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Abstract

In this paper we discuss extensions of Feferman’s theory T0 for explicit
mathematics by the so-called limit and Mahlo axioms and present
a novel approach to constructing natural recusion-theoretic models
for (fairly strong) systems of explicit mathematics which is based on
nonmonotone inductive definitions.

1 Introduction

The purpose of this paper is twofold: our first aim is to discuss the extensions
of Feferman’s theory T0 for explicit mathematics by the so-called limit and
Mahlo axioms; secondly, we want to present a novel approach to construct-
ing natural recusion-theoretic models for (fairly strong) systems of explicit
mathematics which is based on nonmonotone inductive definitions.

Subsystems of second order arithmetic and set theory dealing with or de-
scribing a recursively inaccessible or Mahlo universe play an important role
in proof theory for quite some time. In this context we have to mention
the theories (∆1

2-CA) + (BI) and KPi (cf. e.g. Jäger [8]) whose least standard
models are the structures L(ι0)N ∩ P (N) and L(ι0)N, respectively, with ι0 be-
ing the first recursively inaccessible ordinal. The theory KPm, on the other
hand, reflects a recursively Mahlo universe and thus has the least standard
model L(ρ0)N provided that ρ0 is the least recursively Mahlo ordinal. The
proof-theoretic analysis of KPm is carried through in Rathjen [14].

On the more constructive side, Feferman’s theory T0, introduced in [2], is
of particular interest. Originally designed as a framework for Bishop-style
constructive mathematics, it contains axioms which make it possible to reach
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the recursively inaccessible “from below”. By results of Feferman, Jäger and
Pohlers in [4, 7, 12] we also know that T0 with classical or intuitionistic logic
is proof-theoretically equivalent to (∆1

2-CA) + (BI) and KPi.

Martin-Löf type theories for treating the constructive analogue of recursively
inaccessible sets are presented in Griffor and Rathjen [6] and in Setzer [18].
A variant of Mahlo à la Martin-Löf has first been given in Setzer [17]; later
Rathjen [13] developed an alternative type system in the spirit of Martin-Löf
also dealing with aspects of Mahloness.

In this article we study the limit axiom and Mahlo axioms tailored for ex-
plicit inaccessibility and Mahloness. They are conceptually and syntactically
very simple and perspicuous and permit a recursive as well as a classical
interpretation along the lines of the marriage of convenience in Feferman [3].

For establishing the upper proof-theoretic bounds of T0 plus limit and Mahlo
axioms, we generate models by means of specific nonmonotone inductive
definitions introduced in Richter [16]. The lower bounds are either obvious
from the literature or will be treated elswhere.

All systems considered in this paper are based on classical logic. However,
their variants obtained by working with intuitionistic logic are presently stud-
ied by Tupailo [20], and it seems that they are proof-theoretically equivalent.
Thus, Tupailo’s results, results about constructive set theory and the results
of this paper provide a constructive justification in the sense of reductive
proof theory of the classical theories studied below as well as of their intu-
itionistic counterparts.

The plan of this paper is as follows: In the next section we introduce the
general framework for explicit mathematics and present Feferman’s theory
T0 as well as some of its subsystems. We also turn to the notion of uni-
verse in explicit mathematics, make some remarks about natural ordering
principles for universes and formulate the so called limit axiom. Section 3
is dedicated repeating the basic facts about those first order theories for in-
ductive definitions of Jäger [10] which will be needed later for our model
constructions.

The first such model construction is carried through in section 4 and provides
a model for T0 plus the limit axiom and the two ordering axiom which claim
connectivity and linearity of normal universes. In section 5 we turn to strict
universes, the limit axiom for strict universes and name induction and show
that the model of the previous section also validates these principles.

The Mahlo axioms for explicit mathematics build the core of section 6. First
we give their exact formulation and consider some immediate consequences.
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Then we show how to build a model of T0 plus these axioms by shifting from
a [POS,QF] to a [POS,Π0

1] nonmonotone inductive definition. The proof-
theoretic upper bounds for T0 plus Mahlo and its subsystems which are
obtained by restricting induction finally follow from the results about the
involved first order theories for nonmonotone [POS,Π0

1] inductive definitions.

2 Explicit mathematics

Explicit mathematics has been introduced in Feferman [2] and further studied
in Feferman [3, 4]. However, in the following we do not work with Feferman’s
original formalization of systems of explicit mathematics; instead we treat
them as theories of types and names as developed in Jäger [9]. This section
is very much like in related papers. Nevertheless we decided to include it in
order to make our article also accessible for a reader who is not a specialist
in explicit mathematics.

2.1 Basic notions

The theories of types and names which we will consider in the following are
formulated in the second order language L about individuals and types. It
comprises individual variables a, b, c, f, u, v, w, x, y, z, . . . as well as type vari-
ables U, V,W,X, Y, Z, . . . (both possibly with subscripts). L also includes the
individual constants k, s (combinators), p, p0, p1 (pairing and projections), 0
(zero), sN (successor), pN (predecessor), dN (definition by numerical cases).
There are additional individual constants, called generators, which will be
used for the uniform naming of types, namely nat (natural numbers), id
(identity), co (complement), int (intersection), dom (domain), inv (inverse
image), j (join), i (inductive generation) and ` as well as m (universe gen-
erators). There is one binary function symbol · for (partial) application of
individuals to individuals. Further, L has two unary relation symbols ↓ (de-
fined) and N (natural numbers) as well as the two binary relation symbols ∈
(membership) and < (naming, representation).

The individual terms (r, s, t, r1, s1, t1, . . . ) of L are built up from individual
variables and individual constants by means of our function symbol · for
application. In the following we often abbreviate (s · t) simply as (st), st
or sometimes also as s(t); the context will always assure that no confusion
arises. We further adopt the convention of association to the left so that
s1s2 . . . sn stands for (. . . (s1 · s2) . . . sn). We also set t′ := sNt. Finally, we
define general n tupling by induction on n ≥ 2 as follows:

(s1, s2) := ps1s2, (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).
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The atomic formulas of L are the formulas s↓, N(s), s = t, s ∈ U and <(s, U).
Since we work with a logic of partial terms, it is not guaranteed that all terms
have values, and s↓ is read as s is defined or s has a value. Moreover, N(s)
says that s is a natural number, and the formula <(s, U) is used to express
that the individual s represents the type U or is a name of U .

The formulas (A,B,C,A1, B1, C1, . . . ) of L are generated from the atomic
formulas by closing against the usual propositional connectives as well as
quantification in both sorts. The following table contains a list of useful
abbreviations:

s ' t := s↓ ∨ t↓ → s = t,

s ∈ N := N(s),

(∃x ∈ N)A(x) := ∃x(x ∈ N ∧ A(x)),

(∀x ∈ N)A(x) := ∀x(x ∈ N→ A(x)),

U ⊂ V := ∀x(x ∈ U → x ∈ V ),

U = V := U ⊂ V ∧ V ⊂ U,

s ∈̇ t := ∃X(<(t,X) ∧ s ∈ X),

s ⊂̇ t := (∀x ∈̇ s)(x ∈̇ t),
s =̇ t := s ⊂̇ t ∧ t ⊂̇ s,

(∃x ∈̇ s)A(x) := ∃x(x ∈̇ s ∧ A(x)),

(∀x ∈̇ s)A(x) := ∀x(x ∈̇ s→ A(x)),

<(s) := ∃X<(s,X).

