obvious. Moreover, the R positivity of A immediately
yields the direction from left to right of the first assertion. The crucial step
thus is to show that S(a, b, c) follows from A(S, a, b, c) for all natural numbers
a, b and c.

Assume A(S, a, b, c). Now distinction by cases according to clauses (1)–(24)
of A has to be carried through. Mostly the arguments are straightforward,
and we confine ourselves to discussing (23) in detail. Hence, we know that

a = Ê1 ∧ c = 0,(1)

(∀x, y ∈ N)(∃u, v ∈ N)[S(b, x, u) ∧ S(u, y, v)],(2)

(∃f : N→ N)(∀x ∈ N)Ap2
S
(b, f(x+1), f(x), 0).(3)

Now we apply Σ reflection to (2). Because of the definition of S and the prop-
erties (i)–(iii) of our hierarchies we may concluded that there are a function
g and an ordinal α so that H(g, α+1) and

(∀x, y ∈ N)(∃u, v ∈ N)((b, x, u) ∈ g(α) ∧ (u, y, v) ∈ g(α)).(4)

Hence, g(α) can also play the role of S in (3) and we obtain

(∃f : N→ N)(∀x ∈ N)Ap2
g(α)(b, f(x+1), f(x), 0).(5)

In view of (1),(4) and (5) we conclude A(g(α), a, b, c). Using ∆ separation
gives a function h so that H(h, α+2) and (a, b, c) ∈ h(α+1). This implies
S(a, b, c) and concludes our proof. 2

21

For the argument in the previous proof it was crucial that we had Tot2
S
(b)

(i.e. line (2) above) at our disposal. Then we could apply Σ reflection and
thus localize the Σ relation S to a specific set g(α). Thus it is essential that
we are interpreting the functional E1 which is applied to total operations on
N; a similar argument cannot work for the partial functional E#

1 .

A last central step in showing that S provides a adequate application relation
for interpreting SUS in KPir is to proof the following inside-outside property:
given an a coding (the characteristic function of) a binary relation on N with
respect to S, we have to show that there exists a set-theoretic function which
is a descending chain for a if and only if there exists a natural number coding
a total function on N in the sense of S which is also a descending chain for a.

For the formulation (and the proof) of the following theorem some auxiliary
notations are useful. First we set

{a}S(b1, . . . , bn) ' c := Apn
S
(a, b1, . . . , bn, c)

and follow the usual conventions of recursion theory when using expressions
like {a}S(~b). Later sometimes S will be replaced by a subset u of N3 with

{a}u(~b) having its obvious meaning.

Then we write CDC(a, b) in order to express that b is a code of a total function
on N providing a descending chain for a, everything in the sense of S,

CDCS(a, b) := Tot1
S
(b) ∧ (∀x ∈ N)Ap2

S
(a, {b}S(x+1), {b}S(x), 0).

This is in contrast to FDCS(a, f),

FDCS(a, f) := (f : N→ N) ∧ (∀x ∈ N)Ap2
S
(a, f(x+1), f(x), 0),

which states that f is a set-theoretic function providing a descending chain
for a with respect to S.

Given a hierarchy f which describes the stages of our inductive definition up
to the ordinal α, i.e. H(f, α), it is easy to see that it can be extended up
to α+k for each fixed natural number k. Suppose now that we have natural
numbers which are known to code certain relations on the natural numbers
at level α. Then the following two lemmas state that certain operations on
these relations can be carried through and coded by making use of a fixed
finite number of additional levels only.

For their formulation it is convenient to write extnb (a) for the extension of a
in the sense of b,

extnb (a) := {(x1, . . . , xn) ∈ Nn : Apnb (a, x1, . . . , xn, 0)}.

22

Since Apnb is a ∆0 formula, extnb (a) defines in KPir a subset of Nn by means
of ∆0 separation.

