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Introduction

Motivation

This thesis will study a way, in which predicative polymorphism can be treated in theories
of explicit mathematics. The concept of polymorphism plays an important role in both
computer science and mathematics. It is central to computer science, because many mod-
ern programming languages, especially in the functional and object oriented paradigms,
exhibit some form of polymorphism in their type system. In programming languages poly-
morphism is used to enable data abstraction and factoring out of common behaviour across
various components of a program. Such a mechanism is highly beneficial from an engi-
neering point of view, as it lowers the cost of debugging, maintaining and modifying large
software systems. In the object oriented paradigm, polymorphism is exploited not only
on the implementation level of a software system, but also on the specification and design
levels. Hence polymorphism is also reflected in object oriented modelling languages like,
for example, UML. A good overview of the different flavours of polymorphism is given by
Cardelli and Wegner [CW85].

In mathematics (and mathematical branches of computer science) polymorphism is
mostly studied in the form of polymorphically typed λ-calculus. This extension of simply
typed λ-calculus was introduced by Girard [GLT89], who termed it System F. Girard used
the system to prove cut elimination for second order Peano arithmetic via a functional
interpretation. However, the form of polymorphism used in System F is not without
drawbacks. It is impredicative in the sense, that one may define types by referring to the
collection of all types. Type variables appearing in a type expression σ may be instantiated
with any type at all, so in particular with σ itself. This leads to the fact that systems based
on impredicative polymorphism cannot have a straightforward set theoretic interpretation.
That is to say, such a system cannot have a model, where terms are interpreted as set-
theoretic functions and every type is interpreted as the set of all terms it contains. In
this thesis, we will study two systems of predicative polymorphism, based on the work of
Mitchell [Mit90, Mit96], where type variables range over a limited collection of types only.
For such restricted forms of polymorphism, set-theoretic models are readily available.

We will show, how our two systems of predicative polymorphism may be embedded into
two different theories of so-called explicit mathematics. Explicit mathematics was originally
introduced by Feferman [Fef75, Fef79] as a formal framework for treating constructive
mathematics. We will, however, be using a slight variation introduced by Jäger [Jäg88],
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which mainly differs from Feferman’s original approach by the use of a naming relation
on types. Explicit mathematics itself features untyped λ-abstraction, but not the typed
analogue. It is therefore interesting in its own right, to study ways, in which such typing,
particularly in the presence of polymorphism, may be simulated in an a priori type-free
environment. Initial work in this direction was conducted by Feferman [Fef92, Fef90]. More
recently Studer [Stu01] applied a similar method to predicative overloading. The main gain
of an embedding of predicative polymorphism into explicit mathematics is, that the latter
is well studied from a proof-theoretical perspective, mainly due to work by Feferman, Jäger
and Strahm [Jäg88, FJ93, JS95] as well as Marzetta [Mar93].

Goals and scope

In this thesis, we shall essentially be doing the following three things:

1. Formally introduce the notion of predicative polymorphism. In doing so, we will
consider a weaker and a slightly stronger variant.

2. Give an introduction to theories of explicit mathematics and find a particular theory,
where the λ-abstraction mechanism has all the properties required for part 3.

3. Define and interpretation mapping of predicative polymorphism into explicit math-
ematics and show that the mapping constitutes a suitable embedding.

The third part will provide us with statements about the proof-theoretic strength of pred-
icative polymorphism. In fact, we will obtain an exact correspondence in the case of the
weaker variant and an upper bound for the strength of the stronger variant.
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Chapter 1

The systems λp, λ
p
T and λ

p
T+

1.1 Overview

In the following we define three systems of polymorphically typed λ-calculus. First we
define the base system λp of predicative polymorphism as given by Mitchell [Mit90, Mit96].
λp is a fragment of System F , as presented for example by Girard [GLT89]. It features a
restricted form of polymorphism, which is achieved by splitting the types into two universes:
the universe U1 of “small” types and the universe U2 of “large” types. The crucial feature
of λp is, that variables in type expressions are taken to range over the small types only.
We then extend the system λp to λpT by adding some built-in constant types and constant
terms, most notably a recursion scheme. The third system, called λpT+, we obtain by adding
an extra closure condition to the “large” types of λpT . In the final section of this chapter,
we prove some facts about the structure of the type universes in our calculi. These facts
will become useful in a later chapter.

1.2 The λp-calculus

We first introduce the polymorphically typed λp-calculus or λp for short. To this end, we
define the preterms of λp, as well as the type expressions of λp. After introducing the usual
syntactic notions of free variables and substitution, we will provide a set of deduction rules,
which govern the way, in which certain preterms are assigned types and become well-typed
terms.

1.2.1 Preterms and type expressions

Definition 1.2.1 We define the alphabet of λp to consist of the following symbols:

1. A countable set of individual variables denoted by x, y, z, . . .,

2. a countable set of type variables denoted by t, s, r, . . .,
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3. the abstraction symbols λ and Π,

4. the universe symbols U1 and U2,

5. the equality symbol =,

6. the type arrow →,

7. the strings let and in,

8. the typing symbol : and

9. the delimiters . , ( and ).

The set of individual variables and the set of type variables are taken to be disjoint. We
speak simply of variables, when the distinction is irrelevant.

Definition 1.2.2 We define the type expressions of λp to be those generated by the gram-
mar

σ ::= t | (σ → σ) | Πt : U1.σ,

where t is a type variable. We shall be using the words “type” and “type expression”
interchangeably in the context of λp.

Definition 1.2.3 We define the preterms of λp to be those generated by the grammar

M ::= x | λx : σ.M |MM | λt : U1.M |Mσ | (let x : σ = M in M),

where x is an individual variable, t a type variable and σ a type expression of λp.

The inclusion of let in our calculus is somewhat unusual. As will become more apparent
later, the intuitive reading of let is as an operator for explicit substitution. let will allow
to substitute an arbitrary preterm for a variable in another preterm, without any universe
constraints. For an example of this, see Remark 1.2.3.

1.2.2 Free variables and substitutions

Definition 1.2.4 Let σ be a type expression of λp. We inductively define the set FV (σ)
of free type variables of σ as follows:

1. FV (σ) = {t}, if σ is the type variable t.

2. FV (σ) = FV (τ) ∪ FV (ξ), if σ is the type expression τ → ξ.

3. FV (σ) = FV (τ) \ {t}, if σ is the type expression Πt : U1.τ .

We say that σ is closed, if FV (σ) = ∅.
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Definition 1.2.5 Let T be a preterm of λp. We inductively define the set FV (T ) of free
variables of T as follows:

1. FV (T ) = {x}, if T is a variable x.

2. FV (T ) = (FV (M) \ {x}) ∪ FV (σ), if T is the preterm λx : σ.M .

3. FV (T ) = FV (M) ∪ FV (N), if T is the preterm MN .

4. FV (T ) = FV (M) \ {t}, if T is the preterm λt : U1.M .

5. FV (T ) = FV (M) ∪ FV (σ), if T is the preterm Mσ.

6. FV (T ) = FV (σ)∪FV (N)∪(FV (M)\{x}), if T is the preterm (let x : σ = N in M).

We say, that T is closed if FV (T ) = ∅.

The following definitions of substitution for type expressions and terms are somewhat
lengthy. This is due to the fact, that we must rename bound variables, in the case, where
unwanted binding of free variables would take place.

Definition 1.2.6 Let A stand for a type expression or a preterm, v for a (type or individ-
ual) variable of λp and let σ and ξ be type expressions of λp. The type expression [A/v]σ,
which results from substituting A for v in σ, we inductively define as follows:

1. [A/v] v :≡ A.

2. [A/v] s :≡ s, if s is a variable, distinct from v.

3. [A/v] (σ → ξ) :≡ ([A/v]σ)→ ([A/v] ξ).

4. [A/v] (Πv : U1.σ) :≡ Πv : U1.σ.

5. [A/v] (Πt : U1.σ) :≡ Πt : U1.([A/v]σ), if t is a type variable, distinct from v and
t /∈ FV (A).

6. [A/v] (Πt : U1.σ) :≡ Πs : U1.([A/v] ([s/t]σ)), where s is a type variable, distinct
from v, such that s /∈ FV (A) ∪ FV (σ), if t is a type variable, distinct from v and
t ∈ FV (A)

Remark 1.2.1 Note that, if v is an individual variable, then Definition 1.2.6 implies
[A/v]σ = σ for any type expression σ of λp.

Definition 1.2.7 Let A stand for a preterm or a type expression of λp, v stand for a (type
or individual) variable of λp and let T , P and Q be preterms of λp. The preterm [A/v]T ,
which results from substituting A for v in T , we inductively define as follows:

1. [A/v] v :≡ A.
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2. [A/v]w :≡ w, if w is a variable, distinct from v.

3. [A/v] (TC) :≡ ([A/v]T )([A/v]C),where C stands for a preterm or type expression.

4. [A/v] (λv : σ.P ) :≡ λv : σ.P .

5. [A/v] (λx : σ.P ) :≡ λx : ([A/v]σ).([A/v]P ), if x is a variable, distinct from v and
x /∈ FV (A).

6. [A/v] (λx : σ.P ) :≡ λy : σ.([A/v] ([y/x]P )), where y is a variable, distinct from v,
such that y /∈ FV (P ) ∪ FV (A), if x is a variable, distinct from v and x ∈ FV (A).

7. [A/v] (let v : σ = P in Q) :≡ (let v : [A/v]σ = [A/v]P in Q).

8. [A/v] (let x : σ = P in Q) :≡ (let x : [A/v]σ = ([A/v]P ) in ([A/v]Q)), if x is a
variable, distinct from v.

9. [A/v] (λv : U1.P ) :≡ λv : U1.P .

10. [A/v] (λt : U1.P ) :≡ λt : U1.([A/v]P ), if t is a variable, distinct from v and t /∈
FV (A).

11. [A/v] (λt : U1.P ) :≡ λs : U1.([A/v] ([s/t]P )), where s is a variable, distinct from v,
such that s /∈ FV (A) ∪ FV (P ), if t is a variable, distinct from v and t ∈ FV (A).

Remark 1.2.2 Note that, if v is a type variable, then for [A/v] (λx : σ.P ) case 5 of
Definition 1.2.7 applies. Similarly, if v is an individual variable, then case 10 applies for
[A/v] (λt : U1.P ).

1.2.3 The rules of λp

We now introduce the rules of λp. They are to be understood as a simultaneous definition
of the universes U1 and U2, the well-typed terms of λp and the behaviour of the symbol
=. All rules work with respect to a context, in which the free variables of a term are given
a type. The first group of rules state, how such contexts are built. The second group of
rules will be concerned with the actual typing of terms and the third group will provide us
with a notion of when two typed terms are to be considered equal.

Context axioms and rules

Formally, a context Γ is a finite ordered sequence

Γ = (v1, A1), . . . , (vk, Ak)

of pairs (vi, Ai), assigning to each variable vi, where 1 ≤ i ≤ k, a type in case vi is an
individual variable, or one of the universes U1 or U2 in case vi is a type variable. We will
write v : A for a pair (v, A) belonging to Γ. Furthermore, we will write Γ1,Γ2 for the
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sequence which results from appending Γ2 to the tail of Γ1, where Γ1 and Γ2 are sequences.
The following rules state, under what circumstances a sequence is a valid context:

(empty context) ∅ context

(U1 context)
Γ context

Γ, t : U1 context
t not in Γ

(Ui type context)
Γ � σ : Ui

Γ, x : σ context
x not in Γ

The only context axiom (empty context) states, that the empty sequence is a valid
context. The rules (U1 context) and (Ui type context) are used for introducing new typing
assumptions about variables into a context. The side condition in both of rules ensures,
that each variable is assigned at most one universe or type in a context.

The next group of rules serve to type preterms of λp. On one hand the type expressions
need to be structured into the two universes U1 and U2. The universe rules take care of this
aspect. On the other hand, we want certain terms to recieve types, which is the purpose
of the term typing rules.

Universe rules

The following rules state, when a type expression belongs to U1 and when it belongs U2.
Thus, given a type expression σ of λp, the judgement Γ�σ : Ui is to be read as “σ belongs
to the universe Ui in context Γ”.

(→ U1)
Γ � τ : U1 Γ � σ : U1

Γ � τ → σ : U1

(U1 ⊆ U2)
Γ � τ : U1

Γ � τ : U2

(Π U2)

Γ, t : U1 � σ : U2

Γ � (Πt : U1.σ) : U2

The rule (→ U1) closes the universe U1 under arrow types. (U1 ⊆ U2) states, that every
type expression in U1 is also belongs to U2. Furthermore, the universe U2 is closed under
type abstraction by the rule (Π U2).
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Term typing rules

The term typing rules assign types to certain preterms. Thus, given a preterm T and a
type σ of λp, the judgement Γ � T : σ is to be read as “T is of type σ in context Γ”. The
rules are as follows:

(var)
Γ, x : A context
Γ, x : A� x : A

(add var)
Γ � A : B Γ, x : C context

Γ, x : C � A : B

(→ Intro)

Γ, x : τ �M : τ ′ Γ � τ : U1 Γ � τ ′ : U1

Γ � (λx : τ.M) : τ → τ ′

(→ Elim)
Γ �M : τ → τ ′ Γ �N : τ

Γ �MN : τ ′

(Π Intro)

Γ, t : U1 �M : σ

Γ � (λt : U1.M) : Πt : U1.σ

(Π Elim)

Γ �M : Πt : U1.σ Γ � τ : U1

Γ �Mτ : [τ/t]σ

(let)

Γ � τ : U1 Γ, x : σ �M : τ Γ �N : σ

Γ � (let x : σ = N in M) : τ

In both (var) and (add var) the symbols A, B and C may stand for either types or
universes. The rule (var) is the basic rule for using variable typing assumptions in proofs.
The rule (add var) states, that if a typing judgement A : B holds in a context Γ, then
A : B also holds in any context obtained by adding further assumptions to Γ. The rule
(→ Intro) is used to type λ-abstraction of an individual variable, but it is restricted to
variables of a type, which is in U1. Thus passing a term of a type, which is not in U1, as
an argument to another term is not allowed. This restriction is partly bypassed by the
rule (let) and finally lifted entirely, when we introduce the system λpT+. (→ Elim) is the
usual rule for typing application of two suitable terms. To type λ-abstraction of a type
variable we have the rule (Π Intro). Correspondingly, the rule (Π Elim) is used for typing
type application, but again this rule is restricted to types in U1. Finally, (let) allows us
to explicitely substitute a term of polymorphic type σ into a variable of type σ, where the
type σ may also be one, which is not in U1.
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The equational rules of λp

The equational rules of λp fix the behaviour of the = symbol as that of typed equality.
Thus, given preterms T and S and a type expression σ of λp, the judgement Γ �T = S : σ
is to be read as “T and S are equal and of type σ in the context Γ”.