The vector notation ~Z is sometimes used to denote finite sequences Z1, . . .Zn
of expressions. The length of such a sequence ~Z is then either given by the
context or irrelevant. For example, for ~U = U1, . . . , Un and ~s = s1, . . . , sn we
write

<(~s, ~U) := <(s1, U1) ∧ . . . ∧ <(sn, Un),

<(~s) := <(s1) ∧ . . . ∧ <(sn).

Now we introduce the theory EETJ which provides a framework for explicit
elementary types with join. Its logic is Beeson’s classical logic of partial
terms (cf. Beeson [1] or Troelstra and Van Dalen [19]) for individuals and
classical logic for types. The nonlogical axioms of EETJ can be divided into
the following groups.

I. Applicative axioms. These axioms formalize that the individuals form a
partial combinatory algebra, that we have paring and projection and the
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usual closure conditions on the natural numbers as well as definition by
numerical cases.

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0(a, b) = a ∧ p1(a, b) = b,

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pNx
′ = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x),

(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNuvab = u,

(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNuvab = v.

As usual a theorem about λ abstraction and a form of the recursion theorem
can be derived from axioms (1) and (2).

II. Explicit representation and equality. The following axioms state that each
type has a name, that there are no homonyms and that < respects the
extensional equality of types.

(1) ∃x<(x, U),

(2) (<(s, U) ∧ <(s, V )) → U = V ,

(3) (U = V ∧ <(s, U)) → <(s, V ).

III. Basic type existence axioms. In the following we provide a finite axioma-
tization of uniform elementary comprehension plus join.

Natural numbers

<(nat) ∧ ∀x(x ∈̇ nat↔ N(x)).

Identity

<(id) ∧ ∀x(x ∈̇ id↔ ∃y(x = (y, y))).

Complements

<(a) → <(co(a)) ∧ ∀x(x ∈̇ co(a)↔ x /̇∈ a).
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Intersections

<(a) ∧ <(b) → <(int(a, b)) ∧ ∀x(x ∈̇ int(a, b)↔ x ∈̇ a ∧ x ∈̇ b).

Domains

<(a) → <(dom(a)) ∧ ∀x(x ∈̇ dom(a)↔ ∃y((x, y) ∈̇ a)).

Inverse images

<(a) → <(inv(a, f)) ∧ ∀x(x ∈̇ inv(a, f)↔ fx ∈̇ a).

Joins

<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧ Σ(a, f, j(a, f)).

In this last axiom the formula Σ(a, f, b) expresses that b names the disjoint
union of f over a, i.e.

Σ(a, f, b) := ∀x(x ∈̇ b↔ ∃y∃z(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

An L formula A is called elementary if it contains neither the relation symbol
< nor bound type variables. In the original formulation of explicit mathe-
matics elementary comprehension is not dealt with by a finite axiomatization
but directly as an infinite axiom schema. According to a theorem in Fefer-
man and Jäger [5], the usual schema of uniform elementary comprehension is
provable from our finite axiomatization; join is not needed for this argument.

In the following we employ two forms of induction on the natural numbers,
formula induction and type induction. Formula induction is the schema

(L-IN) A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x)

for all L formulas A(u). Type induction, on the other hand, is the restriction
of formula induction to types, i.e. the axiom

(T-IN) ∀X(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).

The most famous system of explicit mathematics is the theory T0 introduced
in Feferman [2]. It is obtained from EETJ + (L-IN) by adding the principle
of inductive generation (IG). As a helpful abbreviation we write

Closed(a, b, S) := (∀x ∈̇ a)((∀y ∈̇ a)((y, x) ∈̇ b→ y ∈ S) → x ∈ S).

Consider b as the code of a binary relation. Then this definition means that
S is a type which contains a c ∈̇ a if all predecessors of c in a with respect to
b belong to S. Inductive generation (IG) is now given by the following axioms

(IG.1) <(a) ∧ <(b)→ ∃X(<(i(a, b), X) ∧ Closed(a, b,X)),
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(IG.2) <(a) ∧ <(b) ∧ Closed(a, b, A) → (∀x ∈̇ i(a, b))A(x)

for all L formulas A(u). Thus (IG), i.e. (IG.1) + (IG.2), states the existence of
accessible parts, and again everything is uniform in the corresponding names.
As mentioned before, Feferman’s T0 is given by

T0 := EETJ + (IG) + (L-IN).

Tw
0 is the system T0 where inductive generation is restricted to types. If in

addition complete induction on the natural numbers is restricted to types,
then we call the system Tr

0.

Sometimes we also include additional axioms which guarantee that different
generators create different names. This can be achieved, for example, by
adding axioms of the following kind.

Uniqueness of generators with respect to L is given by the collection (L-UG)
of the following axioms for all syntactically different generators r0 and r1 and
arbitrary generators s and t of L:

(1) r0 6= r1,

(2) ∀x(sx 6= nat ∧ sx 6= id),

(3) ∀x∀y(sx = tx → s = t ∧ x = y).

Let us point out already now, that uniqueness of generators can be easily
established in all natural models of explicit mathematics.

2.2 Universes

The next step is to introduce the concept of a universe in explicit mathemat-
ics. To put it very simple, a universe is supposed to be a type which consists
of names only and reflects the theory EETJ.

For the detailed definition of a universe we introduce some auxiliary nota-
tion and let C(W, a) be the closure condition which is the disjunction of the
following L formulas:

(1) a = nat ∨ a = id,

(2) ∃x(a = co(x) ∧ x ∈ W ),

(3) ∃x∃y(a = int(x, y) ∧ x ∈ W ∧ y ∈ W ),

(4) ∃x(a = dom(x) ∧ x ∈ W ),
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(5) ∃f∃x(a = inv(f, x) ∧ x ∈ W ),

(6) ∃x∃f(a = j(x, f) ∧ x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W )).

Thus the formula ∀x(C(W,x)→ x ∈ W ) describes that W is a type which is
closed under the type constructions of EETJ, i.e. elementary comprehension
and join. A universe is a type which consists of names only and satisfies this
closure condition.

Definition 1 1. We write U(W ) to express that the type W is a universe,

U(W ) := ∀x(C(W,x)→ x ∈ W ) ∧ (∀x ∈ W )<(x).

2. U(t) means that the individual t is a name of a universe,

U(t) := ∃X(<(t,X) ∧ U(X)).

The theory EETJ does not prove the existence of universes. However, as in
the case of theories for admissible sets (cf. e.g. Jäger [8]) a so-called limit
axiom can easily be added. By making use of the generator `, one assigns to
each name a the name `a of a universe containing a, i.e.

(Lim) ∀x(<(x) → U(`x) ∧ x ∈̇ `x).

It is an interesting theme to see what kind of ordering principles for universes
can be consistently added to the previous axioms. This question is discussed
at full length in Jäger, Kahle and Studer [11], and it is shown there that
one must not be too liberal. As a consequence of these considerations we
do not claim linearity and connectivity for arbitrary universes, but only for
so-called normal universes, i.e. universes which are named by means of the
type generators ` and m,

Uno(t) := ∃x(t = `x) ∨ ∃x∃f(t = m(x, f)).

Of course the second disjunction in this definition does not play a role yet
since so far no axioms about the generator m have been formulated. However,
they will follow in Section 6.

Linearity and connectivity for normal (names of) universes can be now ex-
pressed by the following two axioms:

(Uno-Lin) ∀x∀y(Uno(x) ∧ Uno(y) → x ∈̇ y ∨ x =̇ y ∨ y ∈̇ x),

(Uno-Con) ∀x∀y(Uno(x) ∧ Uno(y) → x ⊂̇ y ∨ y ⊂̇ x).
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It is shown in [11] that connectivity of normal universes also implies transi-
tivity of normal universes in its most general form.