Lemma 14 (Finite extension property I) Let R be a fresh m-ary rela-
tion symbol and assume that A(R, u,~v) is a formula of L1(R) with at most
the variables u and ~v = v1, . . . , vn free. Then there exist a natural number k
and primitive recursive functions F and G so that KPir proves:

1. H(f, α+k+1) ∧ a, u ∈ N ∧ Totmf(α)(a) →

Totnf(α+k)(F(a, u)) ∧ Tot1
f(α+k)(G(a)),

2. H(f, α+k+1) ∧ a, u,~v ∈ N ∧ Totmf(α)(a) →

AN(extmf(α)(a), u, ~v)↔ {F(a, u)}f(α+k)(~v) ' 0,

3. H(f, α+k+1) ∧ a, u ∈ N ∧ Totmf(α)(a) →

(Ê1,F(a, u), 0) ∈ f(α+k)↔ {G(a)}f(α+k)(u) ' 0.

Lemma 15 (Finite extension property II) Let R be a fresh m-ary and
S a fresh n-ary relation symbol and assume that B(R, S, u, v) is a formula of
L1(R, S) with at most the variables u and v free. Further assume that

KPir (∀x1, x2 ⊂ N)(∀y ∈ N)(∃!z ∈ N)BN(x1, x2, y, z)

and let FB denote the (class) function defined by BN. Then there exists a
natural number k and a primitive recursive function H so that KPir proves:

1. H(f, α+k+1) ∧ a, b, u ∈ N ∧ Totmf(α)(a) ∧ Totnf(α)(b) →

Tot1
f(α+k)(H(a, b, u)),

2. H(f, α+k+1) ∧ a, b, u, v ∈ N ∧ Totmf(α)(a) ∧ Totnf(α)(b) →

{H(a, b, u)}f(α+k)(0) ' u ∧
{H(a, b, u)}f(α+k)(v+1) '

FB(extmf(α)(a), extnf(α)(b), {H(a, b, u)}f(α+k)(v)).

The proofs of these two finite extension lemmas are straightforward, although
a bit tedious. It is essential that primitive recursion is directly built into our
inductive definition. They also exploit the fact that combinatory complete-
ness is available due to our coding of k and s. After these preparatory steps
we are now ready to turn to the theorem about the inside-outside property
mentioned above.

23

Theorem 16 We can prove in KPir that

1. (∃b ∈ N)CDCS(a, b) → (∃f)FDCS(a, f),

2. Tot2
S
(a) ∧ (∃f)FDCS(a, f) → (∃b ∈ N)CDCS(a, b).

In particular, we have in KPir the following equivalence

Tot2
S
(a) → [(∃f)FDCS(a, f)↔ (∃b ∈ N)CDCS(a, b)].

Proof For the first assertion of our theorem choose a natural number b
such that CDCS(a, b). Hence, we have Tot1

S
(b), i.e.

(∀x ∈ N)(∃y ∈ N)S(b, x, y).(1)

Because of Σ reflection and the functionality of S in its third argument we
know that

f := {(x, y) ∈ N2 : S(b, x, y)}(2)

is a set-theoretic function from N to N. It follows immediately that this f
satisfies FDC(a, f).

Throughout the proof of the second assertion, we let a be an arbitrary natural
number so that Tot2

S
(a), i.e.

(∀x, y ∈ N)(∃u, v ∈ N)[S(a, x, u) ∧ S(u, y, v)].(3)

Hence, we can employ Σ reflection and find an ordinal α and a function g so
that H(g, α+1) and Tot2

g(α)(a), i.e.