(add var=)
Γ, x : τ context Γ �M = N : σ

Γ, x : τ �M = N : σ

(ref)
Γ �M : σ

Γ �M = M : σ

(sym)
Γ �M = N : σ
Γ �N = M : σ

(trans)
Γ �M = N : σ Γ �N = P : σ

Γ �M = P : σ

(ξ)

Γ, x : σ �M = N : τ

Γ � λx : σ.M = λx : σ.N : σ → τ

(ν)
Γ �M1 = M2 : σ → τ Γ �N1 = N2 : σ

Γ �M1N1 = M2N2 : τ

(α)

Γ � λx : σ.M : σ → τ Γ � λy : σ. [y/x]M : σ → τ

Γ � λx : σ.M = λy : σ. [y/x]M : σ → τ
y /∈ FV (M)

(β)

Γ � (λx : σ.M)N : τ Γ � [N/x]M : τ

Γ � (λx : σ.M)N = [N/x]M : τ

(η)

Γ � λx : σ.(Mx) : σ → τ Γ �M : σ → τ

Γ � λx : σ.(Mx) = M : σ → τ
x /∈ FV (M)

(αΠ)

Γ � λt : U1.M : Πt : U1.σ Γ � λs : U1. [s/t]M : Πt : U1.σ

Γ � λt : U1.M = λs : U1. [s/t]M : Πt : U1.σ

(βΠ)

Γ � (λt : U1.M)τ : [τ/t]σ Γ � [τ/t]M : [τ/t]σ

Γ � (λt : U1.M)τ = [τ/t]M : [τ/t]σ
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(ηΠ)

Γ � λt : U1.(Mt) : Πt : U1.σ Γ �M : Πt : U1.σ

Γ � λt : U1.(Mt) = M : Πt : U1.σ
t /∈ FV (M)

(ξΠ)
Γ �M = N : σ

Γ � λt : U1.M = λt : U1.N : Πt : U1.σ

(νΠ)

Γ �M = N : Πt : U1.σ

Γ �Mτ = Nτ : [τ/t]σ

(let =)

Γ � (let x : σ = N in M) : τ Γ � [N/x]M : τ

Γ � (let x : σ = N in M) = [N/x]M : τ

The rule (add var=) is the equivalent to (add var) for the symbol =. (ref), (sym)
and (trans) are the usual rules for making = an equivalence relation. The rule (ξ) states,
that λ-abstraction of an individual variable preserves equality. (ξΠ) does the same for λ-
abstraction of a type variable. Likewise, the rule (ν) states, that term application preserves
equality and (νΠ) does the same for type application. The (α) and (αΠ) rules are both
instances of the usual α-conversion of λ-calculus, expressing, that terms, which differ only
in the names of bound variables are considered equal. (α) treats the case of individual
variable abstraction and (αΠ) treats the case of type variable abstraction. (β) and (βΠ)
are also well known in λ-calculus. They state, that the effect of application is substitution of
the argument into the abstracted variable. Again, we have a separate version for term and
type application. (η) and (ηΠ) make sure, that a term is equal to the same term wrapped
in redundant λ-abstraction and application. The rule (let =) defines the behaviour of the
let-operator to be that of an explicit substitution.

Remark 1.2.3 The purpose of the let-construct may require some illustration. Consider
the following example: Suppose we have derived Γ, x : σ � M : τ and Γ � N : σ in λp,
but we cannot derive Γ � σ : U1. Moreover, suppose we want to substitute N for x in M .
The natural way to do this, would be to build the preterm T :≡ (λx : σ.M)N and reduce
it to [N/x]M using the rule (β). However, since σ is not in U1, T cannot be typed in λp

and thus we may not use the rule (β) after all. In such situations the let-construct proves
to be helpful. We may instead build the preterm S :≡ (let x : σ = N in M) and conclude
Γ � S : τ , using the rule (let). Furthermore, we may then reduce S to the desired [N/x]M
using the rule (let =).

Remark 1.2.4 It is worth noting, that in order to receive System F , as used by Girard
[GLT89], we merely have to add the inverse of the rule (U1 ⊆ U2), namely

(U2 ⊆ U1)
Γ � σ : U2

Γ � σ : U1

to the universe rules of λp. This amounts to abolishing the distinction between the two
universes U1 and U2 in all of the rules of λp.
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1.3 Extending λp to λpT

In the next step, we extend the system λp by two built-in U1-types nat and bool and the
built-in terms 0 and succ, which stand for the natural number 0 and the successor function
respectively. We also add the built-in terms true, false, which represent truth values and
finally the symbols R and D, which represent a recursion operator and a case distinction
operator respectively. This is done by first extending the alphabet, preterms and type
expressions of λp, as well as the definitions for free variables and substitution. Then we
extend the rules of λp by additional universe axioms and additional term typing axioms
and rules. We also extend the equational rules of λp, but we do not need any new context
rules. The new system, which results from these extensions to λp shall be named λpT .

1.3.1 Preterms and type expressions of λpT

Definition 1.3.1 We define the alphabet of λpT to be that of λp, extended by the following
symbols:

1. The individual constants 0, true and false,

2. the type constants nat and bool and

3. the operators succ, D and R.

Definition 1.3.2 The type expressions of λpT are defined to be those generated by the
grammar

σ ::= nat | bool | t | (σ → σ) | Πt : U1.σ,

where t is a type variable. We shall be using the words “type” and “type expression”
interchangeably in the context of λpT .

Definition 1.3.3 The preterms of λpT are defined to be those generated by the grammar

M ::= x | 0 | true | false | λx : σ.M |MM | succ | RMMM | DMMM

| λt : U1.M |Mσ | (let x : σ = M in M),

where x is an individual variable, t a type variable and σ a type expression.

Note, that we may define succ to be a preterm on its own, since its type will later be fixed
to nat → nat. This cannot be done for the operators D and R, because their types will
vary, depending on the types of the arguments, to which they are applied.
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1.3.2 Free variables and substitution

Definition 1.3.4 Let σ be a type expression of λpT . To define the set FV (σ) of free type
variables of σ, we extend Definition 1.2.4 by the following case:

4. FV (σ) = ∅ if σ is the type expression bool or nat.

Definition 1.3.5 Let T be a preterm of λpT . To define the set FV (T ) of free variables of
T , we extend Definition 1.2.5 by the following cases:

7. FV (T ) = ∅ if T is the preterm 0, true, false or succ.

8. FV (T ) = FV (LMP ) if T is the preterm RLMP .

9. FV (T ) = FV (LPB) if T is the preterm DLPB.

Definition 1.3.6 Let A stand for a type expression or preterm, v for a (type or individual)
variable and let σ be a type expression of λpT . To define the type expression [A/v]σ, which
results from substituting A for v in σ, we extend Definition 1.2.6 by the following cases:

7. [A/v] bool :≡ bool.

8. [A/v]nat :≡ nat.

Definition 1.3.7 Let A stand for a preterm or type expression of λpT and let v be a (type
or individual) variable of λpT . Furthermore let T , L, M , N and P be preterms of λpT .
To define the preterm [A/v]T , which results from substituting A for v in T , we extend
Definition 1.2.7 by the following cases:

12. [A/v] 0 :≡ 0.

13. [A/v] true :≡ true.

14. [A/v] false :≡ false.

15. [A/v] succ :≡ succ.

16. [A/v] (RLMP ) :≡ R([A/v]L)([A/v]M)([A/v]P ).

17. [A/v] (DLMP ) :≡ D([A/v]L)([A/v]M)([A/v]P ).

1.3.3 Extending the rules of λp

Additional universe axioms

We add the two following axioms, stating that nat and bool are U1-types:

(nat U1) ∅� nat : U1

(bool U1) ∅� bool : U1
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Additional term typing axioms and rules

To the term typing rules of λp we add the following:

(0 nat) ∅� 0 : nat

(succ) ∅� succ : nat→ nat

(true bool) ∅� true : bool

(false bool) ∅� false : bool

(rec)

Γ � L : σ Γ �M : σ → (nat→ σ) Γ �N : nat

Γ �RLMN : σ

(case)
Γ �M : σ Γ �N : σ Γ �B : bool

Γ �DMNB : σ

The axioms (0 nat), (succ), (true bool) and (false bool) make sure that the newly
added constants recieve their intended types. The rules (rec) and (case) are used to type
the recursion and case distinction operators respectively.

Additional equational rules

We add the following axioms to treat equality for the newly introduced operators:

(case= true)
Γ �DMNtrue : σ Γ �M : σ

Γ �DMNtrue = M : σ

(case= false)

Γ �DMNfalse : σ Γ �N : σ

Γ �DMNfalse = N : σ

(rec= 0)
Γ �RLM0 : σ Γ � L : σ

Γ �RLM0 = L : σ

(rec= succ)

Γ �RLM(succN) : σ Γ �M(RLMN)N : σ

Γ �RLM(succN) = M(RLMN)N : σ

The rules (case= true) and (case= false) state, that either the first or the second
argument is returned by the D operator, depending on whether the third argument is true
or false. (rec= 0) and (rec= succ) are the usual recursion equations for the operator R.

Remark 1.3.1 Simply ignoring all mechanisms of polymorphism, we can see that the sim-
ply typed λ-calculus, referred to in [GLT89] as Gödel’s System T is clearly a subsystem of
λpT .
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1.4 Extending λpT to λpT+

In both λp and λpT the U2 types are not closed under →, that is to say, there is no way
of forming the type σ → τ when σ or τ is not a U1-type. This restriction is now lifted
by extending the system λpT by two additional rules, which will guarantee the new closure
condition. Since we do not extend the language of λpT itself, we do not need to extend the
definitions of preterms and type expressions any further. Consequently, the definitions for
free variables and substitution remain the same as in λpT . The system, which results from
adding the two extra rules to λpT shall be named λpT+.

1.4.1 Extending the rules of λpT

Additional universe rule

The following rule serves to close the universe U2 under →:

(→ U2)
Γ � σ : U2 Γ � τ : U2

Γ � σ → τ : U2

It states that, if σ and τ are U2-types, then so is the type σ → τ .

Additional term typing rule

The last rule represents the more general version of (→ Intro), that is not restricted to
U1-types.

(full → Intro)

Γ, x : σ �M : τ

Γ � λx : σ.M : σ → τ

In λpT+ we may thus pass a term of a type, which is not in U1 as an argument to another
term.

Remark 1.4.1 It is clear, that the rule (→ Intro) of λp is rendered obsolete by adding
(full → Intro). Also rendered obsolete are (let) and (let =). This is to be understood in the
following way: Assume λpT∗ to be the system λpT+ without the rule (let) and the rule (let

=). We make the following definition in λpT∗:

(let x : σ = N in M) :≡ (λx : σ.M)N

The rule (let) now turns out to be provable in λpT∗. To see this we need to show that if
Γ � σ : U2, Γ � τ : U1, Γ, x : σ �M : τ and Γ �N : σ, then

Γ � (let x : σ = N in M) : τ

Consider the following formal deduction in λpT∗:

1. Γ � σ : U2 (Assumption)
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2. Γ � τ : U1 (Assumption)

3. Γ, x : σ �M : τ (Assumption)

4. Γ �N : σ (Assumption)

5. Γ � σ → τ (→ U2)

6. Γ � λx : σ.M : σ → τ (full → Intro)

7. Γ � (λx : σ.M)N︸ ︷︷ ︸
(let x:σ=N in M)

: τ (→ Elim)

Furthermore, the rule (let =) is subsumed by the normal (β) rule of λpT∗. In this sense, it
is not necessary to include (let) and (let =) in λpT+.

1.5 The structure of λpT+ types

As we have seen, the universe rules of λpT+ divide the types into the two universes U1

and U2. We now introduce inductive characterisations for these universes, both in λpT
and λpT+, where we refer to U1 types as simple types and U2 types as polymorphic types.
These characterisations will become useful in Chapter 3, where we will be mapping type
judgements of the form Γ � T : σ to formulae of explicit mathematics. Throughout this
section, we shall use the phrase “Γ is a context of λpT” and “Γ is a context of λpT+” to
mean, that Γ context is derivable in λpT and λpT+ respectively. Since λpT+ is an extension
of λpT , every context of λpT is also a context of λpT+. The converse cannot be expected to
hold, since the context rule (Ui type context) depends on the closure conditions for the
type universes.

Lemma 1.5.1 Let σ be a type expression of λpT (λpT+). If Γ � σ : Ui is derivable in λpT
(λpT+), where i ∈ {1, 2}, then Γ is a context of λpT (λpT+).

Proof We prove this by an induction on the derivation of Γ � σ : Ui. We thus need to
consider all rules of λpT (λpT+), which may lead to a judgement of this form.

Axioms (nat U1) and (bool U1): ∅ context holds by the context axiom (empty context), so
the claim holds for both universe axioms.

Rules (var) and (add var): In these cases, the claim follows directly from the assumptions.

Rules (→ U1), (→ U2) and (U1 ⊆ U2): In these cases, the claim follows trivially by the
induction hypothesis.

Rule (Π U2): Then σ ≡ Πt : U1.ξ. So Γ, t : U1 � ξ : U2 by assumption and thus Γ, t :
U1 context holds by the induction hypothesis. This, however, can only have been
obtained by the rule (U1 context) and therefore, by assumption of that rule Γ context
holds.
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This concludes the proof. 2

Lemma 1.5.2 Let Γ be a context of λpT (λpT+). Then any initial segment of Γ is also a
context of λpT (λpT+).

Proof This is an induction on the length n of Γ.

n = 0: Then Γ is the empty sequence and any initial segment Γ′ of Γ must also be the
empty sequence. Thus the claim holds by the axiom (empty context).

n 7→ n+ 1: Then Γ is of the form ∆, x : C, where x is a variable and C stands for either a
type expression or a universe. Let Γ′ be an initial segment of Γ. If Γ′ is Γ itself, then
there is nothing to prove. Assume, therefore, that Γ′ is already an initial segment
of ∆. Since ∆, x : C context holds, this must have been concluded using the rule
(U1 context) or the rule (Ui type context). If (U1 context) was applied, then ∆ is
a context of λpT (λpT+) by assumption and thus the claim holds by the induction
hypothesis, since ∆ has length n. Otherwise, if (Ui type context) was applied, then
by assumption ∆ � σ : Ui, where σ is a type expression and i ∈ {1, 2}. Therefore
by Lemma 1.5.1, ∆ is a context of λpT (λpT+) and thus the claim again follows by
induction hypothesis, since again ∆ has length n.

2

Lemma 1.5.3 Let Γ be a context of λpT (λpT+), such that Γ � σ : Ui is derivable in λpT
(λpT+), where i ∈ {1, 2}. Furthermore, let Σ be a sequence, such that Γ,Σ is a context of
λpT (λpT+). Then Γ,Σ � σ : Ui is also derivable in λpT (λpT+).

Proof This is an easy induction on the length n of the sequence Σ.

n = 0: In this case Γ,Σ is Γ and the claim follows by assumption.

n 7→ n+ 1: Let Σ be the sequence Σ′, x : C of length n + 1, where x is a variable and C
stands a universe or type expression. Therefore Σ′ is a sequence of length n and,
since Γ,Σ is a context of λpT (λpT+), then so is Γ,Σ′ by Lemma 1.5.2. Thus, by the
induction hypothesis Γ,Σ′�σ : Ui. We may therefore apply the rule (add var) to get
Γ,Σ � σ : Ui.

2

To make reasoning easier, we now introduce the notion of a type variable context. This
reflects the fact, that judgements of the form σ : Ui, where σ is a type expression and
i ∈ {1, 2}, depend only on the binding of type variables. Some of the following lemmata
might also hold for contexts in general. However, since we do not need them in the general
form, we prove only the restricted versions for the sake of simplicity.
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Definition 1.5.1 Let Γ be a context of λpT (λpT+). We define the sequence Γ�type to consist
of exactly those elements of Γ, which are of the form (t : U1) for some type variable t of
λpT+, in the same order, in which they appear in Γ.

Definition 1.5.2 We call a context Γ of λpT (λpT+) a type variable context of, λpT (λpT+) if
and only if all its elements are of the form (t : U1), where t is a type variable.

Lemma 1.5.4 Let Γ be a context of λpT (λpT+). Then Γ �type is a type variable context of
λpT (λpT+).

Proof We only need to show that Γ �type is a context of λpT (λpT+). The fact that it is
a type variable context then follows trivially, by the definition of Γ �type. The proof goes
by induction on the derivation of Γ context. We thus only need to consider the context
axioms and rules.

Axiom (empty context): Then Γ = ∅ and thus also Γ�type= ∅, so Γ�type is a context of λpT
(λpT+), again by the axiom (empty context).

Rule (U1 context): So Γ = Γ′, t : U1 and by assumption Γ′ context holds, so by the in-
duction hypothesis Γ′ �type is a type variable context. Since Γ′, t : U1 context holds
by assumption, t : U1 does not appear in Γ′ and thus it does not appear in Γ′ �type
either. Therefore, again by the rule (U1 context) Γ′ �type, t : U1 context. Then the
claim holds, since Γ′ �type, t : U1 = Γ�type.

Rule (Ui type context): Then by assumption Γ′ � σ : U1, where Γ = Γ′, x : σ. So by
Lemma 1.5.1, we have Γ′ context. Therefore, by induction hypothesis Γ′ �type is a
type variable context and Γ′ �type= (Γ′, x : σ)�type= Γ�type, so Γ�type context holds.