Universes in explicit mathematics are discussed from a much broader per-
spective in Jäger, Kahle and Studer [11]. Among other things we also discuss
the relationship between inductive generation and the existence of least uni-
verses and a form of name induction (see also Section 5 below). In this article
we confine ourselves to establishing upper proof-theoretic bounds.

3 First order inductive definitions

Before introducing the Mahlo axioms into explicit mathematics we present
a new and powerful method for constructing natural models for the theo-
ries presented so far. This method can then be easily extended to coping
with Mahlo as well. The use of certain nonmonotone first order inductive
definitions is crucial for our approach.

3.1 Combined operator forms

Let Φ be an arbitrary operator on the natural numbers, i.e. a function from
Pow(Nk) to Pow(Nk) for some natural number k. As usual in the theory of
(not necessarily monotone) inductive definitions, the stages of the inductive
definition generated by Φ are defined for all ordinals σ as

Φσ := Φ<σ ∪ Φ(Φ<σ) and Φ<σ :=
⋃
{Φτ : τ < σ}.

Standard cardinality arguments then yield the existence of a least ordinal σ0

so that

Φ<σ0 = Φ<σ0 ∪ Φ(Φ<σ0) =
⋃
{Φτ : τ ordinal}.

This ordinal σ0 is called the closure ordinal cl(Φ) of the operator Φ; the set
Φ<σ0 is the subset of Nk inductively defined by Φ.

Richter [16] describes an interesting method to generate a new operator on
the natural numbers from two given operators Φ and Ψ, which map Pow(Nk)
to Pow(Nk). It is called [Φ,Ψ] an defined by

[Φ,Ψ](S) :=

{
Φ(S) if Φ(S) 6⊂ S,

Ψ(S) if Φ(S) ⊂ S

for all S ⊂ Nk. Hence, the first operator is applied whenever something new
is added; the second is only active on sets which are closed under the first.
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Let L be some standard language of first order arithmetic with number vari-
ables a, b, c, e, f, u, v, w, x, y, z, . . . (possibly with subscripts), a constant 0
and symbols for all primitive recursive functions and relations. The terms
(r, s, t, r1, s1, t1, . . . ) and formulas (A,B,C,A1, B1, C1, . . . ) of L as well as all
the other relevant syntactic notions are defined as usual.

In particular we make use of a conventional primitive recursive coding ma-
chinery in L: 〈. . .〉 is a standard primitive recursive function for forming
n-tuples 〈t1, . . . , tn〉; lh(t) denotes the length of (the sequence number coded
by) t; (t)i is the ith component of (the sequence coded by) t if i < lh(t), i.e.
t = 〈(t)0, . . . , (t)lh(t)

.−1〉 if t is a sequence number.

Now let P be a fresh k-ary relation symbol and write L(P ) for the extension
of L by P . An L(P ) formula which contains at most ~u = u1, . . . , uk free is
called an k-ary operator form, and we let A(P, ~u),B(P, ~u),C(P, ~u), . . . range
over such forms. Each k-ary operator form A(P, ~u) gives rise to an operator
ΦA from Pow(Nk) to Pow(Nk) by setting

ΦA(S) := {(n1, . . . , nk) ∈ Nk : N |= A(S, n1, . . . , nk)}
for all S ⊂ Nk. To simplify the notation we write cl(A) for the closure ordinal
cl(ΦA) of the operator associated to A. Moreover, if K is a class of operator
forms, then

cl(K) := sup{cl(A) : A ∈ K}.
For our model constructions we will be mainly interested in the following
classes of operator forms: POS comprises all operator forms A(P, ~u) with P
occurring only positively. An operator form A(P, ~u) belongs to QF if it does
not contain any quantifiers. Π0

1 consists of all operator forms ∀xA(P, ~u, x)
where all quantifiers occurring in A are bounded.

For two classes K1 and K2 of k-ary operator forms we define [K1,K2] to be
the class of all operator forms

A(P, ~u) := A0(P, ~u) ∨ (∀~x(A0(P, ~x)→ P (~x)) ∧ A1(P, ~u))

so that A0(P, ~u) belongs to K1 and A1(P, ~u) to K2. Obviously, this definition
follows the pattern of the combination of operators à la Richter [16]. The
following theorem is also taken from [16].

Theorem 2 If ι0 is the first recursively inaccessible ordinal and ρ0 the first
recursively Mahlo ordinal, then we have

[POS,QF] = ι0 and [POS,Π0
1] = ρ0.

This theorem provides some motivation for taking operator forms from the
classes [POS,QF] and [POS,Π0

1] for building models of systems for explicit
mathematics which reflect the recursive inaccessible and recursive Mahlo.
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3.2 Theories for first order inductive definitions

The theories FID(K) for first order nonmonotone inductive definitions have
been introduced in Jäger [10]. They provide an appropriate framework for
modeling theories of explicit mathematics and establishing proof-theoretic
upper bounds for them.

Let K be a collection of operator forms. Then we extend L to the language
LK by adding ordinal variables α, β, γ, ζ, η, ξ, . . . (possibly with subscripts), a
binary relation symbol < for the less relation on the ordinals and a (k+1)-ary
relation symbol PA for each k-ary operator form A ∈ K. The number terms
(r, s, t, r1, s1, t1, . . . ) of LK are the terms of L, the ordinal terms of LK are
the ordinal variables. The atomic formulas of LK are the atomic formulas of
L plus all expressions (α < β), (α = β) and PA(α,~s) for each k-ary operator
form A(P, ~u) from K.

The formulas (A,B,C,D,A1, B1, C1, D1 . . . ) of LK are generated from the
atomic formulas of LK by closing under the propositional connectives, quan-
tification over natural numbers and quantification over the ordinals. An LK
formula is called ∆O

0 if it does not contain unbounded ordinal quantifiers.

From now on we will write Pα
A (~s) instead of PA(α,~s) and use the following

abbreviations:

P<α
A (~s) := (∃ξ < α)P ξ

A(~s) and PA(~s) := ∃ξP ξ
A(~s).

Now we are ready to present the theory FID(K) for first order inductive
definitions with definition clauses from K. It is formulated in the language
LK and based on classical two sorted predicate logic with equality in both
sorts. Its nonlogical axioms comprise the following five groups.

I. Number-theoretic axioms. The axioms of Peano arithmetic PA with excep-
tion of complete induction on the natural numbers.

II. Linearity axioms.

α 6< α ∧ (α < β ∧ β < γ → α < γ) ∧ (α < β ∨ α = β ∨ β < α).

III. Operator axioms. For all operator forms A(P, ~u) from K:

(OP.1) Pα
A (~s) ↔ P<α

A (~s) ∨ A(P<α
A , ~s),

(OP.2) A(PA, ~s) → PA(~s).

IV. Induction on the natural numbers. For all LK formula A(u):

A(0) ∧ ∀x(A(x)→ A(x+1)) → ∀xA(x).
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V. Induction on the ordinals. For all LK formula A(α):

∀ξ((∀η < ξ)A(η)→ A(ξ)) → ∀ξA(ξ).

Natural subsystems of FID(K) are obtained by weakening its induction prin-
ciples: FIDw(K) results from FID(K) by restricting induction on the ordinals
to ∆O

0 formulas of LK; the theory FIDr(K) is obtained from FID(K) by re-
stricting induction on the natural numbers and induction on the ordinals to
∆O

0 formulas of LK.