(∀x, y ∈ N)(∃u, v ∈ N)((a, x, u) ∈ g(α) ∧ (u, y, v) ∈ g(α)).(4)

Let us now assume that we are given a function f so that FDCS(a, f). Indeed,
by (4) we have FDCg(α)(a, f), i.e. (f : N→ N) and

(∀x ∈ N)Ap2
g(α)(a, f(x+1), f(x), 0).(5)

We want to find a natural number b so that CDCS(a, b). Towards this aim,
we have to formalize a standard leftmost branch argument in KPir and make
substantial use of the finite extension properties I and II (Lemma 14 and 15).
For definiteness, assume that k is a natural number which is big enough to
carry through all the finite extensions of g needed below; accordingly, let h
be a function such that H(h, α+2k+1) holds.

24

First, we set A(R, u, v1, v2) to be the following L1(R) formula

A(R, u, v1, v2) :=

{
(∃x, y)[Seq(x) ∧ lh(x) = y ∧ (x)0 = u ∧ (x)y .−1 = v2

∧ (∀z < y .− 1)R((x)z+1, (x)z)] ∧R(v1, v2).

A(R, u, v1, v2) expresses that R(v1, v2) and v2 is accessible from u by means
of R. We can now apply Lemma 14 and find primitive recursive functions F
and G so that

Tot2
h(α+k)(F(a, u)) and Tot1

h(α+k)(G(a))(6)

for all natural numbers u and, moreover,

AN(ext2
h(α)(a), u, v1, v2) ↔ {F(a, u)}h(α+k)(v1, v2) ' 0,(7)

(Ê1,F(a, u), 0) ∈ h(α+k) ↔ {G(a)}h(α+k)(u) ' 0(8)

for all natural numbers u and v1, v2. Further, we let B(R, S, u, v) denote the
L1(R, S) formula given by

B(R, S, u, v) :=

{
R(v, u) ∧ S(v) ∧ (∀w < v)(¬R(w, u) ∨ ¬S(w))

∨ ¬(∃w)(R(w, u) ∧ S(w)) ∧ v = 0.

Clearly, we have that (∀x1, x2 ⊂ N)(∀y ∈ N)(∃!z ∈ N)BN(x1, x2, y, z). Hence,
we are in a position to apply Lemma 15 and obtain a primitive recursive
function H so that we have for b = H(a,G(a), f(0)),

Tot1
h(α+2k)(b),(9)

and, further, for all natural numbers v,

{b}h(α+2k)(0) ' f(0),(10)

{b}h(α+2k)(v+1) ' FB(ext2
h(α)(a), ext1

h(α+k)(G(a)), {b}h(α+2k)(v)).(11)

The proof so far has been set up in such a manner that we can now apply a
simple form of ∆0 induction on N to show that indeed

(∀x ∈ N)Ap2
h(α)(a, {b}h(α+2k)(x+1), {b}h(α+2k)(x), 0)(12)

follows from (5) and the construction of b. Together with (9) we have thus
established CDCh(α+2k)(a, b) and, hence, also CDCS(a, b). This is as desired
an finishes the proof of our theorem. 2

25

Now the stage is set in order to describe a translation ∗ from L into L∗.
The central idea is to interpret the L formula (ab ' c) by the L∗ formula
S(a, b, c). More precisely, let us first define an L∗ formula Vt(u) for each
individual term t of L so that the variable u does not occur in t. The formula
Vt(u) expresses that u is the value of t in the sense of S. The exact definition
is by induction on the complexity of t:

1. If t is an individual variable, then Vt(u) is (t = u).

2. If t is an individual constant, then Vt(u) is (t̂ = u).

3. If t is the individual term (rs), then

Vt(u) := (∃x, y ∈ N)(Vr(x) ∧ Vs(y) ∧ S(x, y, u)).

In a second step we define the ∗ translation of an L formula A inductively as
follows:

4. If A is the formula N(t) or t↓, then A∗ is (∃x ∈ N)Vt(x).

5. If A is the formula (s = t), then A∗ is (∃x ∈ N)(Vs(x) ∧ Vt(x)).

6. If A is the formula ¬B, then A∗ is ¬(B∗).

7. If A is the formula (B j C) for j ∈ {∨,∧,→}, then A∗ is (B∗ j C∗).

8. If A is the formula (Qx)B for Q ∈ {∃,∀}, then A∗ is (Qx ∈ N)B∗.

Given this interpretation of L into L∗ we can now turn to the desired em-
bedding of SUS with set induction, N induction and formula induction on N
into our set theories.