Therefore, the claim holds for all contexts Γ of λpT (λpT+), which concludes the proof. 2

Lemma 1.5.5 Let Γ be a context of λpT (λpT+) and σ a type expression of λpT (λpT+), such
that Γ�σ : U1 is derivable in λpT (λpT+). Then Γ�type �σ : U1 is also derivable in λpT (λpT+).

Proof The proof is an induction on the derivation of Γ �σ : U1. We need to consider only
those rules and axioms, which lead to a judgment of this form.

Axiom (nat U1) and axiom (bool U1): Then Γ = ∅ = Γ�type.

Rule (var): Then σ ≡ t for some type variable t and Γ = Γ′, t : U1. By assumption Γ′, t : U1

is a context of λpT (λpT+) and Γ�type= Γ′ �type, t : U1. So applying the rule (var) again,
we conclude Γ�type �t : U1.

Rule (add var): Then Γ = Γ′, x : C and by assumption Γ′ � σ : U1 and Γ′, x : C context.
So by the induction hypothesis, Γ′ �type �σ : U1. We must distinguish the case, where
x is an individual variable from the one, where it is a type variable.
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Case 1) x is an individual variable: Then Γ �type= Γ′ �type and the claim holds triv-
ially.

Case 2) x is a type variable: In this case, since Γ′, x : C context holds, x : C does
not appear in Γ′ and thus x : C does not appear in Γ′ �type either. Therefore,
Γ′ �type, x : C is a context of λpT (λpT+) by rule (U1 context) and indeed Γ′ �type, x :
C = Γ�type. Applying the rule (add var) again, we then also have Γ�type �σ : U1.

Rule (→ U1): Then σ ≡ τ → ξ for some type expressions τ and ξ. Therefore, by assump-
tion Γ � τ : U1 and Γ � ξ : U1, so by induction hypothesis we have Γ �type �τ : U1

and Γ�type �ξ : U1. Thus applying rule (→ U1) again, we get Γ�type �σ : U1.

Therefore, the claim holds in all cases and thus the proof is complete. 2

Definition 1.5.3 Let Γ1 and Γ2 be contexts of λpT (λpT+). We define Γ1 + Γ2 to be the
sequence obtained by appending those judgements in Γ2, which are not in Γ1 to the end of
Γ1, in the same order, in which they appear in Γ2.

Lemma 1.5.6 Let Γ1 and Γ2 be type variable contexts of λpT (λpT+). Then Γ1 + Γ2 is also
a type variable context of λpT (λpT+).

Proof The claim follows by iterated application of the rule (U1 context). 2

Lemma 1.5.7 If Γ is a type variable context of λpT (λpT+), then any permutation of Γ is
again a type variable context of λpT (λpT+).

Proof The proof of this claim is immediate. A type variable context Γ is built up by
applying instances of the rule (U1 context) in a certain order. We may change this order
arbitrarily to obtain any permutation of Γ. 2

Lemma 1.5.8 Let Γ be a type variable context of λpT (λpT+), such that Γ � σ : Ui is
derivable in λpT (λpT+), where σ is a type expression and i ∈ {1, 2}. Furthermore let t be
a type variable, such that t : Ui is not in Γ and Γ′ be a sequence obtained by inserting the
judgement t : Ui at any position in Γ. Then Γ′ is a type variable context of λpT (λpT+) and
Γ′ � σ : Ui is derivable in λpT (λpT+).

Proof This claim can be shown by a trivial induction on the derivation of Γ � σ : Ui. 2

Lemma 1.5.9 Let Γ be a type variable context of λpT (λpT+), such that Γ � σ : Ui is
derivable in λpT (λpT+), where σ is a type expression and i ∈ {1, 2}. Furthermore, let Γ′ be
any permutation of Γ. Then Γ′ � σ : Ui is also derivable in λpT (λpT+).

Proof Note, that by Lemma 1.5.7, Γ′ is a type variable context. We prove the claim by
induction on the derivation of Γ � σ : Ui. We only need to be concerned with those rules,
which lead to a judgement of this form.
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Axioms (bool U1) and (nat U1): This case is trivial.

Rule (var): Then Γ is the type variable context ∆, t : Ui. Let Γ′ be a type variable context

of λpT (λpT+), such that Γ′ is a permutation of Γ. Therefore Γ′ must be of the form
Σ, t : Ui,Σ

′ and by Lemma 1.5.2 Σ, t : Ui is also a type variable context of λpT (λpT+).
We may thus use the rule (var) to conclude Σ, t : Ui�t : Ui, followed by an application
of Lemma 1.5.3 to obtain Σ, t : Ui,Σ

′ � t : Ui and therefore Γ′ � σ : Ui.

Rule (add var): Then Γ is the type variable context ∆, s : Uj, where s is a type variable
and j ∈ {1, 2}. Let Γ′ be a permutation of Γ. So Γ′ has the form Σ, s : Uj,Σ

′.
Therefore, Σ,Σ′ is a permutation of ∆. Since by assumption ∆ � σ : Ui, we may use
the induction hypothesis to obtain Σ,Σ′ � σ : Ui. Then, by Lemma 1.5.8 we have
Σ, s : Uj,Σ

′ � σ : Ui and therefore Γ′ � σ : Ui.

Rules (→ U1), (→ U2) and (U1 ⊆ U2): In these cases, the claim follows immediately by
applying the respective rule to the induction hypothesis.

Rule (Π U2): Then σ is of the form Πt : U1.τ for some type expression τ . Consider any
permutation Γ′ of Γ. Then Γ′, t : U1 is a permutation of Γ, t : U1. By assumption, we
have Γ, t : U1 � τ : U2, so by the induction hypothesis Γ′, t : U1 � τ : U2. Thus, using
the rule (Π U2) we get Γ′ � Πt : U1.τ : U2 and therefore Γ′ � σ : U2.

2

Definition 1.5.4 Let σ be a type expression of λpT (λpT+). We call σ a simple type of λpT
(λpT+), if and only if

Γ � σ : U1

is derivable in λpT (λpT+) for some type variable context Γ of λpT (λpT+).

Remark 1.5.1 By Lemma 1.5.4 and Lemma 1.5.5 it follows, that if Γ is a (not necessarily
type variable) context of λpT (λpT+) and σ is a type expression of λpT (λpT+), such that
Γ � σ : U1, then σ is a simple type of λpT (λpT+).

Lemma 1.5.10 The simple types of λpT (λpT+) can be characterised inductively by the fol-
lowing statements:

1. nat and bool are simple types of λpT (λpT+).

2. Each type variable t is a simple type of λpT (λpT+).

3. If σ and τ are simple types of λpT (λpT+), then so is σ → τ .

4. Nothing else is a simple type of λpT (λpT+).

Proof
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Statement 1: This follows trivially since ∅� bool : U1 and ∅� nat : U1 are axioms and ∅ is
a type variable context of λpT+ vacuously.

Statement 2: Consider the following derivation in λpT :

1. ∅ context (empty context)

2. t : U1 context (U1 context)

3. t : U1 � t : U1 (var)

Therefore, t is a simple type of λpT (λpT+).

Statement 3: By assumption, we have Γ1 � σ : U1 and Γ2 � τ : U1 for some type variable
contexts Γ1 and Γ2 of λpT (λpT+). By Lemma 1.5.6 Γ1 + Γ2 and Γ2 + Γ1 are type
variable contexts of λpT (λpT+). By Lemma 1.5.3 we also have Γ1 + Γ2 � σ : U1 and
Γ2 + Γ1 � τ : U1. Now, trivially Γ1 + Γ2 is a permutation of Γ2 + Γ1. Therefore, by
Lemma 1.5.9 we conclude Γ1 + Γ2 � τ : U1. By applying the rule (→ U1), we get
Γ1 + Γ2 � σ → τ : U1. Therefore, σ → τ is a simple type of λpT (λpT+).

Statement 4: Assume Γ � σ : U1 holds for some type variable context Γ of λpT (λpT+) and
type expression σ. Then, by inspection of the axioms and rules for universes, σ can
only have one of the above forms.

2

Definition 1.5.5 Let σ be a type expression of λpT . We call σ a polymorphic type of λpT ,
if and only if

Γ � σ : U2

is derivable in λpT for some type variable context Γ of λpT .

Lemma 1.5.11 The polymorphic types of λpT can be characterised inductively by the fol-
lowing statements:

1. Every simple type of λpT+ is a polymorphic type of λpT .

2. If σ is a polymorphic type of λpT , then so is Πt : U1.σ.

3. Nothing else is a polymorphic type of λpT .

Proof

Statement 1: If σ is a simple type of λpT+, then Γ � σ : U1 for some type variable context
Γ of λpT . So by the rule (U1 ⊆ U2), we also have Γ � σ : U2 and therefore σ is a
polymorphic type of λpT .
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Statement 2: If σ is a polymorphic type of λpT , then Γ � σ : U2 for some type variable
context Γ of λpT . If t : U1 is in Γ, then consider a permutation Γ′ of Γ, such that Γ′

is of the form ∆, t : U1. By Lemma 1.5.7 Γ′ is also a type variable context of λpT .
Furthermore, by Lemma 1.5.9 we have ∆, t : U1 � σ : U2. Therefore, by the rule (Π
U2), ∆ � Πt : U1.σ : U2. Thus, since ∆ is a type variable context of λpT , Πt : U1.σ is
a polymorphic type of λpT . On the other hand, if t : U1 is not in Γ then consider the
following derivation:

1. Γ context (Assumption)

2. Γ � σ : U2 (Assumption)

3. Γ, t : U1 context (U1 context)

4. Γ, t : U1 � σ : U2 (add var)

5. Γ � Πt : U1.σ : U2 (Π U2)

So since Γ is a type variable context of λpT , Πt : U1.σ is also a polymorphic type of
λpT .

Statement 3: Assume Γ � σ : U2 for some context Γ of λpT . Then, by inspection of the
universe rules of λpT , it follows, that σ must have one of the above forms.

2

Definition 1.5.6 Let σ be a type expression of λpT+. We call σ a polymorphic type of λpT+

if and only if
Γ � σ : U2

is derivable in λpT+ for some type variable context Γ of λpT+.

Lemma 1.5.12 The polymorphic types of λpT+ can be characterised inductively by the fol-
lowing statements:

1. Every polymorphic type of λpT is a polymorphic type of λpT+.

2. If σ is a polymorphic type of λpT+, then so is Πt : U1.σ.

3. If σ and τ are polymorphic types of λpT+, then so is σ → τ .

4. Nothing else is a polymorphic type of λpT+.

Proof

Statement 1: The statement holds trivially, since λpT+ is an extension of λpT .

Statement 2: The proof of this statement is completely analogous to the one for statement
2 in Lemma 1.5.11.
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Statement 3: By assumption, we have Γ1 � σ : U2 and Γ2 � τ : U2 for some type variable
contexts Γ1 and Γ2 of λpT+. By Lemma 1.5.6 Γ1 + Γ2 and Γ2 + Γ1 are type variable
contexts of λpT+. By Lemma 1.5.3 we also have Γ1 + Γ2 �σ : U2 and Γ2 + Γ1 � τ : U2.
Now, trivially Γ1 + Γ2 is a permutation of Γ2 + Γ1. Therefore, by Lemma 1.5.9 we
conclude Γ1 + Γ2 � τ : U2. By applying the rule (→ U1), we get Γ1 + Γ2 �σ → τ : U2.
Therefore, σ → τ is a polymorphic type of λpT+.

Statement 4: By inspection of the universe axioms and rules of λpT+, this statement follows
trivially.

2



Chapter 2

Explicit mathematics: The theory
EET and extensions

2.1 Overview

In this thesis, we will often be using theories of so called explicit mathematics. In the
following, we will discuss the logical framework, that is commonly referred to as explicit
mathematics. We will see, that it is not a single logical theory, but rather a collection of
axioms, which may be customised into a particular theory, according to specific require-
ments. The introduction of explicit mathematics shall be undertaken in three steps. In the
first step, we shall explain the underlying logic of partial terms. In the second step, we will
introduce the first-order part of explicit mathematics, also known as applicative theories.
The last step will contain the definition of the second-order part, that is to say a group of
axioms for types and names, which will complete the introduction.

2.2 The logic of partial terms

The logic of partial terms (henceforth also called LPT) is essentially normal first-order
predicate logic, extended by the concept of definedness, denoted by the relation symbol ↓.
Given a term t, the formula t↓ is intuitively read as either “t has a value” in mathematical
contexts or “t terminates” in computer science contexts. We will now define both the
syntax and the semantics of LPT and also quote the usual adequacy-theorem.

2.2.1 The syntax of LPT

A language L of LPT consists of the following:

Definition 2.2.1 The alphabet of L consists of

1. A countable set V ar = {a, b, c, x, y, z, . . .} of variables,
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2. the logical symbols ¬, ∨ and ∃,

3. the unary symbol ↓ for definedness,

4. the binary symbol = for equality,

5. for every natural number n a (possibly empty) set Funn of n-ary function symbols,

6. for every natural number n a (possibly empty) set Reln of n-ary relation symbols and

7. the auxiliary symbols ( and ).

We shall be referring to the 0-ary function symbols of L as the constant symbols of L. With
these symbols, we now succesively define L-terms, L-atomic formulae and L-formulae in
the usual way.

Definition 2.2.2 The L-terms are inductively defined as follows:

1. Every variable and constant of L is an L-term.

2. If t1, . . . , tn are L-terms, and f is an n-ary function symbol of L such that n ≥ 1,
then f(t1, . . . , tn) is also an L-term.

3. Nothing else is an L-term.

Definition 2.2.3 The L-atomic formulae are exactly the expressions a↓, a = b as well as
R(t1, . . . , tn), where a, b, t1, . . . , tn are L-terms and R is an n-ary relation symbol.

Definition 2.2.4 The L-formulae are inductively defined as follows:

1. Every L-atomic formula is an L-formula.

2. If A is an L-formula, then ¬A is an L-formula.

3. If A and B are L-formulae, then (A ∨ B) is an L-formula.

4. If A is an L-formula and x is a variable of L, then ∃xA is an L-formula.

5. Nothing else is an L-formula.

In case there is no danger of ambiguity, we shall merely be speaking of terms, atomic
formulae and formulae instead of L-terms, L-atomic formulae and L-formulae respectively.
Outermost braces shall usually be omitted. We shall be employing vector notation for finite
sequences of terms, writing the sequence a1, . . . , an as ~a. Given a term t we define the set
FV (t) of free variables of t in the usual inductive manner. This definition is extended as
usual to the set FV (A) of free variables of a formula A. We call t closed, if FV (t) = ∅ and
A closed if FV (A) = ∅. Furthermore, given terms ~a, we define A[~a/~x] to be the formula,
which results from substituting all free occurrences of the variables ~x in A by the terms ~a
respectively, avoiding collisions by renaming bound variables. The term t[~a/~x] is defined
analogously.
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Definition 2.2.5 We define the following syntactic abbreviations

1. (A ∧ B) :≡ ¬(¬A ∨ ¬B).

2. (A → B) :≡ (¬A ∨ B).

3. (A↔ B) :≡ (A → B) ∧ (B → A).

4. ∀xA :≡ ¬∃x¬A.

5. a ' b :≡ (a↓ ∨ b↓ → a = b).

6. (a 6= b) :≡ a↓ ∧ b↓ ∧ ¬(a = b).

Furthermore, we make the convention, that ¬ binds stronger than ∨ and ∧ , which in turn
bind stronger than → and ↔ .

We will now list the axioms and deduction rules of LPT, which will supply us with a
Hilbert-calculus and a notion of provability. The axioms and rules may be divided into four
groups: Propositional axioms and rules, quantifier axioms and rules, definedness axioms
and equality axioms.

I. Propositional axioms and rules These are the usual rules of any sound and complete
Hilbert-calculus for propositional logic.

II. Quantifier axioms and rules For all formulae A and B, all terms a and all variables
x, we have the axiom

(Q1) (A[a/x] ∧ a↓) → ∃xA

and the rule

(∃)
A → B
∃xA → B

x /∈ FV (B)

III. Definedness axioms For every n-ary function symbol f and relation symbol R and
for all terms a, b, t1, . . . , tn, we have the axioms

(D1) a↓, for all variables or constants a.