The interpretation of the languages LK into the language of admissible set
theory with urelements is straightforward. Thus theories for (iterated) admis-
sible sets can be used in order to establish upper bounds of theories FID(K)
for several operator classes K.

In order to deal with the class operator forms [POS,QF], we employ the
theory KPi, described, for example, in Jäger [8], which formalizes a recursively
inaccessible universe. Operator forms from [POS,Π0

1] are interpreted into the
system KPm. It is the variant of the theory KPM for a recursively Mahlo
universe, analyzed in Rathjen [14, 15], in which the natural numbers are
permitted as urelements. The theories KPiw, KPir, KPmw and KPmr are
the expected subsystems of KPi and KPm which are obtained by restricting
inductions. In particular the following result can be obtained.

Theorem 3 For the class of operator forms [POS,QF] we have:

1. FIDr([POS,QF]) is contained in KPir.

2. FIDw([POS,QF]) is contained in KPiw.

3. FID([POS,QF]) is contained in KPi.

This theorem as well as the following theorem are proved in Jäger [10]. To-
gether with the proof-theoretic analysis of the theories KPi and KPm and
their subsystems KPiw, KPir, KPmw and KPmr they yield the desired upper
proof-theoretic bounds.

Theorem 4 For the class of operator forms [POS,Π0
1] we have:

1. FIDr([POS,Π0
1]) is contained in KPmr.

2. FIDw([POS,Π0
1]) is contained in KPmw.

3. FID([POS,Π0
1]) is contained in KPm.

We dispense with mentioning the proof-theoretic ordinals of theses theories.
Of course they are well-known and can be found in the articles quoted above.
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4 Modeling T0 + (Lim)

Finally we can turn to building a model of T0 + (Lim) in FID([POS,QF]). As
we will see, this model also satisfies the uniqueness of generators (L-UG) and
the ordering principles (Uno-Lin) and (Uno-Con) for normal universes.

We interpret application · of L in the sense of ordinary recursion theory so
that (a·b) in L is translated into {a}(b) in L, where {n} for n = 0, 1, 2, 3, . . . is
a standard enumeration of the partial recursive functions. Then it is possible
to assign pairwise different numerals to the constants k, s, p, p0, p1, sN, pN

and dN so that the applicative axioms (1)–(8) of T0 are satisfied. We also
require that the constant 0 of L is interpreted as the 0 of L and the term
sNa of L as a + 1 in L. In addition, we let pairing and projections of L go
over into the primitive recursive pairing and unpairing machinery introduced
above.

For each L term t there also exists an L formula Valt(a) expressing that a
is the value of t under the interpretation described above. Accordingly, the
atomic formulas t↓, s = t and N(t) are given their obvious interpretations in
L with the translation of N ranging over all natural numbers.

For dealing with the generators we choose, again by ordinary recursion theory,
numerals nat, id, co, int, dom, inv, j, i, ` and m so that we have the properties

nat = 〈0, 0〉, id = 〈1, 0〉, {co}(a) = 〈2, a〉,

{int}(〈a, b〉) = 〈3, a, b〉, {dom}(a) = 〈4, a〉, {inv}(〈a, b〉) = 〈5, a, b〉,

{j}(〈a, b〉) = 〈6, a, b〉, {i}(〈a, b〉) = 〈7, a, b〉, {`}(a) = 〈8, a〉,

{m}(〈a, b〉) = 〈9, a, b〉, {e0}(a) 6= e1

for all natural numbers a, b and all e0 and e1 from the set ranging over nat,
id, co, int, dom, inv, j, i, ` and m.

The crucial step in our model construction is to find adequate codes for
the types of explicit mathematics and to properly deal with the fact that the
individual b is an element of the type coded by a. For achieving this we make
use of an operator form A(P, a, b, c) from [POS,QF] and the corresponding
relation symbol PA. Then our interpretation will be so that

PA(a, 0, 0) stands for <(a),

PA(a, b, 1) for <(a) ∧ b ∈̇ a and PA(a, b, 2) for <(a) ∧ b /̇∈ a.

We first need an operator form A0(P, a, b, c) from POS which is the disjunc-
tion of the following formulas (1)–(21):
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(1) a = 〈0, 0〉 ∧ b = 0 ∧ c = 0,

(2) a = 〈0, 0〉 ∧ c = 1,

(3) a = 〈1, 0〉 ∧ b = 0 ∧ c = 0,

(4) a = 〈1, 0〉 ∧ ∃x(b = 〈x, x〉) ∧ c = 1,

(5) a = 〈1, 0〉 ∧ ∀x(b 6= 〈x, x〉) ∧ c = 2,

(6) ∃u[a = 〈2, u〉 ∧ P (u, 0, 0)] ∧ b = 0 ∧ c = 0,

(7) ∃u[a = 〈2, u〉 ∧ P (u, 0, 0) ∧ P (u, b, 2)] ∧ c = 1,

(8) ∃u[a = 〈2, u〉 ∧ P (u, 0, 0) ∧ P (u, b, 1)] ∧ c = 2,

(9) ∃u∃v[a = 〈3, u, v〉 ∧ P (u, 0, 0) ∧ P (v, 0, 0)] ∧ b = 0 ∧ c = 0,

(10) ∃u∃v(a = 〈3, u, v〉 ∧ P (u, 0, 0) ∧ P (v, 0, 0) ∧ P (u, b, 1) ∧ P (v, b, 1) ∧
c = 1,

(11) ∃u∃v(a = 〈3, u, v〉 ∧ P (u, 0, 0) ∧ P (v, 0, 0) ∧ (P (u, b, 2) ∨ P (v, b, 2))] ∧
c = 2,

(12) ∃u[a = 〈4, u〉 ∧ P (u, 0, 0)] ∧ b = 0 ∧ c = 0,

(13) ∃u[a = 〈4, u〉 ∧ P (u, 0, 0) ∧ ∃xP (u, 〈b, x〉, 1)] ∧ c = 1,

(14) ∃u[a = 〈4, u〉 ∧ P (u, 0, 0) ∧ ∀xP (u, 〈b, x〉, 2)] ∧ c = 2,

(15) ∃u∃f [a = 〈5, u, f〉 ∧ P (u, 0, 0)] ∧ b = 0 ∧ c = 0,

(16) ∃u∃f [a = 〈5, u, f〉 ∧ P (u, 0, 0) ∧ ∃x(x = {f}(b) ∧ P (u, x, 1))] ∧ c = 1,

(17) ∃u∃f [a = 〈5, u, f〉 ∧ P (u, 0, 0) ∧ ∀x(x 6= {f}(b) ∨ P (u, x, 2))] ∧ c = 2,

(18) ∃u∃f [a = 〈6, u, f〉 ∧ P (u, 0, 0) ∧ ∀x(P (u, x, 2) ∨ P ({f}(x), 0, 0))] ∧
b = 0 ∧ c = 0,

(19) ∃u∃f [a = 〈6, u, f〉 ∧ P (u, 0, 0) ∧ ∀x(P (u, x, 2) ∨ P ({f}(x), 0, 0)) ∧
∃y∃z(b = 〈y, z〉 ∧ P (u, y, 1) ∧ P ({f}(y), z, 1))] ∧ c = 1,

(20) ∃u∃f [a = 〈6, u, f〉 ∧ P (u, 0, 0) ∧ ∀x(P (u, x, 2) ∨ P ({f}(x), 0, 0)) ∧
∀y∀z(b 6= 〈y, z〉 ∨ P (u, y, 2) ∨ P ({f}(y), z, 2))] ∧ c = 2,

(21) ∃u∃v[a = 〈7, u, v〉 ∧ P (u, 0, 0) ∧ P (v, 0, 0) ∧ P (u, b, 1) ∧
∀x(P (u, x, 2) ∨ P (v, 〈x, b〉, 2) ∨ P (a, x, 1))] ∧ c = 1.
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This operator form takes care of the generators nat, id, co, int, dom, inv and
j. Moreover, clause (21) also builds up the elements of the accessible part
which is named i(u, v) in the language L. Observe, however, that the code
for this accessible part is not introduced by this operator form; and it also
does not say which elements do not belong to its extension.