Theorem 17 If A(~a) is an L formula with all its free variables indicated,
then we have:

1. SUS + (S-IN) A(~a) =⇒ KPir ~a ∈ N→ A∗(~a),

2. SUS + (N-IN) A(~a) =⇒ KPir + (Σ1-IN) ~a ∈ N→ A∗(~a),

3. SUS + (L-IN) A(~a) =⇒ KPiw ~a ∈ N→ A∗(~a).

Proof For showing the first assertion, we want to point out that all axioms
of SUS plus set induction except for the axioms about E1 can be treated
exactly as in Feferman and Jäger [11], in which the theory BON(µ) plus set
induction is treated.

26

The axiom (E1.1) is an immediate consequence of the fixed point property of
S formulated in Theorem 13. In order to obtain axiom (E1.2) in KPir choose
a natural number f so that (f ∈ (N→ N))∗. Then the fixed point property
of S nearly yields the ∗ translation of the conclusion of (E1.2). There is still
one serious defect: the existential quantifier on the left hand still ranges over
set-theoretic functions from N to N rather than functions in the sense of S.
By the inside-outside property proved in Theorem 16, however, we can now
internalize this set-theoretic function into a function in the sense of S and
vice versa.

The second assertion follows form the first assertion simply by observing that
formulas of the form (t ∈ N) translate into Σ formulas under our translation
∗. Hence, (N-IN) in the language L directly carries over to Σ1 induction in
L∗. Clearly, the third assertion also immediately follows from the first. 2

Everything is available now in order to state the final proof-theoretic charac-
terization of the theories SUS plus set induction, N induction and formula in-
duction. Theorem 7, Theorem 9 and Theorem 10 provide their lower bounds
in terms of subsystems of second order arithmetic, Theorem 17 gives their
upper bounds in terms of subsystems of set theory and Theorem 11 yields
the proof-theoretic equivalence of the appropriate subsystems of second order
arithmetic and set theory.

Corollary 18 We have the following proof-theoretic equivalences:

1. SUS + (S-IN) ≡ (Π1
1-CA)� ≡ (∆1

2-CA)� ≡ KPir,

2. SUS + (N-IN) ≡ (Π1
1-CA)<ωω ≡ (∆1

2-CR) ≡ KPir + (Σ1-IN),

3. SUS + (L-IN) ≡ (Π1
1-CA)<ε0 ≡ (∆1

2-CA) ≡ KPiw.

Besides (N-IN) there exists a further form of complete induction on the natural
numbers which comprises (S-IN) but is strictly weaker than (L-IN), the so-
called operation induction (O-IN), cf. [18, 21, 20]. However, we do not have
to consider (O-IN) in our present context since Kahle [21] shows that over
BON(µ) operation induction (O-IN) and N induction (N-IN) are equivalent.
Hence, in the second assertion of this corollary we can replace SUS + (N-IN)
by SUS + (O-IN).

We conclude this article with mentioning the proof-theoretic ordinals of these
systems, following the notation system of Buchholz and Schütte [3], which
are know since a long time for the corresponding subsystems of second order
arithmetic and set theory: the proof-theoretic ordinal of SUS+(S-IN) is Ψ0Ωω,
that of SUS + (N-IN) is Ψ0Ωωω , and the one of SUS + (L-IN) is Ψ0Ωε0 .

27

References

[1] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-
ematical Studies. Springer, Berlin, 1985.

[2] Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W. It-
erated Inductive Definitions and Subsystems of Analysis: Recent Proof-
Theoretical Studies, vol. 897 of Lecture Notes in Mathematics. Springer,
Berlin, 1981.