(D2) f(t1, . . . , tn)↓ → t1↓ ∧ . . . ∧ tn↓.
(D3) (a = b) → a↓ ∧ b↓.
(D4) R(t1, . . . , tn)↓ → t1↓ ∧ . . . ∧ tn↓.

IV. Equality axioms For every n-ary function symbol f and relation symbol R and for
all terms a, b, t1, . . . , tn, s1, . . . , sn, we have the axioms

(E1) (a = a).
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(E2) (a = b) → (b = a).

(E3) (a = b) ∧ (b = c) → (a = c).

(E4) R(s1, . . . , sn) ∧ (s1 = t1) ∧ . . . ∧ (sn = tn) → R(t1, . . . , tn).

(E5) (s1 = t1) ∧ . . . ∧ (sn = tn) → f(s1, . . . , sn) ' f(t1, . . . , tn).

The axioms (D2) to (D4) are sometimes referred to as the strictness axioms. For any
formula A, we write LPT ` A to express, that A is proveable in LPT, using the axioms and
rules given under I to IV. We immediately obtain the duals of the quantifier axiom and
rule for the universal quantifier in the form of the following easy lemma.

Lemma 2.2.1 For all formulae A and B, all terms a and all variables x, we have

(i) LPT ` ∀xA ∧ a↓ → A[a/x].

(ii) If x /∈ FV (A) then LPT ` A → B =⇒ LPT ` A → ∀xB.

Proof To prove (i), we note that by axiom (Q1) we have

LPT ` ¬A[a/x] ∧ a↓ → ∃x¬A

We now use Definition 2.2.5 to recieve the following syntactic equivalences

¬A[a/x] ∧ a↓ → ∃x¬A ≡ ¬(¬A[a/x] ∧ a↓) ∨ ∃x¬A ≡ A[a/x] ∨ ¬a↓ ∨ ∃x¬A ≡
A[a/x] ∨ ¬(a↓ ∧ ¬∃x¬A) ≡ A[a/x] ∨ ¬(a↓ ∧ ∀xA)

So, we also have LPT ` A[a/x] ∨ ¬(a↓ ∧ ∀xA) and by the usual propositional rule LPT `
¬(a↓ ∧∀xA)∨A[a/x], which is again syntactically equivalent to LPT ` a↓ ∧∀xA → A[a/x].
This proves (i).

To prove (ii) we assume that LPT ` A → B[a/x] and x /∈ FV (A). Via some propo-
sitional rules we obtain the contraposition, namely LPT ` ¬B[a/x] → ¬A and since
x /∈ FV (A), we may apply (∃) to derive LPT ` ∃x¬B → ¬A. Applying contraposition
again, we get LPT ` A → ¬∃x¬B, which is syntactically equivalent to LPT ` A → ∀xB.
This proves (ii) and concludes the proof. 2

2.2.2 The semantics of LPT

We now define a semantics for LPT. It differs from a semantics of normal predicate logic
only in the interpretation of the function symbols. These are interpreted as partial func-
tions, that is to say functions, which may be undefined on certain elements of their domain.

Definition 2.2.6 We define a partial L-structure to be a quintuple

M = (M, I0, I1, I2, `)

with the following properties
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1. M is a non-empty set and ` an object, such that ` /∈M . M is called the universe ofM.

2. I0 is a function, mapping each n-ary relation symbol R of L to a function I0(R) : Mn →
{true, false}.

3. I1 is a function, mapping each constant symbol c of L to an object I1(c) ∈M .

4. I2 is a function, mapping each n-ary function symbol f of L where n ≥ 1 to a partial
function I2(f) from Mn to M .

We also write |M| for M , ./M for ` and RM, cM and fM for I0(R), I1(c) and I2(f) respec-
tively.

Definition 2.2.7 Given an L-structureM, we define a valuation (inM) to be a function
α : V ar → |M|. Furthermore, if α is a valuation, x ∈ V ar and m ∈ |M|, then α[x = m]
is the valuation defined by

α[x = m](v) :=

{
m, if v = x

α(v) otherwise.

Definition 2.2.8 LetM be a partial L-structure and α a valuation inM. We inductively
define the value Mα(t) ∈ |M| ∪ {./M} of a term t as

1. Mα(t) := α(t) if t is a variable symbol,

2. Mα(t) := tM if t is a constant symbol,

3. Mα(t) := fM(Mα(t1), . . . ,Mα(tn)) if t ≡ f(t1, . . . , tn), where t1, . . . , tn are terms
and f is an n-ary function symbol, Mα(t1), . . . ,Mα(tn) ∈ |M| and fM is defined on
(Mα(t1), . . . ,Mα(tn)), otherwise Mα(t) :=./M.

Definition 2.2.9 Let M be a partial L-structure and α a valuation in |M|. We induc-
tively define the value Mα(A) ∈ {true, false} of a formula A as follows:

1. If A ≡ a↓ then

Mα(A) :=

{
true, if Mα(a) ∈ |M|,
false otherwise.

2. If A ≡ (a = b) then

Mα(A) :=


true, if Mα(a),Mα(b) ∈ |M|

and Mα(a) =Mα(b),

false otherwise.
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3. If A ≡ R(t1, . . . , tn), where R is an n-ary relation symbol and t1, . . . , tn are terms
then

Mα(A) :=


true, if Mα(t1), . . . ,Mα(tn) ∈ |M|

and RM(Mα(t1), . . . ,Mα(tn)) = true,

false otherwise.

4. If A ≡ ¬B for a formula B then

Mα(A) :=

{
true, if Mα(B) = false

false otherwise.

5. If A ≡ (B ∨ C) then

Mα(A) :=

{
true, if Mα(B) = true or Mα(C) = true

false otherwise.

6. If A ≡ ∃xB for a formula B then

Mα(A) :=

{
true, if Mα[x=m](B) = true for some m ∈ |M|
false otherwise.

2.2.3 LPT is adequate with respect to L-structures

Given an L-structureM and a formula A, we say that A is valid in M and writeM |= A
if Mα(A) = true for all valuations α in M. Given a set of formulae Th, we say M is a
model of Th and write M |= Th, if every formula in Th is valid in M. If A is valid in all
L-structures, we say that A is valid and write LPT |= A.

We may now state the adequacy theorem, which says that LPT is sound and complete
with respect to the L-structures. A proof of the theorem shall be omitted, as it is beyond
the scope of this thesis.

Theorem 2.2.1 For every L-formula A, we have

LPT ` A ⇐⇒ LPT |= A.

This concludes our introduction of LPT. The next two sections will now be concerned
with a number of useful theories and extensions of LPT, which together constitute explicit
mathematics.
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2.3 Applicative theories

Now we introduce a collection of theories, stated in the language L1 of the logic of partial
terms. The theories deal with the application of terms on other terms in a partial setting
and are therefore referred to as applicative theories. The intuition behind L1-terms is, that
they represent mathematical operations or machine programs, which can be composed to
form more complex operations or programs. We first define the language L1 and then state
the axioms, which make up the central theory BON, as well as some further axioms, which
may be added to extend the theory. Next, we will see that λ-abstraction is defineable in
an extension of BON and that we may prove a recursion theorem.

2.3.1 The language L1

The language L1 consists of a number of constant symbols for building terms, as well as
an application symbol. Here is the formal definition.

Definition 2.3.1 The language L1 of LPT consists of the following:

1. The constant symbols k, s, p, p0, p1, 0, sN, pN, dN, rN.

2. The binary function symbol ∗.

3. The unary relation symbol N.

The constant symbols of L1 will be read with the following intuitive interpretations: k and
s act as the usual combinators of combinatory algebra, p, p0 and p1 represent pairing and
projection, 0 will stand for the natural number 0, sN and pN for the numerical successor
and predecessor, dN for the numerical case distinction operator and rN for the primitive
recursion operator.

The function symbol ∗ is mostly written infix, that is to say, given L1-terms a and b, we
write a∗b or ab instead of ∗(a, b). Furthermore, we make the convention, that ∗ associates
to the left, so the term a1a2a3 . . . an is read as (. . . ((a1a2)a3) . . . an).

Definition 2.3.2 Let a and b be terms and x a variable. We define the following syntactic
abbreviations:

1. a ∈ N :≡ N(a)

2. (∃x ∈ N)A :≡ ∃x(x ∈ N ∧ A)

3. (∀x ∈ N)A :≡ ∀x(x ∈ N → A)

4. (a : N→ N) :≡ (∀x ∈ N)(ax ∈ N)

5. (a : Nn+1 → N) :≡ (ax : Nn → N)

6. (a, b) :≡ pab
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7. a′ :≡ sNa

8. > :≡ 0 = 0.

9. 1 :≡ 0′.

Furthermore, let a1, . . . , an+1 be terms. We then define n-Tuples inductively as (a1) := a1

and (a1, . . . , an+1) := ((a1, . . . , an), an+1).

2.3.2 The theory BON and some extensions

The theory BON is a set of axioms, which ensure, that the symbols of L1 behave according
to their intuitive interpretation. The axioms are split into the following five groups:

I. Partial combinatory algebra

(BON1) kxy = x.

(BON2) sxy↓ ∧ sxyz ' (xz)(yz).

II. Pairing and projections

(BON3) p0x↓ ∧ p1x↓.
(BON4) p0(x, y) = x ∧ p1(x, y) = y.

III. Natural Numbers

(BON5) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N).

(BON6) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x).

(BON7) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x).

IV. Definition by numerical cases

(BON8) u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x.

(BON9) u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y.

V. Primitive recursion on N

(BON10) (f : N→ N) ∧ (g : N3 → N) → (rNfg : N2 → N).

(BON11) (f : N→ N) ∧ (g : N3 → N) ∧ x ∈ N ∧ y ∈ N ∧ h = rNfg
→ hx0 = fx ∧ hx(y′) = gxy(hxy).

In this thesis, we will also be making use of two axioms, which may be added to BON.
The first one states that the application of two terms is always defined. More formally:

(Tot) ∀x∀y(xy↓).
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The second axiom, that we will be adding to BON states, that terms behave extensionally
with respect to application. The formulation, we will use is the following:

(Ext) ∀f∀g [∀x(fx ' gx) → f = g] .

By BON+(Tot) we will denote the theory BON, extended by the axiom (Tot). Accordingly
BON+(Tot)+(Ext) will denote BON+(Tot), extended by the axiom (Ext). Furthermore,
if K stands for one of the theories BON, BON+(Tot) or BON+(Tot)+(Ext) and A is an
L1-formula, then by K ` A we mean, that A is proveable by the axioms and rules of LPT,
together with the axioms of K.

We conclude this part by proving a theorem, which states that, if we are working in
BON+(Tot), all L1-terms are defined and we may thus reason, without paying special
attention to definedness.

Theorem 2.3.1 For every L1-term t we have

BON+(Tot) ` t↓.

Proof We proceed by induction on the structure of t.

t = x for some variable x: The statement holds trivially, since BON ` x↓ for every variable,
by axiom (D1).

t = c for some constant c: The statement holds trivially, since BON ` c↓ for every con-
stant, by axiom (D1).

t = mn for L1-terms m and n: By the induction hypothesis we have

BON+(Tot) ` m↓,(1)

BON+(Tot) ` n↓.(2)

Furthermore, by the axiom (Tot), we have

(3) BON+(Tot) ` ∀x∀y(xy)↓.

So using (1) and (2), we may apply the quantifier rule introduced in Lemma 2.2.1
twice to (3) and obtain

BON+(Tot) ` mn↓.

Therefore, BON+(Tot) ` t↓ holds for all L1-terms t. 2

Remark 2.3.1 By Theorem 2.3.1 it follows, that if we are working in a system containing
BON+(Tot), we have the equivalence s ' t ↔ s = t for all L1-terms s and t.
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2.3.3 λ-abstraction and the recursion theorem

Using the combinators k and s, we now define the λ-abstraction λx.t of an L1-term t.
We then prove a number of lemmata, which together show us, that our definition of λ-
abstraction behaves like the usual untyped λ-calculus, as long as we are reasoning in the
system BON+(Tot)+(Ext). The first lemma will show us, that λ-abstraction of a variable
causes that variable to become bound and that the application of an abstracted term λx.t
to some other term s causes s to be substituted for x in t. This last property corresponds
to the usual β-rule of untyped λ-calculus. The next lemma states, that two λ-abstracted
terms, which differ only in their bound variables are provably equal. This fact corresponds
to the usual α-rule of untyped λ-calculus. We then show, that if two terms are provably
equal, then they stay equal, when the same variable is abstracted in both of them. The
corresponding rule in untyped λ-calculus is usually referred to as ξ-conversion. The next
lemma, that we then prove about λ-abstraction is a property, which corresponds to the
usual η-rule in untyped λ-calculus. It states, that application is in a certain sense inverse
to abstraction. The last property, that we show about λ-abstraction usually also holds in
the untyped λ-calculus, namely that term substitution commutes with abstraction.

Using our definition of λ-abstraction, we then prove the existence of a fixed point combi-
nator rec in BON+(Tot). A recursion theorem takes care of this, proceeding in the standard
way of the untyped λ-calculus. To conclude this section, we prove two lemmata, which
will become useful later. The first one ensures the existence of a boolean case distinction
operator dB in BON, which will be the counterpart of the D operator of λpT . The second
lemma shows, that there exists a recursor r, which will be used to model the R operator
of λpT .

Definition 2.3.3 Let t be an L1-term and x a variable of L1. We define the term λx.t
inductively as follows:

1. λx.t :≡ skk, if t = x.

2. λx.t :≡ kt, if x /∈ FV (t).

3. λx.t :≡ s(λx.m)(λx.n) if x ∈ FV (t), where t = mn.

Lemma 2.3.1 Given a variable x and L1-terms t and a, the following statements hold

1. FV (λx.t) = FV (t) \ {x}.

2. BON+(Tot) ` (λx.t)a = t [a/x].

3. BON+(Tot) ` (λx.t)x = t.

Proof

Claim 1.: We prove this by induction on the definition of λx.t.
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t = x: Then FV (t) = {x}, so

FV (t) \ {x} = ∅ = FV (skk) = FV (λx.x) = FV (λx.t).

t is a term and x /∈ FV (t): Then

FV (t) \ {x} = FV (t) = FV (kt) = FV (λx.t).

t = mn, where m and n are terms and x ∈ FV (t): Then

FV (t) \ {x} = (FV (m) ∪ FV (n)) \ {x} = (FV (m) \ {x}) ∪ (FV (n) \ {x})
ind. hyp.

= FV ((λx.m)(λx.n)) = FV (s(λx.m)(λx.n)) = FV (λx.mn) = FV (λx.t).

Therefore, the claim holds.

Claim 2.: We again prove this by induction on λx.t, reasoning in BON+(Tot).

t = x: Then we have

(λx.t)a = (λx.x)a = skka = ka(ka) = a = t [a/x] .

t is a term and x /∈ FV (t): Then

(λx.t)a = kta = t = t [a/x] .

t = mn, where m and n are terms and x ∈ FV (t): Then

(λx.t)a = s(λx.m)(λx.n)a = (λx.m)a(λx.n)a
ind. hyp.

= m [a/x]n [a/x]

= mn [a/x] = t [a/x] .

Therefore, the claim holds.

Claim 3.: This follows directly from claim 2.

2

Lemma 2.3.2 Let t be an L1-term, x a variable and y a variable, such that y /∈ FV (t).
Then

BON+(Tot) ` λx.t = λy.(t [y/x]).

Proof The proof is an induction on the definition of λx.t.

t = x: Then λx.t ≡ skk. Therefore, BON+(Tot) proves λy.(t [y/x]) = λy.y = skk = λx.t.

x /∈ FV (t): Then λx.t ≡ kt. Therefore, BON+(Tot) proves λy.(t [y/x]) = λy.t and since
y /∈ FV (t), also λy.t = kt = λx.t.
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x ∈ FV (t), and t = mn, where m and n are terms: Then λx.t ≡ s(λx.m)(λx.n) and by in-
duction hypothesis BON+(Tot) proves

s(λx.m)(λx.n) = s(λy.(m [y/x]))(λy.(n [y/x])) = λy.((m [y/x])(n [y/x])) =

λy.((mn) [y/x]) = λy.(t [y/x]).