In the end, however, we will work with combined operators, and therefore
a second operator form A1(P, a, b, c) from QF is employed for the codes of
accessible parts and and for those element not belonging to their extension.
As soon as closure under A0(P, a, b, c) is achieved, we know that all elements
of the relevant accessible parts have been generated. Then we switch to
A1(P, a, b, c) to obtain the codes of these accessible parts and their comple-
ments and continue with A0(P, a, b, c). The limit axiom is treated accordingly.

Hence, let A1(P, a, b, c) be the operator form from QF which is the disjunction
of the following formulas (22)–(26):

(22) a = 〈7, (a)1, (a)2〉 ∧ P ((a)1, 0, 0) ∧ P ((a)2, 0, 0) ∧ b = 0 ∧ c = 0,

(23) a = 〈7, (a)1, (a)2〉 ∧ P ((a)1, 0, 0) ∧ P ((a)2, 0, 0) ∧ ¬P (a, b, 1) ∧ c = 2,

(24) a = 〈8, (a)1〉 ∧ ¬P (a, 0, 0) ∧ P ((a)1, 0, 0) ∧ b = 0 ∧ c = 0,

(25) a = 〈8, (a)1〉 ∧ ¬P (a, 0, 0) ∧ P ((a)1, 0, 0) ∧ P (b, 0, 0) ∧ c = 1,

(26) a = 〈8, (a)1〉 ∧ ¬P (a, 0, 0) ∧ P ((a)1, 0, 0) ∧ ¬P (b, 0, 0) ∧ c = 2.

Using the first operator form A0(P, a, b, c) from POS and the second oper-
ator form A1(P, a, b, c) from QF we can define the combined operator form
A(P, a, b, c) from [POS,QF] as

A0(P, a, b, c) ∨ [∀x∀y∀z(A0(P, x, y, z)→ P (x, y, z)) ∧ A1(P, a, b, c)].

By easy ∆O

0 induction on the ordinals we can now show that the extension
of the code of a type is determined as soon as the code is created. In such
cases also the complementarity of PA(. . . , 1) and PA(. . . , 2) are guaranteed.

Lemma 5 The following assertions are provable in FIDr([POS,QF]):

1. Pα
A (a, 0, 0) ∧ α ≤ β → ∀x(Pα

A (a, x, 1)↔ P β
A(a, x, 1)).

2. Pα
A (a, 0, 0) ∧ α ≤ β → ∀x(Pα

A (a, x, 2)↔ P β
A(a, x, 2)).

3. Pα
A (a, 0, 0) ∧ α ≤ β → ∀x(¬Pα

A (a, x, 1)↔ P β
A(a, x, 2)).
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Before turning to the interpretation of the types, the ∈ relation and the
naming relation we introduce the following two definitions:

Rep(a) := PA(a, 0, 0) and E(b, a) := PA(a, b, 1).

In our embedding of Tr
0 into FIDr([POS,QF]) we first assume that the number

and type variables of L are mapped into the number variables of the language
of FIDr([POS,QF]) so that no conflicts arise; to simplify the notation we often
identify the type variables of L with their translations. Then we let the type
variables of L range over Rep and the translation of the atomic formulas of
L involving types is as follows:

<(t, U)∗ := ∃x[Valt(x) ∧ Rep(x) ∧ ∀y(E(y, x)↔ E(y, U))],

(t ∈ U)∗ := ∃x(Valt(x) ∧ E(x, U)).

On the basis of these initial cases the translation of arbitrary L formulas A
into formulas A∗ of FIDr([POS,QF]) should be obvious. The embedding of
T0 (and its subsystems) into FID([POS,QF]) (and its subsystems) is given by
the following theorem.

Theorem 6 We have for all L formulas A(~U,~a) with at most the variables
~U and ~a free:

1. If the theory Tr
0+(Lim)+(L-UG)+(Uno-Lin)+(Uno-Con) proves A(~U,~a),

then

FIDr([POS,QF]) ` Rep(~U) → A∗(~U,~a).

2. If the theory Tw
0 +(Lim)+(L-UG)+(Uno-Lin)+(Uno-Con) proves A(~U,~a),

then

FIDw([POS,QF]) ` Rep(~U) → A∗(~U,~a).

3. If the theory T0+(Lim)+(L-UG)+(Uno-Lin)+(Uno-Con) proves A(~U,~a),
then

FID([POS,QF]) ` Rep(~U) → A∗(~U,~a).

Proof If it is an applicative axiom or an axiom concerning the uniqueness
of generators, then its translation is provable in FIDr([POS,QF]) by our as-
sumptions about the coding of the first order part of Tr

0. The translations
of the axioms about explicit representation and equality as well as linearity
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(Uno-Lin) and connectivity (Uno-Con) of normal universes are easily verified.
In the case of the basic type existence axioms we confine ourselves to showing
the translation of the axioms about Intersection.

Assume we are given two natural numbers a and b so that Rep(a) and Rep(b).
Then we immediately obtain Rep(〈3, a, b〉) by closure under A0. The same
argument yields E(c, 〈3, a, b〉) if E(c, a) and E(c, b) hold. To show the other
direction assume E(c, 〈3, a, b〉). Then there exists an ordinal α such that
Pα

A (〈3, a, b〉, c, 1) but not P<α
A (〈3, a, b〉, c, 1). By the definition of A we there-

fore must have P<α
A (a, c, 1) as well as P<α

A (b, c, 1). Thus the definition of E
yields E(c, a) and E(c, b).

Hence, the intersection axiom of Tr
0 is verified. The other basic type existence

axioms are either trivial or treated accordingly; their exact discussion can
therefore be omitted.

Before treating inductive generation, we turn to the verification of the limit
axiom (Lim). For this purpose take an arbitrary a so that Rep(a). Then there
exists an α with Pα

A (a, 0, 0) and ¬P<α
A (a, 0, 0). Furthermore, there must be

a least ordinal β strictly greater than α such that P<β
A is closed under A0.

It follows that P β
A(〈8, a〉, 0, 0) and P β

A(〈8, a〉, a, 1); hence we have Rep(〈8, a〉)
and E(a, 〈8, a〉).
From the definition of the operator form A1 we can further deduce that for ev-
ery natural number c the assertion P β

A(〈8, a〉, c, 1) is equivalent to P<β
A (c, 0, 0)

and the assertion P β
A(〈8, a〉, c, 2) equivalent to ¬P<β

A (c, 0, 0). Because of
Lemma 5 we therefore have for all c that

E(c, 〈8, a〉) ↔ P<β
A (c, 0, 0).

So we know that 〈8, a〉 codes a type whose extension contains a and consists
of codes of types only.