[3] Buchholz, W., and Schütte, K. Proof Theory of Impredicative
Subsystems of Analysis. Bibliopolis, Naples, 1988.

[4] Feferman, S. A language and axioms for explicit mathematics. In
Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-
matics. Springer, Berlin, 1975, pp. 87–139.

[5] Feferman, S. A theory of variable types. Revista Colombiana de
Matemáticas 19 (1975), 95–105.

[6] Feferman, S. Theories of finite type related to mathematical practice.
In Handbook of Mathematical Logic, J. Barwise, Ed. North Holland,
Amsterdam, 1977, pp. 913–971.

[7] Feferman, S. Recursion theory and set theory: a marriage of con-
venience. In Generalized recursion theory II, Oslo 1977, J. E. Fenstad,
R. O. Gandy, and G. E. Sacks, Eds., vol. 94 of Stud. Logic Found. Math.
North Holland, Amsterdam, 1978, pp. 55–98.

[8] Feferman, S. Constructive theories of functions and classes. In Logic
Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North
Holland, Amsterdam, 1979, pp. 159–224.

[9] Feferman, S. Weyl vindicated: “Das Kontinuum” 70 years later. In
Temi e prospettive della logica e della filosofia della scienza contempo-
ranee. CLUEB, Bologna, 1988, pp. 59–93.

[10] Feferman, S. Definedness. Erkenntnis 43 (1995), 295–320.

[11] Feferman, S., and Jäger, G. Systems of explicit mathematics with
non-constructive µ-operator. Part I. Annals of Pure and Applied Logic
65, 3 (1993), 243–263.

28

[12] Feferman, S., and Jäger, G. Systems of explicit mathematics with
non-constructive µ-operator. Part II. Annals of Pure and Applied Logic
79, 1 (1996), 37–52.

[13] Glaß, T., and Strahm, T. Systems of explicit mathematics with
non-constructive µ-operator and join. Annals of Pure and Applied Logic
82 (1996), 193–219.

[14] Jäger, G. Die konstruktible Hierarchie als Hilfsmittel zur beweistheo-
retischen Untersuchung von Teilsystemen der Mengenlehre und Analy-
sis. PhD thesis, Universität München, 1979.

[15] Jäger, G. Iterating admissibility in proof theory. In Logic Colloquium
’81. Proceedings of the Herbrand Symposion. North Holland, Amster-
dam, 1982.

[16] Jäger, G. A well-ordering proof for Feferman’s theory T0. Archiv für
mathematische Logik und Grundlagenforschung 23 (1983), 65–77.

[17] Jäger, G. Theories for Admissible Sets: A Unifying Approach to Proof
Theory. Bibliopolis, Napoli, 1986.

[18] Jäger, G., Kahle, R., and Strahm, T. On applicative theories.
In Logic and Foundations of Mathematics, A. Cantini, E. Casari, and
P. Minari, Eds. Kluwer, 1999. To appear.

[19] Jäger, G., and Pohlers, W. Eine beweistheoretische Untersuchung
von (∆1

2-CA) + (BI) und verwandter Systeme. In Sitzungsberichte der
Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissen-
schaftliche Klasse. 1982, pp. 1–28.

[20] Jäger, G., and Strahm, T. Some theories with positive induction of
ordinal strength ϕω0. Journal of Symbolic Logic 61, 3 (1996), 818–842.

[21] Kahle, R. N-strictness in applicative theories. Archive for Mathemat-
ical Logic. to appear.

[22] Simpson, S. G. Subsystems of Second Order Arithmetic. Perspectives
in Mathematical Logic. Springer-Verlag, 1998.

[23] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,
vol. I. North-Holland, Amsterdam, 1988.

[24] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,
vol. II. North Holland, Amsterdam, 1988.

29

Address
Gerhard Jäger, Thomas Strahm
Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
{jaeger,strahm}@iam.unibe.ch

30