So the claim holds in all cases. 2

Lemma 2.3.3 Let s and t be L1-terms and x a variable. Then

BON+(Tot)+(Ext) ` ∀x(t = s) → λx.t = λx.s.

Proof We prove this by reasoning informally in BON+(Tot)+(Ext). Assume that ∀x(t =
s) holds. Since by Lemma 2.3.1 we have (λx.t)x = t and (λx.s)x = s, we also get
∀x ((λx.t)x = (λx.s)x). Therefore applying the axiom (Ext), it follows, that λx.t = λx.s.

2

Lemma 2.3.4 Let t be an L1-term and x be a variable, such that x /∈ FV (t). Then

BON+(Tot)+(Ext) ` λx.(tx) = t.

Proof Let y be a variable. By Lemma 2.3.1 BON+(Tot) proves (λx.(tx))y = (tx) [y/x] = ty
and so, by the quantifier rule obtained in Lemma 2.2.1, BON+(Tot) ` ∀y((λx.(tx))y = ty).
Therefore, our claim holds by the axiom (Ext). 2

Lemma 2.3.5 Let t and a be L2-terms and x and y distinct variables such that x /∈ FV (a).
Then

BON+(Tot) ` (λx.t) [a/y] = λx.(t [a/y]).

Proof We proceed by induction on the definition of λx.t.

t = x: Then BON+(Tot) proves

(λx.t) [a/y] = (skk) [a/y] = skk = λx.t = λx.(t [a/y]).

t is a term and x /∈ FV (t): Then BON+(Tot) proves

(λx.t) [a/y] = (kt) [a/y] = k(t [a/y])

and since by assumption x /∈ FV (a), we also have

λx.(t [a/y]) = k(t [a/y]) = (λx.t) [a/y] .
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t = mn, where m and n are terms and x ∈ FV (t): Then BON+(Tot) proves

(λx.t) [a/y] = (s(λx.m)(λx.n)) [a/y] = s((λx.m) [a/y])((λx.n) [a/y])

and with the induction hypothesis

s((λx.m) [a/y])((λx.n) [a/y]) = s(λx.(m [a/y]))(λx.(n [a/y])).

On the other hand, BON+(Tot) also proves

λx.(t [a/y]) = λx.((mn) [a/y]) =

λx.((m [a/y])(n [a/y])) = s(λx.(m [a/y]))(λx.(n [a/y])).

Therefore the lemma holds in all cases. 2

Theorem 2.3.2 There exists a closed term rec, such that

BON+(Tot) ` recf = f(recf).

for all terms f .

Proof Define t := λy.f(yy) and rec := λf.tt. Then, by Lemma 2.3.1 BON+(Tot) proves
the following equalities:

recf = (λy.f(yy))(λy.f(yy)) = f((λy.f(yy))(λy.f(yy))) = f(recf).

This concludes the proof. 2

Lemma 2.3.6 There exists a closed L1-term dB, such that for all L1-terms l and m, the
following statements hold:

1. BON+(Tot) ` dBlm1 = l

2. BON+(Tot) ` dBlm0 = m

Proof Define dB := λl.λm.λb.dNlmb1. Therefore, we have

dBlm1 = dNlm11 = l,

which proves statement 1. Furthermore,

dBlm0 = dNlm01 = m,

so statement 2 also holds, concluding the proof. 2
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Lemma 2.3.7 There exists a closed L1-term r, such that for all L1-terms l, m and n, the
following statements hold:

1. BON+(Tot) ` rlm0 = l

2. BON+(Tot) ` rlm(n′) = m(rlmn)n

Proof Define f := λr.λl.λm.λn.dNl (m (rlm (pNn)) (pNn))n0 and r := recf . Therefore, we
have

rlm0 = (recf) lm0 = f (recf) lm0 = f rlm0 = dNl (m (rlm (pN0)) (pN0)) 00 = l,

which proves 1. Furthermore, we have

rlm (n′) = (recf) lm (n′) = f (recf) lm (n′) = f rlm (n′) = dNl (m (rlmn)n) (n′) 0

and, since BON ` ¬(n′ = 0), we get

dNl (m (rlmn)n) (n′) 0 = m (rlmn)n,

which proves 2 and concludes the proof. 2

2.4 Explicit mathematics

We are now ready to introduce explicit mathematics, which consists of adding a type
structure to BON. Types are read as being collections of programs, which fulfil a certain
specification or operations, which have certain properties. A special feature of explicit
mathematics is, that types can themselves be represented by operations via a naming
relation. Every type must have at least one operation, which is its name, but not all
operations are names for types. In order to introduce explicit mathematics, we will first
extend the language L1 to the language L2 by adding second order symbols. We then list
the axioms of the base theory EET and provide two different induction schemes, by which
EET may be extended.

2.4.1 The language L2

The language L2 is an extension of L1, although strictly speaking, it is no longer a language
of LPT, since it contains second order constructs.

Definition 2.4.1 The language L2 is defined by adding the following symbols to L1:

1. A countable set of type variables U, V,W,X, Y, Z, . . ..

2. The binary relation symbols ∈ and <.
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3. A constant symbol ce for every natural number e.

L2-individual terms are now defined identically to the L1-terms, taking into account the
extra individual constants ce for all natural numbers e. We can define atomic formulae
and formulae of L2 in the following manner.

Definition 2.4.2 L2-atomic formulae are exactly the expressions of the form a↓, (a = b),
N(a), (a ∈ X), (X = Y ) and <(a,X), where a and b are individual terms of L2 and X
and Y are type variables.

Definition 2.4.3 L2-formulae are defined inductively as follows

1. Every L2-atomic formula is an L2-formula.

2. If A is an L2-formula, then so is ¬A.

3. If A and B are L2-formulae, then so is (A ∨ B).

4. If A is an L2-formula, x an individual variable and X a type variable, then ∃xA and
∃XA are also L2-formulae.

5. Nothing else is an L2-formula.

In the theory EET, which we will shortly introduce, a special subset of the L2-formulae
plays and important role, namely the elementary formulae. The next definition introduces
this notion.

Definition 2.4.4 An L2-formula is called stratified, if it does not contain the relation
symbol <. A stratified formula, which does not contain bound type variables is called an
elementary formula.

In addition to the abbreviations defined in Definitions 2.2.5 and 2.3.2, we also state abbre-
viations, involving the newly introduced symbols.

Definition 2.4.5 Let A be an L2-formula, a, b and ~a = a1, . . . , an L2-terms and ~X =
x1, . . . , xn type variables. We define the following syntactic abbreviations:

1. ∀XA :≡ ¬∃X¬A.

2. (∃x ∈ X)A :≡ ∃x(x ∈ X ∧ A).

3. (∀x ∈ X)A :≡ ∀x(x ∈ X → A).

4. <(~a, ~X) :≡ <(a1, X1) ∧ . . . ∧ <(an, Xn).

5. a ∈̇ b :≡ ∃X(<(b,X) ∧ a ∈ X).
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2.4.2 The theory EET

The theory EET consists of the axioms of BON, extended by further axioms to take care of
the second order part of the language. The axioms, which are added can be divided into
three groups. The first group, termed the naming and extensionality axioms ensures that
every type has a name, that names uniquely refer to types and that types as collections are
extensional. The second group makes up the elementary comprehension axioms. These
axioms state, that in EET, one may form a type using comprehension restricted to an
elementary formula A and that the constant ce is a name of that type, where e is a Gödel
number of A. The last group of axioms consists of further strictness axioms. That is,
strictness is extended to hold also for the ∈ and < relations. We now list the axioms just
described.

I. Naming and extensionality

(EET1) ∃x<(x,X).

(EET2) <(a,X) ∧ <(a, Y ) → X = Y .

(EET3) ∀z(z ∈ X ↔ z ∈ Y ) → X = Y .

II. Elementary comprehension
In order to state these axioms correctly, we assume, that we have an arbitrary, but
fixed scheme of assigning Gödel-numbers to L2-formulae at our disposal. Further-
more, we assume, that we have arbitrary, but fixed enumerations v1, v2, v3, . . . and
V 1, V 2, V 3, . . . for the individual variables and the type variables respectively. Let A
be an L2-formula, in which only the individual variables v1, v2, v3, . . . , vn and only
the type variables V 1, V 2, V 3, . . . , V m appear free. Moreover, let ~a = a1, . . . , am and
~X = X1, . . . , Xn. We write A[~a, ~X] to denote the L2-formula, which is obtained by

replacing vi by ai and Vj by Xj, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Now let A[x, ~y, ~Z]
be an elementary L2-formula with Gödel-number e.

(EET4) ∃X∀x(x ∈ X ↔ A[x, ~u, ~V ]).

(EET5) <(~v, ~V ) ∧ ∀x(x ∈ X ↔ A[x, ~u, ~V ]) → <(ce(~u,~v), X).

III. Strictness

(EET6) a ∈ X → a↓.
(EET7) <(a,X) → a↓.

Thus, by the theory EET we mean all the axioms of BON, along with the axioms (EET1) to
(EET7), using LPT as the logic for the first-order part and classical logic with equality for
the second-order part. Consequently, given an L2-formula A, by writing EET ` A we mean,
that A is provable in the framework just described. We will denote the use of additional
axioms with EET in the usual manner, so for example EET+(Tot)+(Ext) will denote the
theory obtained by adding the axioms (Tot) and (Ext) to EET.
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Given an elementary formula A[x, ~y, ~Z], we write {x : A[x, ~u, ~V ]} for the type which is
formed by elementary comprehension with A and call this a type expression. Accordingly,
we write b ∈ {x : A[x, ~u, ~V ]} for A[b, ~u, ~V ]. Using this notation, we may now express the
types

N := {x : N(x)},
B := {x : x = 0 ∨ z = 1},

S → T := {f : (∀x ∈ S)(fx ∈ T )},

where S and T are type expressions. By axiom (EET5), it follows immediately, that there
exists a closed term nat, such that EET ` <(nat,N). Accordingly, there exists a closed
term bool, for which EET ` <(bool,B). The next lemma shows, that there also exists a
name for S → T , which is uniform in the names of S and T .

Lemma 2.4.1 Let a and b be L2-terms and A and B types of EET. There exists a closed
L2-term imp, such that

EET ` <(a,A) ∧ <(b, B)→ <(imp(a, b), A→ B).

Proof By definition we have A → B = {f : (∀x ∈ A)(fx ∈ B)}. Assume, that e be
the Gödel number of the formula (∀x ∈ A)(fx ∈ B). Then, by elementary comprehension
<(ce(a, b), A→ B) and the lemma holds with imp := ce. 2

We now show that the ∈̇ relation, which was introduced as an abbreviation in Definition
2.4.5, behaves like the normal ∈ relation with respect to imp, but works on names, rather
than types.

Lemma 2.4.2 Let a, b, f and x be L2-terms. Then we have

EET ` <(a) ∧ <(b) ∧ f ∈̇ imp(a, b) ∧ x ∈̇ a → fx ∈̇ b.

Proof We prove this claim by reasoning in EET. From <(a) ∧ <(b) we know, that
∃X<(a,X) and ∃X<(b,X). Thus, there exist types A and B, such that

<(a,A),(1)

<(b, B).(2)

Furthermore, from f ∈̇ imp(a, b) we know, that ∃X[<(imp(a, b), X) ∧ f ∈ X]. Therefore,
with Lemma 2.4.1 and Axiom (EET2), it follows that

(3) f ∈ A→ B.

From x ∈̇ a we get ∃X[<(a,X) ∧ x ∈ X]. So again by Axiom (EET2), it follows that

(4) x ∈ A.

(3) and (4) together yield fx ∈ B, which in turn with (2) implies fx ∈̇ b. 2
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2.4.3 Induction schemes for L2

We now introduce two induction axioms of different strength, which can be added to
EET and quote a theorem, which states the proof-theoretic strength of the two resulting
systems. The first induction scheme is called type induction and may be used to prove
(∀x ∈ N)(x ∈ X) for some type X. The axiom is the following.

(T-IN) 0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X).

The second induction scheme is termed formula induction and can be used to prove that
(∀x ∈ N)A(x), where A is an arbitrary L2-formula. The axiom reads as follows.

(F-IN) A(0) ∧ (∀x ∈ N)(A(x) → A(x′)) → (∀x ∈ N)A(x).

We derive two other induction schemes in EET+(T-IN), which will allow us to reason more
comfortably later. The first one is formula induction restricted to elementary formulae.
The second derived induction scheme, is a form of type induction, involving the ∈̇ relation
on names of types.

Lemma 2.4.3 Let A be an elementary L2-formula. Then

EET+(T-IN) ` [A(0) ∧ (∀n ∈ N)(A(n) → A(n′))] → (∀n ∈ N)A(n).

Proof We may form the type
TA := {n : A(n)}

in EET by elementary comprehension. Now instantiating the axiom scheme (T− IN) with
TA, we get

EET+(T-IN) ` [0 ∈ TA ∧ (∀n ∈ N)(n ∈ TA → n′ ∈ TA)] → (∀n ∈ N)(n ∈ TA)

and so the lemma holds by definition of TA. 2

Lemma 2.4.4 Let a and t be L2-terms. Then

EET+(T-IN) ` <(a) → [(t [0/x] ∈̇ a ∧ (∀n ∈ N)(t [n/x] ∈̇ a → t [n′/x] ∈̇ a))

→ (∀n ∈ N)(t [n/x] ∈̇ a)].

Proof By Lemma 2.4.3 it suffices to show, that

EET+(T-IN) ` <(a) → (t(x) ∈̇ a ↔ A(x))

for some elementary L2-formula A. We have t(x) ∈̇ a ≡ ∃X[<(a,X) ∧ t(x) ∈ X]. So there
exists a type T , such that t(x) ∈̇ a ↔ <(a, T ) ∧ t(x) ∈ T . Now, since by assumption
we have <(a) and axiom (EET2) holds, we also have t(x) ∈̇ a ↔ t(x) ∈ T . We define
A(x) :≡ t(x) ∈ T . Thus A is an elementary formula and this concludes the proof. 2

The last lemma, which we show here states, that the recursion operator introduced in
Lemma 2.3.7 reflects the typing properties of the R operator of λpT . We can do this using
our alternative form of the type induction scheme.
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Lemma 2.4.5 Let a, l, m and n be L1-terms, such that

EET+(T-IN)+(Tot) ` <(a) ∧ l ∈̇ a ∧ m ∈̇ imp(a, imp(nat, a)) → (∀n ∈ N)(rlmn ∈̇ a).

Proof To prove this claim we reason informally in EET+(T-IN)+(Tot). Let x be a variable
such that x /∈ FV (lm). We define t := rlmx and aim to use Lemma 2.4.4. Therefore, we
first show t [0/x] ∈̇ a. We have the following equalities

t [0/x] = rlm0 = dNl(m(rlm(pN0))(pN0))00 = l

and we have l ∈̇ a by assumption, so t [0/x] ∈̇ a holds. We next show, that

(∗) (∀n ∈̇N)(t [n/x] ∈̇ a → t [sNn/x] ∈̇ a).

also holds. Again, we have the following equalities

t [sNn/x] = rlmsNn = dNl(m(rlmn)n)sNn0.

Since ¬(sNn = 0), we must show that m(rlmn)n ∈̇ a. By assumption we have rlmn ∈̇ a and
m ∈̇ imp(a, imp(nat, a)), so by Lemma 2.4.2 it follows, that m(rlmn) ∈̇ imp(nat, a) and thus,
again by Lemma 2.4.2 we have m(rlmn)n ∈̇ a, so (∗) also holds. Therefore, our claim holds
by Lemma 2.4.4. 2

The following theorem about EET+(T-IN)+(Tot)+(Ext) and EET+(F-IN)+(Tot)+(Ext)
sets these theories in relation to systems of arithmetic and therefore determines their proof-
theoretical strength. The theorem can be constructed from various results given in [Fef79],
[Jäg88], [Mar93] and [JS95]. Its proof is not in the scope of this thesis.