It still has to be shown that the extension of 〈8, a〉 is closed under the gen-
erators nat, id, co, int, dom, inv and j. But this follows directly from the fact
that P<β

A is closed under A0. As illustration, we consider closure under In-

tersection. So assume E(b, 〈8, a〉) and E(c, 〈8, a〉). Then we know P<β
A (b, 0, 0)

as well as P<β
A (c, 0, 0) and obtain A0(P<β

A , 〈3, b, c〉, 0, 0). Hence the closure of

P<β
A under A0 implies P<β

A (〈3, b, c〉, 0, 0), and we conclude E(〈3, b, c〉, 〈8, a〉).
Therefore, also the limit axiom (Lim) is established in our model, and it only
remains to verify inductive generation (IG) and the induction principles of
our theories.

For the axiom (IG.1) of inductive generation we assume Rep(a) and Rep(b) for
two given natural numbers a and b. As a consequence of the second operator
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axiom we obtain Rep(〈7, a, b〉). Furthermore, we find an ordinal α such that
Pα

A (a, 0, 0), Pα
A (b, 0, 0) and Pα

A (〈7, a, b〉, 0, 0). Now assume

E(c, a) ∧ ∀x[E(x, a) ∧ E(〈x, c〉, b) → E(x, 〈7, a, b〉)]

for some natural number c. In view of the three assertions of Lemma 5 this
implies

Pα
A (a, c, 1) ∧ ∀x[Pα

A (a, x, 2) ∨ Pα
A (b, 〈x, c〉, 2) ∨ Pα

A (〈7, a, b〉, x, 1)]

and therefore, by closure under A0, we have E(x, 〈7, a, b〉). Hence (IG.1) is
settled as well.

So far everything has been the same for all three assertions of our theorem;
distinctions occur in connection with the induction principles. In order to
verify full (IG.2) we choose an arbitrary formula A(u) and set

BA(a, b) := ∀x[E(x, a) ∧ ∀y(E(y, a) ∧ E(〈y, x〉, b) → A(y)) → A(x)].

Now suppose Rep(a), Rep(b) and BA(a, b). Working in FID([POS,QF]), we
prove

∀α∀x(Pα
A (〈7, a, b〉, x, 1)→ A(x))

by full induction on the ordinals: Let u be a natural number such that
Pα

A (〈7, a, b〉, u, 1). Then for every natural number v we know that E(v, a) and
E(〈v, u〉, b) imply P<α

A (〈7, a, b〉, v, 1). Hence we obtain A(v) by the induction
hypothesis. Together with B(a, b) this implies A(u). Hence we have proved
for all formulas A(u) that

Rep(a) ∧ Rep(b) ∧BA(a, b) → ∀x(E(x, 〈7, a, b〉)→ A(x)).

This implies that each instance of full (IG.2) can be dealt with in the theory
FID([POS,QF]). In the case of (IG.2) restricted to types we have to be a bit
more careful. For arbitrary a, b and c we set

Bc(a, b) := ∀x[E(x, a) ∧ ∀y(E(y, a) ∧ E(〈y, x〉, b) → E(y, c)) → E(x, c)].

Now assume Rep(a), Rep(b), Rep(c) and Bc(a, b). It is also clear that there
exists an ordinal γ so that we have P γ

A(a, 0, 0), P γ
A(b, 0, 0) and P γ

A(c, 0, 0).
From Lemma 5 we can therefore conclude that Bc(a, b) is equivalent to the
∆O

0 formula Bγ
c (a, b),

Bγ
c (a, b) :=

∀x[Eγ(x, a) ∧ ∀y(Eγ(y, a) ∧ Eγ(〈y, x〉, b) → Eγ(y, c)) → Eγ(x, c)]
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where Eγ(u, v) is shorthand for P γ
A(v, u, 1). Similar to before we obtain from

our assumptions that

∀α∀x(Pα
A (〈7, a, b〉, x, 1)→ Eγ(x, c)).

However, we only need ∆O

0 induction on the ordinals instead of full induc-
tion to carry through this argument. This means that the restricted theory
FIDr([POS,QF]) proves

Rep(a) ∧ Rep(b) ∧ Rep(c) ∧Bc(a, b) → ∀x(E(x, 〈7, a, b〉)→ E(x, c)).

Consequently the (translation of the) restriction of (IG.2) to types is provable
in FIDr([POS,QF]).

Obviously every instance of full induction (L-IN) on the natural number in
T0 translates into an instance of full induction on the natural numbers in the
theory FID([POS,QF]). In addition, following the pattern of the treatment
of (IG.2), it can be easily verified that type induction (T-IN) of Tr

0 can be
handled via ∆O

0 induction on the natural numbers in FIDr([POS,QF]).

So far we have show that the three assertions of our theorem are valid for all
respective axioms. Otherwise we just have to proceed by induction on the
length of the derivation of the formula A(~U,~a). 2

It is immediate consequence of the previous theorem, Theorem 3 and well-
known results about T0 and KPi that adding (Lim), (L-UG), (Uno-Lin) and
(Uno-Con) does not increase the proof-theoretic strength of T0 or its subsys-
tems Tw

0 and Tr
0. In the next section we will see that our model construction

can be used to establish further interesting proof-theoretic equivalences.

5 Strict universes and name induction

Remember that a type W is called a universe if it consists of names only and
if we have ∀x(C(W,x) → x ∈ W ) for the closure condition C introduced in
Section 2.2. Hence, if W is a universe and a an element of W , then co(a) has
to be an element of W as well. On the other hand, if co(a) is in the universe
W , then it may happen that a does not belong to W . Such situations are
ruled out for strict universes.

The notion of strictness of universes has been introduced in Jäger, Kahle
and Studer [11] and is discussed there in greater detail. We write Str(W ) for
the conjunction of the following formulas:

(1) ∀x(co(x) ∈ W → x ∈ W ),
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(2) ∀x∀y(int(x, y) ∈ W → x ∈ W ∧ y ∈ W ),

(3) ∀x(dom(x) ∈ W → x ∈ W ),

(4) ∀f∀x(inv(f, x) ∈ W → x ∈ W ),

(5) ∀x∀f(j(x, f) ∈ W → x ∈ W ∧ (∀y ∈̇ x)(fy ∈ W )),

(6) ∀x∀y(i(x, y) ∈ W → x ∈ W ∧ y ∈ W ),

(7) ∀x(`(x) ∈ W → x ∈ W ),

(8) ∀x∀f(m(x, f) ∈ W → x ∈ W ∧ (∀y ∈ W )(fy ∈ W )).

Accordingly, a type W is called a strict universe if it is a universe and if it
satisfies the condition Str(W ).

Definition 7 1. We write SU(W ) to express that the type W is a strict
universe,

SU(W ) := U(W ) ∧ Str(W ).

2. We write SU(t) to express that the individual t is a name of a strict
universe,

SU(t) := ∃X(<(t,X) ∧ SU(X)).

The limit axiom (Lim) postulates that every name a belongs to a universe
which is named `a. In the context strictness, this axiom is now replaced by
the corresponding limit axiom for strict universes

(sLim) ∀x(<(x) → SU(`x) ∧ x ∈̇ `x).

Studying our model construction of the previous section we can easily check
that it satisfies the strict limit axiom. Hence, have the following theorem.

Theorem 8 We have for all L formulas A(~U,~a) with at most the variables
~U and ~a free:

1. If the theory Tr
0+(sLim)+(L-UG)+(Uno-Lin)+(Uno-Con) proves A(~U,~a),

then

FIDr([POS,QF]) ` Rep(~U) → A∗(~U,~a).
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2. If the theory Tw
0 + (sLim) + (L-UG) + (Uno-Lin) + (Uno-Con) proves

A(~U,~a), then

FIDw([POS,QF]) ` Rep(~U) → A∗(~U,~a).