Theorem 2.4.1 We have the following proof-theoretical equivalences

1. The theories EET+(T-IN)+(Tot)+(Ext) and PA.

2. The theories EET+(F-IN)+(Tot)+(Ext) and Π0
∞−CA.



Chapter 3

The interpretation of λ
p
T+ in explicit

mathematics

3.1 Overview

We now show, that the systems λpT and λpT+ can be embedded naturally into the theories
EET+(T-IN) and EET+(F-IN) respectively. We first define an interpretation mapping, which
assigns L2-terms to preterms of λpT+ and L2-formulae to type judgements of λpT+. Then we
prove some important properties of the interpretation mapping. Using these properties,
we then prove the actual embedding theorems, embedding both the typing and equality
rules of λpT and λpT+.

3.2 The interpretation mapping [[·]]
In the following, we successively define the interpretation mapping [[·]], using the symbol
ambiguously in the customary way. We first define, how variables of λpT+ are interpreted.
Then, we move on to simple type expressions, followed by preterms. Ultimatively, we
define, how entire type judgements and contexts are interpreted as formulae of explicit
mathematics.

Definition 3.2.1 We define ·̂ to be an injective mapping of the variables of λpT into the
variables of the language L2. That is to say, if v and w are distinct variables of λpT , then
v̂ and ŵ are distinct variables of L2.

Definition 3.2.2 Given a simple type expression σ of λpT+, we define the L2-term [[σ]]
inductively as follows:

1. If σ is of the form nat, then [[σ]] := nat.

2. If σ is of the form bool, then [[σ]] := bool.

3. If σ is a type variable t, then [[σ]] := t̂.
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4. If σ is of the form τ → ξ, where τ and ξ are simple type expressions of λpT+, then
[[σ]] := imp([[τ ]] , [[ξ]]).

Definition 3.2.3 Given a preterm T of λpT+, we define the L2-term [[T ]] inductively as
follows:

1. If T is a variable x, then [[T ]] := x̂.

2. If T is 0, then [[T ]] := 0.

3. If T is true, then [[T ]] := 1.

4. If T is false, then [[T ]] := 0.

5. If T is of the form succ, then [[T ]] := sN.

6. If T is of the form DLMB, where L, M and B are preterms of λpT+, then [[T ]] :=
dB [[L]] [[M ]] [[B]].

7. If T is of the form RLMN , where L, M and N are preterms of λpT+, then [[T ]] :=
r [[L]] [[M ]] [[N ]].

8. If T is of the form λx : σ.M , where M is a preterm of λpT+, then [[T ]] := λx̂. [[M ]].

9. If T is of the form MN , where M and N are preterms of λpT+, then [[T ]] := [[M ]] [[N ]].

10. If T is of the form λt : U1.M , where M is a preterm of λpT+, then [[T ]] := [[M ]].

11. If T is of the form Mσ, where M is a preterm and σ a type expression of λpT+, then
[[T ]] := [[M ]].

12. If T is of the form (let x : σ = M in N), where M and N are preterms and σ a type
expression of λpT+, then [[T ]] := (λx̂. [[N ]]) [[M ]].

In the next definition we will make crucial use of the inductive characterisations for the
type universes, which were established by Lemmata 1.5.10, 1.5.11 and 1.5.12.

Definition 3.2.4 Let T be a preterm and σ a type expression of λpT+. We interpret judge-
ments about T and σ as L2-formulae in the following manner:

1. [[σ : U1]] := <([[σ]]).

2. [[T : σ]] := [[T ]] ∈̇ [[σ]], if σ is a simple type expression of λpT+.

3. [[T : Πt : U1.σ]] := ∀t̂(<(t̂) → [[T : σ]]).

4. [[T : σ → τ ]] := ∀ŝ([[(s : σ)]] → [[(Ts : τ)]]), where s is an individual variable of λpT+,
such that s /∈ FV (T ), if σ or τ is not a simple type expression of λpT+.
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Definition 3.2.5 We define the interpretation of a context Γ of λpT+ inductively as follows:

1. [[∅]] := >.

2. [[Γ, t : U1]] := [[Γ]] ∧ [[t : U1]].

3. [[Γ, x : σ]] := [[Γ]] ∧ [[x : σ]].

4. [[Γ, t : U2]] := [[Γ]].

3.3 Properties of [[·]]
We now prove some important properties of the interpretation mapping [[·]]. First, we
will see, that the separation of variables into type and individual variables is preserved
by the interpretation. Then we prove the most important property for our application,
namely that [[·]] commutes with substitution of both type and individual variables. The
last property, which we show, is that if the interpretations of two preterms of λpT+ are
provably equal in EET, then they may replace each other in the interpretation of a type
judgement.

Lemma 3.3.1 Let T be a preterm, t a type variable, σ a simple type expression and x an
individual variable of λpT+. Then

1. t̂ /∈ FV ([[T ]]),

2. x̂ /∈ FV ([[σ]]).

Proof Both claims follow by trivial inductions and the fact that ·̂ is injective. 2

Lemma 3.3.2 Let σ and τ be simple type expressions of λpT+ and t a type variable. Then

EET ` [[[τ/t]σ]] = [[σ]]
[
[[τ ]] /t̂

]
.

Proof We proceed by induction on the structure of σ.

σ ≡ nat: Then the lemma trivially holds, since both nat and [[nat]] are closed.

σ ≡ bool: Again the lemma trivially holds, since both bool and [[bool]] are closed.

σ ≡ v, where v is a type variable distinct from t: Then EET proves [[[τ/t]σ]] = [[v]] = v̂

and by definition of ·̂, we have v̂ 6= t̂, so [[σ]]
[
[[τ ]] /t̂

]
= v̂ = [[[τ/t]σ]].

σ ≡ t: Then EET proves [[[τ/t]σ]] = [[τ ]] and since [[σ]] = t̂, also [[σ]]
[
[[τ ]] /t̂

]
= [[τ ]].
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σ ≡ ξ → γ, where ξ and γ are simple type expressions: Then EET proves

[[[τ/t]σ]] = [[[τ/t] (ξ → γ)]] = [[[τ/t] ξ → [τ/t] γ]] = imp([[[τ/t] ξ]] , [[[τ/t] γ]])

and by the induction hypothesis EET proves

imp([[[τ/t] ξ]] , [[[τ/t] γ]]) = imp([[ξ]]
[
[[τ ]] /t̂

]
, [[γ]]

[
[[τ ]] /t̂

]
)

= imp([[ξ]] , [[γ]])
[
[[τ ]] /t̂

]
= [[σ]]

[
[[τ ]] /t̂

]
.

This concludes the proof. 2

Lemma 3.3.3 Let σ be a (polymorphic) type expression of λpT+, τ a simple type expression
and t a type variable. Furthermore, let T be a preterm of λpT+. Then

EET ` [[T : σ]]
[
[[τ ]] /t̂

]
↔ [[T : [τ/t]σ]] .

Proof We proceed by induction on the structure of σ. We list the necessary equivalences.
In the case of logical equivalences, we mean, that they are provable in EET.

σ is a simple type expression:

[[T : σ]]
[
[[τ ]] /t̂

]
≡ ([[T ]] ∈̇ [[σ]])

[
[[τ ]] /t̂

]
Lemma 3.3.1≡ [[T ]] ∈̇ ([[σ]]

[
[[τ ]] /t̂

]
)

Lemma 3.3.2↔ [[T ]] ∈̇ [[[τ/t]σ]] ≡ [[T : [τ/t]σ]]

σ ≡ Πt : U1.ξ and ξ is a type expression:

[[T : σ]]
[
[[τ ]] /t̂

]
≡ (∀t̂(<(t̂) → [[T : ξ]]))

[
[[τ ]] /t̂

]
≡ [[T : σ]] ≡ [[T : [τ/t]σ]]

σ ≡ Πs : U1.ξ, s is a type variable, distinct from t and ξ is a type expression:
There are two cases to consider.

Case 1) s /∈ FV (τ):

[[T : σ]]
[
[[τ ]] /t̂

]
≡ ∀ŝ(<(ŝ) → [[T : ξ]])

[
[[τ ]] /t̂

]
≡ ∀ŝ(<(ŝ) → ([[T : ξ]]

[
[[τ ]] /t̂

]
))

ind. hyp.↔ ∀ŝ(<(ŝ) → ([[T : [τ/t] ξ]])) ≡ [[T : [τ/t]σ]]

Case 2) s ∈ FV (τ):

[[T : σ]]
[
[[τ ]] /t̂

]
≡ ∀ŝ(<(ŝ) → [[T : ξ]])

[
[[τ ]] /t̂

]
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We choose a type variable r, distinct from s, such that r /∈ FV (τ) ∪ FV (σ).
Then we have

∀ŝ(<(ŝ) → [[T : ξ]])
[
[[τ ]] /t̂

]
↔

∀r̂(<(r̂) → [[T : ξ]] [r̂/ŝ])
[
[[τ ]] /t̂

] ind. hyp.↔

∀r̂(<(r̂) → [[T : [r/s] ξ]])
[
[[τ ]] /t̂

] ind. hyp.↔
∀r̂(<(r̂) → [[T : [τ/t] [r/s] ξ]]) ≡
[[T : Πr : U1. [τ/t] [r/s] ξ]] ↔
[[T : [τ/t] (Πs : U1.ξ)]] ≡
[[T : [τ/t]σ]]

σ ≡ ξ → η, where ξ or η is not a simple type expression: Then

[[T : σ]]
[
[[τ ]] /t̂

]
≡ (∀ŝ([[s : ξ]] → [[Ts : η]]))

[
[[τ ]] /t̂

]
,

where s is an individual variable of λpT+, such that s /∈ FV (T ). Now, since s is an

individual variable and t a type variable of λpT+, the variables ŝ and t̂ are distinct
and by Lemma 3.3.1 ŝ /∈ FV ([[σ]]). Therefore,

(∀ŝ([[s : ξ]] → [[Ts : η]]))
[
[[τ ]] /t̂

]
≡

∀ŝ(([[s : ξ]]
[
[[τ ]] /t̂

]
) → ([[Ts : η]]

[
[[τ ]] /t̂

]
))

ind. hyp.↔
∀ŝ([[s : [τ/t] ξ]] → [[Ts : [τ/t] η]]) ≡
[[([τ/t] ξ) → ([τ/t] η)]] ≡
[[T : [τ/t]σ]] .

Hence, the claim holds for all type expressions σ. 2

Lemma 3.3.4 Let T and S be preterms and x an individual variable of λpT+. Then

EET+(Tot) ` [[[S/x]T ]] = [[T ]] [[[S]] /x̂] .

Proof We prove this lemma by induction on the structure of T . We list the necessary
equalities and mean, that they are provable by reasoning in EET+(Tot) and λpT+. The
axiom (Tot) is needed, since we require the properties asserted by Lemma 2.3.2 and 2.3.5
to prove this claim in the case, where T is a λ-abstraction over an individual variable.

T ≡ true or T ≡ false or T ≡ 0 or T ≡ succ:

[[[S/x]T ]] = [[T ]] = [[T ]] [[[S]] /x̂]

T ≡ x:
[[[S/x]T ]] = [[S]] = x̂ [[[S]] /x̂] = [[T ]] [[[S]] /x̂]
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T ≡ y, where y is an individual variable, distinct from x:

[[[S/x]T ]] = [[T ]] = ŷ [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡ λx : σ.M :

[[[S/x]T ]] = [[T ]] = (λx̂. [[M ]]) [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡ λy : σ.M , where y is an individual variable, distinct from x:
We must distinguish two cases.

Case 1) y /∈ FV (S):

[[[S/x]T ]] = [[λw : σ. [S/x]M ]] = λŵ. [[[S/x]M ]]
ind. hyp.

=

λŵ.([[M ]] [[[S]] /x̂])
Lemma 2.3.5

= (λŷ. [[M ]]) [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

Case 2) y ∈ FV (S):

[[[S/x]T ]] = [[λz : σ. [S/x] [z/y]M ]] = λẑ. [[[S/x] [z/y]M ]]

where z is an individual variable, distinct from both y and x, such that z /∈
FV (M) ∪ FV (S). Therefore,

λẑ. [[[S/x] [z/y]M ]]
ind. hyp.

= λẑ.([[[z/y]M ]] [[[S]] /x̂])
ind. hyp.

=

λẑ.(([[M ]] [ẑ/ŷ]) [[[S]] /x̂])
Lemma 2.3.5

= (λẑ.([[M ]] [ẑ/ŷ])) [[[S]] /x̂]
Lemma 2.3.2

=

(λŷ. [[M ]]) [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡MN :

[[[S/x]T ]] = [[([S/x]M)([S/x]N)]] = [[[S/x]M ]] [[[S/x]N ]]
ind. hyp.

=

([[M ]] [[[S]] /x̂])([[N ]] [[[S]] /x̂]) = ([[M ]] [[N ]]) [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡ RLMN or T ≡ DMNB: These cases are analogous to the case T ≡MN . The oper-
ators succ, R and D are closed and map to closed terms under [[·]].

T ≡ λt : U1.M : Since t is a type variable and x an individual variable, they are distinct.
We must thus distinguish between two cases:

Case 1) t /∈ FV (S):

[[[S/x]T ]] = [[λt : U1. [S/x]M ]] = [[[S/x]M ]]
ind. hyp.

=

[[M ]] [[[S]] /x̂] = [[T ]] [[[S]] /x̂]
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Case 2) t ∈ FV (S): In this case we choose a type variable s of λpT+ in such a way,
that s /∈ FV (S) ∪ FV (M). Then we have

[[[S/x]T ]] = [[λs : U1.([S/x] [s/t]M)]] = [[[S/x] [s/t]M ]]
ind. hyp.

=

[[[s/t]M ]] [[[S]] /x̂]
ind. hyp.

= [[M ]]
[
ŝ/t̂
]

[[[S]] /x̂]
Lemma 3.3.1

=

[[M ]] [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡Mσ:

[[[S/x]T ]] = [[([S/x]M)([S/x]σ)]] = [[[S/x]M ]]
ind. hyp.

=

[[M ]] [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡ (let x : σ = M in N):

[[[S/x]T ]] = [[(let x : ([S/x]σ) = [S/x]M in N)]] = (λx̂. [[N ]])([[[S/x]M ]])
ind. hyp.

=

(λx̂. [[N ]])([[M ]] [[[S]] /x̂]) = ((λx̂. [[N ]]) [[M ]]) [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

T ≡ (let y : σ = M in N), where y is an individual variable, distinct from x:

[[[S/x]T ]] = [[(let x : ([S/x]σ) = [S/x]M in [S/x]N)]] =

(λŷ. [[[S/x]N ]])([[[S/x]M ]])
ind. hyp.

= (λŷ. [[N ]] [[[S]] /x̂])([[M ]] [[[S]] /x̂])
Lemma 2.3.5

=

((λŷ. [[N ]]) [[[S]] /x̂])([[M ]] [[[S]] /x̂]) = ((λŷ. [[N ]]) [[M ]]) [[[S]] /x̂] = [[T ]] [[[S]] /x̂]

Hence, the claim holds for all preterms T . 2

Lemma 3.3.5 Let T and S be preterms, σ a type expression and x an individual variable
of λpT+. Then

EET+(Tot) ` [[T : σ]] [[[S]] /x̂] ↔ [[[S/x]T : σ]] .

Proof We proceed by induction on the structure of σ. We list the necessary equivalences.
In the case of logical equivalences, we mean, that they are provable in EET+(Tot). The
axiom (Tot) is needed, since we make use of Lemma 3.3.4 to prove the claim in the case,
where σ is a simple type expression.