3. If the theory T0+(sLim)+(L-UG)+(Uno-Lin)+(Uno-Con) proves A(~U,~a),
then

FID([POS,QF]) ` Rep(~U) → A∗(~U,~a).

In Jäger, Kahle and Studer [11] the principle of name induction is introduced
as an alternative to inductive generation or least universes. This axiom
schema claims that the elements of < are built up by the use of generators
only. In a certain sense it can be understood as an intensional version of ∈
induction.

Since the generators i and m do not play a role in the form of name induction
studied here we introduce the auxiliary language L− which is exactly as L
but with i and m omitted. The following theory NAI is formulated in L−.

In order to state the axiom schema of name induction we introduce the closure
condition Ĉ(U, a) which extends C(U, a) by a new clause for the universe
generator `,

Ĉ(U, a) := C(U, a) ∨ ∃x(a = `x ∧ x ∈ U).

The schema of name induction with respect to L− is the principle that there
are no definable subcollections of the names with this closure property. It is
given by

(L−-I<) ∀x(Ĉ(A, x)→ A(x)) → ∀x(<(x)→ A(x))

for all L− formulas A(u). This form of name induction will be considered now
in the context of EETJ with the strict limit axiom, uniqueness of generators
and the schema of complete induction on the natural numbers. We set

NAI := EETJ + (sLim) + (L−-UG) + (L−-IN) + (L−-I<).

Of course the formulation of (sLim), in particular the formulation of strictness
has been adjusted in the obvious way to the language L−.

Again NAIw is the system NAI with name induction restricted to types and
NAIr is obtained by restricting name induction and complete induction on
the natural numbers to types.
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We can adapt our model construction such that it satisfies name induction.
For this aim we let the operator form B0(P, a, b, c) be the disjunction of
the clauses (1)–(20) of the definition of the operator form A0(P, a, b, c) in
Section 4. B1(P, a, b, c) is the disjunction of the clauses (24)–(26) of the
definition of the operator form A1(P, a, b, c). Then the new operator form
B(P, a, b, c) from [POS,QF] is defined as

B0(P, a, b, c) ∨ [∀x∀y∀z(B0(P, x, y, z)→ P (x, y, z)) ∧ B1(P, a, b, c)].

This means that B(P, a, b, c) results from the operator form A(P,m, n, k) by
dropping all cases which deal with inductive generation.

For the rest of this section let A◦ be the translation of the L− formula A
into the language of FID([POS,QF]) which is defined as the translation A∗ in
Section 4 with the only difference that all subformulas ∃ξP ξ

A(. . . ) are replaced

by ∃ξP ξ
B(. . . ). Rep◦(a) stands for PB(a, 0, 0). In this sense the operator form

B(P, a, b, c) from [POS,QF] provides for a model of explicit mathematics with
name induction.

Theorem 9 We have for all L− formulas A(~U,~a) with at most the variables
~U and ~a free:

1. If the theory NAIr + (Uno-Lin) + (Uno-Con) proves A(~U,~a), then

FIDr([POS,QF]) ` Rep◦(~U) → A◦(~U,~a).

2. If the theory NAIw + (Uno-Lin) + (Uno-Con) proves A(~U,~a), then

FIDw([POS,QF]) ` Rep◦(~U) → A◦(~U,~a).

3. If the theory NAI + (Uno-Lin) + (Uno-Con) proves A(~U,~a), then

FID([POS,QF]) ` Rep◦(~U) → A◦(~U,~a).

Proof Of course this proof runs along the same lines as the proofs of Theo-
rem 6 and Theorem 8. Here we confine ourselves to looking at name induction
only. So we work in FID([POS,QF]), take an arbitrary L− formula B(u) and

assume ∀x(Ĉ(B, x)→ B(x))◦. Now we prove

∀ξ∀x(P ξ
B(x, 0, 0)→ B◦(x))

by full induction on the ordinals. Hence, choose an ordinal α and a natural
number a so that Pα

B(a, 0, 0). It follows P<α
B (a, 0, 0) or B(P<α

B , a, 0, 0). From
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P<α
B (a, 0, 0) we obtain B◦(a) immediately from the induction hypothesis. If

we have B(P<α
B , a, 0, 0), then we carry through a distinction by cases with

respect to a. Since B◦(u) is closed under Ĉ ◦ by assumption, the induction
hypothesis always implies B◦(a).

This settles full name induction. Again we easily see that name induction
restricted to types can be handled by ∆O

0 induction on the ordinals. Therefore
it is possible to interpret name induction for types into FIDr([POS,QF]) and
FIDw([POS,QF]). 2

This theorem and results from Jäger, Kahle and Studer [11] show that the
theories NAI, NAIw and NAIr with our without (Uno-Lin) and (Uno-Con) are
proof-theoretically equivalent to T0, Tw

0 and Tr
0, respectively.

6 Mahlo

In classical set theory an ordinal κ is called a Mahlo ordinal if it is a regular
cardinal and if for every ordinal µ less than κ and every normal function F
from κ to κ there exists a regular cardinal ν less than κ so that µ < ν and
{F(ξ) : ξ < ν} ⊂ ν. It is well-known that the existence of Mahlo ordinals
cannot be proved in theories like ZFC, provided that they are consistent.

To obtain Mahlo for explicit mathematics, we work with universes and let
them take over the role of regular cardinals. Then our Mahlo axioms will
require that for each name a and for each operation f mapping names to
names there exists a universe with name m(a, f) which contains a and is
closed under f .

In the recursive interpretation of explicit mathematics, universes correspond
to admissible sets, and the fact that an operation maps names to names
is a Π2 assertion which has to be reflected on admissibles in the shape of
universes.

The following shorthand notations are useful for obtaining a compact form
of our Mahlo axiom:

f ∈ (< → <) := ∀x(<(x)→ <(fx)),

f ∈ (r → r) := (∀x ∈̇ r)(fx ∈̇ r).

Obviously, f ∈ (< → <) and f ∈ (r → r) mean that f maps names to names
and elements of (the type named by) r to elements of (the type named by)
r, respectively. Mahloness in explicit mathematics is now expressed by the
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axioms

<(a) ∧ f ∈ (< → <) → U(m(a, f)) ∧ a ∈̇ m(a, f),(Mahlo.1)

<(a) ∧ f ∈ (< → <) → f ∈ (m(a, f)→ m(a, f)).(Mahlo.2)

The extension of the system T0 of explicit mathematics by the Mahlo axioms
is now given by

T0(M) := EETJ + (IG) + (L-IN) + (Mahlo.1) + (Mahlo.2).

If inductive generation is restricted to types, then we call the obtained system
Tw

0 (M), and if additionally induction on the natural numbers is restricted to
types the system is called Tr

0(M).

Please observe that the generator ` has no function in the theories T0(M),
Tw

0 (M) and Tr
0(M). It is included into L for the formulation of the limit axiom

(Lim) considered in the previous sections. If the Mahlo axioms are available,
then it can be easily proved. For all natural numbers n we define closed L
terms hin by recursion on n:

hi0 := λx.m(x, λy.y) and hin+1 := λx.m(x, hin).

It follows immediately from our first Mahlo axiom that hi0 is an operation
which maps each name of a type on the name of a universe containing this
name. Therefore it acts like the generator `, and the limit axiom (with hi0

in place of `) is provable in Tr
0.

The terms hi1, hi2, hi3, . . . can be used to create universes with stronger
closure conditions corresponding to (recursively) inaccessible ordinals, hy-
perinaccessible ordinals, hyperhyperinaccessible ordinals and the like. By
choosing suitable wellorderings, this process can be iterated into the transfi-
nite in a straightforward way.