σ is a simple type expression:

[[T : σ]] [[[S]] /x̂] ≡ ([[T ]] ∈̇ [[σ]]) [[[S]] /x̂]
Lemma 3.3.1≡ ([[T ]] [[[S]] /x̂]) ∈̇ [[σ]]

Lemma 3.3.4↔
[[[S/x]T ]] ∈̇ [[σ]] ≡ [[[S/x]T : σ]]

σ ≡ Πt : U1.ξ, where ξ is a type expression:

[[T : σ]] [[[S]] /x̂] ≡ ∀t̂(<(t̂) → [[T : ξ]]) [[[S]] /x̂]
Lemma 3.3.1≡

∀t̂(<(t̂) → [[T : ξ]] [[[S]] /x̂])
ind. hyp.↔ ∀t̂(<(t̂) → [[[S/x]T : ξ]]) ≡ [[[S/x]T : σ]]
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σ ≡ τ → ξ, where τ or ξ is not a simple type expression:

[[T : σ]] [[[S]] /x̂] ≡ ∀ŷ([[y : τ ]] → [[Ty : ξ]]) [[[S]] /x̂] ↔
∀ẑ([[z : τ ]] → [[Tz : ξ]]) [[[S]] /x̂] ,

where y is an individual variable, such that y /∈ FV (T ) and z is an individual variable,
distinct from x, such that z /∈ FV (T ). Then

∀ẑ([[z : τ ]] → [[Tz : ξ]]) [[[S]] /x̂] ≡ ∀ẑ([[z : τ ]] [[[S]] /x̂] → [[Tz : ξ]]) [[[S]] /x̂])
ind. hyp.↔ ∀ẑ([[z : τ ]] → [[([S/x]T )z : ξ]]) ↔ [[[S/x]T : σ]] .

Hence, the claim holds for all type expressions σ. 2

Lemma 3.3.6 Let T and S be preterms and σ a type expression of λpT+, such that

EET ` [[S]] = [[T ]] → ([[S : σ]] ↔ [[T : σ]]) .

Proof We prove this lemma by induction on the structure of σ, reasoning in EET.

σ is a simple type expression: In this case,

[[S : σ]] ≡ [[S]] ∈̇ [[σ]] ,

[[T : σ]] ≡ [[T ]] ∈̇ [[σ]] .

Define A(x) :≡ x ∈̇ [[σ]]. We now have [[T ]] = [[S]] → (A([[S]]) ↔ A([[T ]])) and
therefore, by assumption A([[S]]) ↔ A([[T ]]) which proves the claim.

σ ≡ Πt : U1.τ : In this case

[[S : σ]] ≡ ∀t̂(<(t̂) → [[S : τ ]]),

[[T : σ]] ≡ ∀t̂(<(t̂) → [[T : τ ]])

and by induction hypothesis [[S : τ ]] ↔ [[T : τ ]], so the claim holds.

σ ≡ τ → ξ, where τ or ξ is not simple: In this case

[[S : σ]] ≡ ∀x̂([[x : τ ]] → [[Sx : ξ]]),

[[T : σ]] ≡ ∀ŷ([[y : τ ]] → [[Ty : ξ]]),

where x /∈ FV (S) and y /∈ FV (T ). We choose a variable z /∈ FV (S) ∪ FV (T ) and
note that

∀x̂([[x : τ ]] → [[Sx : ξ]]) ↔ ∀ẑ([[z : τ ]] → [[Sz : ξ]]),

∀ŷ([[y : τ ]] → [[Ty : ξ]]) ↔ ∀ẑ([[z : τ ]] → [[Tz : ξ]]).

Now since by assumption [[S]] = [[T ]], we also have [[Sz]] = [[Tz]] and so by induction
hypothesis [[Sz : ξ]] ↔ [[Tz : ξ]]. Therefore, our claim holds.

Thus, the claim holds for all type expressions σ, which concludes the proof. 2
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3.4 Embedding theorems

Finally, we show, that the interpretation mapping [[·]] indeed defines an embedding of λpT
into EET+(T-IN)+(Tot) and of λpT+ into EET+(F-IN)+(Tot). For this purpose, we first
show, that the interpretation of a simple type can always be proved to be a name. Then
we show, that if a type judgement is derivable in λpT , then its interpretation is provable
in EET+(T-IN)+(Tot). Correspondingly, we show, that if a type judgement is derivable in
λpT+, then its interpretation is provable in EET+(F-IN)+(Tot).

Induction is required when proving, that the interpretation preserves typing of the R-
operator. The difference in the power of the induction schemes arises from the fact, that
in λpT+ the R-operator may also work on types, which are not simple. This is not possible
in the case of λpT , where all arrow-types are automatically simple.

The last theorem, which we prove states, that if we add the axioms (Ext) to the theories,
the typed equality symbol of λpT+ corresponds to equality in explicit mathematics.

Theorem 3.4.1 Let Γ be a context and σ a type expression of λpT+, such that Γ � σ : U1.
Then

EET ` [[Γ]] → <([[σ]]).

Proof The claim follows immediately from Remark 1.5.1 and the definition of [[·]]. 2

Theorem 3.4.2 Let Γ be a context, T a preterm and σ a type expression of λpT , such that
Γ � T : σ. Then

EET+(T-IN)+(Tot) ` [[Γ]] → [[T : σ]] .

Proof We prove this theorem by induction on the derivation of Γ � T : σ, reasoning in
EET+(T-IN)+(Tot). We check, that the claim holds for each axiom of λpT and that the
claim is preserved, whenever a term typing rule of λpT is applied. Throughout the proof,
we assume, that ξ, τ , and τ ′ denote type expressions and B, L, M and N denote preterms
of λpT .

Axiom (0 nat): In this case Γ = ∅, T ≡ 0 and σ ≡ nat. By axiom (BON5), we have 0 ∈ N.

Since <(nat,N), we also have 0 ∈̇ nat. Therefore, [[0 : nat]], so also > → [[0 : nat]] and
thus [[Γ]] → [[T : σ]].

Axiom (succ): Then Γ = ∅, T ≡ succ and σ ≡ nat → nat. By axiom (BON5), we
have (∀x ∈ N)(sNx ∈ N), which means sN ∈ (N → N). Since <(nat,N), we have
sN ∈̇ imp(nat, nat) by Lemma 2.4.1 and so [[Γ]] → [[T : σ]].

Axiom (true bool): Then Γ = ∅, T ≡ true and σ ≡ bool. We have 1 ∈ {0, 1}, so 1 ∈̇ bool,
so [[Γ]] → [[T : σ]].

Axiom (false bool): Analogous to the case of Axiom (true bool), with 0 instead of 1.
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Rule (var): In this case T ≡ x and Γ = Γ′, x : σ, for some context Γ′. Since, by assumption,
Γ context holds, we have [[Γ]] ≡ [[Γ′]] ∧ [[x : σ]]. Therefore, [[Γ]] → [[x : σ]] and thus
[[Γ]] → [[T : σ]].

Rule (add var): Then Γ = Γ′, v : A, for some context Γ′ and by assumption Γ context and
Γ′ � T : σ. Therefore, by the induction hypothesis [[Γ′]] → [[T : σ]] and thus also
[[Γ′]] ∧ [[v : A]] → [[T : σ]] so [[Γ]] → [[T : σ]].

Rule (→ Intro): In this case T ≡ λx : τ.M and σ ≡ τ → τ ′. By assumption we have
Γ, x : τ �M : τ ′, Γ � τ : U1 and Γ � τ ′ : U1. So by induction hypothesis

[[Γ]] ∧ [[x : τ ]] → [[M : τ ′]] ,(1)

[[Γ]] → [[τ : U1]] ,(2)

[[Γ]] → [[τ ′ : U1]] .(3)

From (1) we get

(4) [[Γ]] → ([[x : τ ]] → [[M : τ ′]]).

Since by assumption Γ � τ : U1 and Γ � τ ′ : U1, we know by Remark 1.5.1, that τ
and τ ′ are simple type expressions. Therefore, from (4) we get

[[Γ]] → ((x̂ ∈̇ [[τ ]] → ([[M ]] ∈̇ [[τ ′]]))).

Since Γ, x : τ is a context, we have (x : ξ) /∈ Γ for any ξ, so x̂ /∈ FV ([[Γ]]). We may
thus use the quantifier rule, obtained in Lemma 2.2.1 to conclude

[[Γ]] → ∀x̂((x̂ ∈̇ [[τ ]]) → ([[M ]] ∈̇ [[τ ′]])).

Now, by Lemma 2.3.1 [[M ]] = (λx̂. [[M ]])x̂, so

(5) [[Γ]] → ∀x̂((x̂ ∈̇ [[τ ]]) → ((λx̂. [[M ]])x̂) ∈̇ [[τ ′]]).

But (5) means
[[Γ]] → (λx̂. [[M ]]) ∈̇ imp([[τ ]] , [[τ ′]])

and thus [[Γ]] → [[T : σ]].

Rule (→ Elim): Then T ≡MN and by assumption Γ �M : τ → σ and Γ �N : τ . So, by
induction hypothesis

[[Γ]] → [[M : τ → σ]] ,(6)

[[Γ]] → [[N : τ ]] .(7)

From (6) and Lemma 1.5.11 we get, that τ → σ is simple, so

[[Γ]] → [[M ]] ∈̇ imp([[τ ]] , [[σ]])
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an thus, assuming that x is a variable, such that x /∈ FV ([[M ]])

[[Γ]] → ∀x((x ∈̇ [[τ ]]) → ([[M ]] x ∈̇ [[σ]])).

Therefore,
[[Γ]] → (([[N ]] ∈̇ [[τ ]]) → ([[M ]] [[N ]] ∈̇ [[σ]]))

and with (7)
[[Γ]] → [[M ]] [[N ]] ∈̇ [[σ]] ,

which means the same as [[Γ]] → [[T : σ]].

Rule (Π Intro): In this case T ≡ λt : U1.M and σ ≡ Πt : U1.τ . By assumption therefore
Γ, t : U1 �M : τ and by induction hypothesis

[[Γ]] ∧ [[t : U1]] → [[M : τ ]] .

Therefore, by Theorem 3.4.1

[[Γ]] ∧ <(t̂) → [[M : τ ]] .

Again, since Γ, t : U1 is a context, t : A /∈ Γ for any type expression or universe
symbol A. Thus t̂ /∈ FV ([[Γ]]) and so we may use the quantifier rule we proved in
Lemma 2.2.1 to obtain

[[Γ]] → ∀t̂(<(t̂) → [[M : τ ]]),

Therefore, since [[T ]] ≡ [[M ]], by Lemma 3.3.6 we get

[[Γ]] → ∀t̂(<(t̂) → [[T : τ ]])

and thus [[Γ]] → [[T : σ]].

Rule (Π Elim): Then T ≡ Mξ and by assumption Γ � M : Πt : U1.σ and Γ � ξ : U1.
Therefore, by induction hypothesis

(8) [[Γ]] → ∀t̂(<(t̂) → [[M : σ]])

and by Theorem 3.4.1

(9) [[Γ]] → <([[ξ]]).

From (8) we derive
[[Γ]] → (<([[ξ]]) → [[M : σ]]

[
[[ξ]] /t̂

]
).

Now with Lemma 3.3.3 we obtain

[[Γ]] → (<([[ξ]]) → [[M : [ξ/t]σ]])

and using (9)
[[Γ]] → [[M : [ξ/t]σ]] .

Therefore, since [[T ]] ≡ [[M ]] we have [[T : [ξ/t]σ]] with Lemma 3.3.6.
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Rule (let): Then T ≡ (let x : ξ = N in M) and by assumption Γ � σ : U1, Γ, x : ξ �M : σ
and Γ �N : ξ. So, by induction hypothesis

[[Γ]] ∧ [[x : ξ]] → [[M : σ]] ,(10)

[[Γ]] → [[N : ξ]] .(11)

By (10) we obtain
[[Γ]] → ([[x : ξ]] → [[M : σ]]).

Therefore, with the assumption that Γ � σ : U1 and Remark 1.5.1 we have

[[Γ]] → ([[x : ξ]] → [[M ]] ∈̇ [[σ]])

and by Lemma 2.3.1

[[Γ]] → ([[x : ξ]] → (λx̂. [[M ]])x̂ ∈̇ [[σ]]).

Since Γ, x : ξ is a context, x : τ /∈ Γ for any type expression τ and thus x̂ /∈ FV ([[Γ]]).
We may therefore use the quantifier rule we proved in Lemma 2.2.1 to obtain

[[Γ]] → ∀x̂([[x : ξ]] → (λx̂. [[M ]])x̂ ∈̇ [[σ]])

and so, by specialising with [[N ]] and Lemma 3.3.1 we get

[[Γ]] → ([[x : ξ]] [[[N ]] /x̂] → ((λx̂. [[M ]])x̂) [[[N ]] /x̂] ∈̇ [[σ]]).

By Lemma 3.3.5 it follows, that

[[Γ]] → ([[N : ξ]] → (λx̂. [[M ]]) [[N ]] ∈̇ [[σ]] .

Then by (11) we have
[[Γ]] → (λx̂. [[M ]]) [[N ]] ∈̇ [[σ]]

and so [[Γ]] → [[T : σ]].

Rule (rec): Then T ≡ RLMN and by assumption Γ � L : σ, Γ � M : σ → (nat → σ),
Γ �N : nat, so by induction hypothesis

[[Γ]] → [[L : σ]] ,(12)

[[Γ]] → [[M : σ → (nat→ σ)]] ,(13)

[[Γ]] → [[N : nat]] .(14)

From Γ�M : σ → (nat→ σ) it follows by Lemma 1.5.11, that Γ�σ : U1. Therefore,
by Theorem 3.4.1,

(15) [[Γ]] → <([[σ]]).
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By (12), (13) and (14) and Remark 1.5.1 we then obtain

[[Γ]] → [[L]] ∈̇ [[σ]] ,(16)

[[Γ]] → [[M ]] ∈̇ imp([[σ]] , imp(nat, [[σ]])),(17)

[[Γ]] → [[N ]] ∈̇ nat.(18)

Now using Lemma 2.4.5 on (15), (16) and (17), we conclude

[[Γ]] → ∀n(n ∈̇N → (r [[L]] [[M ]]n ∈̇ [[σ]])).

Specialising with [[N ]], we get

[[Γ]] → ([[N ]] ∈̇ nat → r [[L]] [[M ]] [[N ]] ∈̇ [[σ]]).

So by (18)
[[Γ]] → r [[L]] [[M ]] [[N ]] ∈̇ [[σ]] ,

which means [[Γ]] → [[T : σ]].

Rule (case): In this case T ≡ DMNB and by assumption Γ � M : σ, Γ � N : σ and
Γ �B : bool, so by induction hypothesis

[[Γ]] → [[M : σ]] ,(19)

[[Γ]] → [[N : σ]] ,(20)

[[Γ]] → [[B]] ∈̇ bool.(21)

We have
[[Γ]] → [[DMNB]] = dB [[M ]] [[N ]] [[B]] .

By (21) we know, that either [[B]] = 1 or [[B]] = 0.

Case 1) [[B]] = 1: Then dB [[M ]] [[N ]] [[B]] = [[M ]] and so [[Γ]] → [[T : σ]] by (19).

Case 2) [[B]] = 0: Then dB [[M ]] [[N ]] [[B]] = [[N ]] and so [[Γ]] → [[T : σ]] by (20).

Therefore, our claim holds for all axioms and rules of λpT , which concludes the proof. 2

Theorem 3.4.3 Let Γ be a context, T a preterm and σ a type expression of λpT+, such
that Γ � T : σ. Then

EET+(F-IN)+(Tot) ` [[Γ]] → [[T : σ]] .

Proof As in the proof of Theorem 3.4.2, we also prove this claim by induction on the
derivation of Γ � T : σ. However, we need to reconsider only those rules, which contain
arrow-types. The treatment of the other rules is literally identical to the one given in
the proof of Theorem 3.4.2. All reasoning is done in EET+(F-IN)+(Tot). Throughout the
proof, we will assume that τ and τ ′ denote type expressions and L, M and N preterms of
λpT+.
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Rule (full → Intro): In this case T ≡ λx : τ.M and by assumption Γ, x : τ �M : τ ′

Case 1) Both τ , τ ′ are simple type expressions: Then the proof is the same as for
the rule (→ Intro) in Theorem 3.4.2.

Case 2) τ or τ ′ is not a simple type expression: Then by induction hypothesis we
have

[[Γ]] ∧ [[x : τ ]] → [[M : τ ′]] ,

which is equivalent to

[[Γ]] → ([[x : τ ]] → [[M : τ ′]]).