Instead of pursuing this direction, however, we turn to the model construc-
tion for T0(M) or, more precisely, to a slight extension of T0(M). For its
formulation we have to work with partial functions from names to names as
well as with partial functions from (names of) types to (names of) types and
introduce the following abbreviations:

f ∈ (<y <) := ∀x(<(x) ∧ fx↓ → <(fx)),

f ∈ (ry r) := (∀x ∈̇ r)(fx↓ → fx ∈̇ r).

It is clear that our Mahlo axioms (Mahlo.1) and (Mahlo.2) follow from the
following axioms (Mahlo′.1) and (Mahlo′.2) in which we only require that the
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operation f is a partial function from names to names:

<(a) ∧ f ∈ (<y <) → U(m(a, f)) ∧ a ∈̇ m(a, f),(Mahlo′.1)

<(a) ∧ f ∈ (<y <) → f ∈ (m(a, f)ym(a, f)).(Mahlo′.2)

The three theories T0(M′), Tw
0 (M′) and Tr

0(M′) result from T0(M), Tw
0 (M) and

Tr
0(M), respectively, if we replace the Mahlo axioms (Mahlo.1) and (Mahlo.2)

by (Mahlo′.1) and (Mahlo′.2).

A universe with the name m(a, f) does not only reflect the basic type ex-
istence axioms but also the (partial or total) operation f from names to
names. In order to build our model we must therefore check, before gener-
ating a code for the universe named m(a, f), whether f is an operation from
names to names. This test can be carried through by a Π0

1 formula in the sec-
ond component of our combined operator form. So we work with a [POS,Π0

1]
operator form and formalize the construction of our model of T0(M′) in the
system FID([POS,Π0

1]).

As first component of our combined operator form [POS,Π0
1] we take the

operator form A0(P, a, b, c) introduced in Section 4. In addition we let C(P, a)
be the formula

a = 〈9, (a)1, (a)2〉 ∧ ¬P (a, 0, 0) ∧ P ((a)1, 0, 0) ∧

∀x∀y(P (x, 0, 0) ∧ {(a)2}(x) = y → P (y, 0, 0)).

Then A2(P, a, b, c) is the disjunction of the clauses (22) and (23) of the oper-
ator form A1(P, a, b, c) from Section 4 and of the following clauses (27)–(29):

(27) C(P, a) ∧ b = 0 ∧ c = 0,

(28) C(P, a) ∧ P (b, 0, 0) ∧ c = 1,

(29) C(P, a) ∧ ¬P (b, 0, 0) ∧ c = 2.

Hence A2(P, a, b, c) is (logically equivalent to) a Π0
1 operator form. The com-

bined operator form C(P, a, b, c), with which we will work now, is defined
as

A0(P, a, b, c) ∨ [∀x∀y∀z(A0(P, x, y, z)→ P (x, y, z)) ∧ A2(P, a, b, c)].

C(P, a, b, c) trivially belongs to [POS,Π0
1]. It is also easy to see that we can

prove in FIDr([POS,Π0
1]) the analogue of Lemma 5 for this operator form and

the corresponding relation constant PC.
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To embed the theory T0(M) into FID([POS,Π0
1]) we associate to each L for-

mula A the formula A+ from the language of FID([POS,Π0
1]). This translation

is as the translation of A into A∗ in Section 4 but with each occurrence of
∃ξP ξ

A(. . . ) replaced by ∃ξP ξ
C(. . . ). Accordingly, we let Rep+(a) abbreviate

PC(a, 0, 0), and E+(b, a) stands for PC(a, b, 1). The following theorem states
that T0(M′) and thus also T0(M) can be modeled in FID([POS,Π0

1]); we also
have the obvious embeddings for the subtheories obtained by restricting in-
duction.

Theorem 10 We have for all L formulas A(~U,~a) with at most the variables
~U and ~a free:

1. If the theory Tr
0(M′) + (L-UG) + (Uno-Lin) + (Uno-Con) proves A(~U,~a),

then

FIDr([POS,Π0
1]) ` Rep+(~U) → A+(~U,~a).

2. If the theory Tw
0 (M′) + (L-UG) + (Uno-Lin) + (Uno-Con) proves A(~U,~a),

then

FIDw([POS,Π0
1]) ` Rep+(~U) → A+(~U,~a).

3. If the theory T0(M′) + (L-UG) + (Uno-Lin) + (Uno-Con) proves A(~U,~a),
then

FID([POS,Π0
1]) ` Rep+(~U) → A+(~U,~a).

Proof We only must verify the two Mahlo axioms; all other parts of the
proof are as in the proof of Theorem 6. Hence let a and f be two natural
numbers so that

Rep+(a) and ∀x∀y(Rep+(x) ∧ {f}(x) = y → Rep+(y)).

Since PC is closed under C, this yields PC(〈9, a, f〉, 0, 0). It follows that
there exists an ordinal α so that Pα

C (〈9, a, f〉, 0, 0) but not P<α
C (〈9, a, f〉, 0, 0).

Hence, P<α
C is closed under A0, and we have

(1) P<α
C (a, 0, 0),

(2) ∀x∀y(P<α
C (x, 0, 0) ∧ {f}(x) = y → P<α

C (y, 0, 0)).
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As in the proof of Theorem 6 we can see that 〈9, a, f〉 codes a universe
and that E+(a, 〈9, a, f〉). This means that the conclusion of (Mahlo′.1) is
established.

For (Mahlo′.2) we still have to check that 〈9, a, f〉 reflects f . So assume that
b and c are natural numbers satisfying

E+(b, 〈9, a, f〉) and {f}(b) = c.

Because of Pα
C (〈9, a, f〉, 0, 0), the clauses (27)–(29) of the definition of A2 and

the analogue of Lemma 5 we also know

∀x(E+(x, 〈9, a, f〉) ↔ P<α
C (x, 0, 0)).

Together with (2) we obtain P<α
C (c, 0, 0)), i.e. E+(c, 〈9, a, f〉). This finishes

the proof of our theorem. 2

Obviously (M′) can be replaced by (M) in this theorem. Therefore Theorem 4
and Theorem 10 imply that the theories Tr

0(M), Tw
0 (M) and T0(M) plus the

additional axioms mentioned in Theorem 10 are contained in KPmr, KPmw

and KPm, respectively. Work in progress of Tupailo should yield that these
results are best possible modulo proof-theoretic strength.

References

[1] Michael J. Beeson. Foundations of Constructive Mathematics: Meta-
mathematical Studies. Springer, 1985.

[2] Solomon Feferman. A language and axioms for explicit mathematics. In
J.N. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in
Mathematics, pages 87–139. Springer, 1975.

[3] Solomon Feferman. Recursion theory and set theory: a marriage of
convenience. In J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors,
Generalized Recursion Theory II, Oslo 1977, pages 55–98. North Hol-
land, 1978.

[4] Solomon Feferman. Constructive theories of functions and classes. In
M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium ’78,
pages 159–224. North Holland, 1979.

[5] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part II. Annals of Pure and Applied
Logic, 79(1):37–52, 1996.

27



[6] Edward Griffor and Michael Rathjen. The strength of some Martin-Löf
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of Pure and Applied Logic, 92:113–159, 1998.

28



[19] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathemat-
ics, vol II. North Holland, 1988.

[20] Sergei Tupailo. Realization of constructive set theory into explicit math-
ematics: a lower bound for impredicative Mahlo operation. Preprint.

Address
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