Now, by Lemma 2.3.1 [[M ]] = (λx̂. [[M ]])x̂ = [[(λx : τ.M)x]], so by Lemma 3.3.6

[[Γ]] → ([[x : τ ]] → [[(λx : τ.M)x : τ ′]]).

Since Γ, x : τ is a context, (x : γ) /∈ Γ for any type expression γ and so
x̂ /∈ FV ([[Γ]]). By the quantifier rule obtained in Lemma 2.2.1, we thus conclude

[[Γ]] → ∀x̂([[x : τ ]] → [[(λx : τ.M)x : τ ′]]),

which means [[Γ]] → [[T : σ]].

Rule (→ Elim): In this case T ≡MN and by assumption Γ �M : τ → τ ′ and Γ �N : τ .

Case 1) τ → τ ′ is a simple type expression: Then the proof is the same as the one
for Rule (→ Elim) in Theorem 3.4.2.

Case 2) τ → τ ′ is not a simple type expression: By induction hypothesis we have

[[Γ]] → ∀ŝ([[s : τ ]] → [[Ms : τ ′]]),(1)

[[Γ]] → [[N : τ ]] ,(2)

where s is an individual variable of λpT+, such that s /∈ FV (M). So specialising
(1), we obtain

[[Γ]] → (([[s : τ ]] [[[N ]] /ŝ]) → ([[Ms : τ ′]] [[[N ]] /ŝ])).

Therefore, by Lemma 3.3.5 and the fact that s /∈ FV (M)

[[Γ]] → ([[N : τ ]] → [[MN : τ ′]]),

so using (2), we get
[[Γ]] → [[MN : τ ′]]

and thus [[Γ]] → [[T : σ]].

Rule (rec): Then T ≡ RLMN and by assumption Γ � L : σ, Γ � M : σ → (nat → σ),
Γ �N : nat.
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Case 1) σ is a simple type: Then the proof is the same as the one for Rule (rec) in
Theorem 3.4.2.

Case 2) σ is not a simple type: Then by induction hypothesis we have

[[Γ]] → [[L : σ]] ,(3)

[[Γ]] → ∀ŝ([[s : σ]] → ∀n̂(n̂ ∈̇ nat → [[Msn : σ]])),(4)

[[Γ]] → [[N ]] ∈̇ nat,(5)

where s and n are individual variables of λpT+, such that s /∈ FV (M) and
n /∈ FV (Ms). Furthermore, we assume n to be chosen in a way, that (n : γ) /∈ Γ
for any type expression γ and n /∈ FV (L). We aim to use the axiom (F-IN) and
first show, that

(∗) [[Γ]] → [[RLMn : σ]] [0/n̂]

holds. By Lemma 3.3.5 we have

[[RLMn : σ]] [0/n̂] ↔ [[[0/n]RLMn : σ]] .

Furthermore, we have

[[[0/n]RLMn]] = [[RLM0]] = r [[L]] [[M ]] 0 = [[L]] .

So by Lemma 3.3.6 and (3) the formula (∗) holds. We now show, that

(∗∗) [[Γ]] → (∀n̂ ∈ N)(([[RLMx : σ]] [n̂/x̂]) → ([[RLMx : σ]] [n̂′/x̂]))

also holds. Again by Lemma 3.3.5, we have

[[RLMx : σ]] [n̂′/x̂] ↔ [[[succn/x]RLMx : σ]] .

Now we may specialise (4) with r [[L]] [[M ]] n̂ to get

[[Γ]] → ([[s : σ]] [r [[L]] [[M ]] n̂/ŝ] → ∀m̂(m̂ ∈̇ nat → [[Msm : σ]] [r [[L]] [[M ]] n̂/ŝ])),

where m is a variable of λpT+, not free in RLMn. This, by Lemma 3.3.5, yields

[[Γ]] → ([[RLMn : σ]] → ∀m̂(m̂ ∈̇ nat → [[M(RLMn)m : σ]])).

We specialise the universally quantified part with n̂, giving us

[[Γ]] → ([[RLMn : σ]] → (n̂ ∈̇ nat → [[M(RLMn)n : σ]])),

which implies

[[Γ]] → (n̂ ∈̇ nat → ([[RLMn : σ]] → [[M(RLMn)n : σ]]))
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and since n̂ /∈ FV ([[Γ]]), we may universally quantify this to

[[Γ]] → ∀n̂(n̂ ∈̇ nat → ([[RLMn : σ]] → [[M(RLMn)n : σ]])),

which implies

(6) [[Γ]] → (∀n̂ ∈ N)([[RLMn : σ]] → [[M(RLMn)n : σ]])).

Now consider the following equalities

[[M(RLMn)n]] = [[M ]] (r [[L]] [[M ]] n̂)n̂ = r [[L]] [[M ]] n̂′ = (r [[L]] [[M ]] x̂) [n̂′/x̂]

= [[[succn/x]RLMx]] .

So from (6) we obtain with Lemma 3.3.6

[[Γ]] → (∀n̂ ∈ N)([[[n/x]RLMx : σ]] → [[[succn/x]RLMx : σ]])),

which is equivalent to (∗∗) by Lemma 3.3.5. Thus, by the axiom (F-IN) we may
conclude

[[Γ]] → (∀n̂ ∈ N) [[RLMn : σ]]

and therefore, by (5) and Lemma 3.3.5

[[Γ]] → [[RLMN : σ]] ,

which means, that [[Γ]] → [[T : σ]] holds.

So the claim holds for all axioms and rules of λpT+ and our proof is complete. 2

Theorem 3.4.4 Let Γ be a context, T and S preterms and σ a type expression of λpT+,
such that Γ � T = S : σ. Then

EET+(Tot)+(Ext) ` [[T ]] = [[S]] .

Proof We prove this claim by induction on the derivation of Γ�T = S : σ. That is to say,
we must check, that the claim is preserved, whenever an equational rule of λpT+ is applied.
We take all reasoning to be done in the system EET+(Tot)+(Ext).

Rule (add var=): So we have Γ = Γ′, x : τ for some context Γ′ and Γ′ � T = S : σ. Thus,
by the induction hypothesis the claim follows at once.

Rule (ref): Then we have T ≡ S. This case follows trivially, by axiom (E1) of LPT.

Rule (sym): Then we have Γ � S = T : σ and by induction hypothesis [[S]] = [[T ]], so the
claim follows trivially by axiom (E2) of LPT.
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Rule (trans): So Γ � T = K : σ and Γ �K = S : σ and by the induction hypothesis

[[T ]] = [[K]] ∧ [[K]] = [[S]] .

Then the claim follows trivially by axiom (E3) of LPT.

Rule (ξ): In this case S ≡ λx : τ.M and T ≡ λx : τ.N . By assumption we have Γ, x :
τ � M = N : ξ and thus by the induction hypothesis [[M ]] = [[N ]]. It follows by
Lemma 2.3.3 that λx̂. [[M ]] = λx̂. [[N ]], which means [[S]] = [[T ]].

Rule (ν): Then S ≡M1N1 and T ≡M2N2. By assumption we have Γ �M1 = M2 : τ → ξ
and Γ �N1 = N2 : τ . So by the induction hypothesis [[M1]] = [[M2]] and [[N1]] = [[N2]].
So by axiom (E5) of LPT we get [[M1]] [[N1]] = [[M2]] [[N2]], which means [[S]] = [[T ]].

Rule (α): In this case T ≡ λx : σ.M and S ≡ λy : σ. [y/x]M . We have [[T ]] = λx̂. [[M ]] and
by Lemma 3.3.4 [[S]] = λŷ.([[M ]] [ŷ/x̂]). Therefore, by Lemma 2.3.2, it follows that
[[T ]] = [[S]].

Rule (β): Then T ≡ (λx : σ.M)N and S ≡ [N/x]M . By Lemma 2.3.1 we have [[T ]] =
(λx̂. [[M ]]) [[N ]] = [[M ]] [[[N ]] /x̂] and by Lemma 3.3.4 [[S]] = [[[N/x]M ]] = [[M ]] [[[N ]] /x̂].
So we have [[T ]] = [[S]].

Rule (η): In this case T ≡ λx : σ.(Mx) and S ≡ M . By Lemma 2.3.4 we have [[T ]] =
λx̂. [[Mx]] = λx̂.([[M ]] x̂) = [[M ]]. So [[S]] = [[T ]] holds.

Rule (αΠ): Then S ≡ λt : U1.M and T ≡ λs : U1. [s/t]M . We have [[S]] = [[λt : U1.M ]] =
[[M ]] and

[[T ]] = [[λs : U1. [s/t]M ]] = [[[s/t]M ]]
Lemma 3.3.4

= [[M ]]
[
ŝ/t̂
] Lemma 3.3.1

= [[M ]] .

So [[S]] = [[T ]] holds.

Rule (βΠ): In this case S ≡ (λt : U1.M)τ and T ≡ [τ/t]M . We have

[[S]] = [[(λt : U1.M)τ ]] = [[λt : U1.M ]] = [[M ]]

and by Lemma 3.3.1 [[T ]] = [[[τ/t]M ]] = [[M ]], so [[T ]] = [[S]] holds.

Rule (ηΠ): Then S ≡ λt : U1.Mt and T ≡M . We have

[[S]] = [[λt : U1.Mt]] = [[Mt]] = [[M ]] = [[T ]] ,

so the claim holds trivially.

Rule (ξΠ): In this case T ≡ λt : U1.M and S ≡ λt : U1.N and by assumption Γ � M =
N : σ. So by the induction hypothesis [[M ]] = [[N ]]. Therefore, since [[T ]] = [[M ]] and
[[S]] = [[N ]], we trivially have [[T ]] = [[S]].
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Rule (νΠ): Then S ≡ Mτ and T ≡ Nτ and since [[S]] = [[M ]] and [[T ]] = [[N ]], the claim
follows directly from the induction hypothesis, as in the case of the rule (ξΠ).

Rule (let =): In this case T ≡ (let x : τ = N in M) and S ≡ [N/x]M . We have [[T ]] =
(λx̂. [[M ]]) [[N ]] = [[M ]] [[[N ]] /x̂] and by Lemma 3.3.4 [[S]] = [[[N/x]M ]] = [[M ]] [[[N ]] /x̂].
So [[T ]] = [[S]] holds.

Rule (case= true): Then S ≡ DMNtrue and T ≡ M . By Lemma 2.3.6 we have [[S]] =
dB [[M ]] [[N ]] 1 = [[M ]], so [[S]] = [[T ]] holds.

Rule (case= false): This case also follows by Lemma 2.3.6, in a manner completely anal-
ogous to the case of rule (case= true).

Rule (rec= 0): Then S ≡ RLM0 and T ≡ L. Therefore, by Lemma 2.3.7

[[S]] = r [[L]] [[M ]] 0 = [[L]]

and so [[S]] = [[T ]] holds.

Rule (rec= succ): In this case S ≡ RLM(succN) and T ≡ M(RLMN)N . Again by
Lemma 2.3.7 we have

[[S]] = r [[L]] [[M ]] ([[N ]]′) = [[M ]] (r [[L]] [[M ]] [[N ]]) [[N ]] = [[T ]] .

So [[S]] = [[T ]] also holds.

Therefore, the claim holds in all cases. 2



Conclusions

Results

The results of this thesis may be stated in various ways. On one hand, we have demon-
strated how predicative polymorphism can be simulated naturally in an untyped logical
framework. On the other hand and perhaps more importantly, our results can also be used
to determine the proof-theoretic strength of predicative polymorphism. In concluding,
we elaborate slightly further on this aspect of our results. The notion of proof-theoretic
strength, which is used when dealing with purely functional systems like λpT and λpT+ is
that of the provably total functions. By the provably total functions of λpT and λpT+, we
mean those terms T for which we can derive ∅�T : nat→ nat in either λpT or λpT+ respec-
tively. Similarly, by the provably total functions of a theory A of explicit mathematics,
we mean those closed terms f , for which we can prove ∀x(x ∈̇ nat → fx ∈̇ nat) in A. In
this way, provably total functions may be defined in most logical theories and it can be
shown, that the concept of provably total functions usually coincides with other notions
of proof-theoretic strength, where available. We will thus say, that a system of predicative
polymorphism is proof-theoretically equivalent to a theory of explicit mathematics, if and
only if there is a one-to-one correspondence of the provably total functions. The embedding
theorems stated in this thesis automatically yield one direction of this correspondence.

Theorems 3.4.2 and 3.4.4 imply, that the system λpT may be embedded into the the-
ory EET+(T-IN)+(Tot)+(Ext) of explicit mathematics. Together with Remark 1.3.1 and
Theorem 2.4.1, the situation can then be depicted as follows

λpT
Theorems 3.4.2, 3.4.4

 EET+(T-IN)+(Tot)+(Ext)
Theorem 2.4.1≡ PA System T

Remark 1.3.1

⊆ λpT ,

where the second wavy arrow refers to a result by Gödel, well known as the Dialectica
interpretation, which is described for example by Avigad and Feferman [AF98]. In sum,
we may thus conclude that the system λpT of predicative polymorphism is of the same
proof-theoretic strength as PA. It is also well known, that PA and System T are proof-
theoretically equivalent, which leads us to the conclusion that λpT is conservative over
System T . Therefore, from a computational point of view, nothing is gained from adding
such a weak form of polymorphism to System T . However, from an engineering point of
view there is certainly a gain. The polymorphism of λpT is still useful for factoring out
shared behaviour and thereby avoiding the duplication of “program code”. To appreciate
this, one may consider for example the identity function in both System T and λpT . In the
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latter the term λt : U1.λx : t.x is well-typed and may be applied to any simple type σ to
yield λx : σ.x. We thus only need one definition of the identity function to cover all simple
types. This is not the case in System T , where a separate identity λx : σ.x must be defined
for every simple type σ.

The result obtained for λpT+ is weaker. Theorems 3.4.3 and 3.4.4 imply that the system
λpT+ may be embedded into EET+(F-IN)+(Tot)+(Ext). Thus, together with Theorem 2.4.1,
we have the situation

λpT+

Theorems 3.4.3, 3.4.4
 EET+(F-IN)+(Tot)+(Ext)

Theorem 2.4.1≡ Π0
∞−CA.

Therefore the proof-theoretic strength of EET+(F-IN)+(Tot)+(Ext) and Π0
∞−CA provides

an upper bound for the strength of λpT+. In this case however, an exact correspondence
does not follow immediately, since we do not have an interpretation result for Π0

∞−CA,
analogous to the one for System T .

Further work

From the results of this thesis, we obtain two interesting topics for further work. The first
one addresses the problem of finding a lower bound for the strength of λpT+. In fact, we
may state it as the following conjecture.

Conjecture 3.4.1 λpT+ is proof-theoretically equivalent to EET+(F-IN)+(Tot)+(Ext) and
Π0
∞−CA.

The most direct way to prove this conjecture would be to find a functional interpretation
of Π0

∞−CA into a subsystem of λpT+, analogous to the interpretation of PA into System
T . In that case, the claim would hold by the same reasoning. However, such a functional
interpretation would exceed the scope of this thesis.

The second topic adresses the use of the axiom (Tot) to prove the embedding results.
We may state it as the following conjecture.

Conjecture 3.4.2 The axiom (Tot) is not needed in the results of this thesis.

A proof of this conjecture would most certainly go along the following lines: In λpT and
λpT+ we only deal with terms that are well-typed. That is to say, if a term T appears in
a derivation of λpT or λpT+, then somewhere in that derivation we have Γ � T : σ for some
context Γ and some type expression σ. By inspection of the definition of the interpretation
mapping [[·]], we may see that the judgement T : σ is always interpreted as some formula
of explicit mathematics, containing the term [[T ]]. By an inductive argument on the strict-
ness axioms of EET, we may immediately conclude that [[T ]] ↓ must hold. Therefore, the
interpretation of any term λpT or λpT+ is always defined in explicit mathematics. Thus, for
our application it should be sufficient to use the slightly different, partial definition for
λ-abstraction in place of Definition 2.3.3 and prove the subsequent lemmata as well as the
recursion-theorem under the assumption, that the term under consideration is defined.
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